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Abstract

Let µ be a Borel probability measure on SL2(R) with a finite exponential moment, and
assume that the subgroup Γµ generated by the support of µ is Zariski dense. Let ν be
the unique µ−stationary measure on P1. We prove that the Fourier coefficients ν̂(k) of ν
converge to 0 as |k| tends to infinity. Our proof relies on a generalized renewal theorem for
the Cartan projection.

1 Introduction

Let µ be a Borel probability measure on SL2(R). The linear action of SL2(R) on R2 induces
an action on P1 = P(R2). For a Borel probability measure ν on P1, we define its convolution
with µ by

µ ∗ ν =

∫
SL2(R)

g∗νdµ(g),

where g∗ν is the pushforward of ν by g. The measure ν is called µ−stationary if µ ∗ ν = ν.
We add the condition that the subgroup Γµ generated by the support of µ is Zariski dense in
SL2(R). In the case of SL2(R), Zariski density is equivalent to unsolvability. When Γµ is Zariski
dense in SL2(R), there is a unique µ−stationary measure (see [Fur63],[GR85]).

This stationary measure is also called the Furstenberg measure. It was first considered by
Furstenberg in the study of the noncommutative law of large numbers. The stationary measure
takes part in the subtle properties of random products of matrices. Please see [Fur63],[GR85]
and [BL85].

In this paper, we are interested in the decay of the Fourier coefficients of stationary measures.
The action of PSO2 = SO2/{±Id} on P1 is transitive and free. We fix the point xo = [1 : 0] in
P1, then identify P1 as the orbit space PSO2xo. As a group, PSO2 is isomorphic to the circle
T ' R/πZ. This is given by the map from T to PSO2,

θ 7→
(

cos θ − sin θ
sin θ cos θ

)
/{±Id}.

So we have a homeomorphism from T to P1, that is θ 7→ [cos θ : sin θ]. We can define the Fourier
coefficients of the stationary measure ν by the following formula

ν̂(k) =

∫
T
e2ikθdν(θ).

We also demand that µ has a finite exponential moment, which means that there exists a constant
ε1 > 0 such that

∫
‖g‖ε1dµ(g) <∞. We will prove

Theorem 1.1. Let µ be a Borel probability measure on SL2(R) with a finite exponential moment,
and assume that the subgroup Γµ is Zariski dense. Then the µ−stationary measure ν is a
Rajchman measure, in other words

ν̂(k)→ 0 as |k| → +∞. (1.1)
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Remark 1.2. Fourier decay of measures on fractal sets and its applications have been studied
in [Kau80],[QR03],[JS16] and [BD17]. Our situation is much general and we introduce a quite
different method.

Being a Rajchman measure is a local property (see [KL87]): Indeed, let ν1 be a Rajchman
measure. If ν2 is absolutely continuous with respect to ν1, then ν2 is also a Rajchman measure.
Conversely, the sum of two Rajchman measures is a Rajchman measure.

In this spirit, we have the following theorem:

Theorem 1.3. Let µ be a Borel probability measure on SL2(R) with a finite exponential moment,
and assume that the subgroup Γµ is Zariski dense. Let ν be the unique µ−stationary measure.
Assume that r is a C1 function on P1 and φ is a C2 function on P1 such that |φ′| ≥ 1/C1 > 0
on the support of r and

‖r‖C1 , ‖φ‖C2 ≤ C1 for some constant C1 > 0.

Then we have ∫
eiξφ(x)r(x)dν(x)→ 0 as |ξ| → ∞, (1.2)

uniformly with respect to C1.

This is the main theorem of this paper. It will be proved in Section 3.

Corollary 1.4. Let µ be a Borel probability measure on SL2(R) with a finite exponential moment,
and assume that the subgroup Γµ is Zariski dense. Let ν be the unique µ−stationary measure.
Then for a C2−diffeomorphism φ on P1, the pushforward of the stationary measure φ∗ν is a
Rajchman measure. In other words

φ̂∗ν(k)→ 0 as |k| → +∞. (1.3)

Theorem 1.1 is a special case of this corollary, where φ is the identity function.

Proof of Corollary 1.4 from Theorem 1.3. By the identification P1 ' T, we may consider all the
objects as living on T. Take a partition of unity of T: let r1, r2 be non negative Lipschitz
functions on T such that r1 + r2 = 1, and the supports of r1, r2 are connected subintervals of T.
For j = 1, 2, we can lift the function φ|supprj to a function φj from supprj to R. Then∫

T
e2ikφ(θ)dν(θ) =

∫
T
(r1(θ) + r2(θ))e

2ikφ(θ)dν(θ) =

∫
T

(
e2ikφ1(θ)r1(θ) + e2ikφ2(θ)r2(θ)

)
dν(θ).

Since φ is a diffeomorphism, the functions φj , rj satisfy the conditions in Theorem 1.3. We use
this theorem twice to conclude.

Let us use another coordinate system on P1. We identify P1 with R ∪ {∞} through the
map ϕ(x) = v1/v2, where x = Rv is a point in P1. Then the action of SL2(R) on P1 reads as

the Möbius action, that is for r ∈ R ∪ {∞} and g =

(
a b
c d

)
in SL2(R), we have gr = ar+b

cr+d .

If the support of a µ−stationary measure ν does not contain [1 : 0], then ϕ∗ν is a stationary
measure on R. From Theorem 1.3, we get

Corollary 1.5. Let µ be a Borel probability measure on SL2(R) with a finite exponential moment,
and assume that the subgroup Γµ is Zariski dense. Let ν be the unique µ−stationary measure.
If the support of ν does not contain [1 : 0], then the µ−stationary measure ϕ∗ν is a Rajchman
measure on R. In other words

ϕ̂∗ν(ξ) =

∫
P1

eiϕ(x)ξdν(x)→ 0 as |ξ| → +∞. (1.4)
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Example 1.6 (Solvable case). For stationary measures on R, consider the following

µ =
1

2
(δg1 + δg2) =

1

2
δ√λ −1/

√
λ

0 1/
√
λ

 +
1

2
δ√λ 1/

√
λ

0 1/
√
λ

,

where λ ∈ (0, 1). Then the actions of g1, g2 are given by g1r = λr − 1, g2r = λr + 1 for r ∈ R.
By definition, a µ−stationary measure ν on R must satisfy the equation

ν = µ ∗ ν =
1

2
((g1)∗ν + (g2)∗ν). (1.5)

Let X0, X1, . . . be i.i.d. random variables such that P(X0 = 1) = P(X0 = −1) = 1/2. Let νλ be
the Bernoulli convolution with parameter λ, defined to be the distribution of

∑
j≥0Xjλ

j. The
measure νλ satisfies (1.5), thus it is a µ-stationary measure on R. In [Erd39], Erdös proved
that when λ−1 is a Pisot number, the Fourier transform of νλ does not converge to zero. In this
example Γµ is solvable, so the Zariski density condition is necessary in the theorem.

Remark 1.7. 1. A similar result for Bernoulli convolutions was obtained in [Kau76]. Kaufman
proved that for Bernoulli convolutions νλ, if λ−1 is not a Pisot number, then it satisfies the same
conclusion as in Corollary 1.3. That is, the pushforward measure φ∗νλ is a Rajchman measure,
where φ is a C1 function on R with φ′ > 0 everywhere.
2.Our result for the measure ν is stronger than being a Rajchman measure. Indeed, for a prob-
ability measure on T, being a Rajchman measure is not invariant by diffeomorphisms. We can
find examples in [Kau84]. A typical example is the standard 1

3−Cantor measure ν, which is not
a Rajchman measure. Let φ be the quadratic map r 7→ r2. Then the pushforward measure φ∗ν
becomes a Rajchman measure with polynomial decay.

One of our motivations for establishing Theorem 1.1 comes from the theory of Bernoulli
convolutions. One of the main questions of this theory is to determine for which parameter
λ, the measure νλ is absolutely continuous with respect to the Lebesgue measure. We have
already mentioned that when λ−1 is a Pisot number, Erdös proved that νλ is not a Rajchman
measure. Thus, in particular, νλ is not absolutely continuous with respect to the Lebesgue
measure. Recently, people have been interested in the same problem for stationary measures for
random walks on SL2(R), see [Bou12],[KLP11]. Our result shows that we cannot generalize the
method of Erdös to the Zariski dense case.

Our other motivation is the same question for the Patterson-Sullivan measure on the limit
set of Fuchsian groups. With Theorem 1.1, it suffices to prove that there exists a probability
measure µ on SL2(R) such that the Patterson-Sullivan measure is µ-stationary, and µ has a
finite exponential moment.

In [Lal89] and [Lal86], Lalley announced the existence of such a µ for Schottky groups. But
Lalley’s proof only works for Schottky semigroups. In [CM07], the authors proved the existence
of such a µ without the moment condition in geometrically finite cases. Combining the methods
of Connell, Muchnik and Lalley, we can prove the existence of such a measure µ for convex
cocompact Fuchsian groups, see [Li]. Therefore, we have

Corollary 1.8. Let Γ be a convex cocompact Fuchsian group. Then the Patterson-Sullivan
measure associated to Γ is a Rajchman measure.

Remark 1.9. Corollary 1.8 also holds if we replace the Patterson-Sullivan measure by any Gibbs
measure. In [Li], we have a similar realization for any Gibbs measure associated to a convex
cocompact Fuchsian group, as it is done by Lalley for any Gibbs measure on the limit set of a
Schottky semigroup in [Lal86].
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Remark 1.10. Using the uniform spectral gap proved in [Nau05], we can prove a polynomial
decay in the convergence to zero of the Fourier coefficients of the µ-stationary measure, when the
support of µ is the set of generators of a Schottky semigroup. In this case, the uniform spectral
gap implies an exponential error term in the renewal theorem, which is the only obstacle for
polynomial decay. Please see Remark 3.10 for more details. We believe it is true for the general
case, but the question is still open.

Remark 1.11. Very recently, Bourgain and Dyatlov [BD17] have proved a polynomial decay
of the Fourier coefficients of the Patterson-Sullivan measure associated to a convex cocompact
Fuchsian group. Their method, which comes from additive combinatorics, is totally different
from ours. They use the Fourier decay bound and the fractal uncertainty principle to obtain an
essential spectral gap for a convex cocompact hyperbolic surface. We can not recover their result
directly as in Remark 1.10. It is possible if we modifier some steps and use the uniform spectral
gap in [Nau05], but we do not pursue in this direction in this work.

On the other hand, in the geometrically finite case, this approach can not work. The finite
exponential moment condition is impossible for noncompact lattice Γ in SL2(R) (see [GLJ93],
[DKN09], [BHM11]). That is, if µ is a measure on Γ with a finite first moment, then the µ-
stationary measure ν is singular with respect to the Lebesgue measure. Maybe the generalization
of the method of [JS16] works in this case, where they proved the Gibbs measures for the Gauss
map which has dimension greater than 1/2 are Rajchman measures.

In this paper, our main idea is to obtain the convergence to zero of Fourier coefficients from
a renewal type result.

The strategy of proof : To simplify, identify P1 with T = R/πZ as before. The starting
point is the relation ν = µ∗ν. Consider a random walk on SL2(R), Xn = b1b2 · · · bn, where bj are
independent random variables with the same law µ. Let Bn be the Borel σ−algebra generated
by X1, . . . , Xn. Let Yn = (Xn)∗ν. They are random variables which take values in the space of
Borel measures on T. By definition, we have

E(Yn+1|Bn) = E((Xn)∗(bn+1)∗ν|Bn) = (Xn)∗E((bn+1)∗ν) = Yn.

Therefore {Yn} is a martingale. For t > 0, we define the stopping time by τ = inf{n ∈
N| log ‖Xn‖ ≥ t}. Then the martingale property implies that

E((Xτ )∗ν) = E(Yτ ) = E(Y0) = ν.

(See Proposition 3.5). Thus for the Fourier coefficients, we have for k ∈ 2Z (since ν̂(k) = ν̂(−k),
we only consider k ≥ 0.)

ν̂(k) =

∫
eikxdν(x) =

∫
eikxdE((Xτ )∗ν)(x) =

∫
E(eikXτx)dν(x).

Recall our circle T is R/πZ. The idea is to find some cancellations in the “trigonometric series”
E(eikXτx). By the Cauchy-Schwarz inequality, it suffices to prove E(eik(Xτx−Xτy))→ 0 as k →∞.

By analogy with the case of classical random walks on R, we expect that there exists a
measurable density function p on R+ such that for a continuous compactly supported function
f on R and t ∈ R,

E(f(log ‖Xτ‖ − t)) −→
∫
R+

f(u)p(u)du as t→ +∞.

Then absolute continuity of the limit distribution would imply the convergence to zero of ν̂(k).
In the actual proof, we do not use this stopping time, but a residue process. Indeed, the

latter is easier to treat with transfer operators and Fourier analysis. We will establish a limit
theorem for the residue process, a generalization of the renewal theorem, in Section 4.
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Notation: When f and g are functions on a set X, we write f(x) . g(x), if there exists
C > 0 independent of x ∈ X such that f(x) ≤ Cg(x), and f(x) = O(g(x)) means |f(x)| . g(x).
We also write f(x, y) = Oy(g(x, y)), which means |f(x, y)| ≤ Cyg(x, y), where Cy is a constant
only depending on y.

We introduce a notation Oexp,ε(s). We write f(ε, s) = Oexp,ε(s) if for ε > 0 and s ∈ R, there
exists a constant ε′ > 0 such that f(ε, s) = O(e−ε

′s), where all the constants only depend on ε.
We write f(s) = Oexp(s), if there exists a uniform constant ε′ such that f(s) = O(e−ε

′s).
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2 Preliminaries on random walks on P1

Fix the norm induced by the standard inner product on R2, ‖v‖ =
√
v21 + v22, which is

SO2(R) invariant. Then define a metric on P1. For two points x = Rv, x′ = Rw, we set

d(x, x′) =
| det(v, w)|
‖v‖‖w‖

.

This is a sine distance. If we write x = R
(

cos θ
sin θ

)
and x′ = R

(
cos θ′

sin θ′

)
, then d(x, x′) =

| sin(θ − θ′)|. From now on, we write G = SL2(R) and X = P1.

Definition 2.1. For g in G and x = Rv in X, define the function σ : G×X → R by σ(g, x) =

log ‖gv‖‖v‖ .

This function σ is a cocycle, because for g, h in G we have

σ(gh, x) = log
‖ghv‖
‖v‖

= log
‖ghv‖
‖hv‖

+ log
‖hv‖
‖v‖

= σ(g, hx) + σ(h, x),

where we use the fact that the action is linear, hx = Rhv.

