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Abstract

We establish an exponential error term for the renewal theorem in the context of products
of random matrices, which is surprising compared with classical abelian cases. A key tool
is the Fourier decay of the Furstenberg measures on the projective spaces, which is a higher
dimensional generalization of a recent work of Bourgain-Dyatlov.

Résumé: On établit un terme d’erreur exponentiel dans le théoréeme de renouvellement
dans le cadre de produits de matrices aléatoires, qui est inattendu par rapport au cas classique
abélien. L’outil clef est le décroissance de Fourier de mesures de Furstenberg sur les espaces
projectifs, qui est une généralisation en dimension supérieure d’un travail récent de Bourgain-
Dyatlov.

1 Introduction

Let V be a finite dimensional irreducible representation of a split semisimple Lie group G
(For example G = SL;,,+1(R) and V = R™F!). Let X = PV be the real projective space of
V', which is the set of lines of V. Then we have a group action of G on X. Let u be a Borel
probability measure on G and let I', be the subgroup generated by the support of . We call
p Zariski dense if I', is a Zariski dense subgroup of G. This means that the measure ;1 does
not concentrate on any proper algebraic subgroup of G. We also need the hypothesis of finite
exponential moment. If G is a subgroup of a matrix group, the definition of exponential moment
is that there exists € positive such that

/ lgll“dpi(g) < oo.
G

For the general case, please see Definition 2.49. From now on, we always suppose that the
measure p is Zariski dense with a finite exponential moment.

We can give a random walk on X = PV induced by p. Fix a point z in X. At each
step, we go to a random point gx, where g is a random element in G with law pu. By a
theorem of Furstenberg, this random walk has a unique stationary measure v on X, called
the Furstenberg measure or the p-stationary measure. That is to say, the measure v satisfies
v =pxv = [ g«vdu(g), where g,v is the pushforward of v by the action of g on X. This measure
was introduced by Furstenberg when he established the law of large numbers for products of
random matrices. The properties of the u-stationary measure are also important in other limit
theorems for products of random matrices.

For any natural number n, let u*” be the n-times convolution of the measure p. If
Xq,--+,X, are i.i.d. random variables in G with the same distribution p, then p*" is the
distribution of the product X;Xs---X,. We are interested in the limit distribution of the
product.



Renewal theorem

Let || - || be a norm on V. For g in G, let ||g|| be its operator norm. For a positive bounded
Borel function f on R and a real number ¢, we define the renewal sum for norm by

+oo
Ref(t) =Y [ fog gl =)
n=0

Because of the positivity of f, this sum is well defined. It is natural to try to relate the limit
law for norms to the limit law for cocycles. We define the cocycle function ¢ : G x X — R by,
for x =Rv in X and g in G, o(g,z) = log llgvll -~ For o positive bounded Borel function f on R,

l[oll -
the renewal sum for cocycles is defined by

+o0
Rf(z,t) = Z /G flo(g,z) —t)du*"(g), for x € X and t € R.
n=0

The renewal theorem was first introduced by Blackwell and in our situation by Kesten [Kes74].
The main result (due to Guivarc’h and Le Page [GLP16]) is that when time ¢ tends to infinite,
the renewal sum Rf(z,t) tends to é [ f, where o, is the Lyapunov constant defined by o, :=
Joxx o(g,z)du(g)dv(x). From the definition, we see that the Lyapunov constant ¢, is an
average of the cocycle function o (g, x) with respect to the measure u ® v. The renewal theorem
gives us a phenomenon of equidistribution when the time ¢ is large enough.

Theorem 1.1. Let G be a connected algebraic semisimple Lie group defined and split over R
and let G = G(R) be its group of real points. Let u be a Zariski dense Borel probability measure
on G with a finite exponential moment. Let V' be an irreducible representation of G with a norm.
There exists € > 0 such that for f € CX(R) and t € R, we have

1 oo
Rf(xt) = — / f(u)dLeb(u) + Op(e=M),
-t
and if the norm is good
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where Oy depends on the support and some Sobolev norm of f.

Remark. For limit law of norms we need an additional hypothesis that the norm is good. For
exzample, when G = SLy,11(R) and V = R™ L any euclidean norm on R™* is a good norm.
For the definition, please see Definition 2.8.

We should compare this result with the renewal theorem on R (the commutative case). If
1 is a measure on R whose support is finite, then the error term in the renewal theorem is never
exponential.

Our result improves a result of Boyer [Boy16], where the error term is polynomial on ¢t. We
hope this type of result can give some exponential error terms in the orbital counting problem
of higher rank. Given a discrete subgroup I' of SL,,+1(R), we are interested in the asymptotic
growth of #{~ € I'| d(y0,0) < R}, where o is the base point in SL;,+1(R)/SO(m + 1). See for
instance Lalley [Lal89], Quint [Qui05] and Sambarino [Sam15]. This type of error term is always
connected with some spectral gap property. Before going to more technical results, we give a
simple example of Fourier decay, which is the key tool used in the proof of spectral gap.

!For example, G = SLy,11, m > 1.



Fourier decay

Before stating our main result of Fourier decay, we introduce another property of the sta-
tionary measure. Guivarc’h established the Hoélder regularity of stationary measures, which
means that there exist C, ¢ positive such that for every r positive, the r neighbourhood of any
hyperplane in X has v measure less than Cr¢. This implies that the stationary measure v has
positive dimension. This also says that v does not concentrate on some hyperplane, which is
reasonable due to the hypothesis of Zariski density of u.

Let us see the example G = SLa(R) and X = P(R?). Fix the identification of P(R?) with
the circle T ~ R/7Z, given by the transitive action of the group PSOs. We can define the
Fourier coefficients of the stationary measure v by

v(k) = / #Mdu(z), for k € Z.
T

Theorem 1.2. Let pu be a Zariski dense Borel probability measure on SLa(R) with a finite
exponential moment. Let v be the u-stationary measure on T. Then there exists € positive such
that

[2(k)| = O(Ik[~). (1.1)

In other words, the Fourier coefficients of the stationary measure have polynomial decay. By
a general argument, the polynomial decay of Fourier coefficients implies Guivarc’h’s regularity.
But the regularity is also a crucial ingredient in the proof. This generalizes the recent work of
Bourgain-Dyatlov [BD17]. For more similar results, please see [LI18a] and its references.

A similar Fourier decay for the Lie group SLa(C) is established in [LNP19] for Patterson-
Sullivan measures, which cannot be treated by our method due to the non splitness of SLy(C).
It would also be interesting to establish a similar Fourier decay for the group SL2(Q),) and the
stationary measure on P(l@p.

Spectral gap

Equip PV with a Riemannian distance. For v positive, let C7(PV') be the space of y-Hélder
functions. We introduce the transfer operator, which is an analogue of the characteristic function
in our case.

Definition. For z in C with the real part |[Rz| small enough, let P, be the operator on the space
of continuous functions, which is given by

P@) = [ 0D fg)ip(o). forx BV

We keep the assumption that p is a Zariski dense Borel probability measure on G with a
finite exponential moment. The use of this transfer operator on the products of random matrices
has been introduced by Guivarc’h and Le Page. Due to the property of exponential moment,
when |Rz| is small enough, the operator P, preserves the Banach space C7(PV) for v > 0 small
enough. Due to the contracting action of G on X, for z in a small ball centred at 0, the spectral
radius of P, on C7(PV) is less than 1 except at 0. Due to the non-arithmeticity of I',, on the
imaginary line, the operator P, also has spectral radius less than 1 except at 0. These were used

to give limit theorems for products of random matrices by Le Page and Guivarc’h (Please see
[LP82] and [BQ16]).

Theorem 1.3. Let G be a connected algebraic semisimple Lie group defined and split over R
and let G = G(R) be its group of real points. Let u be a Zariski dense Borel probability measure
on G with finite exponential moment. Let V be an irreducible representation of G with a norm.
For every v > 0 small enough, there exists 6 > 0 such that for all |b| > 1 and |a| small enough
the spectral radius of P,1, acting on C7(PV) satisfies

P(Pa—i-ib) <1-4.



Even in the case of SLa(R), the result is new and only known in some special case. When p
is supported on a finite number of elements of SLa(R) and these elements generate a Schottky
semi group, this result is due to Naud [Nau05]. When p is absolutely continuous with respect
to the Haar measure on SLy(R), this result can be obtained directly using high oscillations.

It is interesting that the three objects, the Fourier decay, the Renewal theorem and the
spectral gap are roughly equivalent. In [LI18a], we use the Renewal theorem to prove the
Fourier decay. In this manuscript, we use the Fourier decay to prove the spectral gap, and then
use the spectral gap to prove the Renewal theorem. They are analogue with similar objects
for convex cocompact surfaces. In this more geometric setting, the Fourier decay was recently
studied by Bourgain-Dyatlov; the spectral gap can be interpreted as the zero free region of the
Selberg zeta function or the gap of the eigenvalues of the Laplace operator on the surface; the
renewal theorem is replaced by the counting problem of the lattice points or the primitive closed
geodesics. Please see Borthwick [Bor07] and the references there.

This result should be compared with similar results for random walks on R. Let u be a
Borel probability measure on R with finite support. Then

liminf |1 — 4(ib)| = 0,

|b]—o00
which is totally different from our case and where fi(2) is the Laplace transform of the measure
1, given by

i) = [ (o).

The proof is direct. Let {x1,...,2;} be the support of u. Then [i(ib) = Elgjgl,u(xj)eibxj,
and we only need to find b such that all the terms are uniformly near 1. Using the fact that
liminfy_, o0 dgi (b(21, . . ., 1), 27Z) = 0, we have the claim.

An analogous result is valid if we replace the projective space PV by the flag variety &2.
Let & be the full flag variety of G and let a be a Cartan subspace of the Lie algebra g of G.
For g € G and n € &, let o(g,n) be the Iwasawa cocycle, which takes values in a. We fix a
Riemannian distance on &. We can similarly define the space of «-Hélder functions C7(Z2).
Let w, ¥ be in a*. For a continuous function f on & and |w| small enough, the transfer operator
P9 on the flag variety is defined by

fgwﬂmzéémeMV@mmm

Theorem 1.4 (Spectral gap). Let G be a connected algebraic semisimple Lie group defined
and split over R and let G = G(R) be its group of real points. Let u be a Zariski dense Borel
probability measure on G with finite exponential moment. For every v > 0 small enough, there
exists 0 > 0 such that for all ¥,w in a* with |9| > 1 and |w| small enough the spectral radius of
P4 acting on CV(2) satisfies

p(Pw+i19) <1-4.

Main technical result

The key ingredient of the proof of the above results is the following Fourier decay property
of the p-stationary measure on the flag variety &?. We start with the case for SLa(R).

Theorem 1.5. Let p be a Zariski dense Borel probability measure on SLo(R) with a finite
exponential moment. Let X = P(R?) and let v be the u-stationary measure on X .

For every v > 0, there exist ¢g >,€1 > 0 depending on p such that the following holds. For
any pair of real functions f € C*(X), r € CV(X) and & > 0 such that || > €70 on the support
of ry |7|lce < 1 and

[ellcz + ¢y (r) < €%,
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then
‘/ei€¢’(m)r($)dy(l‘) <& for all € large enough.

Remark 1.6. Theorem 1.2 is a corollary Theorem 1.5. This is also a generalization of the same
theorem for the Patterson-Sullivan measures as in [BD17].

Theorem 1.5 is a particular case of a more general result: Theorem 1.7 below. In order
to state the Fourier decay on the flag variety, we need to introduce a special condition. Let
r be a continuous function on & and let C > 0. For a C? function ¢ on &, we say ¢ is
(C,r) good if it satisfies some assumptions on the Lipschitz norm and derivative, which will be
defined later (Definition 4.1). Recall that for a «-Holder function f, we have defined ¢, (f) =
SUP, £ %' Due to some technical problem, we will only prove a simply connected case
in Section 4. (For example the group SL,,11 is simply connected but PGL,,+1 is not.) The
general case will be proved in Appendix 5.1 by a covering argument.

Theorem 1.7 (Fourier decay). Let G be a connected R-split reductive group whose semisimple
part is simply connected and let G = G(R) be its group of real points. Let p be Zariski dense Borel
probability measure on G with finite exponential moment. Let v be the p-stationary measure on
the flag variety 2.

For every v > 0, there exist g > 0,e1 > 0 depending on p such that the following holds.
For any pair of real functions ¢ € C*(P), r € CV(P) and € > 0 such that ¢ is (£°,r) good,
I7loo <1 and cy(r) < £, then

‘/eig‘p(mr(n)dy(n)‘ <& for all € large enough. (1.2)

Remark 1.8. The decay rate only depends on the constants in the large deviation principles and
the regularity of stationary measures. This should be compared with [BD17], where the spectral
gap and the decay rate only depend on the dimension of the Patterson-Sullivan measure.

When G = SLy(R), the (C,r) goodness is exactly the assumption of ¢ in Theorem 1.5,
which is natural for having a Fourier decay. Theorem 1.7 clearly implies Theorem 1.5.

The proof of Theorem 1.7 follows the similar strategy as in [BD17]. But in this higher
dimension and higher rank case, new difficulties appear and we need new ideas to overcome
these difficulties.

The main difficulty comes from higher dimension, that is the verification of a subtle non-
concentration hypothesis, which is also the main difficulty that prevents Bourgain-Dyatlov from
generalizing their result to higher dimension [BD17, Page 4]. For applying the higher dimensional
discretized sum-product estimate, Proposition 3.17 (a generalized version of a result of Bourgain
[Boul0]), we need to verify certain measures on R are not concentrated on any affine subspaces
of R™. The key idea is to transfer the problem to an estimate of volume, which gives non-
concentration for all affine subspaces simultaneously (Corollary 3.6). Then we use representation
theory and Guivarc’h regularity to verify the condition in Section 3.

Another difficulty comes from the higher rank. In rank one case, the action of group G on
the flag variety & is conformal. But in higher rank case, this is not true. Using root systems,
we are able to find the directions of slowest contraction speed on the tangent bundle of the flag
variety &2 under the action of GG, explained in Section 2.

Notation

We will make use of some classical notation: for two real functions f and g, we write
f=0(g),f < gorg> fif there exists a constant C' > 0 such that |f| < Cg, where C only
depends on the ambient group G and the measure y. We write f < g if f < g and g < f. We
write f = Oc(g), f <c g or g > f if the constant C' depends on an extra parameter ¢ > 0.



We always use 0 < § < 1 to denote an error term and 0 < § < 1 to denote the magnitude.
The quantity 87! is supposed to be greater than 6O, If O f < ¢ < §79M) f, then we say
that f and g are of the same size.

2 Random walks on Reductive groups

The representation theory of algebraic groups is more clear than the representation theory
of Lie groups. We will use the vocabulary of algebraic groups. In this manuscript, without
further assumption, we assume G is a connected R-split reductive R-group. From Section 2.3
to Section 4, we add the assumption that the semisimple part is simply connected. Please see
[Hel79], [Bor90] and [BQ16] for more details.

We write G for an algebraic group, and G = G(R) for its group of real points, equipped
with the Lie group topology.

2.1 Reductive groups and representations
Reductive groups

Let G be a connected R-split reductive R-group. Let A be a maximal R-split torus in G.
Because G is R-split, the group A is also the maximal torus of G and the centralizer of A
in G is A. Let C be the connected component of the centre of G, which is contained in the
maximal torus A. The semisimple part of G is the derived group G = [G,G]. Let B be
the subtorus of A given by A N 2G. The dimension of A and B are called the reductive rank
and the semisimple rank of G, respectively. We write  and m for the reductive rand and the
semisimple rank.

Because we are dealing with real groups, we will use transcendental methods to describe
the structure of G. Let G, A, B and C be the group of real points of G, A,B and C. Let
0 be a Cartan involution of G which satisfies #(A) = A and such that the set of fixed points
K = {g € G| 6(g9) = g} is a maximal compact subgroup of G. Let g,¢, a,b and ¢ be the Lie
algebra of G, K, A, B and C, respectively. Then a = b @ ¢ due to g = Zg ® ¢. We write exp for
the exponential map from a to A. We also write 6 for the differential of the Cartan involution,
whose set of fixed points is £ and which equals —id on a.

For X,Y in g, the Killing form is defined as

K(X,Y) = tr(adXadY).

The Killing form is positive definite on b and negative definite on ¢. Endowed with the Killing
form, the Lie algebra b and its dual b* become Euclidean spaces.

Root systems and the Weyl group

The spaces b* and ¢* are seen as subspaces of a*, which takes value zero on ¢ and b,
respectively. Let R be the root system of g with respect to a, that is the set of nontrivial weights
of the adjoint action of a on g. It is actually a subset of b*. Because ¢ is in the centre of g,
its adjoint action on g is trivial. Fix a choice of positive roots RT. Let II be the collection of
primitive simple roots of RT. Let at be the Weyl chamber defined by {X € a|a(X) >0, Va €
IT}. Let a™ be the interior of Weyl chamber defined by {X € a|a(X) > 0, Va € I1}. Using the
root system, we have a decomposition of g into eigenspaces of a,

0=30Pa*
aER

where 3 is the centralizer of a and g is the eigenspace given by

g ={Xeg| [V, X]=aY)X forall Y € a}.



Since the group G is split, we know a = 3 and that g* are of dimension 1.

Recall that for every root a in R, there is an orthogonal symmetry s, which preserves R
and so(a) = —a. For a € R, let H, be the unique element in b such that s, (o) = o/ —a/(Hy)a
for o/ € b*. The set {H,| o € R} is called the set of duals roots in b. Since the Cartan involution
0 equals —id on a, this implies 0g® = g~ for a € R. Using the Killing form, we can prove that
(6%, 8% = RH,. (See [Ser66, Cha. 4, Theorem 2] for more details) Hence, there is a unique
choose (up to sign) X, € g%, Y, € g~% such that

[Xa,Ys] = Hy and 0(X,,) = —Y,.

Let K, = X, —Y,. Due to 0K, = K,, the element K, is in &.

Let W be the Weyl group of R. Then the group W acts simply transitively on the set of
Weyl chambers. Let wg be the unique element in W which sends the Weyl chamber a™ to the
Weyl chamber —a*. Let t = —wyq be the opposition involution. The Weyl group also acts on a*
by the dual action. Let Ng(A) be the normalizer of A in G. An element in Ng(A)/A induces
an automorphism on the tangent space a. This gives an isomorphism from Ng(A)/A to the
Weyl group W. Hence wy can be realized as an element in G/A and its action on a is given by
conjugation.

The Iwasawa cocycle

Let n = ®pcr+9® and 1~ = Bycr+g @ They are nilpotent Lie algebras. Let N be the
connected algebraic subgroup of G with Lie algebra n. The group N is normalized by A. Let
P = A x N be a minimal parabolic subgroup. The flag variety &7 is defined to be the set of
conjugations of P under the action of G. Since the normalizer of P in G is itself, we have an
isomorphism

G/P — Z.

We write 7, for the subgroup P seen as a point in &?. Let M be the subgroup of A, whose

element has order at most two. Since A is isomorphic to (R*)", we know that M ~ (Z/2Z)" and

A =M x A, where A, = exp(a) is the analytical connected component of A and A, ~ (Rs¢)".
Let G° be the connected component of the identity element in G.

Lemma 2.1. Let G be a connected R-split reductive R-group. Then we have K = K°M.

Proof. By Matsumoto’s theorem [Mat64], we have G = G°A = G°M. Hence the group M
intersect each connected component of G. We claim that K = K°M.

We know that K D K°M, because the group M equals to AN K due to [Ben05, Lemme
4.2]. This can be proved directly by considering the action of the Cartan involution on M. The
group K°M intersects each connected component of G and the intersection with G° contains
K°. By maximality of K, we conclude that K = K°M. O

We have an Iwasawa decomposition of G given by
G =KAN.

The action of K on & is transitive. Hence & is a compact manifold. By Lemma 2.1, we have
G=KAMN = KA.N. This is a bijection between G and K x A, x N. Then we can define
the Iwasawa cocycle o from G x &2 to a. Let n be in & and g be in G. By the transitivity of
K, there exists k € K such that n = kn,. By the Iwasawa decomposition, there exists a unique
element o(g,n) in a such that

gk € K exp(o(g,m))N.

We can verify that this is well defined and ¢ is an additive cocycle, that is for g, h in G and 75
in &
o(gh,n) = o(g, hn) + o(h,n).



Due to the direct sum a = b & ¢, we can decompose the Iwasawa decomposition into the
semisimple part and the central part of the cocycle, that is

a(g,m) = 0ss(g,m) + c(g),

where o4 lies in b and ¢(g) in ¢. The central part ¢(g) does not dependent on 7, because the
map

G- G/2G

kills the semisimple part and the restriction on C, = exp(c) is injective. Moreover, since the
Iwasawa cocycle is additive, the central part is additive. That is for g,h in G

c(gh) = c(g) + c(h).

