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Abstract. Let F be a self-similar set on R associated to contractions fj(x) = rjx + bj ,
j ∈ A, for some finite A, such that F is not a singleton. We prove that if log ri/ log rj is
irrational for some i 6= j, then F is a set of multiplicity, that is, trigonometric series are
not in general unique in the complement of F . No separation conditions are assumed on F .
We establish our result by showing that every self-similar measure µ on F is a Rajchman
measure: the Fourier transform µ̂(ξ) → 0 as |ξ| → ∞. The rate of µ̂(ξ) → 0 is also shown
to be logarithmic if log ri/ log rj is diophantine for some i 6= j. The proof is based on
quantitative renewal theorems for random walks on R.

1. Introduction and the main result

The uniqueness problem in Fourier analysis that goes back to Riemann [33] in 1868 con-
cerns the following question: suppose we have two converging trigonometric series

∑
ane

2πinx

and
∑
bne

2πinx with coefficients an, bn ∈ C such that for “many” x ∈ [0, 1] they agree:∑
n∈Z

ane
2πinx =

∑
n∈Z

bne
2πinx, (1.1)

then are the coefficients an = bn for all n ∈ Z? For how “many” x ∈ [0, 1] do we need to have
(1.1) so that an = bn holds for all n ∈ Z? If we assume (1.1) holds for all x ∈ [0, 1], then
using Toeplitz operators Riemann [33] proved that indeed an = bn for all n ∈ Z. However, it
would be interesting to see how small the set of x ∈ [0, 1], where (1.1) holds can be so that
we have an = bn for all n ∈ Z. Motivated by this one defines that a subset F ⊂ [0, 1] is a
set of uniqueness if whenever we have coefficients an, bn ∈ C, n ∈ Z, such that (1.1) holds
for all x ∈ [0, 1] \ F , then an = bn for all n ∈ Z. Here one defines also that if F is not a set
of uniqueness, then it is called a set of multiplicity. In particular by Riemann’s result this
shows that the empty set ∅ is a set of uniqueness and so [0, 1] is a set of multiplicity.

Cantor [8] proved that that every closed countable set is a set of uniqueness, and later
Young [45] generalised to every countable set. In the uncountable case, however, even if
assuming F is very small, uniqueness of F may fail: Menshov [30] constructed a set F of
Lebesgue measure 0, which is a set of multiplicity, that is, the uniqueness problem fails if
we only assume (1.1) for all x ∈ [0, 1] \ F . This can be proved using the following criteria,
which goes back to Salem [35] that if a set F supports a Borel probability measure µ such
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that the Fourier transform

µ̂(ξ) :=

∫
e−2πiξx dµ(x), ξ ∈ R,

satisfies µ̂(n) → 0 as |n| → ∞, n ∈ Z, then F is a set of multiplicity. Such measures µ are
called Rajchman measures in the literature. Hence constructing measures µ with decaying
Fourier coefficients provides a way to check whether F is of multiplicity. It remains an
open problem to classify which uncountable sets F are of multiplicity and which F are of
uniqueness and much work has been done in many examples of F on trying to establish their
uniqueness or multiplicity.

In the series of works Salem [35] proved that the middle third Cantor set C1/3 is a set of
uniqueness. More generally, Salem established that if Cλ is the middle λ-Cantor set with
0 < λ < 1/2, that is, interval of length 1 − 2λ is removed from the center of [0, 1] at every
construction stage, then Cλ is a set of uniqueness when λ−1 is a Pisot number. In the
opposite case, if λ−1 is not a Pisot number, by constructing a Rajchman measure on Cλ,
Piatetski-Shapiro [31], Salem and Zygmund [36] established that Cλ is a set of multiplicity.

The Cantor set Cλ is an example of a self-similar set. Recall that a subset F ⊂ [0, 1] is
self-similar if there exists similitudes fj : [0, 1] → [0, 1], that is, fj(x) = rjx + bj, j ∈ A, for
some finite set A, translations bj ∈ R and contractions 0 < rj < 1 such that

F =
⋃
j∈A

fj(F ).

As far as we know nothing is known about the uniqueness or multiplicity of self-similar sets
beyond beyond the case of Cλ or if adding finitely many more similitudes with the same
contraction ratio λ to the definition, which was done by Salem [35]. For example if we have
two different contractions r0 = 1/2 and r1 = 1/3 for the iterated function system, do we
expect F to be of multiplicity or of uniqueness? Due to having same contraction ratio λ
the case Cλ has a convolution structure, which is helpful when connecting to the algebraic
properties of the number λ. In the general case, however, we would need to find a way out
of this.

It turns out that the algebraic properties of the additive subgroup Γ generated by the
log-contraction ratios {− log rj : j ∈ A} in R is important in the study of the multiplicity
of a self-similar set F with contraction ratios rj. In particular if this subgroup Γ is dense,
which happens when log rj/ log r` is irrational for some j 6= ` (e.g. rj = 1/2 and r` = 1/3),
we can establish F is a set of multiplicity.

Theorem 1.1. Let F ⊂ [0, 1] be a self-similar set associated to contractions fj(x) = rjx+bj,
j ∈ A, such that F is not a singleton. If log rj/ log r` is irrational for some i 6= j, then F is
a set of multiplicity.

Notice that by assuming log rj/ log r` is irrational we exclude the case of Cλ as in that
case every ratio of logarithms of the contractions is just 1. It remains an open problem to
study the case when log rj/ log r` ∈ Q for all j 6= `. We predict that here typically F should
be a set of uniqueness unless all the contraction ratios are equal, like the case Cλ, and then
an algebraic number theoretic condition like λ−1 being Pisot needs to be imposed.

