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3.2 Hölder regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Key combinatorial tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Application to our measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Proof of the mains theorems 9
4.1 From sum-product estimates to Fourier decay . . . . . . . . . . . . . . . . . . . . 9

4.1.1 Regularization procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.2 End of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 From Fourier decay to spectral gap . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Applications 18
5.1 Exponential decay in the Renewal theorem . . . . . . . . . . . . . . . . . . . . . 18

1 Introduction

Definition 1.1. Let Cγ(P(R2)) be the space of γ−Hölder function on P(R2). For z ∈ C, let Pz
be an operator on Cγ given by

Pzf(x) =

∫
e
z log

‖gv‖
‖v‖ f(gx)dµ(g), where x = Rv ∈ P(R2).

Theorem 1.2 (Spectral gap). Let µ be a Borel probability measure on SL2(R) with finite expo-
nential moment, such that the support of µ generates a Zariski dense subgroup.

For every γ > 0 small enough, there exists δ > 0 such that for all |b| > 1and |a| small
enough the spectral radius of Pa+ib acting on Cγ(P(R2)) satisfies

ρ(Pa+ib) < 1− δ.

This should be compared with random walks on R. Let µ be a Borel probability measure
on R with finite support. Then

lim inf
|b|→∞

|1− µ̂(ib)| = 0.
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The proof is direct. Let {x1, . . . , xl} be the support of µ. Then µ̂(ib) =
∑

1≤j≤l µ(xj)e
ibxj ,

and we only need to find b such that the terms are uniformly near 1. Using the fact that
lim infb→∞ dRl(b(x1, . . . , xl), 2πZl) = 0, we have the claim.

We can also compare with the counting problem in hyperbolic surfaces. The spectral gap is
used to obtain an exponential remainder term as in [LP82], [Nau05] and [Sto11]. An analogue
application is given in Section 5.1, that is an exponential remainder term in renewal theorem.

The main ingredient for proving these result is a property about the power decay of the
Fourier coefficients of the µ-stationary measure.

Theorem 1.3 (Fourier decay). Let µ be a Borel probability measure on SL2(R) with finite
exponential moment, such that the support of µ generates a Zariski dense subgroup. Let X =
P(R2) and let ν be the µ-stationary measure on X.

For every γ > 0, there exists ε0 > 0 depending on µ such that there exists δ1 > 0 such that
the following holds. For any ϕ ∈ C2(X), r ∈ Cγ(X) such that |ϕ′| ≥ |ξ|−ε0 on the support of r,
|r| ≤ 1 and

‖ϕ‖C2 + cγ(r) ≤ |ξ|ε0 ,

then

|
∫
eiξϕ(x)r(x)dν(x)| ≤ |ξ|−δ1 for all |ξ| large enough. (1.1)

Remark 1.4. As a consequence, the Fourier coefficients of the measure ν converge to zero with
a power decay. This is also a generalization of the same theorem for the Patterson-Sullivan
measures as in [BD17].

Inspired by [BD17], we introduce the following definition, which is the key input to using
the machine of the discretized sum-product estimate.

Definition 1.5 (Non-concentration hypothesis). Let µ be a Borel probability measure on SL2(R)
with finite exponential moment, such that the support of µ generates a Zariski dense subgroup.
Let σµ be the Lyapunov constant. We say that µ satisfies non-concentration hypothesis if there
exist C1, ε1, c1 > 0 such that for all x ∈ X,h ∈ G and n ∈ N we have

sup
a∈R

µ∗n{g ∈ G|‖h‖
2‖v‖2e2nσµ
‖hgv‖2

∈ [a∓ e−ε1n]} ≤ C1e
−c1n (1.2)

Consider a degenerate case that µ is supported on diagonal matrices. counterexample on
R, with µ = 1

2(δ−1 + δ1), where δx is the Dirac measure.
We will make use of some classic notation: For two real numbers A and B, we write

A = O(B), A� B or B � A if there exists constant C > 0 such that |A| ≤ CB, where C only
depends on the ambient group G and the measure µ. We write A = Oε(B), A�ε B or B �ε A
if the constant C depends on an extra parameter ε > 0.

2 Random walks on Lie groups

We will write V for R2, equipped with the norm ‖v‖2 = v21 + v22. Let e1 = (1, 0) and
e2 = (0, 1). For g in G, let ‖g‖ be the operator norm. Let σµ be the Lyapunov constant of µ,
defined by

σµ = lim
n→∞

1

n
log ‖g1 · · · gn‖,

almost surely for (g1, g2, . . . ) following the law of µ⊗N. For g in G and x = Rv in X, we define
the Iwasawa cocycle by

σ(g, x) =
‖gv‖
‖v‖

.
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Let G = KA+K be a Cartan decomposition, where A+ is the semigroup of diagonal matrices
diag{a, a−1} with a ≥ 1 and K = SO(2). For an element g in G, under the Cartan decomposi-
tion, it can be written as g = kgaglg. We will write κ(g) = log ‖g‖, called the Cartan projection
of g, because we have ag = diag{eκ(g), e−κ(g)}. Let xMg = Rkge1 and ymg = Rtlge2, called the
density point of g and gt, respectively.

For r > 0, g in GL(V ), let

bMg (r) = {x ∈ PV |d(x, xMg ) ≤ r},
Bm
g (r) = {x ∈ PV |δ(x, ymg ) ≥ r}

2.1 Distance and norm

This section deals with general g in GL(V ) acting V , where V is a finite dimensional vector
space with euclidean norm. We need some technical control of distance.

Definition 2.1. Let x = Rv, x′ = Rv′ be two points in X. We define the projective distance by

d(x, x′) =
‖v ∧ v′‖
‖v‖‖v′‖

This is a lemma about the relation between cocycle, Cartan projection and the distance of
points

Lemma 2.2. [BQ16, Lem 17.11, Lem 13.2, Lem 14.2] For any g in GL(V ) and x, x′ in PV ,
we have

|σ(g, x)− σ(g, x′)| ≤
√

2d(x, x′)

min(δ(x, ymg ), δ(x′, ymg ))
(2.1)

κ(g) + log δ(x, ymg ) ≤ σ(g, x) (2.2)

d(gx, xMg ) ≤ ‖g‖−2/δ(x, ymg ) (2.3)

As a corollary, we have

Lemma 2.3. For g in GL(V ), let 0 ≤ β ≤ γ1,2(g). If β < δ2, then

gBm
g (δ) ⊂ bMg (

β

δ
) ⊂ bMg (δ).

This is a lemma of distance, we use Cartan projection.

Lemma 2.4. For any g, h in GL(V ) and x = Rv, x′ = Rv′ in PV , we have

e−2κ(g) ≤ d(gx, gx′)

d(x, x′)
≤ e−2κ(g)

δ(x, ymg )δ(x′, ymg )
(2.4)

κ(gh) ≥ κ(g) + κ(h) + log δ(xMh , y
m
g ) (2.5)

Proof. By (2.2), we have

d(gx, gx′) =
‖g(v ∧ v′)‖
‖gv‖‖gv′‖

≤ ‖ ∧2 g‖
‖g‖2δ(x, ymg )δ(x′, ymg )

=
γ1,2(g)

δ(x, ymg )δ(x′, ymg )

d(gx, gx′) =
‖gv ∧ gv′‖
‖v ∧ v′‖

‖v ∧ v′‖
‖v‖‖v′‖

‖v‖‖v′‖
‖gv‖‖gv′‖

≥ γ1,2(g)δ(x ∧ x′, ym∧2g)d(x, x′)

On the other hand, κ(gh) ≥ σ(gh, l−1h e1) = σ(g, xMh ) + κ(h) ≥ κ(g) + κ(h) + log δ(xMh , y
m
g ).