The Cartan decomposition

The Cartan decomposition says that G = KATMK = KATK, where AT is the image of
the Weyl chamber a* under the exponential map. For g in G, by Cartan decomposition, we
can write g = kgagly with kg, ¢, in K and a4 in A*. The element a, is unique and there is a
unique element x(g) in at such that a; = exp(k(g)). We call k(g) the Cartan projection of g.
Then r(g~!) = tk(g), where ¢ is the opposition involution. Since A is contained in P, we can
define (, = wpmn,, where the element wp in the Weyl group is seen as an element in G/A. (As an
element in &, (, is the opposite parabolic group with respect to P and A) Let né\/[ = kyno and
G = Eg—lg“o. When £(g) is in at™, they are uniquely defined, independently of the choice of kg
and /.

We can also define a unique decomposition of k(g) into semisimple part and central part.
Due to k(g) = a(g,4,'10) = 0s5(g, L5 10) + c(g), we have

r(9) = kss(g) + c(g).

Dominant weights

Here, we need the hypothesis that ZG is simply connected.

Let X(A) and X(B) be the character groups of A and B, respectively. We will identify
X(A) and X(B) as discrete subgroups of a* and b* by taking differential. The elements of a* in
X(A) are called weights. All the roots are weights, because they come from adjoint action of A
on g<.

Since {Hg }aer is a basis of b, let {@Wq }aem be the dual basis, it is called the fundamental
weights. Since the derived group ZG is simply connected, we have

X(B) = @acnZig. (2.1)

Since B is a closed subgroup of a split torus A, every character on B extends to a character on
A. Hence for o € II there exist

Xao € X(A) such that xa|p = @a- (2.2)

We fix this choice of x,. We write w, for the element in a* which is another extension of &,
and vanishes on ¢, that is
Walp = Qo and wy e = 0. (2.3)

The element w, is not always a character of A, but a multiple of w, will be a character of A.
Because w, can be expressed as a linear combination of simple roots with rational coeflicients.

Recall that a weight is a dominant weight, if for every w in the Weyl group W, the difference
X — w(x) is a sum of positive roots.



Lemma 2.2. If G is simply connected. For every a € 11, the weight xo s a dominant weight.

Proof. The action of the Weyl group on ¢*, the linear functionals vanishing on b, is trivial.
Because @, is a fundamental weight, we know that

Xo — W(Xa) = Wa — W(Wa)

equals a sum of positive roots. The proof is complete. O

Representations and highest weight

Let (p,V) be a linear finite dimensional algebraic representation of G. We only consider
finite dimensional representations here. The set of restricted weights 3(p) of the representation
is the set of elements w in a* such that the eigenspace

V¢ ={v e VIVX € a, dp(X)v = w(X)v}

is nonzero, where dp is the tangent map of p from g to End(V). From definition, we see that
w is the differential of a character on A, which is a weight. We define a partial order on the
restricted weights: For wq,ws in 3(p),

w1 > Wy < wy — wo is a sum of positive roots.

If w is in 3(p), then we say that w is a weight of V' and a vector v in V* is said to have weight
w. We call p proximal if there exists x in ¥(p) which is greater than the other restricted weights
and such that VX is of dimension 1. We should pay attention that a proximal representation is
not supposed to be irreducible. The advantage of the splitness of G is that all the irreducible
representations are proximal, which will be extensively used later on.

Suppose that (p,V) is an irreducible representation. Let y € a* be the highest weight
of (p,V). We write V, , = p(g)VX for n = gn,, which is well defined because the parabolic
subgroup P fixes the subspace VX. This gives a map from & to PV by

P =PV, ni= Vi (2.4)

In the case of split reductive groups, for a character y on A, there exists a irreducible
algebraic representation with highest weight x if and only if x is a dominant weight [Tit71]. Let

O, ={aell: x —ais a weight of p}.
By Lemma 2.2, we have

Lemma 2.3. If 2G is simply connected. There exists a family of representations (pa, Va)acll
such that the highest weight of po is Xxo. Furthermore, ©, = {a}. The product of the maps
given by (2.4)

P — [[ PVar 0= Vyamact,
a€ell

is an embedding of & to the product of projective spaces.

Lemma 2.4. Let (p,V) be an irreducible representation of G with highest weight x. Then
O, = {a} is equivalent to say that x(Ha) > 0 for only one simple root .

Proof. Consider the representation of the Lie algebra s, =< H,, X4, Ysa > on v of highest
weight. By the classification of the representations of sly, we know that Y,v # 0 if and only
if x(Hy) > 0. The vector Y,v is the only way to obtain a vector of weight x — a by [Ser66,
Chapter 7, Proposition 2]. The proof is complete. ]



This lemma explains for p,, we have ©,, = {a}, due to xo(Hg) = @a(Hg) = dag. This
family of representation will be fixed from now on until Section 4.3.
For a € 11, let

Xa = NaWa, Where n, € N and Y, is a dominant weight. (2.5)

This gives another family of representations V,, which will be used only in Section 4.3. The
main difference with y, is that Y, vanishes on ¢. For semisimple case, the elements wq, Xa, Xa
are the same.

Definition 2.5 (Super proximal representation). Let (p, V') be an irreducible representation of
G with highest weight x. We call V' super prozimal if the exterior square N2V is also prozimal.
This is equivalent to ©, = {a}, and VX~ is of dimension 1.

Lemma 2.6. If the highest weight x of an irreducible representation satisfies x(Hy) > 0 for
only one simple root «, then this representation is super proximal.

Proof. Because the central part of G preserves eigenspaces of A. It is also an irreducible repre-
sentation of the semisimple part. It will be thus sufficient to prove the semisimple case.

Let o be the simple root. Let v be a nonzero vector with highest weight x. By [Ser66,
Chapter 7, Proposition 2], the representation V' is generated by vectors Yp, ---Yp, v, where

b1, .- ., Bk are positive roots. Hence a vector of weight x — o can only be obtained by Y,v. The
dimension of VX~% is no greater than 1. Since y — « is a weight due to Lemma 2.4, the proof
is complete. O

For y € a*, if it is a weight, we will use x* to denote its corresponding algebraic character
in X(A). By the definition of eigenspace VX, we have

Lemma 2.7. Let (p, V) be an irreducible representation of G. Let x* be an algebraic character
of A. Fora in A and v € VX, we have

play = i (a)v.

This lemma will be used to determiner the sign in Section 2.5.

Representations and good norms
Definition 2.8. Let || - || be an euclidean norm on a representation (p,V) of G. We call || - || a
good norm if p(A) is symmetric and p(K) preserves the norm.

By [Hel79], [BQ16, Lemma 6.33], good norms exist on every representation of G. One
advantage of good norm is that for v,u in V and g in G

(p(g)v,u) = (v, p(6(g~ " )u)),

where 6 is the Cartan involution. The above equation is true because it is true for g in A and
K. This means that for good norm we have

"o(g) = p(0(g™1)). (2.6)
The application (2.4) enables us to get information on & by the representations. For an element
g in GL(V), let ||g|| be its application norm.

Lemma 2.9. Let G be a connected reductive R-group. Let (p, V') be an irreducible linear repre-
sentation of G with good norm. Let x be the highest weight of V. For n in & and a non zero
vector v € V, ,, we have

””W” = exp(xo(g,m)), (2.7)

lp(9)ll = exp(xr(g))- (2.8)
Please see [BQ16, Lemma 8.17] for the proof.
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Examples

For the group GL,,+1, the maximal torus A can be taken as the diagonal subgroup and
the Lie algebra a is the set of diagonal matrices. The Lie algebra b is the subset of a with
trace zero. The Lie algebra ¢ = {X € a| 21 = 23 = -+ = Zpy1}. For X in a, we write
X = diag(z1, ..., Tmy1) with z; € R. Let A; in a* be the linear map given by \;(X) = z;. The
root system R is given by

R:{AZ—)\]’Z#], and i,jE{l,...,m+1}}.

A choice of positive roots is A; — A; with @ < j. The set of simple roots is Il = {A\; — A\iy1]i =
1,...,m}. Let o; = \; — A\it1. The Weyl chamber is

ot ={X€alry >23> > Tmi1}

The fundamental weights are wq, = A1+ -+ A; for i = 1,...,m on b. The weights xa, has the
same form as @,, in a. The weights wa, = Xa, — #H(Al + -+ Am+1). The representations V,
are given by Vg, = A'R™*! for 4 = 1,...,m. The maximal compact subgroup K is O(m + 1)
and the parabolic group P is the upper triangular subgroup and N is the subgroup of P with
all the diagonal entries equal to 1. The flag variety & is the set of all flags

WicWycC---C Wy,

where W; is a subspace of R™*! of dimension i.

Let €;; be the square matrix of dimension m + 1 with the only nonzero entry at the i-th
row and j-th column, which equals 1. The element H,, is €; — €j4+1,i+1. The element X,,,Y,,
are given by €; i1, €;+1,4. The Cartan involution 6 is the additive inverse of the transpose, that
is (X) = —'X for X in a.

The Weyl group W is isomorphic to the symmetric group .%,,1+1. The action on a is simply
given by the permutation of coordinates and the element wy sends X = diag(xi,...,Zm+1) to
’LUoX = diag(:pmH, ceey :L‘l).

2.2 Linear actions on vector spaces

Let V be a vector space with euclidean norm. Then we have an induced norm on its dual
space V*, exterior powers A7V and tensor products @7V .
For z = Rv, 2’ = Rv' in PV, we define the distance between x, 2’ by

lo A Y|
d(z,2') = ————. (2.9)
[ol[l[o"]l
This distance has the advantage that it behaves well under the action of GL(V'). See for example
Lemma 2.11. For y = Rf in PV*, let y = P(ker f) C PV be a hyperplane in PV. For z = Rv
in PV, we define the distance of = to y by

)]
o) = 1Al

which is explained by 6(z,y) = d(x,y*) = ming¢,1 d(x,2"). Let Ky be the compact group which
preserves the norm. Let A$ be the set of diagonal elements such that {a = diag(ai, - ,aq)|ar >
ag > -+ > aq}, under the basis {e1, -+ ,eq}. Let Af," be the interior of Af;. For g in GL(V),

by the Cartan decomposition we can choose

g = kgagly, where ay € A, and k¢, ¢, € Ky (2.10)
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Let :vé\/[ = Rkgeqr and y" = R'get be the density points of g on PV and g on PV*, which is
unique and independent of the choice of basis when a, is in A;;f For r > 0 and g in GL(V), let

b{%g(r) ={z e ]P’V]d(x,méw) <r},
B{}:‘g(r) ={z € IPV](S(x,y;”) >r}.

These two sets play important role when we want to get some ping-pong property. The elements
in set B"}fg have distance at least r to the hyperplane determined by y;". For g in GL(V), let

2
Y1,2(9) == w be the gap of g.

Distance and norm

We start with general g in GL(V), where V is a finite dimensional vector space with
euclidean norm. We need some technical control of distance. These are quantitative versions of
the same controls in [Qui02, Lemma 2.5, 4.3, 6.5].

For g in GL(V) and = Rv € PV, we define an additive cocycle oy : GL(V) x PV — R by

lgoll
o]

oy(g,z) = log (2.11)

This is called cocycle, because for g, h in GG, we have
UV(.ghv .1‘) = UV(ga hx) + UV(h> .%‘)
We fix the operator norm || - || on GL(V).

Lemma 2.10. For any g in GL(V) and x in PV, we have

ool
O(z,y) < <1. 2.12
(@95") < Tl (2:12)

Please see [BQ16, Lem 14.2] for the proof.
Lemma 2.11. Let § > 0. For g in GL(V), if B = y1.2(g) < 62, then

e the action of g on Bﬁg(é) is 36~2-Lipschitz and

9By, (8) C byl (B6™) C b/, (6),

e the restriction of the real valued function oy (g,-) on By} (9) is 26~ 1-Lipschitz.

Proof. Due to [BQ16, Lem 14.2],

d(gz, 2" )5 (x,y)") < na2lg) = B

Hence
d(gz, ") < Bo(x,yg) < B,

which implies the inclusion.
For x = Rv and 2’ = Rv’ in By} (6), by (2.12), we have

llgv A g/ lo Ao || ol ||| o2
d(gz, gz') = < m2(g)d(z,2")02,
o AV ol llgvllllge |

which implies the Lipschitz property of g.
For the Lipschitz property of oy (g, ), please see [BQ16, Lemma 17.11]. O

12



For two different points x = Rv and 2’ = Rv’ in PV, we write z A 2’ = R(v Av') € P(A?V).
Lemma 2.12. For any g in GL(V) and two different points x = Rv, 2’ = Rv' in PV, we have

d(gz, gz')
/ m )
7172(9)6(1./\3; 7y/\29) S d(x’x/) * (213)
Proof. By definition and (2.12), we have
lgv A gV'|| [lo AV [[of ||| / /
d(gz,gx') = > y12(9)0(z A’ Yy, )d(x, x").
o AV (oIl [} llgvllllgo'l o
The proof is complete. ]

2.3 Actions on Flag varieties
Representations and Density points

Now, suppose that V is a representation of G with a good norm. Recall that VX is the
eigenspace of the highest weight. Let V* be the dual space of V. The representation of G on
V* is the dual representation given by: for g € G and f € V*, let p*(9)f = ‘p(¢g~')f. This
definition gives

(0" (9)f. plg)v) = ("plg™ ") f, p(g)v) = (f,v),

for f in V* and v in V. Then the highest weight of V* is tx. The following results explain the
relation between different definitions by using combinatoric information on root systems and
representations.

Lemma 2.13. We claim that for every irreducible representation V. and weight x,
Vi, = VOX, (2.14)
Proof. This can be verified as follows: For X in a and v in VX,
dp(X)p(wo)v = wodp(we X )v = x(weX )wov = (wex) (X )wov.
The proof is complete. O]

Lemma 2.14. Let V be a proximal representation of G. Then we have

:L“]pv([g) = p(kg)V* and yp(,y = b)) (V*)X. (2.15)
If V is irreducible, then we have
M _ mo /¥
Totg) = Viemyt and Ypig) = Vigp-
Proof. Let {e1,...,eq} be an orthonormal basis of V' composed of eigenvectors of p(A) such that

e1 € VX. Then p(A) is diagonal. For g = exp(X) € AT, since x is the highest weight, we have
a1 = exp(x(X)) = az, .. au

By the definition of a good norm, p(K) preserves the norm. Hence for ¢ in G, the formula
p(g) = p(kqg)p(ag)p(£y) is a decomposition which satisfies (2.10) in the previous paragraph with

some permutation of {es,...,eq}. But these permutations do not change the density points.
Hence we have x']o\/([g) =Rp(kg)er = p(kg)VX. If V is irreducible we have x%g) = Vi

In the dual space, we can verify that e] has weight —x, which is the lowest weight in weights
of V*. By the same argument as in PV, we have

yntg) = Rip(Lg)et = ‘p(Ly) (V)7
We also have a map from & to PV*. Hence by (2.14) with representation V* and weight ¢y,
we know V* . = (V*)WorX = (V*)7X. For ¢ = g(, in &, by definition,

tX,Co
Vive = 9Vixe, =9V (2.16)
Since V is irreducible, by (2.16) we have y;’”(”g) = tp(ﬁg)(V*)*X = p*(ﬁg*l)(V*)*X =V* O

oGEE
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Distance on Flag varieties

For « in II, we abbreviate V,, », VL’;Q ¢ to Van V;C. For g in G, by Lemma 2.14, we find
#M =V  u and y;’Z(g) =V

pal(9) a,ng g For n,n in 2, let
dOé (777 77,) = d(VOé,’m Voz,'r]’)

be its distance between their images in PV,. We define a distance on the flag variety. It is the
maximal distance induced by projections,

d(n,1') = maxd(Vay, Voy)- (2.17)
ac
We have another embedding of the flag variety

7 = [[Pv).

a€cll

For ¢ = k(, € &, by definition, we have Vac=kVy. . Forne & and ( € &, we set
5(777 Q) = glellI_[l(S(Vam, a,C)'

In particular, because the images of 1,, (, in PV,,, PV are VXe (V*)™Xe we know 6(Vap, V;,Co) =
§(VXe (V*)~Xe) =1, and then
3(Noy Co) = 1. (2.18)

We write
b%’g(r) ={ze PVa\d(:c,x%(g)) <r},
By, 4(r) ={z € PVa|d(z,yp! ) =T}
They are subsets of PV,. Write
by (r) = {n € PIVa 1L, Vo, € by, (1)} = {n € 2ldn.n,") <r},
By'(r) ={ne ZPNa ell, Vo, € By, ,(r)} ={ne 2[6(n,¢") = r}.
They are subsets of &2.

Distance and norms

We need a multidimensional version of the lemmas in Section 2.2. They are about the
similar quantities on flag varieties. The idea is to use all the representations p,. For an element
X in b, we have

sup [xa ()] < X ]| < sup [xa (X)) (2.19)
a€cll a€cll

Using Lemma 2.9, (2.19) and o(g,n) — k(g) € b, we deduce the following two lemmas from
Lemma 2.10 and Lemma 2.11

Lemma 2.15. For g in G and n in &,

llo(g,m) — K(g)|l < [log d(n, ¢")l-
For g in G and « € II, by Lemma 2.9,

H /\2 pa(g)H (2xa—a—2xa)k(9) —ak(g)
o = — ¢ @ @ =e .
71,2(/0 (.g)) Hpa(g)HQ

Let

v(g) = 51613 e~ r9), (2.20)

We call it the gap of g.
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Lemma 2.16. Let § > 0. For g in G, if 8 = v(g) = supaep exp(—ax(g)) < 62, then
e the action of g on B*(9) is B6~2-Lipschitz and

9By (8) C b)Y (B5") C by (5),

e the restriction of the a-valued function o(g,-) on By*(d) is O(6~Y)-Lipschitz.

These properties tell us that the action of an element g on a large set of the flag variety &2
behaves like uniformly contracting map.

We also need to compare the distance on the projective space and the flag variety. Recall
the map from & to PV defined in (2.4).

Lemma 2.17. Let (p, V) be an irreducible representation of G with highest weight x. There
exists a constant C > 0 depending on the chosen norm such that for n,n" in 2,

d(Vym, Vay) < Cd(n,1). (2.21)
The intuition is that a differentiable map between two compact Riemannian manifolds is
Lipschitz. For more details, please see Corollary 5.9 in Appendix 5.2.

2.4 Actions on the tangent bundle of the Flag variety

In this section, we will study the action of G on the tangent bundle of &?. Recall that
P ~ G /P is the flag variety and P = AN is a parabolic subgroup.
We first study the tangent bundle of the homogeneous space

Py = G/AN.

Recall that A, is the analytical connected component of A, given by exp(a). Note that the left
action of K on  is simply transitive (due to the Iwasawa decomposition in split case). Let z,
be the base point A.N in &;. We can identify the left K-invariant vector fields as

T.,20 = T:,(G/AN) ~ g/p.
Hence the tangent bundle of &7y has an isomorphism
TPy~ Py % g/p,

that is because we can identify the tangent space at z, and z = kz, by the left action of k.
We denote by (z,Y) a point of T%y where z is in &y and Y is in g/p. We use elements in
nT = @,cpt+0 @ as representative elements in g/p.

Then we describe the left action of G on T ). Take Y in g=% and z = kz, in &y. For g in
G, by the Iwasawa decomposition we have a unique k¥’ in K and a unique o(g, k) in a such that
gk =k'p € K exp(o(g,k))N, where p € A.N. Here o(g, k) is understood as o (g, kn,). Due to

gkexp(tY)z, = k'pexp(tY )z, = k' exp(tAd,Y )z,
by taking derivative at ¢ = 0, the left action of g on the tangent vector (z,Y") satisfies
Lg(zv Y) = (zla Ade),

where 2’ = k'n, and Ad is the adjoint action of P on g/p.

Now we restrict our attention to simple roots. Let a be a simple root. Due to Y € g=%, we
have AdyY C Y + a+n, which implies that the unipotent part N acts trivially on (g~ +p)/p.
By p € exp(o(g, k))N, we have

Ad,Y = exp(—ao(g,k))Y on (g7 +p)/p. (2.22)
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This means that the line bundle &2y x g~ is stable under the left action of G, and we call it
the a-bundle.
The flag variety &2 is a quotient of &y by the right action of group M, due to A = M A..
We use 7 to denote the quotient map. The right action of M also induces an action on the
tangent bundle. For (2,Y) in 7%, and m in M, by kexp(tY)mz, = kmexp(tAd,,-1Y)z,, we
have
Ry (kz0,Y) = (kmzo, Ad,,—1Y). (2.23)

Descending to the quotient implies the tangent bundle of &2 satisfies
TSP ~ Py xu9/p,

which is the quotient space of & x g/p by the equivalence relation generated by the action of
M, (2.23). Due to M < A, its adjoint action preserves the line g~ in g/p. Hence the a-bundle
on & descends to a line bundle on &, and we call it &, a subbundle of the tangent bundle.
The integral curves of a-bundle on & are closed, and we call them a-circles on &y. At a point
z = kz, in Py, it is given by

Yo : R = Py, t — kexp(tKq)zo. (2.24)

This can be verified directly, because the tangent vector of the curve at time ¢ is (74(t), Kqo) =
(7a(t),Yy), due to the definition of g/p, which belongs to the a-bundle. The one parameter
subgroup {exp(tK,) : t € R} is a compact subgroup of G, which is isomorphic to SO(2). We
call it O,,.

