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Abstract

We give a self-contained proof of a general conjecture of G. Gras on principalization
of ideals in Abelian extensions of a given field L, which was solved by M. Kurihara
in the case of totally real extensions L of the rational field Q.

More precisely, for any given extension L/K of number fields, in which at least
one infinite place of K totally splits, and for any ideal class cL of L, we construct a
finite Abelian extension F/K, in which all infinite places totally split, such that cL
become principal in the compositum M = LF .
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A – INTRODUCTION

When M/L is an Abelian extension of number fields, the problem of knowing
which ideals of L become principal in M is difficult, even if M/L is cyclic.
Class field theory gives partial answers. For instance, the Artin-Furtwängler
theorem states that when M = HL is the Hilbert class field of L, all ideals of
L become principal in M ; but the other cases are more mysterious.

When M/L is cyclic, we still have no general answer but the problem is easier.
The kernel of the natural map j : ClL → ClM is partly known as explained
below:

At first, cohomology of cyclic groups says that this kernel is a part of Ĥ1(G, EM),
where G = Gal(M/L) and EM is the group of units of M ; Ĥ1(G, EM) itself
is not well known but its order can be deduced from the order of Ĥ0(G, EM)
using the Herbrand quotient; then, the order of Ĥ0(G, EM) depends partly on
the natural map EL → US, where US is the subgroup of the unit idèles of
L which is the product of the groups of local units at the places ramified in
M/L (S is the set of such ramified places); finally, the map EL → US depends

on the Frobenius’ of the primes of S in the extension L[µh, E
1/h
L ]/L (where

h = [M : L] and where µh is the group of hth roots of unity). Obviously, this
makes sense only if the primes of S are prime to the degree of the extension.

However, even in this cyclic case, Ker(j) is not completely given by these
Frobenius’, so that knowing such Frobenius’, we cannot get really more than
a lower bound of the order of Ker(j).

This article deals with such techniques, which allow us to prove, for instance,
this easy fact: if a cyclic extension M/L is ramified at only one finite place q

prime to [M : L], then, as soon as the ramification index eq is large enough
(precisely, when |ClL| divides eq), the capitulation kernel Kerj contains at least

the class of q in ClL. This can be easily established by studying Ĥ1(G, EM)
and may be seen as a particular case of our main theorem.

On the other hand, this article proves a conjecture of Georges Gras and gen-
eralizes a result of Masato Kurihara ([1] and [2]), so that the theorem given
here is not only an abstract lower bound of Kerj, using cohomology of cyclic
groups, Dirichlet–Herbrand theorem on units of number fields, class field the-
ory, and Kummer duality. Note also that we make use here of new asymptotic
methods (“take n large enough”, where n is related to the degree [F : K] in a
suitable manner).

Note finally that in the theorem below the hypothesis “at least one infinite
place of K totally splits in L/K” is necessary: in [1], Georges Gras gives
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examples of extensions L/K with ideals which do not become principal in the
compositum LKab, where Kab is the maximal Abelian extension of K.

B – MAIN THEOREM AND COROLLARIES

Main Theorem. Let L/K be a finite extension of number fields in which
at least one infinite place of K totally splits. There exists a finite Abelian
extension F/K, in which all infinite places split totally, such that every ideal
of L becomes principal in the compositum M = LF .

Corollary 1 (K = Q). If L is a totally real number field, any ideal of L
principalizes in a real cyclotomic extension of L (i.e., in the compositum of L
with a real subfield of a suitable cyclotomic extension of Q).

Corollary 1 was proved by Masato Kurihara in [2].

Notation: In what follows, Kab denotes the maximal Abelian extension of K
and Kab

+ its maximal totally real subextension (i.e., the subextension of Kab/K
fixed under the decomposition groups of the infinite places of K).

Definition: Let us say that a number field N is principal when ClN is trivial.

Then:

Corollary 2. (i) Let K be a number field with at least one complex place.
Then any field containing Kab is principal.

(ii) Let K be a totally real number field. Any field containing Kab
+ , the Galois

closure of which has at least one real place is principal.

