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Arithmétique et algorithmique des courbes algébriques et applications aux codes correcteurs et
à la cryptographie

Résumé : L’arithmétique et l’algorithmique élémentaires des courbes algébriques est au cœur de contributions
majeures à la théorie des codes correcteurs d’erreurs et à la cryptologie. Ce travail de thèse mobilise des
notions plus avancées, provenant de la théorie du corps de classes, de la théorie de Riemann–Roch équivariante,
et de la géométrie arithmétique des jacobiennes, pour établir un cadre général adapté à ces constructions et
en améliorer l’efficacité.

On étudie notamment les propriétés de codes linéaires munis d’une structure de module sur l’algèbre
d’un groupe fini G. On étudie plus spécifiquement les codes munis d’une structure de sous-module libre
d’un module libre, et leur dualité. En particulier, on montre que ces codes peuvent être représentés par
des matrices de contrôle à coefficients dans l’algèbre du groupe G. Dans le cas où G est commutatif, la
transformée de Fourier rapide confère de bonnes propriétés algorithmiques à ces codes correcteurs. On montre
aussi comment construire ces codes à l’aide de revêtements abéliens non ramifiés de courbes projectives lisses,
et l’on donne les premiers exemples de codes correcteurs excellents encodables en temps quasi-linéaire et
décodables en temps quasi-quadratique.

Une autre application concerne la construction de familles de courbes elliptiques à couplages, exploitées
dans certains protocoles cryptographiques. La théorie de la multiplication complexe permet de réduire le
problème géométrique sous-jacent à un problème d’arithmétique cyclotomique. On déduit de l’étude de ce
problème une méthode unifiée de construction de familles de courbes elliptiques à couplages.
Mots-clés : Codes correcteurs, Cryptographie, Courbes algébriques, Géométrie Arithmétique, Théorie du
corps de classes, Corps finis

Arithmetics and algorithmics of algebraic curves and applications to coding theory and
cryptography

Abstract: The elementary arithmetics and algorithmics of algebraic curves is at the heart of major
contributions to coding theory and cryptology. This PhD thesis draws on more advanced concepts, from class
field theory, equivariant Riemann-Roch theory and the arithmetic geometry of jacobian varieties, to establish
a general framework adapted to these constructions and improve their efficiency.

In particular, we study the properties of linear codes endowed with a module structure over the algebra of
a finite group G. We study more specifically the codes endowed with a structure of free submodule of a free
module, and their duality. Specifically, we show that these codes can be described by parity check matrices
whose coefficients belong to the algebra of the group G. When G is commutative, the fast Fourier transform
provides nice algorithmic properties to these error-correcting codes. We also show how to build these codes,
using unramified abelian coverings of smooth projective curves, and we give the first examples of excellent
codes encodable in quasi-linear time and decodable in quasi-quadratic time.

Another application involves the generation of families of pairing-friendly elliptic curves, used in some
cryptographic protocols. The complex multiplication theory allows to reduce the underlying geometric
problem to a problem of cyclotomic arithmetics. We deduce from the study of this problem an unified method
of generation of families of pairing-friendly elliptic curves.
Keywords: Coding theory, Cryptography, Algebraic curves, Arithmetic Geometry, Class field theory, Finite
fields
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Notation

General notation

We denote by :
[a..b] for two integers a ⩽ b, the set of integers between a and b.
νp for a prime p, the p-adic valuation over the integers.
N the set of non-negative integers.
Fp for a prime p, the finite field with p elements.
P1 the projective line.
H the upper half-plane.
Re(z) for a complex number z, the real part of z.
O(f(n)) the set of function g s.t. there exists B ∈ R such that g(n) ⩽

n→∞
Bf(n).

⌊.⌋ the floor function.
⌈.⌋ an application rounding to the closest integer.
In for an integer n > 0, the identity matrix of size n.
M t for a matrix M , the transpose of M .

Algebraic curves

In the following:

• K denotes a finite field.

• L denotes an algebraic extension of K.

• X denotes a smooth projective curve geometrically integral over K.

• Y denotes a smooth projective curve geometrically integral over K, together with a
covering τ : Y −→ X.

We denote by:

XL the curve over L canonically associated to X.
L(X) the function field of XL.
X(L) the places of L(X) of degree 1, i.e. the L-rational points of XL.
Irr(X) the set of places of K(X).
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Irrd(X) for an integer d > 0, the set of places of K(X) of degree d.
νP for a place P of K(X), the valuation of K(X) associated to P .
OP for a place P of K(X), the valuation ring of νP .
KP for a place P of K(X), the residue field at P .
Div(X) the divisor group of X.
suppD for D ∈ Div(X), the set of places P s.t. νP (D) ̸= 0.
degD for D ∈ Div(X), the degree of D.
(f) for a rational function f ∈ K(X), the divisor of f .
f(P ) for P ∈ X(K) and a function f ∈ K(X) regular at P , the evaluation of f at P .
Princ(X) the subgroup of principal divisors of X.
Eff(X) the set of effective divisors of X.
OX the sheaf of regular functions of X.
OX(D) for D ∈ Div(X), the sheaf of functions of X associated to D.
ΓX the functor of of global sections on X.
Ω(X/K) the set of differentials of X (relatively to K).
df for f ∈ K(X), the differential associated to f .
divω for ω ∈ Ω(X/K), the divisor of ω.
ResP (ω) for p ∈ X(K) and ω ∈ Ω(X/K) s.t. νP (ω) ⩾ −1, the residue of ω at P .
ΩX/K(D) for D ∈ Div(X), the sheaf of differentials associated to D.
D ∼ D′ for D,D′ ∈ Div(X), this denotes that D and D′ are equivalent.
Pic(X) the Picard group of X.
Picd(X) for d ∈ Z, the subset of classes of Pic(X) of degree d.
JX the Jacobian of X.
JX(K) the K-rational points of JX .
JX [n] for n ∈ Z, the n-torsion JX .
JX [n](K) for n ∈ Z, the K-rational n-torsion points of JX .
D(Q/P ) for P ∈ Irr(X) and Q ∈ Irr(Y ) above P , the decomposition group of Q.
I(Q/P ) for P ∈ Irr(X) and Q ∈ Irr(Y ) above P , the inertia group of Q.

Number fields

In the following:

• K denotes a number field.

• L denotes a finite extension of K.

We denote by:

ZK the integer ring of K.
νp for a prime ideal p of ZK, the p-adic valuation.
Kp for a prime ideal p of ZK, the residue field at p.
D(P/p) for prime ideals p and P of K and L, the decomposition group of P.
I(P/p) for prime ideals p and P of K and L, the inertia group of P.
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I(K) the group of non-zero fractional ideals of ZK.
P (K) the group of principal non-zero fractional ideals of ZK.
Cl(K) the class group of K.
cl(K) the class number of K.
Hil(K) the Hilbert class field of K.
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Chapter 1

Introduction

Since the early 1980s, contributions from algebraic geometry to cryptography and error-
correcting codes have grown significantly. On the one hand, Goppa defined error-correcting
codes by studying the evaluation morphism of functions of a linear space associated with a
divisor of an algebraic curve. These codes generalize the famous Reed-Solomon codes and
have excellent properties. On the other hand, following the attack on the Discrete Logarithm
Problem (abbreviated to DLP) on finite fields by algorithms based on index calculus, the
cryptography community began to design and study protocols whose security relies on
the DLP on elliptic curves. Later, in the 2000s, a branch of this theory studied protocols
using pairings. These protocols require special elliptic curves, known as pairing-friendly
curves, and a section of the literature on this subject develops methods for constructing
these curves. In this thesis, we study a new construction of Goppa codes benefiting from an
additional structure, as well as a general method for generating families of pairing-friendly
curves. These contributions fall within the scope of algorithmic arithmetic and geometry,
and notably involves the class field theory of number fields and function fields.

Goppa codes
Let K be a finite field with q elements, and let n be an integer. A linear code of length n is
a vector subspace of a K-vector space of dimension n endowed with a distance, for instance
Kn endowed with the Hamming distance

d : Kn ×Kn −→ N

which associates with every pair of vectors in Kn the number of non-zero coordinates of
their difference. The elements of this vector subspace are called codewords.

A classic problem consists in determining the closest codeword to a given element of
the ambient vector space (or one of the closest words, if there are several). It is common
to restrict oneself to solving this problem only for elements at distance at most t from
a codeword, where t is a positive integer. Let d be the minimum distance between two
codewords. If t < d/2, every element of Kn has at most one codeword at distance less than
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t. In this case, solving the problem amounts to giving, if it exists, the unique codeword in
the ball of radius t centered on the element in question. This problem is called the decoding
problem.

For a fixed dimension, the minimum distance determines the correction capacity t of
the code. Singleton’s bound is an upper bound for the minimum distance d at given length
n and dimension k:

k + d ⩽ n+ 1.

Codes that reach this bound are called MDS codes. Few MDS codes are known, and
the most famous ones are Reed-Solomon codes. These codes are defined as vectors of
Kn (equipped with the Hamming distance) whose components are the evaluations of a
polynomial of degree at most k − 1 at n distinct fixed elements of K. One drawback of
Reed-Solomon codes is their length, which is limited to q by definition.

Goppa geometric codes, also known as AG codes, are a generalization of Reed–Solomon
codes. Let X be a smooth projective curve over K of genus g. Let P1, . . . , Pn be pairwise
distinct points of X, and let D be a divisor on X disjoint from P = P1 + · · · + Pn. The
geometric Goppa code associated with D and P is the vector subspace of Kn (equipped
with the Hamming distance) consisting of vectors whose components are the values of a
function of the linear space associated with D at (Pi)i∈[1..n].

Goppa codes are not MDS codes in general, but their length n, dimension k and
minimum distance d satisfy the relation

k + d ⩾ n+ 1− g,

because a rational function cannot vanish at more points than its degree. The work of
Ihara, Tsfasman, Vladut, and Zink has shown that under some conditions on K (e.g., the
order of K is a square), there exist curves with a sufficiently large number of points n such
that the defect associated with their genus g is not detrimental.

Contributions to Goppa codes
In the 1990s, decoding algorithms for Goppa codes generalizing the decoding algorithms for
Reed-Solomon codes were developed. It has been shown that it is possible to decode these
codes for t < d/2 in O(n3) operations in K. It should be noted that the general problem of
decoding any linear code is an NP-hard problem, and that the best known probabilistic
algorithms for decoding random linear codes have exponential complexity in the weight of
the error. Thus, the structure derived from the algebraic geometry of Goppa codes also
makes them efficient from an algorithmic point of view. Furthermore, as with all linear
codes, it is possible to encode these codes, i.e. to compute an element of the code given its
coordinates in a basis, in O(n2) operations in K.

However, from an application standpoint, Goppa codes are still considered too inefficient,
compared to Reed-Solomon codes for example. One of the research goals on these codes is
therefore to find more efficient encoding and decoding algorithms.
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In this thesis, we define a subfamily of Goppa codes, for which we show that the
algorithmic performance is improved. These codes are defined on an unramified abelian
cover Y over another curve X, with covering map:

τ : Y −→ X.

Let G be the Galois group of τ . Let D be a divisor on X and E its pullback on Y . Let
P1, . . . , Pn be K-rational points on X that are totally split in Y , and let Q be the set of
points in the fibers above P1, . . . , Pn. The divisor E is stable under the action of G, so G
acts on the functions in L(E). Furthermore, G acts on the fibers of τ and therefore acts on
Q. Finally, the evaluation of the functions of L(E) at Q is compatible with the action of G.
We can then view the Goppa code associated with Q and E as a K[G]-module. Moreover,
under the usual assumptions, we can show that it is a free K[G]-module, which means that
the action of G is very relevant in the description of the code.

Using this structure of free K[G]-module, we can define generator and parity-check
matrices for these Goppa codes whose coefficients are elements of K[G]. It is possible to
use the fast Fourier transform (FFT) to quickly compute multiplications in K[G]. When
the order of G is very large compared to n, the complexity of the encoding and decoding
algorithms is reduced. More precisely, it can be shown that in this favorable case, these
codes can be encoded in quasi-linear time with respect to their length, and decoded in
quasi-quadratic time.

It can also be shown that, under some conditions on K that are more restrictive than for
classical Goppa codes, these codes are asymptotically excellent. More precisely, it is possible
to find a family of unramified abelian covers with Galois groups of sufficiently fast growing
order so that the encoding and decoding algorithms have quasi-linear and quasi-quadratic
complexities, and which have enough K-rational points to exceed the Gilbert-Varshamov
bound.

This construction is the first construction of Goppa codes that has both good asymptotic
properties and a quasi-linear encoding algorithm. For comparison, in [NW19], the authors
construct a family of asymptotically good Goppa codes, whose encoding has subquadratic
complexity in the length of the code. In [BRS21], the authors show that Goppa codes derived
from Cab curves can be encoded in quasi-linear time. However, as with Reed-Solomon codes,
these codes have a bounded length n ⩽ q2 and cannot be considered asymptotically good.

This work resulted in the article ”Explicit Riemann-Roch spaces in the Hilbert class
field”, which was accepted for publication in the conference proceedings of AGC2T 2023.

Pairing-based cryptography
Let K be a finite field, and let E/K be an elliptic curve. The curve E is naturally isomorphic
to its Jacobian, and therefore has an algebraic group structure. The K-rational points of
E, denoted by E(K), form a finite abelian group with at most 2 invariant factors. Let G
be a cyclic subgroup of E(K). We can use G to instantiate cryptographic protocols whose
security relies on the DLP, such as the Diffie-Hellman key exchange. The main advantage of
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using elliptic curves to instantiate DLP-based protocols is that, apart from certain special
cases, no known algorithm is more efficient than generic methods (those based exclusively
on group operations) for solving the discrete logarithm in the group G.

Let nE be the number of K-rational points of E, and r the largest prime factor of
the order of G. We know that using the Pohlig-Hellman algorithm and the Baby-Step
Giant-Step algorithm, it is possible to compute a discrete logarithm in O(

√
r) operations in

G. Thus, to maximize the security of cryptographic protocols over G, it is preferable to
choose as E an elliptic curve such that nE has a large prime factor r, and to take G as the
subgroup of order r of E(K) (unique because r >

√
nE). We also require that r be coprime

to the characteristic of K.
It is possible to define pairings on elliptic curves, i.e., bilinear group morphisms that

take two points on the curve as input and associate them with a nonzero element in a finite
extension of K. For example, the Weil pairing

er : E[r]× E[r] −→ µr

takes as input two r-torsion points of the curve and returns an r-th root of unity. Since the
early 2000s, several articles have used pairings to define new security protocols, such as
Joux’s tripartite key exchange [Jou00]. For these protocols to be effective, the degree k of the
extension Kr of K defined by the r-th roots of unity must be as small as possible. However,
it is extremely rare for k to be significantly smaller than r (in general, log k ≈ log r).
Curves whose embedding degree k is small enough for the pairing to be computable in
practice are called pairing-friendly curves. It is commonly considered that k ⩽ 54 is required
for a curve to be a pairing-friendly curve.

On the other hand, Menezes, Okamoto, and Vanstone showed that, using pairings, one
was able to reduce the DLP in G (i.e., on the elliptic curve) to the DLP in K∗r . However,
the DLP in K∗r is solved in sub-exponential time by algorithms based on index calculus.
Therefore, in order to guarantee a sufficient level of security, k must be large enough so that
computing a discrete logarithm in K∗r requires at least as many operations as calculating a
discrete logarithm in G.

These conflicting requirements between security and efficiency have led to the develop-
ment of methods for producing pairing-friendly curves with predefined parameters (e.g.,
k), so that these parameters can then be optimized in order to determine which curves are
both secure and most efficient for each pairing-based protocol.

Contribution to pairing-based cryptography
Let k > 1 be a fixed integer. The problem of generating pairing-friendly curves consists in
finding K a finite field of order q and E/K an elliptic curve with a subgroup of K-rational
points of order r coprime to the characteristic of K, such that the degree of the extension
Kr/K is k. In order to guarantee the difficulty of the DLP, we require that r > 22s, where
s is an integer denoting the desired level of security. For algorithmic reasons, we also ask
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that log q < 2 log r. In this thesis, we will only consider ordinary pairing-friendly curves.
Let t be the trace of the curve E, then pgcd(t, q) = 1.

The usual way to solve this problem is to find integers q, t and r that satisfy the
conditions necessary for the existence of such a curve. For example, if q is a prime power,
if pgcd(t, q) = 1 and if |t| ⩽ 2

√
q, we know that there exists an ordinary elliptic curve of

trace t over a field with q elements. By adding further conditions regarding r and k, we
obtain a set of necessary and sufficient conditions for the existence of a solution to the
problem under consideration. Furthermore, if q is prime, Atkin and Morain’s complex
multiplication method [AM93] allows us to obtain the j-invariant of the solution curve when
the discriminant of the curve is not too large.

In many cases, we are actually looking for families of pairing-friendly curves whose
embedding degree is k. Usually, we look for a family (Ei)i∈N parameterized by polynomials
with rational coefficients Q, R and T , i.e., such that there exist integers (xi)i∈N such that
for all i ∈ N, the curve Ei is defined over a finite field with Q(xi) elements, with trace T (xi),
and has a subgroup of rational points of order R(xi), relative to which its embedding degree
is k. Naturally, for this to be possible, the polynomials Q, R and T must satisfy arithmetic
conditions similar to those previously imposed on the integers q, r and t. To find families
of pairing-friendly curves, we seek to find triples of polynomials satisfying these conditions.

To check the quality of such a family, we generally use the ρ-value

ρ =
degQ

degR
.

The closer ρ is to 1, the more efficient the arithmetic of the curves in the family will be.
This thesis presents a new method for generating such polynomials. This method follows

the approach of Kachisa, Schaeffer, and Scott [KSS08], who noticed that the polynomial R
can be viewed as the minimal polynomial of an element of a well-chosen number field. They
use an exhaustive search over these algebraic numbers to generate parameterized families
of curves. The new method generalizes and refines this approach by identifying algebraic
numbers producing families whose ρ-value is nicely upper bounded.

The selection and use of these polynomials requires solving an algorithmic problem:
given a polynomial with integer coefficients P , a prime number p, and a positive integer
n > 1, solve for a variable x ∈ Z

P (x) ≡ 0 mod pn.

Hensel’s lemma allows us to solve this type of equation when P has simple roots modulo
p, by lifting the solutions modulo p to solutions modulo pn. Surprisingly, it is difficult to
find a solution to this problem in the literature when P has a multiple root modulo p. We
therefore detail an algorithm that solves this problem in the general case.

We show that the new method produces families with a smaller ρ-value for the case
k = 22 (and k = 46), and produces alternatives to already known families for several values
of k. Furthermore, our approach uniformizes several of the most successful previous results.
This explains why so many families produced by different methods have ρ-values following
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a unified formula. This work resulted in the article «An Algebraic Point of View on the
Generation of Pairing-Friendly Curves », co-authored with Aurore Guillevic, published in
the SIAGA journal [GG25].

Thesis organisation
In chapter 2, we define the concepts and notation relating to algebraic curves and function
fields that we will use in the rest of the thesis. We also discuss the algorithmic representation
of these objects. More precisely, we draw up a list of conditions that must be satisfied
for an algorithmic representation to be considered satisfactory. Finally, we show that by
making these algorithmic assumptions, it is possible to draw uniformly at random from the
rational subgroup of the Jacobian, to compute its structure as an abelian group, and to
compute the Weil pairing.

In chapter 3, we recall some results from the class field theory of number fields and
function fields. We also present some effective aspects of this theory for imaginary quadratic
fields, and the application of the theory to the construction of curves with many rational
points. In particular, we present new curves with a record number of points.

In chapter 4, after a brief recall on linear codes and Goppa codes, we present a new
construction of geometric codes with a K[G]-module structure. We study the arithmetic of
K[G], for G an abelian group, and in particular an algorithm using the FFT to quickly
compute products in K[G], whose complexity is explicitely given. We then study linear
codes with a free K[G]-module structure, where G is a finite group that is not necessarily
abelian. These codes are special cases of quasi-G codes. In particular, we present some
duality results in this context. We show that these codes can be described by linear algebra
over K[G], similarly to linear codes. Finally, we show that some Goppa codes, based over a
Galois cover with Galois group G and with covering map

τ : Y −→ X,

possess a K[G]-module structure. In the case where G is abelian and the covering τ is
unramified, we give sufficient conditions on the divisors defining the code for the associated
linear spaces (of functions and differentials) to be freeK[G]-modules. We study the encoding,
decoding, and asymptotic properties of these codes.

In chapter 5, we review some principles of curve-based cryptography, and briefly
introduce pairing-based cryptography. We detail classical methods for generating pairing-
friendly curves and families of pairing-friendly curves. In particular, we detail the method
of Kachisa, Schaefer and Scott. Then, we present the new method for generating families
of curves, implemented in Sagemath [The22] in [Gas23]. We explain its principle, then
present the achieved results. In particular, we present a new family of curves obtained for
the embedding degree k = 22. Finally, we present a general algorithm that solves equations
of the form

P (x) ≡ 0 mod pn
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where P is a polynomial with integer coefficients, p is a prime number, n > 1 is an
integer, and x is a variable with integer values. We explain its usefulness for the search for
polynomials parameterizing families of pairing-friendly curves.

Chapter 6 contains the appendix to this thesis. It presents tables of results and proofs
of some propositions used in this document, which are not central to the topic of the thesis.
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Chapter 2

Function Fields and Jacobians

Smooth projective curves and their Jacobians are the fundamental objects of interest in
this document. In particular, we are interested in their algorithmic aspects. In this chapter,
in Section 2.1, we present specifications for the algorithmic representation of the function
fields of curves and other associated objects, consisting of a list of operations that we must
be able to perform in a reasonable amount of time to meet our needs in the following
chapters. In Section 2.2, we examine the algorithmic representation of the Jacobian and
present algorithms using elementary operations that we will define, which will be useful for
the applications discussed in the following chapters.

We start by making a few definitions. Let K be a perfect field. We call any affine
scheme associated to a finite-type reduced K-algebra an affine variety over K. We an call
any scheme over K that can be covered by a finite number of affine subvarieties over K an
algebraic variety over K. Note that this definition implies that every algebraic variety over
K is (geometrically) reduced. We call any variety over K that is geometrically irreducible
and of dimension 1 an algebraic curve over K. In particular, in this thesis, every algebraic
curve over K is assumed to be geometrically integral.

Although several concepts discussed in this chapter are well defined for any perfect field
K, we will be primarily interested in the case of finite fields. For this reason, it is necessary
to clarify our assumptions regarding the algorithmic representation of finite fields. We
essentially ask for two things: first, guarantees on the size of the representation of elements
of the field, and on the complexity of arithmetic operations in the field, and second, the
possibility of efficiently evaluating morphisms between finite fields. The second constraint is
of interest in our geometric context because it often happens that solving certain algorithmic
problems requires extending the base field or applying the Frobenius morphism.

Let us assume for a moment that K is a finite field with q = pm elements. If m = 1,
then there exists a canonical model of K in the form of Z/pZ, i.e., the integers modulo
p. In this case, we can refer to the unique field with p elements Fp. If m > 1, there is no
canonical model of the field with q elements, nor is there a canonical morphism between the
different models. In [LdS13] and [Lü23], we find proposals for consistent standard models
for finite fields and their morphisms. We will not go that far in normalization. We will
represent the elements of K by their Fp-coordinates in a fixed basis. In this model, we
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make minimal assumptions about complexity: the addition of two elements is performed in
O(log q) elementary operations; multiplication is performed at the cost of O(m2) additions
and multiplications in Fp; a morphism between two finite fields is described by its matrix
in the chosen bases. It is also possible to draw uniformly at random an element of the field.

2.1 Algorithmic representation of function fields
We assume that the reader is familiar with several concepts of algebraic geometry. For an
introduction to function fields, the reader may refer to the first chapter of [Sti08]. The
reader may refer to the first chapter of [Har77] for a more general introduction to algebraic
geometry. I also recommend the first chapters of [Liu02] for a deeper introduction to
algebraic geometry.

Let K be a perfect field. There is a equivalence of category between the category of
smooth projective curves over K (with dominant morphisms) and the category of function
fields of transcendence degree 1 over K in which K is algebraically closed (with morphisms
of K-algebras) [Liu02, Section 7, Proposition 3.13]. This means that many geometric
problems regarding smooth projective curves over K can be addressed by studying these
function fields.

2.1.1 Valuation rings and places

For the sake of brevity, we will adopt the following definition:

Definition 1. Let K be a perfect field. Let K(x) be the field of rational fractions in one
indeterminate over K. A field of functions over K is a finite extension of K(x) in which
K is algebraically closed.

Let X be a smooth projective curve over K, then K(X), the field of rational functions
of X, is a function field over K. In particular, the function field of P1 is isomorphic to the
field of rational fractions in one indeterminate K(x). Conversely, any function field over K
is isomorphic to the field of rational functions of a smooth projective curve X over K. This
curve X is unique up to isomorphism. We will therefore allow ourselves to write K(X) to
denote a function field over K.

Definition 2. Let K(X) be a function field over K. Let

ν : K(X) −→ Z ∪ {∞}.

We say that ν is a discrete valuation of K(X) if:

• ν(f) =∞ if and only if f = 0.

• ν(fg) = ν(f) + ν(g) for all f, g ∈ K(X).

• ν(f + g) ⩾ min(ν(f), ν(g)) for all f, g ∈ K(X).
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• There exists t ∈ K(X) such that ν(t) = 1.

• ν(f) = 0 for all constants f ∈ K.

Definition 3. Let K(X) be a function field over K, and ν be a discrete valuation of K(X).

• The set P = {f ∈ K(X) | ν(f) > 0} is called the place associated with ν.

• We call the ring OP = {f ∈ K(X) | ν(f) ⩾ 0} the valuation ring of ν. The place
P is the unique maximal ideal of OP .

• An element t ∈ P such that ν(t) = 1 is called a uniformizer at P .

We call any place associated with a discrete valuation of K(X) a place of K(X). If P
is a place of K(X), we denote by νP the discrete valuation associated with P . We denote
by Irr(X) the set of places of K(X).

The notion of place corresponds to the notion of closed point of X. Let OX be the sheaf
of regular functions on X, then OP is the set of germs at P of the sheaf OX . Let ΓX be
the functor of global sections on X. The quotient

KP := OP/P = ΓX(OX/OX(−P ))

is the residue field at P . The degree of P , denoted by degP , is the degree of KP over
K. We denote by Irrd(X) the set of places of degree d of K(X). We denote by

X(K) := Irr1(X)

the set of places of degree 1 of X (or equivalently the set of K-rational points of X).
Let L be an algebraic extension of K. We naturally associate with X a smooth projective

curve over L, denoted by XL. We denote by L(X) the field of functions (over L) of XL.
We have the following equality:

L(X) = L⊗K K(X).

We denote by
X(L) := Irr1(XL)

as the set of places of degree 1 of L(X) (or, equivalently, the set of L-rational points of XL).
Suppose that K is a finite field with q = pm elements. From an algorithmic point of

view, we will need to represent the functions in K(X) and the places of K(X) in a way
that allows us to perform the following tasks:

1. Given α ∈ K and f ∈ K(X), compute αf .

2. Given f1 and f2 two functions of K(X), compute f1 + f2, f1f2 and f1/f2 if f2 ̸= 0.

3. Given an integer d > 0, compute Irrd(X).

18



4. Given P a place of K(X), compute its degree.

5. Given a point P of K(X), choose a uniformizer at P .

6. Given a place P of K(X) and a function f ∈ K(X), compute the multiplicity νP (f)
of the zero of f at P .

7. Given a place P of K(X) and a function f ∈ OP , evaluate f at P .

8. Given L a finite extension of K and f ∈ K(X), compute the image of f in L(X).

9. Given L a finite extension of K and P a place of K(X), give the set of places of L(X)
above P .

10. Given L a finite extension of K and Q a place of L(X), give the place P of K(X)
below Q.

11. Given L a finite extension of K, Q a place of L(X), and f ∈ L(X) a function, compute
the place FK(Q) and the function FK(f) where FK : L(X) −→ L(X) is the Frobenius
endomorphism relative to K.

In particular, requirement 5, requirement 6, and requirement 7 allow the calculation of
the Laurent series expansion of f at P .

2.1.2 Divisors

Let K be a perfect field. Let X be a smooth projective curve over K and K(X) its function
field.

Definition 4. We define the divisor group of X, denoted by Div(X), as the free abelian
group generated by the places of K(X).

Definition 5. Let νP be a discrete valuation of K(X), and let D =
∑

Q nQQ be a divisor
of X. We define

νP (D) = nP .

We call
suppD = {Q ∈ Irr(X) | νQ(D) ̸= 0}

the support of D.

Definition 6. Let D =
∑

P nPP be a divisor of X. We call

degD =
∑
P

nP degP

the degree of D.
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Definition 7. Let f ∈ K(X)∗, we define the divisor of f as

(f) =
∑
P

νP (f)P.

Recall that there are only a finite number of places P such that νP (f) ̸= 0. A divisor is
said to be principal if it is the divisor of a rational function. We denote by Princ(X) the
subgroup of principal divisors of X.

Definition 8. Let D =
∑

P nPP be a divisor of X. We say that D is effective if nP is
positive for every place P , and we write D ⩾ 0. We denote by Eff(X) the set of effective
divisors of X.

Remark 1. Let f ∈ K(X)∗. There exist two effective divisors D+
f , D

−
f ∈ Eff(X) with disjoint

supports such that
(f) = D+

f −D
−
f .

We say that the degree of f is deg(D+
f ).

Definition 9. Let D be a divisor of X. We call the Riemann-Roch space associated with
D, or simply the linear space (of functions) associated with D, the vector space ΓX(OX(D))
consisting of the zero function and rational functions on X satisfying

(f) +D ⩾ 0.

Assume for a moment that K is a finite field. We will use the natural algorithmic
representation for divisors, i.e., the representation as a finite collection of pairs (nP , P )
where P is a place of K(X) and nP is the associated multiplicity. In particular, given a
divisor, we can give its support and its valuation at each point of K(X). We can also
determine whether two divisors are equal.

We also expect to be able to perform the following operations:

1. Compute the divisor of a nonzero rational function.

2. Given D a divisor of X, compute the dimension k of ΓX(OX(D)) and a basis
f1, . . . , fk ∈ K(X) of ΓX(OX(D)).

According to the Riemann-Roch theorem, it is possible to calculate the genus g of X by
computing the dimension of a Riemann-Roch space of sufficiently large degree.

2.1.3 Differentials

Let K be a perfect field. Let X be a smooth projective curve over K. In this section, we
define the differential space of X relative to K. We will use the Kähler definition, which is
equivalent to the Weil definition in our setting [Sti08, Section 4.3].
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Definition 10. Let E be a K(X)-vector space. A K-derivation of X in E is a K-linear
map

δ : K(X) −→ E

such that:
∀f, g ∈ K(X), δ(fg) = fδ(g) + gδ(f).

We denote by DerK(K(X), E) the space of K-derivations from K(X) to E.

Definition 11. There exists a K-derivation d : K(X) −→ Ω(X/K) satisfying the following
universal property: for any K(X)-vector space E,

HomK(X)(Ω(X/K), E) −→ DerK(K(X), E)
u 7−→ u ◦ d

is an isomorphism of K(X)-vector spaces.
The space Ω(X/K) is called the differential space of X (relative to K), and is unique

up to isomorphism. It is a K(X)-vector space of dimension 1.

Definition 12. Let ω ∈ Ω(X/K)\{0}, let P be a point of K(X), and let t be a uniformizer
at P . Let f ∈ K(X) be the unique function such that ω = fdt. We define

νP (ω) = νP (f).

We define the divisor of the differential ω as

divω =
∑
P

νP (ω)P.

Let D be a divisor of X. We call the differential space of X (relative to K) associated
with D the space ΓX(ΩX/K(D)) consisting of the zero differential and the differentials ω
satisfying

divω ⩾ D.

We denote by ΓX(ΩX/K) the space of holomorphic differentials of X (whose divisor is
effective).

Assume that K is a finite field. We require an algorithmic representation of the
differentials of Ω(X/K) that allows us to perform the following operations:

1. Given ω ∈ Ω(X/K) non-zero, compute the divisor of ω.

2. Given a function f ∈ K(X), compute the differential df .

3. Given a divisor D of X, compute a basis for ΓX(ΩX/K(D)).

4. Given a function f ∈ K(X) and a differential ω ∈ Ω(X/K), compute the differential
fω.

5. Given two differentials ω1, ω2 ∈ Ω(X/K), compute the function f = ω1/ω2 and the
differential ω1 + ω2.

Conditions 2 and 5 allow us to calculate the Laurent series expansion of a differential ω
at a point P and, in particular, its residue at P .
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2.1.4 Picard group

Let K be a perfect field. Let X be a smooth projective curve over K.

Definition 13. Two divisors D and D′ of X are said to be equivalent, and we write

D ∼ D′

if D −D′ is principal.

Definition 14. We define the Picard group of X as

Pic(X) = Div(X)/Princ(X).

For all d ∈ Z, we denote by Picd(X) the subset of Pic(X) consisting of classes of degree d.
The set Pic0(X) is a subgroup of Pic(X).

Assume that K is a finite field. The algorithmic representation of the classes of Pic(X)
must allow the group operations to be computed:

1. Given D a divisor of X, compute the class c of D in Pic(X).

2. Given c a class in Pic(X), give a divisor D in the class c.

3. Given c and c′ two classes in Pic(X), determine whether c = c′.

4. Given c and c′ two classes in Pic(X), compute c+ c′.

5. Given c a class in Pic(X), compute −c.

Remark 2. It is sometimes useful to have canonical representatives of the elements of
the Picard group (see, for example, subsection 2.2.3). Indeed, an element of the Picard
group can have several different representatives (algorithmically speaking). A canonical
representative of c ∈ Pic(X) is a particular representative in the set of representatives
of c that can be computed from any given representative of c. With our assumptions on
the algorithmic representation of the Picard group, it is always possible to construct such
representatives. If the curve X has a K-rational point P , it is possible to produce one as
follows.

Let c ∈ Pic(X). By subtracting (or adding) P sufficiently many times, we can assume
that c ∈ Pic0(X). Let g be the genus of X, and let D be a divisor of class c. According
to the Riemann-Roch theorem, the space ΓX(OX(D + gP )) is nonzero. We can show that
there exists a unique nonzero function f (up to a constant in K) from ΓX(OX(D + gP ))
whose valuation at P is maximal. Then D + (f) is a canonical representative of c.
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2.1.5 Zeta function

In this paragraph, we restrict ourselves to the case where K is a finite field with q = pm

elements. Let X be a smooth projective curve over K, let r ⩾ 1 and let L be an extension
of K of degree r. Let

Nr = #X(L).

Definition 15. Let αn be the number of effective divisors of X (over K) of degree n. We
call

ZX = exp

(∑
r⩾1

Nr

r
xr

)
=
∑
n⩾0

αnx
n ∈ Z[[x]]

the zeta function of X. We call

LX = (1− x)(1− qx)ZX ∈ Z[x]

the L-polynomial of X.

Recall that the L-polynomial of X is a polynomial with integer coefficients of degree 2g,
where g is the genus of X. Its coefficients ℓ0, . . . , ℓ2g satisfy, for all i ⩽ g,

ℓ2g−i = qg−iℓi.

Finally, it is known that ℓ0 = 1. We can therefore represent LX algorithmically by the g
coefficients ℓ1, . . . , ℓg. It is possible to determine the coefficients of the L-polynomial of X
from the values Nr for 1 ⩽ r ⩽ g [Sti08, Section 5.1].

