Corps p-rationnels, corps p-réguliers et ramification restreinte*

Jean-François Jaulent & Thong Nguyen Quang Do

Résumé. Nous discutons les relations entre les résultats sur les corps *p*-réguliers obtenus par le premier auteur en collaboration avec G. Gras et ceux sur les corps *p*-rationnels obtenus par le second avec A. Movahheddi. Nous en déduisons en particulier une preuve plus simple du théorème de propagation de la *p*-rationalité dans les *p*-extensions, ainsi que quelques applications aux lois de réciprocité primitives.

Abstract. We discuss the relationship between the results on *p*-regular number fields obtained by the first author in collaboration with G. Gras and those on *p*-rational fields obtained by the second author in collaboration with A. Movaheddi. In particular we give a simpler proof of the main theorem on the propagation of *p*-rationality in *p*-extensions and some consequences on primitive reciprocity laws.

Table des matières

Introduction et notations		1
1	Corps p -réguliers & corps p -rationnels	2
2	p-extensions abéliennes des corps p -rationnels.	5
3	p-extensions galoisiennes des corps p -rationnels	8
4	Lois de réciprocité primitives	11
Références bibliographiques		13

Introduction et notations

Fixons une fois pour toutes un nombre premier p. Pour chaque corps de nombres K (de degré fini sur \mathbb{Q}), désignons par Pl_K l'ensemble des places de K, et par $Pl_K(p)$ le sous-ensemble des places qui divisent p. Choisissons enfin un ensemble fini $S = S_K$ de places finies de K, disjoint de $Pl_K(p)$; notons M_S la pro-p-extension S-modérément ramifiée ∞ -décomposée maximale de K (i.e. la composée des p-extensions galoisiennes de K qui sont non ramifiées en dehors des places de S et de celles qui divisent p, et complètement décomposées aux places à l'infini), puis $\mathcal{G}_S = \operatorname{Gal}(M_S/K)$ son groupe de Galois.

La théorie de la S-ramification (ou ramification restreinte) a pour objet essentiel l'étude du groupe de Galois \mathcal{G}_S dont la structure reflète les propriétés arithmétiques du corps K par rapport au nombre premier p. Ainsi, la structure du groupe abélianisé $\mathcal{G}_S^{ab} = \mathcal{G}_S/\mathcal{G}_S'$ est décrite par la théorie du corps de classes qui donne l'isomorphisme

$$\mathcal{G}_S^{ ext{ab}} \simeq \mathbb{Z}_p^
ho \oplus \mathcal{T}_S,$$

^{*}J. Théor. Nombres Bordeaux 5 (1993), 343-363.

où ρ est égal à 1+c ($c=c_K$, nombre de places complexes de K) sous la conjecture de Leopoldt, et \mathcal{T}_S est un p-groupe fini dont les propriétés sont intimement reliées à celles des fonctions L p-adiques (lorsqu'elles sont définies) ainsi qu'à celles des divers noyaux de la K-théorie (cf. e.g. [2, 7, 14]).

Dans cet article, nous nous proposons d'étudier des familles de corps de nombres, appelés p-réguliers dans [5], ou p-rationnels dans [10, 11], pour lesquels on peut donner une description complète de \mathcal{G}_S lorsque l'ensemble S est p-primitif au sens de Gras (cf. [4]). Une conséquence particulièrement intéressante de cette description est la propagation de la p-rationalité dans les p-extensions primitivement ramifiées, ce qui permet d'établir par des méthodes purement algébriques la validité des conjectures de Leopoldt et de Gross-Kuz'min pour une classe infinie de corps qui satisfont des conditions arithmétiques dures (mais de vérification facile) et sont essentiellement non-abéliens, donc inaccessibles (pour l'instant) aux méthodes transcendantes.

Avant d'énoncer ces conditions, fixons quelques notations. Étant donné un corps de nombres K, nous écrivons :

- M la pro-p-extension p-ramifiée ∞ -décomposée maximale de K, et $\mathcal{G} = \operatorname{Gal}(M/K)$ son groupe de Galois;
- M^{ab} la sous-extension maximale de M qui est abélienne sur K, et $\mathcal{G}^{ab} = \text{Gal }(M^{ab}/K)$ son groupe Galois;
- Z la composée des \mathbb{Z}_p -extensions de K, de sorte que le groupe fini $\mathcal{T} = \operatorname{Gal}(M^{\mathrm{ab}}/Z)$ est le sous-groupe de torsion de \mathcal{G} ;
- $V = \{x \in K^{\times} \mid x \in K_{\mathfrak{p}}^{\times p} \ \forall \mathfrak{p} | p \& v_{\mathfrak{l}}(x) \equiv 0 \mod p \ \forall \mathfrak{l} \nmid \infty \}$ le groupe des éléments hyperprimaires de K (relativement à p);
- Cl' le p-groupe des p-classes de diviseurs de K, i.e. le p-sous-groupe de Sylow du quotient du groupe des classes d'idéaux au sens restreint par le sous-groupe engendré par les classes des idéaux au-dessus de p.

Plus généralement, étant donné un ensemble fini S de places finies étrangères à p, nous notons :

- M_S la pro-p-extension S-modérément ramifiée ∞ -décomposée maximale de K (i.e. la composée des p-extensions galoisiennes de K qui sont non ramifiées en dehors de S et de p et complètement décomposées aux places à l'infini), et $\mathcal{G}_S = \operatorname{Gal}(M_S/K)$ son groupe de Galois;
- M_S^{ab} la sous-extension maximale de M_S qui est abélienne sur K, puis $\mathcal{G}_S^{\text{ab}} = \text{Gal }(M_S^{\text{ab}}/K)$ son groupe de Galois, et $\mathcal{T}_S' = \text{Gal }(M_S^{\text{ab}}/Z)$ le sous-groupe de torsion de $\mathcal{G}_S^{\text{ab}}$;
- $V = \{x \in K^{\times} | x \in K_{\mathfrak{p}}^{\times} \forall \mathfrak{p} | p \& v_{\mathfrak{l}}(x) \equiv 0 \mod p \ \forall \mathfrak{l} \nmid S \infty \}$ le groupe des éléments S-hyperprimaires de K (relativement à p);
- Cl'_S le p-groupe des Sp-classes de diviseurs de K, i.e. le quotient de Cl' par le sous-groupe engendré par les p-classes au sens restreint des idéaux construits sur les places de S.

1 Corps p-réguliers & corps p-rationnels

Définition & Proposition 1.1. Nous disons qu'un corps de nombres K est :

- (i) p-régulier, lorsque le p-sous-groupe de Sylow $R_2(K)$ du noyau dans $K_2(K)$ des symboles réguliers est trivial;
- (ii) p-rationnel, lorsque le groupe de Galois $\mathcal{G}_K = Gal(M/K)$ de la pro-p-extension maximale M/K qui est p-ramifiée et ∞ -décomposée est un pro-p-groupe libre.

Lorsque K contient le sous-corps réel maximal $Q[\zeta + \zeta^{-1}]$ du p-ième corps cyclotomique $Q[\zeta]$, il est équivalent d'affirmer que K est p-régulier ou qu'il est p-rationnel.

L'équivalence entre régularité et rationalité, sous la condition suffisante $(\zeta + \zeta^{-1}) \in K$, résulte de l'égalité entre p-rangs :

$$rg_p R_2(K) = rg_p \mathcal{T}_K + \delta_{\text{Leopoldt}}$$
 (cf. [4], Th. 5),

qui fait intervenir le défaut de la conjecture de Leopoldt dans K et de la caractérisation suivante :

Théorème 1.2. Pour tout corps de nombres K, les conditions suivantes sont équivalentes :