This lemma says that when x is not in the neighborhood of ymh , then if h is a general
element, this kind of regularity will be inherited to hx.
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2.2 Large deviation principles

In the next proposition we summarize the large deviations principle for the cocycle and for
the Cartan projection,

Proposition 2.5. [BQ16, Thm13.11, Thm 13.17] Under the assumptions of Theorem , for
every ε > 0 there exist C, c > 0 such that for all n ∈ N and x ∈ X we have

µ∗n{g ∈ G| |σ(g, x)− nσµ| ≥ nε} ≤ Ce−cεn, (2.6)

µ∗n{g ∈ G| |κ(g)− nσµ| ≥ nε} ≤ Ce−cεn, (2.7)

The following proposition describes regularity properties of µ∗n, which is a corollary of the
large deviations principle.

Proposition 2.6. [BQ16, Prop14.3] Under the assumptions of Theorem , for every ε > 0 there
exist C, c such that for all x, x′ in X and n ≥ 1 we have

µ∗n{g ∈ G| d(gx, x′) ≤ e−nε} ≤ Ce−cεn, (2.8)

µ∗n{g ∈ G| d(xMg , x) ≤ e−nε} ≤ Ce−cεn, (2.9)

µ∗n{g ∈ G| d(ymg , x) ≤ e−nε} ≤ Ce−cεn, (2.10)

Theorem 2.7 (Hölder regularity). [Gui90][BL85, Chapter 6,Prop. 4.1] Under the assumptions
of Theorem , there exist constants C > 0, c > 0 such that for every x in X and r > 0 we have

ν(B(x, r)) ≤ Crc. (2.11)

2.3 Derivative

Lemma 2.8. Let g be in G and x be in X. We fix the unit tangent vector field on X. Then the
derivative g′(x) can be viewed as real numbers, and we have

g′(x) = e−2σ(g,x).

Lemma 2.9 (uniform non integrability). If d(ymg , y
m
h ), d(x, ymg ), d(x, ymh ) > c and ‖g‖, ‖h‖ ≥

1/c2 we have

1/c ≥ |∂x(σ(g, x)− σ(h, x))| ≥ c/2 (2.12)

and
|∂xσ(g, x)|, |∂xxσ(g, x)| ≤ 1/c (2.13)

Remark 2.10. These properties tell us the random walk in a large set behave like uniformly
expanding map, and has nonvanish derivative.

Proof. Suppose g = diag{a, a−1}. By definition

σ(g, x) = log
‖gv‖
‖v‖

= log ‖
(
a

a−1

)(
cosx
sinx

)
‖

= 1/2 log(a2 cos2 x+ a−2 sin2 x)

Hence, using cosx ≥ c we have

∂xσ(g, x) = − (a2 − a−2) cosx sinx

a2 cos2 x+ a−2 sin2 x
= − tanx+

a−2(cosx sinx+ sin3 x cos−1 x)

a2 cos2 x+ a−2 sin2 x

= − tanx+O(a−4c−3)
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The condition d(ymg , y
m
h ) > c means that | sin(θh)| ≥ c.

|∂xσ(g, x)− ∂xσ(h, x)| = | tan(x)− tan(x+ θh) + c−3O(e−4κ(g) + e−2κ(h))|

= | sin(θh)

cos(x+ θh) cos(x
+ c−3O(e−4κ(g))| ≥ c/2

For the estimate of the second order derivative, by definition we have

∂xxσ(g, x) = −(a2 − a−2) a2 cos4 x− a−2 sin4 x

(a2 cos2 x+ a−2 sin2 x)2
≤ 1/c

The proof is complete.

3 Sum-product estimates

3.1 Non concentration condition

If we want to get the non-concentration directly, then this becomes an effective local limit
estimate, which is difficult due to the lack of spectral gap. Hence, we transfer it to the Hölder
regularity of stationary measure.

Another technique is to replace tiny interval by a neighborhood of diagonal. This technique
is already used in [BD17]. We first get an estimate of both the action and the position. Then
we fix the position to get the non-concentration estimate. But if we do this naively, different a
in R will obstruct us getting an estimate uniformly on all a in R. The estimate of the diagonal
implies uniform estimate for all a in R.

Let ψ(g, x) = exp(−2σ(h0g, x) + 2κ(h0) + 2ω(g)σµ) for x in X and g in G×n.

Definition 3.1. We say that µ satisfies diagonal non-concentration, if there exist ε, c, C > 0
such that for all n in N and x in X

µ∗3n{(g, l, h)||ψ(g, hx)− ψ(l, hx)| ≤ e−εn} ≤ Ce−cεn

This is a probabilistic analogue of [BD17, Lem.2.16], which is the main input for the sum-
product estimates. Our new observation is that this implies non concentration, a rather pleasant
form.

Lemma 3.2. Diagonal non-concentration implies non concentration condition.

Proof. Let δ = e−εn and β = e−nσµ . Separate g = g1g2 such that g1, g2 follow the same law of
µ∗n. Fix g2 and measure on g1. Then

A := sup
a
µ∗2n{g|ψ(g, x) ∈ [a∓ δ]}

≤
∫
G

sup
a
µ∗n{g1|ψ(g1, g2x) ∈ e2σ(g2,x)β−2[a∓ δ]}dµ∗n(g2)

By large deviation principle, for g2 outside an exponential small set, we have e2σ(g2,x)−2nσµ ≤
δ−1/2. Let δ′ = δ1/2. Therefore

A ≤
∫
G

sup
a
µ∗n{g1|ψ(g1, g2x) ∈ [a∓ δ′]}dµ∗n(g2) +Oε(δ

c1),

where c1 > 0 depends on ε. Replace sup estimate by diagonal estimate

A ≤
∫
G
µ∗n ⊗ µ∗n{(g1, g′1)||ψ(g1, g2x)− ψ(g′1, g2x)| ≤ 2δ′}1/2dµ∗n(g2) +Oε(δ

c1)

≤µ∗3n{(g1, g′1, g2)||ψ(g1, g2x)− ψ(g′1, g2x)| ≤ 2δ′}1/2 +Oε(δ
c1)

The proof ends by Definition 3.1.
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3.2 Hölder regularity

This is the key new ingredient compared with [BD17]. Using other representations, we can
get more information on the cocycle. Our method is flexible, which can be generalized to higher
rank case. This idea has already been used in [Aou13] for problem concerning transience of
algebraic subvariety of split real lie groups.

The key tool is the large deviation principle

Lemma 3.3. Let V be an irreducible representation of G. There exist ε, c, C > 0 such that for
v in V and f in V ∗ we have

µ∗n{g||f(gv)| ≤ ‖f‖‖gv‖e−εn} ≤ Ce−cεn.

Lemma 3.4. Diagonal non-concentration is a consequence of the following: There exist ε1, c1
such that for all x ∈ X, n ∈ N there exists Gn in G2 with µ∗n ⊗ µ∗n{Gn} ≥ 1− C1e

−c1εn, such
that for (g, l) ∈ Gn we have

µ∗n{h||ψ(g, hx)− ψ(l, hx)| ≤ e−ε1n} ≤ C1e
−c1ε1n.

The idea is that we will transform the inequality of cocycle to an inequality of polynomial
function on v, with some exponentially small error. Then the polynomial function can be
interpreted as an linear form on the symmetric product of the vector space V . In order to using
large deviation principle, we need to estimate the norm of this linear form. The norm will satisfy
our demand of largeness if g, l are in ”general position”.

