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Abstract. We present an algorithm for computing the 2-group C` pos
F of the posi-

tive divisor classes in case the number field F has exceptional dyadic places. As an
application, we compute the 2-rank of the wild kernel WK2(F ) in K2(F ).

Résumé. Nous développons un algorithme pour déterminer le 2-groupe C` pos
F des

classes positives dans le cas où le corps de nombres considéré F possède des places

paires exceptionnelles. Cela donne en particulier le 2-rang du noyau sauvage WK2(F ).

1 Introduction

The logarithmic `-class group C̃`F was introduced in [10] by J.-F. Jaulent who
used it to study the `-part WK2(F ) of the wild kernel in number fields: if F
contains a primitive 2`t-th root of unity (t > 0), there is a natural isomorphism

µ`t ⊗Z C̃`F ' WK2(F )/WK2(F )`t

,

so the `-rank of WK2(F ) coincides with the `-rank of the logarithmic group C̃`F .
An algorithm for computing C̃`F for Galois extensions F was developed in [4]
and later generalized and improved for arbitrary number fields in [3].

In case the prime ` is odd, the assumption µ` ⊂ F may be easily passed if one
considers the cyclotomic extension F (µ`) and gets back to F via the so-called
transfer (see [12], [15] and [17]). However for ` = 2 the connection between sym-
bols and logarithmic classes is more intricate: in the non-exceptional situation
(i.e. when the cyclotomic Z2-extension F c contains the fourth root of unity i)
the 2-rank of WK2(F ) still coincides with the 2-rank of C̃`F . Even more if the
number field F has no exceptional dyadic place (i.e. if one has i ∈ F c

q for any
q|2), the same result holds if one replaces the ordinary logarithmic class group
C̃`F by a narrow version C̃` res

F . The algorithmic aspect of this is treated in [11].
Last in [13] the authors pass the difficulty in the remaining case by intro-

ducing a new 2-class groups C` pos
F , the 2-group of positive divisor classes, which

satisfies the rank identity: rk2 C` pos
F = rk2 WK2(F ).

In this paper we develop an algorithm for computing both C` pos
F and C̃` pos

F

in case the number field F does contain exceptional dyadic places.
We conclude with several examples. Combining our algorithm with the work
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of Belabas and Gangl [1] on the computation of the tame kernel of K2 we obtain
the complete structure of the wild kernel in some cases.

2 Positive divisor classes of degree zero

2.1 The group of logarithmic divisor classes of degree zero

Throughout this paper the prime number ` equals 2 and we let i be a primitive
fourth root of unity. Let F be a number field of degree n = r + 2c. According
to [9], for every place p of F there exists a 2-adic valuation ṽp which is related
to the wild 2-symbol in case the cyclotomic Z2-extension of Fp contains i. The
degree deg p of p is a 2-adic integer such that the image of the map Log | |p is the
Z2-module deg(p) Z2 (see [10]). (By Log we mean the usual 2-adic logarithm.)
The construction of the 2-adic logarithmic valuations ṽp yields

∀α ∈ RF := Z2 ⊗Z F× :
∑

p∈Pl 0
F

ṽp(α) deg(p) = 0, (1)

where Pl 0
F denotes the set of finite places of the number field F . Setting

d̃iv(α) :=
∑

p∈Pl 0
F

ṽp(α)p

we obtain by Z2-linearity:
deg(d̃iv(α)) = 0. (2)

We define the 2-group of logarithmic divisors of degree 0 as the kernel of the
degree map deg in the direct sum D`F =

∑
p∈Pl 0

F
Z2 p:

D̃`F :=
{∑

p∈Pl 0
F

app ∈ D`F |
∑

p∈Pl 0
F

ap deg(p) = 0
}

;

and the subgroup of principal logarithmic divisors as the image of the logarith-
mical map d̃iv:

P̃`F := {d̃iv(α) | α ∈ RF } .

Because of (2) P̃`F is clearly a subgroup of D̃`F . Moreover by the so-called
generalised Gross conjecture, the factorgroup

C̃`F := D̃`F /P̃`F

is a finite 2-group, the 2-group of logarithmic divisor classes. So, under this
conjecture, C̃`F is just the torsion subgroup of the group

C`F := D`F /P̃`F

of logarithmic classes (without any assumption of degree).