In order to prove the multiplicity of a self-similar set F , it is enough by Salem’s criterion
[35] for multiplicity to find a Rajchman measure supported on F . Hence Theorem 1.1
follows by establishing that all positive dimensional self-similar measures on F are Rajchman



TRIGONOMETRIC SERIES AND SELF-SIMILAR SETS 3

measures. Recall that a probability measure µ on R is called self-similar if there exists a finite
collection {fj : j ∈ A} of similitudes of R with at least two maps and weights 0 < pj < 1,
j ∈ A, with

∑
j∈A pj = 1 such that µ =

∑
j∈A pjfjµ.

Theorem 1.2. Let F ⊂ [0, 1] be a self-similar set associated to contractions fj(x) = rjx+bj,
j ∈ A, such that F is not a singleton. If log ri/ log rj is irrational for some i 6= j, then the
Fourier transform µ̂(ξ)→ 0 as |ξ| → ∞ for every self-similar measure µ on F .

Theorem 1.2 is closely related to another problem in a currently active problem in the
community of fractal geometry, where we would like to understand the Fourier transforms
of fractal measures, see the book [29] by Mattila for an history and overview. In particular
there are various past and recent works on random fractals by Kahane [21, 22], Shmerkin
and Suomala [39] and other people [14, 15], connections to Diophantine approximation by
Kaufman et al. [23, 24], dynamical systems [19, 34] and additive combinatorics [3, 25].
Analysing the spectrum of fractal measures has been particularly important in finding normal
numbers from the support of fractals [18, 32, 11] and the study of harmonic analysis defined
by fractal measures, see for example applications to the spectrum of convolution operators
defined by fractal measures in the work of Sarnak [37] and later by Sidorov and Solomyak
[40], and more recently applications to quantum resonances in quantum chaos by Bourgain
and Dyatlov [4].

The study of Fourier transforms of self-similar measures in general goes back to the works of
Strichartz [41, 42], where an average decay of Fourier transform µ̂(ξ) of self-similar measures
µ are obtained, where proportions of frequencies ξ ∈ R are excluded. More recently a large
deviation estimate for these average decays was proved by Tsujii [43]. However, the methods
here cannot be used to obtain a full decay over all |ξ| → ∞. Before Theorem 1.2 the only
cases of self-similar measures µ where µ̂(ξ) → 0 as |ξ| → ∞ was known were self-similar
measures on the middle λ-Cantor sets Cλ, 0 < λ < 1/2, by Salem [35], Piatetski-Shapiro
[31], Salem and Zygmund [36], and in the overlapping case for the Bernoulli convolutions µβ,
1 < β < 2, which are the distribution of the random sum

∑
±β−k with i.i.d. chosen signs.

For Bernoulli convolutions Fourier transforms play an important role as proving that µ̂β(ξ)
has power decay as |ξ| → ∞ implies µβ is absolutely continuous, which is a well-known open
problem in the field, see Shmerkin [38]. It is known by the results of Erdös [16] and Kahane
[20] that the set of 1 < β < 2 such that µβ does not have a power decay has Hausdorff
dimension zero. Moreover, Erdös [16] proved that µ̂β(ξ) → 0 as |ξ| → ∞ if and only if
β is a Pisot number. In the non-Pisot case the rate of convergence was later shown to be
logarithmic for rational number β or some algebraic numbers β by Dai [9] and Bufetov and
Solomyak [7], and some power decay for algebraic numbers β has been obtained by Dai, Feng
and Wang [10].

Notice that in Theorem 1.1 and Theorem 1.2 there can be any types of overlaps for the
maps fj and no separation conditions are assumed. Typically in the overlapping case the
analysis of self-similar sets and measures can be notoriously difficult to understand, say, their
Hausdorff dimension has required some deep connections to additive combinatorics, see for
example the recent works of Hochman [17], Breuillard-Varju [6] and Varju [44]. The reason
overlaps do not cause us any issues is the fact that the main contribution to the Fourier decay
comes from controlling the distribution of lengths of the construction intervals, and not their
relative positions. Understanding the distribution of the lengths of the construction intervals
then can be reduced as a problem of studying the renewal theory for random walk random
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walk X1, X2, . . . on R driven by λ =
∑

j∈A pjδ− log rj . This strategy to establish Fourier decay
is similar to what was done in the case of the stationary measure for group actions by the
first author in [26]. In the self-similar case case we consider, however, the proof is much
more straightforward and we can see the idea governing the Fourier decay more clearly. The
irrationality of log ri/ log rj is key to prove the random walk becomes non-lattice, that is,
not concentrated on an arithmetic progression, which is a key assumption for the renewal
theorem we use.

If we want a rate of convergence in Theorem 1.2 using the strategy we present in this
paper, one needs to go into the rate of convergence for the renewal theorems we use. Here
it is well-known that the diophantine properties of the random walk become an essential
property, in particular, how well log ri/ log rj is approximated by rationals. In Diophantine
approximation, it is defined that an irrational real number a ∈ R is called diophantine if for
some c > 0 and l > 2 we have ∣∣∣a− p

q

∣∣∣ ≥ c

ql

for all p ∈ Z and q ∈ N∗. This happens for example when a = log 2/ log 3 or in general
for a = log p/ log q for coprime p, q, see Baker [1]. Having some diophantine log ri/ log rj
in the iterated function system imposes the random walk generated by the contractions
to quantitatively avoid lattices and then gives quantitative rates for the renewal theorem.
Under this condition, we can improve Theorem 1.2 in the following way:

Theorem 1.3. Let F ⊂ [0, 1] be a self-similar set associated to contractions fj(x) = rjx+bj,
j ∈ A, such that F is not a singleton. If log ri/ log rj is diophantine for some i 6= j, for
some α > 0 we have

|µ̂(ξ)| = O
( 1

| log |ξ||α
)
, |ξ| → ∞

for every self-similar measure µ on F .

