Sur la trivialité de certains modules d'Iwasawa

Jean-François Jaulent

Résumé. Nous étudions la trivialité de certains modules d'Iwasawa classiques en liaison avec la notion de ℓ rationalité pour les corps de nombres totalement ℓ -adiques.

Abstract. We discuss the triviality of some classical Iwasawa modules in connection with the notion of ℓ -rationality for totally ℓ -adic number fields.

Mathematics Subject Classification: Primary 11R23; Secondary 11R37.

Keywords: Iwasawa modules, rational fields, genus theory, Greenberg conjecture

Table des matières

Introduction et définitions de base	1
1 Trivialité dans la tour cyclotomique	3
2 Trivialité dans le compositum des \mathbb{Z}_ℓ -extensions	4
3 Exemple des corps quadratiques totalement ℓ -adiques	5
Appendice : Groupe des nœuds, quotient des genres et classes centrale	es 6
Bibliographie	6

Introduction et définitions de base

Plusieurs des conjectures classiques sur les corps de nombres reviennent à postuler, sous certaines hypothèses, la finitude (ou la pseudo-nullité) d'un module d'Iwasawa convenable.

La conjecture de Greenberg (cf. [10, 11]) affirme ainsi que, si K est un corps de nombres totalement réel qui vérifie la conjecture de Leopoldt pour le nombre premier ℓ (autrement dit qui admet une unique \mathbb{Z}_{ℓ} -extension $K_{\infty} = \bigcup_{n \in \mathbb{N}} K_n$), la limite projective $\mathcal{C}_{K_{\infty}} = \varprojlim \mathcal{C}\ell_{K_n}$ des ℓ -groupes de classes d'idéaux attachés aux divers étages de la tour K_{∞}/K est un groupe fini. Et, sous sa forme généralisée, elle affirme que, si K est un corps de nombres arbitraire vérifiant la conjecture de Leopoldt pour le premier ℓ , i.e. admettant exactement $d = c_K + 1$ \mathbb{Z}_{ℓ} -extensions linéairement indépendantes (où c_K désigne le nombre de places complexes de K), la même limite projective $\mathcal{C}_{\bar{K}}$ prise dans le compositum K de ces \mathbb{Z}_{ℓ} -extensions est un module pseudo-nul sur l'algèbre d'Iwasawa $\Lambda_d = \mathbb{Z}_{\ell}[[\mathrm{Gal}(\bar{K}/K)] \simeq \mathbb{Z}_{\ell}[[T_1, \ldots, T_d]]$.

Or, plus généralement encore, on a :

Lemme 1. Tout corps de nombres K ayant exactement r_K places réelles et c_K places complexes possède une pro- ℓ -extension abélienne canonique Z de groupe de Galois $\operatorname{Gal}(Z/K) \simeq \mathbb{Z}_{\ell}^{c_K+1}$.

Preuve. Sous la conjecture de Leopoldt, Z est simplement le compositum des \mathbb{Z}_{ℓ} -extensions. Mais, indépendamment de toute conjecture, on peut caractériser Z comme suit : soient K_{∞} la \mathbb{Z}_{ℓ} -extension cyclotomique de K, puis $\Gamma = \gamma^{\mathbb{Z}_{\ell}}$ le groupe procyclique $\operatorname{Gal}(K_{\infty}/K)$ et M_{∞} la pro- ℓ -extension abélienne ℓ -ramifiée maximale de K_{∞} . Soit alors \mathcal{T}_{∞} le sous-module de Λ -torsion du groupe de Galois $\mathcal{X}_{\infty} = \operatorname{Gal}(M_{\infty}/K_{\infty})$. On sait par la théorie d'Iwasawa (cf. e.g. [28]) que le quotient $\mathcal{X}_{\infty}/\mathcal{T}_{\infty}$ s'injecte avec un indice fini dans un Λ -module libre de dimension c_{K} . Alors Z est

le sous-corps de M_{∞} fixé par la racine dans \mathcal{X}_{∞} du sous-module $\mathcal{T}_{\infty}\mathcal{X}_{\infty}^{\gamma-1}$. En d'autres termes, Z est le compositum des \mathbb{Z}_{ℓ} -extensions de K contenues dans le sous-corps de M_{∞} fixé par $\mathcal{T}_{\infty}\mathcal{X}_{\infty}^{\gamma-1}$.

On peut ainsi étendre inconditionnellement la conjecture de Greenberg en postulant :

Conjecture 2 (Conjecture de Greenberg étendue). Soient K un corps de nombres arbitraire ayant r_K places réelles et c_K places complexes, Z sa pro- ℓ -extension abélienne canonique de groupe de Galois $\operatorname{Gal}(Z/K) \simeq \mathbb{Z}_{\ell}^{c_K+1}$ et $\mathcal{C}_Z = \varprojlim \mathcal{C}\ell_L$ la limite projective (pour les applications normes) des ℓ -groupes de classes d'idéaux attachés aux sous-corps L de Z de degré fini sur K. Le groupe \mathcal{C}_Z est alors pseudo-nul comme module sur l'algèbre d'Iwasawa $\mathbb{Z}_{\ell}[[\operatorname{Gal}(Z/K)] \simeq \Lambda_{c_K+1}$.

Le but de cette note est d'étudier la trivialité du module \mathcal{C}_Z , lorsque le corps K est totalement ℓ -adique au sens de [16], i.e. lorsque ses complétés aux places au-dessus de ℓ sont tous de degré 1 :

Définition 3. Étant donné un nombre premier ℓ , un corps de nombres K est dit totalement ℓ -adique lorsque ses complétés aux places au-dessus de ℓ sont tous de degré 1 sur \mathbb{Q}_{ℓ} , autrement dit lorsque la place ℓ est complètement décomposée dans l'extension K/\mathbb{Q} .