- (i) Le groupe de Galois $\mathcal{G}_K = Gal(M/K)$ de la pro-p-extension maximale de K qui est pramifiée et ∞ -décomposée est un pro-p-groupe libre (nécessairement sur $1+c_K$ générateurs, où c_K est le nombre de places complexes de K).
- (ii) Le groupe de Galois $\mathcal{G}_K^{\mathrm{ab}} = \operatorname{Gal}\left(M^{\mathrm{ab}}/K\right)$ de la pro-p-extension abélienne maximale de Kqui est p-ramifiée et ∞ -décomposée est un \mathbb{Z}_p -module libre de dimension $1 + c_K$.
- (iii) Le corps K vérifie la conjecture de Leopoldt (pour le nombre premier p) et le sous-module de torsion \mathcal{T}_K de Gal (M^{ab}/K) est nul.
- (iv) Le groupe V_K des éléments p-hyperprimaires du corps K se réduit à $K^{\times p}$ et l'on a l'identité entre les p-rangs des p-groupes de racines de l'unité : $rg_p \, \mu_K = \sum_{\mathfrak{p} \mid p} rg_p \, \mu_{K_p}.$

$$rg_p \mu_K = \sum_{\mathfrak{p}|p} rg_p \mu_{K_p}.$$

- (v) Le corps K vérifie l'une des deux conditions suivantes :
- a) ou bien K contient une racine primitive p-ième de l'unité ζ_0 , auquel cas K possède une $unique\ place\ p\ au\ dessus\ de\ p,\ et\ le\ p\hbox{-}groupe\ des\ p\hbox{-}classes\ d'id\'eaux\ au\ sens\ restreint\ Cl'_K\ est\ nul\ ;$
- b) ou bien K ne contient pas ζ, auquel cas les places de K au-dessus de p ne se décomposent pas complètement dans l'extension cyclotomique $K[\zeta]/K$ et la ω -composante du p-groupe des p-classes d'idéaux au sens restreint $Cl'_{K[\zeta]}$ du corps $K[\zeta]$ est nulle, si ω désigne le caractère cyclotomique de Gal $(V[\zeta]/K)$.

Preuve. Commençons par rappeler les formules de Šafarevič (cf. [16]) donnant les nombres minimaux de générateurs $d(\mathcal{G}_K)$ et de relations $r(\mathcal{G}_K)$ du pro-p-groupe de Galois \mathcal{G}_K :

$$\begin{split} d(\mathcal{G}_K) &= \dim_{\mathbb{F}_p}(H^1(\mathcal{G}_K, \mathbb{F}_p)) \\ &= c_K + 1 + \dim_{\mathbb{F}_p} V_K / K^{\times p} + (\sum_{\mathfrak{p} \mid p} rg_p \, \mu_{K_{\mathfrak{p}}} - rg_p \, \mu_K); \\ r(\mathcal{G}_K) &= \dim_{\mathbb{F}_p}(H^2(\mathcal{G}_K, \mathbb{F}_p)) = \dim_{\mathbb{F}_p} V_K / K^{\times p} + (\sum_{\mathfrak{p} \mid p} rg_p \, \mu_{K_{\mathfrak{p}}} - rg_p \, \mu_K). \end{split}$$

Cela étant, nous avons :

- (i) \Longrightarrow (ii), car \mathcal{G}_K ne peut être libre que sur c_K+1 générateurs, auquel cas $\mathcal{G}_K^{\mathrm{ab}}$ est évidemment un \mathbb{Z}_l -module libre de dimension $c_K + 1$.
- $(ii) \Longrightarrow (iii)$, puisque la conjecture de Leopoldt affirme précisément que K possède exactement $c_K + 1 \mathbb{Z}_p$ -extensions indépendantes.
 - (iii) ⇒ (iv), en vertu précisément de l'identité sur les rangs, sous la conjecture de Leopoldt :

$$rg_p \mathcal{T}_K = \dim_{\mathbb{F}_p} V_K / K^{\times p} + (\sum_{\mathfrak{p}|p} rg_p \mu_{K_{\mathfrak{p}}} - rg_p \mu_K).$$

(iv) ⇒ (i), d'après les formules de Šafarevič énoncées plus haut.

Enfin, l'équivalence entre (iv) et (v) résulte de la théorie de Kummer : si K contient ζ , l'égalité $\sum rg_p\mu_{K_p}=rg_p\mu_K=1$ signifie que K possède exactement une place au-dessus de p; et le groupe

 $V_K/K^{\times p}$ s'identifie au radical de la p-extension abélienne élémentaire maximale de K qui est non ramifiée aux places (finies) étrangères à p et complètement décomposée à celles au-dessus de p, c'est à dire précisément au "dual" de Kummer du groupe Cl'_K :

$$V_K/K^{\times p} \simeq \operatorname{Hom} (Cl'_K, p\mu_K).$$

Si K ne contient pas ζ , la même description vaut pour le corps $K' = K[\zeta]$. Le groupe $V_K/K^{\times p}$ correspond à la composante unité du groupe $V_{K'}/K^{'\times p}$, donc, dans la dualité précédente, à la $\omega\text{-composante}$ du groupe $Cl'_{K'},$ puisque le caractère cyclotomique ω est le reflet du caractère unité dans l'involution du miroir. Enfin, l'identité $\sum_{\mathfrak{p}\mid p} rg_p \mu_{K_{\mathfrak{p}}} = rg_p \mu = 0$ signifie ici que les places de K

au-dessus de p ne se décomposent pas complètement dans l'extension cyclotomique K'/K; ce qui achève la démonstration.

Corollaire 1.3 (Exemples de corps p-réguliers ou p-rationnels).

- (i) Le corps \mathbb{Q} des rationnels est p-régulier et p-rationnel pour tout nombre premier p.
- (ii) Pour tout premier p, le corps cyclotomique $K = \mathbb{Q}[\zeta_{p^n}]$ engendré par une racine primitive p^n -ième de l'unité est p-régulier (et p-rationnel) si et seulement si le nombre premier p est régulier (au sens habituel).
- (iii, a) Les corps quadratiques imaginaires $K = \mathbb{Q}[\sqrt{-d}]$ qui sont 2-réguliers (et 2-rationnels) sont $\mathbb{Q}[\sqrt{-1}]$, $\mathbb{Q}[\sqrt{-2}]$, ainsi que les corps $\mathbb{Q}[\sqrt{-l}]$ et $\mathbb{Q}[\sqrt{-2l}]$ pour l premier impair, $l \equiv \pm 3 \pmod 8$.
- (iii, b) Sont 3-réguliers (et 3-rationnels) le corps $\mathbb{Q}[\sqrt{3}]$ et les corps $\mathbb{Q}[\sqrt{-d}]$ pour lesquels $d \not\equiv 3 \pmod{9}$ et 3 ne divise pas le nombre de 3-classes du corps quadratique réel $\mathbb{Q}[\sqrt{3d}]$.
- (iii, c) Enfin, pour $p \ge 5$, les corps quadratiques imaginaires qui ont un p-groupe des classes trivial sont p-rationnels.

Preuve. Distinguons les divers cas :

- (i) Le cas du corps des rationnels se traite en deux temps : D'un côté, un calcul direct (cf. [17]) montre que le noyau régulier $R_2(\mathbb{Q})$ est nul, de sorte que \mathbb{Q} est p-rationnel pour tout p; ce qui justifie la terminologie. D'un autre côté, la théorie élémentaire du corps de classes assure que la p-extension abélienne p-ramifiée ∞ -décomposée maximale de \mathbb{Q} est bien la \mathbb{Z}_p -extension cyclotomique de \mathbb{Q} ; ce qui établit la régularité.
- (ii) Pour les corps cyclotomiques $\mathbb{Q}[\zeta_{p^n}]$, la proposition 1 assure l'équivalence entre p-régularité et p-rationalité. Maintenant la condition (v, a) du théorème 2 montre que celle-ci se lit sur le nombre de classes (en l'occurrence au-sens ordinaire) du corps $\mathbb{Q}[\zeta_{p^n}]$.
- (iii) Pour les corps quadratiques imaginaires $\mathbb{Q}[\sqrt{-d}]$, il convient de distinguer suivant les valeurs de p. Pour p=2 ou 3 les notions de p-régularité et de p-rationalité coïncident, en vertu de la proposition 1; pour $p \geq 5$, en revanche, le théorème 2 ne permet d'atteindre que la p-rationalité.
- Si p vaut 2, la condition (v.a) exige que le corps $\mathbb{Q}[\sqrt{-d}]$ n'admette qu'une place au-dessus de 2 (ce qui exclut $d \equiv -1 \pmod 8$), et que son nombre de 2-classes d'idéaux soit impair ce qui impose, d'après la formule des classes ambiges de Chevalley généralisée (cf. [7]), qu'il y ait au plus une place modérément ramifiée dans l'extension K/\mathbb{Q} , et plus précisément, qu'on ait soit $K = \mathbb{Q}[\sqrt{-1}]$ ou $\mathbb{Q}[\sqrt{-2}]$, soit $K = \mathbb{Q}[\sqrt{-l}]$ ou $\mathbb{Q}[\sqrt{-2l}]$, avec l premier impair tel que 2 ne soit pas norme dans l'extension K/\mathbb{Q} , ce qui s'écrit : $l \equiv \pm 3 \mod 8$.
- Si p vaut 3, une fois écarté le cas cyclotomique $K=\mathbb{Q}[\sqrt{-3}]$ déjà traité, la condition (v,b) exige $\mathbb{Q}_3[\sqrt{-d}] \neq \mathbb{Q}_3[\sqrt{-3}]$ (i.e. $d \not\equiv 3 \pmod 9$), et que 3 ne divise pas le nombre de 3-classes du corps quadratique réel $\mathbb{Q}[\sqrt{3d}]$ (qui est le reflet de $\mathbb{Q}[\sqrt{-d}]$ dans l'involution du miroir).
- Enfin, pour $p \geq 5$, la théorie du corps de classes montre directement que la p-extension abélienne p-ramifiée maximale de $K = \mathbb{Q}[\sqrt{-d}]$ est exactement la composée des \mathbb{Z}_p -extensions de K sous la condition suffisante que la p-partie du groupe des classes d'idéaux de K soit triviale.