Removing the irrationality of ratios of log-contractions ratios makes the random walk
X1, X2, . . . on R driven by λ =

∑
j∈A pjδ− log rj lattice, that is, concentrated on arithmetic

progressions. Then the renewal theorems do not hold anymore in the same form, and in fact
the Fourier transform no longer may not even decay at infinity as given by the middle 1/3
Cantor measure. However, in the case β is not Pisot, the Bernoulli convolution µβ associated
to β provides examples of a measure where the Fourier transform does decay at infinity, even
with polynomial rate for some algebraic β, but the additive random walk on R generated by
log β is a lattice. Hence it would be interesting to develop the connection to renewal theory
further and find a full classification of self-similar sets F which are of uniqueness and which
are of multiplicity.

In this paper we considered the self-similar case, but if we impose the maps fj to be
suitably nonlinear, such as the inverse branches of the Gauss map x 7→ 1/x mod 1 and
study the Fourier transforms of self-conformal measures µ, then the rates of Fourier decay
in Theorem 1.3 for Fourier decay can be improved to power decay, see for example the
works [19, 4, 34, 27]. Here the non-lattice condition of contractions − log rj is replaced by a
non-concentration condition of the log-derivatives of the iterates − log(fj1 ◦ · · · ◦ fjn)′(x) as
n→∞ and these types of conditions appear in the Fourier decay properties of multiplicative
convolutions in the discretised sum-product theory developed by Bourgain [3].

What about the higher dimensional case? Here the analogue to Theorem 1.2 and Theorem
1.3 would be to understand Fourier transforms µ̂ of self-affine measures µ on Rd. They are
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measures on Rd associated to affine contractions fj = Aj + bj of Rd, j ∈ A, for some finite
set A, where bj ∈ Rd and Aj ∈ GL(d,R) such that

µ =
∑
j∈A

pjfjµ

for some weights 0 < pj < 1, j ∈ A, with
∑

j∈A pj = 1. In a follow-up paper [28], we apply
a similar strategy as we do in this paper by considering renewal theory for random walks
on the group GL(d,R) coming from {Aj : i ∈ A} to establish a Fourier decay for self-affine
measures. The renewal theory we need has been done recently by the first author in [27].
Here the non-lattice condition can be replaced by an irreducibility and proximality assump-
tion of the subgroup Γ generated by {Aj : i ∈ A} as Bárány, Hochman and Rapaport did
recently in their work [2] for the computation of Hausdorff dimension of self-affine measures
on R2. Moreover, due to the better rates for quantitative renewal theorems for random walks
in real split groups [27], that is, when the Zariski closure of Γ is R-splitting, we can improve
the rates for the Fourier decay of µ to power decay.

Organisation of the paper. The article is organised as follows. In Section 2 we give
the quantitative renewal theorems we need for our results and then prove them in Section
4. Then in Section 3 we give the proof of Theorem 1.2, which implies Theorem 1.1 on the
multiplicity of self-similar sets, and also in Section 3 we prove the quantiative Theorem 1.3
using the quantitative estimates for the renewal theorem established in Section 2.

2. Quantitative renewal theorems for random walks in R

The proof of Theorem 1.2 and the quantitative version Theorem 1.3 rely on quantitative
renewal theorems for random walks on R, which we will give in this section. We will first fix
some notation: for two real functions f and g, we write f = O(g), f � g or g � f if there
exists a constant C > 0 such that |f | ≤ Cg, where C only depends on the measure µ. We
write f = Oε(g) or f �ε g if the constant C depends on an extra parameter ε.

Let λ be a probability measure on R+ with finite support and let | suppλ| be the maximal
of the support of λ. Let σ be the expectation of λ. We call λ non-lattice if the support of λ
generates a dense additive subgroup of R. In our case of self-similar measures associated to
an iterated function system fj(x) = rjx+ bj and weights

∑
j∈A pj = 1, we will apply this in

the case of

λ =
∑
j∈A

pjδ− log rj

which is non-lattice as long as the the additive subgroup generated by − log rj, j ∈ A, is
dense in R.

Let now X1, X2, . . . be i.i.d. sequence of random variables with λ. Write for n ∈ N the
sum

Sn := X1 +X2 + · · ·+Xn.

Thus Sn has the distribution λ∗n, where λ∗n = λ∗(n−1) ∗ λ, n ≥ 2, is the iterated convolution
with λ∗1 := λ. We defined for t > 0 the stopping time

nt := inf{n ∈ N : Sn ≥ t},
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and we define St := Snt . The main intuition is that if λ is non-lattice, then the residue
distribution St − t will converge to a distribution absolutely continuous with respect to the
Lebesgue measure when t tends to infinite.

Proposition 2.1. If λ is non-lattice, then we have for t > | suppλ|+ 1 > 0 and C1 function
g on R,

Et(g(St − t)) =
1

σ

∫
R+

g(x)p(x)dx+ ot|g|C1 , (2.1)

where ot tends to zero as t going to ∞ and where p(x) =
∫
y>x

dλ(y) is a piecewise constant

function and vanishes when x passes the support of λ.

Proof. Let % be a smooth cutoff such that %[−| suppλ|,| suppλ|] = 1 and becomes 0 outside of
[−| suppλ|−1, | suppλ|+1]. Take f(v, u) = g(v+u)%(v)%(u). Then f(v, u) = g(v+u) when
v, u are in the interval [−| suppλ|, | suppλ|]. By definition, we have

Et(g(St − t)) = ECf(t).