Under the right action of M, the a-circles on &y descends to the a-circles on .

Lemma 2.18. Under the map (2.4), the image of the a-circle containing n = kn, in PV, is the
projective line generated by po(k)VXe and po(k)VXe—2,

Let x be a dominant weight such that x(H,) = 0. Then the image of an a-circle in PV, is
a point.

Proof. Since a-bundle is left K-invariant, the set of a-circles are also left K-invariant. It is
sufficient to consider the a-circle containing 7,. Let (p, V) be an irreducible representation of
highest weight x. By (2.24) and (2.4), the image of a-circle is given by p(O,)VX.

Consider the Lie algebra s, generated by H,, X4, Y, which is isomorphic ot sls. For v in
VX, we have dp(Hy)v = x(Hg)v. Due to the classification of the irreducible representation of
sla, the irreducible representation V; of s, generating by VX is of dimension x(H,) + 1.

When x satisfies x(Hy) = 0, the above argument implies that V] is a trivial representation
and p(O,) acts trivially on V;. Hence the image of the a-circle is a point.

When x = xa, the same argument implies V; is of dimension 2. Another eigenspace of V;
is VXe=@_ The group p(O,) acts as SO(2) on Vi, which implies the result. O

Remark 2.19. If we introduce the partial flag variety Pn_(qy, then a-circle is simply the fibre
of the quotient map & — Pr_(qy. This point of view also implies Lemma 2.18.

Generally, the a-bundle on & is non trivial in the sense of line bundle.

Example 2.20. Let G be SL3(R). Recall that
a={X = diag(z1,x2,23)| 1 + z2 + 23 =0, x1, 22,29 € R},

and a1,y are two simple roots given by o = A1 — Ao and as = Ao — A3. The group M 1is
{e,diag(1, —1, —1),diag(—1,1, —1),diag(—1, —1,1)} ~ (Z/27Z)%. We have

Adgiag(1—11)Ye, = ol (diag(1,—1,~1))Ya, = —Ya,.
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In this case the action of M is nontrivial and it is not a normal subgroup of K = SO(3). The
a-bundle on &P restricted to an a-circle is roughly a Mdbius band.

In this case, ai-circles are given by {Wi; C Wa}, where Wy is a fized two dimensional
subspace of R3 and Wy varies in one dimensional subspaces of Wy. On the contrary, as-circles
are given by {Wy C Wa} with W fized and Wy varying in two planes which contain Wy. From
this description, we can easily see the G invariance of the set of a circles.

It is better to work on &), where the a-bundle is trivial. One difficulty is that in the
covering space &, we need to capture the missing information of group M. More precisely, for
h in G and z,2" in P if hr(z), hn(2') are close, we do not know whether hz, hz’ are close or
not. This will be answered at the end of Section 2.5.

Remark 2.21. In an abstract language as in [BQ14, Lemma 4.8], we have a principal bundle
M — Py — &, where the action of M on Py is a right action. We also have a left action of
a semigroup I' in G on Py and & (I' will be taken as I'y, in our case). Suppose that we have
a I-minimal set Ar in &2. The lifting of Ar to Py has different possibilities. Let n be a point
in Ar and z = kz, be a lifting in Py. Let M, = {m € M|Tkm = Tk}. Then we have a nice
equivalence

{T" — minimal orbit in Py} «— M\ M.

In particular, if T is a semigroup of matrices of positive entries, then M, = {e} and T has the
maximal number of minimal orbits in .
2.5 The sign group

Recall the notation for reductive groups and Lie algebras. Let N~ be the subgroup with Lie
algebra n~. We have a Bruhat decomposition of the reductive group G([Bor90, 21.15]), where
the main part is given by

N xMxA. xN — G.

The image U is a Zariski open subset of G and the map is injective. For elements in U, we
can define a map m to the group M, mapping an element g to the part of M in the Bruhat
decomposition.

A part of M is given by the different connected components of G. Let

My = MNG° and M; :M/Mo,

the quotient group. Let my(X) be the set of connected components of a topological space X and
let #mo(X) be its number.

Lemma 2.22. Let G be a connected R-split reductive R-group. If G is simply connected, then
M N B = M,.

Proof. Recall that B= AN 2G. Due to G D K°,
MNB=MNANZ2G)=MnN2G>MnNK°.

Since M is a subset of K, we see that My = M NG° =M NKNG° =M N K° On the other
hand, since G is simply connected, the group of real points ZG is connected in the Lie group
topology. Therefore

MNK°=My=MnNG°D>MNZPG=MnB.
The proof is complete. O

Let % = G/A.BN.
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Lemma 2.23. The homogeneous space &1 has the same number of connected components as
Py, that is #m0(Py) = #m0(P1) = #70(My1), and each connected component of P is isomor-
phic to &2 as topological spaces.

Proof. Since G is connected, we know A.BN C A.Z2G C G°. The number of connected
components of &1 equals to #mo(G) = #70(H).
The degree of covering & — & equals to

#(A/A.B) = #(M/M N B).
By Lemma 2.22, we have M N B = Mj. Hence

#(A/AeB) = #(M/My) = #mo(M) = #70(G) = #mo(21).
Since &2 is connected, the result follows. O

Hence, the M; part can be determined by seeing in which connected component of G
the element g is. Later, we want to know for two near elements g,¢’ in G, whether we have
m(g) = m(¢’) or not. The connected component is easy to determine and in later proof we will
skip the step for verifying the connected component.

In order to study the My part, we will use representations defined in Lemma 2.3. This
is in the same spirit as the treatment of the sign group M in [Ben05]. Let v, be a non zero
eigenvector with highest weight x, in V. Let sg be the sign function on R.

Lemma 2.24. For g in U, we have

Sg(“aa pa(g)voc> = Xi(m(g)),

where XFI is the corresponding algebraic character on A of the weight x4 .

Proof. Since v, is N-invariant and the Cartan involution # maps N~ to N, by (2.6)

(Vas pa(NTMAN)va) = { pa(N7 )00, pa(MAN)va) = (pa(0(N7))va; pa(MAcN)vq)
= <p0‘(N)U0“ pOé(MAeN)UOé> = <7Ja, pa(MAe)Uoz>'

The action of A, does not change the sign, hence by Lemma 2.7 we have
Sg<va> pa(g)va> = Sg<va, pa(m(g))va> = Xg(m(g))'
The proof is complete. ]

In the simply connected case, we have X(B) = @qeniZiy. Due to My = M N B, we know
that Xﬂa(m) = a;fi(m) for m in Mj. Therefore

Lemma 2.25. The function I e Xﬁa : My — R™ given by
Moen X5 (m) = (X4 (m))acn  for m € My,
18 injective.
Definition 2.26. We define the sign function from G x G to M U {0} by

o Jm@@g ) if (g7 g €U,
mig.g) = {0 if not,

where g,g are in G and 0 is the Cartan involution.
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Figure 1: Angle

This definition exploits the relation between g and ¢g’. More precisely, for u,v in V, we have
(v, pa(0(g7 1) g )u) = (pagv, pag'u), which explains the definition. Due to #(N) = N~, the sign
function m factors through G/A.N x G/A.N = Py x Py.

We now explain the sign function for the case m = 1, that is GL2(R). We only need to
consider the representation of GLa(R) on R2. Let vy = <(1)> be a vector with highest weight in

R2. Then

(v0,0(9~")g'vo) = {gvo, g'vo),
which is the inner product of the first column of g and ¢’. The sign function is used to determine
whether these two vectors gug, g'vg have an acute angle and whether g and ¢’ are in the same

connected component.
By the Bruhat decomposition, we have the following lemma.

Lemma 2.27. For g,q' in G and m in M, we have

m(g,g'm) = m(gm,g') = m(g, g")m.

Lemma 2.28. Take a Cartan decomposition of g, that is g = kqagly € KAYK. Then for h in
G,
m(kg> gh) = m(£;17 h)

The key observation here is that the sign function is locally constant. Recall that (,
is point in & and its image in PV is the linear functional on V,, which vanishes on the
hyperplane perpendicular to VXe«. Recall that 6(n,{) = mingen 5(Va,n,V;£) and d(n,n') =
maXeaell d(Vam, Va,n’)-

Lemma 2.29. For kq, ko, ks in K, if 6(kano, k1(o) > d(kano, k3n,), then

m(kl, kg) = m(kl, /{3)m(k2, kg).
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Proof. By Lemma 2.27, it is sufficient to consider k; € K°. By definition, we have d(kan,, k1) =
5(k1_1k2770,C0) and m(ki, ko) = m(id, kl_lkg). Hence, we can suppose that k1 = e, the iden-
tity element in K. Lemma 2.24 and Lemma 2.25 imply that it is sufficient to prove that if
d(kano, Co) > d(kamo, k3n,) and m(ka, k3) = e, then for every simple root «, we have

88(Va, pa(k2)va) = 88(Vas pa(k3)va)-

Fix a simple root a in II. Abbreviate vy, pa(k2)va, pa(ks)ve to vi,ve,v3. Let 91 be the
angle between the vector vo and the hyperplane vf and let 99 be the angle between vy and vs.
Due to m(ks, k3) = e, this implies

0 < (v1, ky 'k3vr) = (kovy, kzv1) = (v2,v3),

the angle 99 is acute. The image of (y in PV} is given by R(v1,-). The hypothesis §(kano, (,) >
d(kano, ksn,) implies that

sinty = <U1,U2> > ||U2 /\Ug” = sin¥s.

Hence 99 < ¥ and vo, v3 are in the same side of the hyperplane vf-, which implies sg(v1,v2) =
sg(vy,v3). Please see figure 1. O

We state a consequence of Lemma 2.29 which will be used in Section 4.2 to get independence
of certain measures \;.

Lemma 2.30. Let 6 < 1/2, let g,h be in G and k, k" in K. If h,k, k" satisfy
d(kno, k'no) < 8, kno, k'no € B,Zn(é),néw € By'(30) and v(h) < 62,

then
m(kg, ghk) = m(¢; ", bk )m(k, K).

Proof. By Lemma 2.27, it is sufficient to prove the case that m(k, k') = e and k, k' in K°. By
Lemma 2.28,

m(kg, ghk) = m((; ', hk). (2.25)

Denote k1o, k'no by ,1'. Then by Lemma 2.16, we have hn, hn) € b} (5) C By*(25). Hence by
d(hn, b)) < 26 < 6(hn, (") = 6(hn, £;'¢,) and Lemma 2.29, we have

m(¢, ", hk) = m((, ", hk"Ym(hk, hK'). (2.26)
The main point here is to prove the following lemma.
Lemma 2.31. Under the same assumption as in Lemma 2.30, we have
m(hk, hk") = m(k, k).
Combined with (2.25) and (2.26), the proof is complete.

O

B (6), we can chose a ¢, in the Cartan decomposition h = kjpanf, such that m(f;l, k) =
By Lemma 2.29, the hypothesis that d(kn,,¢; '¢,) > & > d(kno, k'no) implies m(¢, ', k)
m(¢;, ' k) = e. By Lemma 2.28, we conclude that e = m(ky, hk) = m(¢; 1, k) = m(¢, 1, k') =
m(kp, hk'). Here we need a distance dy on &y, which is defined in Appendix 5.2. Let z = kz,
and 2/ = k'2,. By Lemma 5.8,

Proof of Lemma 2.31. Without loss of generality, suppose that m(k, k') = e. Due to kn, €
e.

do(hz, hz') < do(hz, zp,) + do(z, h2') < d(hkne, ni) + d(nt, hk'n,). (2.27)
Hence by (2.27), we have do(hz,hz’) < 2§ < 1, which implies m(hk, hk') = e due to Lemma
5.8. O

The proof of Lemma 2.31 also says that if z, 2’ are close and away from the bad subvariety
defined by h, the gap of h is large, then hz, hz’ are also close.
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2.6 Derivative

Let ¢ be a C' function on #2;. We will give some property of the directional derivative of
. We write 0,¢ for the directional derivative Oy, ¢, where « is a simple root. It turns out later
that these directions are the major directions when we consider the action of G on &.

Definition 2.32 (Arc length). Let z1, zo be two points in the same a-circle in Py. If m(z1, z2) =
e, we define the arc length distance between zi, zo by

da(z1, z2) := arcsind(mz1, m22).

Remark 2.33. This is a restriction of left K-invariant distance, which can be induced by the
K-invariant Riemann metric do in the appendiz.

Lemma 2.34 (The Newton-Leibniz formula). Let 21,22 be two points in the same a-circle on
Py such that m(z1,22) = e. Let u = da(z1,22) and let v : [0,u] — Py be the curve in the
a-circle connecting z1, zo with unit speed (in the sense of arc length). Then for g in G

p(g21) — p(gza) = + /0 Datpgn(sye 2797 ds, (2.28)

where the sign depends on the direction of .

Remark 2.35. The a-circle already has an orientation given by Y,. The sign is negative if the
curve v is negatively oriented.

Proof. Without loss of generality, suppose that ~ is positively oriented. Recall that K, =
Y, — X4 for a € II. The images of K, and Y, coincide in g/p. Then ko = kj exp(uK,) and
v(s) = k1 exp(sKq)zo for s € [0,u]. By the Newton-Leibniz formula and (2.22) we have

u

SO(QZQ) - gO(ng) :/0 d(pg’y(s)dg'y(s)Kads :A d(Pg'y(s)dg'y(s)Yads
:/0 A g (s) exp(—aa(g,v(s)))Yads:/O 8ag0m(s)e_w(g’7(s))ds.

The proof is complete. O

For m in M and « in II, by Lemma 2.7 with the adjoint representation of G on g, due to
Y, € g~%, we have Ad,,Y, = (—a)¥(m)Y, = af(m)~1Y, = of(m)Y,. The last equality is due to
of(m) € {#1}. Thanks to (2.23), we have

Lemma 2.36. Let m be in M and let ¢ be a C' function on Py which is right M-invariant.
We have for z = kz, in Py
6a(pkmzo = Oéﬁ (m)aa()pz-

We say a function ¢ on & is the lift of a function on PV, if there exists a function (1 on
PV, such that for z = kz, € ¥

p(2) = e1(Vakn,)-
By Lemma 2.18, we have

Lemma 2.37. If ¢ is a C' function on Py, which is the lift of a C function on PV, then

O =0 for o/ # a,d €1l
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2.7 Changing Flags

This part is trivial for SLo(R), where the flag variety P(R?) is a single a-orbit. In this
section, we suppose that the semisimple rank m is no less than two.

On the flag variety, we have many directions in the tangent space. Roughly speaking, the
action of ¢ is contracting and the contraction speed on Y, is given by e~ « € R*. Due
to k(g) being in the Weyl chamber a™, the slowest directions are given by simple roots. Other
directions are negligible. The main result Lemma 2.45 is a quantitative version of this intuition.

We have already seen that if two points 1,1 are in the same a-circle, then we have a nice
formula for the difference of the value of a real function ¢ at gn and gn’, where g € G. We want
to do this for 7,7 in general position. For this purpose, we need to change the point according
to g. This is a key new observation in higher rank.

If we are on the euclidean space E™ and we are only allowed to move along the directions
of coordinate vectors. For any two points x, z’, we can walk from z to 2/ with at most n moves.
But this is not true for the flag variety &?. Suppose that we are only allowed to move along «
circles with o € TI. Then for two general points 7,7’ in &2, it takes more than m = #II moves
to walk from one point to the other point. We try to move in each « circle at most one time
and to make the resulting points as close as possible.

Recall that V' is a finite dimensional vector space with euclidean norm. Let [ = R(v1 A v9)
be a point in P(A2V), which is also a line in PV.

Lemma 2.38. Let x = Rw; be a point in PV and |l = R(vi Awvg) be a line in PV. Then we have

d(l,z) := mind(z2’,7) = w

a/€l [[v1 A val[[[wa ]
Proof. The geometric meaning of ||[v; A va A wy|| is the volume of the parallelepiped generated
by three vectors v1, v, w1. This volume can also be calculated as the product of the area of the
parallelogram generated by v; and vg, that is ||v; A ve||, and the distance of w; to the plane
generated by v and vy, that is d(w;, Span(vi, v2)). Hence, we have the formula

llvg A vg Awr|| = ||vi A vel|d(wy, Span(vy, v2)). (2.29)

The distance d(w1, Span(vy,v2)) equals ||wy||d(l, z), because the geometric sense of d(l, x) is the
sine of the angle between the vector w; and the plane Span(vi,v2). Together with (2.29), we
have the result . O

Lemma 2.39. Let x be a point in PV and | be a line in PV. If g € GL(V) satisfies that
5(5372151)75(1,9%9) > 0, then

d(gl, gz) < 021 3(9)d(l,z),

Compared with Lemma 2.12, with more degree of freedom the contracting speed is signifi-
cantly greater.

Proof. By definition and [ = R(v; A vg),x = Rw;, we have

_ A2 g(wr Ave) Agunll _ | A% gllllor Ava A

d(gl,g$> - — 9
I A% g(vr Av2)llllgwill = [ A% g(vr A v2)ll[gwa ]

Then by Lemma 2.10, we have

A3 A vg A A3
d(gl,gz) < = | . gllllvr Ava Awr| - I . qll d(l, ).
02| A2 gllflvr Avallllgllllwa |l 62 A% gllllg]l

The proof is complete. ]
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Lemma 2.39 can also be understood that there exists a point 2/ = Rv’" € [ such that v/ A w;
is orthogonal to the vector of highest weight in A?V. Then the distance between gz’ and gz will
be roughly 71 3(g)-

We will start to change the flags. Recall that for o € II and 7,7 in &2, the function
do(n,n') is the distance between the images of n and 7’ in PV,,. If one wants to change a flag
in the a-circle in &2, there are some constraints from the structure of flags. We introduce the
following definition which explains the constraint.

By Lemma 2.18, we have

Lemma 2.40. The image of the a-circle of n in PV, is a projective line and we call it 1 ;.
Seen as an element in P(A?V,,), the element Lo, is actually in PVay, o C P(A?V,).

Example 2.41. If G = SLy,4+1(R). Let
U:{Wl CWQC"'CWm+1:Rm+1}

be a flag in P. Recall that W, are r-dimensional subspaces of R™'. Take Wy = {0}. Let i, be the
natural embedding of the Grassmannian to projective spaces, that is G,(R™1) — P(ATR™TL),
In this case, we see that

Loy = tr(Wrp1 D W) D W,_q),

being a line in P(A"R™TY), which is the image of all the r dimensional subspace W/ of R+
such that W,_1 C W) C Wy41.

Definition 2.42. Let (n9,n1,...,mx) be a sequence of points in &. We call it a chain if any
consecutive elements n;,m;+1 are in the same a-circle for some a € II, and we write a(n;, Mi+1)
for this simple root.

Lemma 2.43. Let (ng,...,m) be a chain and let a be a simple root. If the set of simple roots
appearing in the chain does not contain «, then the image of the chain in PV, is a single point,
that is

Vo, = Vame, Vi=1,...,1

If the set of simple roots appearing in the chain also does not contain o such that o+ o' is a
root, then

lo; =l V5 =1,...,1.

Proof. The first equality is direct consequence of Lemma 2.18 and the relation xo(Hy/) = o

For the second equality, let o/ be a simple root such that o+’ is not a root. The projective
line I, in PV, is uniquely determined by the image of 7 in PV5,,_,. Hence we only need to
understand the image of o'-circle in PVa,, _o. By definition,

(2Xoc — Oé)(Ha/) = 2(5aa/ — a(Ha/).

Since « + o is not a root, we know a(Hy) = 0 and (2xo — «@)(Hy) = 0. By Lemma 2.18, the
image of o/-circle in PV, _q is point. The proof is complete. O

The Coxeter diagram of an irreducible root system is a tree, module the multiplicities of
edges. We can find a disjoint union II; and IIs of vertices such that there is no edge whose two
endpoints are in the same II;. In the Coxeter diagram, two simple roots o, o’ are connected by
an edge if and only if @ + o’ is a root. Hence, we have

Lemma 2.44. We can separate 11 into a disjoint union 11y and Ils such that for a, o/ in the
same atom 11;,
a+ o' is not a root.

Let ll = #Hl and lg = #Hg.
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Figure 2: Changing Flag for SL3(RR)
Now, we state our main result of this part, which will be used in the main approximation
(Proposition 4.12).

Lemma 2.45. Let 1,1 be two points in &2 and let g be in G. If for o € 11y,

5(VOL,’I7/7 yzl(g))7 6(la,77’ yx’gpa(g)) > 6’

for a € s,

S(Vam: Ypa(g))> OUam's Un2p, () > O-

Then we can find two chains (1= no,m, ..., my) and (n" = ny,n4,...,m,) such that

d(gn;s gnj+1) = dalgn, gnj+1) = da(gn, gn') + O(672Be~ <)), (2.30)

where o = a(nj,nj1) € 1 and different j correspond to different roots; similarly for n'.
We also have that for all a € 11

do(gm,, g11,) < pe= 9572, (2.31)
where B is the gap of g, that is f = v(g) = maxaen{e **@}.