Proof. Let β = e−nσµ and let δ = e−εn, which will be determined later. Take n large enough
depending on ε such that δ ≤ 1/2. We will prove that we can take

Gn = {(g, l)||d(yml , y
m
g ), δ(xMg , y

m
h0) ≥ δ, ‖g‖, ‖l‖ ∈ β−1[δ, δ−1]}

Suppose that (g, l) ∈ Gn. Due to ψ(g, x) = ‖h0‖2β−2‖v‖2
‖h0gv‖2 , we have

|ψ(g, x)− ψ(l, x)| = ‖h0‖2β−2‖v‖2

‖h0gv‖2‖h0lv‖2
|‖h0gv‖2 − ‖h0lv‖2| (3.1)

By the definition of Gn, the fraction term satisfies

‖h0‖2β−2‖v‖2

‖h0gv‖2‖h0lv‖2
≥ β−2

‖h0‖2‖g‖2‖l‖2‖v‖2
≥ 1

‖h0‖2β2δ−2‖v‖2
(3.2)

Now we consider the linear form on Sym2V

f(v) := ‖h0gv‖2 − ‖h0lv‖2 (3.3)

By (3.1), (3.2), (3.3)

|ψ(g, x)− ψ(l, x)| ≥ f(v)

‖h0‖2β2δ−2‖v‖2
. (3.4)

Next we want to use large deviation principle, so we give an estimate of ‖f‖. We take
x = Rv = yml , and we get ‖h0lv‖ ≤ ‖h0‖βδ−1. Due to d(ymg , y

m
l ) ≥ δ, by Lemma 2.3, we have

gx ∈ b(xMg , ‖g‖/δ) ⊂ b(xMg , δ/2). Hence δ(ymh0 , gx) ≥ δ/2, and by (2.2) we have

‖h0gv‖ ≥ ‖h0‖‖g‖δ(ymh0 , gx)δ(ymg , x)‖v‖ ≥ ‖h0‖β−1δO(1)‖v‖.

Therefore when ε is small compared to σµ, by δ < 1/2 we have

‖f‖ = sup
v

|f(v)|
‖v‖

≥ ‖h0‖2(β−2δO(1) − β2δ−2) ≥ ‖h0‖2β−2δC , (3.5)
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for some constant C > 0. Then by (3.4), (3.5)

|ψ(g, x)− ψ(l, x)| ≥ f(v)δC+2

‖f‖‖v‖2
. (3.6)

By Lemma, we have
µ∗n{h||f(hv)| ≤ ‖f‖‖hv‖δ} = Oε(δ

c1), (3.7)

where c1 > 0 depends on ε. If we fix ε small and take e−ε1n = δC+3, then by (3.6), (3.7) the
result holds for n large. For n small, the result follows by replacing C1 by a large number.

3.3 Key combinatorial tool

One of the key tools is the sum-product estimates.

Proposition 3.5. [Bou10, Lemma 8.43] For every κ1 > 0, there exist ε, ε′ and k ∈ N, such that
the following holds. Let N be a large integer depending on κ1. For all probability measures λ
supported in [1/2, 1], which satisfies

sup
x
λ(B(x, σ)) < σκ1

for all σ ∈ [N−1, N−ε], we have∣∣∣∣∫ exp(2iπτx1 · · ·xk)dλ(x1) · · · dλ(xk)

∣∣∣∣ ≤ N−ε′ , (3.8)

for all τ ∈ R, |τ | ∼ N .

An adaptation to the case of several different measures

Proposition 3.6. [BD17, Prop. 3.2] Fix κ1 > 0. Then there exist k ∈ N, ε > 0 depending only
on κ1 such that the following holds. Let C0 > 0 and λ1, . . . λk be Borel measures on [C−10 , C0] ⊂ R
such that λj(R) ≤ C0. Let τ ∈ R, |τ | ≥ 1, and assume that for all σ ∈ [C−10 |τ |−1, C0|τ |−ε] and
j = 1, . . . , k

λj × λj({(x, y) ∈ R2 : |x− y| ≤ σ}) ≤ C0σ
κ1 .

Then there exists a constant C1 depending only on C0, κ1 such that

|
∫

exp(2πiτx1 · · ·xk)dλ1(x1) . . . dλk(xk)| ≤ C1|τ |−ε

In our case, the measures are not compactly supported, hence we give another version

Proposition 3.7. For every κ0 > 0, there exist ε2 and k ∈ N depending only on κ0 such that
the following holds. Let C0 > 0 and let τ ∈ R, |τ | > 1. Let λ1, . . . λk be Borel measures supported
on [|τ |−ε3 , |τ |ε3 ], where ε3 = min{ε2, ε2κ0}/10k, with total mass less than 1. Assume that for all
σ ∈ [|τ |−2, |τ |−ε2 ] and j = 1, 2, . . . k we have

sup
x
λj(B(x, σ)) < C0σ

κ0 . (3.9)

Then there exists a constant C2 depending only on C0, κ0 such that for all ς ∈ R, |ς| ∈ [|τ |3/4, |τ |5/4]
we have ∣∣∣∣∫ exp(iςx1 · · ·xk)dλ1(x1) · · · dλk(xk)

∣∣∣∣ ≤ C2|τ |−ε2 . (3.10)
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Proof. Let ε as in Proposition 3.6 with κ1 = κ0/2, and let ε2 = ε/4.
Divide [|τ |−ε3 , τ ε3 ] into [2l, 2l+1]. We rescale the measure in each interval to [1/2, 1]. Let

λl(A) = λ|[2l−1,2l](2
lA). For σ ∈ [τ−3/2, τ−ε2/2] we have

λl × λl{(x, y) ∈ R2||x− y| ≤ σ} ≤ λ× λ{(2lx, 2ly) ∈ R2||x− y| ≤ σ}
= λ× λ{(x, y) ∈ R2||x− y| ≤ 2lσ} ≤ sup

a∈R
λB(a, 2lσ) ≤ C0(2

lσ)κ0

where we use 2lσ ∈ [τ−3/2−ε3 , τ−ε2/2+ε3 ] ⊂ [τ−2, τ−ε2/4]. Since σ−1/2 ≥ τ ε2/4 ≥ τ ε3 ≥ 2l, for
σ ∈ [τ−3/2, τ−ε2/2] we have

λl × λl{(x, y) ∈ R2||x− y| ≤ σ} ≤ C0(2
lσ)κ0 ≤ C0σ

κ0/2. (3.11)

Summing up over |l| ≤ ε3 log1 τ , we have∣∣∣∣∫ exp(2iπςx1 · · ·xk)dλ1(x1) · · · dλk(xk)
∣∣∣∣ ≤∑

lj

∣∣∣∣∫ exp(2iπςx1 · · ·xk)dλl11 (2−l1x1) · · · dλlkk (2−lkxk)

∣∣∣∣
=
∑
lj

∣∣∣∣∫ exp(2iπς2l1+···+lky1 · · · yk)dλl11 (y1) · · · dλlkk (yk)

∣∣∣∣
Let τ1 = ς2l1+···+lk ∈ [τ3/4−kε3 , τ5/4+kε3 ]. Then we have [τ−11 , τ−ε21 ] ⊂ [τ−3/2, τ−ε2/2]. The
condition of Proposition 3.6 is verified by (3.11) with τ replaced by τ1. Therefore∑

lj

∣∣∣∣∫ exp(2iπς2l1+···+lky1 · · · yk)dλl11 (y1) · · · dλlkk (yk)

∣∣∣∣ ≤ C1

∑
lj

|ς2l1+···+lk |−ε2

≤ C2ς
−ε2(

∑
|l|≤ε3 log1 τ

(2−l)−ε2)k ≤ C2ς
−ε2τkε3ε2(1− 2−ε2)−k ≤ C2τ

−ε2/4.