Lemma 2.2. For g in G and x, x′ in X with x 6= x′, we have

d(gx, gx′)

d(x, x′)
= exp(−σ(g, x)− σ(g, x′)). (2.1)

Proof. As in the definition of the distance d(·, ·), we take two non zero vectors v and w in x and
x′ respectively. By definition,

d(gx, gx′)

d(x, x′)
=

∣∣∣∣det(gv, gw)

det(v, w)

∣∣∣∣ ‖v‖‖w‖‖gv‖‖gw‖
= |det g| ‖v‖‖w‖

‖gv‖‖gw‖
= exp

(
−σ(g, x)− σ(g, x′)

)
.

The proof is complete.

If the point x is near x′, we know from the above equation that the cocycle σ is essentially
the logarithm of the contracting or expanding ratio. Let µ be a Borel probability measure on
G, and let b1, b2, · · · be independent random variables with the same law µ. Then the behavior
of the mean value of the cocycle,

1

n
σ(bnbn−1 · · · b1, x) =

1

n

 n∑
j=1

σ(bj , bj−1 · · · b1x)

 ,

follows an asymptotic law similar to the law of large numbers. In particular,
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Theorem 2.3. [Fur63][GR85] Let µ be a Borel probability measure on G having an exponential
moment. Assume that the subgroup Γµ is Zariski dense. Then for all x in X, random variables
bj defined as above, we have

lim
n→∞

σ(bnbn−1 · · · b1, x)

n
=

∫
G

∫
X
σ(g, y)dµ(g)dν(y) = σµ > 0 a.s µ⊗N

∗
. (2.2)

The constant σµ is called the Lyapunov exponent of µ.

Theorem 2.4 (Hölder regularity). [Gui90][BL85, Chapter 6,Proposition 4.1] Under the as-
sumptions of Theorem 1.1, there exist constants C > 0, α > 0 such that for every x in X and
r > 0 we have

ν(B(x, r)) ≤ Crα. (2.3)

We need the Cartan decomposition of the Lie group G, i.e. G = SO2A
+SO2, where A+ =

{
(
et 0
0 e−t

)
, t ≥ 0}. For g in G, we can write g = kgaglg, where kg, lg are in SO2, and

ag = diag{eκ(g), e−κ(g)} is the diagonal matrix whose diagonal elements are eκ(g) and e−κ(g)

with κ(g) ≥ 0. The positive number κ(g) is called the Cartan projection. Identify the two
spaces X and T ' R/πZ. For an element x in X, associate it to the unique element θ(x) in

R/πZ satisfying x = R
(

cos θ(x)
sin θ(x)

)
. When there is no ambiguity, we will abbreviate θ(x) to x.

Let e1 = R
(

1
0

)
, e2 = R

(
0
1

)
, which mean elements in X. Let rθ =

(
cos θ sin θ
− sin θ cos θ

)
be

a rotation matrix in G. For g in G, choosing a decomposition g = kgaglg, we define xmg =

l−1g e2, x
M
g = kge1. If κ(g) > 0, then xMg , x

m
g are uniquely defined.

Proposition 2.5. For g in G with κ(g) > 0, we have

xmg = xMg−1 . (2.4)

Proof. For a real number a 6= 0, we have(
a 0
0 a−1

)
=

(
0 1
−1 0

)(
a−1 0
0 a

)(
0 −1
1 0

)
= rπ/2

(
a−1 0
0 a

)
r3π/2.

This implies that

g−1 = (kgaglg)
−1 = l−1g a−1g k−1g = l−1g rπ/2agr3π/2k

−1
g .

Therefore xMg−1 = l−1g rπ/2e1 = l−1g e2 = xmg .

Lemma 2.6. For g in G and x = Rv in X, we have

d(xmg , x) ≤ ‖gv‖
‖g‖‖v‖

≤ d(xmg , x) + e−2κ(g). (2.5)

Another form that will be used frequently is

σ(g, x) ≥ κ(g) + log d(xmg , x).

Proof. Suppose that the vector v has norm 1, then

‖gv‖
‖v‖

=
‖kgaglgv‖
‖v‖

=
‖aglgv‖
‖lgv‖

.
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Since d(xmg , x) = d(l−1g e2, x) = d(e2, lgx), it suffices to prove this inequality for diagonal elements,

in other words g = diag{eκ(g), e−κ(g)}. Hence

‖gv‖
‖v‖

=

∣∣∣∣(eκ(g) 0

0 e−κ(g)

)(
v1
v2

)∣∣∣∣ = |e2κ(g)v21 + e−2κ(g)v22|1/2. (2.6)

The equality d(xmg , x) = d(e2, x) = |v1| implies that

‖gv‖
‖g‖‖v‖

≥ |v1| = d(xmg , x),

‖gv‖
‖g‖‖v‖

≤ |v1|+ e−2κ(g) = d(xmg , x) + e−2κ(g).

The proof is complete.

The following lemma is an important tool, which gives a precise approximation of the
cocycle by the Cartan projection and distance.

Lemma 2.7. Let x, x′ be two points in X and let g be in G. Assume that

e−2κ(g) + d(xmg , g
−1x) ≤ 1

2
d(g−1x′, x),

then

|σ(g, x)− κ(g)− log d(g−1x′, x)| ≤ 2
e−2κ(g) + d(xmg , g

−1x′)

d(g−1x′, x)
. (2.7)

Proof. Inequality (2.5) implies that

|eσ(g,x)−κ(g) − d(g−1x′, x)| ≤ max{|d(xmg , x)− d(g−1x′, x)|, |e−2κ(g) + d(xmg , x)− d(g−1x′, x)|}

≤ e−2κ(g) + d(xmg , g
−1x′).

Thus by hypothesis, we have

| exp(σ(g, x)− κ(g))− d(g−1x′, x)| ≤ 1/2d(g−1x′, x).

Since | log(1 + t)| ≤ 2|t| for t > −1/2, we obtain

|σ(g, x)− κ(g)− log d(g−1x′, x)| = log |1 +
exp(σ(g, x)− κ(g))− d(g−1x′, x)

d(g−1x′, x)
|

≤ 2
| exp(σ(g, x)− κ(g))− d(g−1x′, x)|

d(g−1x′, x)
≤ 2

e−2κ(g) + d(xmg , g
−1x′)

d(g−1x′, x)
.

The proof is complete.

In the next proposition we summarize the large deviations principle for the cocycle and for
the Cartan projection,

Proposition 2.8. [BQ16, Thm13.11, Thm 13.17] Under the assumptions of Theorem 1.1, for
every ε > 0 we have

µ∗n{g ∈ G| |σ(g, x)− nσµ| ≥ nε} = Oexp,ε(n), (2.8)

µ∗n{g ∈ G| |κ(g)− nσµ| ≥ nε} = Oexp,ε(n), (2.9)

uniformly for all x in X and n ≥ 1.

Let t be a real number. Write [t] for the integer part of t.
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Corollary 2.9. Under the assumptions of Theorem 1.1, for every ε > 0 we have∑
m≥n

µ∗m{g ∈ G|σ(g, x) ≤ t} = Oexp,ε(n),

∑
m≥n

µ∗m{g ∈ G|κ(g) ≤ t} = Oexp,ε(n),

uniformly for all x in X, t > 0 and n ≥ [ t
σµ−ε ].

By the hypothesis of finite exponential moment and the Chebyshev inequality, we have

Lemma 2.10. Under the assumptions of Theorem 1.1, let Mµ be the finite exponential moment
of µ defined by Mµ =

∫
‖g‖ε1dµ(g). For s > 0, we have

µ{g ∈ G|κ(g) ≥ s} ≤Mµe
−ε1s. (2.10)

Corollary 2.11. Under the assumptions of Theorem 1.1, for every ε > 0 we have∑
m≤n

µ∗m{g ∈ G|σ(g, x) ≥ t} = Oexp,ε(t),∑
m≤n

µ∗m{g ∈ G|κ(g) ≥ t} = Oexp,ε(t),

uniformly for all x in X, t > 0 and n = [ t
σµ+ε

].

Proof. The inequality about the cocycle follows from the one about the Cartan projection,
because κ(g) ≥ σ(g, x). It suffices to prove the second inequality:

• When m ≤ ε2t, where ε2 > 0 is a small constant such that ε2 ≤ ε1/(2 logMµ), from
Chebyshev’s inequality and the subadditivity of the Cartan projection, we have

[ε2t]∑
m=1

µ⊗m{κ(g) ≥ t} ≤
[ε2t]∑
m=1

e−ε1t
∫
eε1κ(g)dµ⊗m(g) ≤

[ε2t]∑
m=1

e−ε1t
∣∣∣∣∫ ‖g‖ε1dµ(g)

∣∣∣∣m
≤ e−ε1tM [ε2t]

µ /(Mµ − 1).

This implies that
∑[ε2t]

m=1 µ
⊗m{κ(g) ≥ t} . e−tε1/2.

• When m ∈ [ε2t, t/(σµ + ε)], we have κ(g) > t ≥ m(σµ + ε). Then use (2.9) to deduce that
the measure of this part is less than

∑
m∈[ε2t,t/(σµ+ε)]Oexp,ε(m) = Oexp,ε(t).

The proof is complete.

The following proposition describes regularity properties of µ∗n, which is a corollary of the
large deviations principle.

Proposition 2.12. [BQ16, Prop14.3] Under the assumptions of Theorem 1.1, for every ε > 0
we have

µ∗n{g ∈ G| d(gx, x′) ≤ e−nε} = Oexp,ε(n), (2.11)

µ∗n{g ∈ G| d(xMg , x) ≤ e−nε} = Oexp,ε(n), (2.12)

µ∗n{g ∈ G| d(xmg , g
−1x) ≥ e−(2σµ−ε)n} = Oexp,ε(n), (2.13)

µ∗n{g ∈ G| d(xMg , gx) ≥ e−(2σµ−ε)n} = Oexp,ε(n), (2.14)

uniformly for all x, x′ in X and n ≥ 1.
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Corollary 2.13. Under the assumptions of Theorem 1.1, for every ε > 0 we have

µ∗n{g ∈ G| d(gx, x′) ≤ e−t} = Oexp,ε(t), (2.15)

uniformly for all x, x′ in X, t > 0 and n ≥ t/ε.
For every ε > 0 we have

µ∗n{g ∈ G| d(xMg , gx) ≥ e−t} = Oexp,ε(t), (2.16)

uniformly for all x in X, t > 0 and n ≥ t/(2σµ − ε).

Proof. There exists an integer nt ≤ n such that εnt < t ≤ ε(nt + 1). By inequality (2.11), we
have µ∗nt{d(gx, x′) ≤ e−εnt} . e−ε

′nt . This implies that

µ∗n{g ∈ G|d(gx, x′) ≤ e−t} =

∫
G
µ∗nt{l ∈ G|d(l(hx), x′) ≤ e−t}dµ∗(n−nt)(h)

≤
∫
G
µ∗nt{l ∈ G|d(l(hx), x′) ≤ e−εnt}dµ∗(n−nt)(h)

. e−ε
′nt . e−ε

′(t/ε−1) . e−ε
′t/ε.

The second inequality follows from the same argument.

The following lemma describes the difference between the cocycle and the Cartan projection.

Lemma 2.14. [BQ16, Lemma 17.8] Under the assumptions of Theorem 1.1, for every ε > 0,
there exist C > 0, ε′ > 0 such that for all n ≥ l > 0 and x in X, there exists a subset Sn,l,x ⊂
G×G, which satisfies

µ∗(n−l) ⊗ µ∗l(Scn,l,x) ≤ Ce−ε′l = Oexp,ε(l),

and for all (g1, g2) ∈ Sn,l,x, we have

|κ(g1g2)− σ(g1, g2x)− κ(g2)| ≤ e−εl.

By the identification X ' T, we can work on T. Since the circle T is a quotient space
of R, it has the induced orientation. For two different points x, y in T, which are not the two
endpoints of a diameter, they divide the circle into two arcs. Call the arc with longer length
the large arc, and the other arc the small arc x a y. For a function φ on T, it can be seen as a
function Φ on R with period π. Define φ′(θ) as the derivative of Φ.

We introduce a sign for two different points x, y in X, where x, y are not the two endpoints
of a diameter. If in the small arc x a y, the point x is the start point in the orientation sense,
then we define sign(x, y) = 1; otherwise, we define sign(x, y) = −1. We have a Newton-Leibniz
formula on the circle

φ(y)− φ(x) = sign(x, y)

∫
xay

φ′(θ)dθ, (2.17)

where dθ is the Lebesgue measure on T induced by the Lebesgue measure on R with total mass
π.

Definition 2.15 (Orientation). Let x, y, z be three points in X. Define

sign(x, y, z) =


0 if any two points coincide,

1 if {x, y, z} is counterclockwise,

−1 otherwise.

Proposition 2.16. Let x, y be two different points in X, and let g be in G such that κ(g) > 2
and d(xmg , x), d(xmg , y) > e−κ(g). Then

sign(gx, gy) = sign(x, y, xmg ). (2.18)
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Proof. With the same argument as in the proof of Lemma 2.6, it suffices to prove the statement
in case g = ag, that is sign(agx, agy) = sign(x, y, e2).

If x′ is a point in X such that d(e2, x
′) > e−κ(g), then

d(agx
′, e1) = d(agx

′, age1) = d(x′, e1) exp(−σ(ag, x
′)− σ(ag, e1)).

By (2.5), we obtain σ(ag, x
′) ≥ κ(g) + log d(e2, x

′) > 0, so

d(agx
′, e1) ≤ exp(−κ(g)) ≤ e−2.

Thus the action of ag on the interval B(e2, e
−κ(g))c is contracting with fixed point e1, and the

image is in the interval B(e1, e
−κ(g)). Especially, e2 is not in B(e1, e

−κ(g)) and the small arc
agx a agy is contained in B(e1, e

−κ(g)). By definition we have

sign(agx, agy) = sign(agx, agy, e2).

Since the action of ag on T preserves the orientation, we have sign(agx, agy, e2) = sign(x, y, e2).
The proof is complete.

3 Decrease of the Fourier transform

Here we give a proof of Theorem 1.3, by admitting the technical results that will be proved
in the following two sections. Recall the notations G = SL2(R) and X = P1.

Definition 3.1. Let Σ =
⋃
n∈NG

×n be the symbol space of all finite sequences with elements
in G. Let µ be a Borel probability measure on G, and let µ⊗n be the product measure on G×n.
Then µ⊗n can be seen as a measure on Σ which is nonzero only on G×n. Let µ̄ be the measure
on Σ defined by µ̄ = δ∅ + µ+ µ⊗2 + · · · .

Let the integer ω(g) be the length of an element g in Σ. Then an element g can be written
as (g1, g2, . . . , gω), where ω is the abbreviation of ω(g).

Let T be the shift map on Σ, defined by Tg = T (g1, g2, . . . , gω) = (g1, g2, . . . , gω−1), when
ω(g) ≥ 2, and Tg = ∅, when ω(g) = 1, 0.

Let L be the left shift map on Σ, defined by Lg = L(g1, g2, . . . , gω) = (g2, . . . , gω−1, gω),
when ω(g) ≥ 2, and Lg = ∅, when ω(g) = 1, 0.