The point is that the contraction speed B implies that the term 6—28e~*%(9) is of smaller
magnitude than e~®*(). The objective is to walk from gn to gn/ only through « circles and to
preserve information of distance. Since we can neglect error term, it is simpler to walk from gn
to gmy, through some « circles and to walk from gn’ to gng2 through the other « circles, which
means the corresponding simple roots are different from the first walk. After this operation, the
distance between grn;, and gn{2 is negligible, due to (2.31). The distance of the move in the «
circle is approximately the distance between the images of gn and gn’ in PV, due to (2.30).

Proof of Lemma 2.45. 1f we have already found (no,...,n;) and j < l;, we want to find 7;41.
Let o € II; be a root that does not appear in the chain. Hence by Lemma 2.43,

Van; = Vame = Va- (2.32)
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Due to Lemma 2.44 and Lemma 2.43, we have further

la,n]- = lOéJ]o = la,n- (2.33)

We are in the situation of Lemma 2.39 with V' = V,,, 2 = V,,y and [ = l,,. Due to the
hypothesis, Lemma 2.39 and Lemma 2.40, we can find 7,41 in the same a-circle of n; such that

da(gnj+1:97) = A(pagVam, i1 PagVau) < 0 713(pag) < 072 Be %), (2.34)

Hence by (2.32) and (2.34),

da(gnj1, 915) = dognj1, 1) = da(gn, gn') + O(67%fe™ ")),

which is (2.30). Please see Figure 2, where an element in the flag variety is represented by a
projective line with a point.

We need to verify the distance between gn;, and gn{Q. Without loss of generality, suppose
that o € II;. Then by Lemma 2.43, the construction and (2.34),

da(gmy, 911,) = da(gmy, gn') = da(gnjs1, gn') < 628 %9,
where j is the unique number such that a(n;,nj+1) = o O

Remark 2.46. In the case of SL3(R), we know that A2V, and A%V,, are isomorphic to Vi,
and Vi, , respectively. The condition in Lemma 2.45 is equivalent to n,n" in B;”((S).

In the case of SLy,+1(R), the representations V., = N'R™ 1 are fundamental representation.
Since SLy1(R) is split, A2V, is again proximal, but may not be irreducible. In Lemma 2.65,
we will proceed to give a control on Y7y (A"

The condition of Lemma 2.45 is not really important, what we need is that the condition is
true with a loss of exponentially small measure when we consider the random walks on G.

Lemma 2.47. With the same assumption and construction in Lemma 2.45, if we also have
n,m' € By(9), then gn;, gn; are in bé\/[(ﬁéfo(l)) for1<j<lyand1<1<ls.

Proof. By hypothesis, Lemma 2.16 implies that gn, gn’ € bg/[(ﬁé_l). By (2.30),

d(gn;, gnji1) < 28671 + O(672Be~x0)) < gs—O0),

Hence by induction, we have gn; € béw (36—°W) for all j. Similarly the results hold for gn. O

2.8 Random walks and Large deviation principles

The study of random walks on projective spaces and flag varieties are connected by repre-
sentation theory.

Let X be & or PV, where V is an irreducible representation of G. There is a natural group
action of G on X. Let u be a Borel probability measure on G. Then a Borel probability measure
v on X is called p-stationary if

V=pkyi= /Gg*vdu(g),

where g,v is the pushforward measure of v under the action of g on X.

Lemma 2.48 (Furstenberg). Let p be a Zariski dense Borel probability measure on G. There
exists a unique p-stationary probability measure v on the flag variety and its images in the
projective spaces PV are the unique p-stationary probability measures when V is an irreducible
representation of G.
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See [Fur73|, [BQ16, Proposition 10.1] for more details. In order to distinguish stationary
measures on different spaces, we use vy to denote a pu-stationary measure on PV.

Definition 2.49. Let u be a Zariski dense Borel probability measure on G. The measure pu has
a finite exponential moment if there exists tg > 0 such that

/Get(’”“(g)”du(g) <o

Remark. This definition coincides with the definition given in the introduction for matriz
groups, because in that case log||g|| = xk(g) where x is the highest weight of a faithful rep-
resentation. This x is in the dual cone of a™ and x(X) > || X|| for X in a™.

Definition 2.50. Let p be a Zariski dense Borel probability measure with exponential moment
on G. The Lyapunov constant o, is defined as the average of the Iwasawa cocycle

oy = /Gxgza(gm)dﬂ(g)dV(n)-

Lemma 2.51. Let p be a Zariski dense Borel probability measure with exponential moment on
G. Then the Lyapunov constant o, is in a™", the interior of the Weyl chamber. Equivalently,
for any simple root o, we have a(o,) > 0.

The maximal positivity of Lyapunov constant in Lemma 2.51 is due to Guivarc’h-Raugi
[GR85] and Goldsheid-Margulis [GM89]. See [BQ16, Corollary 10.15] for more details. Lemma
2.51 will be used to show that the action of G on & is contracting in Section 4.2, where the
contraction speed is give by 8 = sup,c{e”“*}.

In following proposition, we give the large deviation principle for the Cartan projection.
We keep the assumption that p is a Zariski dense Borel probability measure on G with
a finite exponential moment.

Proposition 2.52. For every € > 0 there exist C,c > 0 such that for alln € N and n € & we
have

p{g € G| |[k(g) —noull = nep < Ce™™™, (2.35)
See [BQ16, Thm 13.17] for more details.

Proposition 2.53. If (p, V) is an irreducible representation of G, then for every e > 0 there
exist C, ¢ such that for all x in PV and y in PV* and n > 1 we have

" {g € G| 6(z,yy") < e "} < Cem 7, (2.36)

pw{g € G| 5(332/1,3/) <e "} < Ce .

See [BQ16, Prop 14.3] for more details. Attention, we need p to be proximal in Proposition
2.53. Here the representation is automatically proximal due to the splitness of G.

Proposition 2.54. For every € > 0 there exist C,c such that for alln, v in & and n > 1 we
have

p{g € Gl o(ny',¢) < e} < Cem o, (2.37)
g € Gl 6(n,(g") < e "} < Ce e, (2.38)

Proposition 2.54 is a multidimensional version of Proposition 2.53.
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Proposition 2.55 (Holder regularity). If (p, V') is an irreducible representation of G, then there
exist constants C' > 0, ¢ > 0 such that for every y in PV* and r > 0 we have

vy({z € PV| é(x,y) <r}) < Cre. (2.39)

The proximality of the representation is also needed in Proposition 2.55. This result is due
to Guivarc’h [Gui90]. See [BQ16, Thm 14.1] for more details. As a corollary of Proposition 2.55,
we have the following.

Corollary 2.56. If (p, V) is an irreducible representation of G with highest weight x, then there
exist constants C > 0, ¢ > 0 such that for every y in PV* and r > 0 we have

v(in € P 6V y) <7}) = Cr". (2.40)
Proof. By Lemma 2.48, we have

v({ne 21 6(Vyyy) <r}) =ww{z e PV 6(z,y) <7}).
Hence Corollary 2.56 follows from Proposition 2.55. O

All the results in this section mean that the quantities considered here are really flexible. We
can always image that things happen as wished in a large probability, a very positive expectation.
Bad things are near some algebraic subvariety and have exponential small measures. For later
convenience, we introduce the following definition.

Definition 2.57 (Good element). For n € Nje >0 and n,{ € &, we say that an element h is

Ik(h) = noy|l < en/Ca and 6(n, G, (", ¢) > 2e~"/ 4, (2.41)

where C4 is a constant greater than 2, which is only depend on the whole group and will be
determined in Lemma 2.59.

Lemma 2.58. We have that h is (n,€,n,() good outside an exponentially small set, that is to
say there exist C > 0,c > 0 such that

@ {h is not (n,e,n, () good.} < Ce ",
Proof. This is due to the large deviation principle (2.35), (2.37) and (2.38). O

—aoun

Lemma 2.59. Let § = e~ " and = maxqer € . Suppose that € is small enough such that

B <83 If his (n,en, ¢g") good, then
v(h) < B671 <62 and ||o(gh,n) — K(g) — noyl| < en.
Proof. By hypothesis,

'y(h) — max e—om(h) = sup e—anauea(nau—n(h)) < B(;—l,
acll acll

if we take C'4 large enough such that for all simple roots a and X in a, we have |a(X)| < Ca|| X||.
By Lemma 2.16, we have hn € b (v(h)/8) c b} (5) C B'(0). Hence by Lemma 2.15

lo(gh,n) = K(g) = nowll = llo(g, hn) — (g) + o (h, 1) — noyll
< [log d(h, ¢5)[ + [log d(n, G")| + [[5(h) — nopl| < en/Ca.

Hence if C'4 is large enough depending on the whole group, the inequality holds. O
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For later usage in Section 3, we will define another notation of goodness.

Definition 2.60. For n € Nje > 0 and ( € &, we say that an element h is (n,€,() good if
|k(h) — noy|| < en/Ca and §(n,¢) > 2e7M 4, (2.42)

Lemma 2.61. Let § = e~ and f = maxgerre” . There exists a flag no in &2 which is
different from n, only in its image in PV, and

Vg, = VX, (2.43)
If his (n,€,¢)") good, then for n = l,:lna, we have
@l (0(ghm)=r(g)=now) ¢ [5 §71] for o # a and e¥>(79hm=r9)=now) < g5=1, (2.44)

Proof. The existence of n,, is guaranteed by Lemma 2.18. In the « circle of 7,, there exists a
point 1, whose image in PV, is exactly VXe~%. This is the 7, that we are looking for.
Without loss of generality, we can suppose that [, = e. The image of n, in PV, is the same
as 1, if o/ # a. Hence by (2.7), we have wya(gh,ne) = wao(gh,n,) for o # a. By (2.18), that
is §(10, (o) = 1, the element h is (n, €,7,,(;") good. By Lemma 2.59, we obtain the first part of
(2.44).
The image of 1, in PV, is VXe~% whose weight is x, — . Hence by (2.7),

vl _ o, lespls(h)o]

ol — ol O = i) (2.45)

Xa0 (h,7a) = log
By (2.7) and (2.8), we have x4(o(g,hn) — k(g)) < 0. Together with (2.45),

Xa(o(gh,n) — K(g) — nou) = xa(o(g, hn) — £(g)) + Xa(o(h,n) —noy,)
<(Xa — a)k(h) — nxao, = —nao, + (Xa — @)(k(h) — noy).

By (2.42) and x4 — wq € ¢*, the proof is complete. O

This lemma tells us that by changing the image of n in one projective space, the value of
Iwasawa cocycle only changes in that space. There is some independence of the value of Iwasawa
cocycle with respect to 7.

Example 2.62. In the case of SLy,+1(R),
Nag = {Rel C---CRe1®---PDRey_1 CReleB---GBRed,l@RedH C },
and its image in AY(R™F) is R(vg A - Avg_1 Avgir).

Let V be a representation of G. Let Go(V') := {2-planes in V'} be the Grassmannian variety
of V. Let gy : A2V — A2V be the G-equivalent projection on the sum of all the irreducible
subrepresentations of A2V with highest weight equal to \.

Lemma 2.63. Let V' be an irreducible representation of G with highest weight x. For a simple
root a, let g2 —o be the G-equivalent projection from N2V to A2V. There exists ¢ > 0 such that
for all v,v" inV

S lazx—alw A )| > cllv Ad].
acll

Proof. By Lemma 2.64, we know that Lacn l:fjj\‘;fﬁ(vml)”

function. Since Go(V') is a compact space, on which positive continuous function has a lower
bound, the result follows. ]

: G2(V)) = R>g is a positive continuous
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The following lemma is similar to [BQ12, Lemma 3.3].

Lemma 2.64. With the same assumption as in Lemma 2.63, then () cp @2x—a does not contain
any pure wedge.

Proof. Let W' be the intersection of all the kernels, that is W' = () c ¢2y—a- The two sets
G2(V) and PW’ are closed subset of P(A?V) and G invariant. Therefore their intersection is
again a G invariant closed subvariety which is complete. Let B be the Borel subgroup of G,
which is solvable. By [Bor90, Thm.10.4], the action of a solvable algebraic connected group on
a complete variety has fixed points. We claim that the fixed points of B on G2(V') are the lines
with the highest weight. Then the result follows by the fact that these lines do not belong to
w’.

Suppose that there exit v,u in V such that v A w is B invariant. We can decompose v, u
as asum v = »_,vy and u = ), uy. Since we can replace v,u by bv,bu for b in B, we can
suppose that the component of highest weight v, is non zero. Since the dimension of VX is 1,
we can suppose that u, = 0. Let p # x be a highest weight such that u, is nonzero. The B
invariance of R(v Au) also implies that the action of X, for a simple roots, fixes the line. Hence
Xa(wAu) =XovAu+vA Xqu € RuAwu. The weight x + p + « is higher than all the weights
appear in v A u, hence v, A X, u, = 0 for all simple roots o. This implies that p = x — «a for
some simple root . Therefore v A u contains vy A uy_,. Since v A u is also A invariant, all the
components in the weight decomposition have the same weight. Hence v A u = v, A u,_, which
is a vector of highest weight in A2V, O

We want to prove a large deviation principle for a special reducible representation. This
lemma will be used in Lemma 4.11 to control y/’(gg in Lemma 2.12 and Lemma 2.45.

Lemma 2.65. Let V' be a super proximal representation of G (Definition 2.5). For € > 0 there
exist C,c > 0 such that the following holds. For x = Rv,z’ = Rv' € PV with x # ', we have

1w {g € G|6(x A :B’,yf(ép(g)) <e NP <Cemom,

Due to Definition 2.5, there is only one simple root a such that gay—q(A%V) is non zero.
Write A2V = W @ W', where W is the irreducible representation generated by the vector
corresponding to the highest weight in A2V, and W’ is the G—invariant complementary subspace.
Then gay—a(A?V) = W, and we write Pryy = gay—a-

Proof of Lemma 2.65. By (2.15), we see that a non zero vector in yTQg vanishes on W’ and y/’(gg

can be seen as an element in PW*. We only need to consider the projection of v A v’ onto W
and use large deviation principle (2.36). By Lemma 2.63,

A FPrw(w Av))| [ Prw (v Av)|
Sanal ym ) = LAl
(33/\$ ay/\2g) Hv/\v’|| HPTW(U/\U/)H Hv/\U/H

> c§(Prwy(x A '), y/’”\@g),

where f is a unit vector in y;\”gg. The proof is complete. O

3 Non concentration condition

We want to verify the main input for the sum-product estimate, the non concentration
condition. If we want to get the non concentration directly, then this becomes an effective local
limit estimate, which is difficult due to the lack of spectral gap. Hence, we transfer it to the
Holder regularity of stationary measure.

For the first time read, the reader can neglect g in the left of h and think the semisimple
case SLy,+1(R). The main idea of the proof is already there. Adding g is a technical step, which
is needed in its application. (We only need an additional condition on n} to control x(gh).)
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3.1 Projective, Weak and Strong non concentration

Recall that m is the semisimple rank of G and xi,---,xm are fixed weights, where we
change the subscript from a € II to i € {1,--- ,m}. The set {w;}i<i<m are the extension of
fundamental weights @; to a which vanishes on ¢ and the restriction of w; and x; to b coincides
with @;. Recall that aq,--- , oy, are the simple roots of a*.

In order to distinguish different objects, we will use capital letter X to denote functions or
random variables and use small letter x to denote vectors or indeterminates.

Let L be the d x d square matrix which changes the basis (w1, ,ws,) of b* to the basis
(—ai1, -, —aup), that is Ljj = —a;(H;). Then L is an integer matrix. Hence, we can define Eg,
a rational map from (R*)™ to (R*)?, which is given by y = E4(z) for z € (R*)™ where

L

yi = Ili<j<m;

ij
i

Fix an element ¢ in G. Let

X, (n, hy ) = (1C@hm—rl0)=n0u)  om(o(ghm)=r(9)=noy)y

YT (h) = (e-e1(elehm—n(@)=non)  —an(olghm—n(s)-nou))

for n in & and h in G. By definition, EqX,(n, h,n) is the vector which is composed of the first
d components of Y*(h,7), that is

degn(h7n) = Eng(nvha n)’ (31)

where pg : R™ — R? is the map which takes a vector z of R™ to the vector of R? composed of
the first d components of x. In the following argument g is fixed or g equals identity. Hence we
will abbreviate X, Y, Y," to X, Y™, Y

We define an affine determinant Ag on (R%)%*!1. For d + 1 vectors y!,--- ,y%*! in RY, let

R AS |

yl y 1 >, which is the volume of
the d + 1-dimensional parallelogram generated by vectors (y%,1) for i = 1,...,d + 1. Let ¢; be
the vector in R? with only i-th coordinate nonzero and equal to 1. By identifying e; A --- A eg

with number 1, we can also define Ay by

Ag be the determinant of the (d+1) x (d 4 1) matrix <

Ad(yl,"' ’yd—&-l) _ Z (_1)i+d+1y1 Ao Ay /\.__/\yd—i-l.

1<i<d+1
For d + 1 vectors z!,--- , 29! in R™, let By be a rational function defined by
Bd(l’l, cee ,derl) = Ad(del, s ,Ed:IZdJrl).

We introduce the notation
hd+1 = (hlv ceey hd—i—l)a

which is an element in GX(@+1 Let
Aj(hgyq,m) := By(X(n, h1,m), ..., X(n, hay1,1)).

Definition 3.1. We say that p satisfies the projective non concentration (PNC) on dimension
d, if for every € > 0 there exist ¢,C > 0 such that for alln in N, nin & and g in G

sup  p"{h e G||{(v,Y"(h,n)) —a| <e "} < Ce™ ",
a€R,veSd—1

where v is regarded as a vector in R? x {0}~ C R™.
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More geometrically, this is equivalent to say that the measure of Y™ (h,n) close to an affine
hyperplane is exponentially small.

Definition 3.2. We say that u satisfies the weak non concentration (WNC) on dimension d, if
for every € > 0 there exist ¢,C > 0 such that for alln in N, n in & and g in G

(52D (i1, ) € GXO| A gy, )] < e} < Cemn,

Definition 3.3. We say that u satisfies the strong non concentration (SNC) on dimension d,
if for every € > 0 there exist ¢,C > 0 such that for alln in N, nin & and g in G

(M*n)®(d+1){hd+1 e G><(d+1)HAZL(hd+1’n)| < efen} < Ceeem,

We will proceed by induction. When d = 0, we make the convention that Ag =1 and it is
trivial that SNC holds. Then

e SNC on dimension d = WNC on dimension d (By definition)
e PNC on dimension d < SNC on dimension d (Lemma 3.7)
e WNC on dimension d = PNC on dimension d (Lemma 3.9)
e SNC on dimension d — 1 = WNC on dimension d (Lemma 3.10).
In the above implications, the constants C| ¢ will change. We can conclude

Proposition 3.4. Let u be a Zariski dense Borel probability measure on G with exponential
moment. Then u satisfies PNC' on dimension m.

3.2 Away from affine hyperplanes

We need a lemma of linear algebra, which relates different non concentrations. This lemma
is already known from [EMOO05, Lemma 7.5]. Recall that for two subsets A, B of a metric space
(X,d), the distance between A and B is defined as

d(A,B) = inf d .
(A,B) e (z,y)

Lemma 3.5. Let C' > 0,c > 0. Let uy,--- ,uq+1 be vectors in R? with length less than C.
Consider the following conditions:

1. There exists an affine hyperplane [ such that fori=1,...,d+1,

d(u;,l) < ec.

1. We have

Z (=) uy A= AT A - Auger|| <
1<i<d+1

where @; means this term is not in the wedge product.
i1i. There exists i in {1,...,d} such that
d(u;, Span,g (ugy1, u1, .-, ui—1)) < ¢,
where Span,g is the affine subspace generated by the elements in the bracket.

Then i(c) = ii(21C% ), ii(c) = iii(cY?) and iii(c) = i(c).
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Proof. We first transfer the affine problem to a linear problem. Let v; = u;—ug4q fore=1,...,d.
Then v; are vectors with length less than 2C. The above three conditions are equivalent to (with
change of constants in )

i’. There exists a linear subspace [ of codimension 1 such that fori=1,...,d

d(v;, 1) < c.

ii’”. We have
|t A Ayl < e

iii’. There exists 7 such that
d(v;, Span(vy,...,vi—1)) < ¢,

where Span is the linear subspace generated by the elements in the bracket.

i1i'(c) = i'(c): Let the hyperplane [ be Span(vi,---,0;, -+ ,vq). Then i'(c) follows from
iid (c).
i'(c) = i’ (29C%tc): Due to ', the volume of the parallelogram generated by {v;}1<i<q is
less than (2C)9~12¢, which is 44’.
i’ (¢) = i1’ (c/?): Due to the same argument as in Lemma 2.38, we have a formula of
volume,
log A= Awg|| = ngigdd(’vi, Span(vi,...,v;-1)),

from which the result follows. O

As a corollary, we have the following lemma, which is general and deals with random
variables.