Corollaire 1.4 (Généralisation d'un critère de Kummer). Soient p un nombre premier impair, K un corps p-rationnel, et u une unité de K. Si u vérifie la congruence

$$u \equiv 1 \pmod{p^2}$$
,

c'est la puissance p-ième d'une unité v de K.

Preuve. Soient $v_{\mathfrak{p}}$ la valuation et $e_{\mathfrak{p}}$ l'indice de ramification absolu d'une place \mathfrak{p} de K au-dessus de p. Par hypothèse nous avons :

$$v_{\mathfrak{p}}(u-1) \geq 2e_{\mathfrak{p}} > \frac{p}{p-1} e_{\mathfrak{p}}$$
, indice d'hyperprimarité,

donc $u \in K_{\mathfrak{p}}^{\times p}$, pour tout \mathfrak{p} divisant p, i.e. $u \in V_K$. Le corps K étant supposé p-rationnel, ceci entraı̂ne $u \in K^{\times p}$, par la condition (iv) du théorème; d'où le résultat.

Ce critère sera sensiblement amélioré dans la section 4 (cf. Cor. 4.3).

Corollaire 1.5. Toute p-extension p-ramifiée et ∞ -décomposée d'un corps p-rationnel est encore un corps p-rationnel.

Preuve. Rappelons qu'une p-extension L/K est, par définition, une extension galoisienne dont le groupe de Galois est un p-groupe (fini). Cela étant, si L/K est p-ramifiée et ∞-décomposée, alors L/K est une sous-extension de M/K, de sorte que M est encore la pro-p-extension p-ramifiée ∞-décomposée maximale de L. Ainsi $\mathcal{G}_L = \operatorname{Gal}(M/L)$ est un sous-groupe d'indice fini de $\mathcal{G}_K = \operatorname{Gal}(M/K)$. Si \mathcal{G}_K est pro-p-libre, \mathcal{G}_L l'est donc aussi ; autrement dit si K est K est p-rationnel, il en est de même de K.

Tout le problème de la section 3 consistera à étendre cette propriété de montée de la p-rationalité à certaines p-extensions L/K qui admettent de la ramification en dehors de p. Pour cela nous aurons besoin de quelques résultats sur l'arithmétique des p-extensions abéliennes des corps p-rationnels, que nous allons maintenant établir.

2 p-extensions abéliennes des corps p-rationnels.

Commençons par rappeler le formalisme p-adique de la théorie du corps de classes développé dans [7]. Le corps de base K étant supposé fixé, écrivons :

- $\mathcal{J} = \prod_{\mathfrak{l}}^{res} \mathcal{R}_{\mathfrak{l}}^{\times}$, le p-adifié du groupe des idèles, c'est-à-dire le produit restreint des complétés profinis $\mathcal{R}_{\mathfrak{l}}^{\times} = \varprojlim_{n} K_{\mathfrak{l}}^{\times}/K_{\mathfrak{l}}^{\times p^{n}}$ des groupes multiplicatifs des complétés non complexes de K, muni de sa topologie naturelle de limite inductive;
- $\mathcal{U} = \prod_{\mathfrak{l}} \mathcal{U}_{\mathfrak{l}} = \prod_{\mathfrak{p}|p} \mathcal{U}_{\mathfrak{p}} \prod_{\mathfrak{l}\nmid p\infty} \mu_{\mathfrak{l}}$, le sous-groupe compact formé des idèles unités (le groupe $\mathcal{U}_{\mathfrak{l}}$ étant le groupe des unités principales de $K_{\mathfrak{l}}^{\times}$ lorsque \mathfrak{l} divise p, son p-sous-groupe de torsion sinon, sauf lorsque \mathfrak{l} est réelle, auquel cas $\mathcal{R}_{\mathfrak{l}} = \mu_{\mathfrak{l}}$ est le groupe $\mathbb{Z}_p/2\mathbb{Z}_p$ et $\mathcal{U}_{\mathfrak{l}}$ le sous-groupe trivial);
- $\mathcal{R} = \mathbb{Z}_p \otimes_{\mathbb{Z}} K^{\times}$, le groupe des idèles principaux, défini comme le tensorisé p-adique du groupe multiplicatif de K, et regardé comme plongé dans \mathcal{J} (de sorte que le quotient $\mathcal{C} = \mathcal{J}/\mathcal{R}$ s'identifie, dans l'isomorphisme p-adique du corps de classes, au groupe de Galois de la pro-p-extension abélienne maximale de K);
- $\mathcal{D} = \mathcal{J}/\mathcal{U}$ le groupe des diviseurs de K, et $\mathcal{P} = \mathcal{R}\mathcal{U}/\mathcal{U}$ le sous-groupe des diviseurs principaux, image canonique de \mathcal{R} dans \mathcal{J} ; puis $Cl = \mathcal{D}/\mathcal{P}$ le groupe des classes de diviseurs, qui s'identifie canoniquement au p-sous-groupe de Sylow du groupe des classes d'idéaux de K prises au sens restreint;
- \mathcal{R}^{∞} , enfin, le sous-groupe infinitésimal de \mathcal{R} , i.e. le noyau de la surjection canonique s_p : $\mathcal{R} \to \mathcal{R}_p = \prod_{\mathfrak{p}\mid p} \mathcal{R}_{\mathfrak{p}}$ induite par le plongement diagonal de K dans le produit de ses complétés aux places divisant p.

Avec ces notations, la conjecture de Leopoldt affirme qu'un idèle principal $x \in \mathcal{R}$ qui est localement partout une racine de l'unité est une racine de l'unité dans \mathcal{R} , ce que nous écrivons :

$$\mathcal{R} \cap \prod_{\mathfrak{l}} \mu_{\mathfrak{l}} = \mu.$$

En particulier, puisque les groupes $\mathcal{R}_{\mathfrak{l}}$ pour \mathfrak{l} réelle et $\mathcal{U}_{\mathfrak{l}}$ pour \mathfrak{l} finie étrangère à p se réduisent à $\mu_{\mathfrak{l}}$, les unités (au sens ordinaire) de \mathcal{R}^{∞} , i.e. les éléments du tensorisé $\mathbb{E} = \mathbb{Z}_p \otimes_{\mathbb{Z}} E$ qui sont infinitésimaux, sont les racines de l'unité dans \mathcal{R} d'image triviale dans \mathcal{R}_p , donc égales à l; ce qui s'écrit :

$$\mathcal{E}^{\infty} = \mathcal{E} \cap R^{\infty} = 1.$$

Cela posé, nous avons:

Proposition 2.1. Soient K un corps p-rationnel et S un ensemble fini de places modérées de K (i.e. de places finies étrangères à p). Alors, dans la correspondance du corps de classes, le sous-groupe de torsion $\mathcal{T}_S = Gal(M_S^{ab}/Z)$ de la pro-p-extension abélienne S-modérément-ramifiée ∞ -décomposée maximale M_S^{ab} de K (i.e. de la composée des p-extensions abéliennes de K qui

sont non ramifiées en dehors de S et de p, et complètement décomposées aux places à l'infini) est donné par l'isomorphisme :

$$\mathcal{T}_S = \operatorname{Gal}\left(M_S^{\mathrm{ab}}/Z\right) \simeq \prod_{\mathfrak{l} \in S} \mu_{\mathfrak{l}}.$$

C'est donc le produit direct des sous-groupes d'inertie attachés aux places de S dans le groupe $\mathcal{G}_S^{\mathrm{ab}} = \mathrm{Gal}(M_S^{\mathrm{ab}}/K)$.