Remark 1. Let F+ be the set of all totally positive elements of F× (i.e. the
subgroup F+ := {x ∈ F×| xp > 0 for all real p}). For

P̃`+F := {d̃iv(α) | α ∈ R+
F := Z2 ⊗Z F+}
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the factor group

C` res
F := D`F /P̃`+F (resp. C̃` res

F := D̃`F /P̃`+F )

is the 2-group of narrow logarithmic divisor classes of the number field F (resp.
the 2-group of narrow logarithmic divisor classes of degree 0) introduced in [16]
and computed in [11].

2.2 Signs and places

For a field F we denote by F c, (respectively F c[i]) the cyclotomic Z2-extension
(resp. the maximal cyclotomic pro-2-extension) of F .

We adopt the notations and definitions in this section from [13].

Definition 1 (signed places). Let F be a number field. We say that a non-
complex place p of F is signed if and only if Fp does not contains the fourth
root of unity i. These are the places which do not decompose in the extension
F [i]/F .
We say that p is logarithmically signed if and only if the cyclotomic Z2-extension
F c

p does not contain i. These are the places which do not decompose in F c[i]/F c.

Definition 2 (sets of signed places). By PS, respectively PLS, we denote
the sets of signed, respectively logarithmically signed, places:

PS := {p | i 6∈ Fp} ,

PLS := {p | i 6∈ F c
p} .

A finite place p ∈ PLS is called exceptional. The set of exceptional places is
denoted by PE. Exceptional places are even (i.e. finite places dividing 2).

These sets satisfy the following inclusions:

PS ⊂ PLS = PE ∪ PR ⊂ Pl(2) ∪ Pl(∞)

where Pl(2), P l(∞), PR denote the sets of even, infinite and real places of F ,
respectively. From this the finiteness of PLS is obvious.

We recall the canonical decomposition Q×
2 = 2Z × (1 + 4Z2)× 〈−1〉 and we

denote by ε the projection from Q×
2 onto 〈−1〉.

Definition 3 (sign function). For all places p we define a sign function via

sgp : F×p → 〈−1〉 : x 7→


1 for p complex
sign(x) for p real
ε(Np−νp(x)) for p 6 | 2∞
ε(NFp/Q2(x)Np−νp(x)) for p | 2

.

These sign functions satisfy the product formula:

∀x ∈ F×
∏

p∈PlF

sg(x) = 1.

In addition we have:
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Proposition 1. The places p of F satisfy the following properties:

(i) if p ∈ PLS then (sgp, ṽp) is surjective;

(ii) if p ∈ PS \ PLS then sgp( ) = (−1)evp( ) and ṽp is surjective;

(iii) if p 6∈ PS then sgp(F
×
p ) = 1 and ṽp is surjective.

Remark 2. The logarithmic valuation ṽp is surjective in all three cases. Part
2 of the preceding result is often used for testing p ∈ PLS.

2.3 The group of positive divisor classes

For the introduction of that group we modify several notations from [13] in order
to make them suitable for actual computations.

Since PLS is finite we can fix the order of the logarithmically signed places,
say PLS = {p1, · · · , pm}, with PE = {p1, · · · , pe} and PR = {pe+1, · · · , pm}.
Accordingly we define vectors e = (e1, · · · , em) ∈ {±1}m.

For each divisor a =
∑

p∈Pl 0
F

app, we form pairs (a, e) and put

sg(a, e) :=
∏

p∈PS\PLS

(−1)ap ×
m∏

i=1

ei (3)

Let D`F (PE) :=
{

a ∈ D`F

∣∣ a =
∑

p∈PE app
}

be the Z2-submodule of D`F gen-

erated by the exceptional dyadic places. And let D`PE
F be the factor group

D`F /D`F (PE). Thus the group of positive divisors is the Z2-module:

D` pos
F :=

{
(a, e) ∈ D`PE

F × {±1}m
∣∣∣ sg(a, e) = 1

}
(4)

For α ∈ RF := Z2 ⊗Z F×, let d̃iv′(α) denotes the image of d̃iv(α) in D`PE
F and

sg(α) the vector of signs (sgp1
(α), . . . , sgpm

(α)) in {±1}m. Then

P̃` pos
F :=

{
(d̃iv′(α), sg(α)) ∈ D`PE

F × {±1}m
∣∣∣α ∈ RF

}
(5)

is obviously a submodule of D` pos
F which is called the principal submodule.