Corollary 3.6. Let X1,..., Xqq1 be i.i.d. random vectors in R? bounded by C > 0. Let 1 be an
affine hyperplane in R%. Then for any ¢ > 0, we have

P{d(X1,1) <} <P{|D (-1)' X1 A AXi A A X <209 e}, (3.2)
and
P> (—1)'Xi A AXi A A X || < ¢}
< Z P{d(Xi>Spa‘naff(Xd+laX17 tee 7Xi—1)) < Cl/d}'

1<i<d
Lemma 3.7. PNC on dimension d is equivalent to SNC on dimension d.

Proof. Let X; = EgqX(n,h;,n) for i = 1,--- ,d + 1, where h; has distribution p*”. Due to
Lemma 2.59, with a loss of exponentially small measure, we can suppose that X; are bounded
by C = e?", where €3 = ¢/(2d).

Due to (3.1), we have (v,Y"(h,n)) = (pqv, E4X (n,h,n)). PNC asks exactly that the
probability that F4X is close to a hyperplane is small. By (3.2), PNC on dimension d follows
from SNC on dimension d.

By (3.3), SNC on dimension d follows from PNC on dimension d. O

Remark 3.8. We explain that SNC implies the stronger form of SNC, which will be used later.
Let O(d) be the orthogonal group in dimension d. The stronger form of SNC' says that for any
(pla e 7pd+1) € O(d)X(d+1)7 we have

(™) N gy € GV Ag(pr EaX (n,haym), -, pari BaX (n, hary, )| < e} < Cemo ™.
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By Lemma 3.7, SNC implies PNC. We adopt the notation in the proof of Lemma 3.7. By (3.3)
and the fact that O(d) preserves the distance,
P> (1) p X1 A~ 0iXi A payi Xapl| < c}

< > Pld(piXi L) < M= > PLA(Xy,p; ) < MY,
1<i<d 1<i<d

where l; = Span,g(pg+1Xa+1, 1 X1, , pi—1Xi—1). Therefore SNC implies the stronger form of
SNC.

Lemma 3.9. WNC on dimension d implies PNC on dimension d.

WNC is weaker than SNC, because WNC is not uniform on position 1. Let f(n) be
(*™)®d2) L n) in SNC (Definition 3.3). Then WNC only asks that [ f(¢n)du*"(¢) is small,
whereas SNC asks that f(n) is small for every n. The cocycle property is the key point to obtain
an estimate uniform on position from an estimate not uniform on position.

Proof of Lemma 3.9. Let 6 = e~". We first prove the result for 2n. Recall that h is a random
variable which takes values in GG with the distribution ,u*2”. Let h = ¢1¢ such that ¢; and ¢ have
distribution p*". Then the cocycle property implies Y"(h,n) = Y™ (14,n) = Y™ (€1, n)YS (€, 7).
Fubini’s theorem implies

E :=sup g™ {h|(v,Y*"(h, 1)) € B(a,6)}

S/Gsupu*"{m(vaY”(ﬁl,fn)Yo"(f, n)) € Bla,d)}du™ (€).

a,v
The cocycle property is crucial here. Fix £ and fix a,v. We can write
(v, Y™ (lr, ) Y5 (¢,m)) = R, Y™ ({1, £n)),

where R = [jv - YJ'(¢,n)|| > mini<j<q|Y(¢,n);|. Here v’ is a vector of norm 1, defined by
v/ =v- Y] (¢,n)/R, depending on v,l and n. By Lemma 2.58 and Lemma 2.59, for ¢ outside an
exponentially small set independent of a,v, we have R > 6/2. Therefore

E< /G sup {0 (v, Y™ (61, €n)) € Bl(a, 6Y2)Ydp™ () + O (6°), (3.4)

a,v

where ¢ > 0 comes from the large deviation principle (Lemma 2.58). By Holder’s inequality,

/G sup ™" {61 (v, Y™ (€1, 0n) € B(a, /%) }dpu™™ (¢)

a,v

1/(d+1) (3.5)
< ( [sw el v, 0) € Bla 51/2)})d+1du*"(€)> .

By the same argument as in Lemma 3.7

sup i {41 (v, Y™ (01, £n)) € B(a, 6"/} < p I (hgi)[|Af (harr, £0)] < 261} + Oc(6°).

Therefore, by (3.4) and (3.5), we have
B < @0 by 0)]| A% (B, )] < 267 + 0.(59)

The proof for 2n ends by Definition 3.2.
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It remains to prove the same result for 2n + 1. Let h = £¢ such that ¢ has distribution

p* D) and ¢, has distribution p*". Following the same argument, we have

BT <Dt {(hy o, 0)]| A (g, )] < 2601} 4 O(5°).
Since ¢ only changes the position 7, the uniformity of WNC implies that
pH IO (g 0| A (has s £n)] < 2504

N / G/‘*(d+2)"{(hd+1, lo) || A (hayr, Lo (l3n))| < 26" *}dp(ls) <. 6
I3€
The proof is complete. ]

3.3 Holder regularity

In this section, we will prove
Lemma 3.10. SNC on dimension d — 1 implies WNC' on dimension d.

Using other representations, we can get more information on the Iwasawa cocycle. This
idea has already been used in [Aoul3| for problem concerning transience of algebraic subvariety
of split real Lie groups. It is also used in the work of Bourgain-Gamburd on the spectral gap of
dense subgroups in SU(n), for establishing transience of subgroups.

The key tool is the following estimate. See [BQ16, Proposition 14.3] or [Gui90] for example.

Lemma 3.11. Let V be an irreducible representation of G. Let p be a Zariski dense Borel
probability measure on G with exponential moment. For every € > 0 there exist ¢,C > 0 such
that for v in' V and f in V* we have

prle Gl () < I Fl[efle” "} < Cemn.

The intuition is that if a function f is not small at some point, then it is robustly large for
almost all points.

In this part, we write V; = V), for the fixed representation in Lemma 2.3 and we write
Vjn for the image of n € &2 in PV} for j = 1,...,m. Let v/ be a nonzero vector in V},. For
¢ in G, we abbreviate p;(¢)v? to fv7. Since v7 lives in Vj, we use the same symbol || - || for
norms on different V;, which makes no confusion. For a vector x in R™, we denote by x; the
i-th coordinate. We use upper script to denote different vectors. We want to replace w; by x;,
because x;o(g,n) has a nice interpretation using representations (2.8). Let x§ = x; —wj, which
vanishes on b.

Before proving Lemma 3.10, we introduce some linear algebras. We want to construct a
linear form. Recall that F, is a rational map, A, is the affine determinant, By is the composition
of Ay and E; and

Ag<hd+17 7]) = Bd(X(TL, hl? 7])7 ey X(n7 hd+17 7]))7
where

X5 (—e(h)+noy) llghovd | (3.6)
er(“(g)“’nU,u) H'UJH L<ic ’ ’
>jsm

X (n,h,n) = (e @M=D), o = <

and the second equality is due to (2.7) and

Xj(a(gh,n) — k(g) — noy) = xj(c(gh) — c(g) — noy) = Xj(c(h) —noy).

Let '
X'(n,n) = X(n, hi,n). (3.7)
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In order to use Lemma 3.11, we need to linearise some function related to AJ} (hy,41,7) with hy,
fixed. We will multiply B, by its denominator, and all the Galois conjugate to get a polynomial
on ||Xj||2, which can be realized as a linear functional.

The function By can be seen as a rational function on

(z) = (2", 2" = (@) 1<i<di1,1<j<m-

By definition, By has a special form. Each term in By can be expressed as a quotient of two
monomials. Let Dy be the lowest common denominator of By such that DyBy is a polynomial
on (z). In other words, suppose that

Ba= > ba J[ @,

nezm(d+1) 1<j<m,1<i<d+1

where n is a multi index and by, is the coefficient. Let ¢;; = supy cym+1){—n4j,0} for 1 < j <
m, 1 S 7 S d + 1. Then Dd = ngjgm,lgiSdJrl(x;)qij-

Definition 3.12. Let F be a polynomial on (x!,--- ,:1:’“) where x',---a* are vectors in R™.

Then we call F' a multi homogeneous polynomial of degree q = (q1,--- ,qn) € N if for £ in
(R*)™ we have
F(gxla e agxk) = éqF(xla T axk)7

where §q = ngjgnggj .

Let T' be the finite group (Z/2Z)%¢*V which acts on RUD. Let (y) == (y!, - ,ydt1)
(Y5 1<i<dt1,1<j<d € (RO For p € I', we write p(y) for the action on the coefficient y’
which is of dimension d(d + 1). Due to the definition of I, the product I,erAgp(y?, ... Lyt

is invariant under the action I', hence it is a polynomial on (y;)2 Let

~

o

)

Fy(a',...,a"Y) = [] DgAap(Egz', ... Eqz®), (3.8)
pel
then
Lemma 3.13. F; is a multi homogeneous polynomial on ((x')?,--- , (z®™1)?) with degree q =

(g1, ,qm) € N™.

Proof. We only need to verify that Fy is a multi homogeneous polynomial. The fact that the
determinant is a multilinear function implies that for A and g’ in R?

Ad()\y17 Ty Ayd+1) = det(A)Ad(ylv e 7yd+1)7 (39)

where det(\) = A;---Ag. The functions E4 and Dy are group morphisms due to definition.
Hence we have

Eq(x) = Eg(§)Ea(x) and Dy(€a', -+ &™) = Dy(&, -+ ) Dg(a’, - a™). (3.10)
Therefore by (3.8), (3.9) and (3.10), for ¢ and 2% in R™,

Fy(éa',- - &a™) = [[ Dadap(Ba(Sa'), -+, Ea(€x®t))

pel’
= [[ DaAap(Ea(€)Ea(z"), -+, Eq(§)Eq(z*))
pel
- H DdAdp(Ed(xl)’ U 7Ed(xd+1)) det(Ed(f))Dd(gv e 75)
pel’
= qud(l'l, T 7xd+1)7
where q is a vector in N such that {9 = (det(E4(§))Dg(§, - - - ,§))m. O
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For hy 1 € G*@*1) and 5 in 2, we write

F(hgy1,m) = Fa(X (n, h1,n), ..., X(n, hata,m))-
Fix hyi1. By (3.6), F is a function on v’ for 1 < j < m. Recall that v/ are vectors in Vj,. Let
Fo(v', -+, 0™) = F(hayy, n)i<jzm 0?29,
Now, we want to explain how to realize Fj as a linear functional.

Lemma 3.14. Let F' be a multi homogeneous polynomial of degree q = (q1, " ,qi+1) € (N)dﬂ.
Then Fo(vh,--- ™) := F(X12, - (XTH2)||07||*% is a linear functional Fy on the space
Vo = Q1< jcm (Sym?V;)®% , where X7 is defined in (3.7).
Proof. Since F' is a multi homogeneous polynomial, it is sufficient to prove that every monomial
in F' has the same property. By Definition 3.12, a monomial of F' is of the form

I <j<mIi<icas (25)77,
with n;; € N and Y ;g1 nij = ¢;. The term TI||[o7[|*% is used to compensate [[v/]| in the
denominator of X; in (3.6). Now, by multiplying ||v?||, we can view X]Z: as ||gh;v’|| with some
coefficient. By (3.6) and ||ghv’|? = (ghv’, ghv?), the function (X]Z:)2 is a linear functional on
Sym?V;. Hence HlSiSdH(X;)%ij is a linear functional on (Sym?V;)®%. This is because if
we have two linear functionals f; and fo on W7 and W5, then fifs is the linear functional on
W1 @ Wy given by fifa(wi ® we) = fi(wr)fao(wz). Then by the same reason, the monomial
Hi,j(X;)Q”U is a linear functional on Vj. In order to express the linearity of Fj, we rewrite

F1(®j((vj)2)®qj) = FO(Ulv o avm)v
where v/ is in Vjn and Fy is understood as a linear functional on Vj. ]

Proof of Lemma 3.10. Recall 8 = max,ecpe”“#". Let 6 = e~ 2", where the constant €5 will be
determined later depending on e. We suppose that n is large enough such that § < 1/2. Because
for small n, WNC can be obtained by enlarging the constant C'.

Step 1: We take into account of measures. We want to reduce the condition of WNC on
A7 to F', which is essentially a linear functional.

For this purpose, we will bound the measure of small A’} by the measure of small F'.

Lemma 3.15. Let f1, fo be two Borel measurable functions on a locally compact Hausdorff space
X and m be a Borel probability measure on X. Then for ¢ > 0

mih € X[[fi(h) < c|} <m{h € X||f1(h)f2(R)] < csup | f2}-

In order to control F//A}}(hgy1,n), we take hyiq which is 7 good, that means for every 4 in
{1,--+,d+1}, the group element h; is (n, €2,7, ;") good (Definition 2.57). By Lemma 2.59 and
(3.6),for 1 <i<d+1,1<j<m

X <o

Since F'/A} is a polynomial on X;, for hy4q which is 7 good, we have
FJAY = Dyl er pre DgAlp < 6700, (3.11)
Using Lemma 3.15 with f; = A} and fo = F//A}}, hence by (3.11) and Lemma 2.58, we have
M o= D (b, 0| A (s, )] < e~}
< M by s Iy good, £ € G| Af(has, fn)] < e} + 0, (6°)
< M gy s 4y good, £ € G||F (hgyr, fn)] < e "5~ OW} + 0, (5°)
< B (g, OIF (hag, )] < e 6N} 4 04, (6°).

(3.12)
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Step 2: Lemma 3.13 implies that F' is a multi homogeneous polynomial on (1:;)2 of degree
q=(q1,...,94+1). Lemma 3.14 implies that

F(hgy1,m) = Fi(@;((0?)) %) /1] |uy||*0,

where F] is a linear functional on Vj = Q) j(S ym?V;)®4. To be more precise, F; will be restricted
to a linear form on W, the unique irreducible representation of Vj; with maximal weight. (This
is specific for real split Lie groups)

It remains to show that for most h;.; in G*(@+1) | the norm of F; is robustly
large. It is sufficient to find one 1 such that |F(hgy1,n)| is large. We will prove that |DgAgp|
is large for each p in I', which implies that |F'(hgy1,7)| is large.

yl oo gyttt
Using the d + 1-th column expansion of the matrix 1 .. 1 >, we have
Ad(y17 T ade) = —Adfl(rdyly e ,rdyd)ng + other terms,
= ) (1T A (gt oyt det(y! -y, (3.13)

1<j<d

where 7; : R? — R is the map forgetting the j-th coordinate. Replacing y* by E4z’, due to
rqFqrt = Eq_12', we obtain

Ag(Egat, - Egat™) = —Ag_1(Eg_1zt, -, Eg_12%)(Egz®™) g + other terms. (3.14)

Using SNC on dimension d— 1, we are able to give a lower bound of Ay_1(E4 1 X!, -+, Ed,le)
with a loss of exponentially small probability of h, ;. But the problem is in other similar terms.

Due to y}”l = ngigm(acfﬂ)*af(m) and the structure of root system, the degree of iL'Z—H in
y;-lﬂ = (Eqxdtl); is
—ag(Hg) = -2 and — aj(Hg) > 0 for j < d. (3.15)

Hence, we will make Xj“ < B, which makes the first term in (3.13) greater than M B=2 and
the other terms are less than 6—°W.

Now, here is the precise proof. Take h4y1 good, that means hgy1 is (n, €2, ;") good (Defi-
nition 2.60). We take

"7 pry g}:d1+1770<d (3.16)
as in Lemma 2.61. By Lemma 2.61

X e [5,67Y for j #d and X$T! < g5 (3.17)

Let Tg_1 = (Z/27)(@14 seen as a subgroup of T, which acts on R(¢~D¢, Then we demand that
h, satisfies
|A_1p(hg,n)| > 0 for all p € T'y—; and hy is 1 good. (3.18)

Recall that hy is  good means that h; is (n, €2, 7, C;”) good for 1 <4 < d. By Lemma 2.59 and
(3.6),
Xi(n) €607, for1<i<d1<j<m. (3.19)

Recall that W is the unique irreducible subrepresentation of Vj with the highest weight.

Lemma 3.16. We claim that if hqy1 is good ((n,€2,(;") good), n is taken as in (3.16) and the
assumption (3.18) is satisfied for hy, then the operator norm satisfies

1w ]| = 69,
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Proof ot Lemma 3.16. As we have already explained, it is sufficient to prove that for p in T", we

have
| DAL p(hg,n)| > §°0).

The proof is similar for p in I'; we will only prove the case p = e.
By (3.13) and (3.14)

DiAg(Egat, - Bgx®™™) = —Aq_1(Bg_12', -+, Bg_127) Dg(Egz™™)g

+ Z (—1)j+d+lAd,1(7“jEda?1, s ,Tjded)Dd(Ed$d+l)j + Dd det(del, cee ,Eda:d) (320)
1<j<d
where 7; : R? — R4 is the map forgetting the j-th coordinate. Since xZH only appears in
E4z%' by (3.15), we know that the degree of de in Dy equals ay(Hg) = 2, which implies
that
Dy < 670(1)62'

Hence by (3.17)-(3.19) and the property (3.15) that the degree of Xj“ in (B X% 1) is —2, the
degree in (E4X*1); is non negative for j < d, we have

Dg(E X4y >50 CAg_1(Bg1 XY, By XY > 690,
Dg(EgX ), <670WgE2 Ay 1(riEgXY, - riBgX)| <6 Wifor1<j<d  (3.21)
and Dydet(EgX", -, E4X%) <6 0M g2,
By (3.20) and (3.21), we have
|DgA?| > 5O _ 5=0(1) g2 > 50(1).
The proof is complete. O

Step 3. We return to the proof of Lemma 3.10. We write fv for the vector ®;(¢(v7)?)®4
in Vy. Then Riv is exactly the image of ¢n in PW. Using the Fubini theorem and (3.12), we

have
o “(d—1n “n Fy(lv —en _
M < [awniae) [ape 0 maen {f IO < g0
TR 1]
+ O¢, (6).

Using SNC on dimension d — 1, for all p € T'y_1, we have p*@=Dn{(h,)[|A?  p(hg,n)| < 6} =
O, (6°). (This is a stronger form of SNC on dimension d — 1. Due to T'y_; € O(d — 1)*%, it
follows from Remark 3.8 that SNC implies this stronger form.) By Lemma 2.58, the set that
hd+1 is not (n, €2, C;”) good and hy is not 1 good have exponentially small measure. Hence

*n *(d—1)n *1 Fy(tv e €N —
v [ apina | gy o G < o0y
good h, satisifes (3.18) ”F1|W|| ||€”
+ O, (09).
(3.22)
Due to Lemma 3.16, when € is small enough with respect to €, we have (6 = e " and

1w || << 679
e—en5—0(1)||F1|W”—1 < 6—6”5—0(1) < 6—511/2‘

Using Lemma 3.11 with V' = W, due to fv in W we conclude that under the condition of Lemma
3.16,

5)7 < e 5O Fy || b <, emen, (3.23)
{ I3 w11l
By (3.22) and (3.23), the proof is complete. O
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3.4 Combinatoric tool

Proposition 3.17. Fix k1 > 0. Let Cy > 0. Then there exist e3 and k € N, e > 0 depending
only on k1 such that the following holds for T large enough depending on Cy. Let \i,... A\ be
Borel measures on ([—74, =174 U [7~4,7%4])™ C R™ where e, = min{es, e3¢ }/10k, with total

mass less than 1. Assume that for all p € [172,77%) and j = 1,...,k
sup 1(7TU)*)\j(BR(a, p)) = sup A\j{z| (v,x) € Br(a,p)} < Cop™. (3.24)
a€ERveS™— a,v

Then for all s € R™, ||| € [r3/4,7%/4] we have

’/exp(i<§,w1 coerp))dA (1) - - d g (zR) | < TS,

This is proved in [LI18b], based on a discretized sum-product estimate by He-de Saxcé
[HdS18]. When n = 1, this is due to Bourgain in [Boul0].

3.5 Application to our measure

From Proposition 3.4, we fix e2 < 55 mingen{ac,} and we can find ¢; such that PNC holds.
Let (e2/2,c’) be the constants in Lemma 2.59. Take

1
Ko =175 min{cy, c'}.

Using Proposition 3.17 with k1 = kg, we get €3, €4.
For g,h in G and 7 in &2, recall that Y"(h,n) = (e~@@@hm=rlg)=non)) 1 € R™. Let Ay,
be a pushforward measure on R™ of p*" restricted on a subset G, 4, of G, which is defined by

Ag(E) = " {h € Gy g4|Y"(h,n) € E},
for any Borel subset E of R™, where
Gngn=1{h € G|his (n,€,1m,(;") good} (3.25)

and where €, > € > 0 will be determined later.

PNC is only at one scale, we need to verify all the scales needed in the sum-product estimate.
The idea is to separate the random variable and try to use PNC in other scale, where we need
the cocycle property to change scale.

Proposition 3.18 (Change scale). With € small enough depending on esea, there ezists Cy
independent of n such that the measure Ay, satisfies the conditions in Proposition 3.17 with
constant T = e2" for alln € N.

Proof. We abbreviate A\, , to A. By taking € small depending on ese2, Lemma 2.59 implies that

the support of \ is contained in the cube [T, 7¢4]™.