Preuve. Le corps K étant supposé p-rationnel, la composée Z des \mathbb{Z}_p -extensions de K est exactement la pro-p-extension abélienne p-ramifiée ∞ -décomposée maximale M^{ab} de K. Il vient donc :

$$\operatorname{Gal}(Z/K) = \operatorname{Gal}(M^{\mathrm{ab}}/K) \simeq \mathcal{J}/\prod_{\mathfrak{l}\nmid p} \mu_{\mathfrak{l}} \ \ R$$

et, par ailleurs:

$$\operatorname{Gal}(M_S^{\text{ab}}/K) = \mathcal{J}/\prod_{\mathfrak{l}\nmid pS} \mu_L \ \mathcal{R}.$$

Par suite, le sous-module de torsion \mathcal{T}_S de $\operatorname{Gal}(M_S^{\mathrm{ab}}/K)$ est bien :

$$\mathcal{T}^S = \ \mathrm{Gal} \ (M_S^{\mathrm{ab}}/Z) = \prod_{\mathfrak{l} \in S} \mu_{\mathfrak{l}} / \left(\prod_{\mathfrak{l} \in S} \mu_{\mathfrak{l}} \cap \mathcal{R} \prod_{\mathfrak{l} \nmid pS} \mu_L \right) = \prod_{\mathfrak{l} \in S} \mu_{\mathfrak{l}}.$$

puisque les idèles principaux qui interviennent au dénominateur sont des unités infinitésimales.

Pour obtenir maintenant une décomposition analogue du groupe \mathcal{G}_S^{ab} tout entier, faisant intervenir cette fois les groupes de décomposition attachés aux places de S, nous allons imposer aux éléments de S des conditions de primitivité :

Proposition & Définition 2.2. Étant donné un corps de nombres K et un ensemble S de s places modérées de K (i.e. de s places finies étrangères à p), les conditions suivantes sont équivalentes :

- (i) Les symboles d'Artin $(\mathfrak{p}, Z/K)$ des places de S, pris dans la composée Z des \mathbb{Z}_p -extensions de K, engendrent un sous-module pur de Gal(Z/K), de dimension s.
- (ii) Les mêmes symboles $(\mathfrak{p}, Z^{el}/K)$, pris dans la sous-extension élémentaire de Z, engendrent un sous- \mathbb{F}_p -espace vectoriel de $\operatorname{Gal}(Z^{el}/K)$ de dimension s.
- (iii) L'intersection $Z^{\ell}(S)$ des sous-corps de décomposition dans Z^{ℓ} des places de S est d'indice p^s dans Z^{ℓ} .

Lorsqu'elles sont vérifiées, nous disons que S est primitif.

La notion d'ensemble primitif de places modérées a été introduite par G. Gras (cf. [3]), sous une forme différente, pour étudier la propagation de la p-régularité, sous la conjecture de Leopoldt. La condition (iii) a été utilisée tout à fait indépendamment par H. Miki pour produire précisément une condition suffisante de propagation de cette conjecture (cf. [9]). La forme (i) permet de construire directement des ensembles primitifs de places modérées en utilisant le logarithme divisoriel (cf. [5]); la forme (ii) permet de faire de même à l'aide des symboles modérés d'ordre p (cf. [11]). Bien entendu, l'équivalence de (i), (ii) et (iii) est immédiate.

Remarques.

- (i) Le théorème de densité de Čebotare v garantit l'existence d'une infinité d'ensembles primitifs ne rencontrant pas un ensemble fini de places données.
- (ii) Si l'ensemble S est primitif, son cardinal s est majoré par le nombre de \mathbb{Z}_p -extensions linéairement indépendantes sur K donc, sous la conjecture de Leopoldt, par la quantité 1+c, où c est le nombre de places complexes de K.
- (iii) Sous la conjecture de Leopoldt, les ensembles primitifs maximaux (pour l'inclusion) sont exactement ceux de cardinal 1+c.

Exemples d'ensembles primitifs de places modérées.

- (i) Soit K un corps totalement réel satisfaisant la conjecture de Leopoldt (pour le nombre premier p). Dans ce cas les ensembles primitifs de places modérées de K sont exactement les singletons $S = \{\mathfrak{l}\}$, où \mathfrak{l} est une place de K totalement inerte dans la \mathbb{Z}_p -extension cyclotomique Z/K (autrement dit une place finie, étrangère à p, satisfaisant la condition $\mu_{\mathfrak{l}} = \mu$).
- (ii) Soit K le corps cyclotomique $\mathbb{Q}[\zeta_p]$ engendré par une racine primitive p-ième de l'unité. Pour p=3, l'ensemble $S=\{\mathfrak{l}_7,\mathfrak{l}_{19}\}$, où \mathfrak{l}_7 (resp. \mathfrak{l}_{19}) est une place de K au-dessus de 7 (resp. de 19), est 3-primitif. De même, pour p=5, l'ensemble $S=\{\mathfrak{l}_{11},\mathfrak{l}'_{11},\mathfrak{l}''_{11}\}$, où $\mathfrak{l}_{11},\mathfrak{l}'_{11}$ et \mathfrak{l}''_{11} sont trois des quatre places au-dessus de 11, est 5-primitif.

Nous sommes désormais en mesure de préciser la proposition 1 :

Théorème 2.3. Soient K un corps p-rationnel et S un ensemble p-primitif maximal de places modérées de K. Alors, dans la correspondance du corps de classes ℓ -adique, le groupe de Galois $\mathcal{G}_S^{\mathrm{ab}}$ de la pro-p-extension abélienne S-modérément ramifiée ∞ -décomposée maximale M_S^{ab} de K (i.e. du compositum des p-extensions abéliennes de K qui sont non ramifiées en dehors de S et de p, et complètement décomposées aux places à l'infini) est donné par l'isomorphisme :

$$\mathcal{G}_S^{\mathrm{ab}} = \mathrm{Gal}(M_S^{\mathrm{ab}}/K) \simeq \prod_{\mathfrak{l} \in S} \mathcal{R}_{\mathfrak{l}}.$$

C'est donc le produit direct des sous-groupes de décomposition des c+1 places de S.

Réciproquement, si pour un ensemble S de c+1 places modérées d'un corps de nombres K, le groupe $\mathcal{G}_S^{ab} = Gal\left(M_S^{ab}/K\right)$ admet une décomposition du type précédent, le corps K est p-rationnel et l'ensemble S p-primitif maximal.

Preuve. Supposons le corps K p-rationnel et l'ensemble S p-primitif maximal. Dans ce cas, le groupe de Galois Gal $(Z/K) \simeq \mathcal{J}/\mathcal{R} \prod_{\mathfrak{q}\nmid pS} \mu_{\mathfrak{q}}$ du compositum des \mathbb{Z}_p -extensions de K est un \mathbb{Z}_p -module libre de dimension c+1 qui est produit direct des c+1 sous-groupes de décomposition $D_{\mathfrak{l}}(Z/K) = \mathcal{R}_{\mathfrak{l}}/\mathcal{R}_{\mathfrak{l}} \cap (\mathcal{R} \prod_{\mathfrak{q}\nmid pS} \mu_{\mathfrak{q}})$ attachés aux places de S. Cela étant, des isomorphismes $\mathcal{R}_{\mathfrak{l}} = \pi_{\mathfrak{l}}^{\mathbb{Z}_p} \mu_{\mathfrak{l}}$ (donnés par le choix d'une uniformisante $\pi_{\mathfrak{l}}$ dans $\mathcal{R}_{\mathfrak{l}}$), il suit donc :

$$\mathcal{R}_{\mathfrak{l}} \cap (\mathcal{R} \prod_{\mathfrak{q} \nmid pS} \mu_{\mathfrak{q}}) = \mu_{\mathfrak{l}} \ \ \mathrm{et} \ \ \mathrm{Gal}(Z/K) \simeq \prod_{\mathfrak{l} \in S} \mathcal{R}_{\mathfrak{l}}/\mu_{\mathfrak{l}}$$

ce qui, compte tenu du résultat $\operatorname{Gal}(M_S^{\mathrm{ab}}/Z) \simeq \prod_{\mathfrak{l} \in S} \mu_L \mathfrak{l}$ déjà obtenu, conduit à la décomposition annoncée. La réciproque est immédiate.