L'intérêt de cette restriction est le lemme de ramification suivant, plus ou moins bien connu, qui joue un rôle essentiel dans notre étude en excluant toute ramification abélienne sauvage au-dessus de la \mathbb{Z}_{ℓ} -extension cyclotomique d'un tel corps :

Lemme 4. Soient ℓ un nombre premier impair, K un corps de nombres totalement ℓ -adique, K_{∞} sa \mathbb{Z}_{ℓ} -extension cyclotomique et N_{∞} une pro- ℓ -extension de K_{∞} . Si N_{∞} est localement abélienne sur K aux places au-dessus de ℓ (par exemple si N_{∞} est une pro- ℓ -extension abélienne de K), elle est modérément ramifiée sur K_{∞} (i.e. non-ramifiée aux places au-dessus de ℓ).

Preuve. C'est une conséquence immédiate de la théorie ℓ -adique du corps de classes (cf. e.g. [15], §2.1) : le groupe de Galois de la pro- ℓ -extension abélienne maximale de \mathbb{Q}_{ℓ} s'identifie à la limite projective $\mathcal{R}_{\mathbb{Q}_{\ell}} = \varprojlim \mathbb{Q}_{\ell}^{\times}/\mathbb{Q}_{\ell}^{\times \ell^n} = (1+\ell)^{\mathbb{Z}_{\ell}}\ell^{\mathbb{Z}_{\ell}}$ et le sous-groupe d'inertie au groupe procyclique $(1+\ell)^{\mathbb{Z}_{\ell}}$. Les places au-dessus de ℓ étant totalement ramifiées dans la tour K_{∞}/K , elles ne peuvent plus se ramifier dans N_{∞}/K_{∞} dès lors que N_{∞} est localement abélienne sur K.

Les deux résultats principaux de cette étude (Th. 6, dans le cas totalement réel; Th. 10, dans le cas CM) mettent en avant la ℓ -rationalité. Rappelons ce dont il s'agit :

Définition 5. Un corps de nombres K possédant exactement c_K places complexes est dit ℓ -rationnel pour un nombre premier arbitraire ℓ lorsque le groupe de Galois $\operatorname{Gal}(M/K)$ de sa pro- ℓ -extension abélienne ℓ -ramifiée ∞ -décomposée (i.e. non-ramifiée en dehors de ℓ et complètement décomposée aux places à l'infini) maximale M est un \mathbb{Z}_{ℓ} -module libre de dimension $c_K + 1$.

La notion de ℓ -rationalité d'un corps de nombres K, déjà rencontrée par I.R. Shafarevich dans [26], a été formellement introduite par A. Movahhedi dans [21] 1 et étudiée en collaboration avec T. Nguyen Quang Do dans [22] parallèlement à la notion voisine de ℓ -régularité introduite par G. Gras et l'auteur dans [9] suite aux travaux de [5]. Les deux notions coïncident lorsque K contient le sous-corps réel du corps cyclotomique $\mathbb{Q}[\zeta_\ell]$ et donnent lieu au même théorème de montée (cf. [20] pour une synthèse des deux points de vue ou [6] pour plus de détails).

Le théorème de Chebotarev permet ainsi de construire étage par étage des pro- ℓ -tours infinies de corps ℓ -rationnels en imposant à chaque étape la primitivité de la ramification modérée.

Dans le cas CM, intervient également la notion de corps logarithmiquement principal (pour le premier donné ℓ). Le ℓ -groupe des classes logarithmiques $\widetilde{\mathcal{C}}_K$ a été introduit dans [14] et son calcul effectif, aujourd'hui implanté directement dans PARI, est exposé dans [1] et [3]. Il se présente comme un analogue du ℓ -groupe des classes au sens ordinaire et sa finitude est équivalente à la conjecture de Gross-Kuz'min (cf. e.g. [6, 14, 15, 17]).

Remarque. Les corps K qui vérifient simultanément la conjecture de Leopoldt et celle de Gross-Kuz'min satisfont plus généralement la conjecture cyclotomique exposée dans [19].

^{1.} En fait, dans sa thèse de doctorat, Sur les p-extensions des corps p-rationnels, Paris (1988).

1 Trivialité dans la tour cyclotomique

Intéressons-nous pour commencer au module d'Iwasawa classique attaché à la \mathbb{Z}_{ℓ} -extension cyclotomique d'un corps de nombres.

Théorème 6. Soient ℓ un nombre premier impair, K un corps de nombres totalement ℓ -adique, $K_{\infty} = \bigcup_{n \in \mathbb{N}} K_n$ sa \mathbb{Z}_{ℓ} -extension cyclotomique et $\mathcal{C}_{K_{\infty}} = \varprojlim \mathcal{C}\ell_{K_n}$ la limite projective (pour la norme) des ℓ -groupes de classes d'idéaux attachés aux divers étages de la tour K_{∞}/K .

On a alors $C_{K_{\infty}} = 1$ si et seulement si le corps K est ℓ -rationnel et totalement réel, auquel cas il vérifie banalement les conjectures de Greenberg, de Leopoldt et de Gross-Kuz'min.

Preuve. Conformément au Lemme 4, le corps K étant pris totalement ℓ -adique, sa pro- ℓ -extension abélienne ℓ -ramifiée maximale M est non-ramifiée sur K_{∞} .

L'égalité $\mathcal{C}_{K_{\infty}}=1$ entraı̂ne donc $M=K_{\infty}$. Ainsi K_{∞} est alors l'unique \mathbb{Z}_{ℓ} -extension de K, de sorte que K est totalement réel et vérifie la conjecture de Leopoldt (donc aussi celle de Gross-Kuz'min). Enfin la trivialité de $Gal(M/K_{\infty})$ traduit précisément la ℓ -rationalité de K.