Computing the L-polynomial of the function field X is a complicated problem, and
current algorithms for calculating it are not effective in all situations. The first category,
generalizing the algorithms of Schoof [Sch85] and Pila [Pil90], are polynomial in log q =
m log p when the genus g is small, but their complexities depend exponentially on the
genus. The second category, algorithms generalizing the algorithms of Satoh [Sat00] and
Kedlaya [Ked01], have polynomial complexities in m, p, and g and are efficient for small
characteristics.

2.2 Algorithmics of Jacobians
In this section, we present some algorithms using the elementary operations described in
Section 2.1 that will be useful in the following chapters.

Let K be a finite field with q = pm elements. Let K̄ be an algebraic closure of K. Let
X be a smooth projective curve over K of genus g.

The Jacobian JX of X is an abelian variety of dimension g. It can be shown that for
any finite extension L of K,

JX(L) ≃ Pic0(XL), (2.2.1)
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where XL denotes the smooth projective curve over L naturally associated with the curve
X. Furthermore, the isomorphism in equation (2.2.1) is functorial with respect to L. Thus,
we will use the algorithmic representation of Pic0(XL) to represent JX(L).

Assume that there exists P ∈ X(K). We can then define

jP : X −→ JX

the Jacobi map associated with P . This is a closed immersion of X into its Jacobian,
induced by the map

Div(X) −→ Pic0(X)∑
Q nQQ 7−→

∑
Q nQ(Q− deg(Q)P )

.

2.2.1 Weil pairing

Definition 16. We use the notation from the beginning of Section 2.2. Let n be an integer
not divisible by p. Assume that the n-torsion of the Jacobian JX is K-rational, and that
K contains the n-th roots of unity (in fact, Weil’s pairing allows us to show that this
second assumption is redundant). Let a and b be two K-rational classes of n-torsion of
the Jacobian (a, b) ∈ JX [n](K)× JX [n](K). Let Da be a divisor representing a and Db a
divisor representing b disjoint from Da. Let fa be a function of K(X) with divisor nDa and
fb a function with divisor nDb. Let:

en(a, b) =
fb(Da)

fa(Db)
.

It is understood here that

f(D) =
∏

P∈Irr(X)

(
NormKP

K f(P )
)νP (D)

=
∏

P∈Irr(X)

∏
Q∈Irr(X/K̄)

Q|P

f(Q)νP (D) (2.2.2)

for f ∈ K(X) and D ∈ Div(X), a divisor disjoint from the support of f . Note that fa and
fb depend on the choice of Da and Db, but not en(a, b). Similarly, fa and fb are defined up
to a constant, but according to equation (2.2.2), since Da and Db are of degree 0, the values
f(Da) and f(Db) do not depend on this constant. Finally, according to Weil’s reciprocity
law, we have (

fb(Da)

fa(Db)

)n

=
fb(nDa)

fa(nDb)
= 1.

This defines the Weil pairing

en : JX [n](K)× JX [n](K) −→ µn(K)

where µn(K) is the group of n-th roots of unity in K.
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This definition of Weil pairing requires that the representatives Da and Db be disjoint.
In the case where Da and Db are not disjoint, it is possible to find a divisor equivalent to Db

disjoint from Da. Let D0 be a divisor of degree 2g disjoint from Da (over finite fields, such
a divisor always exists). So, according to the Riemann-Roch theorem, ΓX(OX(D0 +Db)) is
a K-vector space of dimension g + 1 because

deg(D0 +Db) = 2g ⩾ 2g − 1.

Let f ∈ ΓX(OX(D0+Db)), then the divisor (f)+D0+Db is effective. Thus, if (f)+D0+Db

and Da are not disjoint, there exists P ∈ suppDa such that f ∈ ΓX(OX(D0 +Db − P )).
For any point P ∈ suppDa, the subspace ΓX(OX(D0 +Db − P )) has dimension at most
g and is therefore contained in a hyperplane of ΓX(OX(D0 + Db)). Thus, the functions
f ∈ ΓX(OX(D0 +Db)) such that (f) +D0 +Db is not disjoint from Da belong to a union of
at most # suppDa hyperplanes. If # suppDa < q, we can use the algorithm in [ECdJ+11,
Lemma 13.1.8] to compute a function f ∈ ΓX(OX(D0 +Db)) such that

(f) +D0 +Db is disjoint from Da.

Then (f) +Db is a divisor equivalent to Db disjoint from Da.
If # suppDa ⩾ q, the idea is to extend the base field and apply a similar technique.

The reader may refer to [ECdJ+11, Lemma 13.1.9].
Let D+

a and D−a be two disjoint effective divisors such that Da = D+
a −D−a , then the

degree of the function fa is n degD+
a . It is therefore expected that the complexity of

computing the Weil pairing depends polynomially on n and degD+
a . However, Miller’s

algorithm (see [MOV93, Appendix] or [ECdJ+11, Section 13.3]) allows the Weil pairing to
be evaluated with polynomial complexity in log n and degD+

a .

2.2.2 Drawing uniformly at random in the Picard group

We use the notation from the beginning of Section 2.2. We seek to draw uniformly at
random an element of degree 0 of the Picard group of X. This can be accomplished using
the method described in [Bru13, Sections 3.2-6]. It is important to note that this method
requires knowledge of the L-polynomial of X.

Draw of a place

Let d > 0 be an integer. We start by attempting to draw a place of degree d uniformly at
random in Irrd(X). A procedure is detailed in algorithm 2.2.1.

The algorithm 2.2.1 relies on two key points. First, it is easy to randomly draw an
element from a Riemann-Roch space uniformly, since these are finite-dimensional vector
spaces. Second, returning the result with probability #Irrd(D)/ ⌊degD0/d⌋ ensures that
the probability of returning P does not depend on D.

Remark 3. In the following, it will be necessary to draw formal sums of places of common
degree d, or equivalently sets with repetition (unordered). Drawing such a sum uniformly
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Algorithme 2.2.1 : Random draw of a place of degree d
Entrées : K(X) a function field over K, d > 0 an integer such that Irrd(X) is

nonempty
Output : P ∈ Irrd(X) taken uniformly

1 Let D0 be an effective divisor satisfying degD0 − d ⩾ 2g.
2 Choose uniformly f ∈ ΓX(OX(D0)). Let D = (f) be its divisor.
3 Compute #Irrd(D) the number of places of degree d present in D (counted with

multiplicity).
4 With probability #Irrd(D)/ ⌊degD0/d⌋, return a uniformly chosen place

P ∈ Irrd(D). Come back to step 1.

at random is a little more complicated than drawing places one after the other with the
algorithm 2.2.1, because sums with repetitions would not occur with the same probability
as sums without repetitions. We will use a result from [Bru13, Algorithm 3.4]: there exists
a generic algorithm which, given a set E of known finite cardinality, an integer ℓ, and an
algorithm for uniform random draw in E (of a single element), returns a set with repetition
of cardinality ℓ of elements of E, drawn uniformly at random.

One needs to ensure that the integer d given as input to the algorithm satisfies the
condition Irrd(X) ̸= ∅, otherwise the algorithm will not terminate. It is possible to compute
the value of #Irrd(X) using LX , the L-polynomial of X [Bru13, Section 3].

Draw of an effective divisor

The uniform random draw of an effective divisor of degree d is done in two steps: first, the
number of places of each degree (less than d) that appear in the sum is randomly drawn,
then the places are randomly drawn using the algorithm 2.2.1.

Let r and d be two positive integers. An r-smooth decomposition type of degree d is
a sequence of integers (ℓ1, ℓ2, . . .) such that

∑r
i=1 ℓii = d and such that for all i > r, the

integer ℓi is zero. In particular, to every effective divisor D of degree d, we can associate
a d-smooth decomposition type of degree d, where ℓi is the number of places of degree i
appearing in D (counted with multiplicity). We say that D is r-smooth if its decomposition
type is, i.e. if D is supported by places of degree at most r. We denote by

Effd
⩽r(X) = {D ∈ Eff(X) | degD = d and D is r-smooth}

the set of effective r-smooth divisors of degree d of X, and for any integer ℓ we denote

Effℓr
=r(X) = {D ∈ Eff(X) | D is composed of ℓ places of degree r}

the set of effective divisors of degree ℓr composed solely of places of degree r. It is possible
to recursively compute the values #Effd

⩽r(X) for all d and r from the number of places of
each degree less than r [Bru13, Section 3.3].
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The uniform distribution on r-smooth divisors of degree d induces a probability distri-
bution on the types of decomposition. If r ⩾ 2, we can express the marginal distribution
associated with the r-th coordinate by:

P(ℓr = ℓ) =
#Effℓr

=r(X) ·#Effd−ℓr
⩽r−1(X)

#Effd
⩽r(X)

, 0 ⩽ ℓ ⩽ ⌊d/r⌋ (2.2.3)

This gives us the recursive algorithm 2.2.2, which uses the fact that any r-smooth divisor
of degree d is the sum of an (r − 1)-smooth divisor of degree d− ℓr and ℓ places of degree
r, for a certain integer ℓ.

Algorithme 2.2.2 : Random draw of an r-smooth decomposition type of degree d
Entrées : (d, r) two positive integers
Output : (ℓ1, . . . , ℓr, 0, . . .) a uniformly chosen r-smooth decomposition type of

degree d
1 If r = 1, return (d, 0, . . .). Otherwise, randomly select ℓr according to the probability

distribution 2.2.3. Call the algorithm recursively with parameters (d− ℓrr, r − 1)
to obtain a decomposition type (ℓ1, . . . , ℓr−1, 0, . . .). Return (ℓ1, . . . , ℓr, 0, . . .).

We combine the previous algorithms to obtain algorithm 2.2.3, which randomly selects
a uniformly chosen effective divisor of fixed degree.

Algorithme 2.2.3 : Random draw an effective divisor of degree d
Entrées : d > 0 an integer, K(X) a function field
Output : D a uniformly chosen effective divisor of degree d

1 Randomly draw a decomposition type (ℓ1, . . . , ℓd, 0, . . .), d-smooth of degree d using
algorithm 2.2.2.

2 For i = 1, . . . , d, randomly draw ℓi places of degree i as specified in Remark 3.
3 Return the sum of the places.

Draw of a divisor class

To draw a class uniformly at random in Pic0(X), we can use the algorithm 2.2.3 to randomly
draw an effective divisor of a given degree. All we need to know is a surjective map from
Effd(X) to Pic0(X) whose fibers have the same cardinality, for a certain degree d.

Let D0 be an effective divisor of degree d0 ⩾ 2g − 1. Then the map

D ∈ Effd0(X) 7−→ [D −D0] ∈ Pic0(X)

is surjective, and its fibers have the same cardinality. Indeed, let c ∈ Pic0(X) be a class
of degree 0. Let D̃ be a divisor in the class c. Then D̃ +D0 is of degree d0 ⩾ 2g − 1, so
ΓX(OX(D̃+D0)) is of dimension d0−g+1 and for any nonzero function f ∈ ΓX(OX(D̃+D0)),

D := (f) + D̃ +D0 ⩾ 0 and D −D0 ∼ D̃.
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Furthermore, the fiber above c is in bijection with the set of vector lines of ΓX(OX(D̃+D0)),
whose cardinality does not depend on c. We summarize these remarks in Algorithm 2.2.4.

Algorithme 2.2.4 : Random draw in the Picard group
Entrées : K(X) a function field
Output : c a uniformly drawn class of Pic0(X)

1 Choose an effective divisor D0 of degree d0 ⩾ 2g − 1
2 Randomly draw an effective divisor D of degree d0 using algorithm 2.2.3.
3 Return the class of D −D0

2.2.3 Strcuture of the Jacobian

We use the notation from the beginning of Section 2.2. Recall that K is a finite field. Let
P∞ ∈ X(K). We will see below that class field theory gives a correspondence between
the isomorphism classes of unramified abelian covers of X totally split above P∞, and,
the subgroups of JX(K). We therefore wish to be able to determine the subgroups of
JX(K) ≃ Pic0(X), and to do so we present techniques for computing the abelian group
structure of Pic0(X).

Computing the group structure requires being able to compute a set of generators of
Pic0(X). Let ℓ be a prime integer, and k > 0 a positive integer. It is known that JX [ℓ

k](K̄)
is a finite abelian group with at most 2g invariant factors. We deduce that JX [ℓ

k](K) is
also a finite abelian group with at most 2g invariant factors. This implies that JX(K) also
has at most 2g invariant factors. Assume that LX is known. We can uniformly sample
2g + 2 + n classes from Pic0(X) using the algorithm 2.2.4 to obtain a generating family
with probability greater than 1− 1/2n (see Section 6.2 of the Appendix).

Let us generalize the problem to the computation of the structure of any abelian group G.
We briefly present the Buchmann–Schmidt algorithm [BS05]. Given n elements generating
an abelian group G, this algorithm computes elements γ1, . . . , γr ∈ G of respective orders
d1| · · · |dr generating G, by computing a basis B of the lattice of relations of the n generators
of G, in Smith normal form. The diagonal of B is (d1, . . . , dr, 1, . . . , 1), and

G = ⟨γ1⟩ × · · · × ⟨γr⟩ ∼= Z/d1Z× · · · × Z/drZ.

The Buchman–Schmidt algorithm is an extension of Shanks’ discrete logarithm algorithm
(see [Coh93, Section 5.4.1]), also known as the Baby-Step Giant-Step algorithm, and requires
performing O(n

√
|G|) group operations in G and O(n

√
G log(G)) comparisons of elements

of G, and storing O(
√
|G|) elements of G.

Remark 4. It should be noted that in order to limit the number of comparisons in this way,
it is necessary to be able to order the elements of G. If we have canonical representatives
of elements of G, we can easily order them (for example, in lexicographical order).
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Chapter 3

Effective class field theory

The object of (global) class field theory is the characterization of abelian extensions of
number fields and function fields (over finite fields). These two types of fields share many
characteristics, and consequently the results of class field theory can be expressed in a
similar way in both situations. Several versions of this theory have been written, using
different objects to express and prove its results. We will use the version employing the
language of ideals for the study of number fields, as this is the simplest to adapt from an
algorithmic point of view. For function fields, we will use the presentations by Rosen [Ros87]
and Serre [Ser84].

In this chapter, we begin by briefly introducing the class field theory of number fields
in Section 3.1. We present some applications and algorithmic methods derived from this
theory in Section 3.2. In Section 3.3, we present the class field theory of function fields
from two points of view, and briefly discuss the connection between these two presentations.
Finally, we present an application of class field theory to the construction of algebraic
curves with many rational points in Section 3.4. In particular, we present new curves with
record numbers of rational points. The concepts and methods presented in this chapter
will be used in chapters 4 and 5.

3.1 Class field theory in number fields
The aim of this section is to present the main objects of the class field theory of number
fields and to summarize some of its results. For a more detailed exposition of the theory,
the reader may refer to the following works [AT09, Jan96, Neu86, Lan94]. This section is
inspired by [Coh00, Chapter 3].

The goal of class field theory is to describe the abelian extensions of a number field K (or,
more generally, of a global field) using the arithmetic of K. The starting point of the theory
is the work of Hilbert and Furtwängler on unramified abelian extensions. Let K be a number
field. The set of isomorphism classes of unramified abelian extensions of K has a maximum,
in the sense that there exists an unramified abelian extension of K denoted Hil(K) such
that every unramified abelian extension L of K is isomorphic to a sub-extension of Hil(K).
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We call Hil(K) the Hilbert class field of K. The degree of the extension [Hil(K) : K] = cl(K)
is the class number of K, and the Galois group Gal(Hil(K)/K) is canonically isomorphic
to the class group Cl(K) of K. Thus, Galois theory allows us to identify the subgroups
of Cl(K) and the isomorphism classes of unramified abelian extensions of K. Finally, the
Hilbert class field has a second important property: let p be a prime ideal of ZK, and let f
be the order of p in the class group of K. Then f is also the degree of inertia of p in the
extension Hil(K)/K.

We will see below that it is possible to generalize the notions of class group and class
field to parameterize abelian extensions (ramified or not). Let L be an abelian extension of
K. The first step is to define objects that describe the ramification of L.

Definition 17.

1. A modulus m is a pair (m0,m∞) where m0 is an ideal of ZK and m∞ is a set of real
embeddings of K into C.

2. If m = (m0,m∞) and n = (n0, n∞) are two moduli, we say that n divides m if n0 | m0

and n∞ ⊂ m∞. We then write n | m.

3. If a is a nonzero fractional ideal of ZK, we say that a is coprime to m if a is coprime
to m0, that is, there exist two ideals b and c coprime to m0 such that a = b/c.

4. We say that α ∈ K∗ is coprime to m if αZK is.

5. Let α ∈ K∗, we say that
α = 1 mod ∗m

if for every prime ideal p dividing m0, νp(α − 1) ⩾ νp(m0) and for every σ ∈ m∞,
σ(α) > 0.

6. Let α, β ∈ K∗, we say that α = β mod ∗m if α and β are coprime to m and α/β =
1 mod ∗m.

The object that allows us to quantify the ramification of L, and that will be useful later
on, is a modulus called the conductor of L over K. In order to define it, we recall the notion
of local norm. Let p be a prime ideal of ZK, and let Kp be the completion of K at p. Let P
be a prime ideal of ZL above p. We say that α ∈ K∗p is a local norm modulo p if νp(α) ⩾ 0

and if there exists β ∈ (LP)
∗ such that α = NormLPKp

(β).
Let kp be the smallest non-negative integer such that all elements α ∈ K∗ coprime to p

satisfying α = 1 mod ∗pkp are local norms modulo p. It can be shown that kp exists, and
that kp = 0 if and only if p is unramified in L/K [Coh00, Sect 3.4.1].

Definition 18. We use the notation defined in the previous paragraph. Let

c0 =
∏
p

pkp
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be an ideal of ZK (the product has a finite number of non-trivial factors). Let c∞ be the
(finite) set of real embeddings of K in C associated with the real places of K that are
ramified in L/K. Then we define the conductor of L/K as the modulus

cL/K = (c0, c∞).

Remark 5. The conductor cL/K is supported by all the ramified places in L/K, and only
those places.

If L1 and L2 are two abelian extensions of K, such that L1 is isomorphic to a sub-
extension of L2, then cL1/K | cL2/K. This motivates the following definition:

Definition 19. Let K be a number field, and let L be an abelian extension of K. A
modulus m is said to be appropriate for the extension L/K if cL/K divides m.

Next, we define the concept that will generalize the group of classes.

Definition 20. Using the previous notation,

1. We define
(ZK/m)× = (ZK/m0)

× × Fm∞
2 .

2. We denote by Im(K) the group of non-zero fractional ideals of ZK coprime to m.

3. We denote by Pm(K) the group of principal non-zero fractional ideals of ZK generated
by an element α ∈ K∗ such that α = 1 mod ∗m.

4. The group Pm(K) is a subgroup of Im(K). We define the group of ray classes (modulo
m) of K as the quotient

Clm(K) = Im(K)/Pm(K).

Remark 6. The group (ZK/m)× will not be used in the rest of the presentation, but it must
be defined because it is used in the algorithm for calculating the ray class groups Clm(K)
(see [Coh00]) .

Example 1. Let 1 = (m0,m∞) be the modulus such that:

• m0 = ZK.

• m∞ = ∅.

Then we see that Im(K) is the group of non-zero fractional ideals of ZK, that Pm(K) is
the group of principal non-zero ideals in Im(K), and that Clm(K) = Cl(K).

We also see that for any abelian unramified extension L′ of K, the conductor of L′/K is
1. The class field is therefore the maximal extension of K whose conductor is 1.
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This example shows that the definitions generalize the concepts known for the Hilbert
class field. It also indicates how the Hilbert class field is generalized (see Theorem 3).

Let p be a prime of ZK and P a prime of ZL above p. We denote

D(P/p) = {σ ∈ Gal(L/K) | Pσ = P}

the decomposition group of P. We then have a canonical, surjective group morphism
from D(P/p) to the Galois group Gal((ZL/P)/(ZK/p)), whose kernel is the inertia group
I(P/p) of P.

The Galois group Gal((ZL/P)/(ZK/p)) is cyclic, generated by the Frobenius map:

α 7−→ αNormK
Q (p).

If p is unramified, then I(P/p) is trivial, and the map

D(P/p) −→ Gal((ZL/P)/(ZK/p))

is an isomorphism. There then exists a unique element sP ∈ D(P/p) that is sent to the
Frobenius morphism. Furthermore, since Gal(L/K) is abelian, D(P/p) does not depend
on the choice of P, so we can define sp = sP.

Let m be an appropriate modulus for the extension L/K. In particular, all primes of K
that ramify in L divide m. We can therefore define a map from Im(K) to Gal(L/K) using
the map from the previous paragraph.

Definition 21. Let a =
∏

pνp(a) ∈ Im(K). We define:

(a,L/K) =
∏
p|a

s
νp(a)
p .

We call (·,L/K) the Artin map, or the Artin symbol.

It is now possible to state the main theorems of class field theory.

Theorem 1 (Artin reciprocity law [Coh00, Theorems 3.4.3 and 3.4.5]). Let K be a number
field, L an abelian extension of K, and m = (m0,m∞) an appropriate modulus to the
extension L/K. Then:

1. The Artin map is a surjective group morphism from Im(K) to Gal(L/K).

2. The kernel of the Artin map Am(L/K) contains Pm(K). More precisely,

Am(L/K) = Pm(K)NormLK(Im0ZL(L))

where m0ZL denotes the ideal of ZL generated by the elements of m0. This group is
called the norm group (or Takagi group).
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The Artin map induces an isomorphism between Gal(L/K) and a quotient of the class
group of rays Clm(K). To completely describe the extension L/K in terms of the arithmetic
of K, one must be able to describe Am(L/K) without involving L.

Theorem 2 ([Coh00, Theorem 3.4.4]). Let K be a number field, L an abelian extension of
K, and m = (m0,m∞) an appropriate modulus to the extension L/K.

1. Let p be a prime of ZK in Im(K), and P a prime of ZL above p. Let f be the order of
p modulo Am(L/K), then f is the degree of inertia of P. Since it does not depend on
the choice of P, we may call it the degree of inertia of p.

2. Conversely, Am(L/K) is generated by the ideals pf (where p is a prime in Im(K) and
f is its degree of inertia) and Pm(K). It is even possible to restrict oneself to the
primes of Im(K) with inertia degree f = 1 (still with the ideals of Pm(K)).

Finally, this last theorem states the existence of a maximal abelian extension associated
with each modulus.

Theorem 3 (Takagi’s existence theorem [Coh00, Theorem 3.5.1]). Let K be a number
field and let m be a modulus over K. There exists a maximal isomorphism class of abelian
extensions of conductor dividing m. It is called the ray class field (modulo m) of K, and is
denoted by Raym(K).

The Galois group of the extension Gal(Raym(K)/K) is isomorphic to the ray class group
Clm(K) (the isomorphism is induced by the Artin map).

Remark 7. Equivalently, we can characterize the ray class field Raym(K) as the unique
abelian extension of K up to isomorphism such that the primes of K that are totally split
in Raym(K) are exactly the primes of Pm(K).

3.2 Complex multiplication of elliptic curves
In this section, we detail effective aspects of the class field theory of imaginary quadratic
number fields, in the unramified case. The computation of the class group and Hilbert
class field, in this specific context, can be handled using the complex multiplication theory
of elliptic curves. In Subsection 3.2.1, we briefly present the few results from complex
multiplication theory that we need. In Subsection 3.2.2, we present an algorithm for
computing the Hilbert class polynomial associated with an imaginary quadratic field.
Finally, in Subsection 3.2.3, we present the algorithm of Atkin and Morain, also known as
the complex multiplication method, which allows us, given two integers q and t satisfying
the ad hoc conditions, to compute an ordinary elliptic curve defined over a finite field with
q elements and trace t.
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3.2.1 Action du groupe de classes sur les courbes elliptiques à
multiplication complexe

Before presenting the algorithms, we recall some theorems from complex multiplication
theory. For more information on this subject, the reader may consult the books [Sil94,
Chapter II] and [Coh93, Section 7.2].

Definition 22. Let E/C be an elliptic curve, let K be an imaginary quadratic field, and
let O be an order of K.

• We say that E has complex multiplication by O if End(E) ≃ O.

• We say that E has complex multiplication if End(E) ̸≃ Z, in which case E necessarily
has complex multiplication by an order of an imaginary quadratic field.

• We denote by Ell(O) the set of isomorphism classes of elliptic curves over C with
complex multiplication by O. We denote by [E] the class of E in Ell(O).

Definition 23. Let τ ∈ H (where H denotes the complex upper half-plane), we define the
following modular forms and functions:

1. (Eisenstein series) for all integers k ⩾ 2,

G2k(τ) =
∑

m,n∈Z
(m,n)̸=(0,0)

1

(mτ + n)2k
.

2. g2(τ) = 60G4(τ) and g3(τ) = 140G6(τ).

3. (Modular discriminant) ∆(τ) = g2(τ)
3 − 27g3(τ)

2.

4. (Modular j-invariant)

j(τ) = 1728
g2(τ)

∆(τ)
.

Definition 24. Let E/C be an elliptic curve and τ ∈ H such that E ≃ C/Z + τZ. We
define the j-invariant of E as follows:

j(E) = j(τ).

Note that j(E) does not depend on the choice of τ as a property of the modular j-invariant.

Theorem 4 ([Coh93, Theorem 7.2.13]). Let K be an imaginary quadratic field. Let E/C be
an elliptic curve, and let τ ∈ H such that E ≃ C/Z+τZ. Then E has complex multiplication
by an order of K if and only if τ ∈ K. Furthermore, if τ ∈ K, then j(τ) is an algebraic
integer.

34



Theorem 5 ([Sil94, Chapter II, Theorem 4.3]). Let K be an imaginary quadratic field, and
let E/C be an elliptic curve with complex multiplication by ZK. Then:

1. Hil(K) ≃ K(j(E)).

2. [Hil(K) : K] = [Q(j(E)) : Q].

3. Gal(Hil(K)/K) ≃ Cl(K) acts freely on the set Ell(ZK) and:

∀σ ∈ Gal(Hil(K)/K), j(σ ∗ [E]) = σ(j(E)).

Definition 25. Let K be an imaginary quadratic field and D the discriminant of its integer
ring. We define the Hilbert class polynomial (for the discriminant D):

HD =
∏

[E]∈Ell(ZK)

(x− j([E])) ∈ Z[x].

3.2.2 Calcul du polynôme de classes de Hilbert

Let K be an imaginary quadratic field and D the discriminant of ZK. In order to be able to
compute the Hilbert class polynomial of K, we want to be able to perform two operations:

• determine τ1, . . . , τ|Cl(K)| ∈ H such that (C/Z+ τkZ) form a family of representatives
of Ell(ZK).

• given τ ∈ H and a precision n, compute j(τ) with precision n.

If we are able to perform these two tasks, it is possible to compute the coefficients of HD to
a chosen precision. We can then use the fact that HD has integer coefficients to find the
exact values of its coefficients.

Since K is a quadratic imaginary field, it has been known since the work of Gauss [Gau01]
that there is a group isomorphism between Cl(K) and the group of reduced positive definite
binary quadratic forms. This isomorphism makes it possible to quickly enumerate the
elements of the class group. We will present some properties of binary quadratic forms. For
a more general presentation, the reader may refer, for example, to [BV07].

Definition 26.

• A binary quadratic form is a function of the form f(x, y) = ax2 + bxy + cy2 with
coefficients a, b, c not all zero. For brevity, we write f = (a, b, c) and call f a form.

• The form (a, b, c) is said to be primitive if pgcd(a, b, c) = 1.

• Two forms f and g are said to be equivalent if there exists a matrix

U =

(
α β
γ δ

)
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of SL2(Z) such that
g(x, y) = f(αx+ βy, γx+ δy).

We then write g = fU .

• Let f = (a, b, c) be a form, we define the discriminant disc(f) = b2 − 4ac of f . Let D
be an integer, we denote

Quad(D) = {(a, b, c) | b2 − 4ac = D}.

Proposition 6. According to [Coh93, Section 5.2]:

• Let f and g be two equivalent forms, then disc(f) = disc(g).

• Any integer D ̸= 1 congruent to 0 or 1 modulo 4 is the discriminant of a form.

• Let U = −I2 =
(
−1 0
0 −1

)
∈ SL2(Z). For any form f , we have fU = f .

• Let D be a discriminant, PSL2(Z) acts on Quad(D).

Definition 27. Let f = (a, b, c) be a form.

• We say that f is defined positive if disc(f) < 0 and a > 0.

• We say that f is reduced if it is positive definite, |b| ⩽ a ⩽ c and if b ⩽ 0 when a and
|b| or a and c are equal.

• Let D < 0 be a discriminant. We denote by Quadred(D) the set of reduced forms
with discriminant D.

Proposition 7. According to [Coh93, Theorem 5.2.8, Proposition 5.3.3, Lemma 5.3.4]:

1. Let f be a positive definite form and g a form equivalent to f . Then g is positive
definite.

2. Let f be a positive definite form, then there exists a reduced form g that is equivalent
to f .

3. Let f = (a, b, c) be a reduced form with discriminant D, then a ⩽
√
|D|/3.

4. Let f and g be two reduced and equivalent forms, then f = g.

These properties are key to the algorithmic interest of quadratic forms. In fact, the
reduced form of property 2 can be computed explicitly using Gauss’s algorithm [Coh93,
Algorithm 5.4.2]. Furthermore, property 3 allows us to design an algorithm for enumerating
Quadred(D). Thus, the set Quadred(D) is a set of unique representatives of the equivalence
classes of Quad(D) modulo the action of PSL2(Z), which can be computed explicitly. In
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the context of the application to the class field theory of imaginary quadratic fields, D is
the discriminant of the ring of integers of the imaginary quadratic field K. We can define a
group law on Quadred(D) and explicitly state a group isomorphism between Quadred(D)
and Cl(K) [Coh93, Section 5.2]. Here, we only need a weakened version of this theorem
(see Theorem 8).

Definition 28. Let f = (a, b, c) be a reduced form, and D = disc(f). Let i ∈ H such that
i2 = −1. We define

τf =
−b+ i

√
−D

2a
∈ H.

Theorem 8 ([Coh93, Theorem 5.2.8 and Proposition 5.3.3]). Let K be an imaginary
quadratic field and D the discriminant of ZK. The map

Quadred(D) −→ Ell(ZK)
f 7−→ [C/Z+ τfZ]

is a bijection.

This theorem solves the first problem, namely computing a family of representatives
of Ell(ZK). The second step is to compute j(τ) for τ ∈ H. The main idea is to use the
1-periodicity of the function j to compute its Fourier series expansion [Sil94, Section I.7].

Theorem 9 ([Sil94, Chapter I, Proposition 7.4]). There exists a sequence of integers (cn)n⩾0

such that for all τ ∈ H,

j(τ) =
1

q
+
∑
n⩾0

cnq
n

where q = e2iπτ .

This formula is not used in practice because the coefficients (cn) grow rapidly. Instead,
we will use the formula from Theorem 11 as in [Coh93, Section 7.6.1] and [AM93]:

Theorem 10 ([Sil94, Chapter I, Theorem 8.1] and [Coh93, Section 7.6.1]). Let τ ∈ H
and q = e2iπτ . We have

∆(τ) = (2π)12q
∏
n⩾1

(1− qn)24 = (2π)12q

(
1 +

∑
n⩾1

(−1)n
(
qn(3n−1)/2 + qn(3n+1)/2

))24

.

The series involved in the decomposition is much more convenient because the terms
are small, and the exponents grow quadratically in n. To use this decomposition, we need
to relate the j-modular invariant and the modular discriminant:

Theorem 11 ([Coh93, Section 7.6.1]). Let τ ∈ H and q = e2iπτ . We have

j(τ) =
(256f(τ) + 1)3

f(τ)
where f(τ) =

∆(2τ)

∆(τ)
.
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Remark 8. It should be noted that

∆(2τ) = (2π)12q2

(
1 +

∑
n⩾1

(−1)n
(
qn(3n−1) + qn(3n+1)

))24

.

The article [AM93, Section 7] relates the desired accuracy and the number of terms
needed to be computed in the series of Theorem 10:

Theorem 12 ([AM93, Section 7]). Let N be an integer, and let q ∈ C, |q| < 1. Then∣∣∣∣∣ ∑
n⩽N+1

(−1)n(qn(3n−1)/2 + qn(3n+1)/2)

∣∣∣∣∣ ⩽ 6|q|3N2/2.

Theorems 11 and 12 address the second issue. We can provide the complete algorithm
for computing the Hilbert class polynomial (algorithm 3.2.1). Algorithm 3.2.1 relies on algo-
rithm 3.2.2 to compute the precision required for computing the j-invariant. Algorithm 3.2.2
is detailed in [Coh93, Section 7.6.2].

Algorithme 3.2.1 : Computation of the Hilbert class polynomial [Coh93, Algo-
rithme 7.6.1]
Entrées : D the discriminant of the integer ring of an imaginary quadratic field.
Output : HD the corresponding Hilbert class polynomial

1 Let k = ComputePrecision(D).
2 Let P = 1, b = D mod 2, B = ⌊

√
−D/3⌋.

3 tant que b ⩽ B faire
4 Let t = (b2 −D)/4 and a = b.
5 tant que a2 ⩽ t faire
6 si a | t alors
7 Let j = j((−b+ i

√
−D)/(2a)) (computed with k bits of precision)

8 si a = b or a2 = t or b = 0 alors
9 P ← (x− j)P

10 sinon
11 P ← (x2 − 2Re(j)x+ |j|2)P
12 a← a+ 1

13 b← b+ 2

14 Round the coefficients of P and return it

Example 2. Let K = Q(
√
−5) be an imaginary quadratic field, whose ring of integers has

discriminant D = −20. We set B = ⌊
√

20/3⌋ = 2. We begin enumerating the reduced
quadratic forms with discriminant D.

• For b = 0, we define t = (b2 −D)/4 = 5.
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Algorithme 3.2.2 : ComputePrecision(D)
Entrées : D the discriminant of the integer ring of an imaginary quadratic field.

1 Let S = 0, b = D mod 2, B = ⌊
√
−D/3⌋.

2 tant que b ⩽ B faire
3 Let t = (b2 −D)/4 and a = b.
4 tant que a2 ⩽ t faire
5 si a | t alors
6 si a = b or a2 = t or b = 0 alors
7 S ← S + 1

a

8 sinon
9 S ← S + 2

a

10 a← a+ 1

11 b← b+ 2

12 Return ⌈π
√
−DS

ln(10)
⌉+ 10.

– For a = 0, we have a ∤ t.
– For a = 1, we have a | t, so we obtain the form (1, 0, 5).

– For a = 2, we have a ∤ t.

• For b = 2, we define t = (b2 −D)/4 = 6.

– For a = 2, we have a | t, so we obtain the form (2, 2, 3).

We deduce the precision k = 20 from the enumeration. We compute the values of the
j-invariants.

sage: tau = I*sqrt(D)/2; elliptic_j(tau,prec=66) #10^20 is around equal to 2^66
1.264538909475140509e6
sage: tau = (-2+I*sqrt(D))/4; elliptic_j(tau,prec=66)
-538.9094751405093202

We compute an approximate value of the Hilbert polynomial: P = x2−1264000.00000000x−
681472000.000000. We conclude that

H−20 = x2 − 1264000x− 681472000.