Definition 4 (positive divisor classes). With the notations above:

(i) The group of positive logarithmic divisor classes is the factor group

C` pos
F = D` pos

F /P̃` pos
F .

(ii) The subgroup of positive logarithmic divisor classes of degree zero is the
kernel C̃` pos

F of the degree map deg in C` pos
F :

C̃` pos
F := {(a, e) + P̃`

pos

F | deg(a) ∈ deg(D`F (PE))}.

Remark 3. The group C` pos
F is infinite whenever the number field F has no ex-

ceptional places, since in this case deg(C` pos
F ) is isomorphic to Z2. The finiteness

of C` pos
F in case PE 6= ∅ follows from the so-called generalized Gross conjecture.
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For the computation of C̃` pos
F we need to introduce primitive divisors.

Definition 5. A divisor b of F is called a primitive divisor if deg(b) generates
the Z2-module deg(D`F ) = 4[F ∩Qc : Q]Z2.

We close this section by presenting a method for exhibiting such a divisor:
Let q1, · · · , qs be all dyadic primes; and p1, · · · , ps be a finite set of non-

dyadic primes which generates the 2-group of 2-ideal-classes C`′F (i.e. the quo-
tient of the usual 2-class group by the subgroup generated by ideals above 2).

Then every p ∈ {q1, · · · , qs, p1, · · · , pt} with minimal 2-valuation ν2(deg p)
is primitive.

2.4 Galois interpretations and applications to K-theory

Let F lc be the locally cyclototomic 2-extension of F (i.e. the maximal abelian
pro-2-extension of F which is completely split at every place over the cyclo-
tomic Z2-extension F c). Then by `-adic class field theory (cf. [9]), one has the
following interpretations of the logarithmic class groups:

Gal(F lc/F ) ' C`F and Gal(F lc/F c) ' C̃`F .

Remark 4. Let us assume i /∈ F c. Thus we may list the following special cases:

(i) In case PLS = ∅, the group C` pos
F ' Z2 ⊕ C̃` pos

F of positive divisor classes
has index 2 in the group C`F ' Z2 ⊕ C̃`F of logarithmic classes of arbi-
trary degree; as a consequence its torsion subgroup C̃` pos

F has index 2 in
the finite group C̃`F of logarithmic classes of degree 0 which was already
computed in [3].

(ii) In case PE = ∅, the group C` pos
F ' Z2 ⊕ C̃` pos

F has index 2 in the group
C` res

F ' Z2 ⊕ C̃` res
F of narrow logarithmic classes of arbitrary degree; and

its torsion subgroup C̃` pos
F has index 2 in the finite group C̃` res

F of narrow
logarithmic classes of degree 0 which was introduced in [16] and computed
in [11].

Definition 6. We adopt the following conventions from [6, 7, 13, 14]:

(i) F is exceptional whenever one has i /∈ F c (i.e. [F c[i] : F c] = 2);

(ii) F is logarithmically signed whenever one has i /∈ F lc (i.e. PLS 6= ∅);

(iii) F is primitive whenever at least one of the exceptional places does not
split in (the first step of the cyclotomic Z2-extension) F c/F .

The following theorem is a consequence of the results in [6, 7, 9, 10, 13, 14]:

Theorem 1. Let WK2(F ) (resp. K∞
2 (F ) := ∩n≥1K

2n

2 (F )) be be the 2-part of
the wild kernel (resp. the 2-subgroup of infinite height elements) in K2(F ).

(i) In case i ∈ F lc (i.e. in case PLS = ∅), we have both:

rk2 WK2(F ) = rk2 C̃`F = rk2 C̃` res
F .
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(ii) In case i /∈ F lc but F has no exceptional places (i.e. PE = ∅), we have:

rk2 WK2(F ) = rk2 C̃` res
F .

(iii) In case PE 6= ∅, then we have

rk2 WK2(F ) = rk2 C` pos
F .