The proof is complete.

3.4 Application to our measure

Let (ε1, c1) be constants in non-concentration condition. Let (ε1/4, c
′) be constants in large

deviation principle. Take

κ0 =
1

10
min{c, c′}.

Using Proposition 3.7, we get ε2, ε3.
For g, h in G and x in X, let ψg(h, x) = exp(−2σ(gh, x) + 2κ(g) + 2nσµ). Let λg0,x be a

pushforward measure on R of µ∗n restricted on a subset Gn,g0,x of G, defined by

λg0,x(E) = µ∗n{h ∈ Gn,g0,x|ψg0(h, x) ∈ E},

for Borel subset E, and where

Gn,g0,x = {h ∈ G|d(ymg0 , x
M
h ), d(ymh , x) ≥ 2δ, ‖h‖ ∈ β−1[δ, δ−1]} (3.12)

and β = e−σµn, δ = e−εn, where σµ/4 ≥ ε > 0 will be determined later.
The non-concentration condition is only at one scale, we need to verify all the scale needed

in the sum-product estimate. The idea is to separate the random variable and try using the
non-concentration condition in other scale, where we use the cocycle property to change scale.

Proposition 3.8. With ε small enough depending on ε3ε1, there exists C0 such that the measure
λg0,x satisfies the conditions in Proposition 3.7 with constant τ = eε1n.

8



Proof. We abbreviate λg0,x to λ. We first verify the condition on the support of λ. By hypothesis
3.12, the upper bound only need the control of Cartan projection

σ(g0h, x)− κ(g0)− nσµ ≤ κ(h)− nσµ ≤ εn.

For the lower bound, we need to control the position of ymh , hx. By hypothesis 3.12 and Lemma
2.3, we have hx ∈ bMh (β/δ2) ⊂ bMh (δ) ⊂ Bm

g0(δ). Hence by (2.1)

σ(g0h, x)− κ(g0)− nσµ ≥ log δ(hx, ymg0) + κ(h) + log δ(ymh , x)− nσµ ≥ −3εn

Hence taking ε small depend on ε3ε1, we have |σ(g0h, x)−κ(g0)−nσµ| ≤ ε3 log τ . Therefore the
support of λ is contained in the interval [|τ |−ε3 , |τ |ε3 ].

Let σ ∈ [|τ |−2, |τ |−ε2 ]. Since the support of λ is restricted in an interval, for the condition

3.9, we could suppose a ± σ ∈ [|τ |−ε3 , |τ |ε3 ]. Let m = | log σ|
2ε1

. Then m lies in [ε2n/2, n]. We

separate h = h1h2 with h1 the law µ∗m and h2 the law µ∗n−m. We have

ψg0(h, x) = ψg0(h1, h2x)e−2σ1(h2,x),

where σ1(h2, x) = σ(h2, x)− (n−m)σµ. Then

λ(B(a, σ)) ≤ sup
h2

µ∗m{h1|ψg0(h1, h2x) ∈ e2σ1(h2,x)B(a, σ)} (3.13)

• If σ1(h2, x) ≤ ε1m/2, then σe2σ1(h2,x) ≤ σ1/2 = e−ε1m. It follows by the non-concentration
condition at scale m that

µ∗m{h1|ψg0(h1, h2x) ∈ B(a, e−ε1m)} �ε1 e
−c1ε1m ≤ σκ0

• If σ1(h2, x) ≥ ε1m/2, then (a − σ)e2σ1(h2,x) ≥ |τ |−ε3eε1m ≥ eε1m/2 = σ−1/4, where we use
the fact that ε2 ≥ 2ε3. It follows by large deviation that

µ∗m{h1|ψg0(h1, h2x) ∈ e2σ1(h2,x)B(a, σ)} ≤ µ∗m{h1|ψg0(h1, h2x) ≥ eε1m/2}

�ε1 e
−c′ε1m ≤ σκ0 ,

where the large deviation principle applies to random variable h1 with quantities σ(h1, h2x) ≤
m(σµ − ε1/4) and δ(h1h2x, y

m
g0) ≤ e−ε1m/4.

The proof is complete.

4 Proof of the mains theorems

4.1 From sum-product estimates to Fourier decay

In this subsection we prove Theorem 1.3, an estimate of Fourier decay, by using the result
in section 3. We will say that a property Pn(b) is true except on an exponentially small set if
there exists C, c > 0 such that for n ∈ N we have

µ∗n{g ∈ G|Pn(g) is true } ≥ 1− Ce−cn

Recall the definition that

κ0 =
1

10
min{c, c′},

where (ε1, c1) is constants in non-concentration condition and (ε1/4, c
′) is constants in large

deviation principle. Take k, ε2, ε3 from Proposition 3.7 with this κ0. Let

τ = |ξ|
ε1

(4k+2)σµ+ε1 , n = log τ/ε1 (4.1)
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Let ε be a positive number to be determined later (the only constant which is not fixed yet),
and let

β = e−σµn, δ = e−εn. (4.2)

With these choices of constants, we have

1

|ξ|
= β

4k+2+
ε1
σµ = β4k+2τ−1. (4.3)

The constant ε0 in the hypothesis of Theorem 1.3 is defined as ε/((4k + 2)σµ + ε1), which will
be fixed once ε is fixed. Hence regularity scale equals

|ξ|ε0 = e−εn = δ−1. (4.4)

Notation: We state some notation which will be used throughout this section.

• Let g = (g0, . . . , gk) be an element in G×(k+1).

• Let h = (h1, . . . , hk) be an element in G×k.

• We write g ∗ h = g0h1 · · ·hkgk ∈ G be the product of g,h.

• We write Tg ∗ h = g0h1 · · · gk−1hk ∈ G.

• For l ∈ N, let µl,n be the product measure on G×l given by µl,n = µ∗n ⊗ · · · ⊗ µ∗n
l times

.

• Recall that for g, h in G and x in X, we define ψg(h, x) = exp(−2σ(gh, x) +2κ(g) +2nσµ).

• Recall the definition of λg,x. For g in G and x in P(R2), let λg,x be a pushforward measure
on R of µ∗n restricted on a subset Gn,g,x defined by

λg,x(E) = µ∗n{h ∈ Gn,g,x|ψg(h, x) ∈ E},

for Borel subset E, and whereGn,g,x = {h ∈ G|d(ymg , x
M
h ), d(ymh , x) ≥ 2δ, ‖h‖ ∈ β−1[δ, δ−1]}.

• For j = 1, . . . , k, let λj = λgj−1,xMgj
and let

4.1.1 Regularization procedure

First step: Let

f(x, x′) =

∫
eiξ(ϕ(g∗hx)−ϕ(g∗hx

′))r(g ∗ hx)r(g ∗ hx′)dµk+1,n(g)dµk,n(h). (4.5)

Lemma 4.1. We have

|
∫
eiξϕ(x)r(x)dν(x)|2 ≤

∫
f(x, x′)dν(x)dν(x′) (4.6)

Proof. By the Cauchy-Schwarz equuality,

|
∫
eiξϕ(x)r(x)dν(x)|2

= |
∫
eiξϕ(gx)r(gx)dµ∗(2k+1)n(g)dν(x)|2 ≤

∫
|
∫
eiξϕ(gx)r(gx)dν(x)|2dµ∗(2k+1)n(g)

=

∫ ∫
eiξ(ϕ(gx)−ϕ(gx

′)r(gx)r(gx′)dµ∗(2k+1)n(g)dν(x)dν(x′).