Corollaire 2.4. Soient K p-rationnel et S p-primitif de cardinal $s \leq 1 + c$. Alors, le groupe de Galois \mathcal{G}_S^{ab} s'écrit comme produit direct

$$\mathcal{G}_S^{ ext{ab}} = (\prod_{\mathfrak{l} \in S} \mathcal{R}_{\mathfrak{l}}) imes \mathcal{H}^{ ext{ab}}$$

des groupes de décomposition des places de S et d'un \mathbb{Z}_p -module libre \mathcal{H}^{ab} de dimension 1+c-s.

Corollaire 2.5. Pour tout ensemble p-primitif S de places modérées d'un corps p-rationnel K, il existe une p-extension abélienne K_S^{ab}/K (généralement non unique) S-ramifiée et ∞ -décomposée, maximalement ramifiée en toute place $\mathfrak l$ de S (en ce sens que le groupe d'inertie correspondant $I_{\mathfrak l}(K_S^{ab}/K)$ a l'ordre de $\mu_{\mathfrak l}$), dont le groupe Galois est le produit direct des sous-groupes d'inertie attachés aux places de S, ce qui s'écrit ici :

$$\operatorname{Gal}(K_S^{\operatorname{ab}}/K) \simeq \prod_{\mathfrak{l} \in S} \mu_{\mathfrak{l}}.$$

Preuve. Cela résulte immédiatement du corollaire précédent, le sous-groupe de torsion $\mu_S = \prod_{\mathfrak{l} \in S} \mu_{\mathfrak{l}}$ étant un facteur direct du produit $\mathcal{R}_S = \prod_{\mathfrak{l} \in S} \mathcal{R}_{\mathfrak{l}}$: il suffit de prendre pour K_S^{ab} le corps des points fixes dans M_S^{ab} d'un supplémentaire de μ_S .

Théorème 2.6. Soient K un corps p-rationnel et S un ensemble p-primitif maximal de places modérées de K. L'injection diagonale $K^{\times} \to K_p^{\times} = \prod_{\mathfrak{p}|p} K_{\mathfrak{p}}^{\times}$ du groupe multiplicatif de K dans le produit de ceux de ses complétés aux places divisant p induit un isomorphisme du tensorisé p-adique $\mathcal{E}'_S = \mathbb{Z}_p \otimes E'_S$ du groupe de S_p -unités (au sens ordinaire) sur le produit $\mathcal{R}_p = \prod_{\mathfrak{p}|p} \mathcal{R}_{\mathfrak{p}}$.

Réciproquement, si pour un ensemble S de c+1 places d'un corps de nombres, l'application de semi-localisation induit un isomorphisme de \mathcal{E}'_S sur \mathcal{R}_p , alors le corps K est p-rationnel, et l'ensemble S p-primitif maximal, dès lors que le p-groupe Cl'_S des Sp-classes d'idéaux est trivial.

Preuve. D'après la théorie du corps de classes, le groupe de Galois $\mathcal{G}_S^{\text{ab}}$ de la pro-p-extension abélienne S-modérément ramifiée ∞ -décomposée maximale M_S^{ab} de K est donné par l'isomorphisme :

$$\mathcal{G}_S^{\mathrm{ab}} \simeq \mathcal{J}/\mathcal{R} \prod_{\mathfrak{l} \nmid pS} \mu_{\mathfrak{l}} \simeq \mathcal{R}_p \mathcal{R}_S / (\mathcal{R}_p \mathcal{R}_S \cap \mathcal{R} \prod_{\mathfrak{l} \nmid pS} \mu_{\mathfrak{l}}) = \mathcal{R}_p \mathcal{R}_S / s_{pS}(\mathcal{E}_S'),$$

sous réserve de trivialité du p-groupe $Cl_S' \simeq \mathcal{J}/\mathcal{R}\mathcal{R}_S\mathcal{R}_p \prod_{\mathfrak{l} \nmid pS} \mu_{\mathfrak{l}}$ des Sp-classes d'idéaux de K.

Si K est p-rationnel et S p-primitif maximal, cette condition est évidemment remplie (la p-extension abélienne non ramifiée $pS\infty$ -décomposée de K étant alors triviale); et l'isomorphisme $\mathcal{G}_S^{ab} \simeq \mathcal{R}_S$ donné par le théorème 3 affirme que le groupe \mathcal{E}_S' s'envoie surjectivement sur le facteur \mathcal{R}_p , ce qui, compte tenu de l'égalité des rangs, signifie que l'application $s_p: \mathcal{E}_S' \to \mathcal{R}_p$ est un isomorphisme. La réciproque est immédiate.

En présence des racines p-ièmes de l'unité, nous donnerons plus loin un résultat dual de ce théorème, basé cette fois sur la théorie de Kummer.

3 p-extensions galoisiennes des corps p-rationnels

L'objet de cette section est de relever le théorème 2.3, qui décrit abélianisé \mathcal{G}_S^{ab} du groupe de Galois $\mathcal{G}_S = \operatorname{Gal}(M_S/K)$, en un théorème de structure pour le pro-p-groupe \mathcal{G}_S .

Introduisons pour cela quelques notations supplémentaires:

Désignons par \circledast le produit libre dans la catégorie des pro-p-groupes, puis, pour chaque place \mathfrak{l} de K, faisons choix de l'une \mathfrak{L} des places de M_S au-dessus de \mathfrak{l} , et notons (par abus) $\mathcal{D}_{\mathfrak{l}}$ le groupe de décomposition de \mathfrak{L} dans M_S/K (qui n'est donc défini qu'à conjugaison près). Notons maintenant $\mathcal{G}_{\mathfrak{l}}$ le groupe de Galois de la pro-p-extension maximale de $K_{\mathfrak{l}}$, et $\psi_{\mathfrak{l}}$ le morphisme de $\mathcal{G}_{\mathfrak{l}}$ dans \mathcal{G}_S induit par la surjection canonique de $\mathcal{G}_{\mathfrak{l}}$ sur $\mathcal{D}_{\mathfrak{l}}$. Par la propriété universelle du produit libre, nous définissons ainsi un morphisme ψ_S du produit $\circledast_{\mathfrak{l} \in S} \mathcal{G}_{\mathfrak{l}}$ dans \mathcal{G}_S . Nous allons voir que, sous les hypothèses du théorème 2.3, l'application obtenue est un isomorphisme.

Nous aurons besoin pour cela du résultat technique suivant :

Lemme 3.1. Soient $\varphi : \mathcal{H} \to \mathcal{G}$ un morphisme de pro-p-groupes, et $\varphi^{ab} : \mathcal{H}^{ab} \to \mathcal{G}^{ab}$ l'abélianisé de φ . Sous la condition $H^2(\mathcal{G}, \mathbb{Q}_p/\mathbb{Z}_p) = 1$, il est équivalent d'affirmer que φ ou φ^{ab} est un isomorphisme.

Preuve. Il est bien clair que φ^{ab} est un isomorphisme dès que φ en est un. Réciproquement, supposons que φ^{ab} est un isomorphisme et notons pour abréger $H^i(\cdot)$ au lieu de $H^i(\cdot, \mathbb{Q}_p/\mathbb{Z}_p)$. La suite exacte d'inflation-restriction construite à partir de la suite exacte courte

$$1 \longrightarrow Im \varphi \longrightarrow \mathcal{G} \longrightarrow \text{Coker } \varphi \longrightarrow 1,$$

s'écrit

$$1 \longrightarrow H^1(\operatorname{Coker} \varphi) \longrightarrow H^1(\mathcal{G}) \longrightarrow H^1(\operatorname{Im} \varphi) \longrightarrow \dots$$

Maintenant φ^{ab} étant surjective, l'application induite $H^1(\mathcal{G}) \to H^1(\mathcal{H})$ est injective, ce qui entraîne $H^1(\text{Coker }\varphi) = 1$, i.e. Coker $\varphi = 1$, et φ est bien surjective.

Cela étant, la suite exacte d'inflation- restriction conduite à partir de la suite courte

$$1 \longrightarrow \operatorname{Ker} \varphi \longrightarrow \mathcal{H} \longrightarrow \mathcal{G} \longrightarrow 1$$

s'écrit:

$$1 \longrightarrow H^1(\mathcal{G}) \stackrel{\sim}{\longrightarrow} H^1(\mathcal{H}) \longrightarrow H^1(\operatorname{Ker} \varphi)^{\mathcal{G}} \longrightarrow H^2(\mathcal{G}) = 1$$

et le terme de droite est nul par hypothèse. Il vient donc $H^1(\text{Ker }\varphi)^{\mathcal{G}}=1$, i.e. $H^1(\text{Ker }\varphi)=1$ (puisque \mathcal{G} est un pro-p-groupe opérant sur le p-groupe discret $H^1(\text{Ker }\varphi)$), c'est-à-dire finalement Ker $\varphi=1$, comme attendu.