Corollary 3. (i) Any totally real field containing Qab
+ is principal.

(ii) Any field containing Q(i)ab is principal.

Corollary 3, (i), and (ii) for Q(i) or any imaginary quadratic field, was proved
by Masato Kurihara ([2], theorem 1.1, p. 35 and theorem A.1, p. 46).

Corollary 4. (i) Let K be a number field with at least one complex place.
Then Kab is principal.

(ii) Let K be a totally real number field. Any field containing Kab
+ which is

contained in one of the subfields of Kab fixed by a complex conjugation is
principal.

Corollary 4 proves a conjecture of Georges Gras (Conjecture (0.5), p. 405
of [1]).
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C – PROOFS

I. Proof of the main theorem : preliminaries

To prove the theorem, we fix an ideal aL of L, and we shall construct a finite
Abelian extension F of K, which is totally split at all infinite places, cyclic
in most cases, such that aL principalizes in the compositum LF . Obviously,
any ideal bL of L with the same class in ClL will become principal in LF
as well, so that it is enough to fix the class cL of aL in ClL. Now, if (ci)i
is a finite generating system of ClL, we will obtain a corresponding set (Fi)i
of extensions, and every ideal of L will principalize in LF , where F is the
compositum of the (Fi)i; this will prove the theorem.

So, in what follows, we fix cL in ClL, and must find F . As the class group of
L is the direct sum of its p-parts, for all prime numbers p, we may assume
that the order of cL in ClL is a power of a prime p. So, cL and p are fixed; ClL
is now the p-part of the class group of K, and HL the maximal p-extension
contained in the Hilbert class field of L.

(1) One may assume cL ∈ Clp
a

L for an arbitrary given integer a

Definition: Let us call Abelian compositum of the extension L/K any extension
N = LF , where F is a finite Abelian extension of K, totally split at all infinite
places of K.

One fixes an integer a; in case cL /∈ Clp
a

L , one will build an Abelian compositum
L′ of L/K, such that the extended class cL′ = j(cL) satisfies cL′ ∈ Clp

a

L′ ; so, if
N ′ is an Abelian compositum of L′/K in which cL′ principalizes, it is as well
an Abelian compositum of L/K, so that one can legitimately replace L by L′,
in which case one has cL′ ∈ Clp

a

L′ .

Let’s build such a L′ = LF0 as follows: let q be a prime of L satisfying the
following three conditions:

(i) q totally splits in L/Q;

(ii) Frob(q, L[µ2pa ]/L) = id;

(iii) Frob(q, HL/L) = cL.

If such a q exists with say q|q, the first two conditions imply the existence
of a (cyclic) subfield F ′0 of Q(µq), with degree [F ′0 : Q] = pa, which is totally
ramified at the prime q; the first condition implies that the compositums
F0 = KF ′0 and L′ = LF0 have again a degree pa over K and L, respectively.
Now L′/L is totally ramified at q, say q = q′ p

a
, for a prime q′ in L′; so,
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according to the third condition, the extended class cL′ = j(cL) satisfies:

cL′ = q = q′ p
a ∈ Clp

a

L′

as expected.

Now we only have to verify the existence of such a prime q. The three con-
ditions defining q all depend on Frob(q, H̃L[µ2pa ]/Q), where H̃L is the Galois
closure of HL over Q; the first two conditions are equivalent to the fact that
this Frobenius is in the subgroup Gal(H̃L[µ2pa ]/L[µ2pa ]); so they are com-
patible with the last condition for any cL in ClL, if and only if one has:
L[µ2pa ] ∩ HL = L; if this is right, the Čebotarev theorem states there are
infinitely many q satisfying the conditions. When this is wrong, we replace L
by L′′ = L[µ2pa ] ∩HL which verifies L′′[µ2pa ] ∩HL′′ = L′′.