This function f satisfies the conditions in Proposition 4.9, and the proof is complete by using
Proposition 4.9. �

If we want to apply the Diophantine condition on the ratios of the logarithms, we need a
rate. This can be obtained in the following:

Definition 2.2. For a probability measure λ on R and l in R+, we call it l-weakly diophantine
if

lim inf
|b|→∞

|b|l|1− Lλ(ib)| > 0,

where Lλ is the Laplace transform of λ, defined for z ∈ C by the formula

Lλ(z) =

∫
ezxdλ(x).

More generally, we say that λ is weakly-diophantine if it is l-weakly diophantine.

This definition can be find in [5].

Lemma 2.3. If there exist rj, rk for j, k ∈ A such that log rj/ log rk is diophantine, then the
measure λ is weakly diophantine.

Proof. We have that

|1− Lλ(ib)| ≥ |Re(pj(1− e−ib log rj) + pk(1− e−ib log rk))|

� max{d(b log rj, 2πZ)2, d(b log rk, 2πZ)2} � max{d(b1,Z)2, d(b1
log rk
log rj

,Z)2},

with b1 = b log rj/2π. By the definition of diophantine number, we obtain that for some
l ∈ N

max{d(b1,Z)2, d(b1
log rk
log rj

,Z)2} � |b1|−2l.

Combing the above two inequalities, we know that the measure λ is weakly diophantine. �

Proposition 2.4. If the measure λ is l-weakly diophantine, then for t > | suppλ| + 1 we
have

Et(g(St − t)) =
1

σ

∫
R+

g(x)p(x)dx+O(t−1/(4l+1))|g|C1 . (2.2)
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Proof. We need to use the weakly diophantine condition to give an estimate of the error
term in Proposition 4.9. For the supremum of the norm of 1

1−Lλ(iξ) + 1
σ

1
iξ

and its derivative

∂ξ(
1

1− Lλ(iξ)
+

1

σ

1

iξ
) =

−∂ξLλ(iξ)

(1− Lλ(iξ))2
− 1

σ

1

iξ2
,

on the interval [−Cψδ−2, Cψδ−2], by the definition l-weakly diophantine, we obtain that it is
less than Cδ−4l. Then by Proposition 4.9

Oδ ≤ Cδ−4l.

Then take δ = t−1/(4l+1). The proof is complete. �

3. Proof of the Fourier decay

3.1. Dimension theory and symbolic notations. Let us write A∗ as the space of all
words w with entries in A of finite length. Moreover, An is the space of all words of length
n with entries in A. If w = w1w2 . . . wn ∈ An, define the composition

fw := fw1 ◦ · · · ◦ fwn .

Then fw is again a similitude with a contraction

rw := rw1 . . . rwn .

Using this notation the self-similarity of µ implies that

µ =
∑
w∈An

pwfwµ,

where

pw := pw1 . . . pwn > 0

as the product of weights pj, j ∈ A, according to the entries of the word w. See the book
by Falconer [12] for more details, notations and history on self-similar sets and measures.

3.2. Reduction to exponential sums. Given ξ ∈ R and t > 0, the first step is to reduce
the Fourier transform of µ to double µ integrals over exponential sums determined by the
stopping time nt. Recall that we defined in Section 2 for t > 0 the stopping time

nt := inf{n ∈ N : Sn ≥ t},

where Sn = X1 + · · ·+Xn and Xj are i.i.d. distributed according to

λ =
∑
j∈A

pjδlog(1/rj).

Let Pt be the probability distribution on A∗ associated to the stopping time and write

Wt := sptPt,

for the support of Pt. The reason to use the stopping time here is that we want to use
the equidistribution phenomenon of the renewal theorem (Proposition 2.1), which combined
with high-oscillation can give decay of exponential sums.

Later we will make t depend on ξ and let |ξ| → ∞, but for now we keep everything fixed.
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Lemma 3.1. For every ξ ∈ R and t > 0 we have

|µ̂(ξ)|2 ≤
∫∫ ∑

w∈Wt

pwe
−2πiξ(fw(x)−fw(y)) dµ(x) dµ(y).

Proof. Firstly, by

µ =
∑
j∈A

pjfjµ

we see that for any t > 0 we can write

µ =
∑
w∈Wt

pwfwµ.

The proof of this is similar to [26, Proposition 3.5]. Hence we obtain

µ̂(ξ) =
∑
w∈Wt

pw

∫
e−2πiξfw(x) dµ(x).

Thus by Cauchy-Schwartz, we have

|µ̂(ξ)|2 ≤
∑
w∈Wt

pw

∣∣∣ ∫ e−2πiξfw(x) dµ(x)
∣∣∣2.

Opening up we see that∑
w∈Wt

pw

∣∣∣ ∫ e−2πiξfw(x) dµ(x)
∣∣∣2 =

∫∫ ∑
w∈Wt

pwe
−2πiξ(fw(x)−fw(y)) dµ(x) dµ(y).

�

Thus to prove Fourier decay, we would need to prove∫∫ ∑
w∈Wt

pwe
−2πiξ(fw(x)−fw(y)) dµ(x) dµ(y)→ 0 (3.1)

as |ξ| → ∞ for a suitable t = t(ξ) → ∞, and if we want a rate for the Fourier decay, we
need to control the speed of convergence in (3.1). In order to do this, we first write |ξ| in
the separate form

ξ = set

with s ∈ R and t > 0 and later we will first take |s| large, then take t > 0 large enough
depending on s. Using these parameters, write

δ = 1/
√
|s| > 0.

