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Context

Fq a finite field, E : y2 = x3 + Ax + B be a (smooth) elliptic curve over Fq

t the trace of E , G1 a subgroup of E of prime order r , er : G1 ×G2 −→ GT ⊂ Fqk a
pairing application

Pairing applications:

• identity-based encryption
• short signatures
• flexible key-exchange protocols

Pairing → attacks on the DL on E

Pairing-friendly curves: curves having a small enough embedding degree k

We focus on the generation of pairing-friendly curves. Main criterion: ρ = log q/ log r .

If E is ordinary: D the squarefree part of the discriminant of the endomorphism ring. 2



Generating an ordinary pairing-friendly curve

Theorem:
If E is supersingular, then k ≤ 6.

From now on, we assume E to be ordinary.

To generate E , we first generate q, r and t, and then use the CM method to recover E .

The generated integers q, r and t have to satisfy two kinds of conditions:

• Number-theoretic conditions: q and r are prime.

• Arithmetic conditions: q, r , t and two other integers y and h satisfy polynomial
relations.
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Generating a complete family of curves

Generating a complete family of elliptic curves means fiding Q, R , T , Y , H in Q[X ]

satisfying:

• Number-theoretic conditions:
• Q represents primes (Bunyakovsky-Schinzel conjecture),
• R represents prime up to a rational,
• all the polynomials take integer values simultanously.

• Arithmetic relations:
• RH = Q + 1 − T ,
• R divides Φk(T − 1),
• DY 2 = 4Q − T 2, (CM equation)

where Φk is the k-th cyclotomic polynomial.

We define the ρ-value of a family as ρ = degQ/ degR .
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Examples of families

Example:
The Barreto-Lynn-Scott (BLS) family for k = 12 and D = 3, which has ρ = 3/2:

• R(x) = X 4 − X 2 + 1,

• T (x) = X + 1,

• Q =
(
X 6 − 2X 5 + 2X 3 + X + 1

)
/3.

Example:
The Barreto-Naehrig (BN) family for k = 12 and D = 3, which has ρ = 1:

• R(x) = 36X 4 + 36X 3 + 18X 2 + 6X + 1,

• T (x) = 6X 2 + 1,

• Q(x) = 36X 4 + 36X 3 + 24X 2 + 6X + 1.
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Brezing-Weng method

Use the arithmetic relations to generate a potential family:

• Fix k and D;

• Let R be an irreducible polynomial such that Q[X ]/⟨R⟩ contains a primitive k-th
root of unity ζk and

√
−D;

• Let T be a polynomial such that T ≡ ζk + 1 mod R ;

• Let Y be a polynomial such that Y ≡ ζk − 1√
−D

mod R ;

• Compute Q = (T 2 + DY 2)/4 and H = (Q + 1 − T )/R .

Then check if Q, R , T , Y , H satisfy the number-theoretic conditions.
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Kachisa-Schaefer-Scott method

The KSS method is a variant of the Brezing-Weng method that specify how to find R .

• Fix k and D;

• Fix K a number field containing a primitive k-th root of unity ζk and
√
−D;

• Pick θ ∈ K such that Q(θ) = K ;

• Let R be the minimal polynomial of θ over Q;

• Let T be a polynomial such that T (θ) = ζk + 1;

• Let Y be a polynomial such that Y (θ) =
ζk − 1√
−D

;

• Compute Q = (T 2 + DY 2)/4 and H = (Q + 1 − T )/R .

In particular, the KSS method allows an enumeration on θ.

7



Examples of KSS families

Example: (KSS16)
Family generated from θ = (2

√
−1− 1)ζ16 for k = 16 and D = 1, which has ρ = 5/4:

• T = 1
35(2X

5 + 41X + 35),

• R = X 8 + 48x4 + 625,

• Q = 1
980(X

10 + 2X 9 + 5X 8 + 48X 6 + 152X 5 + 240X 4 + 625X 2 + 2398X + 3125).