3.2.3 Generating elliptic curves with prescribed trace over finite
fields

In this section, we present an application of class field theory to the generation of elliptic
curves of prescribed order over finite fields. The problem considered is as follows: let N be
a positive integer, and p ⩾ 5 a prime integer such that |N − p− 1| ⩽ 2

√
p and N ̸= p+ 1.
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We seek to construct an elliptic curve E over the field K with p elements, with trace
t = N − p− 1. It is possible to find such a curve by computing the roots modulo p of the
Hilbert class polynomial associated with a well-chosen discriminant.

For any N satisfying the above conditions, there exists:

• D a negative integer congruent to t2 modulo 4 such that 8 ∤ D and for any prime
l > 2 dividing D, we have l2 ∤ D.

• an integer y such that t2 − 4p = Dy2.

In particular, D is the discriminant of the integer ring of the imaginary quadratic field
K = Q(

√
D). We know that t and p are coprime, so p ∤ Dy2 and D ≡ (t/y)2 mod p is a

square modulo p. Therefore, the principal ideal (p) = pp̄ is split in K. We know that, up to
conjugation, p = (π) where π = t+

√
Dy

2
∈ ZK (π is an integer because t2 and D have the

same congruence modulo 4). The ideal p is principal, so it is completely split in Hil(K).
Let P be a prime of Hil(K) above p, then Hil(K)P = Fp.

The algorithm 3.2.3 computes a curve with trace t defined over Fp. The idea behind the
algorithm is that there exists a curve E0 defined over Hil(K) that has complex multiplication
by ZK, and whose reduction modulo P is an elliptic curve E defined over Fp such that

ZK ≃ End(E0) ≃ End(E),

and such that π ∈ ZK is sent to the Frobenius morphism in End(E) (for details on the
reduction of elliptic curves in characteristic p, the reader may consult [Lan87]). We therefore
conclude that the minimal Frobenius polynomial on E is x2 − tx+ p and that t is the trace
of E. We know that j(E0) is a root of HD. We can therefore find the j-invariant of E
directly by searching among the roots of HD modulo p.

Algorithme 3.2.3 : Generation of elliptic curves with prescribed trace
Entrées : p ⩾ 5 a prime integer, t ∈ [−2√p, 2√p] \ {0} an integer.
Output : E an elliptic curve with trace t over the finite field with p elements.

1 Find K a quadratic imaginary field and D the discriminant of its integer ring such
that t2 − 4p = 0 mod D and (t2 − 4p)/D is a square.

2 Let y be an integer such that t2 − 4p = Dy2.
3 Compute HD, the Hilbert class polynomial associated with the discriminant D.
4 Let K be a finite field with p elements. Compute R the set of roots of HD in K.
5 pour j ∈ R faire
6 Let E be an elliptic curve over K with j-invariant j.
7 pour E ′ in the twists of E faire
8 si E ′ has trace t alors
9 Return E ′.
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Example 3. Let p = 34873130969 and t = 372876. We can verify that p is prime, and
therefore p and t are coprime. We compute

t2 − 4p = −456012500 = −20× 47752 (3.2.1)

Let K = Q(
√
−5) and ZK be the ring of integers of K. The discriminant of the order ZK is

−20. Let Fp be a finite field with p elements. Equation (3.2.1) guarantees that there exists
an elliptic curve E over Fp, with complex multiplication by ZK. In this case, its j-invariant
is a root of the Hilbert class polynomial

H−20 = x2 − 1264000x− 681472000 ≡ (x− 23162900482)(x− 11711494487) mod p

in Fp. Let j = 23162900482, then the curve

Ẽ : y2 = x3 + 3j(1728− j)x− 2j(1728− j)2 = x3 + 22026048806x+ 14488057806

has j-invariant j and trace −372876 = −t. Let

E : y2 = x3 + 302722578x+ 19597229242

be a quadratic twist of Ẽ, then the trace of E is t = 372876. We have found a curve with
the desired trace, so we do not consider the j-invariant j = 11711494487.

3.3 Class field theory of function fields
Function fields (of curves over finite fields) are similar to number fields from an arithmetic
point of view. Their maximal orders are Dedekind rings, and in both cases we can define
the concepts of places (the primes of the maximal orders), their associated valuations, and
a class group. The uniqueness of the decomposition of an ideal into a product of prime
ideals in the maximal orders allows us to study the behavior of places in extensions and to
distinguish three cases: decomposition, inertia, and ramification. Given these similarities,
it is not surprising that function fields have a class field theory, whose results are very close
to those of class field theory for number fields. It is even possible to define a unified class
field theory for global fields (i.e., a theory common to number fields and function fields
defined over finite fields), as for example in [AT09].

However, although similar, the arithmetic of function fields differs from that of number
fields in several ways. For example, function fields have an infinite number of maximal
orders, unlike number fields, which have only one. Another example: let K be a number
field, then its maximal unramified abelian extension Hil(K) is a finite extension, whereas
for K(X) a function field defined over a finite field K, and for K̄ an algebraic closure of
K, we see that K̄ ⊗K K(X) is an infinite-degree unramified abelian extension of K(X).
Finally, function fields have a positive characteristic, which makes the study of ramification
more complex than for number fields. Thus, several expositions of class field theory have
been written for the specific case of function fields.
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In this thesis, we will only present the unramified case of class field theory over function
fields. The ramified case is studied by Serre in [Ser84] using generalized Jacobians [Ros54].
We begin by presenting a geometric exposition à la Serre [Ser84] in Section 3.3.1. This is
the point of view that interests us the most, since it will be used in Chapter 4 to define
structured Goppa codes. We also present Rosen’s exposition [Ros87], which very explicitly
shows the analogy with number fields in Section 3.3.2. Finally, we briefly discuss the links
between the two points of view in Section ??.

3.3.1 Geometric approach

Let K be a finite field with q = pm elements, K̄ an algebraic closure of K, and X a smooth
projective curve over K. Class field theory (for unramified extensions) of function fields
can be formulated geometrically using abelian (unramified) covers of X over K and the
Jacobian JX .

Indeed, let
τ : Y −→ X

be an abelian cover over K with Galois group G. It defines an abelian extension K(Y )/K(X)
of K(X). This section summarizes some of the results of [Lan56a, Lan56b] and [Ser84] on
the link between isogenies of the Jacobian and unramified abelian covers of the curve.

In what follows, we denote by FV the Frobenius endomorphism (relative to K) of a
K-variety V . Any K-variety V naturally defines a variety over K̄ that we will identify with
V .

Definition 29.

• Let θ : G −→ G′ be a morphism of connected commutative algebraic groups over K̄.
We say that θ is an isogeny if θ is surjective and its kernel is finite.

• We say that θ is separable if its degree is equal to the order of its kernel.

• If G and G′ are K-varieties, we say that θ is defined over K if

FG′ ◦ θ = θ ◦ FG.

Definition 30. Let V be a K̄-variety, G and G′ two connected commutative algebraic
groups over K̄. Let f : V −→ G′ be a regular map and θ : G −→ G′ a separable isogeny.
We define V ×G′ G as the fiber product of V and G over G′ as the submanifold of V ×G
whose K̄-rational points are

V ×G′ G(K̄) = {(x, g) ∈ V ×G | f(x) = θ(g)}.

The fiber product V ×G′ G is equipped with projections πV and πG that make the following
diagram commute:
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V ×G′ G

V G′

G

f

θπV

πG

We say that πV is the pullback of θ by f , and we write πV = f−1(θ).

We note that the isogeny θ is a unramified abelian covering map of G′ with Galois group
G consisting of translations by elements of ker θ. Then πV is an abelian cover with Galois
group G, unramified of V .

Lemma 13. Using the notation from definition 30, if V , G, and G′ are K-varieties, and if
f and θ are defined over K, then V ×G′ G is a K-variety and πV is defined over K.

Proof. Let W = V ×G′ G. Let (x, g) ∈ W . We want to check that W is stable by

FV×G : (y, h) 7−→ (FV (y), FG(h)).

To do this, we compute

f(FV (x)) = FG′(f(x)) = FG′(θ(g)) = θ(FG(g)),

so W is stable under FV×G and is indeed a K-variety.
Furthermore, πV (FW ((x, g))) = FV (x) = FV (πV ((x, g))), so πV is defined on K.

Let us return to the study of the curve X. The Jacobian JX of X is a connected
commutative algebraic group defined over K. Furthermore, let P be a K-rational point of
X. The Jacobi map jP associated with P is a regular map from X to JX defined over K.
Let

θ : G −→ JX

be a separable isogeny. Let
Y = X ×JX G.

Then Y is a smooth integral projective curve (over K̄), and πX : Y −→ X is an unramified
abelian covering of X. Furthermore, one can prove that

• Y is a K-variety and πX is defined over K if and only if θ is defined over K.

• The covering πX is Galois over K (meaning that K(Y )/K(X) is a Galois extension) if
and only if, in addition, the action of FG on ker θ is trivial. In this case, the covering
is abelian with Galois group isomorphic to ker θ.

• The covering πX is totally split above P if and only if, similarly, the action of FG on
ker θ is trivial.
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Theorem 14 ([Ser84, Chapter I, Corollary of Theorem 4 and Theorem 5]). Let K be a
finite field and X a smooth projective curve over K. Let P be a K-rational point of X.

There exists a smooth projective curve Ymax over K and an abelian covering

τmax : Ymax −→ X

over K that is unramified, totally split above P , and maximal in the following sense: for
any cover

τY : Y −→ X

satisfying these properties, there exists an unramified abelian covering

τYmax/Y : Ymax −→ Y

such that
τ = τY ◦ τYmax/Y .

The covering τmax is obtained by pulling back the isogeny

φ = FJX − Id,

by the Jacobi map jP .

Theorem 14 induces a correspondence between the isomorphism classes of abelian,
unramified covers of X totally split above P and the subgroups of JX(K). Indeed, let H
be a subgroup of JX(K). There exists a separable isogeny whose kernel is H. We denote
this isogeny by

πH : JX −→ JX/H.

Then there exists
θ : JX/H −→ JX

an isogeny such that
θ ◦ πH = FJX − Id .

The covering
τ = j−1P (θ) (3.3.1)

is an unramified abelian covering of X, totally split above P , with Galois group JX(K)/H.

Proposition 15. Using the notation from Theorem 14, let Q be a K-rational point of
X, and let H be a subgroup of JX(K). Let τ : Y −→ X be the unramified abelian cover,
totally split above P , associated with H as defined in equation(3.3.1).

Then τ is totally split above Q if and only if the class of Q−P in JX(K) belongs to H.

Proof. We must check that the fiber of τ above Q is composed of K-rational points. We
are in the following situation:
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Ymax

Y

X JX

JX/H

JX

jP

τ θ

πH

FJX − Id

Let c be the class of Q− P in JX(K). We must check that the points of Y above Q are
fixed by the Frobenius morphism on Y if and only if c ∈ H. Let (Q, a+H) be a point of
Y above Q. We have

FY ((Q, a+H)) = (FX(Q), FJX/H(a+H)) = (Q,FJX (a) +H)

where θ(a + H) = jP (Q) = c. Therefore, (Q, a + H) is fixed by FY if and only if
FJX (a)− a ∈ H. But

FJX (a)− (a) = θ(a+H) = c,

so FJX (a)− a ∈ H if and only if c ∈ H.

3.3.2 Algebraic approach

In this section, we summarize the presentation in [Ros87] of class field theory (unramified
case), and its definition of a Hilbert class field for function fields. Let K be a finite field
with q = pm elements, and let X be a smooth projective curve over K. Let K(X)sep be a
separable closure of K(X). Let K̄ be the algebraic closure of K in K(X)sep.

There exists a maximum abelian unramified extension of K(X) in K(X)sep, but this
extension is of infinite degree (even relative to K̄(X)). To define a Hilbert class field whose
extension degree is finite, we must add a condition that, among other things, limits the
extension of the field of constants. Let S∞ be a finite non-empty set of places of K(X)
of arbitrary degrees. Let OX\S∞ be the ring of functions with all poles in S∞. This is a
Dedekind ring (see [Ros87, Section 1]) whose class group Cl(OX\S∞) is finite. We can draw
an analogy between the triplet K(X),OX\S∞ , S∞ and a number field, its ring of integers,
and its places at infinity.

Proposition 16. There exists a maximum unramified abelian extension of K(X) in
K(X)sep in which the places of S∞ are totally split. It is called the Hilbert class field of
K(X) with respect to S∞, and is denoted by HilS∞(X).

Proof. The properties of being abelian, unramified, and totally split above S∞ are preserved
by compositum.
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Proposition 17. Let
δ = pgcdP∈S∞ degP.

Let L = K̄ ∩HilS∞(X) be the field of constants of HilS∞(X). Then L is the extension of K
of degree δ in K̄.

Proof. Let P ∈ S∞ and let Q be a place above P . Let KQ be the residue field at Q. Since
P is totally split in HilS∞(X), we know that KQ is equal to KP , the residue field at P . Now
L is a subfield of KQ, and therefore of KP . So the degree of the extension L/K divides
degP . This is true for any P ∈ S∞, so

[L : K] | δ.

Let L′ be the extension of K of degree δ in K̄. Then the compositum L′HilS∞(X) is a
Galois extension of K(X) whose Galois group is a subgroup of

Gal(L′(X)/K(X))×Gal(HilS∞(X)/K(X)) = Gal(L′/K)×Gal(HilS∞(X)/K(X)).

It is therefore an abelian extension of K(X). Furthermore, according to [Sti08, Theorem
3.6.3], L′HilS∞(X) is unramified, and all places of S∞ are totally split in L′HilS∞(X), since
δ divides the degree of all places of S∞. By the maximality of HilS∞(X), we deduce

L′HilS∞(X) = HilS∞(X) and L′ = L.

Proposition 18. Let N be the subgroup of Div(X) generated by the points of S∞. Then
there exists a group isomorphism

I(OX\S∞) ≃ Div(X)/N

where I(OX\S∞) is the group of fractional ideals of OX\S∞ .

Proof. According to [Sti08, Proposition 3.2.9], the prime ideals of OX\S∞ are in bijection
with the places of K(X) that are not in S∞. Since Div(X) is the free abelian group
generated by the places of K(X), and I(OX\S∞) is isomorphic to the free abelian group
generated by the prime ideals of OX\S∞ , we deduce the proposition.

We can define the Artin map of the extension HilS∞(X)/K(X) as in definition 21. Let P
be a place of K(X) and Q a place of HilS∞(X) above P . Let D(Q/P ) be the decomposition
group of Q and I(Q/P ) its inertia group. Since HilS∞(X)/K(X) is an unramified extension,
I(Q/P ) is trivial. Let KP and KQ be the residue fields at P and Q respectively, then we
have a canonical isomorphism

D(Q/P ) −→ Gal(KQ/KP ).
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Let sQ ∈ D(Q/P ) be the element associated with the Frobenius morphism via this isomor-
phism. Since it does not depend on the choice of Q (the extension is abelian), we denote it
by sP . We define

(.,HilS∞(X)/K(X)) : Div(X) −→ Gal(HilS∞(X)/K(X))∑
P nPP 7−→

∏
snP
P

as the Artin map.
It can be noted that Artin’s map is trivial on S∞ by definition of HilS∞(X). Then

(.,HilS∞(X)/K(X)) induces a morphism

I(OX\S∞) −→ Gal(HilS∞(X)/K(X)).

Theorem 19 ([Ros87, Theorem 1.3]). Artin’s map (.,HilS∞(X)/K(X)) is surjective and
induces an isomorphism

Cl(OX\S∞)
∼−→ Gal (HilS∞(X)/K(X)) .

This theorem shows that this definition of the Hilbert class field of K(X) leads to a
situation very similar to that of number fields. To complete this exposition, we need to
express Cl(OX\S∞) in terms of Pic(X) and S∞ and give its class number.

Theorem 20 ([Ros87, Theorem 1.3 and Lemmas 1.1-2]).

• Let N be the subgroup of Pic(X) generated by the classes of the places of S∞. Then

Cl(OX\S∞) ≃ Pic(X)/N.

• Let H be the subgroup of Pic0(X) generated by the places of S∞ (i.e., the classes of
linear combinations of S∞ of degree 0). Then

|Cl(OX\S∞)| = δ|Pic0(X)|/|H|

where δ = pgcdP∈S∞ degP .

Corollary 20.1. [HilS∞(X) : K(X)] is finite.

Corollary 20.2. The kernel of the Artin map is the subgroup of Div(X) generated by the
principal divisors and the places of S∞.

Corollary 20.3. Assume that S∞ = {P} where P is a point of K(X) of degree 1. Then

Gal(HilS∞(X)/K(X)) ≃ Pic0(X) = JX(K).

In particular, to every subgroup H of Pic0(X), we associate a unique unramified abelian
extension of K(X) in K(X)sep with a Galois group naturally isomorphic to Pic0(X)/H
(and vice versa).
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Corollary 20.4. Assume that S∞ = {P} where P is a point of K(X) of degree 1. Let
K(X) ⊂ K(Y ) ⊂ HilS∞(X) be the extension associated with the subgroup H of Pic0(X).
Let Q be a place of K(X), then Q is totally split in K(Y ) if and only if

Q− deg(Q)P ∈ H.

Proof of Theorem 20. The first statement is a direct consequence of Proposition 18. We
now prove the second statement.

We know that there exists an exact sequence of additive groups

0 −→ Pic0(X) −→ Pic(X) −→ Z −→ 0

according to a theorem by Schmidt [Sch31]. Similarly, we have

0→ Pic0(X)/(Pic0(X) ∩N)→ Cl(OX\S∞)→ Pic(X)/(N + Pic0(X))→ 0

Now,
(Pic0(X) ∩N) = H,

and
Pic(X)/Pic0(X) ≃ Z,

and
(N + Pic0(X))/Pic0(X) ≃ δZ.

We deduce that

0 −→ Pic0(X)/H −→ Cl(OX\S∞) −→ Z/δZ −→ 0.

3.3.3 Link between the two approaches

We see that some of the results of Theorem 14 and Proposition 15 are found in Corollaries 20.3
and 20.4. In this section, we study the relationships between the algebraic and geometric
perspectives.

Let K be a finite field with q = pm elements, and let X be a smooth projective curve
over K. Let K(X)sep be a separable closure of K(X). Let K̄ be the algebraic closure of K
in K(X)sep. Let S∞ be a non-empty finite set of places of K(X) such that

δ := pgcdP∈S∞ degP = 1.

Let OX\S∞ be the ring of functions with poles in S∞.
Since the degree of the extension HilS∞(X)/K(X) is finite, the field HilS∞(X) is also a

function field (over K because δ = 1). Thus, there exists a smooth projective curve Y over
K such that K(Y ) = HilS∞(X). It is natural to ask what the geometric relations between
X and Y are.
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First case: S∞ contains a place of degree 1

This is the simplest and most straightforward case. Let P be a K-rational point of X
corresponding to a place of degree 1 of S∞. The extension K(Y )/K(X) is abelian and
unramified, which means that there exists

τ : Y −→ X

an abelian unramified covering over K. Furthermore, since P ∈ S∞, we know that τ is
totally split above P .

Let N be the subgroup of JX(K) generated by the classes of Q− deg(Q)P for Q ∈ S∞.
We know that

Gal(K(Y )/K(X)) ≃ JX(K)/N

according to theorems 19 and 20. Let θ be the separable isogeny that makes the following
diagram commutative:

JX JX

JX/N

FJX − 1

πN θ

where πN is the quotient isogeny. Then τ is isomorphic to the pullback of θ by jP , the
Jacobi map associated with P according to Theorem 14.

General case

The general case requires a little more caution, as there may not be any places of degree 1
in S∞. However, since δ = 1, we know that there exists D ∈ div(X) a divisor generated by
the places of S∞ of degree 1. Let N be the subgroup of JX(K) generated by the classes of
Q− deg(Q)D for Q ∈ S∞. Then, according to theorems 19 and 20,

Gal(K(Y )/K(X)) ≃ JX(K)/N.

There exists
τ : Y −→ X

an abelian cover of X that is unramified and totally decomposed over the points associated
with the places of S∞.

Let jD be the Jacobi map associated with the divisor D (which associates the class of
P − deg(P )D in JX with every closed point P of X). It is a regular map defined on K
(since D has degree 1). Let θ be the separable isogeny that makes the following diagram
commute:
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JX JX

JX/N

FJX − 1

πN θ

Then τ is isomorphic to the pullback of θ by jD.

3.4 Construction of algebraic curves with many rational
points

Curves (smooth projective curves) defined over finite fields with many rational points are
very interesting for many applications. Indeed, given a finite field K, it can be shown that,
as the genus increases, Weil’s bound gets less tight and is no longer sufficient to correctly
estimate the maximum number of rational points that a curve can have. However, in the
context of Goppa code design (see Section 4.2), it is important to know the curves X
over K with the largest possible number of K-rational points relative to their genus. The
manYPoints [vdGHLR09] database lists, according to the order of the field q and the genus
g, the known curves with the largest number of points. It also lists the best known upper
bounds on the maximum number of points a curve can have.

Let q = pm be the order of K, we define the Ihara constant

A(q) = lim sup
X/K

N(X)

gX

where N(X) and gX are, respectively, the number of K-rational points and the genus of X.
The Ihara constant is a quantity that precisely describes the maximum number of points
that a curve over K can have asymptotically. It is very useful for describing the quality of
Goppa codes over K (as a family of codes).

Class field theory allows us to construct examples of curves with many points. In
Subsection 3.4.1, we explain how to construct curves with many points as abelian extensions
of other curves, and we give an example from [Ser20, Section 7.3]. We also present new
curves with record numbers of points over the fields with 4, 9, 16, and 25 elements. In
Subsection 3.4.2, we explain that it is possible to bound Ihara’s constant from below by
constructing towers of unramified abelian extensions of curves (according to [Ser20, Section
5.9]).

3.4.1 Examples of constructions

In this subsection, we explain how to construct an algebraic with many points as unramified
abelian covers of another curve. In particular, we present new curves with a record number
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of points relative to their genus over the finite fields with 4, 9, 16, and 25 elements. This
method can be generalized to the ramified abelian case (see [Ser20, Section 7.3]).

Let X be a smooth projective curve over a finite field K. Suppose that X has a
K-rational point P . Let H be a subgroup of JX(K). According to Theorem 14, there
exists a smooth projective curve YH and an unramified abelian covering

τH : YH −→ X

with Galois group isomorphic to JX(K)/H, and totally split above P . Furthermore,
according to Proposition 15, the K-rational points of YH are in the (totally split) fibers
above the points Q of X of degree 1, such that

jP (Q) ∈ H.

Let n be the number of K-rational points of X whose image by jP belongs to H. Let

d =
|JX(K)|
|H|

,

and let gX be the genus of X and gYH
the genus of YH . Then

• the curve YH has nd K-rational points.

• according to the Riemann-Hurwitz formula, since τH is unramified,

gYH
= d(gX − 1) + 1.

The following example is taken from [Ser20, Section 7.3].

Example 4. Let X be the smooth projective curve of genus gX = 2 defined over F2 by

X : y2 + y =
x2 + x

x3 + x+ 1
.

The curve X has six F2-rational points, and we can show that there exists an isomorphism
of abelian groups

JX(F2) ≃ Z/19Z.

Let P be an F2-rational point of X, and let

τ : Y −→ X

be an unramified abelian cover of X totally split above P with Galois group isomorphic to
JX(F2) (associated with the subgroup H = {0}). Then P is the only F2-rational point of
X that is totally split in Y , and Y is a curve of genus gY = 20 with 19 F2-rational points.

It can be shown that a curve of genus 20 over F2 has at most 21 points [Ser20, Section
7.1]. The question of whether there exists a curve of genus 20 over F2 with at least 20
points is still open [vdGHLR09].
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The number of subgroups of JX(K) can grow exponentially in the genus and polynomially
in q, the number of elements of K. Thus, it quickly becomes difficult to enumerate these
subgroups to produce record curves. We present a trick used in [GX22, NX98, Que89, vdG09]
consisting in studying a specific subgroup. Assume that there exists κ a subfield of K of
index 2, and that the curve X is defined over κ, i.e., there exists a smooth projective curve
Xκ over κ such that

X = (Xκ)K .

In this context, the trick is to choose for P a κ-rational point of X, i.e., stable under the
action of Gal(K/κ) on X, and to set

H = JXκ(κ)

as the subgroup of κ-rational points of JX(K). Then, τH : YH −→ X is an unramified
abelian cover with Galois group

G = JX(K)/JX(κ),

and the points of X that are totally split in YH are precisely the κ-rational points of X.
In particular, if the L-polynomial of Xκ is known, we can compute:

• the L-polynomial of X.

• the order of JX(κ) and the order of JX(K).

• the trace of Xκ, or equivalently the number of κ-rational points of X.

We can then determine the order of G, the genus gYH
of YH and the number of K-rational

points of YH .
We will now use this trick to produce new record curves. The LMFDB [LMF25] database

lists, among other things, L-polynomials of algebraic curves over finite fields with 2, 3, 4,
and 5 elements (among others). By enumerating this data, we can produce new curves with
a record number of points over finite fields with 4, 9, 16, and 25 elements. These records
are presented in Tables 3.1, 3.2, 3.3, and 3.4.

ĹMFDB label of X |G| gYH
#YH(F4) Old record ([vdGHLR09])

4.2.d_i_o_x 11 34 66 65
5.2.e_m_ba_bv_cu 12 49 84 81

Table 3.1: New curves with a record number of rational points over a field with 4 elements
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ĹMFDB label of X |G| gYH
#YH(F9) Old record ([vdGHLR09])

4.3.i_bi_ds_hn 9 28 108 105
4.3.h_ba_co_ez 11 34 121 114
4.3.h_bb_ct_fk 12 37 132 126

Table 3.2: New curves with a record number of rational points over a field with 9 elements

ĹMFDB label of X |G| gYH
#YH(F16) Old record ([vdGHLR09])

3.4.g_v_bx 19 39 209 194
3.4.f_p_bg 23 47 230 ∅

Table 3.3: New curves with a record number of rational points over a field with 16 elements

3.4.2 Towers of curves

Let K be a finite field with q = pm elements. We want to lower bound the Ihara constant

A(q) = lim sup
X/K

N(X)

gX

where N(X) denotes the number of K-rational points on X and gX denotes the genus of
X. To do this, we must define a sequence of smooth projective curves (Xi)i∈N over K such
that N(Xi)/gXi

converges to a nonzero constant.
It is possible to use class field theory to define such sequences of curves [Ser20, Section

5.9]. Let X be a smooth projective curve over K, let S be a finite non-empty set of
K-rational points of X, and let ℓ be a prime (potentially equal to the characteristic p). We
define

• (X0, S0) = (X,S);

• for all i ∈ N, the cover τi : Xi+1 −→ Xi is the maximal abelian, unramified cover of
degree a power of ℓ, totally split above the points of Si;

• for all i ∈ N, the set Si+1 is the set of points in the fibers above the points of Si.

ĹMFDB label of X |G| gYH
#YH(F25) Old record ([vdGHLR09])

3.5.k_bv_fc 16 33 256 226
3.5.j_bn_ec 20 41 300 260
3.5.j_bo_eh 21 43 315 276
3.5.i_bf_dc 24 49 336 315

Table 3.4: New curves with a record number of rational points over a field with 25 elements
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By composing the τi, we obtain a sequence of unramified Galois covers of X totally split
above S. Note that we can assert that these covers are Galois thanks to the maximality of
the τi. We call the sequence (Xi)i∈N the (S, ℓ)-class field tower of X.

Let Gi be the Galois group of the cover Xi −→ X for all i ∈ N, then Gi is a finite group
of order a power of ℓ. Furthermore, for all i ∈ N, the group Gi is a quotient of Gi+1. We
define

G = lim
←

Gi.

The group G is a pro-ℓ-group. Let r be the minimum number of generators of G (as a
pro-ℓ-group). Note that r ⩾ 1 if and only if JX(K) has a subgroup of order ℓ.

Theorem 21 ([Ser20, Theorem 5.9.4]). We use the notation from the beginning of Subsec-
tion 3.4.2. Assume that r ⩾ 1 and that

#S ⩽
r2

4
− r +

{
1 if ℓ divides q − 1,
0 otherwise.

Then the (S, ℓ)-class field tower of X is infinite, i.e. the sequence (Xi)i∈N is not asymptotically
constant.

The following theorem uses an infinite class field tower of X to lower bound Ihara’s
constant.

Theorem 22 ([Ser20, Theorem 5.9.5]). We use the notation from the beginning of Subsec-
tion 3.4.2. Assume that the (S, ℓ)-class field tower of X is infinite. Then

A(q) ⩾
#S

gX − 1
.

Proof. Let di be the order of Gi for all i ∈ N. According to the Riemann–Hurwitz formula,
we have

gXi
= di(gX − 1) + 1.

Furthermore, since the points of S are totally split in Xi, then N(Xi), the number of
K-rational points of Xi, satisfies

N(Xi) ⩾ #S · di.

In particular, (N(Xi)i∈N) tends to infinity because (di)i∈N does as well. We have

N(Xi)

gXi

⩾
#S · di

di(gX − 1) + 1

and taking the limit as i→ +∞

A(q) ⩾ lim sup
i∈N

N(Xi)

gXi

⩾
#S

gX − 1
.

Corollary 22.1 ([Ser20, Corollary 5.9.7]). Let q = pm be a prime power with m > 0. Then

A(q) > 0.

54



Chapter 4

Error correcting codes

The objective of this chapter is to present a family of Goppa codes with an additional
structure. This structure has an algorithmic interest, allowing to reduce the space required
to store the generator and parity-check matrices of the codes, and in some cases allowing to
reduce the complexity of encoding and decoding these codes.

In Section 4.1, we briefly review the basic concepts of linear error-correcting code theory.
Then, in Section 4.2, we present the definition of geometric Goppa codes, also known as
AG codes, and some of their properties. In Section 4.3, we recall the definition of a group
algebra and present the Fourier transform of a finite abelian group algebra. We detail the
complexity of computing the Fourier transform over finite fields and show that finite abelian
group algebras over finite fields have fast multiplication.

Next, in Section 4.4, given G a finite group and K a finite field, we study linear codes
defined by the free left (and right) submodules of K[G]E, where E is a finite set. In
particular, we define the notion of dual code in this particular context, and we show that
these codes have generator matrices (and parity-check matrices) with coefficients in K[G].
Finally, in Section 4.5, we define a new family of geometric codes, coming from unramified
abelian covers with Galois group G. Under certain usual assumptions, these codes are free
sub-K[G]-modules of K[G]E, for E a finite set. We study the specific features of this new
family of codes.

4.1 Linear codes
We start by introducing the basic concepts of error-correcting code theory. The reader can
refer to [Sti08] or any book on the subject of error-correcting codes for more details on
what follows. In this section, K denotes a finite field with q = pm elements.

4.1.1 General definitions

A error-correcting code C of length n and dimension k over K is a vector subspace of KE

of dimension k, where E is a set of cardinality n. We also say that C is an [n, k]-code over
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K. Let c ∈ C, we say that c is a codeword of the code C. We will sometimes use the
notation lenC to denote the length of C and dimC to denote its dimension. In the case
where E = [1..n] is the set of integers from 1 to n, we will write KE = Kn.

Definition 31. Let a = (ai)i∈E ∈ KE, we define the weight of a:

wt(a) = #{i ∈ E|ai ̸= 0}.

We define the Hamming distance d on KE

∀a, b ∈ KE, d(a, b) = wt(b− a).

The Hamming distance is a metric over KE.

Definition 32. Let C be an [n, k]-code over K with k > 0. We define

d(C) = min
a,b∈C and a̸=b

d(a, b) = min
c∈C and c ̸=0

wt(c)

as the minimum distance of C. We also define the rate and the relative distance of C

ρ(C) =
k

n
and δ(C) =

d(C)

n
.

In the case where d ∈ N is the minimum distance of C, we say that C is an [n, k, d]-code
over K. We call the correction capacity of C the integer t(C) = ⌊d−1

2
⌋.

The minimum distance, dimension, and length of a linear code are related as follows:

Theorem 23 (Singleton bound). Let C be an [n, k, d]-code over K, then

d+ k ⩽ n+ 1.

If the above inequality is an equality, then C is said to be MDS (Maximum Distance
Separable).

Let F be a set of cardinality k. We denote byMF,E(K) the K-vector space of matrices
indexed by F×E. In the case where F = [1..k], we will writeMk,E(K) instead ofMF,E(K).
In the case where E = [1..n], we will writeMF,n(K) instead ofMF,E(K).

To represent a matrix ofMF,E(K) as a table of coefficients, we must fix an order on the
elements of F and E. By convention, if E or F are sets of integers, we will systematically
choose the natural order on the integers.

Let G be a finite set. Recall the definition of the matrix product

MF,E(K)×ME,G(K) −→ MF,G(K)
((mi,j)(i,j)∈F×E, (m

′
i,j)(i,j)∈E×G) 7−→ (

∑
e∈E mi,em

′
e,j)(i,j)∈F×G

Let C ⊂ KE be an [n, k]-code over K. There exists a matrix E ∈ MF,E(K) such that

C = {aE ; a ∈ KF}.
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We say that E is a generator matrix of C. Let G be a set of cardinality n− k. There exists
a matrix C ∈ ME,G(K) such that

C = {a ∈ KE | aC = 0}.

We say that C is a parity-check matrix of C. We have

EC = 0.

The vector space KE is naturally equipped with a non-degenerate symmetric bilinear
form:

⟨., .⟩ : a, b ∈ KE 7→
∑
i∈E

aibi. (4.1.1)

We then define the dual code C⊥ of C by

C⊥ = {a ∈ KE | ∀c ∈ C, ⟨a, c⟩ = 0}.

If C is an [n, k]-code, then C⊥ is an [n, n− k]-code. The generator matrices of C⊥ are the
transpose of the parity-check matrices of C, and vice versa.

4.1.2 Families of linear codes

Let (Ci)i∈N be a family of codes with lengths tending to infinity. We write

δlim = lim inf δ(Ci) and ρlim = lim inf ρ(Ci).

Then Singleton’s bound implies that

δlim + ρlim ⩽ 1.

One of the objectives of coding theory is to produce codes that come as close as possible to
this bound. A classic result is the following:

Theorem 24 (Gilbert–Varshamov bound). Let δlim ∈]0, 1 − q−1[, there exists (Ci)i∈N a
family of linear codes over K whose lengths tend to infinity such that lim inf δ(Ci) = δlim
and

ρlim = lim inf ρ(Ci) = 1−Hq(δlim),

where
Hq : x 7−→ x logq(q − 1)− x logq(x)− (1− x) logq(1− x).

Remark 9. This bound is reached by families of random codes (whose lengths tend to
infinity).

One naturally might ask whether there exist families of codes whose parameters are
better than those of the Gilbert-Varshamov theorem. More precisely, let δlim ∈]0, 1− q−1[,
is there a family of linear codes (Ci)i∈N over K whose lengths tend to infinity and such that

lim inf δ(Ci) = δlim and lim inf ρ(Ci) > 1−Hq(δlim) ?

This question motivates the following definitions (see [Lac86]).
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Definition 33. Let (Ci)i∈N be a family of linear codes over K whose lengths tend to infinity.
We say that (Ci)i∈N is a family of good codes if

lim inf δ(Ci) > 0 and lim inf ρ(Ci) > 0.

Definition 34. Let (Ci)i∈N be a family of good linear codes over K. Let δlim = lim inf δ(Ci).
Assume that δlim ∈]0, 1− q−1[. We say that (Ci)i∈N is a family of excellent codes if

lim inf ρ(Ci) > 1−Hq(δlim).