Théorème 3.2. Soient K un corps p-rationnel, et S un ensemble p-primitif maximal de places modérées du corps K. L'application ψ_S définie sur le produit libre $\circledast_{\mathfrak{l} \in S} \mathcal{G}_{\mathfrak{l}}$ des groupes de Galois respectifs $\mathcal{G}_{\mathfrak{l}}$ des pro-p-extensions maximales des complétés \mathfrak{l} -adiques de K aux places de S (par le choix d'une place \mathfrak{L} de M_S au-dessus de \mathfrak{l} pour tout \mathfrak{l} de S), à valeurs dans le groupe de Galois \mathcal{G}_S de la pro-p-extension S-modérément ramifiée ∞ -décomposée maximale M_S de K, est un isomorphisme :

$$\mathcal{G}_S = \operatorname{Gal}(M_S/K) \simeq \circledast_{\mathfrak{l} \in S} \mathcal{G}_L = \circledast_{\mathfrak{l} \in S} \operatorname{Gal}(M_L/K_L)$$

Inversement, si pour un ensemble S de c+1 places modérées d'un corps de nombres K, le groupe \mathcal{G}_S admet une décomposition du type précédent, le corps K est p-rationnel, et l'ensemble S p-primitif maximal.

Ce théorème résout complètement le problème de la description explicite de \mathcal{G}_S (sous les hypothèses de p-rationalité et de p-primitivité), puisque la structure des groupes locaux $\mathcal{G}_{\mathfrak{l}}$ est parfaitement connue pour les places modérées (cf. [K]) :

Scolie 3.3. Le groupe de Galois $\mathcal{G}_{\mathfrak{l}}=\operatorname{Gal}(M_{\mathfrak{L}}/K_{\mathfrak{l}})$ de la pro-p-extension maximale du complété d'un corps de nombres en une place finie étrangère à p est :

- soit le pro-p-groupe libre $\tau_{\mathfrak{l}}^{\mathbb{Z}_p}$ engendré par le Frobenius, lorsque le p-sous-groupe de Sylow $\mu_{\mathfrak{l}}$ de $K_{\mathfrak{l}}^{\times}$ est trivial (i.e. lorsqu'on a $N\mathfrak{l}\not\equiv 1 \mod p$); - soit le groupe de Demuškin $<\sigma_{\mathfrak{l}},\tau_L\mid \tau_{\mathfrak{l}}^{N\mathfrak{l}-1}[\sigma_{\mathfrak{l}},\tau_{\mathfrak{l}}\mathfrak{l}]=1>$ construit sur un relèvement
- soit le groupe de Demuškin $<\sigma_{\mathfrak{l}}, \tau_{L} \mid \tau_{\mathfrak{l}}^{N\mathfrak{l}-1}[\sigma_{\mathfrak{l}}, \tau_{\mathfrak{l}}\mathfrak{l}] = 1 > construit sur un relèvement quelconque <math>\sigma_{\mathfrak{l}}$ du Frobenius de la sous-extension non-ramifiée maximale de $M_{\mathfrak{L}}$, et un progénérateur quelconque $\tau_{\mathfrak{l}}$ du sous-groupe d'inertie de $M_{\mathfrak{L}}/K_{\mathfrak{l}}$, dans le cas contraire.

Preuve du Théorème. Le corps K étant p-rationnel par hypothèse, il satisfait en particulier la conjecture de Leopoldt et nous avons donc $H^2(\mathcal{G}_S, \mathbb{Q}_p/\mathbb{Z}_p) = 1$, ce qui est la traduction cohomologique de cette conjecture. Cela étant, le théorème 2.3 affirmant que l'abélianisée ψ_S^{ab} est un isomorphisme lorsque l'ensemble S est p-primitif maximal, le lemme 1 nous dit qu'il en est de même de ψ_S . La réciproque est immédiate.

Remarque. Le théorème de structure précédent peut être regardé comme un analogue en théorie des nombres du théorème d'existence de Riemann, les corps p-rationnels venant remplacer ceux de genre nul. On sait en effet, par la théorie des revêtements, que si k est un corps algébriquement clos de caractéristique nulle, et S un ensemble fini de places du corps des fractions rationnelles K = k(x), autrement dit un ensemble fini $\{P_0, P_1, \cdots, P_S\}$ de points de $\mathbb{P}^1(k)$, le groupe de Galois \mathcal{G}_S de l'extension algébrique S-ramifiée maximale de K, qui s'identifie au groupe fondamental algébrique $\pi^1(\mathbb{P}^1(k) \setminus S)$, est le produit libre profini

$$\mathcal{G}_S \simeq \circledast_{P \in \{P_1, \cdots, P_S\}} I_P$$

des groupes d'inertie (isomorphes à $\hat{\mathbb{Z}}$) des places de S, après l'élimination arbitraire de l'une d'elles.

Corollaire 3.4. Soient K p-rationnel, et S p-primitif de cardinal $s \leq c+1$. Alors le groupe de Galois \mathcal{G}_S de la pro-p-extension S-modérément-ramifiée ∞ -décomposée maximale de K s'écrit comme produit libre

$$\mathcal{G}_S \simeq (\circledast_{\mathfrak{l} \in S} \mathcal{G}_L) \circledast \mathcal{H}$$

des groupes de Galois locaux attachés aux places de S et d'un pro-p-groupe libre sur 1+c-s générateurs.

Preuve. Il suffit de compléter S en un ensemble primitif maximal S', puis d'appliquer le théorème, en remarquant que \mathcal{G}_S est le quotient de $\mathcal{G}_{S'}$ par le sous-groupe $\circledast_{\mathfrak{l} \in S' \setminus S}$ $\mathcal{I}_{\mathfrak{l}}$ engendré par les sous-groupes d'inertie des places excédentaires.

Nous pouvons désormais procéder à la montée. Convenons de dire qu'une p-extension ∞ -décomposée L/K est primitivement ramifiée lorsque l'ensemble $R_{L/K}$ des places modérément ramifiées dans L/K est p-primitif dans K. Cela posé, nous avons :

Théorème 3.5. Étant donné une p-extension (finie) de corps de nombres, les deux conditions suivantes sont équivalentes :

- (i) Le corps L est p-rationnel.
- (ii) Le corps K est p-rationnel, et l'extension L/K primitivement ramifiée.

Preuve. Nous allons procéder différemment pour la descente et la montée.

(i) \Longrightarrow (ii) Pour la descente, remarquons simplement que si L est p-rationnel, il satisfait en particulier à la conjecture de Leopoldt ainsi que tous ses sous-corps, de sorte que tout revient à établir que le sous-groupe de torsion \mathcal{T}_K est nul et que l'extension L/K est primitivement ramifiée, dés lors que \mathcal{T}_L est nul. Or cela résulte immédiatement de la formule de points fixes de Gras (cf. [2]), où G désigne le groupe Gal(L/K), et \mathcal{D}' le groupe des p-diviseurs :

$$|\mathcal{T}_L^G| = |\mathcal{T}_K| \frac{(\mathcal{D}_L^{'G} \ \mathcal{D}_K')}{(\log \mathcal{D}_L^{'G} \ \log \mathcal{D}_K')}$$

(ii) \Longrightarrow (i) Pour la montée, la formule précédente n'est pas utilisable directement, puisque le corps L ne vérifie pas a priori la conjecture de Leopoldt. Complétons donc l'ensemble $R_{L/K}$ des places modérément ramifiées dans L/K en un ensemble p-primitif maximal S_K du corps p-rationnel K et introduisons la pro-p-extension S-modérément ramifiée ∞ -décomposée maximale M_S de K. Le corps M_S contient L par construction; c'est donc aussi la pro-p-extension S-modérément ramifiée ∞ -décomposée maximale de L. En particulier, le pro-p-groupe $\mathcal{G}_S(L) = \operatorname{Gal}(M_S/L)$ est donc un sous-groupe ouvert du pro-p-groupe $\mathcal{G}_S(K) = \operatorname{Gal}(M_S/K)$. Maintenant, par le théorème 3.2, le groupe $\mathcal{G}_S(K)$ s'identifie au produit libre :

$$\mathcal{G}_S(K) \simeq \circledast_{\mathfrak{l} \in S_K} \mathcal{G}_{\mathfrak{l}}(K)$$

et le théorème de Binz-Neukirch-Wenzel (cf. [1]) nous assure que le sous-groupe $\mathcal{G}_S(L)$ s'identifie par conséquent au produit libre :

$$\mathcal{G}_S(L) \simeq (\circledast_{\mathfrak{L} \in S_L} \mathcal{G}_{\mathfrak{L}}(L)) \circledast \mathcal{H}$$
,

où \mathfrak{L} parcourt les places de L au-dessus de S_K et \mathcal{H} désigne un pro-p-groupe libre de rang $n = \sum_{\mathfrak{L} \in S_L} ([L_{\mathfrak{L}} : K_{\mathfrak{l}}] - 1) - ([L : K] - 1)$. Prenant l'abélianisé $\mathcal{G}_S^{ab}(L)$ et appliquant le corollaire 2.4, nous concluons que L est p-rationnel, comme attendu, et que l'ensemble S_L est p-primitif dans L. Ainsi :

Corollaire 3.6. Dans une p-extension primitivement ramifiée L/K d'un corps p-rationnel, l'ensemble S des places modérément ramifiées est encore p-primitif dans L.