When considering the action of g on X, we write gx = g1 · · · gωx, σ(g, x) = σ(g1 · · · gω, x),
xmg = l−1g1···gωe2, as well as the Cartan projection κ(g) = κ(g1 · · · gω).

Remark 3.2. When using this definition, we may meet the convolution measure µ∗n on G or
the product measure µ⊗n on G×n. Denote F : G×n → G by F (g1, g2, . . . , gn) = g1 · · · gn, then
F∗(µ

⊗n) = µ∗n.

Definition 3.3. For t > 0, define two sets that contain all the sequences which make the value
of the Cartan projection pass t,

M+
t = {g ∈ Σ| κ(Tg) < t ≤ κ(g)}, M−t = {g ∈ Σ| κ(Tg) ≥ t > κ(g)}.

Remark 3.4. In some special cases, for bj in suppµ, the Cartan projection κ(b1b2 · · · bn) is
increasing with respect to n. Then M−t has µ̄ measure zero. Let Xn = b1b2 · · · bn be a random
walk on G, where bj are i.i.d. random variables taking values in G with the same law µ. Let τ
be the stopping time defined by τ = inf{n ∈ N|κ(Xn) ≥ t}. In such special case

µ̄(M+
t ∩G×n) = P(τ = n).

So in the measure sense, M+
t is a set of the steps. That is for µ̄−almost every g in M+

t , it is of
the form g = (b1, b2, . . . , bτ ) = (X1, X

−1
1 X2, . . . , X

−1
τ−1Xτ ) which corresponds to the set of steps

of the trajectory (X1, X2, . . . , Xτ ). But this is not always true for general cases.
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By Corollary 2.9, these two sets M+
t , M

−
t have finite µ̄ measure. We have a property of

M+
t , M

−
t due to the definition of stationary measures. Our proof is a generalization of the

property of the stopping time for martingales.

Proposition 3.5. Under the assumptions of Theorem 1.1, for a real number t > 0 and a
continuous function f on X, we have∫

X
f(x)dν(x) =

∫
X

(∫
g∈M+

t

f(gx)dµ̄(g)−
∫
g∈M−t

f(gx)dµ̄(g)

)
dν(x).

Proof. For a natural number N , let

FN =

∫
X

(∫
g∈M+

t ,ω(g)≤N
f(gx)dµ̄(g)−

∫
g∈M−t ,ω(g)≤N

f(gx)dµ̄(g)

+

∫
ω(g)=N,κ(g)<t

f(gx)dµ̄(g)

)
dν(x).

Then Fo =
∫
X f(x)dν(x). Since all the terms are finite, we have

FN+1 − FN =

∫
X

(∫
g∈M+

t ,ω(g)=N+1
f(gx)dµ̄(g)−

∫
g∈M−t ,ω(g)=N+1

f(gx)dµ̄(g)

+

∫
ω(g)=N+1,κ(g)<t

f(gx)dµ̄(g)−
∫
ω(g)=N,κ(g)<t

f(gx)dµ̄(g)

)
dν(x).

By the relation ν = µ∗ν, the set of integration of the last term becomes {ω(g) = N+1, κ(Tg) <
t}. Compare these sets of integration

{g ∈M+
t , ω(g) = N + 1} ∪ {ω(g) = N + 1, κ(g) < t}

={ω(g) = N + 1, κ(Tg) < t, κ(g) ≥ t} ∪ {ω(g) = N + 1, κ(g) < t}
={ω(g) = N + 1, κ(Tg) ≥ t, κ(g) < t} ∪ {ω(g) = N + 1, κ(Tg) < t}
={g ∈M−t , ω(g) = N + 1} ∪ {ω(g) = N + 1, κ(Tg) < t}.

Therefore, FN+1 = FN = · · · = Fo. Corollary 2.9 and Inequality (2.9) imply that µ̄{g ∈
M±t , ω(g) > N}, µ̄{ω(g) = N,κ(g) < t} → 0, as N →∞. Thus

FN →
∫
X

(∫
g∈M+

t

f(gx)dµ̄(g)−
∫
g∈M−t

f(gx)dµ̄(g)

)
dν(x) as N →∞,

which completes the proof.

With these preparations, we start to prove Theorem 1.3, by admitting Lemma 5.2, Corollary
5.5 and Proposition 4.28.

Proof of Theorem 1.3. We will prove that there exist constants ε0 > 0, C0 > 0 such that for
every s > 0, the Fourier transform

∫
eiξφ(θ)r(θ)dν(θ) is less than C0e

−ε0s for all |ξ| large enough
depending on s.

Fix a constant ε3 ≤ 1/10. Write t = (log |ξ| − s)/2, and take |ξ| large enough such that
t > 10s.
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Step 1: Let eξ(x) be the function eiξφ(x)r(x). Using Proposition 3.5 and the Cauchy-
Schwarz inequality, we have∣∣∣∣∫

X
eξ(x)dν(x)

∣∣∣∣ =

∣∣∣∣∣
∫
g∈M+

t

∫
X
eξ(gx)dν(x)dµ̄(g)−

∫
g∈M−t

∫
X
eξ(gx)dν(x)dµ̄(g)

∣∣∣∣∣
≤ µ̄(M+

t )1/2

(∫
M+
t

∣∣∣∣∫
X
eξ(gx)dν(x)

∣∣∣∣2 dµ̄(g)

)1/2

+ µ̄(M−t )1/2

(∫
M−t

∣∣∣∣∫
X
eξ(gx)dν(x)

∣∣∣∣2 dµ̄(g)

)1/2

.

By Lemma 5.2 and Proposition 3.5, µ̄(M+
t ), µ̄(M−t ) are uniformly bounded with t. Change

the order of integration, then

∣∣∣ ̂φ∗(rdν)(ξ)
∣∣∣ . (∫

X2

∫
M+
t

eiξ(φ(gx)−φ(gy))r(gx)r(gy)dµ̄(g)dν(x)dν(y)

)1/2

+

(∫
X2

∫
M−t

eiξ(φ(gx)−φ(gy))r(gx)r(gy)dµ̄(g)dν(x)dν(y)

)1/2

. (3.1)

From now on, we only consider M+
t . The set M−t has similar properties, and the needed changes

will be discussed in remarks, which appear at the end of each section.
Step 2: The main approximation, which will be proved in Section 5, replaces the distance

φ(gx)−φ(gy) with φ′e−2κ(g)d(x, y). The intuition here is that in a large set, whose complement
has exponentially small measure, the behavior is nice.

To apply replacement, some regularity conditions on x, y and g are needed. Define a subset
of M+

t for x, y in X by

M+
t (x, y) = {g ∈M+

t ||κ(g)− κ(Tg)| < ε3s, d(xmg , g
−1x) < e−t, d(g−1x, x), d(g−1x, y) > 2e−ε3s}.

(3.2)

For fixed x, y, set

Λ0(g) = eiξ(φ(gx)−φ(gy))r(gx)r(gy),

Λ1(g) = eiξsign(g
−1x,x,y)φ′(gx)d(x,y) exp(−2κ(g))/(d(g−1x,x)d(g−1x,y))r(gx)2.

We give a control of the error, which appears in the replacement.

Proposition 3.6. Assume that t > 2s. We have an exponential decay for all g in M+
t (x, y).

That is

|Λ0(g)− Λ1(g)| = Oexp(s). (3.3)

This property will be proved in Section 5. We want to use some smooth cutoffs to regularize
the function Λ1(g, x, y). Let ρ be a smooth function on R such that ρ|[−1,1] = 1, ρ takes values
in [0, 1], suppρ ⊂ [−2, 2] and |ρ′| ≤ 2. Let

Λ2(g) = Λ1(g)(1−ρ(d(g−1x, x)eε3s))(1−ρ(d(g−1x, y)eε3s))ρ(
κ(g)− κ(Tg)

ε3s
)ρ(

κ(Tg)− t
2ε3s

). (3.4)

When d(g−1x, x) < e−ε3s or d(g−1x, y) < e−ε3s, the function Λ2 will be 0. With fixed x, y,
sign(g−1x, x, y) is a function of g−1x, and the discontinuity is at x and y. Hence the discontinuity
of sign(g−1x, x, y) is removed in Λ2.
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If g ∈ M+
t (x, y), it follows from definition that |κ(Tg) − t| ≤ |κ(g) − κ(Tg)| ≤ ε3s. Then

Λ2 = Λ1. Since t > 10s, using Corollary 5.5, Lemma 5.2 and (3.3), we get∣∣∣∣∣
∫
M+
t

(Λ0 − Λ2)dµ̄(g)

∣∣∣∣∣ ≤ µ̄(M+
t −M

+
t (x, y)) +

∣∣∣∣∣
∫
M+
t (x,y)

(Λ0 − Λ2)dµ̄(g)

∣∣∣∣∣
= µ̄(M+

t −M
+
t (x, y)) +

∣∣∣∣∣
∫
M+
t (x,y)

(Λ0 − Λ1)dµ̄(g)

∣∣∣∣∣ = Oexp(s).

(3.5)

Step 3: Introduce the residue process for the Cartan projection. This is inspired by the
stopping time. For the stopping time, the existence of the limit distribution of the residual
waiting time was proved in [Kes74], but in that paper we do not have a rate of convergence,
which is necessary in our method. Here we use the transfer operator to get a uniform rate
of convergence. It is difficult to treat the stopping time with transfer operators, because the
operator will no longer be continuous. However, the residue process, which will be introduced
here, can be routinely analyzed by the transfer operator. What’s more, we will get the limit
distribution of gx and g−1y simultaneously, which is important to us.

We generalize the inverse action on Σ, letting g−1 = (g1, . . . , gω)−1 = (g−1ω , . . . , g−11 ) for g in
Σ. For a subset M of Σ, set ι(M) = {g−1|g ∈M}. Let µ̌ be the pushforward of µ by the inverse
action. Let t be a positive number. Consider the limit of the following quantity as t→∞∑

n≥0

∫
κ(g)<t≤κ(hg)

f((hg)−1x′, hgx, κ(hg)− κ(g), κ(g)− t)dµ(h)dµ∗n(g),

where x, x′ are points in X and f is a smooth, compactly supported function on X2 ×R2. Our
result is similar to renewal theory. By Proposition 4.28, when t tends to infinity, the limit is∫

X2

∫
G

∫ 0

−σ(h,y)
f(y′, hy, σ(h, y), u)dudµ(g)dν(y)dν̌(y′),

where ν̌ is the stationary measure of µ̌ and the integral
∫ 0
−σ(h,y1) = 0 if σ(h, y1) < 0.

Since (Tg)−1 = L(g−1) and κ(g−1) = κ(g), we can define

N+
t = ι(M+

t ) = {g ∈ Σ|κ(Lg) < t ≤ κ(g)}. (3.6)

Therefore ∫
M+
t

Λ2(g)dµ̄(g) =

∫
N+
t

Λ2(g
−1)d¯̌µ(g).

Recall that x, y, ρ are fixed. For x1, x2 in X and v, u in R, define

λ(x1, x2) = d(x, y)essign(ξ)sign(x, y, x2)φ
′(x1)/(d(x2, x)d(x2, y)),

ϕ(x1, x2, v, u) = r(x1)
2 × (1− ρ(d(x2, x)eε3s))(1− ρ(d(x2, y)eε3s))ρ(

v

ε3s
)ρ(

u

2ε3s
).

By the relation ξ = sign(ξ)e2t+s, regroup the terms and rewrite the function

Λ2(g
−1) = eiλ(g

−1x,gx) exp(−2(κ(g)−t))ϕ(g−1x, gx, κ(g)− κ(Lg), κ(Lg)− t). (3.7)

Note that the function λ is not continuous, but the function ϕ will remove the discontinuity as
we have discussed in Step 2. In the language of the residue process, let f be the function on
X2 × R2 defined by

f(x1, x2, v, u) = eiλ(x1,x2) exp(−2(u+v))ϕ(x1, x2, v, u). (3.8)
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Thus the function Λ2(g
−1) can be written as

Λ2(g
−1) = f(g−1x, gx, κ(g)− κ(Lg), κ(Lg)− t).

By Proposition 4.28, for δ > 0, t > 2(|K|+ δ) (where K is the projection of suppf onto Rv), we
have ∫

M+
t

Λ2dµ̄(g) =

∫
N+
t

fd¯̌µ(g)

=

∫
X2

∫
G

∫ 0

−σ(h,x2)
f(x1, hx2, σ(h, x2), u)dudµ(g)dν(x2)dν̌(x1) +OK(δ +Oδ/t)|f |Lip.

(3.9)

Here |f |Lip is the Lipschitz norm defined by

|f |Lip = |f |∞ + sup
(x1,x2,v,u)6=(x′1,x

′
2,v
′,u′)

|f(x1, x2, v, u)− f(x′1, x
′
2, v
′, u′)|

d(x1, x′1) + d(x2, x′2) + |v − v′|+ |u− u′|
.

Lemma 3.7. There exist constants δ0(s) and t(δ, s) such that if δ < δ0(s) and t > t(δ, s), then

OK(δ +Oδ/t)|f |Lip ≤ e−s. (3.10)

Proof. By the definition of ρ and f , the support of f is in the compact set X2 × [−4ε3s, 4ε3s]
2.

The size of K, the projection of suppf onto Rv, is bounded by 8ε3s. The definition of ρ implies
that f is locally Lipschitz. Together with the fact that f is compactly supported, we conclude
that |f |Lip is controlled by e2s independently of x, y. Take δ small enough according to s, then
take t large enough according to δ and s. We get the inequality.

Step 4: For the major term in (3.9), use the following lemma.

Lemma 3.8. For b1 < b2 and λ nonzero, we have

|
∫ b2

b1

eiλ exp(−u)du| ≤ 2(eb1 + eb2)

|λ|
. (3.11)

Proof. Integration by parts gives∫ b2

b1

eiλ exp(−u)du =

∫ b2

b1

∂u(eiλ exp(−u))

−iλe−u
du =

eiλ exp(−u)

−iλe−u
∣∣∣b2
b1

+

∫ b2

b1

eiλ exp(−u)∂u

(
1

−iλe−u

)
du.

This implies that

|
∫ b2

b1

eiλ exp(−u)du| ≤

∣∣∣∣∣eiλ exp(−u)λe−u

∣∣∣b2
b1

∣∣∣∣∣+

∫ b2

b1

∂u(
eu

|λ|
)du ≤ 2(eb1 + eb2)

|λ|
.

The proof is complete.

When d(x, y) > e−ε3s, due to the definition of ρ( v
ε3s

), the major term only integrates on
h, x2 such that |σ(h, x2)| ≤ 2ε3s. The inequality |u| ≤ |σ(h, x2)| ≤ 2ε3s implies that ρ( u

2ε3s
) = 1.

By the hypotheses on φ, when r(x1) 6= 0, we have |φ′(x1)| ≥ 1/C1 > 0. Therefore

|λ(x1, hx2)| = |d(x, y)essign(ξ)sign(x, y, hx2)φ
′(x1)/(d(hx2, x)d(hx2, y))| ≥ e(1−ε3s)/C1.