As explained above, this last change is possible in case L′′ = L[µ2pa ]∩HL is an
Abelian compositum of L/K. In fact, one has L′′ = LF where F is contained
in the maximal p-subfield of K[µ2pa ], which is clearly Abelian and finite but
in which infinite places are maybe not totally split for p = 2.

So, for p = 2, we shall complete the proof, and we take in this particular case
L′′ = LK[µ2b ]+, where the symbol + denotes the maximal ∞-split subexten-
sion over K, and where b is an integer, which is chosen large enough so that
L′′ contains HL ∩ LK[µ2a+1 ]+ and L′′/L has degree at least 2.

Suppose we have found a prime q′′ of L′′ satisfying the following conditions:

(i) q′′ totally splits in L′′/Q;

(ii) Frob(q′′, L′′[µ2a+1 ]/L′′) = id;

(iii) Frob(q′′, HL′′/L
′′) = cL′′ ,

where cL′′ is extended from cL. Then, let F ′0 be the totally real subfield of Q[µq]
of degree 2a over Q, thus F0 = K[µ2b ]+F

′
0 and L′′′ = LF0 = L′′F ′0 (which is

an Abelian compositum of L/K). If q′′′ denotes the unique prime of L′′′ above
q′′, the extended class c′′′L′′′ in ClL′′′ satisfies the expected condition:

cL′′′ = q′′ = q′′′ 2
a ∈ Cl2

a

L′′′ .

So to conclude we only have to prove the existence of such a prime q′′ satisfying
the three conditions above. But this existence follows from the Čebotarev
theorem as soon as the image of cL ∈ Gal(HL′′/L

′′) in Gal(HL′′∩L′′[µ2a+1 ]/L′′)
is trivial.

To check this last point, let us observe that in the class field description the
extension of ideal classes j corresponds to the transfer map Ver. Here L′′

contains HL ∩ LK[µ2a+1 ]+, so HL′′ ∩ L′′[µ2a+1 ] = L′′′ is either L′′ or L′′[i], and
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the image of jL′′/L(cL) in Gal(L′′′/L′′) is trivial, since one has:

VerB/A→B′/A′(σ) = σ[A′:A]

when B′/A is Abelian, so:

Res L′′′(VerHL/L→HL′′/L′′(cL)) = VerHL/L→L′′′/L′′(cL) = c
[L′′:L]
L = id.

(2) One may assume that L/K is Galois

Let L̃ denotes the Galois closure of L over K. Assume the theorem is proved
for L̃/K (in which at least one infinite place totally splits as in L/K). Hence,
there exists an Abelian compositum L̃F of L̃/K such that every ideal of L̃
principalize in L̃F ; so, cL principalizes in L̃F but maybe does not in LF and
we have to study this case.

(a) When cL is norm in L̃/L, say cL = NL̃/L(c̃
L̃
), the class c̃

L̃
∈ ClL̃ princi-

palizes in L̃F , say jL̃F/L̃(c̃
L̃
) = 1 in ClL̃F ; so we obtain: cL = NL̃∩LF/L(c′

L̃∩LF )
with c′

L̃∩LF = (NL̃/(L̃∩LF )(c̃L̃)) and the class c′
L̃∩LF , which satisfies jLF/L̃∩LF ◦

NL̃/(L̃∩LF )(c̃L̃) = NL̃F/LF ◦ jL̃F/L̃(c̃
L̃
) = 1, principalizes in FL; and so does cL.

(b) When cL is not a norm in L̃/L, maybe cL does not principalize in LF .

But NL̃/L(ClL̃) contains Cl
[L̃:L]
L = Clp

a

L , where pa is the largest power of p

dividing [L̃ : L]. According to Section (1) we replace L by L′ = LF0 such that
cL ∈ Clp

a

L′ . Since [L̃′ : L′] = [L̃F0 : LF0] divides [L̃ : L], cL is norm in L̃′/L′

and (a) applies.