And in this last situation there are two subcases:

(a) If F is primitive, i.e. if the set PE of exceptional dyadic places
contains a primitive place, we have:

K∞
2 (F ) = WK2(F ) .

(b) If F is imprimitive and K∞
2 (F ) = ⊕n

i=1 Z/2niZ, we get:

i. WK2(F ) = Z/2n1+1Z⊕(⊕n
i=2Z/2niZ) if rk2(C̃` pos

F ) = rk2(C` pos
F )

ii. WK2(F ) = Z/2Z⊕ (⊕n
i=1Z/2niZ) if rk2(C̃` pos

F ) < rk2(C` pos
F ).
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3 Computation of positive divisor classes

We assume in the following that the set PE of exceptional places is not empty.

3.1 Computation of exceptional units

Classically the group of logarithmic units is the kernel in RF of the logarithmic
valuations (see [9]):

ẼF = {x ∈ RF | ∀p ṽp(x) = 0}

In order to compute positive divisor classes in case PE is not empty, we introduce
a new group of units:

Definition 7. We define the group of logarithmic exceptional units as the kernel
of the non-exceptional logarithmic valuations:

Ẽexc
F = {x ∈ RF | ∀p /∈ PE ṽp(x) = 0} (6)

We only know that the group of logarithmic exceptional units is a subgroup
of the 2-group of 2-units E ′F = Z2 ⊗E′

F . If we assume that there are exactly s
places in F containing 2 we have, say:

E′
F = µF × 〈ε1, · · · , εr+c−1+s〉

For the calculation of Ẽexc
F we use the same precision η as for our 2-adic approx-

imations used in the course of the calculation of C̃`F . We obtain a system of
generators of Ẽexc

F by computing the nullspace of the matrix

B =

 | 2η · · · 0
ṽpi

(εj) | · · · · ·
| 0 · · · 2η


with r + c− 1 + s + e columns and e rows, where e is the cardinality of PE and
the precision η is determined as explained in [3].

We assume that the nullspace of B is generated by the columns of the matrix

B′ =


C

− − −

D



where C has r + c− 1 + s and D exactly e rows. It suffices to consider C. Each
column (n1, · · · , nr+c−1+s)tr of C corresponds to a unit

r+c−1+s∏
i=1

εni
i ∈ Ẽexc

F R2η

F
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so that we can choose

ε̃ :=
r+c−1+s∏

i=1

εni
i

as an approximation for an exceptional unit. This procedure yields k ≥ r+c+e
exceptional units, say: ε̃1, · · · , ε̃k. By the so-called generalized conjecture of
Gross we would have exactly r + c+ e such units. So we assume in the following
that the procedure does give k = r + c + e (otherwise we would refute the
conjecture). Hence, from now on we may assume that we have determined
exactly r + c + e generators ε̃1, · · · , ε̃r+c+e of Ẽexc

F , and we write:

Ẽexc
F = 〈−1〉 × 〈ε̃1, · · · , ε̃r+c−1+e〉

Definition 8. The kernel of the canonical map RF → D` pos
F is the subgroup

of positive logarithmic units:

Ẽ pos
F = {ε̃ ∈ Ẽexc

F | ∀p ∈ PLS sgp(ε̃) = +1}

The subgroup Ẽ pos
F has finite index in the group Ẽexc

F of exceptional units.

3.2 The algorithm for computing C` pos
F

We assume PE 6= ∅ and that the logarithmic 2-class group C̃`F is isomorphic to
the direct sum

C̃`F
∼= ⊕ν

i=1 Z/2niZ

subject to 1 ≤ n1 ≤ · · · ≤ nν . Let ai (1 ≤ i ≤ ν) be fixed representatives of the
ν generating divisor classes. Then any divisor a of D`F can be written as

a =
ν∑

i=1

aiai + λb + d̃iv(α)

with suitable integers ai ∈ Z2, a primitive divisor b, λ = deg(a)
deg(b) and an appro-

priate element α of RF . With each divisor ai we associate a vector

ei := (sg(ai,1), 1, · · · , 1) ∈ {±1}m ,

where m again denotes the number of divisors in PLS. Clearly, that represen-
tation then satisfies sg(ai, ei) = 1, hence the element (ai, ei) belongs to D` pos