4.1.3 The decoding problem

To conclude this section, we present the decoding problem for linear codes. Let C ⊂ KE be
an [n, k, d]-code over K. Let c be a codeword of C and e ∈ KE. Let t > 0 be an integer,
we assume that

wt(e) ⩽ t ⩽ t(C) = ⌊(d− 1)/2⌋.

Finally, let
r = c+ e.

The decoding problem is as follows: given C, r and t, determine c, the unique codeword C
at distance at most t from r.

The decoding problem is an NP-hard problem [BMvT78]. However, when the decoding
problem is restricted to certain families of codes, it can be solved in polynomial time with
respect to the length of the code. In particular, we will see in section 4.2.3 that this is the
case for Goppa codes.

4.2 Geometric Goppa codes
Geometric Goppa codes, also known as AG codes, are a specific family of linear codes
introduced by Goppa in the early 1980s [Gop83] to generalize Reed–Solomon codes [RS60].
Geometric Goppa codes have good asymptotic properties and beat the Gilbert-Varshamov
bound when q, the cardinality of the base field, is large enough. The reader can refer
to [Sti08] for a detailed study of AG codes.

We start by introducing Reed-Solomon codes. Let K be a finite field with q = pm

elements. Let k and n be two integers such that 0 < k ⩽ n ⩽ q. Let P1, . . . , Pn ∈ K be
distinct elements. We define

P = {Pi; 1 ⩽ i ⩽ n}.

Let K[x]⩽k−1 be the set of polynomials in one indeterminate over K of degree less than
k − 1. This is obviously a K-vector space of dimension k. Let us consider the K-linear
evaluation map at P

evP : f ∈ K[x]⩽k−1 7−→ (f(Pi))Pi∈P ∈ K
P .
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This map is injective since a nonzero polynomial f ∈ K[x]⩽k−1 has at most k− 1 < n roots.
Using the canonical isomorphism of K-vector spaces

φ : Kk −→ K[x]⩽k−1
(fi)0⩽i⩽k−1 7−→

∑k−1
i=0 fix

i

we can define a [n, k]-Reed-Solomon code (or RS code) with generator matrix E corresponding
to the linear map evP ◦ φ in the canonical bases of Kk and KP :

E =


1 1 1
P1 P2 Pn

P 2
1 P 2

2 · · · P 2
n

...
...

...
P k−1
1 P k−1

2 P k−1
n

 ∈Mk,P (K).

We thus define

RS(k, P ) = Im E = {(f(Pi))Pi∈P ; f ∈ K[x]⩽k−1}.

Proposition 25. RS(k, P ) is an MDS code. In other words,

d(RS(k, P )) = n− k + 1.

RS codes are interesting because they reach the Singleton bound. In addition, they
have good algorithmic properties. Their main drawback is their length: Reed-Solomon
codes cannot be longer than q, which makes them relatively short codes. Goppa’s idea in
introducing geometric codes was to generalize Reed-Solomon codes in a situation where
more evaluation points are available.

4.2.1 Definition

Let K be a finite field with q = pm elements. Let X be a smooth projective curve over K,
and let K(X) be its function field. Let g be the genus of X. Let P1, . . . , Pn ∈ X(K) be
K-rational points of X that are pairwise distinct, and

P =
n∑

i=1

Pi ∈ Div(X).

Let D ∈ Div(X) be a divisor with non-negative degree such that suppD ∩ suppP = ∅. We
write

L(D) := ΓX(OX(D))

for the Riemann-Roch space associated with D, and ℓ(D) for its dimension as a K-vector
space. We also write

RP := ΓX(OX/OX(−P ))

59



for the residue algebra at P . We will write KP instead of KsuppP . We write

evD,P : L(D) −→ RP

for the evaluation map of functions from the Riemann-Roch space L(D) to P . In this
particular case, there is a canonical isomorphism of K-vector spaces

RP ≃
n⊕

i=1

KPi

between the residue algebra at P and the direct sum of the residue fields at the places Pi.
Since the places Pi are K-rational, these residue fields are naturally isomorphic to K. We
can then define the geometric Goppa code associated with D and P :

Gop(P,D) = {(f(Pi))Pi∈P ∈ K
P ; f ∈ L(D)} ≃ Im evD,P .

The map evD,P is generally not injective. Its kernel is L(D − P ). We can deduce the
following property:

Proposition 26. Using the previous notation,

dim(Gop(P,D)) = ℓ(D)− ℓ(D − P ).

In particular, if 2g − 1 ⩽ degD ⩽ n− 1, Riemann–Roch’s theorem implies that

dim(Gop(P,D)) = degD − g + 1.

Let k = dim(Gop(P,D)). If k > 0, we can give an estimate of the minimum distance of
Gop(P,D):

Proposition 27. Using the previous notation, if k > 0

d(Gop(P,D)) ⩾ n− degD.

In particular, if 2g − 1 ⩽ degD ⩽ n− 1,

d(Gop(P,D)) ⩾ n− k − g + 1.

Indeed, let f ∈ L(D), such that f vanishes at degD + 1 places of P . Let P ′ be the
divisor of degree degD+1 composed of the places Pi where f vanishes, then f ∈ L(D−P ′)
because suppD ∩ suppP ′ = ∅. Now deg(D − P ′) = −1, so f must be zero.

We write
d∗(P,D) = n− degD (4.2.1)

the designed distance of the code Gop(P,D). Proposition 27 shows that AG codes are
close to being MDS. In the special case g = 0, they always are (for instance, Reed-Solomon
codes). We define

t∗(P,D) = ⌊d
∗(P,D)− 1

2
⌋ (4.2.2)
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the designed correction capacity of Gop(P,D).
In the case where degD ⩽ n − 1, the map evD,P is injective, and we can define a

generator matrix ED,P of the code Gop(P,D). It is not canonical since there is generally no
canonical basis for L(D). Let f1, . . . , fk be a basis for L(D), we set

ED,P =


f1(P1) f1(P2) f1(Pn)
f2(P1) f2(P2) f2(Pn)
f3(P1) f3(P2) · · · f3(Pn)

...
...

...
fk(P1) fk(P2) fk(Pn)

 ∈Mk,P (K).

The dual codes of AG codes also are geometric in nature. Indeed, the K-vector space
RP is dual to the K-vector space

ΩP := ΓX(ΩX/K(−P )/ΩX/K)

via the K-bilinear form

⟨., .⟩X : RP × ΩP −→ K
(f, ω) 7−→

∑n
i=1 ResPi

(fω)
(4.2.3)

where ResPi
(fω) denotes the residue at Pi of fω.

Remark 10. The notation in equation (4.2.3) is slightly misleading, so let us clarify our
point. The sheaf OX/OX(−P ) has a finite number of non-zero stalks, the stalks at the
points (Pi)i∈[1..n] of P . Furthermore, for i ∈ [1..n], the stalk of OX/OX(−P ) at Pi is

OPi
/Pi = KPi

.

We then know that an element f of RP = ΓX(OX/OX(−P )) is exactly the data of its
germs

fi ∈ OPi
/Pi

for all i ∈ [1..n]. Let f̃i ∈ OPi
be such that

f̃i mod Pi = fi.

Similarly, given ω ∈ ΩP , we can determine (ω̃i)i∈[1..n] a family of differentials of Ω(X/K)
such that

νPi
(ω̃i) ⩾ −1

describing the germ of ω at (Pi)i∈[1..n]. Then we can check that for all i ∈ [1..n], the residue
ResPi

(f̃iω̃i) depends only on f and ω. We therefore denote it by ResPi
(fω).

Since the (Pi)i∈[1..n] are K-rational, we know that the residue fields (KPi
)i∈[1..n] are

naturally isomorphic to K. Thus, the bilinear map in equation (4.2.3) corresponds to the
canonical bilinear form ⟨., .⟩ on KP via the natural isomorphisms

RP −→ KP

f 7−→ (f(Pi))Pi∈P
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and
ΩP −→ KP

ω 7−→ (ResPi
(ω))Pi∈P

.

Equation (4.2.3) motivates the definition of codes based on differential spaces. For any
divisor D′ of X, we define

Ω(D′) := ΓX(ΩX/K(D
′))

and ι(D′) its dimension as a K-vector space (or equivalently the index of specialty of D′).
Since D and P are disjoint, we have a map

resD,P : Ω(D − P ) −→ ΩP . (4.2.4)

The image of resD,P in ΩP is the orthogonal of the image of evD,P , for the bilinear form
⟨., .⟩X .

We can define

GopΩ(P,D) = {(ResPi
(ω))Pi∈P ∈ K

P ;ω ∈ Ω(D − P )}
≃ Im resD,P

Proposition 28. Using previous notation,

GopΩ(P,D) = Gop(P,D)⊥.

In particular, if 2g − 1 ⩽ degD ⩽ n− 1, then the map resD,P is injective and

dimGopΩ(P,D) = dimΩ(D − P ) = ι(D − P )
= n− degD + g − 1

= n− k.

Given a basis (ω1, . . . , ωn−k) of Ω(D − P ), we have a generator matrix of GopΩ(P,D):

CD,P =


ResP1(ω1) ResP2(ω1) ResPn(ω1)
ResP1(ω2) ResP2(ω2) ResPn(ω2)
ResP1(ω3) ResP2(ω3) · · · ResPn(ω3)

...
...

...
ResP1(ωn−k) ResP2(ωn−k) ResPn(ωn−k)

 ∈Mn−k,P (K).

In particular, CD,P
t is a parity-check matrix of Gop(P,D) (where .t denotes the transpose

of matrices).
Remark 11. It is possible to generalize the definitions of this section to the case where

suppD ∩ suppP ̸= ∅.

Indeed, the quotient maps

L(D) −→ ΓX(OX(D)/OX(D − P ))
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and
Ω(D − P ) −→ ΓX(ΩX/K(D − P )/ΩX/K(D))

offer alternatives to evD,P and resD,P in this context. On the other hand, there are no longer
any natural isomorphisms between ΓX(OX(D)/OX(D−P )) or ΓX(ΩX/K(D−P )/ΩX/K(D))
and KP .

This problem is solved with ease. It is sufficient to find two isomorphisms,

φ : ΓX(OX(D)/OX(D − P )) −→ KP

and
ψ : ΓX(ΩX/K(D − P )/ OmegaX/K(D)) −→ KP ,

such that, for all

f ∈ ΓX(OX(D)/OX(D − P )) and ω ∈ ΓX(ΩX/K(D − P )/ OmegaX/K(D)),

we have

⟨φ(f), ψ(ω)⟩ =
n∑

i=1

ResPi
(fω),

where ⟨., .⟩ denotes the natural K-bilinear form on KP defined in equation (4.1.1). It is easy
to construct such isomorphisms, using uniformizers at the points Pi ∈ suppP ∩ suppD.

4.2.2 Asymptotic properties

Let K be a finite field with q = pm elements. To find an interesting family of AG codes, we
look for smooth projective curves (Xi)i∈N over K with a large number of K-rational points
relatively to their genera. The quantity we are interested in is therefore the Ihara constant

A(q) = lim sup
#X(K)

gX

where gX denotes the genus of X. In Section 3.4, we discussed the defect of the Weil bound
when the genus tends to infinity. Theorem 29 illustrates this.

Theorem 29 (Drinfeld–Vladut bound [VD83]). Using the previous notation,

A(q) ⩽
√
q − 1.

This inequality holds for any prime power q = pm. In the case where m is even, i.e., q is
a square, the constructions of [Iha81] and [TVZ82] show that A(q) = √q − 1.

We use this result to define a family of AG codes. Let (Xi)i∈N be a family of smooth
projective curves of increasing genus gXi

, such that

lim#Xi(K)/gXi
=
√
q − 1.
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For all i ∈ N, let ni = #Xi(K) and let Pi,1, . . . , Pi,ni
be K-rational points of Xi and

Pi = Pi,1 + · · ·+ Pi,ni
.

Let Di be a divisor of Xi such that 2gXi
− 1 ⩽ degDi ⩽ ni − 1. Let

Ci = Gop(Pi, Di).

Then
ρ(Ci) =

degDi − gXi
+ 1

ni

and δ(Ci) ⩾
ni − degDi

ni

,

and therefore
ρ(Ci) ⩾

ni − gXi
+ 1

ni

− δ(Ci).

In the case where degDi/gXi
converges, setting δlim = lim δ(Ci) and ρlim = lim ρ(Ci), we

obtain
ρlim ⩾ 1− 1

√
q − 1

− δlim. (4.2.5)

We see that this family of codes closely approximates the Singleton bound when q is large. In
fact, when q ⩾ 49, the lower bound (4.2.5) is sometimes better than the Gilbert-Varshamov
bound.

Theorem 30 (Tsfasman–Vladut–Zink bound[TVZ82]). Using the previous notation, if q is
a square and q ⩾ 49, there exist 0 < δ1 ⩽ δ2 < 1− 1

q
such that for all x ∈ [δ1, δ2],

1− 1
√
q − 1

− x ⩾ 1−Hq(x).

These results show that there exists excellent families of AG codes. More precisely,
there exists excellent families of AG codes over K if q is a square and q ⩾ 49.

4.2.3 Decoding geometric codes

In the early 1990s, a significant number of contributions aiming at generalizing Reed-Solomon
decoding algorithms to AG codes were proposed. The first algorithm was the so-called
basic algorithm, generalizing the algorithms of Arimoto [Ari61] and Peterson [Pet60], first
developed by Justesen, Larsen, Elbrønd Jensen, Havemose, and Høholdt [Hav89, JLJ+89]
in the case of plane curves, then by Skorobogatov and Vladut in the general case [SV90].
Sugiyama, Kasahara, Hirasawa, and Namekawa [SKHN75] developed an algorithm based
on Euclid’s algorithm, which was then generalized by Porter [Por88]. These algorithms
have the disadvantage of not decoding AG codes up to their designed correction capacity.
Ehrhard’s algorithm [Ehr93] improves on the basic algorithm and allows decoding up to the
designed correction capacity. Another approach, developed by Feng and Rao [FR93] and
Duursma [Duu93], uses syndrome decoding and also allows AG codes to be decoded up to
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their designed correction capacity. For more details on these algorithms, the reader can
refer to the excellent state-of-the-art reviews by Høholdt and Pellikaan [HP95] and Beelen
and Høholdt [BH08].

Here we present the basic algorithm for solving the decoding problem (see Subsec-
tion 4.1.3). Let K be a finite field with q = pm elements. Let X be a smooth projective
curve over K. Let P1, . . . , Pn be distinct K-rational points of X and P =

∑n
i=1 Pi. Let g

be the genus of X and D ∈ DivX a divisor such that

suppD ∩ suppP = ∅ and 2g − 1 ⩽ degD ⩽ n− 1.

We give a decoding algorithm for Gop(P,D).
Let c ∈ Gop(P,D) and e ∈ KP such that wt(e) ⩽ t∗(P,D) (the designed correction

capacity defined in equation (4.2.2)). Let r = c+e, our goal is to recover the codeword c from
the data r. Using the natural isomorphism between KP and RP , we obtain fr, fc, fe ∈ RP ,
such that

fr = fc + fe ∈ RP , fc ∈ Im evD,P and # supp fe ⩽ t∗(P,D).

We write Perr = supp fe for the sum divisor of the Pi at which fe does not vanish, and
t = degPerr. The objective is to find a function h that vanishes on Perr. This function will
help us locate the positions of the errors.

Let F be a divisor such that

degF ⩾ g + t and suppF ∩ suppP = ∅. (4.2.6)

Then L(F−Perr) ̸= {0} according to the Riemann-Roch theorem, because deg(F−Perr) ⩾ g.
There is therefore at least one function in L(F ) that vanishes on Perr. It remains to give a
way of determining such a function.

Let h ∈ L(F ) be any function. It is clear that h induces K-linear maps

mD,h : L(D) −→ L(D + F )
s 7−→ hs

and
mP,h : RP −→ RP

s 7−→ evF,P (h)s

making the following diagram commutative:

L(D)

L(D + F )

RP

RP

evD,P

mD,h

evD+F,P

mP,h
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If h ∈ L(F − Perr), then hfe = 0 and hfr = hfc ∈ Im evD+F,P . We want to ensure that
the converse is true, i.e., that if hfr ∈ Im evD+F,P then h ∈ L(F − Perr). To do this, we
will need to make a second assumption about F (and about t).

Assume that h ∈ L(F ) is such that hfr ∈ Im evD+F,P . Equivalently, hfe ∈ Im evD+F,P ,
so there exists a function a ∈ L(D + F ) such that

evD+F,P (a) = evF,P (h)fe.

In particular, a vanishes on P − Perr (because fe does), so a ∈ L(D + F − P + Perr). Since
we want to prove a = 0, it is sufficient to show that

L(D + F − P + Perr) = {0}.

A sufficient condition on F is then

degF ⩽ n− 1− degD − t. (4.2.7)

Thus, if
g + t ⩽ degF ⩽ n− 1− degD − t,

then we can determine L(F − Perr) by computing

{h ∈ L(F ) | hfr ∈ Im evD+F,P}.

We define the diagonal matrix Dr of the multiplication by fr in RP . The computation of
L(F − Perr) then reduces to the computation of the left kernel of

EF,P ×Dr × CD+F,P
t ∈Mℓ(F ),(n−ℓ(D+F ))(K)

where EF,P is a generator matrix of Gop(F, P ) and CD+F,P is a generator matrix of GopΩ(D+
F, P ).

Let us now consider h ∈ L(F − Perr). Let Ph be the sum divisor of the Pi where h
vanishes, then Perr ⩽ Ph. In particular, the restriction of fr to RP−Ph

is in the image of the
map evD,P−Ph

, and is equal to the restriction of fc. In order to recover fc, evD,P−Ph
must

be injective. It is sufficient to assume that

degD ⩽ deg(P − Ph)− 1.

Now deg(P − Ph) ⩾ n− degF , so it is sufficient that

degF ⩽ n− degD − 1. (4.2.8)

This condition is weaker than condition (4.2.7).
The conditions of equations (4.2.6) and (4.2.7) on the degree of F imply that

0 ⩽ n− 1− degD − g − 2t,
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or equivalently

t ⩽
d∗(P,D)− 1− g

2
.

In particular, it is generally not possible to decode up to the designed correction capacity
t∗(P,D). On the other hand, this algorithm is essentially a matrix kernel computation
(once certain precomputations have been performed) whose time and space complexities
are polynomial. In particular, the time complexity of the decoding algorithm is at most
that of the matrix multiplication inMn(K) [BCG+17, Theorem 8.5].

4.3 Discrete Fourier transform
The objective of this section is to estimate the cost of a multiplication in K[G] for K a
field and G a finite abelian group. To do this, we must study more generally the Fourier
transform in A[G] for any commutative K-algebra A.

4.3.1 Definitions and properties

Let K be a field. Let A be a commutative K-algebra and G a finite group. We denote by
A[G] the ring which, equipped with its addition, forms the free A-module generated by G{∑

σ∈G

ασσ;α := (ασ)σ∈G ∈ AG

}
,

and equipped with the convolution product(∑
g∈G

αgg

)(∑
h∈G

βhh

)
=
∑
g,h∈G

αgβhgh =
∑
σ∈G

(∑
τ∈G

ατβτ−1σ

)
σ.

We call A[G] the group algebra of G over A. Note that A[G] is generally not a commutative
K-algebra, but it is if G is abelian.

We note that G injects canonically into A[G]×. In particular,

1G = 1A[G].

Furthermore, A injects canonically into A[G] via the map a 7→ a1G.
Let G′ be a finite group and χ : G −→ G′ a group morphism, then χ extends by

A-linearity to an A-algebra morphism

χ̃ : A[G] −→ A[G′]∑
σ∈G ασσ 7−→

∑
σ∈G ασχ(σ)

and we will denote χ̃ by χ, in a slightly abusive manner. In particular, if G′ = A×, then χ
induces an evaluation morphism

evχ : A[G] −→ A
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by viewing the formal sum in A[A×] as a sum in A.
Similarly, let B be a commutative K-algebra and φ : A −→ B a morphism of K-algebras,

then there exists a unique morphism of K-algebras

φ̃ : A[G] −→ B[G]∑
σ∈G ασσ 7−→

∑
σ∈G φ(ασ)σ

extending φ. We will refer to φ̃ as φ, in a slightly abusive manner.
As an A-module, A[G] is canonically isomorphic to AG via the isomorphism of A-modules

⊺ : AG −→ A[G]
α 7−→

∑
σ∈G α(σ)σ

Let K be a finite field with q = pm elements, A a finite-dimensional commutative
K-algebra, and G a finite group. We represent the elements of A[G] algorithmically in a
natural manner, that is, as a set of pairs (ασ, σ)σ∈G.

4.3.2 Fourier transform

Let K be a field, A a commutative K-algebra, and G a finite abelian group. Let

o = |G|

be the order of the group G and e its exponent. We assume that K contains a primitive
e-th root of unity, which implies that e and o are nonzero in K. Let

Ĝ = Hom(G,K×)

be the dual group of G. In particular, Ĝ is a group, so we can define, as before, the algebra
A[Ĝ] and the isomorphism of free A-modules ⊺̂ : AĜ −→ A[Ĝ].

We define the morphisms of A-algebras

FTG : A[G] −→ AĜ∑
σ∈G ασσ 7−→

(
χ 7→

∑
σ∈G ασχ(σ)

)
and

FTĜ : A[Ĝ] −→ AG∑
χ∈Ĝ αχχ 7−→

(
σ 7→

∑
χ∈Ĝ αχχ(σ)

)
where AG and AĜ are endowed with component-wise multiplication. We call these maps
the Fourier transforms of G and Ĝ. We will see that these maps are close to being inverse
to one another.

Proposition 31. Using the notation above, let

ι : A[G] −→ A[G]

be the extension of inversion in G by A-linearity, then

⊺ ◦ FTĜ ◦⊺̂ ◦ FTG = oι.

In particular, FTG and FTĜ are isomorphisms of algebras.

68



Proof. By A-linearity, it is enough to show that the image of σ is oσ−1 for all σ ∈ G. Let
σ ∈ G. Then

⊺̂ ◦ FTG(σ) =
∑
χ∈Ĝ

χ(σ)χ,

and therefore

FTĜ ◦⊺̂ ◦ FTG(σ) =

σ′ 7→∑
χ∈Ĝ

χ(σ)χ(σ′)

 .

Let σ′ ∈ G, then ∑
χ∈Ĝ

χ(σ)χ(σ′) =
∑
χ∈Ĝ

χ(σσ′).

Let oσσ′ be the order of σσ′, and let ζoσσ′ be a primitive oσσ′-th root of unity in K (which
exists because K contains the e-th roots of unity). We have

∑
χ∈Ĝ

χ(σσ′) =
o

oσσ′

oσσ′∑
i=1

ζ ioσσ′ ∈ K.

This sum is 0 if ζoσσ′ ̸= 1, i.e. if σ′ ̸= σ−1. We deduce that

⊺ ◦ FTĜ ◦⊺̂ ◦ FTG(σ) = oσ−1.

Remark 12. There is an alternative (but equivalent) definition of the Fourier transform.
Let α ∈ KG, we define the Fourier transform of α

α̂ : Ĝ −→ K
χ 7−→ 1

o

∑
σ∈G α(σ)χ(σ)

−1

so that α can be decomposed into the basis formed by the characters of G:

α =
∑
χ∈Ĝ

α̂(χ)χ.

This definition is equivalent to composing FTG with 1
o
ι ◦ ⊺.

From an algorithmic point of view, the map FTG is very useful because the time
complexity of multiplication in AĜ is linear. It can be used to upper bound the time
complexity of the multiplication in A[G]. Using this method, the time complexity of the
multiplication in A[G] is essentially the complexity of evaluating FTG. Note that we are
mostly aiming for the case where K is a finite field, but Theorems 32 and 33 are true for
any field with the appropriate roots of unity.
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Special case: cyclic groups

In this paragraph only, we assume that G is cyclic. Let ζ be an o-th root of unity in K and
σ a generator of G. Let χ ∈ Ĝ such that χ(σ) = ζ. We can then establish the following
isomorphisms of K-algebras:

A[G] −→ A[x]/(xo − 1)∑o−1
i=0 αiσ

i 7−→
∑o−1

i=0 αix
i

and
AĜ 7−→ Ao

(χi 7→ αi) 7−→ (αi)0⩽i⩽o−1

The Fourier transform becomes via the isomorphisms of algebras:

FTσ,ζ : A[x]/(xo − 1) 7−→ Ao

f 7−→ (f(ζ i))0⩽i⩽o−1

Computing the Fourier transform of an element f ∈ A[x]/(xo − 1) therefore consists in
performing a multipoint evaluation of f at (1, ζ, . . . , ζo−1). This evaluation can be computed
quickly if K contains a primitive t-th root of unity for t a power of 2 strictly greater than
3(o− 1), thanks to an idea from [RSR69, Blu70].

Theorem 32. Let K be a field, A a commutative K-algebra, and G a finite cyclic group of
order o ⩾ 2. We assume that K contains a primitive o-th root of unity ζ and a primitive
t-th root of unity for t a power of 2 strictly greater than 3(o− 1). Let σ ∈ G be a generator
of G. Let

f =
o−1∑
i=0

fix
i ∈ A[x]/(xo − 1).

Then FTσ,ζ(f) can be computed with O(o log o) additions in A, scalar multiplications in A
(by an element of K) and multiplications in K. More precisely, there exists an absolute
constant Q such that FTσ,ζ(f) can be computed with Qo log o of these operations.

Proof. We show that the computation of FTσ,ζ(f) reduces in linear time to the multiplication
of a polynomial in K[x] with a polynomial in A[x], following the proof in [BCG+17,
Proposition 5.10]. We can then conclude by adapting the arguments from [BCG+17,
Theorem 2.8, Algorithm 2.3].

For all 0 ⩽ i ⩽ 2o− 2, we set

ci = i(i− 1)/2 and βi = ζci .

Since ζo = 1, it is enough to compute the o powers of ζ (o multiplications in K) and use
βi = ζci mod o. We observe that for all 0 ⩽ i, j ⩽ o− 1

ci+j = ci + cj + ij and βi+j = βiβjζ
ij.
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We set for all 0 ⩽ i ⩽ o− 1
hi = β−1i fi = ζ−ci mod ofi.

These coefficients can be computed with o scalar multiplications in A, since ζ ∈ K. We
then have for all 0 ⩽ i ⩽ o− 1

f(ζ i) =
o−1∑
j=0

ζ ijfj = β−1i

o−1∑
j=0

βi+jhj.

The trick is to note that
∑o−1

j=0 βi+jhj is the (o− 1 + i)-th coefficient of a polynomial.
We set

h(x) =
o−1∑
i=0

ho−1−ix
i ∈ A[x] and b(x) =

2o−2∑
i=0

βix
i ∈ K[x] (4.3.1)

and

r(x) = b(x)h(x) :=
3o−3∑
i=0

rix
i ∈ A[x].

Then for all 0 ⩽ i ⩽ o− 1

rfo−1+i =

fo−1∑
j=0

βi+jhj and f(ζ i) = β−1i rfo−1+i.

Thus, we have reduced the computation of FTσ,ζ(f) to the computation of r(x) = b(x)h(x).

General abelian group

We show that Theorem 32 extends to any finite abelian group.

Theorem 33. Let K be a field, A a commutative K-algebra, and G a finite abelian group.
Let o ⩾ 2 be the order of G and e its exponent. Let t be a power of 2 strictly greater than
3(e − 1). We assume that K contains primitive e-th and t-th roots of unity. We assume
that we have an explicit decomposition of G into products of cyclic groups

G = C1 × · · · × CI

of orders 2 ⩽ o1 | · · · | oI = e. Then there exists a recursive algorithm evaluating

FTG : A[G] −→ AĜ

with O(o
∑I

i=0 log oi) = O(o log o) additions in A, scalar multiplications in A and multipli-
cations in K. More precisely, there exists an absolute constant Q such that FTG can be
evaluated with Qo log o of these operations. The depth of the recursion tree is O(I).
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Remark 13. In particular, if A = K, then the Fourier transform on K[G] requires Qo log o
additions and multiplications in K.

Proof. It is sufficient to show that the theorem holds for an absolute constant Q greater
than that in Theorem 32. We will use an inductive argument on I. The case I = 1 simply
follows from Theorem 32. Assume that I ⩾ 2, and that the theorem is true for any group
having I − 1 invariant factors. We note that FTC1×···×CI−1

extends to an isomorphism of
A-algebras

A[G] = A[C1] . . . [CI−1][CI ]
FTC1×···×CI−1−→ AĈ1×···× ˆCI−1 [CI ] =: A′[CI ].

Computing this isomorphism requires computing oI Fourier transforms FTC1×···×CI−1
. By

the recurrence hypothesis, there exists a constant Q such that computing the extension
of FTC1×···×CI−1

to A[G] requires oIQ o
oI
log( o

oI
) = Qo log( o

oI
) operations. It remains to

compute
FTCI

: A′[CI ] −→ A′ĈI = AĈ1×···×ĈI = AĜ

The sum and scalar multiplication in A′ can be computed with o
oI

sums and scalar mul-
tiplications in A. According to Theorem 32, the evaluation of FTCI

requires QoI log oI
additions and scalar multiplications in A′, or Qo log oI additions and scalar multiplications
in A. Thus, it is possible to compute FTG in Qo log( o

oI
) +Qo log oI = Qo log o operations.

By induction, we deduce Theorem 33.

Remark 14. We can give an iterative formulation of the algorithm of Theorem 33. To do
so, let us define

A0 = A and ∀1 ⩽ i ⩽ I, Ai = AĈ1×···×Ĉi

as well as ∀0 ⩽ i ⩽ I − 1,

FTi : (Ai[Ci+2] . . . [CI ]) [Ci+1] −→ (Ai[Ci+2] . . . [CI ])
Ĉi+1 .

Noting that ∀0 ⩽ i ⩽ I − 1,

Ai[Ci+1] . . . [CI ] = (Ai[Ci+2] . . . [CI ]) [Ci+1]

and
(Ai[Ci+2] . . . [CI ])

Ĉi+1 = Ai+1[Ci+2] . . . [CI ],

we deduce that
FTG = FTI−1 ◦ · · · ◦ FT0 .

Computing FTi requires at most Qo log oi+1 additions and scalar multiplications in A and
multiplications in K.

72



4.3.3 Multiplication in the algebra of a finite abelian group

Let K be a finite field with q = pm elements and G a finite (non-trivial) abelian group. Let
o be the order of G and e its exponent. Let t be a power of 2 strictly greater than 3(e− 1).
It is clear from Theorem 33 that if K contains primitive e-th and t-th roots of unity, it
is possible to use the Fourier transform FTG to multiply in K[G]. Note that Theorem 33
requires to know an explicit decomposition of G into cyclic factors. This is not a problem
in Proposition 34 and Theorem 36 because such a decomposition always exists and can be
precomputed.

Proposition 34. Let K be a finite field and G a finite abelian group of order o ⩾ 2
and exponent e. Let t be a power of 2 strictly greater than 3(e − 1). Assume that
K contains primitive e-th and t-th roots of unity, then multiplication in K[G] requires
O(o log o) operations in K. More precisely, there exists an absolute constant Q such that
multiplication in K[G] can be computed with Qo log o additions and multiplications in K.

Proof. Let a, b ∈ K[G]. Let Q be the absolute constant of Theorem 33. We compute

FTG(ab) = FTG(a)FTG(b)

by performing at most 2Qo log o + o operations in K (since the multiplication in KG is
component-wise). According to Proposition 31, we can compute

oι(ab) = ⊺ ◦ FTĜ ◦⊺̂(FTG(ab))

with at most Qo log o additional operations in K. Since K contains the e-th primitive roots
of unity, then o has an inverse o−1 in K. We can therefore compute ι(ab) = o−1oι(ab) with
one additional multiplication in K. Finally, ι is an involution that permutes the coordinates
of the elements of K[G], so we can recover ab with O(o) additional operations in K.

We now consider the case where K does not contain the necessary roots of unity. Let us
begin with the special case where m = 1, i.e., K = Z/pZ. In the worst case, pgcd(p, o) ̸= 1
and it is impossible to find a K-algebra containing e-th roots of unity.

The trick we will use is to reduce the computation of the product in K[G] to the
computation of the product in K ′[G] via non-algebraic maps, where K ′ = Z/p′Z is a finite
field of characteristic p′ > p. We begin by giving constraints on the choice of p′.

We define
liftp : K −→ Z

the (set) section of the reduction modulo p with image in [0, p[. The map liftp extends to a
non-algebraic map

liftp : K[G] −→ Z[G]∑
σ∈G ασσ 7−→

∑
σ∈G liftp(ασ)σ

.

We similarly define for any p′ > p

liftp′ : K ′[G] −→ Z[G].
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We can also define maps

↑: K −→ K ′

α 7−→ liftp(α) mod p′
and ↓: K ′ −→ K

α′ 7−→ liftp′(α′) mod p
.

In particular, for all α ∈ K,
↓ (↑ (α)) = α.

The maps ↑ and ↓ extend to maps

↑: K[G] −→ K ′[G] and ↓: K ′[G] −→ K[G].

We wish for the maps ↑ and ↓ to satisfy

∀a, b ∈ K[G], ↓ (↑ (a) · ↑ (b)) = ab.

Let
a =

∑
σ∈G

ασσ ∈ K[G] and b =
∑
σ∈G

βσσ ∈ K[G]

and let
A = liftp(a) ∈ Z[G] and B = liftp(b) ∈ Z[G].

The coefficients of AB ∈ Z[G] are integers in [0, o(p− 1)2], and ab = AB mod p. Then

AB = liftp′(↑ (a) ↑ (b)) =⇒↓ (↑ (a) · ↑ (b)) = ab. (4.3.2)

The left term of the equation (4.3.2) is satisfied for any a, b ∈ K[G] if and only if

p′ > o(p− 1)2. (4.3.3)

We also ask that K ′ = Z/p′Z contains primitive e-th and t-th roots of unity. It is
equivalent to ask

p′ ≡ 1 mod ppcm(e, t). (4.3.4)

We choose p′ as the smallest prime satisfying conditions (4.3.3) and (4.3.4). The question
that now needs to be asked concerns the size of p′. Let p′′ be the smallest prime satisfying

p′′ ≡ 1 mod (o(p− 1)2t),

then it is clear that p′′ satisfies conditions (4.3.3) and (4.3.4), so p′ ⩽ p′′. According to
Heath-Brown’s results [HB92] on the constant in Linnik’s theorem on primes in arithmetic
progressions, there exists a constant Q such that

p′ ⩽ p′′ ⩽ Q(o(p− 1))11. (4.3.5)

In other words,
log p′ = O(log(o) + log(p)).
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Remark 15. This upper bound is clearly not optimal. First, a result by Xylouris [Xyl11]
slightly refines the exponent in inequality (4.3.5). Furthermore, a result by Bach–Sorenson [BS96]
shows that, assuming GRH, there exists Q such that

p′′ ⩽ Q
(
φ(o2(p− 1)2) log(o(p− 1))

)2
where φ denotes the Euler totient function. Next, we use the inequality t ⩽ 6o, which is
rather poor when the group G decomposes into a large number of cycles. Finally, it seems
that, in many examples, the inequality p′ ⩽ p′′ is also rather broad. However, this bound is
sufficient to arrive at the desired result.