We use Lemma 3.8 to obtain

|
∫ 0

−σ(h,x2)
fdu| ≤ |r|2∞

∣∣∣∣∣
∫ σ(h,x2)

0
eiλ exp(−2u)du

∣∣∣∣∣ ≤ C1|r|2∞
1 + e2ε3s

e1−ε3s
≤ |r|2∞2e(3ε3−1)sC1.
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Combined with (3.9), they imply that
∫
M+
t
Λ2dµ̄(g) = Oexp(s). When d(x, y) ≤ e−ε3s, the Hölder

regularity of stationary measure (2.3) implies that∫
X×X

1d(x,y)≤e−ε3sdν(x)dν(y) ≤
∫
X
ν(B(x, e−ε3s))dν(x) = Oexp(s).

Finally we obtain∫
X2

∫
M+
t

Λ2(x, y)dµ̄(g)dν(x)dν(y)

≤
∫
X2

1d(x,y)>e−ε3s

∫
M+
t

Λ2(x, y)dµ̄(g)dν(x)dν(y)

+

∫
X2

1d(x,y)≤e−ε3s

∫
M+
t

Λ2(x, y)dµ̄(g)dν(x)dν(y) ≤ Oexp(s)(1 + µ̄(M+
t )).

By Lemma 5.2, the measure µ̄(M+
t ) is uniformly bounded. By using (3.1) and (3.5), the proof

is complete.

Remark 3.9 (Minus case). For M−t , we have another version of Lemma 5.2, Corollary 5.5 and

Proposition 4.28. The integral |
∫ 0
−σ(h,y1) fdu| is replaced by |

∫ −σ(h,y1)
0 fdu|.

Remark 3.10. When s is large and ξ is of size eCs, all the error terms have polynomial decay
except the one from Proposition 4.28. As we have mentioned in Remark 1.10, a uniform spectral
gap makes Proposition 4.28 effective. Then we will have a polynomial decay.

The uniformity with respect to ‖r‖C1 , ‖φ‖C2 and 1/ infsuppr |φ′| is due to the fact that all
the terms depend only on these norms and the measure µ.

4 Renewal theory

We define a renewal operator R as follows. For a positive bounded Borel function f on
X × R, a point x in X and a real number t, we set

Rf(x, t) =
+∞∑
n=0

∫
G
f(gx, σ(g, x)− t)dµ∗n(g).

Because of the positivity of f , this sum is well defined. In [Kes74], Kesten proved a renewal the-
orem for Markov chains, which is valid in our case [GLP16]. But a uniform speed of convergence
is needed. We will give a proof using the complex transfer operator, which fulfills our demands.
The treatment of the transfer operator will be along the path in [Boy16]. The renewal theorem
will give us an equidistribution phenomenon, where the key input is non-arithmeticity.

First we give a proof of renewal theorem for good functions. Then we prove some regularity
properties and independence properties for the renewal process. These will imply a version of
residue process. Finally, we prove a theorem for the Cartan projection from a similar theorem
for the cocycle.

Fix the constant ε = σµ/4 in this section. Keep in mind that the assumptions of Theorem
1.1 are always satisfied.

4.1 Complex transfer operators

We introduce the complex transfer operator P (z). Let Hγ(X) be the space of γ-Hölder

functions on X, a Banach space with the norm |f |γ = |f |∞+mγ(f) = |f |∞+ supx 6=y
|f(x)−f(y)|
d(x,y)γ .

For f in Hγ(X) and a complex number z, define

P (z)f(x) =

∫
G
e−zσ(g,x)f(gx)dµ(g).
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The main properties of P (z) are summarized as follows

Proposition 4.1. [Boy16, Theorem 4.1, Lemma 4.7] For any γ > 0 small enough, there exists
η > 0 such that when |<z| < η, the transfer operator P (z) is a bounded operator on Hγ(X) and
depends analytically on z. Moreover there exists an analytic operator U(z) on a neighborhood of
0 ≤ <z < η such that the following equality holds for 0 ≤ <z < η

(I − P (z))−1 =
1

σµz
N0 + U(z), (4.1)

where N0 is the operator defined by N0f =
∫
fdν

Remark 4.2. In Proposition 4.1, the non-arithmeticity is crucial to prove that (I − P (z))−1

has only one pole in the imaginary axis, which is 0. The non-arithmeticity follows from Zariski
density. See for instance [Ben00] and [Dal00].

The assumption of Theorem 4.1 in [Boy16] are complicated. It is verified, in the proof of
theorem 1.4, page 8 [Boy16], that our condition on µ is enough to apply Theorem 4.1. The idea
is due to Guivarch and Le Page.

Proposition 4.3. [Boy16, Lemma 4.4] For any γ > 0 small enough, there exist η > 0, 0 < ρ <
1, C > 0 such that when 0 ≤ <z < η, for a natural number n and a γ-Hölder function f , we
have

|P (z)nf |∞ ≤ (Cρn)<z|f |∞ (4.2)

Remark 4.4. For further usage, we need a bound on γ. Let ε, ε′(ε) be the two constants in
(2.11), that is µ∗n{d(gx, x′) ≤ e−εs} ≤ Ce−ε

′s, and ε1 the constant in exponential moment.

Choose a small γ such that γ ≤ 1
4 max{ σµ/4

ε′(σµ/4)
, ε1}.

4.2 Renewal theory for regular functions

We start to compute the renewal operator. A result for the renewal operator for “good”
functions will be proved. Let f be a function on X × R. Define a norm by |f |L∞Hγ =
supξ∈R |f(x, ξ)|Hγ , which is the supremum of the Hölder norm of f(·, ξ). Define another norm

|f |W 1,∞Hγ = |f |L∞Hγ + |∂ξf |L∞Hγ . Write the Fourier transform f̂(x, ξ) =
∫
eiξuf(x, u)du.

Proposition 4.5. Let f be a positive bounded continuous function in L1(X ×R, ν ⊗ Leb) such
that its Fourier transform satisfies f̂ ∈ L∞Hγ and ∂ξ f̂ ∈ L∞Hγ. Assume that the projection of

suppf̂ onto R is in a compact set K. Then for all t > 0 and x in X, we have

Rf(x, t) =
1

σµ

∫ ∞
−t

f(y, u)dudν(y) +
1

t
OK(|f̂ |W 1,∞Hγ ).

Proof. Combine the following two lemmas.

Lemma 4.6. Under the same assumption as in Proposition 4.5, we have

Rf(x, t) =
1

σµ

∫ ∞
t

f(y, u)dudν(y) +
1

2π

∫
eitξU(iξ)f̂(x, ξ)dξ.

Proof. Introduce a local notation: for (x, t) in X × R and s ≥ 0, write

Bsf(x, t) =

∫
G
e−sσ(g,x)f(gx, σ(g, x) + t)dµ(g).
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When s = 0, we abbreviate the notation B0 to B. We want to prove the following equality,∑
n≥0

Bn(f)(x, t) = lim
s→0+

∑
n≥0

Bn
s (f)(x, t). (4.3)

By definition, one has

Bn
s (f)(x, t) =

∫
G
e−sσ(g,x)f(gx, σ(g, x) + t)dµ∗n(g)

=

∫
G
e−sσ(g,x)(1σ(g,x)>0 + 1σ(g,x)≤0)f(gx, σ(g, x) + t)dµ∗n(g).

• The part 1σ(g,x)>0, since f ≥ 0, use the monotone convergence theorem. When s → 0+

then∑
n≥0

∫
G
e−sσ(g,x)1σ(g,x)>0f(gx, σ(g, x) + t)dµ∗n(g)→

∑
n≥0

∫
G
1σ(g,x)>0f(gx, σ(g, x) + t)dµ∗n(g).

• For the part 1σ(g,x)≤0, take s in [0, η/2]. Proposition 4.3 implies that∫
G
e−sσ(g,x)1σ(g,x)≤0f(gx, σ(g, x)+t)dµ∗n(g) ≤

∫
G
e−ησ(g,x)/2|f |∞dµ∗n(g) ≤ (Cρn)η/2|f |∞.

Since
∑

n≥0 ρ
nη/2 is finite, take e−ησ(g,x)/2|f |∞ as the dominant function. Then use the

dominated convergence theorem to conclude.

This proves equation (4.3).
Using the inverse Fourier transform, we have∑

n≥0
Bn
s (f)(x, t) =

∑
n≥0

∫
G
e−sσ(g,x)f(gx, σ(g, x) + t)dµ∗n(g)

=
∑
n≥0

∫
G
e−sσ(g,x)

1

2π

∫
R
eiξ(σ(g,x)+t)f̂(gx, ξ)dξdµ∗n(g).

(4.4)

Since f̂(x, ξ) has compact support, |f̂(x, ξ)| ≤ |f̂(x, ξ)|L∞ξ Hγ and |P (s)n1| ≤ Cρsn for s in [0, η/2]

(Proposition 4.3), we have∑
n≥0

∫
G
e−sσ(g,x)

∫
R
|f̂(gx, ξ)|dξdµ∗n(g) ≤ Cf

∑
n≥0

∫
G
e−sσ(g,x)dµ∗n(g) = Cf

∑
n≥0

P (s)n(1) <∞,

which implies that the right hand side of (4.4) is absolutely convergent. Consequently, we can use
the Fubini theorem to change the order of the integration. By the hypothesis f̂(x, ξ) ∈ Hγ(X),
Proposition 4.1 implies that∑

n≥0
Bn
s (f)(x, t) =

1

2π

∫
R

∑
n≥0

∫
G
e(−s+iξ)σ(g,x)f̂(gx, ξ)dµ∗n(g)eitξdξ

=
1

2π

∫
R

∑
n≥0

Pn(s− iξ)f̂(x, ξ)eitξdξ

=
1

2π

∫
R

(1− P (s− iξ))−1f̂(x, ξ)eitξdξ

=
1

2π

∫
R

(
N0

σµ(s− iξ)
+ U(s− iξ))f̂(x, ξ)eitξdξ.

17



Since 1
s−iξ =

∫ +∞
0 e−(s−iξ)udu for s > 0, together with the property f̂ ∈ L1(R), we have

1

2π

∫
R

N0

σµ(s− iξ)
f̂(x, ξ)eitξdξ =

1

2π

1

σµ

∫
X

∫
R

f̂(y, ξ)

s− iξ
eitξdξdν(y)

=
1

σµ

∫
X

∫ ∞
0

f(y, u+ t)e−sududν(y).

When s → 0+, since f is integrable with respect to the product measure ν ⊗ Leb, by mono-
tone convergence theorem, the limit is 1

σµ

∫
X

∫∞
t f(y, u)dudν(y). Since f̂(x, ξ) is compactly

supported, we have

lim
s→0+

∫
R
U(−s+ iξ)f̂(x, ξ)eitξdξ =

∫
R
U(iξ)f̂(x, ξ)eitξdξ.

The proof is complete.

Lemma 4.7. Under the same assumption as in Proposition 4.5, we have

|
∫
e−itξU(iξ)f̂(x, ξ)dξ| ≤ 1

t
OK

(
|f̂ |L∞Hγ + |∂ξ f̂ |L∞Hγ

)
.

Proof. Use the fact that f̂(x, ξ) is compactly supported and |f̂(x, ξ)|Hγ , |∂ξ f̂(x, ξ)|Hγ < ∞.
Then applying integration by parts, we have∫

e−itξU(iξ)f̂(x, ξ)dξ =
1

it

∫
e−itξ∂ξ(U(iξ)f̂(x, ξ))dξ

=
1

it

∫
e−itξ

(
∂ξ(U(iξ))f̂(x, ξ) + U(iξ)∂ξ f̂(x, ξ)

)
dξ.

Since the operator norms of U(iξ) and ∂ξU(iξ) are uniformly bounded on compact regions, the
result follows.

4.3 Regularity properties of renewal measures

We have two principles in this subsection. Principle 1: Let f be a bounded Borel function
supported in X× [0, a]. When we take the renewal sum outside of the interval It = [ t

σµ+ε
, t+a
σµ−ε ],∑

n∈N−It

∫
G
f(gx, σ(g, x)− t)dµ∗n(g) =

∑
n∈N−It

∫
G
f(gx, σ(g, x)− t)1[0,a](σ(g, x)− t)dµ∗n(g),

this sum decays exponentially with t. This is given by the large deviations principle (Corollary
2.9, 2.11). For n in the interval It, if some property is valid for each n with an exponential error
of n, we sum up. Since the length of this interval is comparable with t, this property is also
valid for the renewal sum with an exponential error of t.

Principle 2: The other is independence. By Proposition 4.5, the limit distribution of
(σ(g, x) − t, gx) is 1

σµ
ν ⊗ Leb, which is a product measure. That roughly means the following:

As in Remark 3.4, let Xn = bn · · · b1 be a random walk on G. Let F = F1×F2 where F1, F2 are
Borel subsets of X, R respectively. Then∑

n≥0
P{(Xnx, σ(Xn, x)− t) ∈ F1 × F2} →

1

σµ
ν(F1)⊗ Leb(F2) as t→ +∞.

More concretely, we could expect that R(1F1×F2)(x, t) is almost 1
σµ
ν(F1) ⊗ Leb(F2) when t is

large.
We want to use convolution to smooth out the target function. There exists an even function

ψ such that it is a probability density, and the Fourier transform ψ̂ is compactly supported. Let

ψδ(t) = 1
δ2
ψ( t

δ2
). Then

∫ δ
−δ ψδ(t)dt =

∫ 1/δ
−1/δ ψ(t)dt > 1− Cδ.
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Proposition 4.8. Let δ ≤ 1/3 and b2 ≥ b1. If b2− b1 ≥ 2δ, then for x in X and t > 0, we have

R(1[b1,b2])(x, t) . (b2 − b1)(1/σµ + Cδ(1 + |b2|+ |b1|)/t). (4.5)

If 0 ≤ b2 − b1 < 2δ, then for x in X and t > 0, we have

R(1[b1,b2])(x, t) . δ(1/σµ + Cδ(1 + |b1|)/t). (4.6)

Proof. When b2 − b1 ≥ 2δ, if u is in [b1, b2], then [u− b2, u− b1] contains at least one of [0, δ] or
[−δ, 0]. Therefore

ψδ ∗ 1[b1,b2](u) =

∫ b2

b1

ψδ(u− v)dv ≥
∫ δ

0
ψ(v)dv ≥ (1− δ)/2.

Then
1[b1,b2] ≤ 3ψδ ∗ 1[b1,b2]. (4.7)

It is sufficient to bound R(ψδ ∗ 1[b1,b2]). Proposition 4.5 implies that

R(ψδ ∗ 1[b1,b2]) =
1

σµ

∫ ∞
−t

ψδ ∗ 1[b1,b2] +
Oδ
t
|ψ̂δ1̂[b1,b2]|W 1,∞Hγ .