F .
Setting eb = (sg(b,1), 1, · · · , 1) as above and writing

e′ := sg(α)×
ν∏

i=1

eai
i × e× eλ

b

for abbreviation, any element (a, e) of D` pos
F can then be written in the form

(a, e) =

(
ν∑

i=1

aiai + λb + d̃iv(α), e′ ×
ν∏

i=1

eai
i × sg(α)× eλ

b

)

=
ν∑

i=1

ai(ai, ei) + λ(b, eb) + (0, e′) + (d̃iv(α), sg(α)) .
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The multiplications are carried out coordinatewise. The vector e′ is therefore
contained in the Z2-module generated by gi ∈ Zm (1 ≤ i ≤ m) with g1 =
(1, · · · , 1), whereas gi has first and i-th coordinate -1, all other coordinates 1
for i > 1.

As a consequence, the set

{(aj , ej) | 1 ≤ j ≤ ν} ∪ {(0,gi) | 2 ≤ i ≤ m} ∪ {(b, e}

contains a system of generators of C` pos
F ( note that (0,g1) is trivial in C` pos

F ).
We still need to expose the relations among those. But the latter are easy to
characterize. We must have

ν∑
j=1

aj(aj , ej) +
m∑

i=2

bi(0,gi) + λ(b, eb) ≡ 0 mod P̃` pos
F ,

ν∑
j=1

aj(aj , ej) +
m∑

i=2

bi(0,gi) + λ(b, eb) = (d̃iv(α), sg(α)) +
∑

p∈PE

(dpp,1)

with indeterminates aj , bi, dp from Z2. Considering the two components sepa-
rately, we obtain the conditions

ν∑
j=1

ajaj + λb ≡
∑

p∈PE

dpp mod P̃`F (7)

and
ν∏

j=1

eaj

j ×
m∏

i=2

gbi
i × eλ

b = sg(α) . (8)

Let us recall that we have already ordered PLS so that exactly the first e ele-
ments p1, · · · , pe belong to PE. Then the first one of the conditions above is
tantamount to

ν∑
j=1

ajaj ≡
e∑

i=1

dpi

(
pi −

deg pi

deg b
b

)
mod P̃`F .

The divisors
pi −

deg pi

deg b
b

on the right-hand side can again be expressed by the aj . For 1 ≤ i ≤ e we let

d̃iv(αi) + pi −
deg pi

deg b
b =

ν∑
j=1

cijaj .

The calculation of the αi, cij is described in [15].
Consequently, the coefficient vectors (a1, · · · , aν , λ) can be chosen as Z2-

linear combinations of the rows of the following matrix A ∈ Z(ν+e)×(ν+1)
2 :

9



A =



2n1 0 · · · 0 0 | 0
0 2n2 · · · 0 0 | 0
· · · · · · · | ·
· · · · · · · | ·
0 0 · · · 2nν−1 0 | 0
0 0 · · · 0 2nν | 0
−− −− −−− −− −− −−−

| deg(p1)
deg(b)

cij |
...

| deg(pe)
deg(b)


Each row (a1, · · · , aν , λ) of A corresponds to a linear combination satisfying

ν∑
j=1

ajaj + λb ≡ d̃iv(α) mod D`F (PE) . (9)

Condition (8) gives
m∏

i=2

gbi
i = sg(α)×

ν∏
j=1

eaj

j × eλ
b . (10)

Obviously, the family (gi)2≤i≤m is free over F2 implying that the exponents
bi are uniquely defined. Consequently, if the k-th coordinate of the product
sg(α)×

∏ν
j=1 eaj

j ×eλ
b is −1 we must have bk = 1, otherwise bk = 0 for 2 ≤ k ≤ m.

(We note that the product over all coordinates is always 1.) Therefore, we denote
by b2,j , · · · , bm,j the exponents of the relation belonging to the j-th column of
A for j = 1, · · · , ν + e.