Proposition 34 and equation (4.3.5) allow us to make the following statement:

Proposition 35. There exists an absolute constant Q such that the following statement is
true. Let K be the finite field with p elements. Let G be a finite abelian group of order
o ⩾ 2 and exponent e. Let t be a power of 2 strictly greater than 3(e− 1). There exists
a prime p′ ⩽ Q(op)11 that satisfies conditions (4.3.3) and (4.3.4). Then, multiplication in
K[G] can be computed with Qo log o operations. An operation is understood to be an
addition or a multiplication in K ′ = Z/p′Z, or an evaluation of ↑ or ↓.

We still need to address the case where m > 1, i.e., K is not a prime field. Our assump-
tions about the algorithmic representation of finite fields in Chapter 2 allow us to view K
as a Z/pZ vector space of dimension m, and to identify the elements of K with their coordi-
nates in a Z/pZ-basis of K. We can therefore use the Chudnovsky–Chudnovsky algorithm
for multiplying in finite fields [CC88], which allows us to generalize the previous approach.
The work of Chudnovsky–Chudnovsky [CC88], Shparlinski–Tsfasman–Vladut [STV92],
Shokrollahi [Sho92], Ballet–Rolland [BR04], Chaumine [Cha08], Randriambololona [Ran12]
and others, demonstrate that there exists an absolute constant Q, an integer r ⩽ Qm,
Z/pZ-linear forms ϕ1, . . . , ϕr and ψ1, . . . , ψr over K, and w1, . . . , wr ∈ K such that

∀x, y ∈ K, xy =
r∑

i=1

ϕi(x)ψi(y)wi.

For 1 ⩽ i ⩽ r, the linear forms can be extended to group algebras.

ϕ̃i : K[G] −→ Z/pZ[G]∑
σ∈G ασσ 7−→

∑
σ∈G ϕi(ασ)σ

ψ̃i : K[G] −→ Z/pZ[G]∑
σ∈G ασσ 7−→

∑
σ∈G ψi(ασ)σ

Note that

∀a, b ∈ K[G], ab =
r∑

i=1

wiϕ̃i(a)ψ̃i(b)

so that the bilinear part of the multiplication in K[G] reduces to r multiplications in
Z/pZ[G]. From this formula and Proposition 35, we deduce Theorem 36:
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Theorem 36. There exists an absolute constant Q such that the following statement is
true. Let K be a finite field with pm elements. Let G be a finite abelian group of order
o ⩾ 2. There exists a prime p′ ⩽ Q(op)11 that satisfies conditions (4.3.3) and (4.3.4). Then
a multiplication in K[G] can be computed in Q(mo log o+m2o) operations. An operation is
understood to be an addition or a multiplication in Z/pZ or in Z/p′Z, or an evaluation of
↑ or ↓.

4.4 Codes over finite group algebras
In Section 4.3, we focused mainly on finite abelian group algebras. In Section 4.5, we
will also focus mainly on the abelian case. However, the content of this section applies
equally to abelian and non-abelian groups. We will therefore make no assumptions about
the commutativity of the considered finite groups.

For this entire section, we set G as a finite group of order o and K as a finite field with
q = pm elements.

4.4.1 A few bilinear forms

We begin by defining a notation for the K-bilinear and K[G]-bilinear forms that we will
use later. Let R be a ring (unitary, associative) and E a finite set. We denote

⟨., .⟩ : RE ×RE −→ R
(ai)i∈E, (bi)i∈E 7−→

∑
i∈E aibi

(4.4.1)

the canonical R-bilinear form on RE. This notation is slightly ambiguous, as it does not
specify the base ring R. We will take care to remove the ambiguity later, when necessary.

In particular, this defines the canonical K[G]-bilinear form on K[G]E

⟨., .⟩ : K[G]E ×K[G]E −→ K[G].

We also define the K-bilinear form

⟨., .⟩K : K[G]E ×K[G]E −→ K
a, b 7−→ 1∗G(⟨a, b⟩)

(4.4.2)

which is the component of ⟨., .⟩ associated with the neutral element of G. In general, for
any σ ∈ G, we denote by σ∗ : K[G] −→ K the map returning the component associated
with σ of the elements of K[G].

The free K[G]-module K[G]E is naturally acted on by G in two ways (on the left and
on the right):

∀σ ∈ G,∀a = (ai)i∈E ∈ K[G]E, σ · a = (σai)i∈E and a · σ = (aiσ)i∈E. (4.4.3)

The form ⟨., .⟩K is compatible with the action of G on K[G]E in the following sense:
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Proposition 37. We use the notation from the beginning of Section 4.4 and Subsection 4.4.1.
Let σ ∈ G, let a, b ∈ K[G]E, then

⟨a · σ, b⟩K = ⟨a, σ · b⟩K .

Proof. Let a = (ai)i∈E ∈ K[G]E and b = (bi)i∈E ∈ K[G]E. Then

⟨a · σ, b⟩K = 1∗G

(∑
i∈E

(aiσ)bi

)

= 1∗G

(∑
i∈E

ai(σbi)

)
= ⟨a, σ · b⟩K .

Proposition 38. We use the notation of the beginning of Section 4.4 and of Subsection 4.4.1.
Let a, b ∈ K[G]E. Then

⟨a, b⟩ =
∑
σ∈G

⟨a, b · σ−1⟩Kσ.

Proof. Let σ ∈ G. One has

σ∗(⟨a, b⟩) = 1∗G(⟨a, b⟩σ−1)
= 1∗G(⟨a, bσ−1⟩)
= ⟨a, bσ−1⟩K .

Remark 16. More generally, given M a left K[G]-module, N a right K[G]-module, and a
K[G]-bilinear map

< ., . >:M ×N −→ K[G],

we can associate to it a K-bilinear map

< ., . >K : b, a ∈ N ×M 7−→ 1∗G(< a, b >)

compatible with the action of G on M and N , and vice versa. In Definition (4.4.2), we
can afford not to reverse the order of the parameters because ⟨., .⟩K is symmetric (see
Proposition 40).

Let us define the isomorphisms of K-vector spaces

φ : K[G]E −→ KE×G

(
∑

σ∈G ai,σσ)i∈E 7−→ (ai,σ)(i,σ)∈E×G
(4.4.4)
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and
ι : K[G]E −→ K[G]E

(
∑

σ∈G αi,σσ)i∈E 7−→ (
∑

σ∈G αi,σ−1σ)i∈E
. (4.4.5)

Notice that applying ι is equivalent to applying the involution σ 7−→ σ−1 coordinate by
coordinate. We will also denote this involution by ι.

We can explicitly describe a connection between the K-bilinear forms

⟨., .⟩K : K[G]E ×K[G]E −→ K

and
⟨., .⟩ : KE×G ×KE×G −→ K

using the isomorphisms φ and ι.

Proposition 39. We use the notation from the beginning of Section 4.4 and Section 4.4.1.
Let a, b ∈ K[G]E, then

⟨a, b⟩K = ⟨φ ◦ ι(a), φ(b)⟩.

Proof. Let a = (ai)i∈E ∈ K[G]E and b = (bi)i∈E ∈ K[G]E. For all i ∈ E, we write

ai =
∑
σ∈G

ai,σσ and bi =
∑
σ∈G

bi,σσ

Then

⟨a, b⟩K = 1∗G

(∑
i∈E

aibi

)
=
∑
i∈E

1∗G(aibi)

=
∑
i∈E

1∗G

(∑
σ∈G

(∑
τ∈G

ai,τbi,τ−1σ

)
σ

)
=
∑
i∈E

∑
τ∈G

ai,τbi,τ−1

=
∑
i∈E

∑
τ∈G

ai,τ−1bi,τ

= ⟨φ ◦ ι(a), φ(b)⟩.

This proof also demonstrates the following proposition:

Proposition 40. We use the notation from the beginning of the Section 4.4 and from
Subsection 4.4.1. Let a, b ∈ K[G]E. Then

⟨a, b⟩K = ⟨b, a⟩K
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4.4.2 Submodules and codes

We use the notation from the beginning of Section 4.4, the linear forms (4.4.1) and (4.4.2),
and the isomorphisms (4.4.4) and (4.4.5). In this subsection, we show how to define linear
codes from free sub-K[G]-modules of free K[G]-modules of finite rank.

Definition 35. Let n ⩾ 0 be an integer and E a set of cardinality n. Let M be a free left
(resp. right) submodule of K[G]E. We define a linear code structure on M by setting, for
all a ∈M ,

wt(a) = wt(φ(a)) (resp. wt(φ ◦ ι(a))).
Then the length of M is

lenM = #(E ×G) = no.

We call n the G-length of M over K. Let k be the rank of M as a free K[G]-module, then
the dimension of M as a K-vector space is

dimM = ko.

Remark 17. If G is abelian, the codes defined in Definition 35 are a special case of quasi-
abelian codes [Was77]. If G is not abelian, they are examples of quasi-group codes, or
quasi-G-codes [DGTT18, BW23].

4.4.3 The orthogonal and dual codes

We use the notation from the beginning of Section 4.4, the linear forms (4.4.1) and (4.4.2),
and the isomorphisms (4.4.4) and (4.4.5).

Let E be a finite set of cardinality n. Let M be a left submodule of K[G]E. We define

M⊥ = {a ∈ K[G]E | ⟨M,a⟩ = 0} (4.4.6)

the orthogonal of M . The K[G]-bilinearity of ⟨., .⟩ allows us to prove that M⊥ is a right
submodule of K[G]E. Similarly, if M is a right submodule of K[G]E, we define

M⊥ = {a ∈ K[G]E | ⟨a,M⟩ = 0} (4.4.7)

the orthogonal of M . It is a left submodule of K[G]E.
Note that the placement of M in equations (4.4.6) and (4.4.7) is significant. Indeed, if

G is not abelian, ⟨., .⟩ is not symmetric. For instance, if E is a singleton, ⟨., .⟩ denotes the
product in K[G]. Let σ, τ ∈ G be two elements that do not commute, then

⟨σ, τ⟩ ≠ ⟨τ, σ⟩.

Proposition 41. We use the notation from the beginning of Subsection 4.4.3. Let M be a
left submodule of K[G]E. Then

M⊥ = {a ∈ K[G]E | ⟨a,M⟩K = 0}

Similarly, let M be a right submodule of K[G]E. Then

M⊥ = {a ∈ K[G]E | ⟨M,a⟩K = 0}
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Proof. We make the demonstration when M is a left submodule of K[G]E. Let a ∈ M⊥,
and b ∈M then

⟨a, b⟩K = ⟨b, a⟩K
= 1∗G(⟨b, a⟩)
= 1∗G(0) = 0.

Therefore
M⊥ ⊂ {a ∈ K[G]E | ⟨a,M⟩K = 0}.

Conversely, let a ∈ K[G]E such that ⟨a,M⟩K = 0, and let b ∈M . Let σ ∈ G. Then, after
Propositions 37 and 38, one has

σ∗(⟨b, a⟩) = ⟨b, aσ−1⟩K
= ⟨aσ−1, b⟩K
= ⟨a, σ−1b⟩K
= 0

because σ−1b ∈M , as M is a left K[G]-module. Therefore, we showed that ⟨b, a⟩ = 0, so

{a ∈ K[G]E | ⟨a,M⟩K = 0} ⊂M⊥.

Remark 18. Following from Remark 16, Proposition 41 can be generalized to any K[G]-
bilinear map.

Let M be a free (left or right) submodule of K[G]E of rank k. According to Theorem 79
proven in the appendix, M⊥ is also a free (right or left) submodule of K[G]E of rank n− k.
Furthermore, the code associated with M⊥ is the dual code of the code associated with M ,
according to Proposition 39.

4.4.4 Generator and parity-check matrices

We use the notation from the beginning of Section 4.4, the linear forms (4.4.1) and (4.4.2),
the isomorphisms (4.4.4) and (4.4.5), and the orthogonals (4.4.6) and (4.4.7).

Let E be a set of cardinality n. We will define generator matrices and parity-check
matrices with coefficients in K[G] for codes associated with free submodules of K[G]E.

Definition 36. Using the notation from the beginning of Subsection 4.4.4. Let M be
a free left submodule of K[G]E of rank k. Let F be a set of cardinality k. We say that
E ∈ MF,E(K[G]) is a G-generator matrix of M if

M = {aE ; a ∈ K[G]F}.
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Let H be a set of cardinality n − k. We say that C ∈ ME,H(K[G]) is a G-parity-check
matrix of M if

M = {a ∈ K[G]E | aC = 0}.
Let M be a free right submodule of K[G]E of rank k. Similarly, we say that E ∈

ME,F (K[G]) is a G-generator matrix of M if

M = {Ea; a ∈ K[G]F}.

We say that C ∈ MH,E(K[G]) is a G-parity-check matrix of M if

M = {b ∈ K[G]E | Cb = 0}.

Remark 19. It is correct to define the G-generator matrices and G-parity-check matrices in
this way because the modules are assumed to be free. In this case, their orthogonal is also
free (see Theorem 79).
Remark 20. The writing conventions in Definition 36 are not arbitrary. Let M be a free left
submodule of K[G]E of rank k. There exists a1, . . . , ak ∈ K[G]E a K[G]-basis of M and in
particular

M = K[G] · a1 ⊕K[G] · a2 ⊕ · · · ⊕K[G] · ak.
If G is not abelian, M is generally not stable under right multiplication. Thus, the matrix
whose columns are the coordinates of (ai)i∈[1..k] cannot be considered a G-generator matrix
of M . The generators of M must be viewed as rows.

Let a ∈ K[G], then the right multiplication by a induces a linear endomorphism of KG

via the isomorphism φ, defined in equation 4.4.4. We can then identify a with a matrix in
MG(K).

Let M be a free left submodule of K[G]E of rank k. Let F be a set of cardinality k.
Let E ∈ MF,E(K[G]) be a G-generator matrix of M . We seek to define a matrix with
coefficients in K associated with E that generates φ(M). Such a matrix can be obtained by
replacing the coefficients in K[G] of E with the matrices ofMG(K) corresponding to right
multiplication by these elements. This gives a matrix inMF,E(MG(K)), which is naturally
associated with a matrix EK ∈MF×G,E×G(K), the unique matrix satisfying

∀a ∈ K[G]F , φ−1(φ(a)EK) = aE .

Let M be a free right submodule of K[G]E of rank k. Let E ∈ ME,F (K[G]) be a
G-generator matrix of M . In this case, we seek to define a matrix EK ∈ MF×G,E×G(K)
generating φ ◦ ι(M). We can define it using a similar equation.

Definition 37. Let M be a free left submodule of K[G]E of rank k. Let E ∈ MF,E(K[G])
be a G-generator matrix of M . We define EK ∈MF×G,E×G(K) as the matrix such that

∀a ∈ K[G]F , φ(a)EK = φ(aE).

Let M be a free right submodule of K[G]E of rank k. Let E ∈ ME,F (K[G]) be a
G-generator matrix of M . We define EK ∈MF×G,E×G(K) as the matrix such that

∀a ∈ K[G]F , (φ ◦ ι)(a)EK = (φ ◦ ι)(Ea).
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Remark 21. It may seem surprising to associate a matrix EK ∈ MF×G,E×G(K) with a
matrix E ∈ ME,F (K[G]). In reality, in this case, it is simply a convention of notation
because multiplication in K is commutative. Our choice is justified by the usual conventions
on the notation of generator matrices of linear codes and by Proposition ??, which shows
that the matrix associated with the G-generator matrix of the dual of M is a generator of
the dual code of φ(M), where M is a free left submodule of K[G]E. In order to change the
convention, one would need to use the equation

∀a ∈ K[G]F , EK(φ ◦ ι)(a) = (φ ◦ ι)(Ea).

Example 5. Let K = F2 and G = {1, τ, τ 2} be a group isomorphic to Z/3Z where τ 3 = 1.
Let M be the free left submodule of F2[G]

2 of rank 1 generated by (1, τ);

M = F2[G] · (1, τ).

The orthogonal of M is a free right submodule of rank 1 of F2[G]
2; we deduce that

M⊥ = (−τ, 1) · F2[G] = (τ, 1) · F2[G].

A G-generator matrix of M (as a free left submodule) is

E =
(
1 τ

)
and a G-generator matrix of M⊥ (as a free right submodule) is

C =
(
τ
1

)
.

The latter is also a G-parity-check matrix of M .
We now are going to compute EF2 and CF2 , the matrices associated with E and C, and

we will check that they indeed generate φ(M) and φ ◦ ι(M⊥). Let

α = a+ bτ + cτ 2 ∈ F2[G],

we identify α with the vector
(
a b c

)
via the map φ (and the identification KG ≃ K3).

One has
ατ = c+ aτ + bτ 2.

We conclude that the matrix associated with the right multiplication by τ in the canonical
basis of KG is 0 1 0

0 0 1
1 0 0

 ,

where we identify KG and K3. Thus, the generator matrix of φ(M) associated with E is

EF2 =

1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 1 0 0

 ,
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which is indeed a generator matrix of φ(M).
Since M⊥ is a right-K[G]-module, the linear code wich is associated with it is φ◦ ι(M⊥).

One has
ι(M⊥) = F2[G] · ι((τ, 1)) = F2[G] · (τ 2, 1) =M. (4.4.8)

Therefore, φ ◦ ι(M⊥) = φ(M).
Let us compute the generator matric of φ ◦ ι(M⊥) associated with C. Let

α = a+ bτ + cτ 2 ∈ F2[G],

we identify α to the vector
(
a c b

)
via the map φ ◦ ι. One has

Cα =

(
τα
α

)
=

(
c+ aτ + bτ 2

a+ bτ + cτ 2

)
that we identify to the vector

(
c b a a c b

)
via the map φ ◦ ι. We conclude that

CF2 =

0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1

 ,

which indeed generates φ◦ ι(M⊥) = φ(M). We can also notice that this matrix corresponds
to the result of equation (4.4.8), as 0 0 1

1 0 0
0 1 0


is the matrix associated with the right multiplication by τ 2.

Finally, notice that
EF2CtF2

= 0.

Remark 22. The example motivates to call M autodual when M = ι(M⊥).

Proposition 42. Let E be a finite set of cardinality n. Let M be a free left (resp. right)
submodule of K[G]E of rank k. Let E be a G-generator matrix of M , then EK is a generator
matrix of φ(M) (resp. φ ◦ ι(M)).

Proof. We make the proof when M is a right K[G]-module. Let F be a set of cardinality k.
We assume that E ∈ MF,E(K[G]). Let c ∈ KE×G, one has

c ∈ φ ◦ ι(M)⇔ ∃a ∈ K[G]F , c = φ ◦ ι(Ea)
⇔ ∃a ∈ K[G]F , c = φ ◦ ι(a)EK
⇔ ∃a ∈ KF×G, c = aEK .

Therefore EK is a generator matrix of φ ◦ ι(M).
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We will take the liberty of saying, somewhat abusively, that EK is a generator matrix of
M .

Proposition 43. Let E be a finite set of cardinality n. Let M ⊂ K[G]E be a free left
(resp. right) submodule of K[G]E of rank k. Let F be a set of cardinality k and let
E ∈ MF,E(K[G]) (resp. E ∈ ME,F (K[G])) be a G-generator matrix of M . The module
ι(M) is a right (resp. left) submodule of K[G]E.

Let
E ′ := ι(E)t,

where ι is applied coefficient-wise. Then E ′ is a G-generator matrix of ι(M), and

EK = E ′K .

Proof. We prove the proposition for left modules. Recall that ι is an involution. Let
a ∈ K[G]F , we have

ι(ι(a)E) = ι(E)ta,
Indeed, let (bi)i∈F be a column of E , let a = (ai)i∈F , then

ι(
∑
i∈F

ι(ai)bi) =
∑
i∈F

ι(bi)ι(ι(ai)) =
∑
i∈F

ι(bi)ai,

because ι : K[G] −→ K[G] is an anti-isomorphism of K-algebras on K[G]. We conclude
that

(φ ◦ ι)(a)EK = φ(ι(a)E) = φ ◦ ι(ι(E)ta) = (φ ◦ ι)(E ′a).

It can be shown that the generator matrix associated with a G-generator matrix of M⊥

generates the dual of φ(M) (resp. φ ◦ ι(M)).

Proposition 44. Let E be a finite set of cardinality n. Let M ⊂ K[G]E be a free left
(resp. right) submodule of K[G]E. Let C be a G-generator matrix of M⊥. Then C is a
G-parity-check matrix of M and CKt is a parity-check matrix of φ(M) (resp. φ ◦ ι(M)).

Proof. We write the proof for left submodules of K[G]. Let k and n be the rank and
G-length of M . Let H be a set of cardinality n− k, let C ∈ ME,H(K[G]) be a G-generator
matrix of M⊥, and let (cj)j∈H be the K[G]-basis of M⊥ consisting of the columns of C. For
all j ∈ H, we set

cj = (ci,j)i∈E.

Let a = (ai)i∈E ∈ K[G]E. Then

aC = 0⇔ ∀j ∈ H,
∑
i∈E

aici,j = 0

⇔ ∀j ∈ H, ⟨a, cj⟩ = 0

⇔ a ∈ (M⊥)⊥ =M.
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Therefore, C is a G-parity-check matrix of M .
Furthermore, CK is a generator matrix of φ ◦ ι(M⊥). Therefore, according to Proposi-

tion 39, the matrix CKt is a parity-check matrix of φ(M).

We show a final result of compatibility between matrix operations over K[G] and over
K.

Proposition 45. Let E be a set of cardinality n. Let M be a free right submodule of
K[G]E of rank k. Let E ∈ ME,F (K[G]) be a G-generator matrix of M . Let a ∈ K[G]E,
then we have

φ(aE) = EKφ(a).
Let M be a free left submodule of K[G]E of rank k. Let F be a set of cardinality k and

let E ∈ MF,E(K[G]) be a G-generator matrix of M . Let a ∈ K[G]E, we have

(φ ◦ ι)(Ea) = EK(φ ◦ ι)(a).

Proof. We make the proof for left submodules. For all b ∈ KE×G one has

⟨b, φ ◦ ι(Ea)⟩ = ⟨φ−1(b), Ea⟩K , from Proposition 39,
= 1∗G(⟨φ−1(b), Ea⟩), by definition of ⟨., .⟩K ,
= 1∗G(⟨φ−1(b)E , a⟩), by associativity of the matrix multiplication,
= ⟨φ−1(b)E , a⟩K , by definition of ⟨., .⟩K ,
= ⟨bEK , φ ◦ ι(a)⟩, from Proposition 39,
= ⟨b, EKφ ◦ ι(a)⟩, by associativity of the matrix multiplication.

We conclude this section by defining G-interpolation matrices, pseudo-inverses of the
generator G-matrices.

Proposition 46. Let M be a free left submodule of K[G]E, and let E ∈ MF,E(K[G]) be a
G-generator matrix of M . There exists a matrix I ∈ ME,F (K[G]) such that

EI = IdF .

We say that I is an interpolation matrix of M associated with E .
Let M be a free right-K[G]-module over K[G]E, and let E ∈ ME,F (K[G]) be a G-

generator matrix of M . There exists a matrix I ∈ MF,E(K[G]) such that

IE = IdF .

We say that I is an interpolation matrix of M associated with E .
Proof. We write the proof for left modules. Let (mi)i∈F be the K[G]-basis of M associated
with the matrix E . Let (ei)i∈E be the canonical basis of K[G]E. According to Proposition 77,
there exists a left submodule N of K[G]E such that K[G]E =M⊕N . Then π the projection
onto M parallel to N is a left K[G]-module morphism, and I is the matrix of π in the
bases (ei)i∈E and (mi)i∈F .
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4.5 Geometric codes over finite group algebras
Let K be a finite field with q = pm elements. In this section, we study the structure of
K[G]-modules of certain linear spaces of non-ramified abelian covers with Galois group G
of a smooth projective curve X over K. When G is abelian, under certain assumptions,
these spaces are free K[G]-modules. We can then define structured Goppa codes. We
show that there exist algorithms for encoding and decoding these codes that exploit the
K[G]-module structure. In certain cases, these algorithms are significantly faster than the
classical encoding and decoding algorithms for Goppa codes. Finally, we define families of
structured Goppa codes that are asymptotically good, and sometimes excellent, and whose
codes can be encoded in quasi-linear time in their length and decoded in quasi-quadratic
time. In Subsection 4.5.4, we give an example of a structured geometric code and detail
the computation of a generator matrix.

4.5.1 Construction

This subsection is divided into several steps. First, we show how the Galois group of a
Galois cover

τ : Y −→ X

acts on K(Y ) and on Ω(Y/K). This induces an action on the residue algebras at effective
divisors that are invariant under the action of G, and their dual spaces (for the bilinear
map ⟨., .⟩Y defined in equation (4.2.3)). We study their structure as K[G]-modules when
τ is unramified. We also show that the map ⟨., .⟩Y is compatible with the action of G, in
the sense of Proposition 37. Thus, we show that when τ is unramified, the Goppa codes
defined by divisors of Y invariant under the action of G are K[G]-modules. Finally, we
give sufficient conditions for these codes to be free K[G]-modules when τ is an unramified
abelian cover.

Galois actions

In this paragraph, we do not need to assume that K is a finite field. Let K be a perfect
field. Let X and Y be two smooth projective curves over K. Let

τ : Y −→ X

be a Galois cover over K with Galois group G. We can define a right action of G on K(Y )
by

∀f ∈ K(Y ),∀σ ∈ G, f · σ = f ◦ σ. (4.5.1)

Definition 38. Let σ ∈ Aut(Y ). Recall that Ω(Y/K) is a K(Y )-vector space of dimension
1. Let dt be a generator of Ω(Y/K). Let ω ∈ Ω(Y/K) be a differential, there exists
f ∈ K(Y ) such that ω = fdt. We define the pullback of ω by σ as

σ∗ω = (f ◦ σ)d(t ◦ σ).
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Remark 23. The definition of pullback does not depend on the choice of dt. Let dt2 be a
generator of Ω(Y/K) as a K(Y )-vector space, there exists g ∈ K(Y ) such that ω = gdt2.
We have

dt2
dt

=
f

g
.

Since x 7→ x ◦ σ is a morphism of K-algebras, we have

d(t2 ◦ σ)
d(t ◦ σ)

=
dt2
dt
◦ σ.

Then

σ∗ω = (f ◦ σ)d(t ◦ σ)

= (f ◦ σ) d(t ◦ σ)
d(t2 ◦ σ)

d(t2 ◦ σ)

= (f ◦ σ)( dt
dt2
◦ σ)d(t2 ◦ σ)

= (g ◦ σ)d(t2 ◦ σ)

We can thus define a right action of G on Ω(Y/K) by

∀ω ∈ Ω(Y/K), ∀σ ∈ G, ω · σ = σ∗ω

which is canonically associated with a left action

∀ω ∈ Ω(Y/K),∀σ ∈ G, σ · ω = (σ−1)∗ω. (4.5.2)

We have the following compatibility equation:

∀ω ∈ Ω(Y/K),∀f ∈ K(Y ), ∀σ ∈ G, σ · (fω) = (f · σ−1)(σ · ω). (4.5.3)

Extensions of residue algebras

Let K be a perfect field. Let X and Y be two smooth projective curves over K. Let

τ : Y −→ X

be a Galois cover over K with Galois group G. We now assume that τ is unramified.
We want to show that the residual algebras at effective divisors of Y that are invariant

under the action of G are free K[G]-modules. We begin with the case of the fiber of a single
K-rational point.

Let P be a place of K(X) of degree 1 totally split in K(Y ). Let Q1 be a place of K(Y )
above P . In particular, degQ1 = 1. We write

∀σ ∈ G, Qσ := σ(Q1) and Q =
∑
σ∈G

Qσ.
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The divisor Q is the fiber of τ above P . Let

τ ∗ : Div(X) −→ Div(Y )

be the abelian group morphism induced by τ , which, with a place associates the fiber of τ
above this place. By definition, Q = τ ∗(P ).

One has canonical isomorphisms of K-algebras

∀σ ∈ G,KQσ ≃ K

and
RQ = ΓY (OY /OY (−Q)) ≃

⊕
σ∈G

KQσ ≃ KG.

The group G acts on RQ on the right by composition. Let σ, σ′ ∈ G, and let f ∈ KQσ ,
then

f ◦ σ′ ∈ KQσ′−1σ
.

For all f ∈ RQ, we will write f = (fσ)σ∈G where fσ ∈ KQσ .

∀(fσ)σ∈G ∈ RQ, ∀σ′ ∈ G, (fσ)σ∈G · σ′ = (fσ′σ · σ′)σ∈G. (4.5.4)

This action gives RQ the structure of a free right K[G]-module of rank 1.
Now consider the case of a single place of arbitrary degree. Let P ∈ Irr(X) be a place of

X and let Q = τ ∗(P ). Let Q1 be a place of Y above P . Let D(Q1/P ) be the decomposition
group of Q1. The places above P are parameterized by the left classes of G/D(Q1/P ). For
all σ ∈ G/D(Q1/P ), we define

Qσ = σ(Q1)

and we have
D(Qσ/P ) = σD(Q1/P )σ

−1

In particular
Q =

∑
σ∈G/D(Q1/P )

Qσ.

One has a natural isomorphism

RQ ≃
⊕

σ∈G/D(Q1/P )

KQσ .

Let σ ∈ D(Q1/P ) and let f ∈ KQσ , then, since τ is unramified, D(Qσ/P ) is isomorphic
to the Galois group of the extension KQσ/KP . Furthermore, for any right class σ′ of
D(Qσ/P )\G, we have

f ◦ σ′ ∈ KQσ′−1σ
.

We can therefore define an action on the right on RQ in a similar way to equation (4.5.4).
Let θ be a normal element of the extension KQ1/KP , then the orbit of θ for the action of
G forms a basis of RQ as a KP -vector space. Indeed, since θ is normal in KQ1/KP ,

θ ·D(Q1/P ) is a basis of KQ1 .
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Let σ ∈ G represent the right class D(Q1/P )σ, then θ · σ is normal in the extension
KQσ−1/KP and

θ ·D(Q1/P ) · σ = θ · σ ·D(Qσ−1/P ) is a basis of KQσ−1 .

Therefore, θ · G is a basis of RQ as a KP -vector space. Therefore, RQ is a free right
K[G]-module of rank degP .

Let us now consider the case of a place with positive multiplicity. Let n > 0 be an
integer, and let P ∈ Irr(X). Let Q = τ ∗(P ). Let t be a uniformizer at P , then t ◦ τ is a
uniformizer at all places above P , which we will denote by t thereafter. Let us write

RnQ := ΓY (OY /OY (−nQ)),

then t induces an isomorphism of K-vector spaces

RnQ ≃ RQ[x]/(x
n) (4.5.5)

via t 7−→ x. The group G acts on the right on RQ[x]/(x
n) via the action on the coefficients.

Thus, since t ◦ σ = t for all σ ∈ G, the isomorphism (4.5.5) is an isomorphism of right
K[G]-modules. Finally, we have

RQ[x]/(x
n) ≃ Rn

Q.

Therefore, RnQ is a free right K[G]-module of rank n degP .
We deduce the following proposition:

Proposition 47. Let X and Y be two smooth projective curves over K, a perfect field.
Let

τ : Y −→ X

be an unramified Galois cover with Galois group G. Let P ∈ Div(X) be an effective divisor
and let Q = τ ∗(P ). Then RQ is a free right K[G]-module of rank degP .

Duality

Let K be a perfect field. Let X and Y be two smooth projective curves over K. Let

τ : Y −→ X

be an unramified Galois cover over K with Galois group G. Let P1, . . . , Pn ∈ X(K) be
distinct K-rational points of X that are totally split in Y . Let

P = P1 + · · ·+ Pn and Q = τ ∗(P ).

Let i ∈ [1..n], and let Qi,1 be a K-rational point of Y above Pi. Let σ ∈ G, we set

Qi,σ = σ(Qi,1).
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One has

Q =
n∑

i=1

∑
σ∈G

Qi,σ.

The dual space of RQ as a K-vector space is

ΩQ = ΓY (ΩY/K(−Q)/ OmegaY/K) ≃
n⊕

i=1

⊕
σ∈G

ΓY (ΩY/K(−Qi,σ)/ΩY/K)

via the K-bilinear form

⟨., .⟩Y : RQ × ΩQ −→ K
(f, ω) 7−→

∑n
i=1

∑
σ∈G ResQi,σ

(fω)

First, we note that the action of G on the left on Ω(Y/K) induces an action on the left
on ΩQ by permutation of the germs. Let ω = (ωi,σ)i,σ∈[1..n]×G ∈ ΩQ. Let σ′ ∈ G, for all
1 ⩽ i ⩽ n and for all σ ∈ G we have

(σ′ · ω)i,σ = (σ′−1)∗ωi,σ′−1σ. (4.5.6)

This action defines a free left K[G]-module structure of rank n on ΩQ. Furthermore,
equations (4.5.3), (4.5.4), and (4.5.6) show that the K-bilinear form ⟨., .⟩Y satisfies the
compatibility relation in Proposition 37:

∀f ∈ RQ, ∀ω ∈ ΩQ,∀σ ∈ G, ⟨f · σ, ω⟩Y = ⟨f, σ · ω⟩.

We can therefore define a K[G]-bilinear map by following Proposition 38:

⟨., .⟩G : ΩQ ×RQ −→ K[G]
(ω, f) 7−→

∑
σ∈G⟨f · σ−1, ω⟩Y σ

.

The map ⟨., .⟩G allows to identify ΩQ to the dual module of RQ, as a K[G]-module.

Morphisms and codes

We use the notation from the beginning of paragraph 4.5.1. We assume that K is a finite
field with q = pm elements. Let E ∈ Div(Y ) be a G-invariant divisor disjoint from Q. There
exists D ∈ Div(X) such that

τ ∗(D) = E

because the cover τ is unramified. Let

L(E) := ΓY (OY (E))

be the Riemann-Roch space associated with E. The right action of G on K(Y ) defined in
equation (4.5.1) induces a structure of right K[G]-module on L(E). Indeed, let f ∈ K(Y ),
then for all σ ∈ G we have

(f · σ) = σ−1 · (f). (4.5.7)

90



Equations (4.5.1) and (4.5.4) indicate that the canonical evaluation morphism introduced
in Section 4.2

evE,Q : L(E) −→ RQ

is a right K[G]-module morphism.
Similarly, let

Ω(E −Q) = ΓY (ΩY/K(E −Q)).
The left action of G on Ω(Y/K) defined in equation (4.5.2) induces a left K[G]-module
structure on Ω(E −Q). Indeed, let ω ∈ Ω(Y/K), then for all σ ∈ G,

div(σ · ω) = σ · divω. (4.5.8)

Equations (4.5.2) and (4.5.6) indicate that the canonical morphism

resE,Q : Ω(E −Q) −→ ΩQ

is a left K[G]-module morphism.
Let gY be the genus of Y . Assume that

2gY − 2 < degE < degQ,

so that evE,Q and resE,Q are injective. We then see L(E) as a right submodule of RQ and
Ω(E −Q) as a left submodule of ΩQ. We have seen that ΩQ is isomorphic to the dual of
RQ via the map ⟨., .⟩G. The orthogonal of L(E) for the map ⟨., .⟩G is the orthogonal of
L(E) for the form ⟨., .⟩Y , i.e. the space of differentials Ω(E −Q).

We will denote K[G]suppP by K[G]P . Let us define the respectively right and left
morphisms of K[G]-modules

ψ : RQ −→ K[G]P

f 7−→ (
∑

σ∈G f(Qi,σ−1)σ)Pi∈P
,

and
χ : ΩQ −→ K[G]P

ω 7−→ (
∑

σ∈G ResQi,σ
(ω)σ)Pi∈P

.