Then define the tube

Aδ = {(x, y) ∈ R : |x− y| ≤ δ}.
We will split (3.1) into two cases depending on how close |x − y| are in terms of the δ > 0
defined above. We will have the following two propositions given in Proposition 3.2 and
Proposition 3.3, which together imply Theorem 1.2. For the quantitative part, we also need
Proposition 3.4 to control the rate in (3.1).
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3.3. Controlling nearby points. The first one is on the nearby points x, y ∈ R, that is,
those with |x− y| ≤ δ, and here is where we use the fact that F is not a singleton. By [13,
Proposition 2.2], due to F is not a singleton, there exist r0 > 0, α > 0 and C > 0 such that
for all 0 < r < r0 and x ∈ F we have

µ(B(x, r)) ≤ Crα. (3.2)

A measure which satisfies this condition is sometimes called a Frostman measure. Using
the decay (3.2) of the µ measure on balls, we can control the nearby points in the following
lemma:

Proposition 3.2. For any |ξ| = set, we have∣∣∣ ∫∫
Aδ

∑
w∈Wt

pwe
−2πiξ(fw(x)−fw(y)) dµ(x) dµ(y)

∣∣∣→ 0

as |ξ| → ∞.

Proof. First of all, since for all t > 0 we have that∑
w∈Wt

pw = 1,

we can directly bound using triangle inequality that∣∣∣ ∫∫
Aδ

∑
w∈Wt

pwe
−2πiξ(fw(x)−fw(y)) dµ(x) dµ(y)

∣∣∣ ≤ (µ× µ)(Aδ)

as |eiθ| = 1 for all θ ∈ R. Using Fubini’s theorem we see that

(µ× µ)(Aδ) =

∫
µ(B(x, δ)) dµ(x), (3.3)

thus by (3.2) the right-hand side converges to 0 as δ → 0. �

3.4. Application of the renewal theorem and high-oscillations. In the case when
x, y ∈ R are chosen such that |x − y| > δ, we will use the renewal theory to prove the
following convergence.

Proposition 3.3. Suppose log rj/ log r` is irrational for some j 6= `. Then∫∫
R2\Aδ

∑
w∈Wt

pwe
−2πiξ(fw(x)−fw(y)) dµ(x) dµ(y)→ 0

as |ξ| → ∞.

This rate is not quantitative, so in the later section, by adding an extra assumption
(log rj/ log r` is diophantine) to the renewal theory, gives us a quantitative version (Propo-
sition 3.4).

Proof of Proposition 3.3. By definition of fj we have that for all x, y ∈ [0, 1] and w ∈ Wt

the difference

fw(x)− fw(y) = rw(x− y).

Therefore we can write

e−2πiξ(fw(x)−fw(y)) = e−2πiξ(x−y)rw
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Recall that we have fixed s ∈ R and t > 0 such that ξ has the form ξ = set. With this s ∈ R,
we can define a function gs : R→ C by

gs(r) := exp(−2πise−r), r ∈ R.
Using gs we can write for any pair x, y ∈ R that∑

w∈Wt

pwe
−2πiξ(fw(x)−fw(y)) = Et(gs(x−y)(St − t)),

where expectation is with respect to the probability measure Pt determined by the stopping
time nt.

We will apply the function gs(x−y) in the renewal theorem (see Proposition 2.1) as the
renewal function h in Proposition 2.1. Here is where we need to invoke the condition that
log rj/ log r` is irrational for some j 6= `. It implies that the i.i.d. random walk X1, X2, . . .
on R with the distribution

λ =
∑
j∈A

pjδlog(1/rj),

is non-lattice. Hence we can apply the renewal theorem (Proposition 2.1) to obtain some
piecewise continuous function r 7→ p(r) on R such that for any h : R → C we have the
following convergence of the expectations:

lim
t→∞

Et(h(St − t)) =

∫
R
h(r)p(r) dr.

Applying this with h = gs1 gives us when |s1| tends to infinite

lim
t→∞

Et(gs1(St − t)) =

∫
R
gs1(r)p(r) dr.

If we now look at the right-hand side, since p(r) is a piecewise continuous function, or just
integrable, Riemann-Lebesgue lemma implies that∫

R
gs1(r)p(r) dr → 0. (3.4)

However, in our case we only know that x, y ∈ R2 \Aδ, so |x− y| > δ and |s1| = |s(x− y)| ∈
[|s|1/2, C|s|], where C depends on the support of λ. Thus to be able to use the above
convergence (3.4), we need uniformity for |s1| in the interval [|s|1/2, C|s|] and to make it
more effective using the error term in the renewal theorem Proposition 2.1.

Let us fix ε > 0 small enough. Then first use (3.4) choose s0 ∈ R such that for all s1 ∈ R
with |s1| ≥ |s0| we have ∣∣∣ ∫

R
gs1(r)p(r) dr

∣∣∣ ≤ ε

2
.

Then we take t0 large enough such that for all |s1| ∈ [|s0|, C|s0|2] and t > t0 the error term

ot|gs1|C1

in Proposition 2.1 is also less than ε/2.
Then for all gs1 = gs(x−y) with s equal to |s0|2 and |x − y| > |s|−1/2 = |s0|−1, we have
|s1| = |s(x− y)| ∈ [|s0|, C|s0|2]. Therefore for all |ξ| = |s0|2et > |s0|2et0 , we will have that

|Et(gs(x−y)(St − t))| ≤ ε

for all x, y ∈ Aδ. �
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3.5. Quantitative rate for Fourier decay. In order to prove a quantitative rate (Theorem
1.3), we need a rate in Proposition 3.3 and for this we give the following

Proposition 3.4. Suppose log rj/ log r` is diophantine for some j 6= `. Then there exists
α > 0 such that∣∣∣ ∫∫

R2\Aδ

∑
w∈Wt

pwe
−2πiξ(fw(x)−fw(y)) dµ(x) dµ(y)

∣∣∣ = O
( 1

| log |ξ||α
)
,

as |ξ| → ∞.