With x, x′ fixed considering the following formula, we rewrite the formula∫
eiξ(ϕ(gx)−ϕ(gx

′)r(gx)r(gx′)dµ∗(2k+1)n(g) = f(x, x′)

The proof is complete.
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Definition 4.2 (Good Position). Let x, x′ be in X, we say they are in good position if

d(x, x′) ≥ δ (4.7)

We fix x, x′ in good position, which means x, x′ are separated, and rewrite the formula

Lemma 4.3. We have

|
∫
eiξϕ(x)r(x)dν(x)|2 ≤

∫
d(x,x′)≥δ

f(x, x′)dν(x)dν(x′) +O(δc) (4.8)

Proof. If x, x′ are in bad position, that is

d(x, x′) ≤ δ,

then by regularity of stationary measure (2.11), this part has exponentially small ν⊗ν measure,
that is

ν ⊗ ν � δc. (4.9)

The proof is complete.

Second step: Here we mimic the proof of [BD17], where they heavily use the property of
Schottky group and symbolic dynamics. But in our case, the group is much more complicate in
the point of view of dynamics. We use the large deviation principle to get a same formula.

By very careful control of gl, with a loss exponentially small measure, we are able to rewrite
the formula in a form to use the sum-product estimates. The key point is that by control the
Cartan projection and the position of xMg and ymg of each gl, we are able to get a good control
of their product g ∗ h.

We should be careful that the element with even index will be fixed, and we will integrate
first the elements with odd index. This gives the independence of the cocycle σ(gj−1hj , x

M
gj ),

that is for different j they are independent, which is an important point to apply sum-product
estimates.

By large deviation principle, the property

‖gl‖ ∈ β−1[δ, δ−1]. (4.10)

is true except on an exponentially small set. Then we fix gl for l = 0, . . . k − 1.The following
property of hl+1 with respect to gl

δ(ymhl+1
, xMgl+1

), δ(ymgl , x
M
hl+1

) ≥ 2δ, ‖hl‖ ∈ β−1[δ, δ−1] (4.11)

is true except on an exponentially small set, due to large deviation principle.
We write the main result of this part

Lemma 4.4. With g0, . . . , hk satisfying the above condition (4.10) (4.11), for x ∈ bMgk (β/δ), let
xl = glhl+1 · · ·hkx for l = 0, . . . , k, where we let xk = x. We have

xl ∈ bMgl (β/δ2) (4.12)

|σ(glhl+1, xl+1)− σ(glhl+1, x
M
gl+1

)| � β/δ3. (4.13)

exp(−σ(glhl+1, x
M
gl+1

)) ≤ β2/δO(1) (4.14)

Proof. We use induction to prove the inclusion. For l = k, it is trivial.
Suppose the property holds for l+ 1, then xl = glhl+1xl+1. We abbreviate hl, gl+1, xl+1, x

M
gl

to h, g, x, x′. The condition becomes

d(x, x′) ≤ β/δ2, d(ymg , x
M
h ), d(ymh , x

′) ≥ 4δ and ‖g‖, ‖h‖ ≥ β/δ.
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By (4.11) and Lemma 2.3, due to x ∈ B(x′, β/δ) ⊂ B(x′, δ) ⊂ Bm
h (δ), we have hx ∈

bMh (β/δ2) ⊂ Bm
g (δ). Therefore ghx ∈ bMg (β/δ2).

By (2.1), we have

|σ(gh, x)− σ(gh, x′)| � d(x, x′)

min(d(x, ymh ), d(x′, ymh ))
+

d(hx, hx′)

min(d(hx, ymg ), d(hx′, ymg ))
.

By Lemma 2.3, we have x, x′ ∈ B(x′, β/δ2) ⊂ Bm
h (4δ) and hx, hx′ ∈ bMh (β/δ2) ⊂ Bm

g (δ).
Therefore

|σ(gh, x)− σ(gh, x′)| � β/δ3

.
The third equuality, by (2.2) (2.5)

exp(σ(gh, x′)) ≥ ‖g‖‖h‖d(ymh , x
′)d(ymg , hx

′) ≥ β−2δO(1).

The proof is complete.

Remark 4.5. The intuition here is that by controlling κ(g), xMg , y
m
g , all the other position or

length will also be controlled, which is similar with hyperbolic dynamics.

4.1.2 End of the proof

Third step: We collect the results in the above two steps to give a new formula of the
main term, to which we can apply the sum-product estimates.

We return to (4.8). We call g ”good ” if

g satisfies (4.10) and δ(ymgk , x), δ(ymgk , x
′) ≥ 4δ, |ϕ′(xMg0 )| ≥ δ (4.15)

We call h is g-regular if h satisfies (4.11). Let

fg(x, x′) =

∫
g−regular

eiξ(ϕ(g∗hx)−ϕ(g∗hx
′))dµk,n(h) (4.16)

Lemma 4.6. For x, x′ in X with d(x, x′) ≥ δ

|f(x, x′)| ≤
∫
g”good”

|fg(x, x′)|dµk+1,n(g) +Oε(δ
c), (4.17)

if ε is small enough with respect to γ.

Proof. Let

f̃g(x, x′) =

∫
g−regular

eiξ(ϕ(g∗hx)−ϕ(g∗hx
′))r(g ∗ hx)r(g ∗ hx′)dµk,n(h) (4.18)

We call g ”semi-good” if g satisfies conditions of ”good” without the last inequality on ϕ′. Then
by Large deviation principle,

|f(x, x′)| ≤ |
∫
g

(
|f̃g(x, x′)|+Oε(δ

c)
)

dµk+1,n(g)| ≤
∫
g”semi−good”

|f̃g(x, x′)|dµk+1,n(g) +Oε(δ
c)

(4.19)

Lemma 4.4 and the Hölder norm of r imply

|r(xMg0 )2 − r(g ∗ hx)r(g ∗ hx′)| ≤ 2|r|∞cγ(r)(β/δ)γ ≤ 2βγδ−1−γ ≤ 2δ,
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if ε is small enough with respect to γ. Hence

|f̃g(x, x′)| ≤ |
∫
g−regular

eiξ(ϕ(g∗hx)−ϕ(g∗hx
′))r(xMg0 )2dµk,n(h)|+Oε(δ

c)

≤ r(xMg0 )2|fg(x, x′)|+Oε(δ
c)

(4.20)

By the hypothesis on ϕ′ and (4.4), we have that |ϕ′| ≥ δ−1 on the support of r. So if r(xMg0 ) 6= 0,
then that g is ”semi-good” implies g is ”good”. Combined with (4.19) (4.20), by |r| ≤ 1, we
have

|f(x, x′)| ≤
∫
g”semi−good”

(
r(xMg0 )2|fg(x, x′)|+Oε(δ

c)
)

dµk+1,n(g) +Oε(δ
c)

≤
∫
g”good”

|fg(x, x′)|dµk+1,n(g) +Oε(δ
c).

The proof is complete.

Proposition 4.7. Let Iτ = [τ3/4, τ5/4]. The following formula is true for g good,

|fg(x, x′)| ≤ sup
ς∈Iτ
|
∫
eiςx1···xkdλ1(x1) · · ·λk(xk)|+O(βδ−O(1)τ), (4.21)

when ε is small enough with respect to ε1.