We have
∀f ∈ RQ,∀ω ∈ ΩQ, ⟨ω, f⟩G = ⟨χ(ω), ψ(f)⟩

where ⟨., .⟩ is the K[G]-bilinear form defined in (4.4.1), and therefore

∀f ∈ RQ,∀ω ∈ ΩQ, ⟨f, ω⟩Y = ⟨ψ(f), χ(ω)⟩K .

We define
GopG(Q,E) = ψ(L(E))

and
GopG

Ω(Q,E) = χ(Ω(E −Q)).
If L(E) (or equivalently Ω(E − Q)) is a free K[G]-module, then GopG(Q,E) and

GopG
Ω(Q,E) are also free, and we can apply the results of Section 4.4. In paragraph 4.5.1,

we give sufficient conditions on E for L(E) to be free when G is abelian.
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Remark 24. The isomorphisms ψ and χ are not canonical because they depend on the choice
of (Qi,1)i∈n. This has little impact on the codes GopG(Q,E) and GopG

Ω(Q,E) because
changing the choice of Qi,1 amounts to multiplying the i-th component of the elements of
GopG(Q,E) and GopG

Ω(Q,E) by an element of G, which does not change the weight of the
code words.

Remark 25. In the case where E and Q are not disjoint, we can still define K[G]-codes
GopG(Q,E) and GopG

Ω(Q,E) by proceeding as in Remark 11 with one precaution: the
chosen uniformizers must be permuted by the action of G on the right. A simple solution is
to take uniformizers at the (Pi)1⩽i⩽n and use the uniformizers induced on the fibers.

Freeness of modules of functions

We restrict ourselves to the abelian case. Let K be a finite field with q = pm elements. Let
X and Y be two smooth projective curves over K. Let

τ : Y −→ X

be an unramified abelian cover over K with Galois group G. Let gX be the genus of X, gY
the genus of Y , and o the order of G. The Riemann-Hurwitz formula shows that

gY − 1 = o(gX − 1).

In this context, it can be shown that under certain mild conditions, L(E) is a free
K[G]-module. The main strategy will be to show that L(E) is isomorphic to a residue
algebra at an effective G-invariant divisor of Y . We begin by proving a proposition based
on the semisimplicity of K[G] when p does not divide o.

Proposition 48. We use the notation from the beginning of paragraph 4.5.1. Suppose that
p does not divide o. Let D ∈ Div(X) be a divisor of degree degD ⩾ gX . Let E = τ ∗(D),
then L(E) contains a free right K[G]-module of rank degD − gX + 1.

Proof. The K-algebra K[G] is semisimple according to Maschke’s theorem [Lan02, Chapter
XVIII, Theorem 1.2]. Thus, every K[G]-module is semisimple [Lan02, Chapter XVII,
Proposition 4.1], i.e., it decomposes as a direct sum of simple submodules. Let S be the
set of simple K[G]-modules (considered up to isomorphism). S is finite since K[G] is
Noetherian (and semisimple). Then

L(E) ≃
⊕
S∈S

(L(E) : S)S

where (L(E) : S) denotes the Jordan-Hölder multiplicity of S in L(E) (see definition 52).
Let K̄ be an algebraic closure of K. Let Ĝ = Hom(G, K̄∗) be the dual group of G. Then
every simple K̄[G]-module is a K̄-vector space of dimension 1 associated with a unique
character χ ∈ Ĝ [Lan02, Chapter XVIII, Theorem 3.1]. We denote by Sχ the simple
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K̄[G]-module associated with χ ∈ Ĝ. Noticing that, since the regular representation is the
sum of all irreducible representations,

K̄[G] =
⊕
χ∈Ĝ

Sχ =
⊕
S∈S

S ⊗K K̄

we deduce that for every χ ∈ Ĝ, there exists a unique S ∈ S such that

(S ⊗K K̄ : Sχ) ̸= 0

(in which case (S ⊗K K̄ : Sχ) = 1). We have

L(E)⊗K K̄ ≃
⊕
S∈S

(L(E) : S)S ⊗K K̄.

Let
µ = min

χ∈Ĝ
{(L(E)⊗K K̄ : Sχ)}.

For all χ ∈ Ĝ, there exists S ∈ S such that

(L(E)⊗K K̄ : Sχ) = (L(E) : S).

Therefore,
µ = min

S∈S
{(L(E) : S)}.

It is then clear that L(E) contains a free K[G]-module of rank µ. We show that µ ⩾
degD − gX + 1.

Let χ ∈ Ĝ. Since K̄(Y ) is a K̄[G]-module, it contains an eigenspace associated with
χ. This eigenspace is nonzero (see Theorem ?? below). Let r ∈ K̄(Y ) be an eigenvector
associated with χ. This implies that the divisor (r) of r is G-invariant, so there exists
R ∈ Div(XK̄) such that τ ∗(R) = (r). Let (L(E)⊗K K̄)χ be the eigenspace of L(E)⊗K K̄
associated with χ. Let f ∈ (L(E)⊗K K̄)χ, then f/r is invariant under the action of G. We
can therefore view f/r as a function on XK̄ . We then have an isomorphism of K̄-vector
spaces between (L(E)⊗K K̄)χ and ΓXK̄

(OK̄(D +R)):

(L(E)⊗K K̄)χ −→ ΓXK̄
(OK̄(D +R))

f 7−→ f/r
.

Therefore, according to the Riemann-Roch theorem,

dimK̄((L(E)⊗K K̄)χ) = dimK̄(ΓXK̄
(OK̄(D +R))) ⩾ degD − gX + 1.

In particular, since (L(E)⊗K K̄ : Sχ) = dimK̄((L(E)⊗K K̄)χ), we obtain

µ ⩾ degD − gX + 1.
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We then demonstrate a proposition that extends the results of this section on linear
spaces of functions to linear spaces of differentials.

Proposition 49. Let D ∈ Div(X) be a divisor, and let CX be a canonical divisor of X.
Let E = τ ∗(D) and CY = τ ∗(CX), then Ω(E) is a free left K[G]-module if and only if
L(CY − E) is a free right K[G]-module.

Furthermore, Ω(E) contains a free submodule of rank k ⩾ 0 if and only if L(CY − E)
contains a free submodule of rank k.

Proof. Let ω0 ∈ Ω(X/K) be a regular differential with divisor CX , then τ ∗(ω0), the pullback
of ω0 by τ , is a homogeneous differential on Y with divisor CY . The map

Ω(E) −→ L(CY − E)
ω 7−→ ω/τ ∗(ω0)

is an isomorphism of K-vector spaces compatible with the action of G in the following
sense:

∀σ ∈ G,∀ω ∈ Ω(E),
σ · ω
τ ∗(ω0)

=
σ · ω

σ · τ ∗(ω0)
=

ω

τ ∗(ω0)
· σ−1.

Since σ −→ σ−1 defines an anti-isomorphism of K[G], we deduce the result.

Let f ∈ K(X) be a nonzero function, then we have a divisor equality

τ ∗((f)) = (f ◦ τ).

Thus, τ ∗ induces a group morphism from Pic(X) to Pic(Y ).
The following lemma allows us to produce non-special divisors of Y of degree gY − 1

that are invariant under the action of G.

Lemma 50. [CE23, Section 14] We use the notation from the beginning of paragraph 4.5.1.
Let K̄ be an algebraic closure of K. Let

o = op × op′

where op is the largest power of p dividing o. Let c ∈ PicgX−1(XK̄), and let τ ∗(c) ∈
PicgY −1(YK̄) be its pullback by τ . Then τ ∗(c) is special if and only if c is the sum of a
special class and a class in the intersection of the kernels of τ ∗ and of the multiplication by
op′ .

Proof. Let D be a divisor representing the class c. Let E = τ ∗(D), which is a divisor of the
class τ ∗(c). Let

L(E)K̄ := ΓYK̄
(OYK̄

(E)).

Assume that τ ∗(c) is special, then L(E)K̄ is a nonzero K̄[G]-module (since its dimension is
nonzero by hypothesis). Recall that G is a subgroup of the automorphisms of the K̄-vector
space of L(E)K̄ . Since G is finite and commutative, and K̄ is algebraically closed, there
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exists f ∈ L(E)K̄ an eigenvector of all the elements of G. Therefore, there exists an effective
divisor J ∈ Div(YK̄) such that

(f) = J − E.

Since f is an eigenvector of the action of G, its divisor (f) is stable under the action of G,
and so is J . Therefore, there exists I ∈ Div(XK̄) an effective divisor such that

τ ∗(I −D) = J − E = (f).

Let c′ be the class of D − I, we deduce that τ ∗(c′) = 0. Let c′′ be the class of I, then c′′
is special because I is effective, so

dimK̄ L(I)K̄ > 0.

We have c = c′ + c′′. It remains to be shown that op′c
′ = 0. First, note that f op′ is stable

under the action of G. Let σ ∈ G. Since K̄ has characteristic p, every o-th root of unity is
an op′-th root of unity. There therefore exists an op′-th root of unity ζ such that

f op′ · σ = (f · σ)op′ = (ζf)op′ = f op′ .

The function f op′ is G-invariant, so there exists g ∈ K̄(X) such that f op′ = g ◦ τ . We have
op′(D − I) = −(g), so op′c

′ = 0.
The converse is straightforward.

Theorem 51. We use the notation from the beginning of paragraph 4.5.1. Let E ∈ Div(Y )
be a divisor invariant under the action of G. Assume that

degE > 2gY − 2.

Then L(E) is a free K[G]-module.

Proof. The proof is trivial if gX = 0 because in this case G is trivial. We assume gX ⩾ 1. Let
D ∈ Div(X) be a divisor such that τ ∗(D) = E (which exists because τ is unramified). Then
degD > 2gX − 2. Let K̄ be an algebraic closure of K. According to the Noether-Deuring
theorem [CR62, Theorem 29.7], it is enough to show that

L(E)K̄ := L(E)⊗K K̄ ≃ ΓYK̄
(OYK̄

(E))

is a free K̄[G]-module.
Let

k = degD − gX + 1

be the dimension of L(D) (according to the Riemann-Roch theorem). PicgX−1(XK̄) is a
variety over K̄ of the same dimension as the Jacobian JXK̄

, therefore of dimension gX . For
any class c ∈ PicgX−1(XK̄), there exist

P1, . . . , Pk ∈ X(K̄)
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such that the divisor D− P1 − · · · − Pk is in the class c (since k ⩾ gX). On the other hand,
the set of special classes of degree gX−1 is a subvariety of PicgX−1(XK̄) of dimension gX−1.
Furthermore, the kernel ker(τ ∗) of the group morphism τ ∗ is finite (since it is included in
the kernel of the multiplication by o). Thus, by dimension, and since K̄ is algebraically
closed, there exist places P1, . . . , Pk ∈ X(K̄) such that the class of D− P1 − · · · − Pk is not
the sum of a special class and a class of ker(τ ∗).

Let P = P1 + · · ·+ Pk and Q = τ ∗(P ). According to Lemma 50, the divisor E −Q is a
non-special divisor of degree gY − 1. Then the evaluation morphism

evE,Q : L(E)K̄ −→ ΓYK̄
(OYK̄

(E)/OYK̄
(E −Q))

is an isomorphism of K̄[G]-modules. Since ΓYK̄
(OYK̄

(E)/OYK̄
(E − Q)) is isomorphic to

RQ ⊗K K̄ as a K̄[G]-module, then, according to Proposition 47, the K̄[G]-module L(E)K̄
is free.

Proposition 52. We use the notation from the beginning of paragraph 4.5.1. Assume that
K is a finite field with at least four elements, that gX ⩾ 2 and that o is a power of p. Let
d ⩾ gX be an integer such that there exists an effective divisor of X of degree d− gX + 1.
Then there exists E ∈ Div(Y ) a divisor invariant under the action of G of degree do such
that L(E) is a free K[G]-module of rank d− gX + 1.

Proof. Let P ∈ Div(X) be an effective divisor of degree d− gX +1. According to a theorem
by Ballet and Le Brigand [BLB06, Theorem 11], there exists a non-special divisor I of X
of degree gX − 1. Let D = I + P . Let E = τ ∗(D), J = τ ∗(I) and Q = τ ∗(P ). Lemma 50
allows us to assert that J is a non-special divisor (note that op′ = 1). Thus, the evaluation
morphism

evE,Q : L(E) −→ ΓY (OY (E)/OY (E −Q)) ≃ RQ

is an isomorphism of K[G]-modules. Then Proposition 47 shows that L(E) is free.

4.5.2 Encoding and decoding in the abelian case

In this subsection, we study the costs of encoding and decoding codes constructed with
unramified abelian covers.

Let K be a finite field with q = pm elements. Let X and Y be two smooth projective
curves over K and

τ : Y −→ X

an unramified abelian cover with Galois group G. Let o be the order of G, gX the genus of
X and gY the genus of Y . According to the Riemann-Hurwitz formula, we have

gY − 1 = o(gX − 1).

Let P1, . . . , Pn be K-rational points of X that totally split in Y , let

P =
n∑

i=1

Pi
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and let
Q = τ ∗(P ).

Let D be a divisor of X disjoint from P such that

2gX − 1 ⩽ degD ⩽ n− 1.

Let
E = τ ∗(D).

Let
k = degD − gX + 1.

According to Theorem 51, the K[G]-modules GopG(Q,E) and GopG
Ω(Q,E) are free

submodules of K[G]P with ranks k and n− k respectively. Let

N = on.

Then, according to definition 35, GopG(Q,E) defines a linear code over K of length N and
dimension ok. Its designed distance is

d∗(Q,E) = N − degE = N − ok − gY + 1.

Let φ and ι be the K-linear isomorphisms defined in equations (4.4.4) and (4.4.5). We
can check that

φ ◦ ι(GopG(Q,E)) = Gop(Q,E) and φ(GopG
Ω(Q,E)) = GopΩ(Q,E).

According to the results in Section 4.4.4, there exists

E ∈ MP,k(K[G])

a G-generator matrix of GopG(Q,E), to which we associate a generator matrix of Gop(Q,E)

EK ∈Mk×G,P×G(K),

and there exists
C ∈ M(n−k),P (K[G])

aG-parity-check matrix of GopG(Q,E) (or equivalently, aG-generator matrix of GopG
Ω(Q,E)),

to which we associate a generator matrix of GopΩ(Q,E)

CK ∈M(n−k)×G,P×G(K).
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Encoding

We use the notation defined at the beginning of Subsection 4.5.2. We seek to encode an
element a ∈ Kk×G into an element of Gop(Q,E). This amounts to computing

aEK = φ ◦ ι
(
E(φ ◦ ι)−1(a)

)
. (4.5.9)

In the worst case, the applications φ ◦ ι and (φ ◦ ι)−1 can be evaluated in no and ko
operations, respectively. Thus, the cost of encoding a is reduced to the cost of computing

E(φ ◦ ι)−1(a).

This operation requires computing kn multiplications in K[G]. According to Theorem 36,
there exists an absolute constant Q such that a multiplication in K[G] requires at most

Q(mo log o+m2o)

operations in Z/pZ and Z/p′Z, where p′ is a prime and p′ ⩽ Q(op)11. Then there exists an
absolute constant Q′ such that the computation (4.5.9) can be performed with

Q′ · kn · o log o ·m2 · (log o+ log p)2

elementary operations.
In the construction of Subsection ??, there exists an absolute constant α > 0 such that

α 4
√
q log o ⩾ k log p and α log o ⩾ log p. Then

Q′ · nk · o log o ·m2 · (log o+ log p)2 ⩽ Q′ ·m2 ·N · log o · (k log o+ α 4
√
q log o) · (log o+ log p)

⩽ Q′ ·m2 ·N · log o · (α 4
√
q(log o)2 + α 4

√
q log o) · (log o+ α log o)

⩽ Q′ ·m2 ·N · (log o) · α 4
√
q · ((log o)2 + log o) · (1 + α) · log o

⩽ Q′′ ·m2 · 4
√
q ·N · (log o)4

⩽ Q′′ ·m2 · 4
√
q ·N(logN)4

where Q′′ is an absolute constant. If we consider that q = pm is fixed, then the encoding is
quasi-linear in the length N of the code.

Decoding

We use the notation defined at the beginning of Subsection 4.5.2. Let fr, fc, fe ∈ RQ such
that

fr = fc + fe, fc ∈ Im evE,Q and # supp fe ⩽ t∗(Q,E).

We write
Qerr = supp fe and t = degQerr.
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We know from Subsection 4.2.3 that given fr, it is possible to compute fc in O(N3)
operations in K if

t ⩽
d∗(Q,E)− gY − 1

2
.

Assume that
t ⩽ o⌊d

∗(P,D) + gX − 1

2
⌋ − gY . (4.5.10)

Let F ∈ Div(Y ) be a divisor of degree

degF = o⌊d
∗(P,D) + gX − 1

2
⌋ = o⌊n− k

2
⌋

disjoint from Q and invariant under the action of G (note that o divides degF ). We then
have

gY + t ⩽ degF ⩽ N − 1− degE − t.
We assume that the right K[G]-module L(F ) contains a free sub-K[G]-module of rank

(degF/o)− gX + 1. Note that if

⌊n− k
2
⌋ > 2(gX − 1) (4.5.11)

or
o is corprime to p (4.5.12)

or
o is a power of p and q ⩾ 4 and gX ⩾ 2, (4.5.13)

then, by Theorem 51 or Proposition 48 or Proposition 52, L(F ) does indeed contain a free
sub-K[G]-module of rank (degF/o)− gX + 1. To simplify the notation, even if it means
restricting L(F ), we will assume that L(F ) is a free K[G]-module of rank (degF/o)−gX+1.

Since gY + t ⩽ degF ⩽ N − 1 − degE − t, we know that, as in Subsection 4.2.3,
the maps evF,Q and evE+F,Q are injective, and that h ∈ L(F ) vanishes at Qerr if and
only if evF,Q(h)fr ∈ Im evE+F,Q. Under our assumptions, evF,Q and evE+F,Q are injective
morphisms of K[G]-modules. Let

EF ∈MP,(ℓ(F )/o)(K[G])

be a G-generator matrix of L(F ) and

EF,K ∈M(ℓ(F )/o)×G,P×G(K)

the associated matrix with coefficients in K, and

CE+F ∈M(n−ℓ(E+F )/o),P (K[G])

a G-parity-check matrix of L(E + F ), and

CE+F,K ∈M(n−ℓ(E+F )/o)×G,P×G(K)
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the associated matrix with coefficients in K. Finally, let

Dr ∈Mn(K)

be the diagonal matrix corresponding to multiplication by fr (coordinate by coordinate).
Here, the matrix Dr is not generally associated with a matrix with coefficients in K[G],

so ker(EF,K × Dr × CE+F,K
t) is not generally a K[G]-module. Finding an element of the

kernel (on the left) of this matrix product cannot be reduced to a linear algebra problem
over K[G]. We will try to use Theorem 53. We must show that it is possible to quickly
evaluate (on the left) the matrices EF,K , Dr and CE+F,K

t.
According to the previous paragraph, using fast arithmetic in K[G], it is possible to

evaluate the matrix EF,K with an absolute constant times

n · (⌊(n− k)/2⌋) ·m2 · o log o · (log o+ log p)2

elementary operations. Next, the matrix Dr is diagonal, so it can be evaluated by performing
N = on multiplications in K. Finally, according to Proposition 45, the cost of multiplication
by CtE+F,K is the cost of multiplication by CE+F . Thus, it is possible to evaluate CKt with
an absolute constant times

n2 ·m2 · o log o · (log o+ log p)2

elementary operations. Thus, there exists an absolute constant Q such that it is possible to
evaluate EF,K ×Dr × CE+F,K

t with

n2 ·m2 · o log o · (log o+ log p)2

elementary operations.
We will now use a random algorithm from [Wie86, KS91].

Theorem 53 (Wiedemann, Kaltofen, Saunders). The notations in this theorem are inde-
pendent. There exists a probabilistic (Las Vegas) algorithm that takes as input a matrix A of
dimensions ℓ×n with coefficients in a field K and a vector b of Kℓ, and returns a uniformly
distributed solution x of Ax = b with a probability greater than 1/2, at the cost of Qm logm
evaluations of A (as a black box) and Q(m logm)2 operations in K (addition, multiplication,
random draw, inversion), where Q is an absolute constant and m = max(ℓ, n).

Corollary 53.1. We use the notation from the beginning of Subsection 4.5.2. We assume
that equations (4.5.10) and (4.5.11) are verified. There is a probabilistic algorithm (Las
Vegas) that takes as input fr ∈ RQ and the matrices EF,K , EF , CE+F,K and CE+F and returns
fc with a probability greater than 1/2, at the cost of

Q · n2 ·N2(logN)2 ·m2 · (log p+ log o)2

elementary operations, where Q is an absolute constant.
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Remark 26. We have explained how to find the localizations of the errors by finding a
solution to

xEF,K ×Dr × CtE+F,K = 0.

If the error location Qerr is not a G-invariant divisor, RQ−Qerr is not a K[G]-module. The
equation

evE,Q−Qerr(x) = fc

is therefore not K[G]-linear. This is not a problem because we can use the same trick:
the map evE,Q−Qerr can be evaluated quickly by restricting the map evE,Q. By applying
Theorem 53, we show that this equation can be solved in

Q′ · n ·N2(logN)2 ·m2 · (log p+ log o)2

elementary operations, where Q′ is an absolute constant.

In the construction of Section 4.5.3, there exists an absolute constant α > 0 such that

α 4
√
q log o ⩾ k log p

and
α log o ⩾ log p

and
α 4
√
q log o ⩾ n.

Then there exists an absolute constant Q′′ such that the decoding algorithm can be
performed with

Q′′ ·m2 · 4
√
q ·N2(logN)5

elementary operations. In particular, if we consider that q = pm is fixed, then decoding is
quasi-quadratic in the length N of the code.

4.5.3 Families of structured geometric codes

In this section, we construct an asymptotically good family of Goppa codes associated with
divisors that are invariant under the action of some Galois groups (i.e., the liminf of the
rates and relative distances are nonzero), and whose encoding and decoding algorithms
have quasi-linear and quasi-quadratic time complexities, respectively.

The construction of this family relies on the existence of a family of unramified abelian
covers

τi : Yi −→ Xi

of smooth projective curves over a finite field K with q elements, whose degree deg τi
grows exponentially with the genus gXi

of Xi, and whose number of K-rational points of
Xi completely split in Yi grows linearly with the genus of Xi. According to Section 3.3,
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in particular Theorem 14, any unramified abelian cover of Xi totally split above a point
P∞ ∈ Xi(K) is the pullback of a factor of the isogeny

Φ = FJXi
− 1.

More precisely, to every subgroup H of JXi
(K), we can associate

τi,H : Yi,H −→ Xi

an unramified abelian cover of Xi totally split above P∞ with Galois group JXi
(K)/H. Let

P be a K-rational point of Xi. Then, according to Proposition 15, the point P is totally
split in Yi,H if and only if P − P∞ ∈ H.

The success of the construction depends essentially on the ability to find subgroups
of JXi

(K) suited to our needs, for curves Xi having a large number of rational points. A
significant number of previous works deal with similar problems. For example, if q is a
square, we can find in [Iha81], [TVZ82], and [GS95] families of curves over K for which the
ratio

#Xi(K)/gXi

converges to √q− 1. Geometric techniques for constructing curves with many points, which
are interesting for our problem, can also be found in [Ser20]. We will use another technique,
used in [GX22, NX98, Que89, vdG09], which requires that K contain a strict subfield κ,
that the curves Xi be defined over κ and have a κ-rational point.

We now explain our construction. Let m > 0 be an integer. Let κ be a finite field with
p2m elements and K an extension of κ of degree 2, i.e., a finite field with q = p4m elements.
Since p2m is a square, there exists a family (Xi)i∈N of smooth projective curves over κ of
genera (gXi

)i∈N, such that
lim
i→∞

#Xi(κ)/gXi
= pm − 1.

To simplify notations, we will drop the index i ∈ N in what follows. Let

n = #X(κ) > 0.

Let P1, . . . , Pn be the κ-rational points of X. We naturally identify X with a smooth
projective curve XK over K, and (Pj)j∈[1..n] with the n points of XK that are stable under
the action of Gal(K/κ) on XK . Let us write

P =
n∑

j=1

Pj.

Let
H = JX(κ)

be the group of κ-rational points of JX(K), i.e., the points of JX(K) that are stable under
the action of Gal(K/κ). Let Ỹ be a smooth projective curve over K such that there exists

τ̃ : Ỹ −→ X
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a, unramified abelian cover totally split above P1 with Galois group

G̃ = JX(K)/H.

According to Riemann’s hypothesis (proved for function fields by Weil [Wei48]), we have

õ := |G̃| ⩾ (p2m − 1)2gX/(pm + 1)2gX = (pm − 1)2gX .

We want a Galois group whose order is either a power of p or coprime to p, in order to
apply propositions 48 and 52. Write

G̃ = G̃p × G̃p′

where G̃p is a maximal subgroup of G̃ of order õp a power of p and G̃p′ is a supplement of
G̃p, of order õp′ = õ/õp coprime to p. Let H̃ be the smallest of these two subgroups. Then
there exists Y a smooth projective curve over K and

τ : Y −→ X

an unramified abelian cover totally split above P1 with Galois group

G = G̃/H̃.

The order of G, denoted o, is either a power of p or coprime to p, and

o ⩾
√
õ ⩾ (pm − 1)gX .

All κ-rational points of X are totally split in Y (since they are totally split in Ỹ ). Let

Q = τ ∗(P ),

be a divisor on Y of degree
degQ = no = N.

We assume that
pm > 3,

so, on the one hand, o ⩾ (pm − 1)gX grows exponentially with respect to gX and, on the
other hand, we have

(pm − 1)gX > 2gX − 1.

Thus, we have asymptotically
n > 2gX − 1.

Let
δlim ∈]0, 1−

2

pm − 1
[

and let
ρlim = 1− δlim −

1

pm − 1
∈] 1

pm − 1
, 1− 1

pm − 1
[.
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Let D ∈ Div(X) be a divisor disjoint from P , such that

degD = ⌈ρlimn+ gX − 1⌋.

Then asymptotically we have

2gX − 2 < degD < (pm − 1)gX ≈ n.

Let
E = τ ∗(D)

and
k = degD − gX + 1.

Then L(E) is a free K[G]-module of rank k. We have

|ρ(Gop(Q,E))− ρlim| ⩽
1

2n
and |δ∗(Q,E)− δlim| ⩽

1

2n

where δ∗(Q,E) := d∗(Q,E)/N denotes the designed relative distance of Gop(Q,E).
Let ε > 0. We ask to be able to decode ⌊εno⌋ errors for the code Gop(E,Q). According

to equation (4.5.10), it is possible to decode at most

o⌊d
∗(P,D) + gX − 1

2
⌋ − gY ≈

d∗(Q,E)− gY − 1

2

errors. We must therefore have

0 < ε ⩽
1

2

(
d∗(Q,E)

nfo
− gY + 1

nfo

)
≈ 1

2

(
δ∗(D,P )− 1

pm − 1

)
.

We must impose

δlim >
1

pm − 1

which implies
1

pm − 1
< 1− 2

pm − 1

or, equivalently,
pm > 4.

Recall that
log o ⩾ gX log(pm − 1),

so since n ≈ ( 4
√
q − 1)gX , there exists an absolute constant

α > 0

(in particular, independent of the index i ∈ N) such that

α 4
√
q log o ⩾ k log p and α 4

√
q log o ⩾ n and α log o ⩾ log p. (4.5.14)

Note also that one of the conditions (4.5.12) or (4.5.13) is satisfied by construction. There-
fore, based on the results in Subsection 4.5.2, we deduce Theorem 54.
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Theorem 54. Let p be a prime integer and m > 0 an integer such that

pm ⩾ 4.

Let K be a finite field with p4m elements. Let

δlim ∈]0, 1−
2

pm − 1
[.

Then there exists a family of geometric codes equipped with a module structure of a K-group
algebra

• whose lengths tend to infinity.

• whose designed relative distances converge to δlim > 0.

• whose rates converge to 1− δlim − 1
pm−1 > 0.

• that can be encoded in quasi-linear time in their length.

If, in addition,

pm ⩾ 5 and δlim >
1

pm − 1
,

then there exists a family of geometric codes equipped with a module structure of a K-group
algebra satisfying the previous points, and that can decode an error-rate of

1

2

(
δlim −

1

pm − 1

)
in quasi-quadratic time in their length.

Remark 27. These codes can be excellent if q is large enough. To verify this, we perform a
calculation similar to that of Lachaud [Lac86, Section 4.7]. Recall that a family of codes
over the field K is excellent if δlim and ρlim, the liminf of the relative distances and rates of
the family, satisfy

ρlim > 1−Hq(δlim).

Using our formulas, we obtain:

∃x ∈ [0, 1], 1− 1

pm − 1
− x > 1−Hq(x)⇔

1

pm − 1
< logq

(
2q − 1

q

)
⇔ q ⩾ 194.

If we select for the calculation not δlim, but the relative distance that can actually be
decoded with the basic algorithm δlim − 1

pm−1 , we get excellent codes if

∃x ∈ [0, 1], 1− 2

pm − 1
− x > 1−Hq(x)⇔

2

pm − 1
< logq

(
2q − 1

q

)
⇔ q ⩾ 474.
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4.5.4 An example of structured geometric code

In this subsection, we compute an example of a structured geometric code. Let κ be a field
with 4 elements and K an extension of κ of degree 2, thus having 16 elements. Let a ∈ K
be an element such that

a4 + a+ 1 = 0.

Let
X : y2 + y = x5 + x4 + x3

be a hyperelliptic curve (and therefore a smooth projective curve) over K of genus gX = 2.
Note that X is defined over κ. Let Lκ and LK be the L-polynomials of Xκ and X respectively.
We have

Lκ = 16z4 + 16z3 + 12z2 + 4z + 1 and LK = 256z4 + 128z3 + 48z2 + 8z + 1.

We deduce that

• X has 9 κ-rational points and 25 K-rational points.

• |JX(K)| = 441 = 49 · 9 and |JX(κ)| = 49.

Our first objective is to determine an abelian, unramified cover of X over K, with a Galois
group isomorphic to JX(K)/JX(κ), completely split over the κ-rational points of X.

Let P∞ be the unique point at infinity of X. It is a κ-rational point of X. Let P1, . . . , P8

be the other κ-rational points of X whose affine coordinates are:

P1 = (0, 0) P2 = (0, 1)
P3 = (a2 + a, 0) P4 = (a2 + a, 1)
P5 = (a2 + a+ 1, 0) P6 = (a2 + a+ 1, 1)
P7 = (1, a2 + a) P8 = (1, a2 + a+ 1).

Finally, let P9 and P10 be K-rational points of X whose affine coordinates are:

P9 = (a3, a3) and P10 = (a3 + 1, a+ 1).

Let c1 and c2 be the classes of divisors 3P∞ + P10 − 4P9 and P∞ − P9 in JX(K). We can
show that c1 and c2 generate JX(K), or more precisely

JX(K) = (Z/21Z)c1 × (Z/21Z)c2.

Thus
JX(K)/JX(κ) ≃ (Z/3Z)2 .

In particular, this group has exponent 3. Note that K has a primitive cubic root of unity

ζ3 = a2 + a.
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According to Kummer’s theory, any abelian extension of K(X) of degree 9 and exponent
3 is isomorphic to an extension of the form K(X)[z1, z2]/⟨z31 −R1, z

3
2 −R2⟩, where R1, R2 ∈

K(X)∗ are not cubes. According to [Sti08, Proposition 3.7.3], the extension associated with
R1 and R2 is unramified if and only if there exist two divisors Γ1 and Γ2 such that

(R1) = 3Γ1 and (R2) = 3Γ2. (4.5.15)

Finally, the extension is purely geometric (i.e., the field of constants of the extension is K)
if and only if the classes of Γ1 and Γ2 in JX(K) are of order 3.

Conversely, let

Γ1 = P11 + P12 − 2P∞ and Γ2 = P9 + P13 − 2P∞

where the affine coordinates of P11, P12 and P13 are

P11 = (a3 + a, a3 + a+ 1) ; P12 = (a3 + a2, a3 + a2) ; P13 = (a3 + a2 + a+ 1, a3 + a2 + a).

One has
Γ1 ∼ 7 ∗ c1 and Γ2 ∼ 7 ∗ c2

so the classes of Γ1 and Γ2 are of order 3 and generate the 3-torsion of JX(K). Let
R1, R2 ∈ K(X)∗ be functions satisfying condition (4.5.15), and such that

R1(P1) = R2(P1) = 1.

Then K(X)[z1, z2]/⟨z31 −R1, z
3
2 −R2⟩ is an abelian, unramified, purely geometric extension

of K(X), with Galois group of order 9 and exponent 3. We denote

K(Y ) := K(X)[z1, z2]/⟨z31 −R1, z
3
2 −R2⟩

and we denote Y a smooth projective curve over K whose function field is K(Y ). Then
there exists a non-ramified abelian covering

τ : Y −→ X

with Galois group G isomorphic to (Z/3Z)2.
It remains to show that τ is totally split over the κ-rational points of X. To do this,

according to Theorem 14 and Proposition 15, it is enough to show that τ is totally split
over P1. Let r1, r2 ∈ K(Y ) such that

r31 = R1 and r32 = R2.

Let Q be a K-rational point of Y in the fiber of τ above P1. We know that, as a K-algebra,
the residual field KQ is generated by r1(Q) and r2(Q). Now, by construction,

r1(Q)
3 = R1(Q) = R1(P1) = 1 and similarly r2(Q)3 = 1.
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Since K contains the cubic roots of unity, we deduce that KQ ≃ K, and therefore P1 is
totally split in Y .

Our second objective is to compute a G-encoding matrix of a geometric code over Y .
Let

D = 3P9 and P = P∞ +
8∑

i=1

Pi

and let
E = τ ∗(D) and Q = τ ∗(P ).

Note that the points of P are κ-rational, so they are totally split in Y . Let

k = degD − gX + 1 = 2.

Recall that r1 and r2 are functions of K(Y )∗ such that

r31 = R1 and r32 = R2.

In particular, one has
(r1) = τ ∗(Γ1) and (r2) = τ ∗(Γ2).

We fix a generating family of G. Let σ1 and σ2 be elements of G such that

r1 · σ1 = ζ3r1 r1 · σ2 = r1
r2 · σ1 = r2 r2 · σ2 = ζ3r2

then σ1 and σ2 generate G. We also fix a generating family of

Ĝ = Hom(G,K∗).

Let χ1 and χ2 be two characters of Ĝ such that

χ1(σ1) = ζ3 χ1(σ2) = 1
χ2(σ1) = 1 χ2(σ2) = ζ3.

According to the Riemann-Hurwitz formula, the genus of Y is

gY = 9(gX − 1) + 1 = 10.

We have
degE = 9degD = 27 > 18 = 2gY − 2,

so according to Theorem 51, the vector space L(E) is a free K[G]-module of rank k = 2.
Recall that the order of G is coprime to 16, the number of elements of K. Furthermore,
since K contains the cubic roots of unity, L(E) decomposes as follows:

L(E) =
⊕

0⩽i,j⩽2

L(E)χi
1χ

j
2
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where for all 0 ⩽ i, j ⩽ 2, the K-vector space L(E)χi
1χ

j
2

is the simple sub-K[G]-module of
L(E) associated with the character χi

1χ
j
2, i.e. the set of functions f ∈ L(E) such that

∀α, β ∈ [0..2], f · (σα
1 σ

β
2 ) = ζ

(αi+βj)
3 f.