The first term is less than
∫
ψδ ∗ 1[b1,b2] = (b2 − b1). For the second term, we have

|ψ̂δ1̂[b1,b2]|W 1,∞Hγ = |ψ̂δ1̂[b1,b2]|L∞Hγ + |∂ξψ̂δ1̂[b1,b2]|L∞Hγ

= |ψ̂δ1̂[b1,b2]|L∞ + |∂ξψ̂δ1̂[b1,b2]|L∞
≤ C ′δ(|1[b1,b2](u)|L1 + |u1[b1,b2](u)|L1) ≤ C ′δ(b2 − b1)(1 + |b1|+ |b2|).

When b2 − b1 ∈ [0, 2δ], the renewal sum R(1[b1,b2]) is bounded by R(1[b1,b1+2δ]). Then use
the previous case.

In Proposition 4.5, since we do not have a good control of the spectral radius of the operator
U(iξ) for large |ξ|, the estimates are effective only for large t, which means that when t is small
the error term will be out of control. The following lemma combines the transfer operator and
the large deviations principle to give a uniform estimate.

Lemma 4.9. For real numbers s, t and a point x in X, we have

R(1[0,s])(x, t) . max{1, s}. (4.8)

Proof. We can suppose that s > 1. If not, then R(1[0,s])(x, t) ≤ R(1[0,1])(x, t). When t ≥ s, this
is a direct corollary of Proposition 4.8. Fixing δ = 1/3, we get

1 + |b1|+ |b2|
t

≤ 1 + s

t
≤ 2.

Then R(1[0,s])(x, t) . s(1/σµ + 2Cδ).
When t < s, let m = [max{0, (t+ s)/(σµ − ε)}] + 1. By Corollary 2.9, we have

R(1[0,s])(x, t) ≤ R(1[0,2s])(x, 0) ≤
∑
n≤m

µ⊗n{σ(g, x) ≤ 2s}+
∑
n>m

µ⊗n{σ(g, x) ≤ 2s}

. m+ e−ε
′m . s.

The proof is complete.
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In the renewal theorem, the limits of the scalar part σ(g, x) and the angle part gx are
independent. Using this spirit, we give the following lemma, which quantifies this independence.
In the proof, when t is large enough, using Proposition 4.5, the remainder term will be small.
When t is small, we have another estimate from the regularity of the convolution measure µ⊗n.

Proposition 4.10. For s > 0, a > 0, t > 5s, and x, x′ in X, we have

R(1B(x′,e−s)×[0,a])(x, t) = (1 + a)2Oexp(s). (4.9)

Proof. Decompose the region of t into two parts:

• When 5s < t ≤ e2γs, by Corollaries 2.9, 2.11, it suffices to consider n ∈ [t/(σµ + ε), (t +
a)/(σµ − ε)]. Due to the hypothesis in this situation s ≤ t/5 = εt/(σµ + ε) ≤ εn, we can
use Corollary 2.13 to obtain

µ∗n{d(gx, x′) ≤ e−s} . e−ε
′s/ε.

Then the measure of this part, summing up the above inequality over all n ∈ [t/(σµ +
ε), (t+a)/(σµ− ε)], is less than C(t+a)e−ε

′s/ε . (1 +a)e−γs (here we use the Remark 4.4,
4γ ≤ ε/ε′).

• When t ≥ e2γs, we take f = 1[0,a]$(x) where $(x) is a function on X such that
$B(x′,e−s) = 1, supp$ ⊂ B(x′, 2e−s) and |$|γ ≤ eγs. As in the proof of Proposition
4.8, we use ψδ to regularize this function. By (4.7), we have

3R(ψδ ∗ f)(x, t) ≥ R(1B(x′,e−s)×[0,a])(x, t).

Proposition 4.5 implies

R(ψδ ∗ f) =
1

σµ

∫
X

∫ ∞
−t

ψδ ∗ f(x, u)dudν(x) +
Cδ
t

(|ψ̂δ ∗ f |W 1,∞Hγ ).

Since ψ̂δ ∗ f(x, ξ) = ψ̂δ(ξ)1̂[0,a](ξ)$(x), the two functions are independent. We can use
the same estimate as in the proof of Proposition 4.8. So the rest term is less than
C ′δ(1 + a)2eγs/t. The major term, due to the regularity of the stationary measure (2.3), is
controlled by ae−αs/σµ. The result follows from the hypothesis t > e2γs.

The proof is complete.

We also need the independence of σ(g, x) and g−1xo, where x, xo are two points in X. For
proving this property, we pass through the Cartan projection, because the order of products in
the Cartan projection can be reversed. The following proof uses Lemma 2.14, which is a central
tool to prove a renewal type theorem for the Cartan projection from a renewal type theorem for
the cocycle.

Let f be a positive bounded Borel function on X × R. For (x, t) ∈ X × R, we define

RP (f)(x, t) =
∑
n≥0

∫
G
f(gx, κ(g)− t)dµ∗n(g).

Lemma 4.11. For s > 0, a > 0, t > 10s, and x, x′ in X, we have

RP (1B(x′,e−s)×[0,a])(x, t) = (1 + a)2Oexp(s). (4.10)
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Proof. Due to Corollary 2.9 and Corollary 2.11, the sum of the integral of n ≤ t/(σµ + ε) and
n ≥ (t+ a)/(σµ − ε) is exponentially small.

If suffices to consider n in the interval It = [t/(σµ + ε), (t + a)/(σµ − ε)]. Fix l = [ε4t/σµ]
with ε4 = 1/10. By Lemma 2.9, there exists Sn,l,x ⊂ G×n such that µ⊗nScn,l,x = Oexp(l), and for
(gn, . . . , g1) in Sn,l,x, letting g = (gn, . . . , gl+1) and j = (gl, . . . , g1), we have

|κ(gj)− σ(g, jx)− κ(j)| ≤ e−εl ≤ 1.

Thus

µ⊗n{κ(gj) ∈ [t, t+ a], d(gjx, x′) ≤ e−s}
≤µ⊗n{Scn,l,x}+ µ⊗n{gj ∈ Sn,l,x|κ(gj) ∈ [t, t+ a], d(gjx, x′) ≤ e−s}
≤Oexp(l) + µ⊗n{σ(g, jx) + κ(j) ∈ [t− 1, t+ a+ 1], d(gjx, x′) ≤ e−s}.

Therefore summing over n and integrating first with respect to g, we get∑
n∈It

µ⊗n{κ(gj) ∈ [t, t+ a], d(gjx, x′) ≤ e−s}

≤
∑
n∈It

µ⊗n{σ(g, jx) + κ(j) ∈ [t− 1, t+ a+ 1], d(gjx, x′) ≤ e−s}+ tOexp(l)

≤tOexp(l) +

∫
R(1B(x′,e−s)×[−1,a+1])(jx, t− κ(j))dµ∗l(j).

(4.11)

Hence, it is sufficient to bound
∫
R(1B(x′,e−s)×[−1,a+1])(jx, t−κ(j))dµ∗l(j). Let Gl,ε = {j ∈

G×l|κ(j) ≤ l(σµ + ε)}. By the large deviations principle (Corollary 2.11), we have µ∗lGcl,ε =
Oexp(l).

• For j ∈ Gl,ε, we have t − κ(j) ≥ t − l(σµ + ε) = t − ε4(σµ + ε)t/σµ > t/2 ≥ 5s. Hence,
Proposition 4.10 implies that

R(1B(x′,e−s)×[−1,a+1])(jx, t− κ(j)) . (1 + a)2Oexp(s).

• For j ∈ Gcl,ε, Lemma 4.9 implies that

R(1B(x′,e−s)×[−1,a+1])(jx, t− κ(j)) . (1 + a).

Combining the above two inequalities, we have∫
R(1B(x′,e−s)×[−1,a+1])(jx, t− κ(j))dµ∗l(j) . (1 + a)2Oexp(s) +Oexp(l)(1 + a). (4.12)

The proof is complete.

There is a byproduct of the above lemma. When the function f does not depend on X,
abbreviate RP (f)(x, t) by RP (f)(t).

Lemma 4.12. For real numbers s, t, we have

RP (1[0,s])(t) . max{1, s2}. (4.13)

Remark 4.13. Here the term s2 is not optimal. With some extra work, it can be improved to
s.
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Proof. Suppose that s ≥ 1. If not, then Rp(1[0,s])(x, t) ≤ Rp(1[0,1])(x, t). When t ≥ 10, apply
Lemma 4.11 with a = s, e−s = e−1, x′ = xj , j ∈ J , where J is a finite set such that ∪j∈JB(xj , e

−1)
covers X. So we get RP (1[0,s])(t) . s2.

When t < 10 ≤ 10s, let m = [max{0, (t+ s)/(σµ − ε)}] + 1. By Corollary 2.11, we have

RP (1[0,s])(t) ≤ RP (1[0,2s])(0) ≤
∑
n≤m

µ∗n{κ(g) ≤ t+ s}+
∑
n>m

µ∗n{κ(g) ≤ t+ s}

. m+ e−ε
′m . s.

The proof is complete.

Now we are going to prove the independence of σ(g, x) and g−1x. Recall that µ̌ is the
pushforward of µ by the inverse action. Let f be a positive bounded Borel function on X × R.
For (xo, x, t) ∈ X2 × R, we define

RI(f)(xo, x, t) =
∑
n≥0

∫
G
f(g−1xo, σ(g, x)− t)dµ∗n(g).

Proposition 4.14. For s > 0, a > 0, t > max{10s, 10}, and x, x′, xo in X, we have

RI(1B(x′,e−s)×[0,a])(xo, x, t) = (1 + a)2Oexp(s). (4.14)

Proof. Due to Corollary 2.9 and Corollary 2.11, the sums of the integral of n ≤ t/(σµ + ε) and
n ≥ (t+ a)/(σµ − ε) is exponentially small.

It suffices to consider n in the interval It = [t/(σµ + ε), (t+ a)/(σµ − ε)]. Let

Gε,n = {g ∈ G×n|κ(g) ≥ n(σµ − ε/2), d(g−1xo, x) > e−εn, d(g−1xo, x
m
g ) ≤ e−(2σµ−ε)n}.

By inequalities (2.9), (2.11) and (2.13), we have µ⊗nGε,n ≥ 1− Oexp(n). Since t > 10, for n in
It, we have n ≥ t/(σµ + ε) ≥ 10/(σµ + ε). For g ∈ Gε,n, we have

e−2κ(g) + d(xmg , g
−1xo)

d(g−1xo, x)
≤ 2e−(2σµ−ε)n

e−εn
= 2e−(2σµ−2ε)n ≤ 2e−20(σµ−ε)/(σµ+ε) ≤ 1/2.

Using Lemma 2.7 with g ∈ Gε,n, we have

|σ(g, x)− κ(g)− log d(g−1xo, x)| ≤ 2
e−2κ(g) + d(xmg , g

−1xo)

d(g−1xo, x)
≤ 4e−(2σµ−2ε)n ≤ 1.

Therefore,

µ⊗n{σ(g, x) ∈ [t, t+ a], d(g−1xo, x
′) ≤ e−s} ≤ Oexp(n)+

µ⊗n{κ(g) ∈ [t− 1, t+ a+ 1]− log d(g−1xo, x), d(g−1xo, x
′) ≤ e−s}.

Summing up over It and using the definition of µ̌, we have∑
n∈It

µ⊗n{σ(g, x) ∈ [t, t+ a], d(g−1xo, x
′) ≤ e−s}

≤Oexp(t) +
∑
n≥0

µ⊗n{κ(g) ∈ [t− 1, t+ a+ 1]− log d(g−1xo, x), d(g−1xo, x
′) ≤ e−s}

=Oexp(t) +
∑
n≥0

µ̌⊗n{κ(g) ∈ [t− 1, t+ a+ 1]− log d(gxo, x), d(gxo, x
′) ≤ e−s}.

(4.15)

Hence, it is sufficient to bound RP (1u+log d(y,x)∈[−1,a+1],d(y,x′)≤e−s)(xo, t), where we use
(y, u) to denote the variables, and the measure µ is replaced by µ̌. For simplicity, we use
the same notation RP . Cutting the region along {y ∈ X| log d(y, x) ≤ −t1} and the subsets
{y ∈ X| log d(y, x) ∈ [−(k + 1)s,−ks]} for 0 ≤ k < t1/s, where t1 = (t− 1)/9.
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• When k = 0, since t− 1 > 10s, we can use Lemma 4.11 to obtain

RP (1u+log d(y,x)∈[−1,a+1],d(y,x′)≤e−s,d(y,x)≥e−s)(xo, t)

≤RP (1d(y,x′)≤e−s,u∈[−1,s+a+1])(xo, t) . (1 + s+ a)2e−ε
′s.

• When 0 < k < t1/s, since t+ ks− 1 > 10ks, again we use Lemma 4.11

RP (1u+log d(y,x)∈[−1,a+1],d(y,x′)≤e−s,d(y,x)∈[e−(k+1)s,e−ks])(xo, t)

≤RP (1d(y,x)≤e−ks,u∈[−1+ks,a+1+(k+1)s])(xo, t) . (1 + s+ a)2e−ε
′ks.

• In the last case, log d(y, x) ≤ −t1, we have

RP (1u+log d(y,x)∈[−1,a+1],d(y,x′)≤e−s,d(y,x)≤e−t1 )(xo, t)

≤RP (1u+log d(y,x)∈[−1,a+1],d(y,x)≤e−t1 )(xo, t).

This is similar to the original quantity RP (1u+log d(y,x)∈[−1,a+1],d(y,x′)≤e−s)(xo, t). The dif-
ference is that here t1 is comparable with t, which is crucial in the following argument.
Return to the definition of RP , and discuss on the length n = ω(g).

– When n > (t + a + 1)/(σµ − 2ε), by inequality (2.9) and (2.11), we have µ̌⊗n{g ∈
G×n|κ(g) − nσµ ≤ nε, d(gxo, x) ≥ e−εn} > 1 − Ce−ε′n. By hypothesis n > (t + a +
1)/(σµ − 2ε) , the element in this set satisfies

κ(g) ≥ (σµ − ε)n > t+ a+ 1 + nε ≥ t+ a+ 1− log d(gxo, x).

Thus µ̌⊗n{g ∈ G×n|κ(g) ∈ [t− 1, t+ a+ 1]− log d(gxo, x)} = Oexp(n). Summing over
n, we see that the measure of this part is Oexp(t).

– When n ∈ [(t − 1)/(σµ + ε), (t + a + 1)/(σµ − 2ε)], since εn ≥ ε(t − 1)/(σµ + ε) >
(t− 1)/9 = t1, Corollary 2.13 implies that

µ̌⊗n{g ∈ G×n|d(gxo, x) ≤ e−t1} = Oexp(t1) = Oexp(t).

– When n ≤ (t− 1)/(σµ + ε), Corollary 2.11 implies the measure of this part is Oexp(t).