Proof. The element x, x′ and gk are already fixed. Let x̃ = gkx and x̃′ = gkx
′. By (2.4), we have

d(x̃, x̃′) ∈ ‖gk‖−2[δ, δ−2] ⊂ β2[δO(1), δ−O(1)].

Therefore the arc length distance, defined by da(x, x
′) = arcsin d(x, x′), satisfies

da(x̃, x̃′) ∈ β2[δO(1), δ−O(1)]. (4.22)

By Newton-Leibniz’s formula on the circle, we have

ϕ(g ∗ hx)− ϕ(g ∗ hx′) =

∫
ϕ(Tg ∗ hγ(s))′ds, (4.23)

where γ is an arc connecting x̃, x̃′ with unit speed with length less than π/2. Let sj =
gjhj+1 · · ·hkγ(s). By the chain rule, we have

ϕ(Tg ∗ hγ(s))′ = ϕ′(s0)(g0h1)
′(s1) · · · (gk−1hk)′(γ(s))γ′(s). (4.24)

Using the trivialization in Lemma 2.8, we know that the unit tangent vector γ′(s) equals ±1,
depending on the position of x̃, x̃′. Without loss of generality, we suppose that γ′(s) = 1.

By |ϕ′(xMg0 )| ≥ δ, |ϕ′′| ≤ 1/δ and (4.12), we have

|ϕ′(s0)/ϕ′(xMg0 )| ∈ [1± β/δ3]

By Lemma 4.4, we have

(1− β/δ3)e−O(β/δ) ≤ ϕ′(s0)(g0h1)
′(s1) · · · (gk−1hk)′(sk)

ϕ′(xMg0 )(g0h1)′(xMg1 ) · · · (gk−1hk)′(xMgk )
≤ (1 + β/δ3)eO(β/δ) (4.25)

By (4.14), we also have

ϕ′(xMg0 )(g0h1)
′(xMg1 ) · · · (gk−1hk)′(xMgk ) ≤ β4kδ−O(1). (4.26)
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Together with (4.22), (4.23), (4.24), (4.25) and (4.26)

|ϕ(g ∗ hx)− ϕ(g ∗ hx′)− da(x̃, x̃′)ϕ′(xMg0 )(g0h1)
′(xMg1 ) · · · (gk−1hk)′(xMgk )| ≤ β4k+3δ−O(1) (4.27)

Let

ς =
ξda(x̃, x̃′)ϕ

′(xMg0 )(g0h1)
′(xMg1 ) · · · (gk−1hk)′(xMgk )

Πk
l=1ψgl−1

(hl, xMgl )
= ξda(x̃, x̃′)ϕ

′(xMg0 )β2k‖g0‖−2 · · · ‖gk−1‖−2

Due to ξ = τβ−(4k+2), by (4.10) (4.22) we have ς ∈ |τ |[δO(1), δ−O(1)] ∈ [|τ |3/4, |τ |5/4], when δ is
large enough with respect to τ .

Hence by (4.27)

|ξ(ϕ(g ∗ hx)− ϕ(g ∗ hx′))− ςΠk
l=1ψgl−1

(hl, x
M
gl

)| ≤ βδ−O(1)τ (4.28)

By definition, the distribution of ψgl−1
(hl, x

M
gl

) with hl of law µ∗n is the measure λl. At last,
due to |eix − eiy| ≤ |x− y| for x, y ∈ R, the inequality (4.28) implies (4.21).

Fourth step: Another difference with [BD17] is that we avoid using the renewal idea, which
simplifies the proof of this part. The renewal idea is that instead of using µ∗n, we use a renewal
measure µt, which is defined to be the law of g1 · · · gn for the first time that its Cartan projection
exceeds t. Because we generalize the sum-product estimate to a form that the measure can have
a support depend on the frequency, and we use the large deviation principle to prove that our
measure has a support not too large with respect to the frequency.

We are able to apply sum-product estimates.
For j = 1, 2, . . . k, Proposition 3.8 tells us that with ε small enough depending on ε3ε, there

exists C0 such that the measures λj satisfy the conditions in Proposition 3.7 with τ .

Proof of Theorem 1.3. Proposition 3.7 implies

|
∫

exp(iςx1 · · ·xk)dλ1(x1) . . . dλk(xk)| ≤ C0|τ |−ε2 .

By (4.8) (4.17) (4.21), we have

|
∫
eiξϕ(x)r(x)dν(x)|2 �ε δ

c + βδ−O(1)τ + |τ |−ε2 .

Due to βδ−O(1)τ = e(−σµ+O(1)ε+ε1)n, take ε small enough. The proof is finished.

4.2 From Fourier decay to spectral gap

In this section, we will prove the theorem of uniform spectral gap. The first part is classic,
where we use some ideas of Dolgopyat [Dol98] to transform the problem to an effective estimate
Proposition 4.12, see also [Nau05] [Sto11]. The key observation is that this effective estimate
(Proposition 4.12) can be obtained by the Fourier decay, regarding the difference of cocycle as
an function on X.

The intuition here is from Lemma 2.9. When g, h are in general position and x not too
close to ymg , y

m
h , the difference σ(g, x)− σ(h, x) will satisfy the conditions in Theorem 1.3.

We state our main result of this section

Proposition 4.8. With the same assumption as in , there exists ρ < 1, C > 0 such that for all
b large enough, a small enough and f in Cγ(X), we have

|Pna+ibf |γ ≤ C|b|2γρn|f |γ (4.29)
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Theorem 1.2 follows directly from this proposition.

Definition 4.9 (µ, γ contraction). [BQ16] If there exist C > 0, ρ < 1 such that for all x 6= x′

in X ∫ (
d(gx, gx′)

d(x, x′)

)γ
dµ∗n(g) ≤ Cρn (4.30)

Proposition 4.10. [BL85, V, Thm.2.5][BQ16, Prop 11.10, Lem.13.5] For every γ small enough,
there exist C > 0 and 0 < ρ < 1 for all f in Cγ(X)

|Pnf |∞ ≤ |
∫
X
fdν|+ Cρn|f |Cγ (4.31)

We start to consider complex perturbation of the transfer operator. For z ∈ C, write
z = a+ ib. This is classic priori estimate, we recall a proof for completeness.

Proposition 4.11. [GLP16, Cor.3.21] For every γ small enough, there exist ρ < 1 and C > 0
such that for f in Cγ(X) and |a| small enough

|Pnz f |∞ ≤ C |a|n|f |∞ (4.32)

cγ(Pnz f) ≤ C(C |a|n|b|γ |f |∞ + ρncγ(f)) (4.33)

Proof. The first inequality is due to the finiteness of the exponential moment and the Jensen
inequality.

For the γ norm

ezσ(g,x)f(gx)− ezσ(g,y)f(gy) = (ezσ(g,x) − ezσ(g,y))f(gx) + ezσ(g,y)(f(gx)− f(gy))

LetAn = |
∫
G
ezσ(g,y)(f(gx)−f(gy))

d(x,y)γ dµ∗n(g)| andBn = |
∫
G

(ezσ(g,x)−ezσ(g,y))f(gx)
d(x,y)γ dµ∗n(g)|. By Cauchy-

Schwarz’s inequality

An ≤ cγ(f)

∫
G
eaσ(g,y)

d(gx, gy)γ

d(x, y)γ
dµ∗n(g)

≤ cγ(f)

(∫
G
e2aσ(g,y)dµ∗n(g)

)1/2
(∫

G

(
d(gx, gy)

d(x, y)

)2γ

dµ∗n(g)

)1/2

One term is controlled by (4.32), the other term is due to (µ, γ) contraction. Therefore when a
small enough, there exists ρ1 < 1 such that An ≤ C1ρ

n
1cγ(f), where C1 > 0.