II. Proof of the theorem : constructing the extension F

(3) The method and a first condition about the prime q

From now on we suppose L/K is Galois. The prime p and the class cL are
fixed and we must build an Abelian compositum LF of L/K such that cL
principalizes in LF . For convenience, we choose F/K as a cyclic p-extension,
ramified at only one finite place q of K, with ramification index eq(F/K) = pn

for some integer n. We will see that under some conditions about q, when n is
large enough, cL becomes principal in LF , or in L′F , where L′ is a convenient
Abelian compositum of L/K. At the end of the proof, in Section (6), we will
study the existence of such a q satisfying all conditions.

Now for a given integer n and a given prime q of K, we wonder if cL princi-
palizes in M = LF , where F is a cyclic p-extension of K with eq(F/K) = pn,
unramified but at q and in which all infinite places split totally. The first ques-
tion is the existence of such an extension F/K. Class field theory gives the
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answer as follows.

Indeed, N being the maximal Abelian extension of K unramified but at q

and∞-split, class field theory describes the Galois group Gal(N/K) from the
quotient

JK
/
K×.

∏
v|∞

K×v .
∏
q′ 6=q

Uq′ ,

where JK is the idèle group of K and Uq′ the subgroup of local units of the
completion Kq′ of K at the place q′. The inertia subgroup of q in N/K is,
according to class field theory, isomorphic to the quotient

Uq

/
Uq ∩ (K×.

∏
v|∞

K×v .
∏
q′ 6=q

Uq′) = Uq

/
EK ,

where EK is the group of global units in K and the overlining means topo-
logical closure in Uq of the diagonal embedding. Of course if F exists, it is
contained in the maximal p-extension of N , whose ramification subgroup is
the p-part of Uq

/
EK , denoted (Uq

/
EK)p.

We suppose now:

• q - p.

So, if F exists, pn divides |(Uq

/
EK)p|, that is, under the assumption q - p:

• µpn ⊂ K×q ,

and

• EK ⊂ Upn

q . 3

These necessary conditions suffice to ensure the existence of F , according to an
obvious lemma, which reads: if A is an Abelian finite group and C is a cyclic
subgroup of A of order divisible by pn, then there exists a cyclic quotient of
A in which the image of C has order pn.

Now we suppose that q - p satisfies the two conditions above together with
the additional assumption:

• q is unramified in L/K. 4

So F exists; all primes qL | q are ramified in M/L = LF/L with the same
index eq = pn; and we have [M : L] = pn+d for some positive integer d.

(4) Obtaining a large cohomology group Ĥ0(G, EM)

3 The canonical embedding of EK in K×q must be contained in Upn
q since (Uq)p is

here a cyclic group.
4 In fact, in the sequel Bosca will suppose that q is totally split in L/K.
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Let G denote the Galois group Gal(M/L), which is cyclic of order pn+d, and
G = Gal(L/K).

According to the Dirichlet–Herbrand theorem, the character of the represen-
tation Q ⊗Z EL of G = Gal(L/K) given by the group of global units EL
is:

χEL =
∑
v|∞

IndGDv1Dv − 1G ,

where 1G is the trivial character of G and 1Dv the trivial character of the
decomposition subgroup Dv.

Since at least one infinite place splits totally in the extension L/K, the char-
acter of Q⊗Z (EL/µLEK) satisfies

χEL/µLEK ≥ χZ[G] − 1 ,

and we can deduce from this the existence of a map: 5

ϕ : EL/µLEK −→ Z

such that, in Hom(EL/µL.EK ,Z), ϕ generates a Z[G]-submodule whose char-
acter is χZ[G] − 1.

On the other hand, since L[µpn , E
1/pn

L ]/L[µpn ] is a Kummer extension, if qL is
one of the primes of L dividing q, the Frobenius automorphism

σ = Frob(qL, L[µpn , E
1/pn

L ]/L)

corresponds, in the Kummer duality, to the map:

u 7→ (u1/pn)(σ−1) ∈ µpn , for all u ∈ EL,

and we impose the new condition:

• this map σ coincides with λn : EL −→ EL/µLEK
ϕ−→ Z −→ µpn ,

where the left map is the natural one and the right one is surjective (we must
choose a primitive pnth root of unity for the right map, but this choice does
not change the Frobenius defined up to conjugation: changing the choice of
the root of unity is the same as changing the choice of a prime q′ | q in L[µpn ]).