Then we verify (3.24). Let p € [t72,77%]. Let ny = [%]. and ng = n —n;. Then
ny lies in [e3n/2,n]. We separate h = hihg such that hy, hy have distributions p*™1, p*="1),
respectively. We have

Y™ (h,n) = Y™ (h1, han)Yy™ (ha, n), (3.26)

We can not use the cocycle property directly to change the scale. The problem is in (3.26),
where the term YO”2 behaves bad if ne > n1, that is to say that the probability of hy such that
Yy (h2,n) is smaller than p = e~2°™ is large. In order to overcome this difficulty, we use the
support of Y. We will prove that if ¥;"* is too small, then the support of Y™ will force Y™ to
become large, which can be controlled by the large deviation principle.
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Now we give the details of the proof. For (3.24), due to the fact that the support of \ is
contained in [T, 7%4]™ we have

(ﬂ'w)*A(B(av P)) < sup N*nl {hﬂ(v, y™ (hla h277)> € RilB(av p), Yn(h1h27 77) € [7—7647 764]m}7

hao,v
(3.27)
where R = |[wY,"(hg,n)|| depends on hs.
o If R > p'/2, then pR~! < p/2 = e=™_ Tt follows by PNC at scale n; that
B B (0, Y™ (s b)) € Bla, e} < e < 0, (3.28)

e If R < p!/2. There exists one coordinate a such that |Y5*(ha,n)a| < p!/2, which implies
that Y™ (h1,han)a = Y™ (h,0)a/Yy?(h2, )0 > 7%p~1/2 Due to e3 > 4e4 and ng >
esn/2, we have eany > 2e4ean. Therefore T*€4p*1/2 = 7 %2 > e©2"1/2 For such ho, we
have

Y (haha, ) € [r75 74} < ;{“*m{hw"%hl,hm 2 e (3.09)

It follows from Lemma 2.59 that

P [Y ™ (ha, ham)a > €@™/2} < ™ {ha||o(gha, han) — K(g) — naoul| > ean1/2}

Loy e—C’EQ?’Ll < pfio‘
(3.30)

By (3.27)-(3.30), for p € [772,77] we have

(T )« A(B(a, p)) ey p-

The proof is complete. ]

4 Proof of the main theorems

In this section, we will use the results of Section 2 and Section 3 to give the proofs of the
main theorems. In Section 4.2, we will prove Theorem 1.7, the simply connected case. For non
simply connected case, please see Theorem 5.4 in Appendix 5.1. Then in Section 4.3-4.4, we will
work on semisimple case and we prove all the other theorems in the introduction from Theorem
5.4.

We will add many assumptions on the elements of G and &?. The assumptions seem
complicate. In fact, they are not really important. They are taken to make the result work
outside a set of exponentially small measure. These assumptions say that the elements are
away from certain closed subvarieties of G or &2, which also explains that they are true almost
everywhere.

4.1 (C,r) good function

For a C! function ¢ on the flag variety &2. We first lift it to 2y = G/A.N. Let Oq = Oy, ¢
be the directional derivative on &y. By Lemma 2.36 the action of the group M only changes
the sign of the directional derivative 04, hence |0,¢| is actually a function on &2. Although
Oatp is not well-defined on &, we can fix a local trivialization of the line bundle P, and define
the directional derivative. This point of view will be used in G3.

Recall that for 7,7’ in & and simple root «, we have defined do(n,7") = d(Va,y, Vay)-
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Definition 4.1. Let r be a continuous function on 2. Let J be the open set in &2, which is
the 1/C-neighbourhood of the support of r. Let o be a C? function on &. For a simple root
let vo = SUP,cquppr [Oap(N)]. We say that ¢ is (C,r) good if:

(G1) Forn,n' in J such that d(n,n") < 1/C,

lo(m) = o) < C Y da(n,7)va, (4.1)
acll

(G2) For every simple root o and for every n in the support of r, we have

1
o) = (4.2)
(G3) Forn,n' in J with d(n,n') <1/C,
0atp(n) = Oap(n)| < Cd(n,7 )va. (4.3)
(G4)
sup vy € [1/C,C]. (4.4)
acll

Remark 4.2. The distance d, does not depend on the representation. For two different repre-
sentation (p, V), (p/, V') such that ©(p) = O(p’) = {a}, by Lemma 5.7, when C is small enough,
two distances dy, dy: are equivalent.
In the above definition, the G3 assumption (4.3) is equivalent to the inequality on Py, that
18
10a0(2) — Oap(2")| < Cdoy(z, 2" )va, (4.5)
for z, 2" in 7= 1(J) with d(z,2') <1/C.

G1 assumption is new in higher dimension which means that we can bound the difference by
its difference in each representation V,, and in the representation V, the directional derivative
|0atp| can bound the Lipschitz norm. G2 and G3 assumptions are natural generalizations of the
case m = 1, SLa(R). G4 assumption is used to normalize the function.

The role of J is to simplify the verification of (C,r) goodness. With this definition, we only
need to verify assumptions on a neighbourhood of the support of r.

4.2 From sum-product estimates to Fourier decay

In this subsection we will prove Theorem 1.7, an estimate of Fourier decay, by using the
results established in Section 2 and Section 3.

Recall that we have fixed (ez, c1) for Proposition 3.4 in Section 3.5, the constant (e3/2,¢’)
in Lemma 2.58 and

1
Ko =15 min{cy, c'}.

Take k, €3, €4 from Proposition 3.17 with this xo. Let € be a positive number to be determined

later (the only constant which is not fixed yet). The constant €y in the hypothesis of Theorem

1.7 is defined as .

maxaernf{(2k + 1)ao, + e} + €

€ = (4.6)

which will be fixed once € is fixed.
Here, we define and give relations of different constants. Let v be the vector in R™ whose
components are vo = SUP,cquppr [Fap ()], for a € II. Then by G4 assumption (4.4), we have

Sup vy € [0, €. (4.7)
a€cll
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Let n be the minimal integer such that

e > £ max{vge” IO (4.8)

The existence is guaranteed by the positivity of Lyapunov constant, that is ao,, > 0 for a € II
(Lemma 2.51). Let the regularity scale § be given by

d=e " <1/2,
where we take £ large enough such that n is large enough. Let the contraction scale 3 given by

fo =€ " B = I;lgg{ﬁa}-

The point is that the contraction speed 5 decides the magnitude of a term and ¢ is only an error
term, much larger than .
Let the frequency 7 be defined by 7 = e“". By (4.8), we have

7> gmax{va 51} > Cor, (4.9)
a€cll
where Ce, = e~ mingen{e” @Ft1)2ou}. By (4.7), there exists o, in II such that v,, > €.

Then (4.9) and (4.6) imply that

1—¢g
€

5 < TUQ—OIB;OQk—I < 5607_5;0(2143—&-1) < ggoene o

Hence the regularity scale satisfies
€0 < et =51 (4.10)

Notation: We state some notation which will be used throughout Section 4.2.
o Let g = (go,...,g%) be an element in G*+1),
e Let h = (hy,...,hs) be an element in G**.
e We write g<>h = goh; - - - hygr, € G for the product of g, h.
e We write Tg<>h = goh1--- gr_1hi € G.

e For [ € N, let y,, be the product measure on G*! given by Wi = " @ @ u.

[ times

e Recall that for g, h in G and 7 in &, we define Y *(h, 1) = exp(—a(o(gh,n) —k(g) —no,))
and }/gn(}l’ 77) - (an(h,ﬁ)a)aen eR™.

e For z in &, let ffq"(h, 2)a = aﬁ(m(fgl,hz))lgn(h,n)a, where of is the corresponding
algebraic character of the simple root o and we make a choice of ¢4 and n = 7(z).

e For g in G, z in &y and i = w(2), let A, be the pushforward measure on R™ of y*"
restricted to a subset G, 4, under the map Y*(,2). In other words, for a Borel set E,

:\g,z(E) = pu"{h € Gngy

?g”(h,z) € E}.
Recall that the set G, g is defined by Gy g, = {h € G|h is (n,€,n, (") good}.
o After fixing g, we will also fix a choice of kg, £, for g; and let zy, = kg, z,, m;(h) =
m(lgl,, hkg,) and Nj = Xy, -, for j=1,... k.
Lemma 4.3. The measure 5\972 satisfies the same property (3.24) as Ay, with Cy replaced by
2mCoy, where n = 7(z).
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Proof. Since the difference is only in the sign, we have

(”v)*;\g,z(BR(anO)) < Z (7 f0)xAgn(Br(a, p)),
fe(z/2z)y™

where we identify (Z/2Z)™ with {—1,1}™ C R™. The result follows from this inequality. O

First step: For 1,1/ in 2, let

fln,n') = /G el =eam Dy (gn)r(gn)dp* PRI (g). (4.11)

Lemma 4.4. We have

2
< / S, ) dv(n)dv(y). (4.12)
P2

/ e () (n)
P

Proof. By the definition of u-stationary measure and the Cauchy-Schwarz inequality,

2

/ € () ()
4

2
[ esetmrtgnaviny| aun)
@

2
S/
G

= [ [ et et gy GO g v () o).
22 )G

/ 5P (gn) A KM () o ()
PxG

The proof is complete. O
Recall that for n in &2, we write V,,,, for its image in PV, and do(n,7) = d(Va,p, Vay)-
Definition 4.5 (Good Position). Let n,n’ be in &. We say that they are in good position if

Vo€ T1, da(n,n') > 6.

We fix 1,7 in good position, which means that 7,7’ are far in all PV,. We rewrite the
formula.

Lemma 4.6. We have

2
<[ rmadvindvtr) + 0) (4.13)
n,m’ good

/ e () ()
4

Proof. By the regularity of stationary measure (2.40), we have
v{n' € Plda(n,n) <6} =v{n € P|dVay, Va,y) <6} < C8°. (4.14)

Therefore by (4.14) and Fubini’s theorem,

v v{(n,n) € P* da(n,n) <6} = / v{n' € P|da(n,n') < 6}dv(n) < 6°.
ney

Summing over simple roots «, we obtain the result by ||7]|c < 1. O

Second step: The purpose of this part is to give a Ping-Pong Lemma in measure sense.
We will eliminate sets with negligible measure such that the Ping-Pong condition is almost
preserved by iteration on the complement.
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We fix g; for j = 0,...,k — 1 which satisfies
15(g5) = nou| < en/Ca. (4.15)
Recall that C4 is a constant in Definition 2.57. We also demand that
hjs1 is (n, e,né\fﬂ,q}) good. (4.16)

Recall that the Cartan subspace a is equipped with the norm induced by the Killing form,
and with this norm a is isomorphic to the euclidean space R™.

Lemma 4.7. Suppose that g,h satisfy the above conditions (4.15) and (4.16). Then the action
of Tg<h on b]‘\//i,gk(é) is 2k6=OW) Lipschitz and

oot atl) | gmortanihuatl) < o2k5-00) (.17

for every o in II. Fort € b%(é), let tj = gjhji1---hit for j =0,...,k, where we let tj, = t.
Then
M(pa5—2 M

tj € by, (B677) C by, (9), (4.18)

lo(gjhis1stin) — o(gihjemal Il < B5—OW), (4.19)
Remark 4.8. The contraction constant 3 here is a little different from the gap ~v(g;), but v(g;)/B
is in the interval [(50(1),5_0(1)] by Lemma 2.59. Hence they are of the same largeness and we
will not distinguish them.

The intuition here is that by controlling /i(g),né\/[,fgn, all the other position or length will
also be controlled, which is similar to hyperbolic dynamics.

Proof. For every « in II, using Lemma 2.11 2k times, we obtain the Lipschitz property. By
Lemma 2.59, we have (4.17) from (4.16) for all v in IT at the same time.

We use induction to prove the inclusion. For j = k, it is due to the hypothesis of Lemma
4.7.

Suppose that the property holds for j + 1. By definition, t; = g;h;+1t;+1. We abbreviate
9j, hj+1,tj+1,77é\j+1 to g, h,n,n’. The condition becomes

d(n,n') < 6,||k(g) —nop| < en/Ca and his (n,e,1',¢]") good.

By Lemma 2.59, we have y(h) < 36~!. By Lemma 2.16, due to n € B(r,8) C BJ'(J), we have
hn € bM(B/6%) C B'(0). Therefore ghn € bé‘/‘[(ﬁ/ég), which is the inclusion condition.
Then we will prove (4.19) and we keep the notation g, h,n,7’.

lo(gh,n) = o(gh,n)|l < la(g, hn) — (g, )|l + llo(h,n) — o (h,7)]|.

By the same argument, due to Lemma 2.16 and 0,7’ € B(r/, 3/6?) C Bj(5), we have hn, hyy €
vM(B/6%) C B'(0). Therefore by the Lipschitz property of Lemma 2.16

lo(gh,n) = a(gh, )|l < (d(n,n') + d(hn, hn))6 < B/,
The proof is complete. O

Lemma 4.9. Suppose that g, h satisfy the conditions (4.15) and (4.16). Let s be in {z €
Poldo(z, zg,) < 0}. Let sj = gjhjqy1---hgs for j =0,...,k, where we let s, = s. We have

m(s0, kgo) = Micjerm(fyl | hjkg,) = Th<j<pm;(hy). (4.20)
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Proof. We let n = 7(s), then 7 is in b%(&). By (4.18) with j = 1 and (4.16) with j = 0, Lemma
2.30 implies
m(SO’ kgo) = m(kgovgohlsl) = m(fg_ol, hlkm)m(sl’ k91)'

Iterating this formula, we obtain the result. O

Third step: Here we mimic the proof of [BD17], where they heavily use the properties of
Schottky groups and symbolic dynamics. But in our case, the group is much more complicate
from the point of view of dynamics. We use the large deviation principle to get a similar formula.

By very careful control of g;, with a loss of an exponentially small measure, we are able
to rewrite the formula in a form to use the sum-product estimates. The key point is that by
controlling the Cartan projection and the position of néw and (g of each g;, we are able to get
good control of their product g+ h.

We should notice that the element g; will be fixed, and we will integrate first with respect
to hj. This gives the independence of the cocycle o(gj—1h;, né\;f ), that is for different j they are
independent, which is an important point to apply sum-product estimates.

We return to (4.13). We call g “good” with respect to n,n’ if

g satisfies (4.15), g satisfies conditions in Lemma 2.45, 77;\0/[ € suppr

and 5(77’ ;Z)v 5(77/> ;Z)a 5(‘/&,77 A Va,n’ay;@ > 40.

(4.21)
Pagk) -

Lemma 4.10. Ifn and ' are in good position and g is “good”, then gin, gxn’ are in b%(cs), and
for a € 11 the d,, distance between gpn and gin' is almost B, that is

do(gim, gen) € BalsCM, 5700,

Proof. The inclusion is due to Lemma 2.16. Since g is good (4.21), by (2.13) we have the lower
bound and by the Lipschitz property in Lemma 2.11 we have the upper bound. O

For n,n in &2, we can rewrite the formula of f(n,n’) as

fmn) = / /Sl =e @) (g o hn)r(g 4 ) d e (D) dpis 1,0 (8). (4.22)
We call h is g-regular if h satisfies (4.16). Let
fe(n,n') = / l eii(@(gﬁhn)*@(gﬁhn’))dukm(h).
g—regular

Lemma 4.11. For n,n in &

F( )] < / e it 1 () + Ou(5°), (4.23)

g“good77
if € is small enough with respect to vy, that is € < mingen{ao,v/(2 +2v)}.

Proof. Let

Falnn) = / l et (g —p(gehn)y (g s hip)r (g ¢ by ) dpag (D).
g—regular

We call g “semi-good” if g satisfies (4.21) except the assumption of né\o/[ € suppr in (4.21). By
large deviation principle (Proposition 2.52, Proposition 2.54, Lemma 2.65), we conclude that

Pk+1,n1g DOt “semi-good” } < Oc(6°). (4.24)
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Then by (4.22), Lemma 2.58 and (4.24),

£ ) < [ Vel dinsnn(@) + 06 < [ ifgla)lduksan(e) + O
g g“semi—goo
(4.25)
By Lemma 4.10, (4.18) with j = 0 and ¢, (r) < £° < 4§ 1
7 (1gq)* — r(g < h)r(g <> h)| < 2|rlloce, (r) (867%)7 < 28767177 < 24,
if € is small enough with respect to . Hence
’fg(na 77/)| < / e%(@(g(—)hn)*‘P(thn/))r(né\o/[)Qdukm(h) + 0(50)
g—regular (426)

< r(ny )| fg(n,n") + O(8°).
If r(n%) # 0, then that g is “semi-good” implies g is “good”. Combined with (4.25) and (4.26),
by [|7]lec < 1, we have

[f(n.n)| < / ((ng )21 f(n, 1) | + O(8°)) dptgs1,n(8) + Oc(6°)

g“semi—good”

s/ 1) o1 (8) + O(°).
g“good”

The proof is complete. ]

Recall that  is the magnitude which is really small, § is only an error term and 7 is the
frequency for applying the sum-product estimate, which lies between 6 ' and 371.

Proposition 4.12. Let I, = [7'3/4, 7'5/4]. The following formula is true for n,n’ in good position
and g “good”,

|[fg(n,7)| < sup /6i<§’mlmxk>d)\1(x1)"‘)\k(l‘k) +0(Bs~Wr), (4.27)

llslle >
when € 1s small enough with respect to €.

Remark 4.13. This is the most complicate step, where the difficulty comes from higher rank.
We need to use the technique of changing flags to find the direction of slowest contraction speed,
where we can use Newton-Leibniz’s formula. Since the action of the sign group M is non trivial
on the slowest directions, we also carefully treat the sign.

Proof. The element 7,7’ and g are already fixed. Since g;, satisfies the conditions in Lemma
2.45, we obtain two chains (7 = 7o, m1,-..,m,) and (7" = 15,7, ...,7;,) as in Lemma 2.45. Then
we write

p(gerhn) —p(gehy) = > (p(grhn,) — p(g« hn;))
0<j<li—1

— > (elgehn)) —plgehni ) + (p(g<rhy,) — p(g<hn,)),
0<j<la—1

(4.28)

The terms for different j and for n,n are similar. We fix j and we simplify a(n;,nj4+1) to a.

We compute the term ¢(g > hn;) — p(g <> hn;y1). In order to treat the sign, we will
work on #y) = G/A.N. Recall that 7 : &y — £ is the projection and we use z = kz, to denote
the element kAN in &.
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By Lemma 2.47 and (4.21), we know that gyn;,gx7n;+1 are in b%(é), which satisfy the
condition of Lemma 4.7. Let 2o, 21 be preimages of gxn; and gxn;j+1 in &) such that m(zo,21) = e.
Notice that zp, z; are in the same a-circle. By Lemma 2.45 (2.30) and Lemma 4.10

d(gkns, gknj1) = da(grn, grn’) + O(Be 9K 69W) € g, [0, 5=OM].
Due to m(zg, 21) = e, the arc length distance also satisfies
da(z0,21) = arcsind(gpn;, grnj+1) € Bald®W),57OW). (4.29)

Now, we lift ¢ to Hy, becoming a right M-invariant function. By abuse of notation, we
also use ¢ to denote the lifted function. Let v be an arc connecting zg, z; with unit speed in
the a-circle with length less than 7/2. Without loss of generality, we suppose that 7 is in the
positive direction (If not, we add minus in the right hand side of (4.30)). By Newton-Leibniz’s
formula (2.28), we have

o(Tg e hzo) — p(Tgerhz) = / Dap(Tg 3 by (1))~ TERAO) gy (4.30)
0

where u = d4(20,21). Fix a time ¢ in [0,u], let s; = gjhji1 - - hiy(t). Then nw(y(t)) is in b%(cs),
because gin; and gpn;41 are in b%(é) and by (4.29). By (4.18), the element 7(sp), the image of
so =Tg<+hy(t) in &, is in b%(ﬁé_o(l)).

Recall that we have made a choice of the Cartan decomposition of every g; for 0 < j < k.
In particular, kg, is given in the decomposition of gy = kgyag,lg, € KATK. Let mo = m(so, kg,)
and sp = somo, then m(sg, kgy) = e. By Lemma 2.36,

801%050 = OaPsomo = aﬁ(mo)aawsi- (4'31)
By Lemma 5.8 and msq, T2g, = n% in b%(ﬁé‘O(l)), we have

do(50, 2¢y) < d(msg, T2gy) < Be—OW, (4.32)

Due to g good (4.21), we have 77% € suppr. By G2 assumption (4.2), we have |0n(2g,)| > vq.
By (4.32), the point 7msg is in J, the § neighbourhood of suppr. By G3 assumption (4.3),
100p(80) — Oatp(2gy)] < 5_1vad0(5jv Zgo), which implies

8@@0(870)/80490(290) S [1 — 6570(1)’ 1+ 5570(1)].