Since
|ec − ed| ≤ (2 max(e<c, e<d))1−γ(max(e<c, e<d)|c− d|)γ

for c, d in C, we have

|ezσ(g,η) − ezσ(g,y)|
d(η, y)γ

≤ (2e|a|κ(g))1−γ(e|a|κ(g)|z|Lip(σ(g, ·)))γ ≤ 2e|a|κ(g)+γκ0(g)|b|γ ,

where κ0(g) is the Lipschitz norm of σ(g, ·) and κ0(g) ≤ C‖κ(g)‖ by [BQ16, Lemma 13.1]. Then
by the hypothesis of finite exponential moment and Hölder’s inequality, we have

Bn ≤ |b|γ |f |∞C(|a|+γ)n
1

(we take the same constant C1). Therefore

cγ(Pnz f) ≤ C1ρ
n
1cγ(f) + |b|γC1+(|a|+γ)n

1 |f |∞ (4.34)
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We want the term C
(|a|+γ)n
1 does not depend on γ. Fix n large enough such that C1ρ

n
1 =

ρ2 < 1. For natural number N , iterate (4.34) N times and use (4.32). We have

cγ(PnNz f) ≤ ρ2cγ(Pn(N−1)z f) + |b|γC1+(|a|+γ)n
1 |Pn(N−1)z f |∞

≤ ρ2cγ(Pn(N−1)z f) + |b|γC1+(|a|+γ)n
1 |f |∞C |a|n(N−1)1

≤ cγ(f)ρN2 + |b|γC1+(|a|+γ)n
1 |f |∞

C
|a|nN
1

1− ρ2C−|a|n1

≤ cγ(f)ρN2 +On(|b|γC |a|nN1 )|f |∞

(4.35)

Given m ∈ N, we can write m = nN + r with r ∈ [0, n− 1]. Therefore by (4.35) (4.34)

cγ(Pmz f) = cγ(PnN+rf) ≤ ρN2 cγ(P rz f) +On(|b|γC |a|nN )|P rz f |∞
≤ ρN2 (C1ρ

r
1cγ(f) + |b|γC(1+(a+γ)r)

1 |f |∞) +On(|b|γC |a|m1 )|f |∞.

By setting ρ = ρ
1/n
2 and choosing C large enough, we have (4.33).

Recall the norm |f |γ,b = |f |∞ + |f |γ/bγ . We reduce Proposition 4.8 to the following propo-
sition.

Proposition 4.12. For γ small enough, for |b| large enough and |a| small enough, there exists
ε1, C1 > 0 such that for f holder, satisfies |f |γ,b ≤ 1, we have∫ ∣∣∣PC1 ln |b|

a+ib f
∣∣∣2 dν ≤ e−ε1 ln |b| (4.36)

From Proposition 4.12 to Proposition 4.8. We set N = C1 ln |b|, using (4.31) for PmN , (4.36)
for PNz f and (4.33) for PNz

|P (m+1)N
z f |2∞ ≤ C |a|mN |PmN |PNz f |2|∞ ≤ C |a|mN (

∫
|PNz f |2dν + ρmN |PNz f |2Cγ )

≤ C |a|mN
(
e−ε1N/C1 + ρmN (C1+|a|N (1 + bγ) + CρNbγ)2

) (4.37)

So we can choose m large such that ρmN |b|2γ = ρmC ln b|b|2γ < 1. This m is only depend on
γ,C and ρ. By continuity of a we obtain the equality for infinity norm. That is when m large

enough and a small enough depend on m we have |P (m+1)N
z f |2∞ � |b|−ε2 , where ε2 > 0

For γ norm, we use (4.33) for (PNz , P
(m+1)N
z f) and (P

(m+1)N
z , f)

cγ(P (m+2)N
z f)/|b|γ ≤ C |a|N |P (m+1)N

z f |∞ + ρNcγ(P (m+1)N
z f)/|b|γ

≤ C |a|N |P (m+1)N
z f |∞ + ρN (C1+|a|mN |b|γ + ρmN |b|γ)/|b|γ

Then, when |b| is large enough and a is small enough, we have

|P (m+2)N
z f |γ,b ≤ |b|−ε3 (4.38)

(where we should use (4.37) with m replaced by m+ 1).
Let N1 = (m+2)N = (m+2)C1 ln |b|. Given n, we can write n = dN1 +r with 0 ≤ r < N1.

By (4.38), (4.32), (4.33)

|Pnz f |γ,b ≤ |b|−ε3d|P rf |γ,b ≤ |b|−ε3dC1+|a|r ≤ C|b|ε3ρn,

where ρ = |b|−ε3/N1C |a| = e
− ε3

(m+2)C1C |a|. The result follows by taking |a| small enough.
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From Fourier decay to Proposition 4.12. We need to reduce (4.36) to Fourier decay. Let n =
C1 log |b| (with C1 ≥ max{1/σµ, 1}), let δ = e−εn (with ε > 0 to be determined later), and let
Gn,ε be defined by

Gn,ε = {(g, h) ∈ G2|d(ymg , y
m
h ) > δ, ‖g‖, ‖h‖ ∈ eσµn[δ, δ−1]}. (4.39)

For |f |γ,b ≤ 1∫
|Pnz f |2dν =

∫
eiz(σ(g,x)−σ(h,x))f(gx)f(hx)dν(x)dµ∗n(g)dµ∗n(h)

=

∫
Gn,ε

∫
X
eiz(σ(g,x)−σ(h,x))f(gx)f(hx)dν(x)dµ∗n(g)dµ∗n(h) + µ∗2n(Gcn,ε)

(4.40)

Since the support of the µ-stationary measure is contained in the image of the flag variety
X. Hence a function on the support of ν can be lifted to a function on X. We will use the same
character, and from now on all the functions are on X. Let

Xg,h = X − {x ∈ X|δ(x, ymg ) ≤ δ} − {x ∈ X|δ(x, ymh ) ≤ δ}

and let ρ be a smooth function on R such that ρ|[0,∞) = 1, ρ takes values in [0, 1], suppρ ⊂ [−1,∞)
and |ρ′| ≤ 2. Let

ϕ(x) = (σ(g, x)− σ(h, x))ρ(
d(x, ymg )

δ
− 2)ρ(

d(x, ymh )

δ
− 2)

and

r(x) = f(gx)f(hx)ea(σ(g,x)−σ(h,x)ρ(
d(x, ymg )

δ
− 3)ρ(

d(x, ymh )

δ
− 3).

Then eibϕr(x) equals eiz(σ(g,x)−σ(h,x))f(gx)f(hx) on X−B(ymg , 3δ)−B(ymh , 3δ). By Lemma 2.9,
we have |ϕ′| ≥ δ on Xg,h, which contains the support of r.

Lemma 4.13. With C1 > 1/σµ and |a| small enough depending on ε, we have

|ϕ|C2 + cγ(r) ≤ eεO(1)n.

The functions ϕ and r satisfy the condition in Theorem 1.3 with ε0 = εO(1)C1. Hence
taking ε small enough according to ε0, by Theorem 1.3, we have

|
∫
eibϕ(x)r(x)dν(x)| ≤ |b|−δ1 . (4.41)

Let Ag,h =
∫
X e

iz(σ(g,x)−σ(h,x))f(gx)f(hx)dν(x). The difference of Ag,h and
∫
eibϕ(x)r(x)dν(x) is

bounded by ν(B(ymg , 3δ) ∪B(ymh , 3δ))� e−cεn = |b|−c/C1 . Therefore

Ag,h � |b|−δ1 + |b|−c/C1 .