Unfortunately, the elements α are only given up to exceptional units. Hence,
we must additionally consider the signs of the exceptional units of F . For

Ẽexc
F = 〈−1〉 × 〈ε̃1, · · · , ε̃r+c−1+e〉 (11)

we put:

sg(ε̃j) =
m∏

i=1

gbi,j+v+e

i . (12)

Using the notations of (11) and (12) the rows of the following matrix A′ ∈
Z(ν+2e+r+c−1)×(ν+m)

2 generate all relations for the (aj , ej), (b, eb), (0,gi).

A′ =

0BBBBBBBBBBBBBBBB@

| b2,1 · · · bm,1

| · · · · ·
A | · · · · ·

| · · · · ·
| b2,ν+e · · · bm,ν+e

− −−− − | − −−− −
| b2,ν+e+1 · · · bm,ν+e+1

| · · · · ·
O | · · · · ·

| · · · · ·
| b2,ν+2e+r+c−1 · · · bm,ν+2e+r+c−1

1CCCCCCCCCCCCCCCCA
.
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3.3 The algorithm for computing C̃` pos
F

We assume that PE = {p1, · · · , pe} 6= ∅ is ordered by increasing 2-valuations
v2(deg pi); that the group C` pos

F of positive divisor classes is isomorphic to the
direct sum

C` pos
F

∼= ⊕w
i=1 Z/2miZ ;

and that we know a full set of representatives (bi, fi) (1 ≤ i ≤ w) for all classes.

Then each (b, f) ∈ D̃` pos
F satisfies deg(b) ∈ deg(D`F (PE)) and

b ≡
w∑

i=1

bibi mod (D`F (PE) + P̃`F ) .

Obviously, we obtain

0 ≡ deg(b) ≡
w∑

i=1

bi deg(bi) mod deg(D`F (PE)) .

We reorder the bi if necessary so that

v2(deg(b1)) ≤ v2(deg(bi)) (2 ≤ i ≤ w)

is fulfilled. We put

t : = max(min({v2(deg(p)) | p ∈ D`F (PE)})− v2(deg(b1)), 0)
= max(v2(deg(p1))− v2(deg(b1), 0)

and

δ := b1 +
w∑

i=2

deg(bi)
deg(b1)

bi .

Then we get:

b ≡
w∑

i=2

bi

(
bi −

deg(bi)
deg(b1)

b1

)
+ δb1 mod (D`F (PE) + P̃`F )

and so
deg b ≡ 0 ≡

∑
bi × 0 + δ deg b1 mod degD`F (PE).

From this it is immediate that a full set of representatives of the elements of
C̃` pos

F is given by(
bi −

deg(bi)
deg(b1)

b1, fi × f− deg(bi)/ deg(b1)
1

)
for 2 ≤ i ≤ w

and
(b′1 := 2tb1 − 2t deg b1

deg p1
p1, f2t

1 ) .

Let us denote the class of (c, f) in C̃` pos
F by [c, f ].
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Now we establish a matrix of relations for the generating classes. For this
we consider relations:

w∑
i=2

ai

[
bi −

deg(bi)
deg(b1)

b1, fi × f
− deg(bi)

deg(b1)

1

]
+ a1

[
2tb′1, f

2t

1

]
= 0 ,

hence
w∑

i=2

ai[bi, fi] +

(
2ta1 −

w∑
i=2

deg(bi)
deg(b1)

ai

)
[b1, f1] = 0 .

A system of generators for all relations can then be computed analogously to
the previous section. We calculate a basis of the nullspace of the matrix A′′ =
(a′′ij) ∈ Zw×2w with first row(

2t,−deg(b2)
deg(b1)

, · · · ,−deg(bw)
deg(b1)

, 2m1 , 0, · · · , 0
)

and in rows i = 2, · · · , w all entries are zero except for a′′ii = 1 and a′′i,w+i = 2mi .
We note that we are only interested in the first w coordinates of the obtained
vectors of that nullspace.

4 Examples

The methods described here are implemented in the computer algebra system
Magma [2]. Many of the fields used in the examples were results of queries to the
QaoS number field database [5, section 6]. More extensive tables of examples
can be found at:

http://www.math.tu-berlin.de/~pauli/K

In the tables abelian groups are given as a list of the orders of their cyclic factors.