Inversement, si K est totalement réel et ℓ -rationnel, on a $M=K_{\infty}$; et, plus généralement, $M_n=K_{\infty}$ si M_n désigne la pro- ℓ -extension abélienne ℓ -ramifiée de K_n , puisque chacun des K_n est encore totalement réel et ℓ -rationnel en vertu du théorème de propagation de la ℓ -rationalité donné dans [6, 9, 20, 21, 22]. Or, la \mathbb{Z}_{ℓ} -extension K_{∞}/K étant totalement ramifiée (puisque K est pris totalement ℓ -adique), pour chaque entier $n \in \mathbb{N}$ le ℓ -corps de classes de Hilbert H_n de K_n est linéairement disjoint de K_{∞} sur K_n et on a donc : $\mathcal{C}\ell_{K_n} \simeq \operatorname{Gal}(H_n/K_n) \simeq \operatorname{Gal}(K_{\infty}H_n/K_{\infty}) = 1$, puisque $K_{\infty}H_n$ est contenu dans M_n . D'où l'égalité : $\mathcal{C}_{K_{\infty}} = 1$.

Remarque. Dans [7] G. Gras a montré que la condition $\mathcal{C}_{K_{\infty}} = 1$, qui affirme de façon générale la trivialité des ℓ -goupes de classes $\mathcal{C}\ell_{K_n}$ des étages finis K_n de la tour cyclotomique K_{∞}/K pour tout n assez grand, est vérifiée dès lors qu'elle a lieu pour n=1, sous réserve que les places au-dessus de ℓ soient totalement ramifiées dans la tour, auquel cas elle a lieu pour tout $n \geq 1$. En particulier, la condition $\mathcal{C}_{K_{\infty}} = 1$, qui équivaut alors à l'égalité $\mathcal{C}\ell_{K_1} = 1$, se lit de ce fait dans K_1 .

Le Théorème 6 ci-dessus montre que, sous la condition plus forte de complète décomposition de ℓ dans K/\mathbb{Q} , elle se lit directement dans K.

Le théorème de propagation de la ℓ -rationalité par ℓ -extension fournit alors un critère nécessaire et suffisant de propagation de la condition de trivialité $\mathcal{C}_{K_{\infty}} = 1$ par ℓ -extension ℓ -décomposée :

Corollaire 7. Soit L/K une ℓ -extension de corps totalement ℓ -adiques, $K_{\infty} = \bigcup K_n$ et $L_{\infty} = \bigcup L_n$ leurs \mathbb{Z}_{ℓ} -extensions cyclotomiques respectives. Les assertions suivantes sont alors équivalentes :

- (i) Le groupe de Galois $C_{L_{\infty}} = \varprojlim \mathcal{C}\ell_{L_n}$ est trivial.
- (ii) Le groupe $\mathcal{C}_{K_{\infty}} = \varprojlim \mathcal{C}\ell_{K_n}$ est trivial et l'extension L/K est primitivement ramifiée.

Preuve. C'est la transposition directe, via le Théorème 6, du théorème de propagation donné dans [9, 21, 20] et [6]. Rappelons qu'une ℓ -extension L/K est dite primitivement ramifiée lorsque les logarithmes de Gras (i.e. les images dans le groupe de Galois $\operatorname{Gal}(Z/K)$ du compositum Z des \mathbb{Z}_{ℓ} -extensions de K) des places $mod\acute{e}r\acute{e}ment$ ramifiées dans L/K peuvent être complétées en une \mathbb{Z}_{ℓ} -base de $\operatorname{Gal}(Z/K)$.

Scolie 8. Sous les hypothèses du Théorème 6, soit $\mathcal{C}'_{K_{\infty}} = \varprojlim \mathcal{C}'_{K_n}$ la limite projective (pour la norme) des ℓ -groupes de ℓ -classes des corps K_n (i.e. des quotients respectifs des ℓ -groupes $\mathcal{C}\ell_{K_n}$ par leurs sous-groupes engendrés par les classes des idéaux au-dessus de ℓ).

On a alors $\mathcal{C}'_{K_{\infty}} = 1$ si et seulement si le corps K est logarithmiquement principal : $\widetilde{\mathcal{C}}\ell_K = 1$.

Preuve. En effet, le ℓ -groupe des classes logarithmiques $\mathcal{C}\ell_K$ s'interprète par la théorie ℓ -adique du corps de classes comme groupe de Galois $\operatorname{Gal}(K^{\operatorname{lc}}/K_\infty)$ attaché à la pro- ℓ -extension abélienne de K localement cyclotomique (i.e. complètement décomposée sur K_∞ en chaque place) maximale K^{lc} . Or, celui-ci n'est autre que le quotient des genres ${}^{\Gamma}\mathcal{C}'_{K_\infty}$ de \mathcal{C}'_{K_∞} relativement au groupe procyclique $\Gamma = \operatorname{Gal}(K_\infty/K)$ (cf. [14, 15] ou [6]).

2 Trivialité dans le compositum des \mathbb{Z}_{ℓ} -extensions

Soit maintenant K un corps totalement ℓ -adique de degré $2c_K$, extension quadratique totalement imaginaire d'un sous-corps K^+ totalement réel. Notons M^+ la pro- ℓ -extension abélienne ℓ -ramifiée maximale de K^+ et Z la $\mathbb{Z}_{\ell}^{c_K^{-1}}$ -extension canonique de K (cf. Lemme 1).

