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1 Introduction

If K is any commutative ring, a polynomial endomorphism of the affine N -space ANK
over K will be identified with its sequence f = (f1, . . . , fN ) of coordinate functions
fj ∈ K[X1, . . . , XN ]. We define its degree by deg f = max

j
deg fj . If N ≤ 3, we will use

the indeterminates X,Y, Z instead of X1, X2, X3 and if K = C we will write AN instead
of ANC . Let G (resp. G(K)) be the group of polynomial automorphisms of A2 (resp. A2

K).

In linear algebra it is a well-known result that an element of GLn(C) has a closed
conjugacy class if and only if it is semisimple (see e.g. [27, pp. 92-93], where this result
is proved for any complex reductive algebraic group). This is a very useful character-
ization, especially from a group action viewpoint. It is a natural question to ask if a
polynomial automorphism is semisimple if and only if its conjugacy class is closed in the
set of polynomial automorphisms. This last statement hides two definitions: what is a
semisimple polynomial automorphism and what topology does one have on the group of
polynomial automorphisms?
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According to [8], the usual notion of semisimplicity can be extended from the linear to
the polynomial case by saying that a polynomial automorphism is semisimple if it admits
a vanishing polynomial with single roots. In this paper we restrict to the dimension 2.
In this case, we will show in subsection 3.5 that it is equivalent to being diagonalizable,
i.e. conjugate to some diagonal automorphism (aX, bY ) where a, b ∈ C∗.

The study of an infinite-dimensional (algebraic) variety of polynomial automorphisms
(including its topology) has been introduced in [24]. However, this paper contains some
inaccuracies and this theory remains mysterious (see [25, 26, 14, 15]). Let us describe
this infinite-dimensional variety in dimension 2 (the description would be analogous in
dimension N). The space E := C[X,Y ]2 of polynomial endomorphisms of A2 is naturally
an infinite-dimensional variety (see [24, 25] and subsection 2.1 for the precise definition).
This roughly means that E≤m := {f ∈ E , deg f ≤ m} is a (finite-dimensional) variety
for any m ≥ 1, which comes out from the fact that it is an affine space. Afterwards,
each algebraic variety will be endowed with its Zariski topology. If A ⊆ E , we set
A≤m := A ∩ E≤m. The space E is endowed with the topology of the inductive limit, in
which A is closed (resp. open) if and only if each A≤m is closed (resp. open) in E≤m.
A subset of some topological space is called locally closed when it is the intersection of
an open and a closed subset. According to subsection 2.2, G is locally closed in E , so
that it is naturally an infinite-dimensional algebraic variety. Furthermore, the associated
topology is the induced one. By lemma 2, a subset A of G is closed in G if and only if
each A≤m is closed in G≤m. The aim of this paper is to show the following result.

Main Theorem. A complex plane polynomial automorphism is semisimple if and only
if its conjugacy class is closed.

Application. If f is a finite-order automorphism of the affine space A3, it is still
unknown whether or not it is diagonalizable. Since any finite-order linear automorphism
is diagonalizable, it amounts to saying that f is linearizable, i.e. conjugate to some
linear automorphism. To our knowledge, even the case where f fixes the last coordinate
is unsolved. In this latter case, f is traditionally seen as an element of G(C[Z]). For each
z ∈ C, let fz ∈ G be the automorphism induced by f on the plane Z = z. Using the
amalgamated structure of G(C(Z)), we know that f is conjugate in this group to some
(aX, bY ), where a, b ∈ C∗ (see [13, 16]). This implies that fz is generically conjugate
to (aX, bY ), i.e. for all values of z except perhaps finitely many. The above theorem
shows us that there is no exception: for all z, fz is conjugate to (aX, bY ). This could
be one step for showing that such an f is diagonalizable in the group of polynomial
automorphisms of A3. One can even wonder if the following is true.

Question 1. Is any finite-order automorphism belonging to G(C[Z]) diagonalizable in
this group?

We begin in section 2 with some generalities on infinite-dimensional varieties. In
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section 3, we study the so called locally finite plane polynomial automorphisms, i.e. the
automorphisms admitting a non-zero vanishing polynomial. The principal tool is the
notion of pseudo-eigenvalues (3.2). It is used for defining a trace (3.3) and the subset
S ⊆ G of automorphisms admitting a single fixed point (3.4). Our text contains four
natural questions which we were not yet able to answer (questions 1, 9, 10 and 16).
Finally, we study semisimple automorphisms and show that their conjugacy classes are
characterized by the pseudo-eigenvalues (3.5). The proof of the main theorem is given
in section 4. Subsection 4.1 is devoted to an algebraic lemma whose proof relies on a
valuative criterion. Subsection 4.2 is devoted to a few topological lemmas (lemma 25 for
example relies on the Brouwer fixed point theorem). Let us note that our paper uses and
extends results of [5, 6, 7, 8] and that [4] is heavily used too.