By Lemma 4.7 (4.19), we have

aa(p(s(])efaa(gohhm) .. efaa(gkflhk,sk)

_ 35O ,—0(B/) -0(1)y,0(8/9)
(1 po )6 = _O‘U(gohhx%) o —ao(gr_1hg,a}) = (1 + 50 )6 ’

a 8a90(zgo)e e 9k
(4.33)
By (4.17),
Ba — efoza(gohl,xé\/{) L e—aa(gk_lhk,x%) < /8(21’65—0(1).
Together with (4.29)-(4.33)
o(g<rhn;) — p(g<rhnj1) — dalzo, 21)0*(m0)0ap(2gy) Bal < BA2FT57OW,. (4.34)

We deal with the error term which comes from the process of changing flags.
The Lipschitz property in Lemma 4.7 and Lemma 2.45 (2.31) imply that

do(g < by, g e g,) < B2F5~OWdo (g, gry,) < 6271 B6~CW,
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Due to (4.18) in Lemma 4.7 and Lemma 2.47, the two points g(—)hml,g<—>hn{2 are in J, the §
neighbourhood of suppr. Due to G1 assumption (4.1)

(g hmy) — (g < hugp,)| <670 " vada(g ¢ by, g hi,).
(0%

Therefore
lo(g«rhmy,) — p(g<rhny,)| < 67OWBY 0,82 (4.35)

We collect information for different simple roots. Recall that for a fixed g in G and
for h € G, z € Py, we have defined Y*(h, 2)a = e~ololgh2)=rl9)=now) o(m(¥,, hk)). Let

o fdA(ZmZl)aﬁ(mo)aa(p(zgo)Ba.

o =
Y (s 2g1)a

Let ¢ = (Sa)ac € R™. Hence by (4.28), (4.34), (4.35) and (4.9)

|£(p(g > hr) —p(grha!)) = (¢, T, Y7 (hy, 2))| < B6~OW Y~ g2 Hu.e < g5~ 9Mr. (4.36)

[0}

We want to verify that |[s|| € I;. By (4.20), we have
So = Ed (20, 21)0ap(2g, ) Bhe R (00) = maR(gi1)
By (4.15), (4.29), (4.21) and (4.2) we have |¢q| € Ev,f2FHH3OM) | §=CM)]. Therefore by (4.9),
ls]| € sup Eva BAFH[OM), 67OW] € 7[5OW, 57OW) C [P35 = 1.

By definition, the distribution of ffgi (hi, 2g,), where h; satisfies (4.16) with distribution

p*", is the measure );. Finally, due to |e®* — e¥| < |z — y| for o,y € R, the inequality (4.36)
implies (4.27). O

*M

Fourth step: We are able to apply sum-product estimates.

Proof of Theorem 1.7. For Il = 1,2,...k, Proposition 3.18 and Lemma 4.3 tell us that with e
small enough depending on e4¢, there exists Cjy such that the measures \; satisfy the assumptions
in Proposition 3.17 with 7.

Proposition 3.17 implies that for 7 large enough,

’/exp(i(g, x1 - xg))dA (z1) . AN (zg) | < T

Then by (4.13), (4.23) and (4.27), we have

2
' / Py (n)dv(n)| < 0(69) + O(B6 W) + 77,

—ao,+0(

Due to 367 °M 7 = maxaer e Detea)n take e small enough. The proof is complete. O

Remark 4.14. Another difference with [BD17] is that we avoid using the renewal idea, which
simplifies the proof of this part. The renewal idea is that instead of using pu*™, we use a renewal
measure (i, which is defined to be the distribution of g1 - - - gn for the first time that its Cartan
projection exceeds t, where gi,gs... are i.i.d. random vartables with distribution p. This is
because we generalize the sum-product estimate to a form that the measure can have a support
which depends on the frequency, and we use the large deviation principle to prove that our
measure has a support not too large with respect to the frequency.
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4.3 From Fourier decay to spectral gap

From now on, we will only consider semisimple groups. In this section, we will prove
Theorem 1.3 and Theorem 1.4 by using Theorem 5.4.

Derivative of the cocycle

This part is devoted to the derivative of the cocycle. The results of this part imply that
for most g, h in G, the difference of the Iwasawa cocycle o(g,-) — o(h, -) satisfies the (C,r) good
condition in Definition 4.1 (See Lemma 4.25). Since the a-bundle is trivial on Zy, we will work
on Zy. We need to lift the Iwasawa cocycle o to &y and we use the same notation o.

Let V be an irreducible representation of G with a good norm. Recall that oy (g, x) = lp(o)oll

for g in G and v in V. We will abbreviate pg to g in the proof, because (p, V) is the only
representation to be studied in this part. Let « be a simple root. Let e; be a unit vector of
highest weight in V' and let eo = Y.

Lemma 4.15. Let V be an irreducible representation of G with a good norm. For z = kz, in
Py, we have
{pgv, pgu)

P2 = g

)

where v = key and u = kes.

Proof. Without loss of generality, we suppose that z = z,. Since Y, is a left K invariant vector
field on &, we have

dy,ov(g,e) = 0oy (g,exp(tYy)zo)|i=0 = O <10g

(ge1, 9Yae1)  (e1,Yaer)
lger]? lea]?

lg exp(tYa)€1||> ‘
|lexp(tYa)ei|l / =0

Since the norm is good, eigenvectors of different weights are orthogonal, we have (e1, Y,e1) = 0.
The result follows. O

Form this lemma, we know that the derivative of the cocycle oy in the direction Y, is
nonzero only if x — « is a weight of V. We fix the distance dy on &y, which is defined in
Appendix 5.2.

Lemma 4.16. Let 0 < 1/2. Let B! (9) be the preimage of By} (6) C PV in Py. For z = kz, €
By, (9),

1Oacv (g, 2)] < 67O, (4.37)
We also have
Lip2y(0aov (g, )| ) < 6790, (4.38)
Bﬁg(é)

Proof. By Lemma 4.15, the hypothesis that Rke; € Bi? (6) and (2.12)

Yallllgli[lex|I?
lgl[26%(lex |

(gke1, gkes)
llgke1l?

a9, 2)] = \

Since the operator norm of Y, is bounded, we have

|Oacy (g, 2)| < 600
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The estimate of Lipschitz norm is more complicate. Let v = key,v' = Kej,u = keo,u/ =
k'es. We have

[(gv, gu)||gv'[|* — (g, gu') ||lgv]|?]
‘a Uv(g,Z)—a Uv(g,Z/)’: .
“ “ lgv|12]|gv’[|?

By the same argument, due to v = ke; € By}, (6), we use (2.12) to give a lower bound of the
denominator, that is

lgol®llgv’I* = 6%l llol*1o"(* = 6*|gll*llex | *.
Use the difference to give a upper bound of the numerator, that is

[{gv, gu)llgv'|I* = {gv', gu) gl
< lglPlleslP(llgv = gv'll + llgu — gu'll) < llgl* ol (Il = o'[} + [l = ']}

Therefore we have
1000y (g, 2) — Baov (g, 2)| < 67O (||ker — Key| + | kea — K ea]]).
Then by Lemma 5.6, the proof is complete. O

Let V be a finite dimensional vector space with euclidean norm. Recall that A2Sym?V is
the exterior square of the symmetric square of V. It is a linear space generated by vectors of
the form vivy A vzvy where v; are in V', for i = 1,2,3,4. For g, h in GL(V), let F; }, be the linear
functional on A2Sym?V, whose action on the vector v vy A wiws is defined by

Fyn(vive Awiws) = (hvy, hvg)(gw, gws) — (g1, gvz) (hwi, hws).

This formula is well defined because v1, v and wi, ws are symmetric, respectively. We also have
Fyh(viva A wiwg) = —Fy p(wiwe A vivz). Since the vectors of form vivg A wiws generate the
space A2Sym?V, the linear form F, 1, is uniquely defined.

Suppose that V' is a super proximal representation of G with highest weight y (Definition
2.5). Let a be the unique simple root such that x — a is a weight of V. The space A2Sym?V
may be reducible. The two highest weights of Sym?V are 2y, 2x — «, whose eigenspaces have
dimension 1. Hence, the highest weight of A2Sym?V is 4x —«, and the eigenspace has dimension
1. Let W be the irreducible subrepresentation of A2Sym?2V with the highest weight y1 := 4x —a.
In the following lemma, we abbreviate p(g), p(h) to g, h.

Lemma 4.17. Let § < 1/2. Let V' be a super proximal representation of G and let o be the

unique simple root such that x — o is a weight of V. Recall that Vi, ,, is the image of n € & in
PW. If g,h in G and z = kz, € Po,n = 7(z) satisfy

(1) VX0,V € B (8),ma(g) < 6%
(2) 6(Vxims Fgplw) > 6 and Vi € By2 (9) N By, (9),

then
0a(0v(g,2) — ov(h,2))| > 690,

Remark 4.18. This is similar to the non local integrability property as defined in [Dol98]
[Nau05] and [Stol1]. Although the above two conditions are complicate, we will see later that in
the measure sense, most pairs g, h satisfy these conditions.

The key idea here is to use other representation to linearise polynomial functions on V. As
long as the function is linear, we will have a good control of it. Another point is that the image
of & stays in the same irreducible subrepresentation.
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Proof of Lemma 4.17. By Lemma 4.15, let

F, ,(v2 Avu
L :=0u(ov(g,2) —ov(h,2)) = Wa (4.39)

where v = ke; and v = kY,e; as in Lemma 4.15.

Lemma 4.19. If g, h satisfy assumption (1), then the operator norm satisfy
1Egnlwll = 6°Dllg]*|1].

Proof. Using the Cartan decomposition and good norm, we can suppose that h is diagonal and
h = diag(ai,as,- - ,a,) with a; > ag > -+ > a,. By Definition 2.5, we know that he; = ajey
and heg = agzez. The assumption (1) becomes

5(R61,y;n), (5(R62,y;n) > (5, "}/172(9) < 53. (4.40)
In (4.39), let z = z,, then v = €1, u = eg, which make
(hv, hu) = (aje1,azez) = 0.

Therefore, due to
(v1,v2) > [Jvrl[lvzl = [lor A val],

for v1,v9 in V', we have

Fyn(ef Aere) = af(ger, gea) > ai([lgenllllgez]| — llger A gez|)).

Then (2.12) and (4.40) imply

Fyn(ef Aere) > [I]]|g]*(8% — m.2(9))-
The proof is complete. ]

By Definition 2.5, the representation A?Sym?V is a proximal representation. Due to R(v? A
vu) = Rk(e? A eres) = kVX the line R(v? A vu) is contained in the K-orbit of the subspace of
highest weight VX1, Since VX! is in W, we see that v? A vu is also in W. By (4.39),

7 — Fon(@® Ava) JlglPlIP]® ([ Fgnlwl]

[Egnlwll llgolPlhvl* lgl*l|A]>

When 7 satisfies assumption (2), the result follows by applying (2.12) to [|gv||?, ||hv||?> and by
Lemma 4.19. O

Proof of the spectral gap

Here we will prove the theorem of uniform spectral gap. The first part is classic, where we
use some ideas of Dolgopyat [Dol98] to transform the problem to an effective estimate Proposition
4.24, see also [Nau05] and [Stoll]. The key observation is that this effective estimate (Proposition
4.24) can be obtained by the Fourier decay, regarding the difference of cocycle as a function on
&. The intuition here is from Lemma 4.17. When g, h are in general position and 1 not too
close to (", (3", the difference p(n) = o(g,n) — o(h,n) will be (C,7) good (Definition 4.1). But
in order to accomplish this, we need some sophisticate cutoff, which makes the proof complicate.

Recall that the Iwasawa cocycle takes values in the Cartan subspace a. From now on, we will
the use another family of representations {V, }aerr, which is defined in (2.5) and whose highest
weight Yo is a multiple of w,. For simplifying the notation, we abbreviate V, to V.. Because
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it is the only family of representation considered here. This family is also super proximal by
Lemma 2.6.
We are in semisimple case and we know that b* = a*. We can write ¥ in a* as a linear

combination of weights, {xq|a € I}, that is

9= VaXa-

acll

Set |9 = maxqern [Val-

We want to treat the spectral gap on the flag variety & and the projective space PV at the
same time, where V is an irreducible representation of G with good norm. Let X be & or PV.
Let 0 : G x X — F be the cocycle, which is

e given by the semisimple part of the Iwasawa cocycle ¢ and E = a when X = &,
e given by oy (defined in (2.11)) and E = R when X =PV.

Let Ec = E ®g C and Ef be the dual space of E¢. For z € Ef, write z = w + 41, where ¥, @

are elements in E*. Recall that the transfer operator P, is defined as: For |w| small enough and
for f in C°(X), v in X

P.f(x) = /G 09 {(gz)dpu(g).

Recall that for f in C7(X) let ¢ (f) = sup, ., LSIEN and |fl, = |floo + ¢4 (f).

Remark 4.20. Here we should be careful that the distances on PV and &7 are defined in (2.9)
and (2.17). They are not the Riemannian distances defined in the introduction. But on a
compact Riemannian manifold, different Riemannian distances are equivalent. In particular,
every Riemannian distance on & is equivalent to the K-invariant Riemannian distance on
P. By Corollary 5.9, we know it is equivalent to the distances defined (2.17). The case of the
projective space PV is similar. Hence, the norm |-|, induced by different distances are equivalent.

We state our main result of this section

Theorem 4.21. Let u be a Zariski dense Borel probability measure on G with o finite exponential
moment. For v > 0 small enough, there exist p < 1,C > 0 such that for all 9 and w in E* with
|¥| large enough, |w| small enough and f in C7(X), n in N we have

P o fly < CIOP 0" f15

Remark 4.22. Compared with Theorem 1.3, we make an additional assumption that the norm
on 'V is a good norm here. We explain here that for other norms the result also holds.
If we have another norm || - |1 on V. Let o1 be the new cocycle defined with respect to the

norm || - 1. Let v(x) = \mll for x =Ruv in PV. Then

o1(g,x) = ov (g, ) +log(gx) — log (),

which means the difference of two cocycles is a coboundary. This function v is Lipschitz, due
to equivalence of norms on finite dimensional vector spaces. Let T,f(x) = e*1°8%¥@) f(x). By
Lipschitz property of 1, we have

IT: fly < C€C|a‘|z’7|f|%
where C depends on |Y|Lip. We know that
Pzal = TQIPzava

hence the same spectral gap property also holds for the norm || - || with different constants.
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Theorem 1.3 and Theorem 1.4 follow directly from Theorem 4.21. The assumption on
will be needed throughout this section.
We start with standard a priori estimates. When z = 0, we will write P for Fj.

Proposition 4.23. For every v > 0 small enough, there exist C > 0 and 0 < p < 1 such that
for all f in CV(X), |w| small enough and n € N

P2 floo < C1#I7| £, (4.41)

Pl | [ ar] e, (4.42)
X

ey (P2 ) < CC™IMIP | floo + 0"y (1)) (4.43)

The inequality (4.41) is a consequence of exponential moment and the Holder inequality.
For (4.42), please see [BL85, V, Thm.2.5] and [BQ16, Prop 11.10, Lem.13.5] for more details.
This inequality (4.42) is a consequence of the fact that the action of G on X is contracting. The
third inequality (4.43) is called the Lasota-Yorke inequality. The proof is classic.

We reduce Theorem 4.21 to Proposition 4.24. The reduction is standard, using Proposition
4.23. Please see [Dol98] for more details. For f in C7(X), we define another norm |fl|,y =

Floe + & (f)/[9]" for & # 0.

Proposition 4.24. For every v > 0 small enough, for |¥| large enough and || small enough,
there exist €2, Ca > 0 such that for f in CV(X) and |f|y9 < 1, we have

/‘Pfj;gﬂl]f’?du < e—e2lnldl, (4.44)

Now we will distinguish two cases. We claim that the case of PV is a corollary of
the case of &2 up to a constant. Recall that the stationary measure on PV is written as vy .
Let f be a function in C7(PV) and |f|,9 < 1. The estimate only depends on the value of f on
the support of the stationary measure vy. By Lemma 2.48, the stationary measure on PV is
the pushforward measure of the stationary measure v on &. Hence we can define the function

fon & by .
f(77) = f(vxm)?

where x is the highest weight of V. Then by ov (g, Vy.n) = xo(g,n) (see (2.7)),
[Coln 9] ,|? _ [Coln |9]] 7|2
/’ijiﬁ f‘ dvy = / ’P(wzriﬂ)x f’ dv.
We will verify that f satisfies \f|%19 < 1. By (2.21), for two distinct points 1,7’ in & we have

£ = FONI _ 1) = F0)| AV, Va1 Vi) = IVl _
d(n,n')Y AV, Vi)Y d(n, )7 d(Vyns Vir )7 !
Hence with some change of constant, we can deduce the case of PV from the case of &.
We only need to prove Proposition 4.24 for the case of .

From Fourier decay to Proposition 4.24. We need to reduce (4.44) to Fourier decay (Theorem
5.4). Let
n = [Colog|d|] and § = ™" (4.45)

(with Cy > maxaen{l/ac,}+1 and € > 0 to be determined later), and let Gy, ¢ o be the subset
of G x G, defined as the set of couples which satisfy Lemma 4.17 (1) with V = V,,. Let

Gre = {9 € GllInlg) — noull < ne}* (] Grea € G x G,

a€ll
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For |f|y9 <1, let
Ay = [ OO ) ) ),
X

Then

/ PSPy = / ez t=o ) £ (gn) f(hen)du (m)du™ (9)dps™" (h)
(4.46)

=/, Agpdp™ (g)dp™" (h) + : Agndp™ (g)dp™" (h).

We first compute the term with (g, ) outside of G,, , where the behaviour is singular.
By the Cauchy-Schwarz inequality,

2
< (G [ 1Agn P (g)d™ 1) (4.47)

/G Agndp™(g)dp™ (h)

c
n,e

By large deviation principle (Proposition 2.52, Proposition 2.53), the set G, . has exponentially
small £1*?" measure, that is
(G o) <e 6°. (4.48)

By ||fllco <1 and (4.41), we have
[ g P @ i) < PR, < €= (1.49)
When |w| is small enough depending on €, by (4.47), (4.48) and (4.49)

/ Ay pdi™(g)du™ () <. 69/ < [9] 0/ 2C2), (4.50)
G

c
n,€e

We compute the major term, that is (¢g,4) in G, . We want to use Theorem 5.4 to
control this part with ¢ = |[9|~19(o(g,7) — o(h,n)) and a suitable 7. For applying Theorem 5.4,
we need that ¢ is (C,r) good, which will be accomplished by multiplying smooth cutoffs. The
most important is G2 assumption (4.2), which will be verified with the help of Lemma 4.17.
Hence we want that r vanishes when 7 does not satisfy Lemma 4.17 (2).

Let X p.o be the subset of &7, defined as the set of elements which satisfy Lemma 4.17 (2)
with V' = V,. Let Xy, = ﬂaen Xgha- Recall that 7 be a smooth function on R such that
Tljo,00) = 1, T takes values in [0, 1], supp7 C [~1,00) and |7'| < 2. For § > 0, set 75(z) = 7(x/9)
for x € R. Let 0, := oy, = Xao and

w(n) = 9] 7"9(e(g,m) — a(h,m) = 97" Valoalg, n) — oalh,n)) (4.51)
a€ll
and B
r(n) = flgm) F(m)e=elom o) T 7, (4.52)
a€cll
where

Ta(n) = 75(40a (1, (") — 40)75(40a(n, i) — 40)75(40(Vaga—am Fpag.pah) — 49),

where 6, is defined to be
60{(777 C;n) = 5(Va,77> yg;(g))

The choice of 7, is sophisticate. We only need to keep in mind that they come from Lemma
4.17. Then e'’l*r(n) equals e (@m+2e(tn) f(gn) f(hn) on X, 4.
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Lemma 4.25. Let €, €1 be given by Theorem 5.4. Let (g,h) be in Gy . With € small enough
depending on €y and |w| small enough depending on € and €1, for ¢,r defined in (4.51) and
(4.52) we have that ¢ is (|0, ) good and c (1) < [9|0, |r|e < [9]/2.

By Lemma 4.25, we can fix a value of € and the functions ¢ and r\19|*61/ 2 satisfy the condition
in Theorem 5.4. (Theorem 5.4 still holds when r is a complex function) Hence Theorem 5.4
implies

1 / ei'ﬂ'wr(n)du(n)‘ <. (453)

The difference between A, j, and [ e/?1¢Myr(1)dv(n) is bounded by

v(Xgn) < ) v(Xgha): (4.54)
a€ll

Using the regularity of stationary measure (2.40) with V' = W, the irreducible subrepresentation
of A2Sym?V,, with the highest weight, we have

v{n € P6(Vaga—-am: Fpagpah) < 0} Le € . (4.55)
Using the regularity of stationary measure (2.40) with V' = V,,, we obtain
v{n € P|Vany € By'(0) U BJ'(8)} < e™ ™. (4.56)
Hence by (4.54)-(4.56), we have
V(XE)) e e M = ||/, (4.57)
For (g,h) in Gy, ¢, by (4.53) and (4.57)
Agp < 9|74 4 [9] e/ 2,

Combined with (4.46) and (4.50), the proof is complete by setting e = min{ g, 75 }- O

It remains to prove Lemma 4.25.