Proof. By the quantitative renewal theorem (see Proposition 2.4), we obtain for some α > 0
that ∣∣∣Et(gs1(St − t))− ∫

R
gs1(r)p(r) dr

∣∣∣ = O
(s1
tα

)
.

Because the function p(r) =
∫
x>r

dλ(x) (r ≥ 0) is piecewise constant with a finite number
of disconnected points, the decay rate in the main term, the oscillation integral, is given by
the oscillation (See [26, Lemma 3.8] for more details)

|
∫
R+

gs1(r)p(r) dr| = O(
1

s1
).

Then we take s = tα/2, which implies |s1| = |s(x− y)| ∈ [tα/4, Ctα/2] for (x, y) ∈ R2\Aδ. Due
to |ξ| = tα/2et, thus after taking logarithms the rate is O( 1

| log |ξ||α/4 ). �

4. Proofs of the renewal theorems

Let us now finish the paper by giving the proofs of the renewal theorems Proposition
2.1 and Proposition 2.4. This follows the similar proofs in [26], but we give the proofs for
completeness. Recall that λ is a finite supported probability measure R+. We define a
renewal operator R as follows. For a positive bounded Borel function f on R and a real
number t, we set

Rf(t) =
+∞∑
n=0

∫
f(x− t)dλ∗n(x).

Because of the positivity of f , this sum is well defined. The classical theory of Blackwell
gives us a limit. But a uniform speed of convergence is needed in our application. We will
give a proof using the Laplace transform, which fulfills our demands. The renewal theorem
will give us an equidistribution phenomenon, where the key input is non-lattice.

First we give a proof of renewal theorem for good functions. Then we prove some regularity
properties. These will imply a version of residue process.

4.1. Laplace transform. The Laplace transform of a compactly supported probability
measure on R is defined by

Lλ(z) =

∫
e−zxdλ(x).

By the definition of non-lattice, we have
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Proposition 4.1. If λ is non-lattice, then for any pure imaginary number iξ not 0, the
Laplace transform of λ is different from 1 and

u(iξ) :=
1

1− Lλ(iξ)
− 1

σiξ
(4.1)

is holomorphic.

4.2. Renewal theory for regular functions. We start to compute the renewal operator.
A result for the renewal operator for “good” functions will be proved. Let f be a function on
R. Define a norm by |f |L∞ = supξ∈R |f(ξ)|. Define another norm |f |W 1,∞ = |f |L∞ + |∂ξf |L∞ .

Write the Fourier transform f̂(ξ) =
∫
eiξuf(u)du.

Proposition 4.2. Let f be a positive bounded continuous function in L1(R, Leb) such that

its Fourier transform satisfies f̂ ∈ L∞ and ∂ξf̂ ∈ L∞. Assume that the projection of supp f̂
onto R is in a compact set K. Then for all t > 0, we have

Rf(t) =
1

σ

∫ ∞
−t

f(u)du+
1

t
OK(|f̂ |W 1,∞),

where OK is the the norm of u(iξ) and ∂ξu(iξ) on K.

Proof. Combine the following two lemmas. �

Lemma 4.3. Under the same assumption as in Proposition 4.2, we have

Rf(t) =
1

σ

∫ ∞
t

f(u)du+
1

2π

∫
eitξu(iξ)f̂(ξ)dξ,

where u is defined in Proposition 4.1.

This is a classical computation, for more details please see Lemma 4.6 in [26].

Lemma 4.4. Under the same assumption as in Proposition 4.2, we have

|
∫
e−itξu(iξ)f̂(ξ)dξ| ≤ 1

t
OK

(
|f̂ |L∞ + |∂ξf̂ |L∞

)
.

Proof. Use the fact that f̂(ξ) is compactly supported and |f̂(ξ)|, |∂ξf̂(ξ)| < ∞. Then ap-
plying integration by parts, we have∫

e−itξu(iξ)f̂(ξ)dξ =
1

it

∫
e−itξ∂ξ(u(iξ)f̂(ξ))dξ

=
1

it

∫
e−itξ

(
∂ξ(u(iξ))f̂(ξ) + u(iξ)∂ξf̂(ξ)

)
dξ.

Since the operator norms of u(iξ) and ∂ξu(iξ) are uniformly bounded on compact regions,
the result follows. �

4.3. Regularity properties of renewal measures. We want to use convolution to smooth
out the target function. There exists an even function ψ such that it is a probability den-

sity, and the Fourier transform ψ̂ is compactly supported. Let ψδ(t) = 1
δ2
ψ( t

δ2
). Then∫ δ

−δ ψδ(t)dt =
∫ 1/δ

−1/δ ψ(t)dt > 1− Cδ.
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Proposition 4.5. Let δ ≤ 1/3 and b2 ≥ b1. If b2 − b1 ≥ 2δ, then t > 0, we have

R(1[b1,b2])(t)�ψ (b2 − b1)(1/σ +Oδ(1 + |b2|+ |b1|)/t), (4.2)

where Oδ ≤ supξ∈[−Cψδ−2,Cψδ−2](|u(iξ)|+ |∂ξu(iξ)|).

Proof. If u is in [b1, b2], then [u− b2, u− b1] contains at least one of [0, δ] or [−δ, 0]. Therefore

ψδ ∗ 1[b1,b2](u) =

∫ b2

b1

ψδ(u− v)dv ≥
∫ δ

0

ψ(v)dv ≥ (1− δ)/2.