Therefore we have

RP (1u+log d(y,x)∈[−1,a+1],d(y,x)≤e−t1 )(xo, t) = Oexp(t1).

Combining the three cases, we have finished the proof.

4.4 Residue process

We introduce the residue process, which not only deals with σ(gngn−1 · · · g1, x) but also
takes into account the next step σ(gn+1, gngn−1 · · · g1x). Let f be a positive bounded Borel
function on X × R2. For (x, t) ∈ X × R, we define the residue operator by

Ef(x, t) =
∑
n≥0

∫
f(hgx, σ(h, gx), σ(g, x)− t)dµ∗n(g)dµ(h). (4.16)

Let Fuf(x, v, ξ) =
∫
f(x, v, u)eiuξdu be the Fourier transform on Ru. Let F be a function on

X × Rv × Rξ,. Define a partial Lipschitz norm by

|F |L∞Lip = sup
ξ∈R
|F (ξ)|Lip = sup

ξ∈R

(
|F (ξ)|∞ + sup

(x,v),(x′,v′)∈X×R

|F (x, v, ξ)− F (x′, v′, ξ)|
d(x, x′) + |v − v′|

)
.
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Proposition 4.15 (Residue process). If f is a positive bounded continuous function on X ×
R2. Assume that the projection of suppFu(f) onto Rξ is contained in a compact set K, and
|Fu(f)|L∞Lip, |∂ξFu(f)|L∞Lip are finite. Then for t > 0 and x ∈ X, we have

Ef(x, t) =
1

σµ

∫ ∞
−t

∫
G

∫
X
f(hy, σ(h, y), u)dν(y)dµ(h)du

+
1

t
OK (|Fu(f)|L∞Lip + |∂ξFu(f)|L∞Lip) .

(4.17)

Proof. For a bounded continuous function f on X×R2 and (x, u) ∈ X×R, we define an operator
Q by

Qf(x, u) =

∫
G
f(hx, σ(h, x), u)dµ(h).

Then

Ef(x, t) =
∑
n≥0

∫
Qf(gx, σ(g, x)− t)dµ∗n(g) = R(Qf)(x, t).

We want to use Proposition 4.5, so we need to verify the hypotheses. The function Qf is
bounded and integrable by the hypotheses on f . Then

Q̂f(x, ξ) =

∫
Qf(x, u)eiuξdu =

∫
f(hx, σ(h, x), u)eiuξdudµ(h)

=

∫
G
Fuf(hx, σ(h, x), ξ)dµ(h).

Thus Q̂f is also compactly supported on ξ. It remains to estimate the Hölder norm of Q̂f . Since
Fuf(x, v, ξ) is Lipschitz on (x, v) ∈ X × R, this implies that

|Q̂f(x, ξ)−Q̂f(y, ξ)| ≤
∫
G
|Fuf(hx, σ(h, x), ξ)−Fuf(hy, σ(h, y), ξ)|dµ(h)

≤
∫
G
|Fuf |L∞Lip(d(hx, hy) + |σ(h, x)− σ(h, y)|)dµ(h).

Using Lipschitz property of the distance and the cocycle, and finite exponential moment, we
have

|Q̂f(x, ξ)−Q̂f(y, ξ)| ≤ |Fuf |L∞Lipd(x, y)γ
∫
G

(1 + κ(h))‖h‖2γdµ(h) . |Fuf |L∞Lipd(x, y)γ ,

where we use the Remark 4.4 that 4γ ≤ ε1. Therefore

Lemma 4.16 (Change of norm). Under the assumptions of Proposition 4.15, we have

|Q̂f |L∞ξ Hγ . |Fu(f)|L∞Lip, |∂ξQ̂f |L∞ξ Hγ . |∂ξFuf |L∞Lip.

Proof. The second inequality follows by the same computation.

By Proposition 4.5, we have

R(Qf)(x, t) =
1

σµ

∫
X

∫ ∞
−t

Qf(y, u)dudν(y) +
1

t
OK

(
|Q̂f |L∞ξ Hγ + |∂ξQ̂f |L∞ξ Hγ

)
=

1

σµ

∫
X

∫ ∞
−t

Qf(y, u)dudν(y) +
1

t
OK (|Fu(f)|L∞Lip + |∂ξFu(f)|L∞Lip) .

The proof is complete.
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4.5 Residue process with cutoff

In this section, we restrict the residue process to the sequences (gn+1, gn, . . . , g1) such that
σ(gn · · · g1, x) < t ≤ σ(gn+1 · · · g1, x). Let f be a function on X × R2. Define a Lipschitz norm
by

|f |Lip = |f |∞ + sup
(x,v,u)6=(x′,v′,u′)

|f(x, v, u)− f(x′, v′, u′)|
d(x, x′) + |v − v′|+ |u− u′|

. (4.18)

Define an operator from bounded Borel functions on X × R2 to functions on X × R by

ECf(x, t) =
∑
n≥0

∫
σ(g,x)<t≤σ(hg,x)

f(hgx, σ(h, gx), σ(g, x)− t)dµ(h)dµ∗n(g).

By Lemma 4.21, which will be proved later, this operator is well defined. Let K be a compact
set in R. We denote |K| by the supremum of the distance between a point in K and 0.

Proposition 4.17. Let f be a continuous function on X × R2 with |f |Lip finite. Assume that
the projection of suppf on Rv is contained in a compact set K. For all δ > 0, t > |K|+ δ and
x ∈ X, we have

ECf(x, t) =

∫
X

∫
G

∫ 0

−σ(h,y)
f(hy, σ(h, y), u)dudµ(g)dν(y) +OK(δ +Oδ/t)|f |Lip, (4.19)

where OK does not depend on δ, f, t, x, and the integral
∫ 0
−σ(h,y) = 0 if σ(h, y) < 0.

Remark 4.18. We decompose f into real and imaginary parts, then decompose these two parts
into positive and negative parts. Each part satisfies the hypotheses of Proposition 4.17, with the
support and the Lipschitz norm bounded by the original one. Thus, it is sufficient to prove this
proposition for f positive.

The following lemma connects the operator Ec with E.

Lemma 4.19. Under the assumptions of Proposition 4.17, let fo(x, v, u) = 1−v≤u<0f(x, v, u).
Then

ECf(x, t) = Efo(x, t).

Before proving this proposition, we describe some regularity and independence properties.
They are corollaries of analogous properties for the renewal process. The idea is to decompose
the integral according to the last letter. The following lemma means that the residue process
with cutoff has exponential decay with respect to the last jump.

Lemma 4.20. For t, s in R and x in X, we have

EC(1v≥s)(x, t) = E(1−v≤u<0,v≥s)(x, t) = Oexp(s). (4.20)

Proof. By Lemma 4.9 and finiteness of the exponential moment, we have∑
n≥0

µ⊗ µ∗n{(h, g) ∈ G2|σ(g, x)− t ∈ [−σ(h, gx), 0], σ(h, gx) ≥ s}

≤
∑
n≥0

µ⊗ µ∗n{(h, g) ∈ G2|σ(g, x)− t ∈ [−κ(h), 0], κ(h) ≥ s}

=

∫
κ(h)>s

R(1[−κ(h),0])(x, t)dµ(h) .
∫
κ(h)>s

max{1, κ(h)}dµ(h) = Oexp(s).

The proof is complete.
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Lemma 4.21. There exists C > 0 such that for all t ∈ R and x ∈ X, we have

EC(1)(x, t) = E(1−v≤u<0)(x, t) ≤ C. (4.21)

This is a special case of Lemma 4.20. The following lemma quantifies the independence of
the scalar part and the angle part. Abbreviate 1d(y,x′)≤e−s,−v≤u<0(y, v, u) to 1d(y,x′)≤e−s,−v≤u<0,
and others are similar.

Lemma 4.22. For t > 5s > 0 and x, x′ in X, we have

EC(1d(y,x′)≤e−s)(x, t) = E(1d(y,x′)≤e−s,−v≤u<0)(x, t) = Oexp(s). (4.22)

Proof. Since
1−v≤u<0 ≤ 1d(y,x′)≤e−s,−v≤u<0,v≥s + 1d(y,x′)≤e−s,0≤u+v<s,

we have

E(1d(y,x′)≤e−s,−v≤u<0)(x, t) ≤ E(1−v≤u<0,v≥s)(x, t) + E(1d(y,x′)≤e−s,0≤u+v<s)(x, t).

By definition, we have

E(1d(y,x′)≤e−s,0≤u+v<s)(x, t) =
∑
n≥0

∫
1d(hgx,x′)≤e−s,σ(h,gx)+σ(g,x)−t∈[0,s]dµ

∗n(g)dµ(h)

=
∑
n≥1

∫
1d(gx,x′)≤e−s,σ(g,x)−t∈[0,s]dµ

∗n(g) = R(1B(x′,e−s),[0,s])(x, t).

By Lemma 4.20 and Proposition 4.10, the result follows.

Lemma 4.23. For s > 0, t > max{10s, 10} and x, xo, x
′ ∈ X, we have∑

n≥0
µ⊗ µ∗n{(h, g) ∈ G×G|σ(hg, x) ≥ t, σ(g, x) < t, d((hg)−1xo, x

′) ≤ e−s} = Oexp(s).

By the same argument as in the proof of Lemma 4.22, we only need to replace Proposition
4.10 by Proposition 4.14. The difference between this lemma and Lemma 4.22 is the angle part
(hg)−1x.

Using ψδ to regularize these functions, we write fδ(x, v, u) =
∫
fo(x, v, u− u1)ψδ(u1)du1 =

ψδ ∗ fo(x, v, u).

Lemma 4.24. Under the same hypotheses as in Proposition 4.17, we have

E(fδ)(x, t) =

∫
X

∫
G

∫ 0

−σ(h,y)
f(hy, σ(h, y), u)dudµ(g)dν(y) +OK(δ +

Oδ
t

)|f |Lip.

Proof. We want to verify the conditions in Proposition 4.15 and then use this proposition.
The integrable condition is valid because |

∫
Ru fδ| = |

∫
Ru fo(x, v, u)du| = |

∫ 0
−v f(x, v, u)du| ≤

|K||f |∞. For the Fourier transform, we have

Fufδ = Fu(ψδ ∗ fo) = ψ̂δFufo.

We need to estimate the Lipschitz norm of Fufo. This function equals∫
fo(x, v, u)eiξudu =

∫ 0

−v
f(x, v, u)eiξudu.

Taking (x, v) 6= (x′, v′), we have

|
∫ 0

−v
f(x, v, u)eiξudu−

∫ 0

−v′
f(x′, v′, u)eiξudu|

≤|
∫ 0

−v
(f(x, v, u)− f(x′, v′, u))eiξudu|+ |v′ − v||f |∞ . |K||f |Lip(d(x, x′) + |v − v′|).

Then we have
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Lemma 4.25 (Change of norm). Under the same hypotheses as in Proposition 4.17, we have

|Fufδ|L∞Lip ≤ |K||f |Lip, |∂ξFfδ|L∞Lip ≤ |K|2|f |Lip.

Proof. Noting that in the integration |u| ≤ |v|, we get the second inequality by the same com-
putation.

Therefore by Proposition 4.15, we have

E(fδ)(x, t) =
1

σµ

∫ ∞
−t

∫
G

∫
X
fδ(hy, σ(h, y), u)dν(y)dµ(h)du+

Oδ
t

(
|f |Lip(|K|+ |K|2)

)
.

Then∫ ∞
−t

fδ(x, v, u)du =

∫ ∞
−t

∫ 0

−v
f(x, v, u1)ψδ(u− u1)du1du =

∫ 0

−v
f(x, v, u1)

∫ ∞
−t

ψδ(u− u1)dudu1

=

∫ 0

−v
f(x, v, u1)du1 −

∫ 0

−v
f(x, v, u1)

∫ −t−u1
−∞

ψδ(u)dudu1.

Since t − δ ≥ |K|, we have −t − u1 ≤ −t + v ≤ −δ. By
∫ −δ
−∞ ψδ ≤ Cψδ, this implies that∫∞

−t fδ(x, v, u)du =
∫ 0
−v fδ(x, v, u)du(1 +O(δ)). Using Lemma 4.21, we have

|
∫
X

∫
G

∫ 0

−σ(h,y)
f(hy, σ(h, y), u)dudµ(g)dν(y)| ≤ |f |∞EC(1) = O(|f |∞).

Therefore ∫ ∞
−t

∫
G

∫
X
fδ(hy, σ(h, y), u)dν(y)dµ(h)du

=

∫
X

∫
G

∫ 0

−σ(h,y)
f(hy, σ(h, y), u)dudµ(g)dν(y) +O(δ|f |∞).

The proof is complete.

Next lemma gives the difference between a function and its regularization.

Lemma 4.26. Let ϕ0(u) = 1[b1,b2](u)ϕ(u), where b2 > b1 and |ϕ′|L∞ < ∞, |ϕ|L∞ ≤ 1. Then
we have

|ψδ ∗ ϕ0(u)− ϕ0(u)| ≤


(|ϕ′|∞ + 2)δ u ∈ [b1 + δ, b2 − δ],
2 u ∈ [b1 − δ, b1 + δ] ∪ [b2 − δ, b2 + δ],

ψδ ∗ 1[b1,b2](u) u ∈ [b1 − δ, b2 + δ]c.

(4.23)

Proof. We will prove this inequality in each interval.

• When u is in [b1 + δ, b2 − δ], we have

|(ψδ ∗ ϕ0 − ϕ0)(u)| =
∣∣∣∣∫ ψδ(t)(ϕ0(u− t)− ϕ0(u))dt

∣∣∣∣ ≤ ∫ δ

−δ
ψδ(t)|ϕ0(u− t)− ϕ0(u)|dt+ 2δ.

When |t| ≤ δ, we have u − t ∈ [b1, b2]. Since |ϕ′0(u)| ≤ |ϕ′|∞ for u ∈ [b1, b2], this implies
that ∫ δ

−δ
ψδ(t)|ϕ0(u− t)− ϕ0(u)|dt ≤

∫ δ

−δ
ψδ(t)|t||ϕ′|∞dt ≤ δ|ϕ|∞.

• When u ∈ [b1− δ, b1 + δ]∪ [b2− δ, b2 + δ], we use the trivial bound |ψδ ∗ϕ0(u)−ϕ0(u)| ≤ 2.
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• When u ∈ (−∞, b1 − δ] ∪ [b2 + δ,∞], we have ϕ0(u) = 0, then |ψδ ∗ ϕ0| ≤ |ψδ ∗ 1[b1,b2]|.

Thus collecting all together, we get the inequality.

Proof of Proposition 4.17. To simplifier the notation, we normalize f in such a way that |f |∞ =
1. By Lemma 4.24, we only need to give an estimate of E(|fδ − fo|)(x, t).