In this case, these are K-vector spaces of dimension k = 2.
Let i, j ∈ [0..2], and let f ∈ L(E)χi

1χ
j
2
. For all α, β ∈ [0..2], we have

f

ri1r
j
2

· (σα
1 σ

β
2 ) =

ζ
(αi+βj)
3 f

ζ
(αi+βj)
3 ri1r

j
2

=
f

ri1r
j
2

.

In other words, f/(ri1r
j
2) ∈ K(X) and more precisely

f/(ri1r
j
2) ∈ L(D + iΓ1 + jΓ2).

For all i, j ∈ [0..2], we fix (f(1,i,j), f(2,i,j)), a K-basis of L(D + iΓ1 + jΓ2). Let

f1 =
∑

1⩽i,j⩽3

f(1,i,j)r
i
1r

j
2 and f2 =

∑
0⩽i,j⩽2

f(2,i,j)r
i
1r

j
2,

then (f1, f2) is a K[G]-basis of L(E).
In order to compute a G-generator matrix of GopG(Q,E), we must be able to evaluate

f1 and f2 on the fiber above P . We explain how to evaluate f1 on the fiber above P1. Recall
that

R1(P1) = R2(P1) = 1,

so the values of r1 and r2 on the fiber above P1 are cubic roots of unity. Let Q1,1 be the
point of Y above P1 such that

r1(Q1,1) = r2(Q1,1) = ζ3.

For all σ ∈ G, we define
Q1,σ = σ(Q1,1).

So for all α, β ∈ [0..2],

f1(Qi,σα
1 σ

β
2
) =

∑
0⩽i,j⩽2

ζ
(αi+βj)
3 f(1,i,j)(P1)r1(Q1,1)

ir2(Q1, 1)
j

=
∑

0⩽i,j⩽2

ζ
((α+1)i+(β+1)j)
3 f(1,i,j)(P1)

Note that these calculations only require computing a primitive cubic root of unity ζ3, the
functions (f(1,i,j))i,j∈[0..2], and cubic roots of R1(P1) and R2(P1).
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Finally, we compute the matrix E ∈ MP,2(K[G]), whose (Pi, j)-component is

EPi,j =
∑

0⩽α,β⩽2

fj(Qj,σ−α
1 σ−β

2
)σα

1 σ
β
2 .

For the coordinate component (P1, 1), we find

EP1,1 = (a3 + a2 + a+ 1) + a2σ1 + (a3 + 1)σ2
1

+ (a+ 1)σ2 + (a3 + a+ 1)σ1σ2
+ (a3 + a)σ2

2 + (a2 + 1)σ1σ
2
2 + (a3 + 1)σ2

1σ
2
2.
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Chapter 5

Pairing-friendly elliptic curves

Elliptic curves are now an essential tool in public-key cryptography. In particular, cryp-
tosystems whose security relies on the difficulty of computing discrete logarithms are used
in many situations. Since the early 2000s, new protocols using elliptic curve pairings have
been developed. These protocols require specific curves, known as pairing-friendly curves,
to function satisfactorily. The generation of coupled curves is therefore an important matter
when discussing the efficiency and security of these protocols.

In this chapter, after a brief introduction to pairing-based cryptography, we present the
classic methods for generating pairing-friendly curves. Next, we present a new method for
producing families of curves, as well as the families produced by this method. Finally, we
study one of the algorithmic problems involved in using the method.

5.1 Pairing-based cryptography
This section provides a brief overview of pairing-based cryptography.

5.1.1 Recalls on curve-based cryptography

Let’s start with some recalls about elliptic curves. Let K be a finite field with q = pm

elements, where p ⩾ 5. Let K̄ be an algebraic closure of K. An elliptic curve E can be
defined on K by a polynomial in short Weierstrass form:

E/K : y2z = x3 + Axz2 +Bz3,

where A,B ∈ K satisfy 4A3 + 27B2 ̸= 0. Let P∞ be the point at infinity of the curve E,
whose projective coordinates are [0 : 1 : 0]. In the case of elliptic curves, the Jacobi map
P 7→ P − P∞ is an isomorphism between E and JE, which induces an algebraic group
structure on E. We denote by E(K) the group of K-rational points of the curve.

For any integer r, we denote by E[r] the r-torsion of the curve E. We then denote by
E[r](K) the group of rational r-torsion points of E and by E[r](K̄) the group of r-torsion
points of E defined over K̄.
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The L-polynomial of the elliptic curve E is of the form

LE/K = qX2 − tX + 1

where t is an integer called the trace of E. Since the curve E is isomorphic to its Jacobian,
we know that

|E(K)| = LE/K(1) = q + 1− t.
The Hasse–Weil bound guarantees that |t| ⩽ 2

√
q. The curve E is ordinary if pgcd(t, p) = 1,

otherwise it is supersingular.
If E is an ordinary elliptic curve, then End(E) is a ring isomorphic to an order O

in an imaginary quadratic field Q(
√
−D) (where D is a positive integer not divisible by

a square). The Frobenius endomorphism generates a ring isomorphic to a suborder of
O, whose discriminant is the same, up to a square factor, as that of O or that of the
field Q(

√
−D). The discriminant of the suborder generated by Frobenius is equal to the

discriminant of its characteristic polynomial X2 − tX + q:

disc(X2 − tX + q) = t2 − 4q.

Therefore, D is the greatest divisor without square factors of 4q − t2, and there exists an
integer y such that:

−Dy2 = t2 − 4q.

Remark 28. The term discriminant can refer to several different values: the discriminant of
the curve −16(4A3+27B2), the discriminant of its ring of endomorphisms, the discriminant
of the Frobenius map, or the discriminant of the maximal order of Q(

√
−D). Furthermore,

in the literature on the generation of pairing-friendly curves, D is often also referred to as
the discriminant. In this chapter, unless otherwise stated, we will refer to the discriminant
of the endomorphism ring as the discriminant, and the positive integer without square
factors D as the cryptographic discriminant.

For cryptographic applications, we consider the case where |E(K)| = rh, where r is a
prime integer, different from p the characteristic of K, and h≪ r, such that

log(q) ≈ log (|E(K)|) ≈ log(r).

In this case, it is clear that the rational r-torsion of the curve E is cyclic. It is considered that
computing a discrete logarithm in E[r](K) requires O(

√
r) operations in E(K). Therefore,

to guarantee s bits of security (which defines the security level s) for cryptographic schemes
based on the difficulty of computing the discrete logarithm, it is necessary that log(r) ⩾ 2s.
Thus, computing the discrete logarithm requires performing at least

√
r ⩾ 2s operations on

the curve.

5.1.2 Pairings

In general, a pairing is a group morphism between a product of groups (noted additively)
G1 ×G2 and a group (noted multiplicatively) GT

e : G1 ×G2 −→ GT
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satisfying two conditions:

• (Non-degeneracy)

∀P ∈ G1 \ {0}, ∃Q ∈ G2, e(P,Q) ̸= 1,

and

∀Q ∈ G2 \ {0},∃P ∈ G1, e(P,Q) ̸= 1.

• (Bilinearity) ∀P1, P2 ∈ G1, ∀Q1, Q2 ∈ G2,∀n1, n2 ∈ Z,

e(n1P1 + n2P2, Q1) = e(P1, Q1)
n1e(P2, Q1)

n2 ,

and

e(P1, n1Q1 + n2Q2) = e(P1, Q1)
n1e(P1, Q2)

n2 .

The Weil pairing introduced in Section 2.2.1 is an example of a pairing. Let us return to
the notation used in Subsection 5.1.1: E is an elliptic curve over K, and r is a prime number
distinct from the characteristic p dividing |E(K)|. In this case, since E is isomorphic to its
Jacobian, we define the Weil pairing as follows

er : E[r](K̄)× E[r](K̄) −→ µr(K̄)

by identifying every point P with the divisor P − P∞.
Let k be the order of q modulo r, we call k the embedding degree. Suppose that

k > 1. Let Kr be an extension of degree k of K. Since r is coprime to the characteristic,
part of the r-torsion is rational, and k > 1, we know that the r-torsion of E is Kr-rational,
and that Kr contains all the r-th roots of unity. In this case, the Weil pairing is defined on
Kr.

If r2 ∤ qk − 1, we can also define the (reduced) Tate pairing[Ver10]

er : E[r](Kr)× E(Kr)/rE(Kr) −→ µr(Kr)

in a similar manner to the Weil pairing. Let P ∈ E[r](Kr), let fP be the function with
divisor rP − (rP )− (r − 1)P∞ normalized at P∞, i.e. given a uniformizer u∞ at P∞, we
have ur−1∞ fP (P∞) = 1. Let Q ∈ E(Kr)/rE(Kr), then

er(P,Q) = fP (Q)
(q−1)/r.

There exists a pairing derived from Tate’s pairing, called optimal Ate pairing, whose
evaluation requires fewer operations than that of the Tate pairing [Ver10].

It is clear from the above that, in order for these pairings to be computed efficiently, the
embedding degree k must be of reasonable size (in practice, it is common to require k ⩽ 54).
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In this case, we say that E is a pairing-friendly curve. However, curves with pairings are
extremely rare [BK98], and cannot be found at random. Nevertheless, there are methods
for constructing them, and we will detail some of these in Section 5.2.

As an example, we know that supersingular curves have small embedding degrees (k ⩽ 6).
In other words, there is no obstacle to computing pairings on a supersingular curve. On the
other hand, having such a small embedding degree compromises the security of protocols
based on the discrete logarithm, as explained in Subsection 5.1.4. Thus, we will focus
instead on the construction of pairing-friendly ordinary curves.

5.1.3 An example of pairing-based protocol

Pairings can be used for several cryptographic applications. Here we present a tripartite
key exchange protocol proposed by Joux in [Jou00].

Let P be a generator of the rational r-torsion of E. The famous Diffie-Hellman key
exchange works as follows: two parties A and B agree to use the public parameters E, r,
and P . Party A randomly selects a secret parameter sA ∈ Z/rZ and computes the point
sAP , which is its public key. Party B randomly selects sB ∈ Z/rZ and computes sBP . The
parties send each other their public keys and can compute the shared key sAsBP = sBsAP .

But how should three protagonists A, B, and C proceed to exchange a common key?
One solution would be to use the above protocol several times to compute sAsBsCP . For
example, A and B exchange their key sAsBP and send it to C, which can then compute
sAsBsCP . This solution has several drawbacks, notably requiring A, B, and C to be
connected simultaneously.

Joux’s solution consists in using the reduced Tate pairing er to compute a common key:

• A computes er(sBP, sCP )
sA = er(P, P )

sAsBsC .

• B computes er(sAP, sCP )
sB = er(P, P )

sAsBsC .

• C computes er(sAP, sBP )
sC = er(P, P )

sAsBsC .

This solution has the advantage of reducing the number of rounds required to exchange
keys. For example, if C wants to send a message common to A and B, using Joux’s key
exchange, it only needs to retrieve their public keys, instead of having to wait for A and B
to send their shared secret.

Pairings can also be used for other applications. For example, in [BLS01], Boneh, Lynn,
and Shacham propose using pairings to construct short signatures. Another interesting
application of pairings is identity-based encryption introduced by Boneh and Franklin
in [BF03].

5.1.4 Security of pairing-friendly curves

We reuse the notation from Subsection 5.1.2.
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Pairing-friendly curves are vulnerable to an attack presented in [MOV93], known as the
MOV attack. The principle is to use a pairing to reduce the discrete logarithm problem in
the r-torsion of the curve E over K to the discrete logarithm problem in K∗r . The complexity
of solving the discrete logarithm problem in K∗r is subexponential in k log q [BGK15]. For
pairing-friendly curves with a small embedding degree k relative to q (in practice, we always
have k ⩽ log q, for example), it is possible that discrete logarithms are easier to compute
in K∗r than in E(K).

For practical reasons, this means that it is costly to use curves with very small embedding
degrees (supersingular curves, for example) because, in order to preserve the difficulty of
the discrete logarithm, the size of the parameters r and q must be increased.

5.2 Generation of pairing-friendly curves
As mentioned in paragraph 5.1.2, pairing-friendly curves require specific construction
methods. In this section, we review classical methods for generating pairing-friendly curves
and families of pairing-friendly curves. We will focus solely on techniques that produce
ordinary curves.

5.2.1 Ordinary curves and complex multiplication

The standard approach to producing pairing-firendly curves consists in fixing the desired
embedding degree k as the starting parameter, then deducing conditions on the other
parameters. Let us fix k > 1 as an integer. We seek to produce ordinary friendly curves
with embedding degree k.

Let E be an ordinary elliptic curve defined over a finite field K with q elements. Let t
be the trace of E, then pgcd(t, q) = 1. Furthermore, the Hasse-Weil bound states that

|t| ⩽ 2
√
q

or equivalently 4q − t2 > 0. According to [Wat69], the converse is true: for any pair of
integers (q, t) where q is a prime power and t is coprime to q such that 4q − t2 > 0, there
exists an ordinary elliptic curve E, defined over a finite field K with q elements, with trace
t.

To produce pairing-friendly curves, we add an integer r and conditions on r, q, t, and k
describing that E must have a subgroup of K-rational points of order r and embedding
degree k.

Proposition 55 ([FST10]). Let k ⩾ 1 be an integer. Let q, r, t be integers such that:

1. q is a prime power.

2. r is prime, and r ∤ kq.

3. t and q are coprime.
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4. there exists an integer h such that q + 1− t = rh.

5. r divides Φk(t− 1) where Φk denotes the k-th cyclotomic polynomial.

6. 4q − t2 > 0.

Then there exists an ordinary elliptic curve E defined over a finite field K with q elements,
of trace t, having a K-rational subgroup of order r, with embedding degree k.

Now, we need to be able to compute E explicitly. Assuming that q is prime, we can
use Atkin and Morain’s complex multiplication method (see Subsection 3.2.3) to compute
the j-invariant of E. Let D be the cryptographic discriminant of the curve E (i.e., the
smallest integer D such that there exists y ∈ Z such that 4q − t2 = Dy2). The complex
multiplication algorithm requires computing (or knowing) the Hilbert class polynomial of
the field Q(

√
−D). This is only achievable if D is relatively small. For this reason, it is

common to set D as a starting parameter with k.

Corollary 55.1. Let k ⩾ 1 be an integer, and D a positive integer not divisible by a square.
Let q, r, t be integers such that:

1. q is prime.

2. r is prime, and r ∤ kq.

3. t and q are coprime.

4. there exists an integer h such that q + 1− t = rh.

5. r divides Φk(t− 1) where Φk denotes the k-th cyclotomic polynomial.

6. there exists an integer y such that 4q − t2 = Dy2.

Then there exists an ordinary elliptic curve E defined over a finite field K with q elements, of
trace t, having a K-rational subgroup of order r, of embedding degree k. The cryptographic
discriminant of E is D.

Condition 6 is called the CM equation. It is equivalent to

Dy2 = 4hr − (t− 2)2 (6’)

in the sense that it is possible to replace condition 6 with condition 6’ without changing
the proposition.

Finally, it has already been mentioned that for cryptographic applications, we want

log r ≈ log q.

Generally, the closer the ratio log q/ log r is to 1, the more interesting the curve is. We
define the value-ρ

ρ =
log q

log r

which will be the main quality criterion for the produced pairing-friendly curves.
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5.2.2 Cocks–Pinch method

We use the notation from Corollary 55.1. The Cocks-Pinch method [FST10] is a method for
constructing pairing-friendly curves. The idea behind this method is to use the arithmetic
relations between q, t and y modulo r, so that they can be computed once r is fixed.

Condition 5 implies that t−1 is a primitive k-th root of unity modulo r, and condition 6’
implies that −D has a square root modulo r. Thus, we obtain additional constraints on r,
namely:

• k | r − 1,

•
(−D

r

)
= 1.

We can then generate a pairing-friendly curve with Algorithm 5.2.1.

Algorithme 5.2.1 : Cocks–Pinch algorithm
Entrées : k ⩾ 1 an integer, D a positive integer not divisible by a square
Output : q, r and t integers parameterizing a pairing-friendly curve

1 Let r be a prime integer such that k | r − 1 and
(−D

r

)
= 1

2 Let ζk be a k-th root of unity modulo r
3 Compute an integer t ≡ ζk + 1 mod r

4 Compute an integer y ≡ (ζk − 1)/
√
−D mod r

5 Compute q = (t2 +Dy2)/4
6 If q is a prime integer, return q, r and t, otherwise go back to 1. and change r, ζk, t

or y.

We can always choose t and y in [−r, r], so q ⩽ D+1
4
r2. Thus, in general, the Cocks-Pinch

method generates pairing-friendly curves whose value ρ is close to 2, which makes them
rather poor curves compared to the curves used in practice, produced by other methods.
However, this method is very flexible and allows a great deal of control over r, for example
over the Hamming weight of its binary decomposition. In addition, most of the generation
methods used for families of curves are inspired by the Cocks-Pinch method, for example
the Brezing-Weng method (see Section 5.2.4).

5.2.3 Families of curves

In this subsection, we address the problem of constructing families of pairing-friendly curves.
Most pairing-friendly curves used in practice have been produced as elements of families
of curves. It is interesting to study methods that produce families of curves because, in
many cases, they produce curves with a better ρ-value than those produced by methods
that construct one curve at a time, such as the Cocks-Pinch method.

In order to construct families of pairing-friendly curves, we seek polynomials Q, R, and
T with rational coefficients such that there exist integers (xi)i∈N such that Q(xi), R(xi),
and T (xi) satisfy the conditions of Corollary 55.1 for all i ∈ N.
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In particular, Q must take an infinite number of prime integer values. Based on current
knowledge, we do not know of any necessary and sufficient condition on Q (non-trivial) for
this to be the case. We will assume that the Bunyakovsky–Schinzel conjecture is true:

Conjecture 1 (Bunyakovsky–Schinzel). Let Q be a polynomial of Q[Z]. Then Q takes
prime values at an infinite number of integers if and only if:

• Q is non constant, irreductible and has a positive leading coefficient.

• Q takes an integer value at some z ∈ Z.

• pgcd({Q(z) | z,Q(z) ∈ Z}) = 1.

We say that a polynomial with rational coefficients represents primes if it satisfies the
conditions of the conjecture.

Definition 39. Let k ⩾ 1 be an integer and D a positive integer not divisible by a square.
Let Q, R and T be polynomials of Q[X]. We say that Q, R, and T parameterize a potential
family of pairing-friendly curves (with embedding degree k and cryptographic discriminant
D) if:

1. R is a non-constant, irreducible polynomial with a positive leading coefficient.

2. There exists a polynomial H ∈ Q[X] such that HR = Q+ 1− T .

3. R divides Φk(T − 1).

4. There exists a polynomial Y ∈ Q[X] such that DY 2 = 4Q− T 2.

We say that Q, R, and T parameterize a family of pairing-friendly curves if, in addition:

5. Q represents primes.

6. Q, R, T , Y , H take integer values at a common integer x ∈ Z.

We define the value-ρ of a family of curves:

ρ =
deg Q

deg R

In this way, the ρ-values of the curves in the family logQ(x)
logR(x)

converge to the ρ-value of the
family.

Remark 29. In what follows, we will only consider families parameterized by polynomials. For
the sake of brevity, we will sometimes identify the family and the polynomials parameterizing
it.
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5.2.4 Brezing–Weng method

The polynomials parameterizing a family must satisfy arithmetic relations similar to
those described in Corollary 55.1. Thus, the Cocks–Pinch method generalizes well to the
production of families of curves. Brezing and Weng formalized this generalization [BW05].
We reformulate their algorithm from a perspective closer to the Kachisa-Schaefer-Scott
approach.

Let Q̄ be an algebraic closure of Q. Let Ck be the k-th cyclotomic field in Q̄ and
√
−D

a square root of −D in Q̄.

Lemma 56. Let K be a number field and θ a primitive element of K (i.e., K = Q(θ)). Let
ζ be an element of K. There exists a unique polynomial T ∈ Q[X] of minimal degree, such
that:

T (θ) = ζ .

We say that T is the canonical polynomial mapping θ to ζ.

Proof. Let R be the minimal polynomial of θ. We have a canonical isomorphism

Q[X]/⟨R⟩ −→ K
P mod R 7−→ P (θ)

Let P ∈ Q[X] such that P (θ) = ζ. Then T is the remainder of the Euclidean division of P
by R.

Similar to the Cocks–Pinch method, the Brezing-Weng method (Algorithm 5.2.2) consists
of generating potential families with a chosen polynomial R until a family is obtained.

Algorithme 5.2.2 : Brezing–Weng method
Entrées : k > 1 an integer and D a positive integer not divisible by a square
Output : Q, R, T , Y , H parameterizing a family of curves with cryptographic

discriminant D and embedding degree k
1 Set K ⊂ Q̄ a number field containing Ck and Q(

√
−D).

2 Set θ ∈ K a primitive element (i.e. K = Q(θ)).
3 Compute R ∈ Q[X] the minimal polynomial of θ.
4 Set ζk a primitive k-th root of unity in K.
5 Determine T ∈ Q[X] the canonical polynomial mapping θ to ζk + 1.
6 Determine Y ∈ Q[X], the canonical polynomial mapping θ to ζk−1√

−D . Compute
Q = (T 2 +DY 2)/4 ∈ Q[X] and H = (Q+ 1− T )/R ∈ Q[X]. If Q represents
primes and if there exists an integer z0 and a rational number λ > 0 such that
Q(z0), λR(z0), T (z0), Y (z0) and H(z0)/λ are integers, return (Q, λR, T, Y,H/λ),
otherwise go back to 1 and change K, θ or ζk.

Since T and Y have degree strictly smaller than R, we can show that the families
produced by this method satisfy

ρ ⩽ 2− 2

deg R
.
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Generally, equality is achieved. We now need to find polynomials R (or, equivalently,
algebraic numbers θ) that produce families whose ρ-value is significantly smaller than 2.

A first technique consists in noting that, when D = 1 or D = 3, the field Ck(
√
−D) is a

cyclotomic extension of Q. If D = 1, resp. D = 3, let ℓ = ppcm(k, 4), resp. ℓ = ppcm(k, 3),
and let θ = ζℓ be an ℓ-th primitive root of unity in Q̄. Then θ can be used in the Brezing-
Weng method. The first to use cyclotomic polynomials to generate families of curves were
Barreto, Lynn, and Scott [BLS03], and in parallel Brezing and Weng [BW05]. Their work
was taken up and extended by Freeman, Scott, and Teske [FST10]. For most embedding
degrees k, the best known families come from these contributions [FST10, Table 8.2].
Notable exceptions are the cases 18 | k and sometimes k ≡ 4 mod 6.

Kachisa, Schaefer, and Scott also worked in the cyclotomic field Cℓ, but proceeded by
exhaustive search on the parameters θ and ζk [KSS08], with the aim of producing families
for problematic cases, in particular 18 | k. Let ζℓ be an ℓ-th root of unity in Cℓ. Let B1 and
B2 be two positive integers. We define KSS(B1, B2) as the set of primitive elements of Cℓ
of the form

P (ζℓ) =

φ(ℓ)−1∑
i=0

Piζ
i
ℓ,

where P =
∑φ(ℓ)−1

i=0 PiX
i is a polynomial with rational coefficients such that

• P has at most B1 nonzero coefficients.

• ∀i ∈ [0, φ(ℓ) − 1],max(num(|Pi|), denom(|Pi|)) ⩽ B2, where φ denotes the Euler
indicator.

The families constructed by Kachisa, Schaefer, and Scott come from primitive elements of
Cℓ in KSS(2, 3).

With a few exceptions, the families obtained by the two previous methods are the
families with the smallest known ρ-values [FST10, Table 8.2].

5.3 The new method
In this section, we present an improvement and generalization of the method of Kachisa,
Schaefer, and Scott. The idea behind this construction is to identify a family of algebraic
numbers that produce potential families whose ρ-value is upper bounded. We also present
new families of curves produced with this new method. A Sagemath [The22] implementation
of the method is available [Gas23]. This section contains my personal contributions to the
article [GG25], co-authored with Aurore Guillevic.

5.3.1 Presentation of the method

Let k ≥ 1 be an integer, let D be a squarefree positive integer, and let Q be an algebraic
closure of Q. Let F = Q(

√
−D) ⊂ Q and let K = FCk ⊂ Q. One can see K as an F -vector
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space. Let Fζk be the F -vector line in K spanned by ζk.

Fζk = {αζk;α ∈ F} = {(a+ b
√
−D)ζk; a, b ∈ Q}.

Let θ ∈ Fζk, and assume θ is a primitive element in K (over Q). Let R be the minimal
polynomial of θ (over Q). Set

α = θ/ζk ∈ F.
Let e be the minimal divisor of k such that ζek ∈ F . Assume that θe ∈ F is a primitive
element in F . Note that this assumption is not very restrictive.

Since α,
√
−D ∈ F , there exist P1, P2 and P3, three rational polynomials of degree at

most 1 such that:

P1(θ
e) = 1/α,

P2(θ
e) = 1/(α

√
−D),

P3(θ
e) = 1/

√
−D.

Then one has
P1(θ

e)θ + 1 = θ/α + 1 = ζk + 1

and
P2(θ

e)θ − P3(θ
e) = ζk/

√
−D − 1/

√
−D = (ζk − 1)/

√
−D .

Let T be the canonical rational polynomial mapping θ to ζk +1, and let Y be the canonical
rational polynomial mapping θ to (ζk− 1)/

√
−D. Then T is the remainder of the Euclidean

division of P1(X
e)X + 1 by R. As such, one has

deg T ⩽ deg(P1(X
e)X + 1) ⩽ e+ 1 .

Similarly, one has deg(Y ) ⩽ deg(P2(X
e)X − P3(X

e)) ⩽ e+ 1. Consequently

max(deg(T ), deg(Y )) ⩽ e+ 1 .

Let Q = (T 2 +DY 2)/4, then
deg(Q) ⩽ 2e+ 2 .

Thus, since degR = [K : Q], one has

ρ(θ, ζk) ⩽
2e+ 2

[K : Q]
.

Moreover, if 2e+2
[K:Q]

< 2, i.e. if e+ 1 < degR, one has

T = P1(X
e)X + 1 and Y = P2(X

e)X − P3(X
e)

by definition of remainder of a Euclidean division of polynomials. Now, since α and α
√
−D

can not be rationals simultaneously, then at least one of P1 or P2 must have degree 1. Then
at least one of T or Y must have degree e+ 1. Thus, in this case we have an equality

ρ(θ, ζk) =
2e+ 2

[K : Q]
.
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Theorem 57. With the notation of the beginning of 5.3.1, let

S = {θ ∈ Fζk primitive in K | θe is primitive in F}.

Then, if 2e+2
[K:Q]

< 2, one has

ρ(S, ζk) =
2e+ 2

[K : Q]
.

Remark 30. Note that the construction can be generalized very simply to the case where F
is an extension of Q(

√
−D). Then P1,P2,P3 have degree at most [F : Q]− 1 and the bound

on the ρ-value becomes:

ρ(S, ζk) ⩽
2e([F : Q]− 1) + 2

[K : Q]
.

We studied the cases where F is not quadratic as well, and found that the method produced
potential families with a larger ρ-value (but smaller than 2 in some cases).

We now give more explicit bounds on ρ(S, ζk).

Theorem 58. With the notation of 57, assume 2e+2
[K:Q]

< 2.

1. Assume that k is a multiple of 6 and D = 3. Then e = k/6 and

ρ(S, ζk) =
k/3 + 2

φ(k)
.

2. Assume that k is a multiple of 4 and D = 1. Then e = k/4 and

ρ(S, ζk) =
k/2 + 2

φ(k)
.

3. Assume that k is an odd multiple of 3 and D = 3. Then e = k/3 and

ρ(S, ζk) =
2k/3 + 2

φ(k)
.

4. Assume that k is even and
√
−D /∈ Ck. Then e = k/2 and

ρ(S, ζk) =
k/2 + 1

φ(k)
.

5. Assume that k is odd and
√
−D /∈ Ck. Then e = k and

ρ(S, ζk) =
k + 1

φ(k)
.
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Proof. We only prove case 4 as an example. Assume that k is even and
√
−D /∈ Ck. Then

[K : Q] = 2φ(k) as K is a quadratic extension of Ck. Now we prove e = k/2. Since√
−D /∈ Ck, then ζek is not primitive in F (otherwise F ⊂ Ck), and F is quadratic so ζek is

rational. Then ζek ∈ {1,−1}, because ζek is a root of unity. Since k is even, e = k/2 and
ζek = −1. Thus, by 57,

ρ(S, ζk) =
2e+ 2

[K : Q]
=
k + 2

2φ(k)
=
k/2 + 1

φ(k)
.

We refer to the method of generation of families via exhaustive search over the algebraic
integers of S as the subfield method. Note that considering only algebraic integers is
not very restrictive, as one can obtain remaining potential families by applying an affine
substitution (over Q).

Remark 31. Note that when D = 1 or D = 3 and for some values of k, every element in S
is an element in KSS(2, B) for B sufficiently large. More precisely, take ℓ = ppcm(k, 4)) if
D = 1 or ℓ = ppcm(k, 3) if D = 3. Let ζℓ be a ℓ-th root of unity in Cℓ. Then ζk := ζ

ℓ/k
ℓ

is a primitive k-th root of unity. Moreover, there exists d ∈ {3, 4, 6} maximal such that
ζd := ζ

ℓ/d
ℓ ∈ F is a non-rational root of unity in F = Q(

√
−D). Then for any θ ∈ S, there

exists two rationals a and b such that

θ = (aζd + b)ζk = (aζ
ℓ/d
ℓ + b)ζ

ℓ/k
ℓ .

If ℓ/d + ℓ/k < φ(ℓ) then θ ∈ ∪B>0KSS(2, B). In particular, one can check that the
inequality holds when k ∈ {16, 18, 32, 36, 40}. Moreover, it so happens that the families
introduced by Kachisa et al. come from elements in such an S. Therefore, we can see
the subfield method as a refinement of the enumeration method of Kachisa et al. in these
cases. This also means that when D ∈ {1, 3} one can produce any family generated with
the subfield method using the KSS method, at the expense of a longer exhaustive search.
However, when D /∈ {1, 3}, the subfield method is a strict generalization of the work of
Kachisa et al.

5.3.2 Results

The interest of the subfield method depends on its ability to satisfy the following conditions:

1. The method produces potential families with ρ-values less than or equal to the
reference values in the first column of [FST10, Table 8.2].

2. the method produces actual families among the potential families.

3. the families produced by the method can be used to generate pairing-friendly curves
for the desired security level.
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For condition 3, it may happen that the family only allows the generation of pairing-friendly
curves whose parameters q and r are too large compared to the sizes required to guarantee
the desired security level. This can occur when the denominators of the polynomials Q, R,
and T parameterizing the family are large.

Next, we will present new families of curves, produced using the subfield method, which
generate curves adapted to the 192-bit security level. Thus, the three previous conditions
are met.

Assume that k /∈ {2, 3, 4, 6, 12}, then the potential families produced by the subfield
method have ρ-values at least as small as the reference values in [FST10, Table 8.2]. The
embedding degrees for which the ρ-values are improved are compiled in Table 5.1. A bold
value indicates an improvement, while a green box indicates that it is possible to find
families among the potential families produced by my Sagemath implementation of the
method [Gas23].

k ρ,D = 1 ρ,D = 3 ρ,
√
−D /∈ Ck ρ, Previous method

16 1.250 1.125 1.125 1.250, [FST10, 6.11]
22 1.200 1.200 1.200 1.300, [FST10, 6.3]
28 1.333 1.250 1.250 1.333, [FST10, 6.4]
40 1.375 1.3125 1.3125 1.375, [FST10, 6.15]
46 1.091 1.091 1.091 1.136, [FST10, 6.3]

Table 5.1: Comparison of the ρ-values of the potential families produced
by the subfield method with the reference values [FST10].

We give two families with embedding degrees k = 22 and k = 28 whose denominators
are not too large and whose ρ-values are strictly less than the reference values:

Example 6 (GG22 family [GG25]). Let k = 22 and D = 7. Let us fix an algebraic closure of
Q and

√
−7 a square root of −7. Let F = Q(

√
−7). Let K = FC22. Let ζ22 be a primitive

22th root of unity, and let ω = 1+
√
−7

2
. We have K = Q(ω, ζ22).

Let α = 1 + ω and θ = αζ22. We have ζ1122 ∈ F , and θ11 /∈ Q. Therefore, Q(θ11) = F ,
and θ ∈ S. My Sagemath implementation of the subfield method [Gas23] gives:

• T = (X12 + 45X + 46)/46

• Y = (X12 − 4X11 − 47X − 134)/322

• R = (X20−X19−X18+3X17−X16−5X15+7X14+3X13−17X12+11X11+23X10+
22X9− 68X8 +24X7 +112X6− 160X5− 64X4 +384X3− 256X2− 512X +1024)/23

• Q = (X24 −X23 + 2X22 + 67X13 + 94X12 + 134X11 + 2048X2 + 5197X + 4096)/7406

The family generated by θ has a value-ρ of 6/5. This value-ρ is less than the reference value
of 13/10 for k = 22.
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Example 7. Let k = 28, D = 11, ω = (−1 +
√
−11)/2, α = ω, θ = αζ28. One has:

• T = (X15 + 718X + 3237)/3237

• Y = (X15 + 6X14 + 7192X + 7545)/35607

• R = (X24+5X22+16X20+35X18+31X16−160X14−1079X12−1440X10+2511X8+
25515X6 + 104976X4 + 295245X2 + 531441)/(312 · 132 · 832)

• Q = (X30+X29+3X28+2515X16+14384X15+7545X14+4782969X2+13304911X+
14348907)/38419953

The ρ-value of this family is 5/4, improving on the reference value of 4/3.

The GG22 family from example 6 is of cryptographic interest for specific situations and
has been studied in [AFG24, LZZ24] following the publication of an article on this new
method.

A final advantage of the new method lies in its ability to generate numerous alternative
families to known families of equivalent quality. This makes it possible to avoid attacks
specific to a particular family. Thus, in [AFG24], the authors consider a curve of embedding
degree k = 20 produced by the subfield method instead of the old curve from [FST10,
Construction 6.4].

The list of alternative families produced by the subfield method is given in the appendix
(Subsection 6.1.1). A list of integers x ∈ Z that can be used to generate curves for the
192-bit security level for some of the new families is also given (Subsection 6.1.2).

5.4 Algorithm computing the roots of a integral polyno-
mial modulo a prime power

Let Q, R, and T be polynomials with rational coefficients parameterizing a potential family
of pairing-friendly curves. The question is to prove that Q, R and T parameterize a family
of curves. To do this, we must show that Q represents the primes and that the polynomials
take integer values at the same x ∈ Z (note that this implies that there are infinitely many
such integers x).

To verify these two conditions, it is enough to be able to:

• compute at which integers a polynomial with rational coefficients takes integer values.

• compute the GCD of the integer values of a polynomial with rational coefficients.

Let’s take the polynomial Q as an example. Let ∆ be the denominator of Q, i.e., the
smallest positive integer such that ∆Q ∈ Z[X]. Let x ∈ Z, then

Q(x) ∈ Z⇔ ∆Q(x) ≡ 0 mod ∆.
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We can therefore find the integers for which Q takes integer values by computing the roots
of ∆Q modulo pn, for all pn appearing in the prime factorization of ∆, if it is known.