Rappelons que, ℓ étant impair, si $\bar{\tau}$ désigne la conjugaison complexe, tout $\mathbb{Z}_{\ell}[\langle \bar{\tau} \rangle]$ -module \mathcal{X} est somme directe de ses composantes réelle et imaginaire $\mathcal{X}^{\pm} = \mathcal{X}^{e_{\pm}}$, avec $e_{\pm} = \frac{1}{2}(1 \pm \bar{\tau})$. Ainsi :

Lemme 9. Le $\mathbb{Z}_{\ell}[\langle \bar{\tau} \rangle]$ -module imaginaire $\mathcal{D}_{K_{\infty}}^{[\ell]-}$ construit sur les idéaux premiers de K_{∞} au-dessus de ℓ est un \mathbb{Q}_{ℓ} -espace de dimension c_{K} . Et le sous-module $\mathcal{P}_{K_{\infty}}^{[\ell]-}$ construit sur les idéaux principaux est un \mathbb{Z}_{ℓ} -module libre de même dimension. Il suit : $\mathcal{C}_{K_{\infty}}^{[\ell]-} \simeq (\mathbb{Q}_{\ell}/\mathbb{Z}_{\ell})^{c_{K}}$.

Preuve. Ce résultat est essentiellement bien connu : D'un côté les idéaux premiers au-dessus de ℓ étant totalement ramifiés dans la tour cyclotomique, on a : $\mathcal{D}_{K_n}^{[\ell]-} = (\mathcal{D}_K^{[\ell]-})^{\ell^{-n}}$, pour tout $n \in \mathbb{N}$; d'où, à la limite : $\mathcal{D}_{K_{\infty}}^{[\ell]-} \simeq \mathbb{Q}_{\ell}^{c_{\kappa}}$. D'un autre côté, les ℓ -unités imaginaires de K_{∞} provenant directement de K, on a, en revanche $\mathcal{P}_{K_n}^{[\ell]-} = \mathcal{P}_K^{[\ell]-} \simeq \mathbb{Z}_{\ell}^{c_{\kappa}}$. D'où : $\mathcal{C}_{K_{\infty}}^{[\ell]-} = \mathcal{D}_{K_{\infty}}^{[\ell]-} / \mathcal{P}_{K_{\infty}}^{[\ell]-} \simeq (\mathbb{Q}_{\ell}/\mathbb{Z}_{\ell})^{c_{\kappa}}$.

Théorème 10. Soient ℓ un nombre premier impair, K un corps de nombres totalement ℓ -adique, extension quadratique totalement imaginaire d'un sous-corps K^+ totalement réel et Z la $\mathbb{Z}_{\ell}^{c_K+1}$ -extension canonique de K. Si le groupe de Galois $\mathcal{C}_Z = \operatorname{Gal}(H_Z/Z)$ de la pro- ℓ -extension abélienne non-ramifiée maximale H_Z de de Z est trivial, on a les conséquences suivantes :

- (i) Le corps réel K^+ est ℓ -rationnel et au plus de degré 3.
- (ii) Le ℓ -groupe des classes logarithmiques de K est trivial : $\widetilde{\mathcal{C}}\ell_K=1$.

Preuve. Supposons $\mathcal{C}_Z=1$, introduisons la pro- ℓ -extension non-ramifiée maximale \bar{H}_Z de Z et notons \mathcal{G}_Z son groupe de Galois. Son abélianisé \mathcal{C}_Z étant trivial par hypothèse, il en va de même de \mathcal{G}_Z . Ainsi \bar{H}_Z coïncide avec Z. Or, Z étant non-ramifiée sur la \mathbb{Z}_ℓ -extension cyclotomique K_∞ de K en vertu du Lemme 4, par construction \bar{H}_Z est encore la pro- ℓ -extension non-ramifiée maximale de K_∞ . En fin de compte Z est donc la réunion $H_\infty = \bigcup_{n \in \mathbb{N}} H_n$ des ℓ -corps de classes de Hilbert respectifs des étages finis K_n de la tour K_∞ . Il suit : $\mathcal{C}_{K_\infty} = \operatorname{Gal}(H_\infty/K_\infty) = \operatorname{Gal}(Z/K_\infty)$.

Le groupe de Galois $\operatorname{Gal}(Z/K_{\infty})$ étant imaginaire, prenant les composantes réelles, on conclut : $\mathcal{C}_{K_{\infty}^+} = \mathcal{C}_{K_{\infty}}^+ = 1$; et K^+ est ℓ -rationnel en vertu de Théorème 6. Il suit : $\widetilde{\mathcal{C}}_K^+ = \widetilde{\mathcal{C}}_{K^+} = 1$.

Regardons maintenant les composantes imaginaires. Par surjectivité de la norme $\mathcal{C}_{K_\infty} \to \mathcal{C}\!\ell_{K_n}$, nous avons $\operatorname{rg}_\ell \, \mathcal{C}\!\ell_{K_n}^- \le c_{\scriptscriptstyle K}$ pour tout $n \ge 1$, donc $\operatorname{rg}_\ell \, \mathcal{C}\!\ell_{K_n}^- = c_{\scriptscriptstyle K}$ pour $n \ge 1$, en vertu du Lemme. Il en résulte que $\mathcal{C}\!\ell_{K_\infty}^- \simeq (\mathbb{Q}_\ell/\mathbb{Z}_\ell)^{c_{\scriptscriptstyle K}}$ est engendré par les classes des idéaux au-dessus de ℓ .

En particulier le ℓ -groupe des ℓ -classes $\mathcal{C}\ell_{K_{\infty}}^{\prime}$ est trivial; et, comme il n'y a pas de capitulation pour les ℓ -classes dans la tour puisque les ℓ -unités imaginaires sont contenues dans K, ce résultat vaut à tous les étages finis : $\mathcal{C}\ell_{K_n}^{\prime}=1$. On conclut : $\mathcal{C}'_{K_{\infty}}=\varprojlim \mathcal{C}\ell_{K_n}^{\prime}=1$; puis : $\widetilde{\mathcal{C}}\ell_{K}=1$.