Since fo(x, v, u) = 1−v≤u<0(u)f(x, v, u) with (x, v) fixed, Lemma 4.26 implies that

|fδ − fo|(u) ≤


(|∂uf |∞ + 2)δ u ∈ [−v + δ,−δ],
2 u ∈ [−v − δ,−v + δ] ∪ [−δ, δ],
ψδ ∗ 1[−v,0](u) u ∈ [−v − δ, δ]c.

By definition of |K|, the first term is less than (|∂uf |∞+ 2)δ1[−|K|+δ,−δ]. The third term equals

1[−∞,−v−δ]∪[δ,∞]ψδ ∗ 1[−v,0](u) = 1[−∞,−v−δ]∪[δ,∞](u)

∫ 0

−v
ψδ(u− u1)du1

= 1[−∞,−v−δ]∪[δ,∞](u)

∫ u+v

u
ψδ(u1)du1.

By definition and the above arguments, we have

E(|fδ − fo|)(x, t) =
∑
n≥0

∫
|fδ − fo|(hgx, σ(h, gx), σ(g, x)− t)dµ∗n(g)dµ(h)

≤
∑
n≥0

∫ (
(|∂uf |∞ + 2)δ1[−|K|,−δ](σ(g, x)− t)+

+ 21[−σ(h,gx)−δ,−σ(h,gx)+δ]∪[−δ,δ](σ(g, x)− t)

+ 1[−∞,−σ(h,gx)−δ]∪[δ,∞](σ(g, x)− t)
∫ σ(hg,x)−t

σ(g,x)−t
ψδ(u1)du1

)
dµ∗n(g)dµ(h).

By Lemma 4.9, the first term is controlled by (|∂uf |∞ + 2)δ|K|. The second term is less than
R(1[−δ,δ])(x, t). Due to Proposition 4.8, it is controlled by 6δ(1/σµ + Cδ(1 + 2δ)/t).

For the third term, we need to change the order of integration. Since σ(g, x) − t > δ or
σ(g, x) − t < −σ(h, gx) − δ, we have u1 ≥ σ(g, x) − t > δ or u1 ≤ σ(hg, x) − t = σ(h, gx) +
σ(g, x)− t ≤ −δ. We integrate first with respect to u1, then the third term is less than∫

[−∞,−δ]∪[δ,∞]
ψδ(u1)

∑
n≥0

µ⊗ µ∗n{(h, g)|σ(hg, x) ≥ u1 + t, σ(g, x) ≤ u1 + t}du1.

By Lemma 4.21, the above quantity is less than C
∫
[−∞,−δ]∪[δ,∞] ψδ(u1)du1 . δ.

Therefore, we have

E(|fδ − f |)(x, t) = OK(δ + Cδ/t)|f |Lip.

The proof is complete.

Remark 4.27 (Minus case). The lemmas in this part concern plus and minus. The another
version we need is for E−C (f)(x, t) = E(10<u≤−vf)(x, t), the proofs are exactly the same.

Proposition* 4.17. Under the assumptions of Proposition 4.17, we have

E−C (f)(x, t) =

∫
X

∫
G

∫ −σ(h,y)
0

f(hy, σ(h, y), u)dudµ(g)dν(y) +OK(δ +Oδ/t)|f |Lip.
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4.6 Residue process for the Cartan Projection

We consider the residue process for the cutoff of a function f on X2×R2, where the cocycle
is replaced by the Cartan projection. We will give a limit not only with gx, but also with g−1x′.

As in the previous subsection, we can define a similar Lipschitz norm on the space of
Lipschitz functions on X2×R2, using the same name |f |Lip. Define the operator from bounded
Borel functions on X2 × R2 to functions on X2 × R by

EP f(x′, x, t) =
∑
n≥0

∫
κ(g)<t≤κ(hg)

f((hg)−1x′, hgx, κ(hg)− κ(g), κ(g)− t)dµ(h)dµ∗n(g).

Proposition 4.28. Let f be a continuous function on X2×R2 with |f |Lip finite. Assume that the
projection of suppf on Rv is contained in a compact set K. For all δ > 0, t > max{2(|K|+δ), 20}
and x′, x in X, we have

EP f(x′, x, t) =

∫
X2

∫
G

∫ 0

−σ(h,y)
f(y′, hy, σ(h, y), u)dudµ(g)dν(y)dν̌(y′) +OK(δ +Oδ/t)|f |Lip,

(4.24)

where OK does not depend on δ, f, t, x, x′, the integral
∫ 0
−σ(h,y) = 0 if σ(h, y) < 0.

Proof. We introduce local notations here: for an element g in G and a continuous function
f on X2 × R2, define gf(x′, x, v, u) = f(g−1x′, x, v, u). Let fx′(x, v, u) = f(x′, x, v, u), which
emphasizes that the first coordinate is fixed. Let l = [ε5t/σµ], where ε5 < 1/10. We use the
decomposition

h = gn+1, g = (gn, . . . , gl+1), j = (gl, . . . , g1).

Recall that N+
t =

⋃
n≥0{(gn+1, gn, . . . , g1)|κ(gn+1 · · · g1) ≥ t > κ(gn · · · g1)}. Let N+

t (n) =

N+
t ∩G×(n+1) = {(gn+1, . . . , g1)|κ(gj) ≤ t, κ(hgj) > t}. Let

Tn(x, t) = {(gn+1, . . . , g1) ∈ G×(n+1)|σ(hg, jx) > t− κ(j), σ(g, jx) ≤ t− κ(j)},

and let Gε,l = {(gl, . . . , g1)||κ(j)− lσµ| ≤ lε, d(xMgl···g1 , x
′) ≥ e−εl}, as well as

Tn,ε = {(gn+1, . . . , g1) ∈ Tn|(gl, . . . , g1) ∈ Gε,l}.

Step 1: Due to Corollary 2.9 and Corollary 2.11, the sum of the integrals
∫
N+
t (n) for n ranging

from t/(σµ + ε)− 1 to t/(σµ − ε) is exponentially small in t. In other words, we have

|
[t/(σµ−ε)]∑

n=[t/(σµ+ε)]

∫
N+
t (n)

f((hgj)−1x′, hgjx, κ(hgj)− κ(gj), κ(gj)− t)dµ⊗(n+1)

−EP f(x′, x, t)| = Oexp(t)|f |∞

(4.25)

The following lemma replaces the Cartan projection with the cocycle.

Lemma 4.29. Under the same assumption as in Proposition 4.28, we have

|
[t/(σµ−ε)]∑

n=[t/(σµ+ε)]

∫
N+
t (n)

f((hgj)−1x′, hgjx, κ(hgj)− κ(gj), κ(gj)− t)dµ⊗(n+1)(hgj)

−
[t/(σµ−ε)]∑

n=[t/(σµ+ε)]

∫
Tn,ε

jf((hg)−1x′, hgjx, σ(h, gjx), σ(g, jx)− (t− κ(j)))dµ⊗(n+1)(hgj)|

= O(δ +Oδ/t)|f |Lip.

(4.26)
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This lemma will be proved later. We will decompose Tn,ε(x, t) to apply the residue process
for the cocycle. The space Tn,ε(x, t) can be seen as a fibered space over Gε,l. When the first
l elements are fixed, the elements (h, g) such that hgj = (gn+1, . . . , g1) ∈ Tn,ε(x, t), are the
admitted elements in the residue process with cutoff, whose start point is jx and time is t−κ(j).
Since (n− l)(σµ + ε) ≤ t− κ(j) and (n− l)(σµ − ε) ≥ t− κ(j), we can apply Principle 1 to this
residue process. Integrating over Gε,l implies that

|
[t/(σµ−ε)]∑

n=[t/(σµ+ε)]

∫
Tn,ε

jf((hg)−1x′, hgjx, σ(h, gjx), σ(g, jx)− (t− κ(j)))dµ⊗(n+1)(hgj)

−
∫
Gε,l

EIjf(x′, jx, t− κ(j))dµ⊗l(j)| = Oexp(t)|f |∞.

(4.27)

where

EIf(x′, x, t) =
∑
n≥0

∫
σ(g,x)<t≤σ(hg,x)

f((hg)−1x′, hgx, σ(h, gx), σ(g, x)− t)dµ(h)dµ∗n(g).

The following inequality, whose proof relies on Lemma 4.23, will give a major term.

Lemma 4.30. Under the same assumption as in Proposition 4.28, for all j ∈ Gε,l, we have

|ECfj−1x′(jx, t− κ(j))− EIjf(x′, jx, t− κ(j))| ≤ |f |LipOexp(l), (4.28)

This lemma will be proved later. Integrating (4.28) over Gε,l, we obtain

|
∫
Gε,l

ECfj−1x′(jx, t− κ(j))− EIjf(x′, jx, t− κ(j))dµ⊗l(j)| ≤ |f |LipOexp(t). (4.29)

By (4.25)(4.26)(4.27), it suffices to compute the major term∫
Gε,l

ECfj−1x′(jx, t− κ(j))dµ⊗(j).

Step 2: Recall that N0, P (0) are the two operators defined by N0ϕ =
∫
ϕdν, P (0)ϕ(x) =∫

ϕ(gx)dν(g), where ϕ is a function in Hγ(X). We have another property of transfer operators
[BQ16, Lemma 11.18]: The spectral radius of P = P (0) restricted to kerN0 is less than 1, which
means that there exist ρ < 1, C > 0 such that for every function ϕ in Hγ(X), we have

|Pnϕ−
∫
ϕdν|∞ ≤ Cρn|ϕ|γ .

Thus by µ⊗lGε,l = Oexp(l), we have

|
∫
Gε,l

ϕ(j−1x)dµ⊗l −
∫
ϕdν̌| = |

∫
G×l

ϕ(j−1x)dµ⊗l(j)−
∫
ϕdν̌|+Oexp(l)|ϕ|∞ = Oexp(l)|ϕ|Lip.

(4.30)
By the definition of |·|Lip on X×R2, the function fj−1x′(x, v, u) has a finite |·|Lip value. Together
with t− κ(j) ≥ t/2 ≥ |K|+ δ, Proposition 4.17 implies that∫

Gε,l

ECfj−1x′(jx, t− κ(j))dµ⊗(j)

=

∫
Gε,l

(∫
X

∫
G

∫ 0

−σ(h,y)
fj−1x′(y, σ(h, y), u)dudµ(h)dν(y)dµ⊗l(j) +OK(δ +Oδ/t)|fj−1x′ |Lip

)

=

∫
X

∫
G

∫ 0

−σ(h,y)

∫
Gε,l

f(j−1x′, y, σ(h, y), u)dµ⊗l(j)dudµ(h)dν(y) +OK(δ +Oδ/t)|f |Lip).

(4.31)
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With (x, v, u) fixed, f(x′, x, v, u) is a Lipschitz function on x′, so it is a Hölder function. Together
with Lemma 4.21 and inequality (4.30), we have∫

Gε,l

ECfj−1x′(jx, t− κ(j))dµ⊗(j)

=

∫
X

∫
G

∫ 0

−σ(h,y)

∫
X
f(u, σ(h, y), y, y′)dν̌(y′)dudµ(h)dν(y) + (Oexp(l) +OK(δ +Oδ/t))|f |Lip.

(4.32)

The result follows.

It remains to prove Lemma 4.29 and Lemma 4.30.

Proof of Lemma 4.29. There exist Sn+1,l,x ⊂ G×(n+1) and Sn,l,x ⊂ G×n which satisfy the con-
ditions in Lemma 2.14. Let Sn(x) = Sn+1,l,x ∩ (G× Sn,l,x). Then

µ⊗(n+1)Sn(x)c = Oexp(l), (4.33)

and for (gn+1, . . . , g1) in Sn(x), we have

|κ(hgj)− σ(hg, jx)− κ(j)| ≤ e−εl

|κ(gj)− σ(g, jx)− κ(j)| ≤ e−εl.

In N+
t (n) ∩ Sn(x) ∩ Tn(x, t), we can replace the Cartan projection by the cocycle with

exponentially small error. Fortunately, the difference of this set with N+
t (n) and Tn(x, t) has

exponentially small measure. By definition, we have

N+
t (n) ∩ Sn(x) ⊂ {σ(hg, jx) > t− e−lε − κ(j), σ(g, jx) ≤ t+ e−lε − κ(j)},

and
N+
t (n) ⊃ {σ(hg, jx) > t+ e−lε − κ(j), σ(g, jx) ≤ t− e−lε − κ(j)} ∩ Sn(x).

Therefore

(N+
t (n) ∩ Sn(x)− Tn(x, t)) ⊂{σ(hg, jx) ∈ [−e−εl, 0] + t− κ(j)}

∪ {σ(g, jx) ∈ [0, e−εl] + t− κ(j)},

and

(Tn(x, t) ∩ Sn(x)−N+
t (n)) ⊂{σ(hg, jx) ∈ [0, e−εl] + t− κ(j)}

∪ {σ(g, jx) ∈ [−e−εl, 0] + t− κ(j)}.

Hence, these imply that

µ⊗(n+1)(N+
t (n)−N+

t (n) ∩ Sn(x) ∩ Tn(x, t)) ≤ µ⊗(n+1)Sn(x)c

+ µ⊗(n+1)(N+
t (n) ∩ Sn(x)− Tn(x, t))

≤ Oexp(l) + µ⊗(n+1){σ(hg, jx) ∈ [−e−εl, 0] + t− κ(j)} ∪ {σ(g, jx) ∈ [0, e−εl] + t− κ(j)}.

and

µ⊗(n+1)(Tn(x, t)−N+
t (n) ∩ Sn(x) ∩ Tn(x, t)) ≤ µ⊗(n+1)Sn(x)c

+ µ⊗(n+1)(Tn(x, t) ∩ Sn(x)−N+
t (n))

≤ Oexp(l) + µ⊗(n+1){σ(hg, jx) ∈ [0, e−εl] + t− κ(j)} ∪ {σ(g, jx) ∈ [−e−εl, 0] + t− κ(j)}.
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Moreover, for (gn+1, . . . , g1) in the set N+
t (n) ∩ Sn(x) ∩ Tn(x, t), the definition of Sn(x) implies

that

|f((hgj)−1x′, hgjx, κ(hgj)− κ(gj), κ(gj)− t)
− jf((hg)−1x′, hgjx, σ(h, gjx), σ(g, jx)− (t− κ(j)))| ≤ e−γlε|f |Lip.

(4.34)

Thus, for n ∈ [t/(σµ + ε)− 1, t/(σµ − ε)], we have

|
∫
N+
t (n)

f((hgj)−1x′, hgjx, κ(hgj)− κ(gj), κ(gj)− t)dµ⊗(n+1)

−
∫
Tn(x,t)

jf((hg)−1x′, hgjx, σ(h, gjx), σ(g, jx)− (t− κ(j)))dµ⊗(n+1)|

≤ µ⊗(N+
t (n)−N+

t (n) ∩ Sn(x) ∩ Tn(x, t)) ∪ (Tn(x, t)−N+
t (n) ∩ Sn(x) ∩ Tn(x, t))

+ µ×(n+1)N+
t (n) ∩ Sn(x) ∩ Tn(x, t)Oexp(l)|f |Lip

≤ (Oexp(l) + µ⊗(n+1){|σ(hg, jx)− t+ κ(j)|, |σ(g, jx)− t+ κ(j)| ≤ e−lε})|f |∞ +Oexp(l)|f |Lip.