Proof of Lemma 4.25. We first verify that ¢ is (|9|,r) good. Since e will be taken small
enough, we can suppose |¢|7 < §/4. Let J be the |¢|7“ neighbourhood of suppr. Then for
n € J, we have 6,(n, (") > /2 for a in IL

The function ¢ is a sum of functions. Each function is the lift of a function on PV,, for some
simple root oe. We write ¢ = Y .1y 9o Where @o(n) = [9|7 9o (0a(9,m) — 0a(h,n)). By Lemma
2.37, that is Oy = 0 for o/ # «, in order to verify (|9, r) good condition, it is enough to
verify G1-G3 assumptions (4.1)-(4.3) for ¢, and the G4 assumption (4.4) for ¢. Since G1-G3
are linear, we can forget the coefficients |91, in 4.

Now, we verify G1-G3 assumptions and we fix a simple root o and consider ¢ = @, =
0a(g,) — oa(h,-). Recall that vy = sup,csppr [0ap(n)|. Since J satisfies the hypothesis of
Lemma 4.16 with V' =V, we have

oy Lip 7y (0ol g-1.7) < 67O, (4.58)

Since (g, h) € Gy satisfies Lemma 4.17(1) and the support of r satisfies Lemma 4.17(2), for n
in the support of r, by Lemma 4.17,

[Oap(n)| > O > 50Wy,
which is G2 assumption (4.2). This also implies

Vg > 090, (4.59)
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G4 assumption (4.4). By (4.58), we have G3 assumption (4.3). Let ¢; be a function on PV,
such that ¢1(Va) = ¢(n). Since J satisfies hypothesis of Lemma 2.11, this Lemma implies

\sO( ) =)l _ [e1(Van) = 1 (Vauy )|
do (1) d(Van, Vo)

which is G1 assumption (4.1).

For general ¢, it remains to verify G4 assumption (4.4). There exists a simple root o such
that |9, = [9]. Since ¢, satisfies G4 assumption and |0n¢| = |0apa| by Lemma 2.37, the
function ¢ also satisfies G4 assumption.

Finally, we verify the term c,(r) and |r|.

< |Lippy, ¢1] < 670W < 5700y,

Lemma 4.26. For 0 <~ <1, let f,7 be two ~v-Holder functions on a compact metric space X.
Then

ey (Tf) < ey (T flsuppr lloo + [T looy (f |suppr)-

The proof of Lemma 4.26 is elementary. Recall that

r(n) = F(gn) Fhm)e=@lon ot T .

acll
For the infinity norm, due to (g,h) € Gj, ¢, we have

Ir| < l@lU@I+xR]) < elwl@loull+en < |19“w|02(2||‘7u||+6)‘

Take || small enough, then |r|s < [9|1/2.
For the term ¢, (r), we only need to verify that each term in the formula of r has a bounded
¢y value. Due to Lemma 4.26, we only need to verify the ¢, value on X 5.

e Since the action of g on X, 5, is contracting, by Lemma 2.16, we have

ey (F(97)Ix,) < e5(F)(Lip glx,,)" < (1918672)7.

Due to (4.45), we have log 8 = —nmingen aoy, < —n/Ca < —log |[J|. Therefore ¢, (f(g°)|x,,) <
600,

e Due to
e — €| < max{e®, e’} a — b|”

for all a,bin R and 0 <y <1, by Lemma 2.16,

e (€™ ) < IO (Lipma(g, )|, )T < elllonltantem gy

Hence when |w| is small enough depending on o, we obtain ¢, (e™” (9:) |x,) < 6o,

e In ¢, (7,), the only term we need to be careful about is 75(46 (Vig,—a,ms Fpag,pah) —40). By
Lemma 2.17, we have d(Vig,—a,n: Viga—an) < d(n,7"). Hence the ¢, value of this term is
also bounded by §—91),

The proof is complete. O
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4.4 Exponential error term

In this section, we will prove Theorem 1.1 that the speed of convergence in the renewal
theorem is exponential using our result on the spectral gap. (Theorem 4.21) Recall X = PV,
where V' is an irreducible representation of G with a norm and the highest weight x is in b*.
We have defined a renewal operator R as follows: For a positive bounded Borel function f on
R, a point z in X and a real number t, we set

“+oo
Rf(a,t) =) /G F(ov(g.2) — A (g)
n=0

and

+o0
Rpf(z,t) = Z/Gf(log\\p(g)\\ —t)du™"(g).
n=0

Recall P, is the transfer operator defined by P, f(z) = [, e*7v(92) f(gx)du(g). Using the
analytical Fredholm theorem, we summarize the property of P,.

Proposition 4.27. With the same assumption as in Theorem 1.1, for any v > 0 small enough,
there exists 1 > 0 such that when |Rz| < n, the transfer operator P, is a bounded operator on
C7(X) and depends analytically on z. Moreover there ezists an analytic operator U(z) on a
neighbourhood of |Rz| < n such that the following holds for |Rz| < n

1

I-p) =
( ) v

Ny + U(Z),

where Ny is the operator defined by Nof = fX fdvy. There exists C > 0 such that for |Rz| <n
IU(2)llermor < C(1+ [S2))*7, (4.60)

This is a generalization of [LI18a, Prop. 4.1] and [Boyl6, Theorem 4.1], and the proof is
exactly the same. The main difference is that the spectral radius of P, is bounded below 1 in
a strip of imaginary line (except at 0), due to Theorem 4.21. From this we have the analytic
continuation of U(z) to the strip and the bound of the operator norm of U(z).

Now, we give the precise statement and the proof of Theorem 1.1.

Proposition 4.28. With the same assumption as in Theorem 1.1, there exists € > 0 such that
for f € C(R), we have

Rfe.0) = o [ fldus e 1O s 41110,

where |suppf| is the supremum of the absolute value of x in suppf.

Proof. By the same computation as in [LI18a, Lemma 4.5] and [Boy16, Prop. 4.14], we have

o0
Rf(z,t) = L f(u)du + lim l/eitff(f)U(s—i-if)ll(x)d&,
oV J—t s—0T 27
where f is the Fourier transform of f given by f &=/ ¢ f(u)du. Hence, we only need to
control the error term.

By Proposition 4.27, we know that U(z) is analytical on {z € C||Rz| < n} and uni-
formly bounded by (1 + |3z[)??. Since f is a compactly supported smooth function, the
Fourier transform f is an analytic function on C. By |f(ie + &)| < ee|suppf‘ﬁ\f”\y, and

|fie + €)] < elswPfl| £| 1 for €, € in R, we have

2

|fie+&)| < 6E‘suppf‘T|£|2

(" pr + [ f1p)- (4.61)
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By (4.60), (4.61) and the dominant convergence theorem, we have
im L [ et f : R I S 0
tm oo [ HOUG gL = o [EHOUEOL@E (46)

Lemma 4.29. [RS75, Thm.IX14] If T is in S'(R), tempered distributions, the distribution T
has analytic continuation to |I¢| < a and supp <, [ |T(ib+ y)|dy < oo, then T is a continuous
function. For allb < a, let C, = max [ |T(£ib+ y)|dy. We have

IT(t)| < Cpel,
Using Lemma 4.29 with T(¢) = f(&)U(i€)1(z), we have

’ / f(g)U(ig)n(x)e“ﬁdg‘ = [T(t)| < e~ max |T(Fie + &)[p1(e)- (4.63)

By (4.61), we have

2
max |T(<ie + €)| 1 §e€|Suppf|/ P+ 1)U (Fe + €)1 () |de
T ( )L 1+\€|2(| |+ [ Fl)IUS )1()] (4.64)
< e PRI 1 4 [ f ).
Combining (4.62), (4.63) and (4.64), we have the result. O

Proposition 4.30. With the same assumption as in Theorem 1.1, there exists ¢ > 0 such that
for f € C(R), we have
1 [o.¢]
Rpf(z,t) = — [ flw)du+e MO PP £ 4 [ f0)).
TV J—t
Proof. The ideal of the proof is the same as [LI18a, Lemma 4.11 or Proposition 4.28], where we
only need to replace the error term by the error term in the above Proposition 4.28.

We summarize the main idea here. By the large deviation principle, the main contribution
of the renewal sum is given by n in a small interval containing t/oy,,. Since the norm is good,
we have the interpretation of the norm by the Cartan projection (2.8). Then we use [BQ16,
Lemma 17.8] to replace the norm by the cocycle oy for each n in the small interval. The proof
is complete by applying Proposition 4.28. O

5 Appendix

5.1 Non simply connected case

We explain here how to get Theorem 5.4 for connected algebraic semisimple Lie groups
defined and split over R from Theorem 1.7 for connected R-split reductive R-groups whose
semisimple part is simply connected, which is proved in Section 4.

See [Mar91] and [Bor90, §22] for more facts about algebraic groups and central isogeny.

Lemma 5.1. Let G’ be a connected algebraic semisimple Lie groups defined over R. Then there
exist a connected reductive R-group G with simply connected derived group G and an algebraic
group morphism v : G — G’ which is surjective between real points. Moreover, the restriction
of ¥ to PG gives a central isogeny from 2G to G’ and the connected centre of G is R-split.

Proof. Let A’ be a maximal R-split torus of G’. Let Gi be a cover of G’ which is simply
connected and let f be the isogeny map from G to G’. Let A; be the preimage of A’ in G,
which is a maximal R-split torus of G; [Bor90, Theorem 22.6 (ii)]. Let N = ker f N A, then A’
is isomorphic to A1/N as torus. Consider the conjugate action of A; on Gy, that is for s € Ay
and g € G1 we define Ints(g) = s~ 1gs. Since the kernel of f is in the centre of G, the conjugate
action of N on Gy is trivial. By [Bor90, Corollary 6.10], the quotient group A’ ~ A;/N acts
R-morphically on Gj.
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Hence, we can define the semidirect product G = A’ x Gq, given by the action of A’ on
G1. The derived group [G, G] equals G, which is simply connected. The group G is defined
over R, because A’, G1 and 1) are also. The restriction of the action of A’ on A is trivial and
A’ x Ay is a maximal R-split torus of G. Hence the group G is a connected reductive R-group.

We only need to find the surjective morphism 1. Let A’ x G’ be the semidirect product
given by the conjugation action of A’ on G’. As A’ is a subgroup of G’, this semidirect product
is isomorphic to a product. We have a group morphism

G=A'"xG -A'x G — G’
Vi (s,9) = (s, f(g) = sf(g)-

It is well-known that the real part of a semisimple simply connected group (1 is connected in
analytic topology. (See for example [Ste68]) Let (G')° be the analytic connected component of
the identity element in G’. Then the image of real points of G under ¢ is A'(G’)°, which is
equal to G’ by a theorem of Matsumoto [Mat64] ([BT65, Théoreme 14.4]). O

Example 5.2. When G’ = PGLsy, the above construction gives G = GLy = GL; x SLy and
the map ¥ is the quotient map from GLo to PGLs.

Let G’ = G/'(R) be the group of real points of a connected algebraic semisimple Lie groups
defined and split over R. Recall that p is a Zariski dense Borel probability measure on G’ with
a finite exponential moment. If G’ is simply connected, then Theorem 1.7 holds for G’. If not,
let G = G(R) be as in Lemma 5.1. Recall that ¢ is a group morphism from G to G,

Lemma 5.3. There exists a Zariski dense Borel probability measure fi on G with a finite expo-
nential moment such that

Yift = pu. (5.1)

The proof of Lemma 5.3 will be given at the end this section. We will explain why the
results also hold for G’ and pu. We state the non simply connected version of Theorem 1.7 here

Theorem 5.4 (Fourier decay). Let G’ be a connected algebraic semisimple Lie group defined
and split over R and let G' = G'(R) be its group of real points. Let p be Zariski dense Borel
probability measure on G’ with finite exponential moment. Let v be the u-stationary measure on
the flag variety 2.

For every v > 0, there exist g > 0,¢; > 0 depending on pu such that the following holds.
For any pair of real functions ¢ € C*(2), r € CV(P) and & > 0 such that ¢ is (£°,r) good,
I7]loc <1 and cy(r) < £, then

’/eif‘P(")r(n)dy(n)‘ <& for all € large enough. (5.2)

Proof. By Lemma 5.1, since G’ is R-split, G is also R-split. Hence Theorem 1.7 holds for G, ji.
By Lemma 5.3, we only need to prove the flag varieties of G and G’ are isomorphic, then the
result follows.
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By [Bor90, Prop.20.5], we know that (G2/P2)(R) = G2(R)/P2(R) for any connected reduc-
tive R-group G and its parabolic R-subgroup Ps. Hence it is sufficient to prove for a minimal
parabolic R-subgroup P of G and P’ its image in G’ that

G/P~G'/P. (5.3)

As if (5.3) holds, then P’ is also a parabolic subgroup by definition and it is minimal because P
is. Due to [Bor90, Thm.11.16], the normalizer of a parabolic subgroup is itself. Then the centre
of G is contained in the parabolic group P. It suffices to prove that ker is in the centre, then

G/P ~ (G/kerv)/(P/kery) ~ G' /P’

By [Bor90, Prop.14.2], we know that G = C - ZG, where C is the connected centre and
CN Z2G is finite. Since G’ is semisimple, the connected centre C is in ker ). As the restriction
of ¥ on 2G to G’ is a central isogeny, hence ker ¢y N ZG is in the centre of 2G, which is also
in the centre of G. Therefore the kernel of ¢ is in the centre of G. The proof is complete. [

It remains to prove Lemma 5.3.

Proof of Lemma 5.3. We will first construct a measure fi; which has a finite exponential mo-
ment. In the construction of Lemma 5.1, there exists a finite subgroup F of A’ such that v from
F x G to G’ is already surjective. Let F| be the kernel of this covering, which is finite. Then
there exists a unique Borel probability measure fi; on F' X G; < G which is Fi-left invariant and
the pushforward measure is p.

The moment condition is also satisfied. Because 1 induce an isomorphism between a; to o’
(Recall the notation in Section 2) and this isomorphism identifies the Cartan projections x(g)
and k(1(g)). Let mg be an element in F' x G; with m € F and g € Gy, then by the sub
additivity of the Cartan projection ([BQ16, Corollary 8.20]),

l5(mg) || < [ls(m)ll + (gl = lIx(m)l| + Ix(@ (gD < lIx(m)l| + [lx(@(m)I] + (% (mg))ll

Hence

/eeH(g)lldlal(g)<</eellm(lﬁ(g))lldﬂl(g):/ eEH“(gl)“dM(g’),
a G G’

In order to get a Zariski dense measure i, we replace the above measure fi; by ji = %(ﬂl +
cxfi1), where ¢ is an element in the connected centre C' such that the group C1 = (c) generated
by ¢ is Zariski dense in C. Due to d¢|, = 0, the connected centre C is in the kernel of 1. Hence
u(Cufin) = ¥yfi1. This measure [i satisfies (5.1) and has a finite exponential moment. We will
prove that it is also Zariski dense.

Let H be the Zariski closure of I';, the group generated by the support of fi. Let b be
the Lie algebra of H. Since the group G is a connected R-group, it is sufficient to prove that
h = g. Recall that g = ¢ ® Zg. Due to ¢ in H, the Zariski closure of the C is also in H. Hence
h D ¢. For the semisimple part, consider the adjoint action of I'; on Zg. Because the group I',,
is Zariski dense in G’, the adjoint action of ', on g’ is irreducible. The map dv|g4 : Zg — ¢
is an isomorphism of Lie algebras. By

A (AdyX) = Adydy X for X € Zg,

we obtain that the action of I'; on Zg is irreducible. Since h N Zg is nonzero and I'z-invariant,
we know that h N Pg = Pg. Therefore h = g. The proof is complete. O
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5.2 Equivalence of distances

Definition 5.5. Let (X, d) be a metric space. Let d' be another metric on X. We say that d,d’
are equivalent metrics if there exist ¢, C' > 0 such that for all x1,xs in X

cd(z1,22) < d (21, 22) < Cd(x1,12).

Recall that £ is the homogeneous space G/A.N, on which the compact group K acts
simply transitively. Recall that {V,}ser is the family of representation fixed in Lemma 2.3. We
will define three distances on &?y. Due to the fact that &y is homeomorphic to K, a distance
on 2 is also a distance on K and we will continue our argument on K. Let k, ¥’ be two points
in K. If they are not in the same connected component, we define their distance as 1. From
now on, we always suppose that k, k' are in the connected component K°.

o do(k, k') = supaer [|kva — K'va||/ V2, where v, is a unit vector in V,, with highest weight.
This is also the distance induced by the embedding of &y to [loenSVs,.

e di(k,k') = ||k — K|, where || - || is a K invariant norm on the space of (m + 1) x (m + 1)
square matrices M,4+1(R) D K.

e do(k, k') is the distance induced by the bi-invariant Riemannian metric on K.
We can easily verify that they are distances.
Lemma 5.6. The three distances dg,dy and dy on &Py are equivalent.

Lemma 5.7. Let V be an irreducible representation with good norm and with highest weight x,
which satisfies x(Hy) > 0 for only one simple root o. Then there exists tg > 0 such that the
following holds. Let Z be a unit vector in €, given by Z =5 _p+ caKq. Let

Zo= Y 5K
Bza,BERT

aER

Then for 0 < t < ty, k = exp(tZ) and a unit vector v with highest weight, we have
d(kRv,Rv) < ||kv — v|| < t|| Z,]|-
Proof. For a positive root f3, let
Ap :=dp(Kp)v = dp(Yp)v.

Consider the representation of s3 = {Yg, X3, Hg} ~ slo. Due to the classification of the repre-
sentations of sly, the vector Ag is non zero if and only if x(Hg) > 0.

Fix an inner product (-,-) on a* which is invariant under the Weyl group, then we can
identify Hs with 2%, that is

B
x(Hg) = (x; Q(ﬁ,ﬂ))'

By hypothesis, (x, &) > 0 for only one simple root «, this implies that x(Hg) = 2(x, 8)/(8,8) > 0
if and only if 5 > o and f3 is a positive root. Therefore only the vectors {Ag}s>q ger+ are non

zero. They are also orthogonal since they are of different weights. When ¢ is small enough, by
Lipschitz property we conclude

d(kRv, Ro) = [[ko = o] = [[exp(tZ)0 — o] < tldp(Z)o] = t]| > esApl = t]Zal.
B>a,BERT

The proof is complete. ]
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Proof of Lemma 5.6. First we observe that the three distances are left K invariant. It is suffi-
cient to prove the equivalence for k' equal to the identity e.
Fix e small depending on K. Let B, be the neighbourhood of e given by {k € K|d;(k,e) <

€}. Then B¢ is a compact subset of K. Consider the function f; (k) = 3;823 for k € B¢ and

i,j € {0,1,2}. Then f;; is a positive continuous function Bf. The compactness of B¢ implies
that it has positive minimum on B¢. Hence there exists ¢; ; > 0 such that for k outside of B,

dl(k, 6) > CZ'J'dj(,IC, 6).

Finally, we only need to consider a small neighbourhood of the identity. We take € small
such that the exponential map at e is bi-Lipschitz. Suppose that k = exp(tZ) with Z a unit
vector in ¥ and ¢ > 0. Then

di(k,e) = [le — exp(tZ)]| < t = da(k,e).

Due to do(k,e) = maxaer ||[kva — val|/V2 < ||k — €| = di(k, e), it remains to prove that dy is
not small.
We can decompose Z as in Lemma 5.7. There exists o € II such that || Z,|| > 1. By Lemma
5.7, we have
|kva — va| < t]| Za| > t.

Then we have dy(k,e) > da(k,e). The proof is complete. O
Recall the definition of the sign function m of Section 2.5.

Lemma 5.8. Let z = kz,, 2’ =K'z, be two points in Py, then
\/idO(Za Z/) > d(ﬂ-(z)v W(Z/))‘

We have
m(z,2') = e < dy(z,7") < 1.

If m(z,2') = e, then
d(m(z),7(") > do(z,7).

Proof. Suppose that the angle between kv, and k'v, is ¥ € [0,7), then [|kv, — K'v,|| = 2sing
and d(Va kngs Vakn,) = |[kva A K'va|| = sind = 2sin ¥ cos ¥ < 2sin ¥, which implies the first
inequality.

The assumption dy(z,2’) < 1 is equivalent to that for every simple root «, the angle 9 is
less than /2, which is equivalent to m(z, 2’) = e due to Lemma 2.24.

If m(z,2') = e, then for every simple root «, the angle ¥ is less than 7/2. Hence sind =
2 sin g cos g > +/2sin g, which implies the result. O
Corollary 5.9. The K-invariant Riemannian distance on & is equivalent to the distance defined
in (2.17).

Proof. By & = &y/M and since the group M is a subgroup of K which preserves the distance,
let ds also be the quotient Riemannian distance on &?. By the same argument of the proof as
in Lemma 5.6, it is sufficient to prove on a small neighbourhood of 1. For any two points 7,
n’ in this small neighbourhood, we can find z, 2’ in &y such that w(2) = n, 7(2’) = 7’ and
da(z,2") = da(n,n'). Due to da(z,2") small, we see that dy(z, 2’) is less than 1. Hence by Lemma
5.8, we have m(z, z’) = e and then

d(na 77,) = dO(Z7 Z/).

By Lemma 5.6, we have dy(z, 2") < da(z, 2’) = da(n,n"). The proof is complete. O
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