Intéressons-nous enfin aux groupes des nœuds respectifs \mathcal{K}_n des ℓ -extensions abéliennes H_n/K_n (cf. DProp. 14 infra). D'après ce qui précède, les ℓ -corps de classes de Hilbert respectifs H'_n des corps H_n sont tous contenus dans $H_\infty = Z$. Ils sont donc abéliens sur K et l'on a identiquement $H'_n = H_n$ pour chaque $n \in \mathbb{N}$. Il suit de là que les ℓ -corps des classes centrales $H^{\text{cen}}_{H_n/K_n}$ comme les ℓ -corps des genres $H^{\text{gen}}_{H_n/K_n}$ coïncident avec les H_n ; de sorte que dans la suite exacte (i) de la Proposition 14 le terme de droite $\operatorname{Gal}(H^{\text{cen}}_{H_n/K_n}/H^{\text{gen}}_{H_n/K_n})$ est trivial; d'où par (ii) l'isomorphisme:

$$E_{K_n}/E_{K_n} \cap N_{H_n/K_n}(H_n^{\times}) \simeq \mathcal{K}_n \simeq \mathcal{C}\ell_{K_n} \wedge \mathcal{C}\ell_{K_n},$$

puisque l'on a ici : $\operatorname{Gal}(H_n/K_n) \simeq \mathcal{C}_{K_n}$ via le corps de classes. Prenant alors les limites projectives pour les applications normes dans la tour cyclotomique K_{∞}/K , on obtient tout comme dans [4], Lem. 3.9, un morphisme surjectif de $\overleftarrow{\mathcal{E}}_{K_{\infty}} = \varprojlim E_{K_n}$ sur $\mathcal{C}_{K_{\infty}} \wedge \mathcal{C}_{K_{\infty}}$ qui se factorise modulo $\overleftarrow{\mathcal{E}}_{K_{\infty}}^{\gamma-1}$, puisque $\mathcal{C}_{K_{\infty}}$ (et donc son carré alterné) est invariant par $\Gamma = \gamma^{\mathbb{Z}_{\ell}} = \operatorname{Gal}(K_{\infty}/K)$.

Or, $\overleftarrow{\mathcal{E}}_{K_{\infty}}/\overleftarrow{\mathcal{E}}_{K_{\infty}}^{\gamma-1}$ est un \mathbb{Z}_{ℓ} -module de rang essentiel c_{K} (cf. e.g. [4] §3); et $\mathcal{C}_{K_{\infty}} \wedge \mathcal{C}_{K_{\infty}}$ est \mathbb{Z}_{ℓ} -libre de dimension $\frac{1}{2}c_{K}(c_{K}-1)$, puisque $\mathcal{C}_{K_{\infty}} \simeq \operatorname{Gal}(Z/K_{\infty})$ est \mathbb{Z}_{ℓ} -libre de dimension c_{K} . Il suit:

$$c_K \geq \frac{1}{2}c_K(c_K - 1)$$
, i.e. $[K^+:\mathbb{Q}] = c_K \leq 3$, comme annoncé.

Exemple des corps quadratiques totalement ℓ -adiques

Pour illustrer les résultats précédents, regardons plus attentivement le cas non-trivial le plus simple : celui des corps quadratiques totalement ℓ -adiques.

Partons donc d'un corps quadratique $K = \mathbb{Q}[\sqrt{d}]$, notons $G = \{1, \tau\}$ le groupe $Gal(K/\mathbb{Q})$, prenons un nombre premier impair ℓ complètement décomposé dans K; écrivons $(\ell) = \mathfrak{U}'$ dans K et, plus généralement $(\ell) = \mathfrak{l}_n \mathfrak{l}'_n$ à chaque étage fini K_n de la \mathbb{Z}_{ℓ} -extension cyclotomique K_n ; notons M la pro- ℓ -extension abélienne ℓ -ramifiée et Z le compositum des \mathbb{Z}_{ℓ} -extensions de K, puis $\mathcal{T}_K = \operatorname{Gal}(M/Z)$ et \mathcal{C}_Z la limite projective des ℓ -groupes $\mathcal{C}\ell_L$ pour L/K de degré fini dans Z/K.

Écrivons $\mathcal{U}_{K_{\ell}} = \mathcal{U}_{K_{l}}\mathcal{U}_{K_{l'}}$ le groupe des unités semi-locales attaché aux places ℓ -adiques, puis $\widetilde{\mathcal{U}}_{K_\ell} = \widetilde{\mathcal{U}}_{K_\ell} \widetilde{\mathcal{U}}_{K_{\Gamma'}}$ son analogue logarithmique, \mathcal{E}_K et $\widetilde{\mathcal{E}}_K$ les groupes d'unités globales correspondants. Notons enfin $\mathcal{U}_{K_{\ell}}^* = \mathcal{U}_{K_{\ell}}^{1-\tau}$ le noyau de la norme dans $\mathcal{U}_{K_{\ell}}$. Avec ces notations :

Proposition 11. Pour K quadratique réel totalement ℓ -adique, il y a équivalence entre :

- (i) Le pro- ℓ -groupe $C_Z = C_{K_\infty}$ est trivial : $C_Z = 1$.
- (ii) Le corps K est ℓ -rationnel : $\mathcal{T}_K = 1$. (iii) On a $\mathcal{C}\ell_K = 1$ et l'application de semi-localisation envoie \mathcal{E}_K sur $\mathcal{U}_{K_\ell}^*$.
- (iv) On a $\widetilde{\mathcal{C}}\ell_K = 1$ et l'application de semi-localisation envoie $\widetilde{\mathcal{E}}_K$ sur $\widetilde{\mathcal{U}}_{K_\ell}$.