So, the property of ϕ leads to the following facts:

Let φ denotes the map (see the Appendix):

5 See the details in the Appendix.
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EL −→RG := {
∑
g

αg g ∈ Z[G] |
∑
g

αg = 0}

u 7−→
∑
g

ϕ(g−1(u)) g ;

Im(φ) has finite index, say r. So, pδ being the maximal power of p dividing r,
one has:

|{EL/{u ∈ EL | ∀g ∈ G, λn(g(u)) = 1}| ≥ |RG/R
pn

G |/pδ = pn(|G|−1)−δ .

On the arithmetical side, the ramification indices in M/L of all primes qL | q
of L are all equal to pn; so, with qM |qL|q in M/L/K, one has 6 :

NM/L(EM) ⊂ NM/L

( ∏
qM |q

UqM

)
=
∏
qL|q

Upn

qL
,

and then

{u ∈ EL | ∀g ∈ G, λn(g(u)) = 1} = EL ∩
∏
qL|q

Upn

qL
⊃ NM/L(EM) ,

so that

|H0(G, EM)| = |EL/NM/L(EM)| ≥ |EL/{u ∈ EL | ∀g ∈ G, λn(g(u)) = 1}| ,

and we finally have from the character theory side:

|H0(G, EM)| ≥ pn(|G|−1)−δ .

(5) Study of Ĥ1(G, EM) and upper bound for |IGM/P GM |

Recall that M := FL. According to [4], chapter IX, §1, since the cyclic exten-
sion M/L splits totally at all infinite places, the Herbrand quotient q(G, EM)
of the units is given by:

q(G, EM) :=
|Ĥ0(G, EM)|
|Ĥ1(G, EM)|

=
1

[M : L]
=

1

pn+d
,

and this gives:

|Ĥ1(G, EM)| = pn+d . |Ĥ0(G, EM)| ≥ pn+d . pn(|G|−1)−δ = pn|G|+d−δ .

On the other hand, one has the canonical isomorphism:

Ĥ1(G, EM) ' P GM/PL

6 Using the fact that the global norm is the product of the corresponding local
norms.
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where P GM is the group of principal ideals of M which are invariant under G.

So one obtains:
|P GM/PL| ≥ pn|G|+d−δ.

Thus, from the formula: 7

|IGM/IL| =
∏
qL|q

eqL = pn|G| ,

where IM is the group of fractional ideals of M , one deduces:

|IGM/P GM | =
|IGM/PL|
|P GM/PL|

=
|IGM/IL| . |IL/PL|
|P GM/PL|

=
pn|G| . |ClL|
|P GM/PL|

≤ pn|G| . |ClL|
pn|G|+d−δ

,

that is:
|IGM/P GM | ≤ |ClL| pδ−d .

Note that the number in the right hand side does not depend on n.

(6) Does the class cL principalize in M ?

Here, we also suppose:

• Frob(qL, HL/L) = cL.

M ′ being the maximal subfield of M/L in which qL totally splits, one has:

qL =
∏

q′M |qL in M ′/L

q′M ;

and for all prime q′M |qL of M ′/L, we have q′M = qp
n

M , where qM is the unique
prime of M dividing q′M .

Finally in M ,

qL =

( ∏
q′M |qL

qM

)pn
,

with
∏

q′M |qL

qM ∈ IGM . According to Section (5), one has:

|IGM/P GM | ≤ |ClL| pδ−d,

and then: ( ∏
q′M |qL

qM

)|ClL| . pδ−d

∈ P GM .

7 Since we have supposed that q splits totally in L/K.
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Hence, in ClM , the extended class cM of cL satisfies both:

cM = qL =

( ∏
q′M |qL

qM

)pn
and

( ∏
q′M |qL

qM

)|ClL| pδ−d

= 1 .