Remarques.

- (i) L'implication de montée a été obtenue par Miki à partir de la caractérisation (iv) du théorème 1.2. Sa démonstration très technique est malheureusement assez peu éclairante (cf. [9]).
- (ii) Ultérieurement, Miki et Sato (cf. [12]) ont donné une autre démonstration du théorème de montée, en décrivant la structure du groupe de Galois Gal (Z_L/L) de la composée des \mathbb{Z}_p -extensions de L comme module sur l'algèbre $\mathbb{Z}_p[\mathrm{Gal}(L/K)]$ dans le cas particulier où l'extension L/K est cyclique d'ordre p. Pour passer ensuite au cas général, il est nécessaire de vérifier que si L/K est primitivement ramifiée, l'ensemble des places modérément ramifiées dans L/K est encore primitif dans L (i.e. le corollaire 3.6 ci-dessus), ce que la méthode ne donne pas.
- (iii) Dans [GJ], l'implication de montée pour la p-régularité est ramenée au cas abélien à l'aide de la théorie des genres; elle est alors démontrée par la théorie p-adique du corps de classes, via la caractérisation (v) du théorème 1.2.

Corollaire 3.7. Toute p-extension primitivement ramifiée L d'un corps p-rationnel est un corps p-rationnel qui vérifie la conjecture de Leopoldt (pour le nombre premier p). Si L contient les racines p-ièmes de l'unité, il vérifie en outre la conjecture de Gross-Kuz'min.

En effet, tout corps p-rationnel vérifie la conjecture de Leopoldt; tout corps p-régulier, celle de Gross-Kuz'min, dès lors qu'il contient ζ_p . En fait, comme expliqué dans [6], la nullité de le p-partie du noyau hilbertien $H_2(L)$ suffit alors à entraı̂ner ces deux conjectures.

4 Lois de réciprocité primitives

Nous supposons désormais que K est un corps p-rationnel contenant les racines p-ièmes de l'unité, et S un ensemble p-primitif maximal de places modérées de K.

Comme expliqué au début de cet article (cf. Proposition 1.1) K est alors un corps p-régulier, ce qui signifie que tout symbole sur K à valeurs dans un p-groupe s'exprime comme produit (éventuellement infini) des symboles réguliers attachés aux places non complexes de K. Par exemple, puisque K possède une unique place $\mathfrak p$ au-dessus de p (cf. condition (v,a) du Théorème 1.2), le p-symbole de Hilbert attaché à $\mathfrak p$ (à valeurs dans le p-groupe μ_p des racines de l'unité dans $\mathcal K_p^\times$) est donné par la formule du produit

$$\left(\frac{\cdot\;,\;\cdot}{\mathfrak{p}}\right)^{-1} = \prod_{\mathfrak{l}
eq \mathfrak{p}}\;(.\;,\;.)^{p^{m_{\mathfrak{l}}-m}}_{\mathfrak{l}}$$

où $p^{m_{\mathfrak{l}}}$ désigne l'ordre du p-groupe local $\mu_{\mathfrak{l}}$, et p^m celui du p-groupe global, l'égalité $m=m_{\mathfrak{p}}$ résultant des hypothèses faites, puisque l'extension cyclotomique $K[\zeta_{p^{m+1}}]/K$ ne peut se décomposer en p (toujours d'après la condition (v,a) du théorème 1.2).

Nous nous proposons ici de déterminer une loi de réciprocité explicite pour le symbole sauvage $\left(\frac{\cdot}{\mathfrak{p}},\frac{\cdot}{\mathfrak{p}}\right)$ ne mettant en jeu qu'un nombre fini de symboles modérés. Le cas p=2 faisant intervenir les symboles réguliers attachés aux places réelles, nous aurons besoin pour cela d'un résultat légèrement plus général que le théorème 2.3, que nous allons maintenant établir :

Théorème 4.1. Soient K un corps p-rationnel et S un ensemble p-primitif maximal de places modérées de K. Alors, dans la correspondance du corps de classes, le groupe de galois $\mathcal{G}_{S\infty}^{ab}$ de la pro-p-extension abélienne S-modérément ramifiée maximale $M_{S\infty}^{ab}$ de K (i.e. de la composée des p-extensions abéliennes de K qui sont non ramifiées (aux places finies) en dehors de S et de S0 et de S1 et de S2 et de S3 et de S4 de S5 et de S6 et de S6 et de S7 et de S7 et de S8 et de S9 et de

$$\mathcal{G}_{S\infty}^{ ext{ab}} = \operatorname{Gal}(M_{S\infty}^{ ext{ab}}/K) \simeq \prod_{\mathfrak{l} \in S\infty} \mathcal{R}_{\mathfrak{l}}.$$

C'est donc le produit direct des sous-groupes de décomposition des r places réelles et des c+1 places de S.

Preuve. La p-extension abélienne p-ramifiée $S\infty$ -décomposée maximale de K étant triviale par hypothèse, un calcul direct donne :

$$\mathcal{G}_{S\infty}^{\mathrm{ab}} \simeq \mathcal{J}/\prod_{\mathfrak{l} \notin Sp} \mathcal{U}_p \ \mathcal{R} \simeq \prod_{\mathfrak{l} \in S\infty} \mathcal{R}_{\mathfrak{l}}/\left(\prod_{\mathfrak{l} \in S\infty} \mathcal{R}_{\mathfrak{l}} \cap \mathcal{R} \prod_{\mathfrak{l} \notin S\infty p} \mu_{\mathfrak{l}}\right)$$

et tout le problème consiste à vérifier que le dénominateur est nul. Or cela résulte par exemple du théorème 2.3, puisque les idèles principaux qui interviennent sont des S-unités infinitésimales (i.e. des éléments du tensorisé $\mathcal{E}_S = \mathbb{Z}_p \otimes_{\mathbb{Z}} E_S$ d'image 1 dans le facteur $\mathcal{R}_p = \prod_{\mathfrak{p}\mid_{\mathcal{D}}} \mathcal{R}_{\mathfrak{p}}$).

Corollaire 4.2 (Épimorphisme de dualité). Conservons les hypothèses du théorème et supposons en outre que le corps K contient les racines p-ièmes de l'unité. Alors l'application canonique

$$\mathcal{E}_S' o \mathcal{R}_{S\infty} = \prod_{\mathfrak{l} \in S\infty} \mathcal{R}_{\mathfrak{l}}$$

du tensorisé p-adique $\mathcal{E}_S' = \mathbb{Z}_p \otimes_{\mathbb{Z}} E_S'$ du groupe des Sp-unités (au sens ordinaire) de K dans le produit des complétés profinis $\mathcal{R}_{\mathfrak{l}}$, pour $\mathfrak{l} \in S_{\infty}$, induite par le prolongement diagonal du groupe multiplicatif de K dans le produit de ceux de ses complétés aux places réelles ou contenues dans S est un épimorphisme.