Preuve. Le corps quadratique réel K admettant pour unique \mathbb{Z}_{ℓ} -extension $Z=K_{\infty}$, le Théorème 6 nous assure l'équivalence des deux premières assertions. Il reste simplement à vérifier que la trivialité de \mathcal{T}_K se lit sur les groupes de classes et d'unités au sens ordinaire comme logaritmique.

Or, d'un côté le ℓ -corps de classes de Hilbert H de K est linéairement disjoint de K_{∞} , puisque K_{∞}/K est ici totalement ramifiée, de sorte qu'on a : $\mathcal{C}\ell_K \simeq \operatorname{Gal}(H/K) \simeq \operatorname{Gal}(HK_{\infty}/K_{\infty})$. De façon semblable, le ℓ -groupe des classes logarithmiques vérifie : $\mathcal{C}\ell_K \simeq \operatorname{Gal}(K^{\operatorname{lc}}/K_{\infty})$, où K^{lc} désigne la pro- ℓ -extension abélienne localement cyclotomique maximale de K. Ainsi, comme HK_{∞} et $K^{\rm lc}$ sont toutes deux contenues dans M, on a l'implication : $\mathcal{T}_K = 1 \Rightarrow \mathcal{C}\ell_K = 1$ et $\widetilde{\mathcal{C}}\ell_K = 1$.

D'un autre côté, la théorie ℓ-adique du corps de classes (cf. [15] et, plus spécifiquement, [18] §2.3) nous donne ici les isomorphismes $\operatorname{Gal}(M/HK_{\infty}) \simeq \mathcal{U}_{\ell}^*/s_{\ell}(\mathcal{E}_K)$ et $\operatorname{Gal}(M/K^{\operatorname{lc}}) \simeq \widetilde{\mathcal{U}}_{\ell}/s_{\ell}(\widetilde{\mathcal{E}}_K)$. D'où l'équivalence de (ii) avec (iii) comme avec (iv).

Remarque. La condition $\mathcal{C}\ell_K=1$ est vérifiée par presque tous les ℓ pour K fixé. Il est conjecturé dans [17] que c'est également le cas de la condition $\mathcal{C}\ell_K=1$ pour K quadratique réel. La Proposition est donc cohérente avec les heuristiques de Gras qui suggèrent que K est ℓ -rationnel pour presque tout ℓ , de sorte que $\mathcal{C}_{K_{\infty}}$ serait ainsi presque toujours trivial ici. Pour ℓ fixé, en revanche, il résulte de [8], §6 qu'il existe une infinité de corps quadratiques réels K avec $\tilde{\mathcal{U}}_K \neq 1$.

Proposition 12. Pour K quadratique imaginaire totalement ℓ -adique, le pro- ℓ -groupe \mathcal{C}_Z est trivial si et seulement si K est ℓ -logarithmiquement principal :

$$C_Z = 1 \Leftrightarrow \widetilde{\mathcal{C}}\ell_K = 1.$$

Preuve. Le Théorème 10 donne l'implication : $C_Z = 1 \Rightarrow \widetilde{\mathcal{C}}\ell_K = 1$. Reste à vérifier la réciproque. Supposons donc $\widetilde{\mathcal{C}}_{K} = 1$. Comme $\widetilde{\mathcal{C}}_{K}$ est le quotient des genres de la limite projective des ℓ -groupes de ℓ -classes $\mathcal{C}'_{K_{\infty}} = \varprojlim \mathcal{C}'_{K_{n}}$, cette hypothèse entraı̂ne $\mathcal{C}'_{K_{\infty}} = 1$, donc finalement $\mathcal{C}'_{K_{n}} = 1$ pour tout $n \in \mathbb{N}$. En d'autrès termes les ℓ -groupes de classes $\mathcal{C}\ell_{K_n}$ sont engendrés par les classes des premiers au-dessus de ℓ . Plus précisément, puisque sa composante unité $\mathcal{C}\ell_{\mathbb{Q}_n}$, qui correspond à l'idempotent $\frac{1}{2}(1+\tau)$, est triviale, $\mathcal{C}\ell_{K_n}$ est engendré par la classe de l'idéal $\mathfrak{l}_n/\mathfrak{l}'_n$ (ou, si l'on préfère, par l'image de la classe $[\mathfrak{l}_n]$ par l'idempotent $\frac{1}{2}(1-\tau)$) et le ℓ -corps de classes de Hilbert H_n de K_n est ainsi une ℓ -extension cyclique de groupe $G_n \simeq \mathcal{C}\ell_{K_n}$. Notons H'_n le ℓ -corps de classes de Hilbert de H_n . La formule des classes ambiges de Chevalley (cf. [2]) appliquée à l'extension H_n/K_n s'écrit $|\mathcal{C}\ell_{H_n}^{G_n}| = |\mathcal{C}\ell_{K_n}|/[H_n:K_n] = 1$ et donne $\mathcal{C}\ell_{H_n} = 1$, i.e. $H'_n = H_n$. Ainsi H_n est la pro- ℓ -extension non-ramifiée maximale de K_n et $H_\infty = \bigcup_{n \in \mathbb{N}} H_n$ est celle de K_∞ . Maintenant, par le Lemme 4, le compositum Z des \mathbb{Z}_ℓ -extensions de K est contenu dans H_∞ . Et , comme on a $\operatorname{Gal}(H_{\infty}/K_{\infty}) \simeq \underline{\lim} \ \mathcal{C}\ell_{K_n} \simeq \mathbb{Z}_{\ell} \simeq \operatorname{Gal}(Z/K_{\infty})$, l'identité des rangs donne l'égalité $Z = H_{\infty}$. Il suit $C_Z = 1$, comme attendu.