Then

1[b1,b2] ≤ 3ψδ ∗ 1[b1,b2]. (4.3)

It is sufficient to bound R(ψδ ∗ 1[b1,b2]). Proposition 4.2 implies that

R(ψδ ∗ 1[b1,b2]) =
1

σλ

∫ ∞
−t

ψδ ∗ 1[b1,b2] +
Oδ

t
|ψ̂δ1̂[b1,b2]|W 1,∞ .

The first term is less than
∫
ψδ ∗ 1[b1,b2] = (b2 − b1). For the second term, we have

|ψ̂δ1̂[b1,b2]|W 1,∞ = |ψ̂δ1̂[b1,b2]|L∞ + |∂ξψ̂δ1̂[b1,b2]|L∞
≤ Cψ(|1[b1,b2](u)|L1 + |u1[b1,b2](u)|L1) ≤ Cψ(b2 − b1)(1 + |b1|+ |b2|).

�

Because every step of the random walk is positive, every trajectory can only stay at most
Cs times in the interval [t, t+ s], with C depending on λ.

Lemma 4.6. For real numbers s, t and a point x in X, we have

R(1[0,s])(t)� max{1, s}. (4.4)

4.4. Residue process. We introduce the residue process, which not only deals with X1 +
· · ·+Xn but also takes into account the next step Xn+1. Let f be a positive bounded Borel
function on R2. For t ∈ R, we define the residue operator by

Ef(t) =
∑
n≥0

∫
f(y, x− t)dλ∗n(x)dλ(y). (4.5)

Let Fuf(v, ξ) =
∫
f(v, u)eiuξdu be the Fourier transform on Ru. Let F be a function on

Rv × Rξ,. Define the infinite norm by

|F |L∞ = sup
v,ξ∈R

|F (v, ξ)|.

Proposition 4.7 (Residue process). If f is a positive bounded continuous function on R2.
Assume that the projection of suppFu(f) onto Rξ is contained in a compact set K, and
|Fu(f)|L∞ , |∂ξFu(f)|L∞ are finite. Then for t > 0 and x ∈ X, we have

Ef(t) =
1

σ

∫ ∞
−t

∫
R+

f(y, u)dλ(y)du+
1

t
OK (|Fu(f)|L∞ + |∂ξFu(f)|L∞) . (4.6)

Proof. For a bounded continuous function f on R2 and u ∈ R, we define an operator Q by

Qf(u) =

∫
f(y, u)dλ(y).
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Then

Ef(t) =
∑
n≥0

∫
Qf(x− t)dλ∗n(x) = R(Qf)(t).

We want to use Proposition 4.2, so we need to verify the hypotheses. The function Qf is
bounded and integrable by the hypotheses on f . Then

Q̂f(ξ) =

∫
Qf(u)eiuξdu =

∫
f(y, u)eiuξdudλ(y) =

∫
Fuf(y, ξ)dλ(y).

Thus Q̂f is also compactly supported on ξ.

Lemma 4.8 (Change of norm). Under the assumptions of Proposition 4.7, we have

|Q̂f |L∞ξ � |Fu(f)|L∞ , |∂ξQ̂f |L∞ξ � |∂ξFuf |L∞ .

Proof. The second inequality follows by the same computation as Q̂f . �

By Proposition 4.2, we have

R(Qf)(t) =
1

σ

∫
X

∫ ∞
−t

Qf(u)du+
1

t
OK

(
|Q̂f |L∞ξ + |∂ξQ̂f |L∞ξ

)
=

1

σ

∫
X

∫ ∞
−t

Qf(u)du+
1

t
OK (|Fu(f)|L∞ + |∂ξFu(f)|L∞) .

The proof is complete. �

4.5. Residue process with cutoff. In this section, we restrict the residue process to the
sequences (Xn+1, Xn, . . . , X1) such that Xn + · · · + X1 < t ≤ Xn+1 + · · · + X1. Let f be a
function on R2. For a C1 function on Rv × Ru, define a norm by

|f |1 = |f |∞ + |∂uf |∞. (4.7)

Define an operator from bounded Borel functions on R2 to functions on R by

ECf(t) =
∑
n≥0

∫
x<t≤y+x

f(y, x− t)dλ(y)dλ∗n(x).

By Lemma 4.12, which will be proved later, this operator is well defined. Let K be a compact
set in R. We denote |K| by the supremum of the distance between a point in K and 0.

Proposition 4.9. Let f be a continuous function on R2 with |f |1 finite. Assume that the
projection of supp f on Rv is contained in a compact set K. For all δ > 0 and t > |K|+ δ,
we have

ECf(t) =

∫
R+

∫ 0

−y
f(y, u)dudλ(y) +OK(δ +Oδ/t)|f |1, (4.8)

where Oδ is the same as in Proposition 4.5.

Remark 4.10. We decompose f into real and imaginary parts, then decompose these two
parts into positive and negative parts. Each part satisfies the hypotheses of Proposition 4.9,
with the support and the Lipschitz norm bounded by the original one. Thus, it is sufficient
to prove this proposition for f positive.

The following lemma connects the operator Ec with E.
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Lemma 4.11. Under the assumptions of Proposition 4.9, let fo(x, v, u) = 1−v≤u<0f(x, v, u).
Then

ECf(t) = Efo(t).

Before proving this proposition, we describe some regularity properties. They are corol-
laries of analogous properties for the renewal process. The idea is to decompose the integral
according to the last letter.