So, w being such that |ClL| = pw, cL becomes principal in M under the
assumption:

n ≥ w + δ − d.

(7) Existence of q

We just proved that cL principalizes in M when n is large enough and when
q (or qL|q) satisfies the following six conditions:

(1) q - p,

(2) µpn ⊂ K×q ,

(3) EK ⊂ Upn

q ,

(4) q totally splits in L/K,

(5) Frob(qL, L[µpn , E
1/pn

L ]/L) = λn,

(6) Frob(qL, HL/L) = cL.

The definition of λn ∈ Gal(L[µpn , E
1/pn

L ]/L) shows it is trivial on L[µpn , E
1/pn

K ].
Then conditions (4) and (5) imply (2) and (3), so we only study compatibility
between conditions (1), (4), (5), (6). This compatibility is possible if and only

if cL and λn are equal on the extension HL ∩ L[µpn , E
1/pn

L ] of L.

Let m be the integer such that |(µL)p| = pm; one has, where the exponent ab
means Abelian subextension over L:

HL ∩ L[µpn , E
1/pn

L ] ⊂ HL ∩ (L[µpn , E
1/pn

L ])ab = HL ∩ L[µpn+m , E
1/pm

L ] ;

let m′ be the integer such that HL ∩ L[µp∞ ] = L[µpm′ ], so m′ ≥ m and

HL ∩ L[µpn , E
1/pn

L ] = HL ∩ L[µpm′ , E
1/pm

L ] .

The exponent of the Galois group Gal(L[µpm′ , E
1/pm

L ]/L) is less than pm
′
, so is

that of Gal(HL ∩ L[µpn , E
1/pn

L ]/L). According to Section (1), taking a = m′,

one can suppose that cL ∈ Clp
m′

L (replacing L by L′ as in Section(1); note
that m′(L′) = m′(L) because L′/L is unramified at all places dividing p, so

that cL ∈ Clp
m′(L′)

L as expected); in that case, the restriction of cL is trivial on

HL ∩ L[µpn , E
1/pn

L ].
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About the restriction of λn on HL ∩ L[µpn , E
1/pn

L ], we can as well suppose it

is trivial, by replacing eventually λn by λp
m′

n (i.e. ϕ by pm
′
ϕ) which has the

same properties. 8

Up to replacing L by L′ and choosing a convenient ϕ, the restrictions of cL
and of λn are both trivial on HL ∩ L[µpn , E

1/pn

L ]: Čebotarev theorem then
ensures the existence of infinitely many convenient primes q of K satisfying
all conditions, and each one gives us an Abelian compositum M in which L
principalizes. This proves the Main Theorem.

III. Proofs of the corollaries

Corollary 1 is just the case K = Q, and the Kronecker-Weber theorem which
states that Abelian extensions of Q are cyclotomic.

Corollary 2 is equivalent to the following fact: Let K be a number field and
Kab

+ its maximal ∞-split Abelian extension. Any field L containing Kab
+ and

in which at least one infinite place totally splits over K is principal.

To prove this, let a be a fractional ideal of finite type of L. Of course a is
as well a fractional ideal of a subfield La of L with finite degree over Q. We
may assume La ⊃ K, then La/K is an extension of number fields in which
at least one infinite place is totally split. According to the main theorem, a

principalizes in an Abelian compositum LaF of La/K; but LaF is contained
in LaK

ab
+ ⊆ L and so a becomes principal in L.

Corollary 3 results from corollary 2, taking K = Q and K = Q(i), respectively.

Corollary 4 is a consequence of Corollary 2.

D – APPENDIX 9

In this Appendix we make precise the construction of the map:

ϕ : EL/µLEK −−−→ Z,

used by Bosca in Subsection (4). This has some importance since the existence
and the properties of ϕ make use in a crucial manner of the main hypothesis
of the paper: “ at least one infinite place of K splits totally in L/K ”; without
this assumption the problem of principalization is impossible as explained at
the end of the introduction.

8 See the Appendix.
9 Written by G. Gras and J.-F. Jaulent.
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The notations are those of the main text.