Appendice: Groupe des nœuds, genres et classes centrales

Pour la commodité du lecteur, nous rassemblons ci-dessous quelques résultats classiques sur les relations entre groupe des nœuds et théorie des genres. Pour plus de détails, cf. e.g. [13], III.2.1.

Pour chaque corps de nombres K, nous notons J_K le groupe des idèles, U_K le sous-groupe des idèles unités et $C_K = J_L/K^{\times}$ le groupe des classes d'idèles. Le corps de classes de Hilbert H_K de K, i.e. son extension abélienne non-ramifiée ∞ -décomposée maximale, est ainsi associé au groupe d'idèles $U_K K^{\times}$ ou, si l'on préfère, au groupe de classes d'idèles $U_K K^{\times}/K^{\times}$.

Définition & Proposition 13. Soit L/K une extension arbitraire de corps de nombres. Alors :

(i) Le compositum LH_K de L avec le corps de classes de Hilbert de K est l'extension abélienne non-ramifiée de L associée au sous-groupe du groupe d'idèles de L défini par :

$$J_{L/K}^* = \{ \mathfrak{x} \in J_L \mid N_{L/K}(\mathfrak{x}) \in U_K K^{\times} \}.$$

(ii) Le corps des genres $H_{L/K}^{\rm gen}$ est la plus grande extension non-ramifiée de L qui provient d'une extension abélienne de K. Le sous-groupe d'idèles qui lui correspond est ainsi :

$$J_{L/K}^{\mathrm{gen}} = \{ \mathfrak{x} \in J_L \mid N_{L/K}(\mathfrak{x}) \in N_{L/K}(U_L)K^{\times} \}.$$

(iii) Le corps des classes centrales $H_{\scriptscriptstyle L/K}^{\rm cen}$ est, lui, l'extension abélienne de L fixée par :

$$J_{\scriptscriptstyle L/K}^{\scriptscriptstyle \rm cen} = \{ \mathfrak{x} \in J_L \mid N_{\scriptscriptstyle L/K}(\mathfrak{x}) \in N_{\scriptscriptstyle L/K}(U_L L^\times) \} = {}_N J_L U_L L^\times.$$

Lorsque L/K est galoisienne, $H_{L/K}^{\text{cen}}$ est la plus grande extension abélienne non-ramifiée M de L, galoisienne sur K et telle que Gal(M/L) soit contenu dans le centre de Gal(M/K).

(iv) Tous sont contenus dans le corps de classes de Hilbert H_L de L fixé par $U_L L^{\times}$.

Définition & Proposition 14. Le groupe des nœuds de L/K est le quotient du groupe des normes locales modulo les normes globales : $\mathcal{K}_{L/K} = (K^{\times} \cap N_{L/K}(J_L))/N_{L/K}(L^{\times})$.

- (i) De façon générale, $\mathcal{K}_{L/K}$ est relié au groupe de Galois $\operatorname{Gal}(H_{L/K}^{\operatorname{cen}}/H_{L/K}^{\operatorname{gen}})$ par la suite exacte :
- $1 \to E_K \cap N_{L/K}(J_L)/E_K \cap N_{L/K}(L^\times) \to (K^\times \cap N_{L/K}(J_L))/N_{L/K}(L^\times) \to \operatorname{Gal}(H_{L/K}^{\operatorname{cen}}/H_{L/K}^{\operatorname{gen}}) \to 1.$
- (ii) Et pour L/K abélienne, il s'identifie au quotient du carré alterné de G = Gal(L/K) par l'image des carrés alternés des sous-groupes de décomposition G_v des places de K:

$$\mathcal{K}_{L/K} \simeq (G \wedge G) / \sum_{v} \phi_v(G_v \wedge G_v).$$

La suite exacte (i) résulte directement des isomorphismes canoniques :

$$Gal(H_{L/K}^{\text{cen}}/H_{L/K}^{\text{gen}}) \simeq {}^{-1}N(N(U_L)K^{\times}/{}_NJ_LU_LL^{\times} \simeq (N(J_L) \cap N(U_L)K^{\times})/N(U_LL^{\times})$$
$$\simeq (K^{\times} \cap N(J_L))/(K^{\times} \cap N(U_LL^{\times})) \simeq (K^{\times} \cap N(J_L))/N(L^{\times})(E_K \cap N(U_L)).$$

Par ailleurs, lorsque l'extension L/K est galoisienne, J. Tate a donné dans [27] une interprétation homologique du groupe $\mathcal{K}_{L/K}$: la suite exacte de cohomologie associée à la suite courte qui définit le groupe des classes d'idèles $1 \to L^{\times} \to J_L \to C_L \to 1$ fait apparaître la séquence

$$\cdots \to \hat{H}^{-1}(G,J_L) \overset{g}{\to} \hat{H}^{-1}(G,C_L) \to \hat{H}^{\scriptscriptstyle 0}(G,L^\times) \overset{f}{\to} \hat{H}^{\scriptscriptstyle 0}(G,J_L) \to \cdots$$

avec $K_{L/K} = \text{Ker } f \simeq \text{Coker } g$. Or ce dernier groupe s'interprète via les isomorphismes du corps de classes $\hat{H}^{-1}(G, C_L) \simeq \hat{H}^{-3}(G, \mathbb{Z}) \simeq H_2(G, \mathbb{Z})$ et $\hat{H}^{-1}(G, J_L) \simeq \bigoplus_v \hat{H}^{-3}(G_v, \mathbb{Z}) \simeq \bigoplus_v H_2(G_v, \mathbb{Z})$, où, pour chaque place non complexe v de K, on désigne par G_v le sous-groupe de décomposition de l'une des places de L au-dessus de v. Cela étant, comme observé par Razar [25], lorsque G est abélien, le groupe d'homologie $H_2(G, \mathbb{Z})$ s'identifie au carré alterné $G \wedge G$ de G et les groupes locaux $H_2(G_v, \mathbb{Z})$ aux carrés alternés $G_v \wedge G_v$ des sous-groupes G_v . D'où l'isomorphisme (ii).