Example: (KSS18)
Family generated from θ = (

√
−3 − 5)ζ18/2 for k = 18 and D = 3, which has

ρ = 4/3:

• T = 1
7(X

4 + 16X + 7),

• R = X 6 + 37X 3 + 343,

• Q = 1
21(X

8 + 5X 7 + 7X 6 + 37X 5 + 188X 4 + 259X 3 + 343X 2 + 1763X + 2401). 8



Subfield method



Goals

The goals of this talk are:

• to exhibit the mathematical components allowing us to generate families with
small ρ-value.

• to introduce new families performing better than older ones at the same
embedding degree.

• to compare them to the state of the art and discuss their cryptographic interest.
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Main Idea

Fix k ≥ 7.

Let Ck be the k-th cyclotomic field, and let F = Q(
√
−D) be a quadratic imaginary

field. We call K = CkF = Ck(
√
−D) the compositum. Fix ζk a primitive k-th root of

unity.

Let θ = αζk , α ∈ F , such that K = Q(θ). Let e be an integer such that F = Q(θe).
Choose R = minpoly(θ). Then, there exists P1, P2, P3 such that:

• P1(θ
e) = 1/α.

• P2(θ
e) = 1/(α

√
−D).

• P3(θ
e) = 1/

√
−D.

• T (X ) = P1(X
e)X + 1, so that T (θ) = P1(θ

e)θ + 1 = αζk/α+ 1 = ζk + 1.

• Y (X ) = P2(X
e)X − P3(X

e), so that Y (θ) =
ζk√
−D

− 1√
−D

.
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First case: odd k, non-specific discriminant

If k is odd, then we can take e = k (because θe = αk). Suppose that F ̸⊂ Ck .

Then we have:

Q

Ck ̸∋
√
−DQ(

√
−D) = F

K = Ck(
√
−D)

2 φ(k)

2φ(k)

and we generate families with ρ = k+1
φ(k) . 11



Second case: even k, non-specific discriminant

If k is even, then we can take e = k/2 (because θe = −αk/2). Suppose that F ̸⊂ Ck .

Then we have:

Q

Ck ̸∋
√
−DQ(

√
−D) = F

K = Ck(
√
−D)

2 φ(k)

2φ(k)

and we generate families with ρ = k/2+1
φ(k) .
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Third case: discriminant 1 and 3

For these special discriminants, we have another construction.

If 4 | k , let D = 1 and d = 4. If 3 | k , then let D = 3 and d = gcd(6, k).

In any case, we can take e = k/d . Then we have:

Q

F = Q(
√
−D) = Q(ζd)

K = Ck

2

φ(k)/2

We can generate families with ρ = 2k/d+2
φ(k) .
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An example with k = 18

Fix k = 18. In that case, 6 | k so the construction with D = 3 gives the best ρ-value.
We take e = k/6 = 3.

We enumerate on α:

• Take −10 ≤ a ≤ 10 and 0 ≤ b ≤ 10, let α = b
√
−D + a and θ = αζk .

• Ensure that θ3 generates F .
• Compute P1, P2, P3...

With α = 5 + 3
√
−D, we obtain a family with ρ = 4/3:

• P1 = (3X + 1408)/3536, P2 = (5X + 1168)/10608, P3 = (X + 356)/204
• T = (3X 4 + 1408X + 3536)/3536, Y = (5X 4 − 52X 3 + 1168X − 18512)/10608
• R = X 6 + 712X 3 + 140608, Q = 1

2885376(X
8 − 10X 7 + 52X 6 + 712X 5 −

4672X 4 + 37024X 3 + 140608X 2 − 257152X + 7311616)
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Results



Theoretical results

• The method allows to generate many new families, with a small ρ-value, which
depends only on k .

• We showed that we can obtain families with an improved ρ-value for k ≡ 4 mod 12
(for example k = 16) and k ≡ 22 mod 24 (for example k = 22).