[:] denotes the index (K2(OF ) : WK2(F )) (see [1, equation (6)]);

dF denotes the discriminant for a number field F ;

C`F denotes the class group, P the set of dyadic places;

C`′F denotes the 2-part of C`/〈P 〉;

C̃`F denotes the logarithmic classgroup;

C` pos
F denotes the group of positive divisor classes;

C̃` pos
F denotes the group of positive divisor classes of degree 0;

rk2 denotes the 2-rank of the wild kernel WK2.

K. Belabas and H. Gangl have developed an algorithm for the computation
of the tame kernel K2OF [1]. The following table contains the structure of
K2OF as computed by Belabas and Gangl and the 2-rank of the wild kernel
WK2 calculated with our methods for some imaginary quadratic fields. We also
give the structure of the wild kernel if it can be deduced from the structure of
K2OF and of the rank of the wild kernel computed here or in [15].
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4.1 Imaginary Quadratic Fields

dF C`F K2OF [:] |P | |PE| C`′F C̃`F C` pos
F C̃` pos

F rk2 WK2

-184 [ 4 ] [ 2 ] 1 1 1 [ 2 ] [ 1 ] [ 2 ] [ ] 1 [ 2 ]
-248 [ 8 ] [ 2 ] 1 1 1 [ 4 ] [ 2 ] [ 4 ] [2] 1 [ 2 ]
-399 [2,8] [2,12] 2 2 2 [ 2 ] [ 4 ] [ 2 ] [ 2 ] 1 [ 4 ]
-632 [ 8 ] [ 2 ] 1 1 1 [ 4 ] [ 2 ] [ 4 ] [2] 1 [ 2 ]
-759 [2,12] [2,18] 6 2 2 [ 2 ] [ 2 ] [ 2 ] [ 2 ] 1 [ 6 ]
-799 [ 16 ] [2,4] 2 2 2 [ 2 ] [2,4] [ 2 ] [ 2 ] 1 [2]
-959 [ 36 ] [2,4] 2 2 2 [ 4 ] [4,8] [ 4 ] [ 4 ] 1 [ 4 ]

4.2 Real Quadratic Fields

dF C`F [:] |P | |PE| C`′ C̃`F C` pos
F C̃` pos

F rk2

776 [ 2 ] 4 1 1 [ 2 ] [ ] [ 2,2 ] [ 2 ] 2
904 [ 8 ] 4 1 1 [ 4 ] [ 2 ] [ 4 ] [ 2] 1

29665 [ 2,16 ] 8 2 2 [ 2 ] [ 2 ] [ 2,2 ] [ 2,2 ] 2
34689 [ 32 ] 8 2 2 [ ] [ ] [ 2 ] [ 2 ] 1
69064 [ 4,8 ] 4 1 1 [2,8] [ 8 ] [ 2,8 ] [ 8 ] 2
90321 [2,2,8] 24 2 2 [2,2] [2,4] [2,2,2,2] [2,2,2,2] 4

104584 [ 4,8 ] 4 1 1 [2,8] [2,4] [ 2,8 ] [ 2,4 ] 2
248584 [ 4,8 ] 4 1 1 [2,8] [2,4] [2,2,8] [2,2,4] 3
300040 [2,2,8] 4 1 1 [2,8] [ 8 ] [ 2,8 ] [ 8 ] 2
374105 [ 32 ] 8 2 2 [ ] [ ] [ 2 ] [ 2 ] 1

171865 [ 2,32 ] 8 2 2 [ 4 ] [ 4 ] [ 2,4 ] [ 2,4 ] 2
285160 [ 2,32 ] 4 1 1 [ 32 ] [ 32 ] [ 32 ] [ 32 ] 1
318097 [ 64 ] 8 2 2 [ ] [ ] [ 2 ] [ 2 ] 1
469221 [ 64 ] 12 1 1 [ 64 ] [ 64 ] [ 2,64 ] [ 2,64 ] 2
651784 [ 2,32 ] 4 1 1 [2,16] [2,8] [2,2,16] [2,2,8] 3
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4.3 Examples of Degree 3

The studied fields are given by a generating polynomial f and have Galois group
of their normal closure isomorphic to C3 (cyclic) or S3 (dihedral); r denotes the
number of real places.
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4.4 Examples of Higher Degree
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