(8) Definition of ϕ

Notation: For a group of global units E we denote by E the quotient of E by
its torsion subgroup µ.

Let N be the norm in L/K and let NE be the kernel of N in E. From the exact
sequence:

1 −→ NEL −−−→ EL −−−→ N(EL) ⊆ EK −→ 1 (finite index)

we get:

Q⊗Z (EL) = Q⊗Z (NEL)⊕Q⊗Z (EK) i.e. Q⊗Z (EL/EK) = Q⊗Z (NEL).

Since at least one infinite place of K splits totally in the extension L/K, the
Dirichlet–Herbrand theorem implies that the character of Q⊗Z (NEL) contains
χ(Q[G]) − 1 and that the representation Q ⊕ Q ⊗Z (NEL) contains at least a
representation R isomorphic to Q[G].

We can put R = Q⊗Z 〈 θ 〉 with θ = ρ . ε∗, where ρ ∈ Q×, ρ 6= ±1, and where
ε∗ ∈ NEL may be seen as a “ relative Minkowski unit ”.

Thus any element u ∈ R is written, in a unique manner, u = θω with ω =∑
g∈G αg g ∈ Q[G]. It follows that u is a unit (in 〈 ε∗ 〉Z[G]) if and only if∑
g∈G αg = 0. We note that in this case the αg can be taken in 1

m
Z[G] for a

suitable m ∈ Z (for instance m = |G | in particular cases, but if necessary
we can adjust the value of m large enough, multiple of |G |; at the end of the
reasoning in Subsection (7), Bosca uses this possibility); for the same reasons,
the choice of ε∗ is not crucial and 〈 ε∗ 〉Z[G] is not necessarily a direct summand
in NEL.

In any case m depends only on L/K and not on n.

Noting that

(EL/NEL) EK = EL/NEL ⊕ EK

is killed by |G |, for ε ∈ EL we have:

ε|G| = η∗ ε0, η∗ ∈ NEL, ε0 ∈ EK .

Conclusion. The map ϕ is defined as follows: Working in Q ⊕ Q ⊗Z (NEL),
in which R is a direct summand, we associate with ε ∈ EL the component of
εm on R, of the form θω, with ω =

∑
g∈G αg g ∈ Z[G], where

∑
g∈G αg = 0,
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then we put:
ϕ(ε) = α1 ∈ Z .

This map is trivial on EK and defines an element of Hom(EL/µL . EK ,Z) with
the G-module action defined as usual by:

ψh(x) := ψ(xh
−1

), for all ψ ∈ Hom(EL/µL . EK ,Z) and all h ∈ G.

It is clear that ϕ generates a Z[G]-submodule whose character is χ(Z[G])− 1.
More precisely, a straightforward computation gives ϕg(ε) = αg for any g ∈ G,
thus ω =

∑
g∈G αg g =

∑
g∈G ϕ(εg

−1
) g .

In the sequel we put ω =: φ(ε).

At this step, Bosca introduces (middle of Subsection (4)) the map λn:

λn : EL −−−→ EL/µLEK
ϕ−−−→Z −−−→ µpn −→ 1

by a choice of a primitive pnth root of unity.

This yields an element of Hom(EL, µpn) which will be by abuse of notation
identified, via the Kummer duality between radicals and Galois groups, with
the corresponding element σ′ of Gal(L[µpn , E

1/pn

L ]/L[µpn ]).

Then Bosca creates a new condition by saying that σ′ coincide with the Frobe-
nius σ = Frob(qL, L[µpn , E

1/pn

L ]/L), which is the key idea for the proof of the
conjecture. Indeed, the Galois properties of ϕ give the inequality |H0(G, EM)| ≥
pn(|G|−1)−δ (see the last part of Subsection (4)) which is the main ingredient
for Subsection (5).
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J. Number Th. 62 (1997), 403–421.

[2] Masato Kurihara, On the ideal class group of the maximal real subfields of
number fields with all roots of unity, J. European Math. Society 1 (1999), 35–49.
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