Remarques. Dans l'isomorphisme (ii), les places v non-ramifiées dans L/K n'interviennent pas, puisque leurs sous-groupes de décomposition G_v sont cycliques, donc de carrés alternés triviaux.

Enfin, si L/K est une extension galoisienne de corps de nombres, K' une extension de K et L' = K'L l'extension composée, alors dans la description du corps de classes la norme idélique $N_{K'/K}$ correspond à la restriction pour les groupes de Galois (cf. Tate [27] ou encore Ozaki [24]).

Références

- [1] K. Belabas, J.-F. Jaulent, The logarithmic class group package in PARI/GP, Pub. Math. Besançon (2016).
- [2] C. Chevalley Sur la théorie du corps de classes dans les corps finis et les corps locaux J. fac. Sci. Tokyo 2 (1933), 365-476.
- [3] F. Diaz y Diaz, J.-F. Jaulent, S. Pauli, M. Pohst, A new algorith for the Computation of logarithmic ℓ -class-groups of number fields, Experimental Math. 14 (2005), 67–76.
- [4] S. Fujii Reports on families of imaginary abelian fields with pseudo-null Iwasawa modules, New York J. Math. 28 (2022), 523-533.
- [5] G. Gras, Remarks on K₂ of number fields, J. Number Th. **23**, (1986), 322–335
- [6] G. Gras, Class Field Theory: from theory to practice, Springer Monographs in Mathematics (2005).
- [7] G. Gras, On the λ -stability of p-class groups along cyclic p-towers of a number field, Int. J. Number Th.
- [8] G. Gras, Unlimited list of fundamental units of quadratic fields Applications, Prépublication.
- [9] G. Gras & J.-F. Jaulent, Sur les corps de nombres réguliers, Math. Z. 202 (1989), 343-365.
- [10] R. Greenberg, On a certain \(\ell \)-adic representation, Invent. Math. 21 (1973), 117-124.
- R. GREENBERG, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263–284.
- [12] C. Greither, Sur les normes universelles dans les \mathbb{Z}_p -extensions, J. Théor. Nombres Bordeaux 6 (1994), 205–220.
- [13] J.-F. JAULENT, L'arithmétique des ℓ-extensions, (Thèse d'État), Pub. Math. Fac. Sci. Besançon Théor. Nombres 1985–86 (1986).
- [14] J.-F. Jaulent, Classes logarithmiques des corps de nombres, J. Théor. Nombres Bordeaux 6 (1994), 301–325.
- [15] J.-F. JAULENT Théorie ℓ-adique globale du corps de classes, J. Théor. Nombres Bordeaux 10 (1998), 355–397.
- [16] J.-F. JAULENT Plongements \ell-adiques et \ell-nombres de Weil, J. Th\u00e9or. Nombres Bordeaux 20 (2008), 335-351.
- [17] J.-F. Jaulent, Sur les normes cyclotomiques et les conjectures de Leopoldt et de Gross-Kuz'min, Annales Math. Québec 41 (2017), 119–140.
- [18] J.-F. Jaulent, Note sur la conjecture de Greenberg, J. Ramanujan Math. Soc 34 (2019) 59-80.
- [19] J.-F. Jaulent, Généralisation d'un théorème de Greenberg, Archiv der Math. 111 (2018), 569-578.
- [20] J.-F. JAULENT & T. NGUYEN QUANG Do, Corps p-réguliers, corps p-rationnels et ramification restreinte, J. Théor. Nombres Bordeaux 5 (1993), 343–363.
- [21] A. Movahhedi, Sur les p-extensions des corps p-rationnels, Math. Nachr. 149 (1990) 163–176.
- [22] A. MOVAHHEDI & T. NGUYEN QUANG DO, Sur l'arithmétique des corps de nombres p-rationnels, Sém. Th. Nombres Paris (1987/1988), Prog. in Math. 89 (1990), 155–200.
- [23] T. NGUYEN QUANG Do, Formules de genres et conjecture de Greenberg, Ann. Math. Québec. 42 (1990), 155-200., Sém. Th. Nombres Paris (1987/1988), Prog. in Math. 89 (2018), 267-2800.
- [24] M. Ozaki, Non-abelian Iwasawa theory of \mathbb{Z}_p -extensions, J. reine angew. Math **602** (2007), 59–94.
- [25] M. RAZAR, Central and genus class fields and the Hasse norm theorem, Compositio Math. 35 (1977), 281–298.
- [26] I.R. Shafarevich, Extensions with prescribed ramification points, Publ. Math. Inst. Hautes Études Sci. 18 (1964), 295–319; Trans. Am. Math. Soc. 59 (1966), 128–149.
- [27] J.T. Tate, Global Class Field Theory, in Algebraic Number Theory, J.W.S Cassel & A. Frohlich editors, Academic Press, London & New York (1967).
- [28] L. Washington, Introduction to cyclotomic fields, second edition, Springer-Verlag (1997).
- [29] G. Yamamoto, On the vanishing of Iwasawa invariants of absolutely abelian p-extensions, Acta Arith. 94 (2000), 365–371.

Institut de Mathématiques de Bordeaux

Université de Bordeaux & CNRS

351 cours de la libération

F-33405 TALENCE Cedex

courriel: Jean-Francois.Jaulent@math.u-bordeaux.fr

https://www.math.u-bordeaux.fr/~jjaulent/