Assume that the integers at which Q takes integer values are known. Let α be the
GCD of some integer values of Q. If α = 1, then the GCD of the integer values of Q is 1.
Otherwise, for every prime p dividing α, we ask whether p divides the integer values of Q.
We have

∀x ∈ Z such that Q(x) ∈ Z, Q(x) ≡ 0 mod p⇔ ∆Q(x) ≡ 0 mod p∆.

It is therefore sufficient to compare the set of roots of ∆Q modulo ∆ and modulo p∆.
It remains to be explained how, given P ∈ Z[X], p a prime integer, and n > 0 an integer,

to compute the set of integers x such that

P (x) ≡ 0 mod pn. (5.4.1)

The standard approach to this problem is to start by solving

P (x) ≡ 0 mod p

and then lifting the solutions modulo pn. Hensel’s lemma [Ser78] is used to lift any simple
root modulo p to a unique root modulo pn. However, the literature is quite sparse for the
degenerate case. In this section, we give a general algorithm for solving such polynomial
equations. We start by giving an appropriate way to represent the set of solutions of 5.4.1
in 5.4.1. In 5.4.2, we introduce the µ function, which is central in the final algorithm, and
explain how to compute it. Finally, in 5.4.3, we present 5.4.1 which solves 5.4.1.

For the entire section, we fix a polynomial P ∈ Z[X], a prime number p and an integer
n > 0.

5.4.1 Representing the set of solutions

We will use the following elementary sets to describe the set of solutions of P (x) = 0 mod pn

in Z.

Definition 40. Let a be an integer and let j ≥ 0 be an integer. We define

D(a, j) = {x ∈ Z | x ≡ a mod pj}

the p-congruence class of a modulo pj. It is indeed a congruence class.

The following proposition will prove useful later.

Proposition 59. Let a1, a2 be integers and let j1, j2 be two integers larger than 0 such
that j1 ⩽ j2. Define D(a1, j1) and D(a2, j2) as in 40. Assume that

D(a1, j1) ∩D(a2, j2) ̸= ∅.

Then
D(a2, j2) ⊂ D(a1, j1).
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Proof. Let x ∈ D(a1, j1) ∩D(a2, j2) be an integer. Then

x ≡ a1 mod pj1 and x ≡ a2 mod pj2 .

Since j1 ⩽ j2, one has
x ≡ a2 mod pj1 .

Thus,
a2 ≡ a1 mod pj1 and D(a2, j2) ⊂ D(a1, j1).

Now, let S ⊂ Z be a pn-periodic set of integers.

Definition 41. A representation by p-congruence classes of S is a collection of p-congruence
classes (D(ai, ji))i∈I such that

S = ∪i∈ID(ai, ji).

It is called finite if I is finite.

Remark 32. S always admits a finite representation by p-congruence classes. Indeed, S is
pn-periodic, which means that S is a (finite) union of classes of integers modulo pn. More
clearly,

S = ∪a∈S∩[0,pn−1]D(a, n).

We want to define a canonical finite representation by p-congruence classes of S. A first
step is to ask that the congruence classes (D(ai, ji))i∈I be disjoint, but it is not sufficient.
Let a be an integer and let j ≥ 0 be an integer. Then D(a, j) = ∪p−1i=0D(a+ i · pj, j + 1),
and the union on the right is disjoint. It turns out that this is the only other obstacle.

Definition 42. Let C be a p-congruence class in S. We say that C is maximal in S if it is
maximal as a p-congruence class for the inclusion.

According to 59, S is the disjoint union of its maximal p-congruence classes. The
representation of S composed of its maximal p-congruence classes is called the reduced
representation of S.

5.4.2 The key quantity

Recall that we ultimately want to compute the set

S = {x ∈ Z | P (x) ≡ 0 mod pn}. (5.4.2)

Since S is pn-periodic, we ask to compute a reduced representation of S by p-congruence
classes. The content of this section will help us to achieve this goal in the following
subsection.
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Definition 43. Let us define

µ(P ) = sup{j ∈ Z≥0 | ∀x ∈ Z, P (x) ≡ 0 mod pj} . (5.4.3)

Remark 33. The objects defined in 40 and 43 depend on p. We do not indicate p in the
notation because it will not lead to any confusion in this work.

Example 8. We give two toy examples for the prime p = 2:

• let P = X2 + 3. Observe that P (0) = 3 ̸≡ 0 mod 2. Then µ(P ) = 0.

• let P = X2−X. Since for any integer x, either x or x− 1 is even, P (x) is even. Thus,
one can check that µ(P ) = 1.

It is easily seen that S = Z if and only if µ(P ) ≥ n. More generally, one can use the µ
function to check if a p-congruence class is in S.

Proposition 60. Let n be a positive integer, let P ∈ Z[X], and let S and µ be as in ??.
Let a be an integer and let j ≥ 0 be an integer. Define D(a, j) as in 40. Then

µ(P (a+ pjX)) ≥ n if and only if D(a, j) ⊂ S.

Proof.

µ(P (a+ pjX)) ≥ n⇔ ∀b ∈ Z, P (a+ pjb) ≡ 0 mod pn

⇔ ∀x ∈ D(a, j), P (x) ≡ 0 mod pn

⇔ D(a, j) ⊂ S.

Therefore, being able to evaluate µ allows us to check if a p-congruence class is in the
set of solutions S. The following theorem explains how to evaluate µ.

Theorem 61. Let P ∈ Z[X] and let p be a prime integer. Let µ be the function defined
in 5.4.3. Let a0, a1, . . . , adegP be integers such that

P =

degP∑
i=0

ai

(
X

i

)
where (

X

i

)
=
X(X − 1) . . . (X − i+ 1)

i!
.

Then
µ(P ) = min

0⩽i⩽degP
(valp(ai)).
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Proof. It is well-known that (
(
X
i

)
)i∈Z is a Z-basis of the group of integer-valued polynomials.

Since P is integer valued, such a0, a1, . . . , adegP exists.
Let m = min

0⩽i⩽degP
(valp(ai)). It is clear that

µ(P ) ≥ m.

Let 0 ⩽ i0 ⩽ degP be the smallest integer such that

valp(ai0) = m.

Then

P (i0) =

degP∑
i=0

ai

(
i0
i

)

=

i0∑
i=0

ai

(
i0
i

)
≡ ai0

(
i0
i0

)
mod pm+1 by minimality of i0

≡ ai0 mod pm+1

̸≡ 0 mod pm+1.

Thus,
µ(P ) ⩽ m.

5.4.3 Computing the roots of a polynomial modulo a prime power

We design a recursive algorithm to compute a reduced representation of the set S of integer
solutions of

P (x) ≡ 0 mod pn.

The idea of the algorithm is actually very straightforward. One computes µ to check if
µ(P ) ≥ n. If the answer is yes, one knows that S = Z. Otherwise, we recursively search for
solutions in every congruence class modulo p using substitutions.

Before presenting Algorithm 5.4.1, let us recall the following lemma.

Lemma 62. Let P ∈ Z[X], let p be a prime integer and let a be any integer. Then

P (a) ≡ 0 mod p

if and only if

p | P (a+ pX), i.e.
P (a+ pX)

p
∈ Z[X].
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Proof. One can check that there exists a polynomial Q ∈ Z[X] such that

P (a+X) = P (a) +X ·Q(X).

Thus,
P (a+ pX) = P (a) + pX ·Q(pX),

and one can easily deduce the lemma.

Algorithm 5.4.1 is given below. One can easily see that the algorithm finishes because n
is strictly decreasing in the tree of recursion, and is lower bounded by 0. Correctness comes
from 60 and the observation that if

P (a) ̸≡ 0 mod p

then
∀x ≡ a mod p, P (x) ̸≡ 0 mod p.

Algorithme 5.4.1 : RootsModPrimePowers(P, p, n)
Entrées : P ∈ Z[X], p a prime integer, n > 0 an integer

1 si µ(P ) ⩾ n alors
2 Return D(0, 0).
3 sinon
4 S ← ∅
5 pour 0 ⩽ a ⩽ p− 1 faire
6 si P (a) ≡ 0 mod p alors
7 Q← P (a+ pX)/p
8 ∪i∈ID(ai, ji)← RootsModPrimePowers(Q, p, n− 1)
9 S ← ∪i∈ID(a+ p · ai, ji + 1) ∪ S

10 Return S.

Remark 34. We presented the algorithm with the goal of making it as clear as possible. It
can be improved in many ways. Firstly, rather than testing if P (a) ≡ 0 mod p for every
a mod p, one should use the Berlekamp algorithm to compute every root of P modulo
p. Secondly, one should divide P (a+ pX) by the largest power of p possible, in order to
reduce the size of the tree of recursion. Finally, one should always seek to use Hensel’s
lemma, whenever possible during the recursion. The algorithm is implemented with all
these improvements in [Gas23].
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Chapter 6

Appendix

6.1 New pairing-friendly curves
In this section, we list some additional outputs of the new method for generating families of
pairing-friendly curves from Section 5.3.1. In Subsection 6.1.1, we give the families produced
by this new method, whose ρ value does not improve on previous records, but which are of
cryptographic interest for the reasons given in Section 5.3.2. Subsection 6.1.2 gives integers
that can be used to generate new pairing-friendly curves for the 192-bit security level with
our new families.

6.1.1 Alternative families

Here are some examples of new families of pairing-friendly curves.

Example 9 (GG20a). Let k = 20, and D = 1. Let θ = (1− 2
√
−1)ζ20. Then

• T = (2X6 + 117X + 205)/205

• Y = (X6 − 5X5 − 44X − 190)/205

• R = (X8 + 4X7 + 11X6 + 24X5 + 41X4 + 120X3 + 275X2 + 500X + 625)/25625

• Q = (X12−2X11+5X10+76X7+176X6+380X5+3125X2+12938X+15625)/33620

is a family of pairing-friendly curves with embedding degree k = 20 cryptographic discrimi-
nant D = 1.

Example 10 (GG20b). Let k = 20, let D = 1, and let θ = (1 + 2
√
−1)ζ20. Then

• T = (−2X6 + 117X + 205)/205

• Y = (X6 − 5X5 + 44X + 190)/205

• R = (X8 − 4X7 + 11X6 − 24X5 + 41X4 − 120X3 + 275X2 − 500X + 625)/25625
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• Q = (X12−2X11+5X10−76X7−176X6−380X5+3125X2+12938X+15625)/33620

is a family of pairing-friendly curves with embedding degree k = 20 cryptographic discrimi-
nant D = 1.
Example 11 (GG28). Let k = 28, let D = 1, and let θ = (1 + 2

√
−1)ζ28. Then

• T = (−2X8 − 527X + 145)/145

• Y = (X8 − 5X7 + 336X − 1390)/145

• R = (X12 + 4X11 + 11X10 + 24X9 + 41X8 + 44X7 − 29X6 + 220X5 + 1025X4 +
3000X3 + 6875X2 + 12500X + 15625)/29

• Q = (X16 − 2X15 + 5X14 + 556X9 − 1344X8 + 2780X7 + 78125X2 − 217382X +
390625)/16820

is a family of pairing-friendly curves with embedding degree k = 28 cryptographic discrimi-
nant D = 1.

6.1.2 New curves

We provide integers that can be used to generate pairing-friendly curves from some of our
new families.

curve
family seed x ∈ Z log q log r ρ log qk

security
K∗r

GG20a −(249 + 246 + 241 + 218 + 23 + 22 + 1) 576 379 1.52 11520 196
GG20a 249 + 246 + 244 + 240 + 234 + 227 + 214 + 1 576 380 1.52 11500 196
GG20b −249 − 245 − 242 − 236 + 211 + 1 575 379 1.52 11500 196
GG20b −249 + 246 − 241 + 235 + 230 − 1 575 379 1.52 11500 196
GG20b −249 − 247 + 245 − 227 − 222 − 218 − 1 576 380 1.52 11520 196

GG22D7 −219 − 217 − 215 − 213 − 27 + 1 453 380 1.19 9966 220
GG22D7 −220 + 218 + 214 + 212 + 210 − 28 − 25 + 1 457 382 1.20 10054 220
GG22D7 −220 + 218 + 213 − 210 − 28 − 22 + 1 457 383 1.19 10054 220

Table 6.1: Parameters of new curves for the 192 bits security level.

6.2 Random generators of an abelian group
The objective of this section is to prove Corollary 63.1 and Theorem 64. These theorems
upper bound the probability of not generating a finite abelian group by uniformly sampling a
given number of elements. These theorems are used, for example, to find a set of generators
of the Jacobian of a smooth projective curve over a finite field (see Section 2.2.3).

Let G be a finite abelian group.
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Definition 44. We call the integers d1| . . . |dr such that:

G ∼= Z/d1Z× · · · × Z/drZ

the invariant factors of G.

We will study the number of elements that need to be randomly drawn from G in order
to generate it entirely with a probability of failure less than 1/2n, where n is an integer.
We can start by observing that the probability that k elements g1, . . . , gk are contained in a
maximal subgroup H of G is 1/[G : H]k ⩽ 1/2k. Therefore, the probability that k elements
do not generate G is bounded above by #{H maximal subgroup of G}/2k. However, every
maximal subgroup corresponds to a unique character of G of which it is the kernel. Since
the number of characters of G is bounded by |G|, we have:

P(⟨g1, . . . , gk⟩ ⊊ G) ⩽ |G|/2k

In particular, for P(⟨g1, . . . , gk⟩ ⊊ G) ⩽ 1/2n, it suffices that k ⩾ ⌈log |G|⌉ + n. This
bound has good asymptotic properties, since we see that drawing an additional element
divides the probability of failure by 2. However, the term ⌈log |G|⌉ makes it uninteresting
when n = o(log |G|), because it does not take into account the structure of the group. For
example, if G is an ℓ-cyclic group, where ℓ is a prime number, the expected number of
elements of G to be drawn uniformly to generate G is ℓ/(ℓ− 1).

Random generators of ℓ-groups

We begin by considering the case of ℓ-groups. Let ℓ be a prime number. Let G be a finite
abelian ℓ-group, and let r be the number of invariant factors of G. We know that at least
r elements of G are needed to generate it entirely. Furthermore, elements g1, . . . , gr of G
generate G if and only if [Pom01]:

∀1 ⩽ i ⩽ r, gi ̸= 0 mod ℓG+ ⟨g1, . . . , gi−1⟩.

Thus, for 1 ⩽ i ⩽ r, let g1, . . . , gi−1 be elements of G satisfying the previous condition,
and let gi be uniformly sampled from G, then

P (gi ̸= 0 mod ℓG+ ⟨g1, . . . , gi−1⟩) =
ℓr−i+1 − 1

ℓr−i+1
= 1− 1

ℓr−i+1

because G/(ℓG+ ⟨g1, . . . , gi−1⟩) ∼= Fr−i+1
ℓ .

We now consider a sequence X1, X2, . . . of independent random variables identically
distributed according to the uniform distribution on G. We define

T1 = min{j ∈ N | Xj ̸= 0 mod ℓG}

and for all 2 ⩽ i ⩽ r,

Ti = min{j ∈ N | Xj ̸= 0 mod ℓG+ ⟨XT1 , . . . , XTi−1
⟩} − Ti−1
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Therefore, for all 1 ⩽ i ⩽ r, the random variable Ti is a stopping time, which refers to
the first success in a sequence of independent Bernoulli trials with probability of success
pi = 1− 1

ℓr−i+1 . The variable Ti therefore follows a geometric distribution with parameter
pi:

Ti ∼ G
(
1− 1

ℓr−i+1

)
Let S =

∑r
i=1 Ti, then for any integer n > 0,

P(⟨X1, . . . , Xn⟩ = G) = P(S ⩽ n)

We thus wish to bound the probability P(S > n) for any integer n. In the article [Pom01],
an explicit formula for the probability P(S ⩽ n) is given. However, the bound in Theorem 63
allows us to simplify the calculations:

Theorem 63. Let ℓ be a prime integer. Let (Ti)i∈N be a sequence of mutually independent
random variables such that for all i ∈ N,

Ti ∼ G(1−
1

ℓi
)

For all r ⩾ 1, we define the sum Sr =
∑r

i=1 Ti. Then for all integers n,

P(Sr > n) ⩽

(
r−1∑
i=0

1

ℓi

)
1

ℓn−r+1

Proof. We proceed by recurrence on r. For r = 1, then S1 = T1 follows a geometric
distribution with parameter 1− 1/ℓ, so for all n ⩾ 1,

P(S1 > n) =

(
1− (1− 1

ℓ
)

)n

=
1

ℓn

If n ≤ 0, then P(S1 > n) = 1 ≤ 1
ℓn

. Therefore, the theorem is true for r = 1.
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Let r ⩾ 2. We will assume that the theorem is true at rank r − 1. Then, for all n ∈ Z,

P(Sr > n) =
∞∑
i=1

P(Tr = i)P(Sr−1 > n− i)

⩽
∞∑
i=1

1

ℓr(i−1)

(
1− 1

ℓr

)( r−2∑
j=0

1

ℓj

)
1

ℓn−i−r+2

⩽

(
r−2∑
j=0

1

ℓj

)(
1− 1

ℓr

) ∞∑
i=1

1

ℓn+i(r−1)−2(r−1)

⩽

(
r−2∑
j=0

1

ℓj

)(
1− 1

ℓr

)
1

ℓn−2(r−1)
1

ℓr−1 − 1

⩽

∑r−2
j=0 ℓ

j

ℓr−2
ℓr − 1

ℓr
1

ℓr−1 − 1

1

ℓn−2(r−1)

⩽

(∑r−2
j=0 ℓ

j
)

ℓr−2

(ℓ− 1)
(∑r−1

j=0 ℓ
j
)

ℓr
1

(ℓ− 1)
(∑r−2

j=0 ℓ
j
) 1

ℓn−2(r−1)

⩽

(∑r−2
j=0 ℓ

j
)
(ℓ− 1)

(∑r−1
j=0 ℓ

j
)

ℓ2(r−1)(ℓ− 1)
(∑r−2

j=0 ℓ
j
) 1

ℓn−2(r−1)

⩽

(
r−1∑
j=0

1

ℓj

)
1

ℓn−(r−1)

By induction on r, the theorem is proved.

Corollary 63.1. Let G be a finite abelian ℓ-group. Let r be its number of invariant factors.
Let n ⩾ r be an integer, and let g1, . . . , gn be uniformly drawn elements of G. Then

P(⟨g1, . . . , gn⟩ ⊊ G) ⩽

(
r−1∑
i=0

1

ℓi

)
1

ℓn−r+1
⩽

1

ℓn−r(ℓ− 1)

General case

Let G be a finite abelian group, let r be its number of invariant factors, let ℓ be a prime
number, and let hℓ be the greatest divisor of |G| that is coprime to ℓ, then hℓG is an ℓ-group
whose number of invariant factors is less than r. Furthermore, the uniform distribution on
G and the multiplication by hℓ induce the uniform distribution on hℓG.

Let n ⩾ r, and let g1, . . . , gn be uniformly drawn elements of G. They generate G if and
only if for all prime ℓ,

⟨hℓg1, . . . , hℓgn⟩ = hℓG.
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Furthermore, the events ({⟨hℓg1, . . . , hℓgn⟩ = hℓG})ℓ are independent. Therefore

P(⟨g1, . . . , gn⟩ ⊊ G) = 1− P(⟨g1, . . . , gn⟩ = G)

= 1−
∏

ℓ premier

P(⟨hℓg1, . . . , hℓgn⟩ = hℓG)

= 1−
∏

ℓ premier

(1− P(⟨hℓg1, . . . , hℓgn⟩ ⊊ hℓG))

Using the bounds obtained previously, we obtain the following theorem:

Theorem 64. Let G be a finite abelian group. Let r be its number of invariant factors. Let
n ⩾ r + 2 be an integer, and let g1, . . . , gn be uniformly drawn elements of G. Then

P(⟨g1, . . . , gn⟩ ⊊ G) ⩽
2

3

(
1

2

)n−r−2

Proof. We use the fact that the groups hℓG are ℓ-groups with fewer than r invariant factors,
and Corollary 63.1.

P(⟨g1, . . . , gn⟩ ⊊ G) = 1−
∏

ℓ prime

(1− P(⟨hℓg1, . . . , hℓgn⟩ ⊊ hℓG))

⩽ 1−
∏

ℓ prime

(
1− 1

ℓn−r(ℓ− 1)

)

Now, since n− r ⩾ 2, for all prime ℓ, one has 1
ℓn−r(ℓ−1) ∈ [0, 1/2] and

ln(1− 1

ℓn−r(ℓ− 1)
) ⩾ −2 1

ℓn−r(ℓ− 1)

using the inequality
∀x ∈ [−1/2, 0], 2x ⩽ ln(1 + x).

Thus

P(⟨g1, . . . , gn⟩ ⊊ G) ⩽ 1− e−2
∑

ℓ prime
1

ℓn−r(ℓ−1)

⩽ 2
∑

ℓ prime

1

ℓn−r(ℓ− 1)

using the convexity inequality

∀x ∈ R, 1− ex ⩽ −x.
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This sum converges because n− r ⩾ 2.
Finally,

1

ℓn−r(ℓ− 1)
=

1

ℓn−r−2
1

ℓ2(ℓ− 1)
⩽

1

2n−r−2
1

ℓ2(ℓ− 1)
.

Thus,

P(⟨g1, . . . , gn⟩ ⊊ G) ⩽
1

2n−r−2

(
2
∑

ℓ premier

1

ℓ2(ℓ− 1)

)
.

We conclude by computing using a computer that

2
∑

ℓ prime

1

ℓ2(ℓ− 1)
⩽

2

3
.

6.3 Simplicity and freeness of K[G]-modules
The purpose of this section is to prove Theorem 79. This result is used in Section 4.4 to
justify the existence of a dual code.

Modules, simplicity and Jordan-Hölder theorem

We begin by reviewing some concepts from module theory before considering the specific
case of K[G]-modules (i.e., linear representations of groups). This subsection is based on a
lecture by Pierre Baumann [Bau08].

Let A be a (unitary) ring.

Definition 45. Let M be an abelian group (with additive notation). We say that M is a
left A-module if there exists a left action (with multiplicative notation) of A on M such
that:

• ∀m ∈M, 1Am = m.

• ∀a, b ∈ A,∀m,n ∈M, (a+ b)(m+ n) = am+ bm+ an+ bn.

• ∀a, b ∈ A,∀m ∈M, (ab)m = a(bm).

A submodule N of M is an abelian subgroup of M stable under the action of A. The
quotient group M/N is also an A-module:

∀a ∈ A, ∀m ∈M,a(m+N) = am+N.
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Example 12. The ring A naturally has a structure of left A-module, acting on itself by left
multiplication. We call this module the regular left A-module, and we denote it by AA.

Let I be a set and let A(I) be the set of families of elements of A indexed by I with
finite support. Let i ∈ I, we denote by ei the element A(I) whose component with index i
is 1A and whose other components are zero. Then (ei)i∈I forms a basis for A(I). We call
(left) modules that have a basis free (left) modules.

Finally, {0} is an A-module called the zero module. It is sometimes denoted simply by
0.

Definition 46. Let M and N be two left A-modules. Let φ : M −→ N be a group
morphism. We say that φ is a left A-module morphism if

∀a ∈ A, ∀m ∈M,φ(am) = aφ(m).

We denote by HomA(M,N) the set of morphisms of A-modules from M to N . It is an
abelian subgroup of HomZ(M,N). The image of φ is a submodule of N , and the kernel of
φ is a submodule of M .

The above definitions naturally generalize “to the right”. Some properties of modules do
not depend on which side A acts on. We will avoid specifying “left” or “right” in statements
when it is not necessary.

Definition 47. Let M be a left A-module. Then HomA(M, AA), the group of left A-module
morphisms from M to AA, is naturally equipped with a right A-module structure:

∀f ∈ HomA(M, AA),∀a ∈ A, ∀m ∈M, (fa)(m) = f(m)a.

It is called the dual module of M , and is sometimes denoted by M∗.

Proposition 65. (AA)
∗ is isomorphic to AA, the regular right A-module.

Proof. We give the isomorphism explicitly:

HomA(AA, AA) −→ AA

f 7−→ f(1)
.

Definition 48. Let M be an A-module. We say that

• M is Noetherian if every increasing sequence of submodules of M is stationary.

• M is Artinian if every decreasing sequence of submodules of M is stationary.

• M is simple if it has exactly two submodules M and 0.

We see that every simple A-module is Artinian and Noetherian.
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Proposition 66. Let M be a simple left A-module. Then there exists a maximal left ideal
m of A such that M ≃ A/m.

Proof. Let m ∈M be nonzero. Then m is the kernel of the map a ∈ A 7−→ am ∈M . This
map is surjective because its image is a nonzero submodule of M .

Proposition 67. Let M be a Noetherian (resp. Artinian) A-module. Then every non-empty
set of submodules of M has a maximal (resp. minimal) element for inclusion.

Proof. Suppose there exists a non-empty set E of submodules of M that does not have a
maximal element for inclusion. Then it is possible to find a sequence N0 ⊊ N1 ⊊ . . . of
submodules of M in E . Therefore, M is not Noetherian. A similar argument proves the
Artinian case.

Definition 49. Let M be an A-module. An ascending filtration of M is an ascending
sequence (Mn)n∈Z of submodules of M such that:

• ∪n∈ZMn =M.

• ∩n∈ZMn = 0.

The A-modules Mn+1/Mn are called the quotients or factors of the filtration.
Let (Mn)n∈Z and (Nn)n∈Z be two ascending filtrations of M . We say that (Nn)n∈Z is a

refinement of (Mn)n∈Z if there exists an ascending injection φ : Z −→ Z such that

∀n ∈ Z,Mn = Nφ(n).

A composition series of M is a filtration in which all quotients are simple. Two
composition series are said to be equivalent if they have the same sequence of quotients up
to permutation and isomorphism.

Lemma 68 (Schur). Let φ : M −→ N be a morphism of simple A-modules. Then φ is
either an isomorphism or the zero morphism.

A proof is available in [Lan02, Chapter 7, Proposition 1.1].

Theorem 69 (Jordan-Hölder). Let M be an A-module. If M has composition series, they
are all equivalent.

A proof is available in [CR62, Theorem 13.7].

Definition 50. The quotients of a composition series of M are called the Jordan-Hölder
quotients of M .

Proposition 70. Let M be an Artinian and Noetherian A-module. Then M has a
composition series.
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Proof. Let E be the set of submodules of M that admit a composition series. The set E
is nonempty because 0 ∈ E . Since M is Noetherian, E contains a maximal element N for
inclusion.

Suppose that N ̸= M . Then the set F of submodules of M strictly containing N is
nonempty because M ∈ F . Since M is Artinian, F contains a minimal element L for
inclusion. Therefore, N is a maximal submodule of L, and thus L/N is simple. Therefore,
L admits a composition series, which is absurd.

Therefore, N =M , and M admits a composition series.

Definition 51. Let M be an A-module. We say that M is of finite-type if there exists a
finite set I and a surjective morphism of A-modules π : A(I) −→M , or equivalently if it is
generated by a finite number of elements.

Lemma 71. Every Noetherian A-module is of finite-type.

Proof. Let M be a Noetherian A-module. Let E be the set of submodules of finite-type of
M . Then, since M is Noetherian, E has a maximal element N for inclusion. Furthermore,
for all x ∈ M , N + Ax is of finite-type (since N is). By the maximality of N , we have
N = N + Ax, so x ∈ L. Therefore, N =M .

Definition 52. Let M be an Artinian and Noetherian A-module. Let S be a simple
A-module. We denote by ℓ(M) the number of quotients in a composition series of M ,
otherwise known as the length of M (finite, since M is finite). Let (M : S) be the number of
Jordan-Hölder quotients of M isomorphic to S. We say that (M : S) is the Jordan-Hölder
multiplicity of M with respect to S.

Proposition 72. Let L,M,N be three A-modules such that

0→ L→M → N → 0.

Then M is Artinian and Noetherian if and only if L and N are Artinian and Noetherian.

Proof. We can assume that L ⊂ M and N = M/L. Suppose that L and M/L are
Noetherian. Let (Tn)n∈N be an increasing sequence of submodules of M . Then (Tn ∩ L)n∈N
is an increasing sequence of submodules of L and ((Tn +L)/L)n∈N is an increasing sequence
of submodules of M/L. Then there exist two submodules TL ⊂ L and TM/L ⊂M/L, and
n0 ∈ N such that for all n ⩾ n0, (Tn ∩L) = TL and ((Tn +L)/L) = TM/L. This implies that
for all n ⩾ n0, the module Tn is constant. Therefore, M is Noetherian. The converse does
not pose any difficulties. The proof is similar for Artinian modules.

Proposition 73. Let M be a Noetherian (resp. Artinian) A-module. Then for any integer
n ⩾ 0, Mn is Noetherian (resp. Artinian).

Proof. Noting the existence of an exact sequence

0→M →Mn →Mn−1 → 0

we reason by induction using Proposition 72.
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Proposition 74. Let L,M,N be three Artinian and Noetherian A-modules such that

0→ L→M → N → 0.

Then
ℓ(M) = ℓ(L) + ℓ(N)

and for any simple A-module S,

(M : S) = (L : S) + (N : S).

Proof. We can assume that L ⊂M and N =M/L. Let 0 = L0 ⊂ L1 ⊂ · · · ⊂ Lℓ(L) = L be
a composition series of L and 0 = N0 ⊂ N1 ⊂ · · · ⊂ Nℓ(N) = N a composition series of N .
Let πL :M −→ N be the quotient morphism. Then we have a filtration

0 = L0 ⊂ L1 ⊂ · · · ⊂ Lℓ(L) = L = π−1L (N0) ⊂ π−1L (N1) ⊂ · · · ⊂ π−1L (Nℓ(N)) =M.

For all 0 ≤ i ≤ ℓ(N)− 1,
π−1L (Ni+1)/π

−1
L (Ni) ≃ Ni+1/Ni

is a simple module, so L0 ⊂ · · · ⊂ π−1L (Nℓ(N)) is a composition series of M . We deduce the
proposition.

Proposition 75. There exists a set containing a representative of all isomorphism classes
of Artinian and Noetherian A-modules.

Proof. LetM be an isomorphism class of Artinian and Noetherian A-modules. The modules
in the class of M are therefore finite. Then there exists a submodule N of AN and M a
module of the isomorphism classM such that M = AN/N .

Let E be the set of submodules of AN (contained in the set of parts). It is in bijection
with the set {AN/N ;N ∈ E} which contains (at least) one representative of all isomorphism
classes of Artinian and Noetherian A-modules.

Definition 53. Let E be a set of representatives of the isomorphism classes of Artinian
and Noetherian A-modules. Let Z(E) be the free abelian group on E , and let Gr(A) be the
quotient of Z(E) by the subgroup generated by elements of the form M − L −N for any
exact sequence

0→ L→M → N → 0

of elements L,M,N of E . We call Gr(A) the Grothendieck group of isomorphism classes of
Artinian and Noetherian A-modules.

Remark 35. Gr(A) does not depend on the choice of E and is uniquely characterized by A.

Definition 54. Let L,M,N be A-modules.

• We say that N is projective if there exists a free A-module M and an A-module L
such that M ≃ L⊕N .
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• We say that L is injective if every short exact sequence

0→ L→M → N → 0

splits, i.e., M ≃ L⊕N .

Definition 55. We define PGr(A) as the Grothendieck group of isomorphism classes of
projective Artinian and Noetherian A-modules (see definition ??). Let P be an Artinian
and Noetherian projective A-module. We denote by [P ] the image of P in PGr(A).

Freeness of the orthogonal

Let K be a (commutative) field and G a finite group.

Definition 56. Let GK[G] denote the regular left K[G]-module and K[G]G denote the
regular right K[G]-module.

Proposition 76. Regular K[G]-modules (right and left) are Artinian and Noetherian.

Proof. Every K[G]-module is a K-vector space. Furthermore, K[G] is a finite-dimensional
K-vector space. Let M0 ⊂ M1 ⊂ . . . be an increasing sequence of submodules of K[G].
Then dim(M0) ⩽ dim(M1) ⩽ . . . is an increasing sequence of integers bounded above
by dim(K[G]). Therefore, the sequence of dimensions is stationary, and so is (Mi)i∈N.
Therefore, the regular K[G]-modules are Noetherian. A similar argument shows that they
are Artinian.

Corollary 76.1. Every finite-type K[G]-module is Artinian and Noetherian.

Proof. This follows from Propositions 73 and 72.

Proposition 77. Let M be a K[G]-module and N a free submodule of M . Then there
exists L a submodule of M such that M = N ⊕ L.

Proof. This property is due to the fact that the algebra K[G] is a Frobenius algebra [CR62,
Theorem 62.1], i.e.

HomK[G](K[G]G, K[G]G) ≃ HomK(K[G]G, K).

Then every projective K[G]-module is also injective [CR62, Theorem 62.3]. In particular,
N is free and therefore projective, and thus injective. Thus, the exact sequence

0→ N →M →M/N → 0

splits, so there exists a submodule L of M such that L ≃M/N and M = N ⊕ L.

Proposition 78. Let P1 and P2 be two Artinian and Noetherian projective K[G]-modules.
Then P1 ≃ P2 if and only if [P1] = [P2] in PGr(K[G]).
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Proof. The proposition is proven in [Ser71, Chapter 14, Corollary 3].

Let n ⩾ 1 be an integer. Recall that ⟨., .⟩ denotes the K[G]-bilinear form on K[G]n

defined in equation (4.4.1).

Theorem 79. Let M be a free submodule of GK[G]n (resp. K[G]nG). Then M⊥, the
orthogonal of M for the K[G]-bilinear form ⟨., .⟩, is a free submodule of K[G]nG (resp.
GK[G]n).

Proof. We prove the case where M is a left K[G]-module. Let k be the rank of M as a
free K[G]-module. Therefore, M ≃ GK[G]k. According to Proposition 77, there exists a
submodule N of GK[G]n such that

GK[G]n =M ⊕N. (6.3.1)

Furthermore, we trivially have

GK[G]n ≃ GK[G]k ⊕ GK[G]n−k. (6.3.2)

The modules GK[G]n, GK[G]k, GK[G]n−k, M , and N are projective, Artinian, and
Noetherian (since they are finite). We have

[N ] = [GK[G]n]− [M ] according to equation (6.3.1)
= [GK[G]n]− [GK[G]k] because M ≃ GK[G]k

= [GK[G]n−k] according to equation (6.3.2)

According to Proposition 78, the module N ≃ GK[G]n−k is a free left K[G]-module. Thus,
HomK[G](N, GK[G]) is a free right K[G]-module. Indeed, we have

HomK[G](N, GK[G]) ≃ HomK[G](GK[G]n−k, GK[G])

≃ HomK[G](GK[G], GK[G])n−k

≃ (K[G]G)
n−k

according to proposition 66.
Finally, we show that M⊥ ≃ HomK[G](N, GK[G]). Let

L = {f ∈ HomK[G](GK[G]n, GK[G]) | f|M = 0},

then L ≃ HomK[G](N, GK[G]). It remains to be shown that M⊥ ≃ L. Let

ϕ : M⊥ −→ L
m 7−→ ⟨.,m⟩ ,
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is an injective K[G]-module morphism. Furthermore, M⊥ and L are K-vector spaces of the
same dimension. Indeed, L is a free right K[G]-module of rank (n− k), and therefore its
dimension (over K) is |G|(n−k). Then, according to Proposition 41, the right K[G]-module
M⊥ is the dual of M for the form ⟨., .⟩K , and therefore its dimension is also |G|(n− k). We
deduce that

M⊥ ≃ L ≃ HomK[G](N, GK[G]).
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