Combined with (4.40), the proof is complete.

It remains to prove Lemma 4.13.

Proof of Lemma 4.13. We need a lemma to control the derivative of the function multiplied with
a cutoff.

Lemma 4.14. Let f be a γ-Hölder function on X, and let ρ be a smooth truncate function (that
is 0 ≤ ρ ≤ 1), then

cγ(ρf) ≤ cγ(ρ)|f |∞ + cγ(f |suppρ) (4.42)
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Proof. For x 6= x′ in X, we have

A(x, x′) = |ρf(x)− ρf(x′)

d(x, x′)γ
| ≤ |f(x)(ρ(x)− ρ(x′))

d(x, x′)γ
|+ |ρ(x′)(f(x)− f(x′))

d(x, x′)γ
| (4.43)

If x or x′ is not in suppρ, by symmetry we can suppose that x′ is not in suppρ, then (4.43)
implies that A(x, x′) ≤ |f |∞cγ(ρ)

Else, we have A(x, x′) ≤ cγ(ρ)|f |∞ + cγ(f |suppρ).

By Lemma 4.14, we only need to control the Cγ norm on the support of the cutoff function
and the maximal norm.

The term |ϕ|C2 is controlled by Lemma 2.9, and we have |ϕ|C2 ≤ eO(1)εn.
The term cγ(r) is more complicated. We have

cγ(f(g·)|Xg,h) ≤ cγ(f) sup
x1 6=x2,x1,x2∈Xg,h

(
d(gx1, gx2)

d(x1, x2)
)γ ≤ (|b|e−2κ(g)+2εn)γ ≤ (|b|e(−2σµ+4ε)n)γ

Due to n = C1 log |b|, we have |b|e(−2σµ+4ε)n = |b|1+C1(−2σµ+4ε). Hence, take ε small and take
C1 ≥ 1/σµ. This implies cγ(f(g·)) ≤ 1.

Using Lemma 2.9 with c equal to δ, one has

cγ(eaσ(g,x)|Xg,h) ≤ e|a|κ(g)(1−γ)(e|a|κ(g)|a|Lip(σ(g, ·)|Xg,h))γ ≤ e|a|κ(g)(|a|δ−1)γ

≤ e|a|nσµδ−(a+γ)|a|γ = e(|a|σµ+(|a|+γ)ε)n|a|γ

Hence, when |a| is small enough depending on ε, we have cγ(eaσ(g,x)|Xg,h) ≤ eεO(1)n. The maximal

value is bounded by e|a|κ(g) ≤ e|a|(σµ+ε)n. Therefore |eaψ(g,x)|∞ ≤ eεO(1)n.

5 Applications

5.1 Exponential decay in the Renewal theorem

We define a renewal operator R as follows. For a positive bounded Borel function f on
X × R, a point x in X and a real number t, we set

Rf(x, t) =

+∞∑
n=0

∫
G
f(gx, σ(g, x)− t)dµ∗n(g).

Because of the positivity of f , this sum is well defined. In [Kes74], Kesten proved a renewal
theorem for Markov chains, which is valid in our case [GLP16]. In this section, we will prove
that the speed of convergence is exponential using our result on the spectral gap.

The main properties of P (z) are summarized as follows

Proposition 5.1. For any γ > 0 small enough, there exists η > 0 such that when |<z| < η, the
transfer operator P (z) is a bounded operator on Hγ(X) and depends analytically on z. Moreover
there exists an analytic operator U(z) on a neighborhood of |<z| < η such that the following holds
for |<z| < η

(I − P (z))−1 =
1

σµz
N0 + U(z), (5.1)

where N0 is the operator defined by N0f =
∫
fdν. For z. There exists C > 0 such that for

|<z| ≤ η
‖Uz‖γ ≤ C(1 + |=z|)2γ . (5.2)
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This is generalization of [LI17, Prop. 4.1] [Boy16, Theorem 4.1], the proof is exactly the
same. The only difference is that the spectral radius of Pz is bounded below 1 in a strip of
imaginary line (except at 0), from which we have analytic continuation of Uz to the strip. (??
Proposition 4.8) The idea is due to Guivarch and Le Page.

Proposition 5.2. There exists ε > 0 such that for ϕ ∈ C∞c (R), we have∫
ϕ(σ(g, x)− t)dµ̄(g) =

1

σµ

∫ ∞
−t

ϕ(u)du+ e−ε|t|O(eε|suppϕ|(|ϕ′′|L1 + |ϕ|L1)). (5.3)

Proof. By [LI17, Lemma 4.5], we have

Rf(x, t) =
1

σµ

∫ ∞
t

f(y, u)dudν(y) +
1

2π

∫
eitξU(iξ)f̂(x, ξ)dξ.

Hence, we only need to control the error term.
By Proposition 5.1, we have that U(z) is analytical on {z ∈ C||<z| ≤ η} and uniformly

bounded by (1 + |=z|)2γ .

Lemma 5.3. [RS75, Thm.IX14] If T is in S ′(R), the distribution T has analytic continuation
to |=ξ| < a and sup|x|<a

∫
|T (ix + y)|dy < ∞, then Ť is a continuous function. For all b < a,

let Cb = max
∫
|T (±ib+ y)|dy. We have

|Ť (x)| ≤ Cbe−|b|x. (5.4)

By |ϕ̂(iε+ ξ)| ≤ eε|suppϕ| 1
|ξ|2 |ϕ

′′|L1 , and |ϕ̂(ξ)| ≤ eε|suppϕ||ϕ|L1 , we have

|ϕ̂(ξ)| ≤ eε|suppϕ| 2

1 + |ξ|2
(|ϕ′′|L1 + |ϕ|L1).

Then by Lemma 5.3, we have

|
∫
ϕ̂(ξ)U(iξ)1(x)e−itξdξ| = |F−1(ϕ̂(ξ)U(iξ)1(x))(t)| ≤ e−ε|t|max |ϕ̂(±iε+ ξ)U(∓ε+ iξ)1(x)|L1(ξ)

≤ eε|suppϕ|e−ε|t|
∫

2

1 + |ξ|2
(|ϕ′′|L1 + |ϕ|L1)|U(∓ε+ iξ)1(x)|dξ

�γ e
ε|suppϕ|e−ε|t|(|ϕ′′|L1 + |ϕ|L1).

The proof is complete.

Corollary 5.4. There exists ε > 0 such that for I = [0, a] an interval in R we have

R1I(x, t) =
a

σµ
+Oa(e

−εt), (5.5)

where 1I is the characteristic function of I.

Proof. The idea is rather simple, using to smooth function to bound 1I from above and from
below. For δ > 0, let I(δ) = [−δ, a+ δ] and I(δ) = [δ, a− δ]. Let ρδ,1, ρδ2, be two smooth function

such that ρδ,1|I = 1, suppρδ,1 ⊂ I(δ) and ρδ,2|I(δ) = 1, suppρδ,2 ⊂ I. Then

R1I(x, t) ≤ Rρδ,1(x, t) ≤
a+ 2δ

σµ
+O(e−ε(t−a)(|ρ′′δ,1|L1 + |ρδ,1|L1))

Due to |ρ′′δ,1|L1 � 1/δ and |ρδ,1|L1 ≤ a + 2δ. Taking δ = e−εt/2, we have R1I(x, t) ≤ a/σµ +

Oa(e
−εt/2). The other direction of R1I is due to the same estimate by replacing ρδ,1 by ρδ,2.
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