• We proved that we can not obtain ρ = 1 in this way.
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New families

Example: (GG22)
A family for k = 22 and D = 7, which has ρ = 6/5:

• T = (X 12 + 45X + 46)/46

• R = (X 20−X 19−X 18+3X 17−X 16−5X 15+7X 14+3X 13−17X 12+11X 11+23X 10+

22X 9−68X 8+24X 7+112X 6−160X 5−64X 4+384X 3−256X 2−512X+1024)/23

• Q = (X 24−X 23+2X 22+67X 13+94X 12+134X 11+2048X 2+5197X+4096)/7406

Example: (GG20b)
A family for k = 20 and D = 1, which has ρ = 3/2:

• T = (2X 6 + 117X + 205)/205

• R = X 8 + 4X 7 + 11X 6 + 24X 5 + 41X 4 + 120X 3 + 275X 2 + 500X + 625

• Q = 1
33620(X

12−2X 11+5X 10+76X 7+176X 6+380X 5+3125X 2+12938X+15625) 16



Comparison with the state of the art

We are going to compare these families:
Curve k R(X ) twist d | k ρ

KSS16 16 (X 8 + 48x4 + 625)/1250 4 5/4 = 1.25
KSS18 18 (X 6 + 37X 3 + 343)/343 6 4/3 = 1.33
FST 6.4 20 Φ20(X ) 4 3/2 = 1.5
GG20b 20 RGG20b 4 3/2 = 1.5
FST 6.6 20 Φ60(X ) 2 11/8 = 1.375
FST 6.3 22 Φ2k(X ) = Φk(X

2) 2 13/10 = 1.3
GG22 22 RGG22 2 6/5 = 1.2
BLS24 24 Φ24(X ) 6 5/4 = 1.25
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Pre-selected curves

k curve seed log q log r ρ log qk secu

16 KSS16 278 − 276 − 228 + 214 + 27 + 1 766 605 1.25 12256 194
18 KSS18 280 + 277 + 276 − 261 − 253 − 214 638 474 1.33 11484 193

FST 6.4 −256 + 244 + 1 670 448 1.5 13400 193
20 GG20b 249 + 246 − 241 + 235 + 230 − 1 575 379 1.52 11500 196

FST 6.6 −224 + 215 − 28 − 26 − 1 527 384 1.37 10540 193
22 GG22 -0xbe503=-779523 457 383 1.19 10054 220

FST 6.3 221 − 213 + 26 + 23 + 1 544 420 1.30 11968 192
24 BLS24 −251 − 228 + 211 − 1 509 409 1.25 12216 193
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Estimated cost in Fq-multiplications m of 512 bits

k curve
q r Miller loop final exp pairing
bits bits optimal ate easy hard total total

16 KSS16 766 605 37024m 530m 72411m 72940m 109964m
18 KSS18 638 474 26919m 742m 41704m 42445m 69364m

FST 6.4 670 448 34260m 944m 65624m 66567m 100827m
20 GG20b 575 379 22072m 638m ≈62868m ≈63497m ≈85577m

FST 6.6 527 384 36090m 638m 47303m 47941m 84031m
22 GG22 457 383 41154m 789m 72352m 73141m 114295m

FST 6.3 544 420 49926m 993m 82488m 66393m 133406m
24 BLS24 509 409 15345m 658m 24310m 24968m 40313m

Optimal Ate Pairing implementation on the curves considered in Sagemath
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Conclusion

• We introduced a new method for generating families of pairing-friendly curves. It
can produce many families with a ρ-value depending only on k , and (almost)
chosen discriminant. For every k ̸= 12, the ρ-value is at least as small as previous
records of complete families.

• We presented new families for k = 20 and k = 22 performing better than previous
ones at the same enbedding degree. We gave examples of pairing-friendly curves
with an estimation of the cost of computation of the pairing.

• Lastly, it should be noted that this method does not achieve ρ = 1.

Links:

• Main article
• Sagemath implementation of subfield method
• Sagemath implementation of optimal ate pairing
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