Lemma 4.12. There exists C > 0 such that for all t ∈ R and x ∈ X, we have

EC(1)(t) = E(1−v≤u<0)(t) ≤ C. (4.9)

Proof. By Lemma 4.6, we have∑
n≥0

λ⊗ λ∗n{(y, x)|x− t ∈ [−y, 0], y ≥ 0} =

∫
R(1[−y,0])(t)dλ(y)�

∫
max{1, y}dλ(y).

The proof is complete. �

Using ψδ to regularize these functions, we write fδ(v, u) =
∫
fo(v, u − u1)ψδ(u1)du1 =

ψδ ∗ fo(v, u).

Lemma 4.13. Under the same hypotheses as in Proposition 4.9, we have

E(fδ)(t) =

∫
R+

∫ 0

−y
f(y, u)dudλ(y) +O(δ +

Oδ

t
(|K|+ |K|2))|f |∞.

Proof. We want to verify the conditions in Proposition 4.7 and then use this proposition.
For the Fourier transform, we have

Fufδ = Fu(ψδ ∗ fo) = ψ̂δFufo.
We need to estimate the infinite norm of Fufo. This function equals∫

fo(v, u)eiξudu =

∫ 0

−v
f(v, u)eiξudu.

Lemma 4.14 (Change of norm). Under the same hypotheses as in Proposition 4.9, we have

|Fufδ|L∞ ≤ |K||f |∞, |∂ξFfδ|L∞ ≤ |K|2|f |∞.

Proof. Noting that in the integration |u| ≤ |v|, we get the second inequality by the same
computation. �

The projection of the support of Fuf onto Rξ is contained in [−Cψδ−2, Cψδ−2]. Therefore
by Proposition 4.7, we have

E(fδ)(t) =
1

σ

∫ ∞
−t

∫
R+

fδ(y, u)dλ(y)du+
Oδ

t

(
|f |∞(|K|+ |K|2)

)
.

Then∫ ∞
−t

fδ(v, u)du =

∫ ∞
−t

∫ 0

−v
f(v, u1)ψδ(u− u1)du1du =

∫ 0

−v
f(v, u1)

∫ ∞
−t

ψδ(u− u1)dudu1

=

∫ 0

−v
f(v, u1)du1 −

∫ 0

−v
f(v, u1)

∫ −t−u1
−∞

ψδ(u)dudu1.
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Since t − δ ≥ |K|, we have −t − u1 ≤ −t + v ≤ −δ. By
∫ −δ
−∞ ψδ ≤ Cψδ, this implies that∫∞

−t fδ(v, u)du =
∫ 0

−v fδ(v, u)du(1 +O(δ)). Using Lemma 4.12, we have

|
∫
R+

∫ 0

−y
f(y, u)dudλ(y)| ≤ |f |∞EC(1) = O(|f |∞).

Therefore ∫ ∞
−t

∫
R+

fδ(y, u)dλ(y)du =

∫
R+

∫ 0

−y
f(y, u)dudλ(y) +O(δ|f |∞).

The proof is complete. �

Proof of Proposition 4.9. To simplifier the notation, we normalize f in such a way that
|f |∞ = 1. By Lemma 4.13, we only need to give an estimate of E(|fδ − fo|)(t).

Due to fo(v, u) = 1−v≤u<0(u)f(v, u), elementary computation (Lemma 4.26 in [26]) implies
that (For simplifying notation, we omit the variable v in the following computation)

|fδ − fo|(u) ≤


(|∂uf |∞ + 2)δ u ∈ [−v + δ,−δ],
2 u ∈ [−v − δ,−v + δ] ∪ [−δ, δ],
ψδ ∗ 1[−v,0](u) u ∈ [−v − δ, δ]c.

By definition of |K|, the first term is less than (|∂uf |∞ + 2)δ1[−|K|+δ,−δ]. The third term
equals

1[−∞,−v−δ]∪[δ,∞]ψδ ∗ 1[−v,0](u) = 1[−∞,−v−δ]∪[δ,∞](u)

∫ 0

−v
ψδ(u− u1)du1

= 1[−∞,−v−δ]∪[δ,∞](u)

∫ u+v

u

ψδ(u1)du1.

By definition and the above arguments, we have

E(|fδ − fo|)(t) =
∑
n≥0

∫
|fδ − fo|(y, x− t)dλ∗n(x)dλ(y)

≤
∑
n≥0

∫ (
(|∂uf |∞ + 2)δ1[−|K|,−δ](x− t) + 21[−y−δ,−y+δ]∪[−δ,δ](x− t)

+ 1[−∞,−y−δ]∪[δ,∞](x− t)
∫ x+y−t

x−t
ψδ(u1)du1

)
dλ∗n(x)dλ(y).

By Lemma 4.6, the first term is controlled by (|∂uf |∞+2)δ|K|. The second term is less than
R(1[−δ,δ])(t). Due to Proposition 4.5, it is controlled by Cψδ(1/σ +Oδ(1 + 2δ)/t).

For the third term, we need to change the order of integration. Since x − t > δ or
x − t < −y − δ, we have u1 ≥ x − t > δ or u1 ≤ x + y − t ≤ −δ. We integrate first with
respect to u1, then the third term is less than∫

[−∞,−δ]∪[δ,∞]

ψδ(u1)
∑
n≥0

λ⊗ λ∗n{(y, x)|x+ y ≥ u1 + t ≥ x}du1

=

∫
[−∞,−δ]∪[δ,∞]

ψδ(u1)EC(1)(u1 + t)du1.

By Lemma 4.12, the above quantity is less than C
∫
[−∞,−δ]∪[δ,∞]

ψδ(u1)du1 �ψ δ.
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Therefore, we have

E(|fδ − f |)(t) = O(δ|K|+ Cδ/t)|f |1.

The proof is complete. �
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