Sum up over all n ∈ [t/(σµ + ε)− 1, t/(σµ − ε)]. Then the above inequality becomes

|
[t/(σµ−ε)]∑

n=[t/(σµ+ε)]

∫
N+
t (n)

f((hgj)−1x′, hgjx, κ(hgj)− κ(gj), κ(gj)− t)dµ⊗(n+1)(hgj)|

−
[t/(σµ−ε)]∑

n=[t/(σµ+ε)]

∫
Tn

jf((hg)−1x′, hgjx, σ(h, gjx), σ(g, jx)− (t− κ(j)))dµ⊗(n+1)(hgj)

≤ tOexp(l)|f |Lip + |f |∞
∫
G×l

2R(1[−e−εl,e−εl])(jx, t− κ(j))dµ⊗l(j).

(4.35)

By (2.9), (2.12), we have µ⊗lGε,l ≥ 1−Oexp(l). Thus combined with Lemma 4.21, we get∑
n≥l

µ⊗(n+1)(Tn(x, t)− Tn,ε(x, t)) =

∫
Gcε,l

E1(jx, t− κ(j))dµ⊗l(j) = Oexp(l).

This enables us to replace the integration domain Tn by Tn,ε with exponentially small error. It
is sufficient to control the right hand side of (4.35).

The last term can be bounded by the similar argument as in (4.12), with Proposition 4.10
replaced by inequality (4.6). It follows that∫

G×l
2R(1[−e−εl,e−εl])(jx, t− κ(j))dµ⊗l(j) = Oexp(l) + δO(1 +Oδ/t). (4.36)

The proof is complete.

Proof of Lemma 4.30. We want to replace (hgj)−1x′ with (j)−1x′ in the first coordinate in order
to find the residue process with cutoff. The idea is always similar. We have a good approximation
in a large set, whose complement has exponentially small measure. Let

Σl =
⋃
n≥0
{(h, g) ∈ G×G×n|σ(g, jx) < t− κ(j) ≤ σ(hg, jx), d((hg)−1x′, xMj ) ≤ e−εl}.

Since t−κ(j) ≥ t− (σµ+ ε)l ≥ 10εl and t−κ(j) ≥ t/2 > 10, we can use Lemma 4.23 with s = εl
and jx, x′, xMj to obtain

µ⊗ µ̄Σl = Oexp(l). (4.37)
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The definition of Gε,l implies that d(xMj , x
′) ≥ e−εl and κ(j) ≥ (σµ − ε)l. It follows from (2.4)

that xMj = xmj−1 . Together with (2.1),(2.5), for (h, g) outside of the set Σl, we have

d((hgj)−1x′, j−1x′) = d(j−1(hg)−1x′, j−1x′)

≤ exp(−2κ(j−1)− log d(xmj−1 , x
′)− log d(xmj−1 , (hg)−1x′)) ≤ exp(−2(σµ − ε)l + 2εl).

Therefore

|f(j−1x′, x, v, u)− f((hgj)−1x′, x, v, u)| ≤ |f |Lipd(j−1x′, (hgj)−1x′) = |f |LipOexp(l). (4.38)

In the bad part Σl, we use inequality (4.37) to control. Outside of Σl, we apply inequality (4.38).
Thus we have

|
∑
n≥0

∫
σ(hg,jx)>t−κ(j)≥σ(g,jx)

f(j−1x′, hgjx, σ(h, gjx), σ(g, jx) + κ(j)− t)

− f((hgj)−1x′, hgjx, σ(h, gjx), σ(g, jx) + κ(j)− t)dµ(h)dµ∗n(g)|
≤ |f |Lip(Oexp(l) +Oexp(l)EC1(jx, t− κ(j))).

Then by Lemma 4.21, the proof is complete.

Remark 4.31 (Minus case). Let

E−P f(x′, x, t) =
∑
n≥0

∫
κ(g)≥t>κ(hg)

f((hg)−1x′, hgx, κ(hg)− κ(g), κ(g)− t)dµ(h)dµ∗n(g).

Then by the same proof, we have

Proposition* 4.28. Under the assumptions of Proposition 4.28, we have

E−P f(x′, x, t) =

∫
X2

∫
G

∫ −σ(h,y)
0

f(y′, hy, σ(h, y), u)dudµ(g)dν(y)dν̌(y′) +OK(δ +Oδ/t)|f |Lip.

5 Main Approximation

In this section, we want to complete the proof in Section 3. It remains to prove Proposition
3.6 and the following Lemma 5.2 and Corollary 5.5.

Recall the definitions in Section 3: Let µ be a Borel probability measure on SL2(R) with a
finite exponential moment, and assume that the subgroup Γµ is Zariski dense. Let Σ =

⋃
n∈NG

×n

be the symbol space of all finite sequences with elements in G. Let µ̄ be the measure on Σ defined
by

µ̄ =

+∞∑
n=0

µ⊗n, where µ⊗0 = δ∅.

Let the integer ω(g) be the length of an element g in Σ. Let T be the shift map on Σ, defined
by Tg = T (g1, g2, . . . , gω) = (g1, g2, . . . , gω−1), when ω(g) ≥ 2, and Tg = ∅, when ω(g) = 1, 0.
Let L be the left shift map on Σ, defined by Lg = L(g1, g2, . . . , gω) = (g2, . . . , gω−1, gω), when
ω(g) ≥ 2, and Lg = ∅, when ω(g) = 1, 0.

The sets M+
t , N

+
t are defined by

M+
t = {g ∈ Σ| κ(Tg) < t ≤ κ(g)},

N+
t = ι(M+

t ) = {g ∈ Σ|κ(Lg) < t ≤ κ(g)},

where ι(M) equals {g−1|g ∈M} for any subset M of Σ.
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Let µ̌ be the pushforward of µ by the inverse action. It also satisfies the assumptions of
Theorem 1.1. By definition µ̄(M+

t ) = ¯̌µ(N+
t ).

For x, y in X, write s1 = ε3s and

M+
t (x, y) = {g ∈M+

t ||κ(g)− κ(Tg)| < s1, d(xmg , g
−1x) < e−t, d(g−1x, x), d(g−1x, y) > 2e−s1}.

We need some regularity properties of N+
t . These lemmas are of the same type as the ones

with the cocycle, using the Cartan projection instead. The correspondences are: Lemma 5.1
with Lemma 4.20, Lemma 5.2 with Lemma 4.21, Lemma 5.3 with Lemma 4.22. In fact, for all
the regularity properties, there are similar versions for the Cartan projection. The subadditivity
is sufficient. We follow the same procedure as in the proof for the cocycle.

Lemma 5.1. For s in R, we have

µ̄{g ∈ N+
t ||κ(g)− κ(Lg)| > s} = Oexp(s). (5.1)

Proof. Subadditivity of Cartan projection implies κ(gω) ≥ |κ(gω · · · g1)−κ(gω−1 · · · g1)| = |κ(g)−
κ(Lg)| > s and κ(Lg) ≥ κ(g)− κ(gω). Then

µ̄{g ∈ N+
t ||κ(g)− κ(Lg)| > s}

=
∑
n≥0

µ⊗ µ∗n{(h, g) ∈ G×G|κ(g) < t ≤ κ(hg), |κ(hg)− κ(g)| > s}

≤
∑
n≥0

µ⊗ µ∗n{(h, g) ∈ G×G|t− κ(h) ≤ κ(g) < t, κ(h) > s}

=

∫
κ(h)>s

Rp(1[−κ(h),0])(t)dµ(h).

By Lemma 4.12 and finite exponential moment, we have

µ̄{g ∈ N+
t ||κ(g)− κ(Lg)| > s} .

∫
κ(h)>s

max{1, κ(h)2}dµ(h) = Oexp(s).

The proof is complete.

A special case is when s = 0. Applying the above lemma with ¯̌µ, we have

Lemma 5.2. The measure µ̄(M+
t ) = ¯̌µ(N+

t ) is uniformly bounded with t.

The following lemma quantifies the independence of the scalar part and the angle part of
residue process for the Cartan projection.

Lemma 5.3. For s > 0, t > 10s and x, xo ∈ X, we have

µ̄{g ∈ N+
t |d(xMg , gx) ≥ e−t} = Oexp(t), (5.2)

µ̄{g ∈ N+
t |d(gxo, x) ≤ e−s} = Oexp(s). (5.3)

The proof of the second inequality follows the same procedure as in the proof of Lemma
4.22, replacing Lemma 4.20 and Proposition 4.10 with Lemma 5.1 and Lemma 4.11. The first
inequality is standard, using Principle 1 and Principle 2. When n ∈ [ t

σµ+ε
− 1, t

σµ−ε ], use
Corollary 2.13, and when n is outside of this interval, use Corollary 2.9 and Corollary 2.11.

Joining Lemma 5.1 and Lemma 5.3, we have the following corollary

Corollary 5.4. Let s > 0, t > 10s and let x, y be in X. Let

N+
t (x, y) = {g ∈ N+

t ||κ(g)− κ(Lg)| < s, d(xMg , gx) < e−t, d(gx, x), d(gx, y) > 2e−s}. (5.4)

Then we have
µ̄(N+

t )− µ̄(N+
t (x, y)) = Oexp(s). (5.5)
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Corollary 5.5. For s > 0, t > 10s and x, y in X, we have

µ̄(M+
t )− µ̄(M+

t (x, y)) = Oexp(s).

Proof. By definition, we have

µ̄(M+
t )− µ̄(M+

t (x, y)) = ¯̌µ(N+
t )− ¯̌µ(N+

t (x, y)).

Applying the above corollary with ¯̌µ, we have completed the proof.

We start to proof Proposition 3.6. The central tool here is Lemma 2.7, which enables us to
replace the cocycle with the sum of the scalar part and the angle part.

Proof of Proposition 3.6. We first replace the distance with the cocycle. By hypothesis, we have

d(xmg , x) ≥ d(g−1x, x)− d(xmg , g
−1x) ≥ 2e−s1 − e−t ≥ e−s1 .

Using the same argument, we have d(xmg , y), d(xmg , x) ≥ e−s1 . Then (2.1) and (2.5) imply

d(gx, gy) = d(x, y) exp(−σ(g, x)− σ(g, y)) ≤ exp(−2κ(g))

d(xmg , x)d(xmg , y)
≤ e−2(t−s1).

Applying the Newton-Leibniz formula (2.17) to φ at gx, gy, we have

φ(gx)− φ(gy) = sign(gx, gy)

∫
gxagy

φ′(θ)dθ.

Since κ(g) > t > s1, we have d(xmg , x) ≥ e−s1 ≥ e−κ(g). Then (2.18) implies that

φ(gx)− φ(gy)) = sign(x, y, xmg )

∫
gxagy

φ′(θ)dθ.

We need the arc length distance da(·, ·) on R/πZ. Since d(gx, gy) ≤ e−2(t−s1), for θ in the small
arc gx a gy, we have da(θ, gx) ≤ e−2(t−s1). Therefore

|φ(gx)− φ(gy)− sign(x, y, xmg )φ′(gx)da(gx, gy)| ≤ |φ′′|∞e−4(t−s1). (5.6)

By equality sin da(gx, gy) = d(gx, gy), we have

|da(gx, gy)− d(gx, gy)| = O(d(gx, gy)3).

So we can replace the arc length distance with the sine distance. Again by hypothesis, we have
d(xmg , g

−1x) ≤ e−t < d(g−1x, x), d(g−1x, y). When changing xmg to g−1x, the relative place with
respect to x, y does not change, therefore we get

sign(x, y, xmg ) = sign(x, y, g−1x).

Inequality (2.1), together with the above two inequalities, implies

|φ(gx)− φ(gy)− sign(x, y, g−1x)φ′(gx)d(x, y) exp(−σ(g, x)− σ(g, y))| ≤ |φ′′|∞2e−4(t−s1). (5.7)

We may now replace the cocycle with the Cartan projection and the angle part. Since

e−2κ(g) + d(xmg , g
−1x)

d(g−1x, x)
≤ 2e−t+s1 < 1/2,
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Lemma 2.7 implies that

|σ(g, x)− κ(g)− log d(g−1x, x)| ≤ 2
e−2κ(g) + d(xmg , g

−1x)

d(g−1x, x)
≤ 4e−t+s1 ,

|σ(g, y)− κ(g)− log d(g−1x, y)| ≤ 2
e−2κ(g) + d(xmg , g

−1x)

d(g−1x, y)
≤ 4e−t+s1 .

We have an inequality for z1, z2 in C,

|ez1 − ez2 | ≤ max{e<z1 , e<z2}|z1 − z2|.

Since σ(g, x) ≥ κ(g) + log d(xmg , x) ≥ t− s1 and κ(g) + log d(g−1x, x) ≥ t− s1, we have

| exp(−σ(g, x))− exp(−κ(g))/d(g−1x, x)| ≤ e−t+s14e−t+s1 .

Therefore by inequality |a1a2 − b1b2| ≤ |(a1 − b1)a2|+ |(a2 − b2)b1|, we have

|e−σ(g,x)−σ(g,y) − e−2κ(g)/(d(g−1x, x)d(g−1x, y))| ≤ 8e−3(t−s1).

Then by the hypothesis |ξ| = e2t+s and (5.7), we have∣∣∣eiξ(φ(gx)−φ(gy) − eiξφ′(gx)sign(x,y,g−1x)d(x,y) exp(−2κ(g))/(d(g−1x,x)d(g−1x,y))
∣∣∣

≤|ξ||φ(gx)− φ(gy)− φ′(gx)sign(x, y, g−1x)d(x, y) exp(−2κ(g))/(d(g−1x, x)d(g−1x, y))|
≤|ξ||φ′′|∞2e−4(t−s1) + |ξ||φ′d(x, y)||e−σ(g,x)−σ(g,y) − e−2κ(g)/(d(g−1x, x)d(g−1x, y))|
≤|ξ|(|φ′′|∞2e−4(t−s1) + 8|φ′|∞e−3(t−s1)) ≤ 8(|φ′′|∞ + |φ′|∞)e−t+s+3s1 .

Finally, for |Λ0 − Λ|, it suffices to add the difference

|r(gx)r(gy)− r(gx)2| ≤ |r|∞|r′|∞e−2(t−s1).

Then
|Λ0 − Λ| ≤ |r|∞|r′|∞e−2(t−s1) + |r|2∞(|φ′′|∞ + |φ′|∞)e−t+s+3s1 = Oexp(s),

where Oexp(s) does not depend on t, but depends on r, φ. The proof is complete.

Remark 5.6 (Minus case). The proof works the same for M−t .
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quotients restreints. Enseignement mathematique, (3):335–356, 2003.

Jialun LI
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