Preuve. Comme le corps K contient les racines p-ièmes de l'unité, l'isomorphisme galoisien du théorème 1, transporté par la théorie de Kummer, montre que le radical $\operatorname{Rad}(M_{S\infty}^{\text{el}}/K)$ de la p-extension abélienne élémentaire S-modérément ramifiée maximale de K s'identifie au produit des radicaux locaux $\operatorname{Rad}(M_{\mathbb{I}}^{\text{el}}/K_{\mathbb{I}})$, pour $\mathfrak{I} \in S\infty$; ce qui s'écrit :

$$\mathcal{E}_S'/\mathcal{E}_S^{'p}\simeq\prod_{\mathfrak{l}\in S\infty}\mathcal{R}_{\mathfrak{l}}/\mathcal{R}_{\mathfrak{l}}^p.$$

D'après le lemme de Nakayama, cela suffit à établir que l'application naturelle

$$\mathcal{E}_S' o \prod_{\mathfrak{l} \in S\infty} \mathcal{R}_{\mathfrak{l}}$$

est un épimorphisme. Bien entendu, ce n'est pas (en général) un isomorphisme, la source et l'arrivée n'étant pas des \mathbb{Z}_p -module de même rang.

Il est alors commode de réunir le théorème 2.3 et le corollaire 2 ci-dessus dans un même énoncé sous la forme :

Corollaire 4.3 (lemme d'approximation simultanée par les S-unités). Sous les hypothèses précédentes, les injections diagonales $E_S' \hookrightarrow K_{\mathfrak{p}}^{\times}$ et $E_S' \hookrightarrow \prod_{\mathfrak{l} \in S\infty} K_{\mathfrak{l}}^{\times}$ induisent les isomorphismes canoniques

$$K_p^\times/K_p^{\times p^m} \quad \simeq \quad E_S'/E_S'^{p^m} \quad \simeq \quad K_{S\infty}^\times/K_{S\infty}^{\times p^m} \simeq \prod_{\mathfrak{l} \in S\infty} K_{\mathfrak{l}}^\times/K_{\mathfrak{l}}^{\times p^m},$$

où p^m est l'ordre du p-groupe μ_K des racines de l'unité dans K.

Cela étant, nous pouvons énoncer (en accord avec [15]):

Théorème 4.4 (Loi de réciprocité primitive). Soient K un corps p-régulier contenant les racines p-ièmes de l'unité et $\mathfrak p$ l'unique place de K au-dessus de p. Alors, pour tout ensemble p-primitif $maximal\ S$ de places $modérées\ de\ K$, les quotients

$$K_p^\times/K_p^{\times p^m} \qquad \& \qquad K_{S\infty}^\times/K_{S\infty}^{\times p^m} \simeq \prod_{\mathfrak{l} \in S\infty} K_{\mathfrak{l}}^\times/K_{\mathfrak{l}}^{\times p^m}$$

où p^m est l'ordre du p-groupe μ des racines de l'unité dans K, sont naturellement anti-isométriques pour la structure (symplectique pour $p \neq 2$) donnée par les symboles de Hilbert.

Preuve. Il s'agit d'établir qu'il existe un isomorphisme canonique φ_S du quotient $K_{\mathfrak{p}}^{\times}/K_{\mathfrak{p}}^{\times p^m}$ sur le quotient $K_{S\infty}^{\times}/K_{S\infty}^{\times p^m}$, tel qu'on ait l'identité entre les symboles de Hilbert à valeurs dans μ :

$$\left(\frac{a,b}{\mathfrak{p}}\right) = \prod_{\mathfrak{l} \in S\infty} \left(\frac{\varphi_S(a), \varphi_S(b)}{\mathfrak{l}}\right) = \prod_{\mathfrak{l} \in S\infty} (\varphi_S(a), \varphi_S(b))_{\mathfrak{l}}$$

Or cela résulte immédiatement du lemme d'approximation simultanée par les S-unités ci-dessus et de la formule du produit rappelée plus haut, compte tenu de l'identité $m_{\mathfrak{l}}=m$, pour $\mathfrak{l}\in S$.

Remarques. Précisons quelques points en liaison avec la parité.

- Lorsque p^m est différent de 2, le corps K n'admet pas de plongement réel, et le quotient $E'_S/E'^{p^m}_S \simeq K_S^\times/K_S^{\times p^m}$ est alors un $\mathbb{Z}/p^m\mathbb{Z}$ -module libre de dimension 2(c+1).
 - Si p est impair, les symboles de Hilbert à valeurs dans μ en font un module symplectique non dégénéré et il est facile de voir que le quotient E'/E'^{p^m} , construit sur les p-unités, est un sous-module totalement isotrope maximal (de dimension c+1). On obtient alors un supplémentaire totalement isotrope en faisant choix pour chaque $\mathfrak l$ dans S d'une uniformisante locale $\pi_{\mathfrak l}$ (que l'on regarde dans E'_S) et en formant le sous-module engendré par les $\pi_{\mathfrak l}$. Via la théorie de Kummer, cela revient à prendre le radical attaché à la sous-extension d'exposant p^m de l'extension abélienne K_S^{ab}/K donnée par le corollaire 2.5.
 - Si p vaut 2, le quotient $K_S^{\times}/K_S^{\times p^m}$ n'est plus un module symplectique : Le sous-groupe $\mu_S/\mu_S^{p^m}$ engendré par les racines locales de l'unité est toujours un sous-module totalement isotrope maximal; mais il n'admet plus de supplémentaire isotrope puisque, pour toute uniformisante $\pi_{\mathfrak{l}}$, on a $(\pi_{\mathfrak{l}}, \pi_{\mathfrak{l}})_{\mathfrak{l}} = -1$ par un calcul immédiat.
- Enfin, lorsque p^m vaut 2, le quotient $E_S'/E_S'^2$ est un \mathbb{F}_2 -espace quadratique de dimension r+2(c+1), où r est le nombre de places réelles de K, qui admet comme sous-espace totalement isotrope maximal le quotient $E_+'/E_+'^2$ de dimension c+1, engendré par les p-unités totalement positives.

Références bibliographiques

- E. Binz, J. Neukirch & G.H. Wenzel, A subgroup theorem for profinite groups, J. of Algebra 19 (1971), 104–109.
- [2] G. Gras, Groupe de Galois de la p-extension abélienne p-ramifiée maximale d'un corps de nombres, J. reine angew. Math. 333 (1982), 86–132.
- [3] G. Gras, Logarithme p-adique et groupes de Galois, J. reine angew. Math. 343 (1982), 64-80.
- [4] G. Gras, Remarks on K₂ of numbers fields, J. Numb. Th. 23 (1986), 322–335.
- G. Gras & J.-F. Jaulent, Sur les corps de nombres réguliers, Math. Z. 202 (1989), 343–365.
- [6] J.-F. Jaulent, Sur les conjectures de Leopoldt et de Gross, Astérisque 147/148 (1987), 107-120.
- [7] J.-F. Jaulent, L'arithmétique des l-extensions (Thèse d'État), Pub. Math. Fac. Sci. Besançon Théor. Nombres 1985/1986 (1986).
- [8] H. Koch, Galoissche Theorie der p-Erweiterungen, Deutscher Verlag des Wissenschaften, Berlin (1970).
- [9] H. Miki, On the Leopoldt conjecture on the p-adic regulators, J. Numb. Th. 26 (1987), 117-128.
- [10] A. Movahhedi Sur les p-extensions des corps p-rationnels, Math. Nachr. 149 (1990), 163–176.
- [11] A. MOVAHHEDI & T. NGUYEN QUANG Do, Sur l'arithmétique des corps de nombres p-rationnels, Sém. Th. Nombres Paris 1987/1988, Prog. in Math. 89 (1990), 155–200.
- [12] H. Miki & H. Sato, Leopoldt's conjecture and Reiner's theorem, J. Math. Soc. Japan. 36 (1984), 47–52.
- [13] T. NGUYEN QUANG Do, Sur la structure galoisienne des corps locaux et la théorie d'Iwasawa, Compositio Math. 46 (1982), 85–119.
- [14] T. NGUYEN QUANG Do, Sur la \mathbb{Z}_p -torsion de certains modules galoisiens, Ann. Sci. Inst. Fourier **36** (1986), 27–46.
- [15] T. NGUYEN QUANG Do, Lois de réciprocité primitives, Manuscripta Math. 72 (1991), 307-324.
- [16] I. R. Šafarevič, Extensions with prescribed ramification points, Pub. Math. I.H.E.S. 36 (1986), 71–95.
- [17] J. Tate, Sur la première démonstration par Gauss de la loi de réciprocité quadratique, Colloque de Mathématiques Pures, Grenoble (1968).

Jean-François JAULENT Université Bordeaux 1 Institut de Mathématiques 351, cours de la Libération F-33405 TALENCE Cedex jjaulent@u-bordeaux.fr T. NGUYEN QUANG DO UFR de Mathématiques Université Paris VII 2, place Jussieu F-75251 PARIS Cedex 05