2 Infinite-dimensional varieties

2.1 Definition

According to Shafarevich (see [24]), a set U is called an infinite-dimensional (complex
algebraic) variety when it is endowed with an increasing sequencem 7→ U≤m of subsets,
each one being a (finite-dimensional complex algebraic) variety, satisfying:

(i) U =
⋃
m

U≤m; (ii) each U≤m is closed in U≤m+1.

Let us recall that each (algebraic) variety is endowed with its Zariski topology. The
set U is then endowed with the inductive limit topology, for which A is closed (resp.
open) in U if and only if each A≤m := A ∩ U≤m is closed (resp. open) in U≤m.

A morphism between infinite-dimensional varieties U =
⋃
m

U≤m and V =
⋃
m

V≤m

is by definition a map ϕ : U → V such that for each m, there exists an integer n for
which ϕ(U≤m) ⊆ V≤n and such that the restricted map ϕ : U≤m → V≤n is a morphism
of (finite-dimensional) varieties.

2.2 Locally closed subsets

Let us begin with a few remarks on locally closed subsets.
In any topological space, the following assertions are equivalent:
(i) A is locally closed in C;
(ii) there exists a subset B such that A is closed in B and B is open in C;
(iii) there exists a subset B such that A is open in B and B is closed in C.
Furthermore, if A is locally closed in B and B is locally closed in C, then A is locally

closed in C. Finally, a subset A of some topological space is locally closed if and only if
A \A is closed.

If V is any subset of the infinite-dimensional variety U , let us note that V is both
endowed with the induced topology for which a set is closed in V if and only if it is
the trace of some closed set of U and the inductive limit topology which comes from
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the sequence m 7→ V≤m := V ∩ U≤m. The inductive limit topology is always finer than
the induced topology, but they are not in general the same (see 2.3). However:

Lemma 2. If V is locally closed in U , these topologies coincide.

Proof. If A ⊆ V , let us set A≤m := A ∩ U≤m = A ∩ V≤m. We may assume that V is
closed or open in U . Indeed, if V is locally closed in U , there exists a subsetW of U such
that V is closed in W and W is open in U . Therefore, the induced and the inductive
limit topologies will coincide on W and then on V .

If V is closed in U , then A is closed in V for the induced topology if and only if A
is closed in U . This means that each A≤m is closed in U≤m. This is equivalent to each
A≤m being closed in V≤m, which means that A is closed in V for the inductive limit
topology.

If V is open in U , the same proof (replacing the word "closed" by "open") shows that
A is open in V for the induced topology if and only if A is open in V for the inductive
limit topology. �

If V is locally closed in U , let us note that each V≤m is locally closed in U≤m so
that V≤m is naturally a (finite-dimensional) variety. Therefore, the sequence m 7→ V≤m
endows V with the structure of an infinite-dimensional variety. In particular, the next
results endows G with the structure of an infinite-dimensional variety.

Lemma 3. G is locally closed in E.

Proof. The set J of polynomial endomorphisms whose Jacobian determinant is a non-
zero constant is locally closed in E . Indeed, the Jacobian determinant Jac : E → C[X,Y ]
is a morphism (of infinite-dimensional varieties) and J is the preimage of the locally
closed subset C∗ of C[X,Y ]. It is still unknown whether G = J or not (i.e. if the
Jacobian conjecture in dimension 2 holds or not). However, it is proved in [1], using the
following theorem of Gabber, that each G≤m is closed in J≤m. Therefore, by lemma 2,
G is closed in J . Finally G is locally closed in E . �

Theorem (Gabber). Let f be a polynomial automorphism of AN . We have:
deg f−1 ≤ (deg f)N−1.

Remark. Contrary to what the first author claimed in [7, §0], it is not enough to check
that each G≤m is locally closed in E≤m to assert that G is locally closed in E . Fortunately,
lemma 3 still holds! We are grateful to the referee for pointing out this subtlety and we
refer to the next subsection for a counterexample.

2.3 A counterexample

In this subsection, we give an example of an infinite-dimensional variety U (defined by
a sequence m 7→ U≤m) admitting a subset A such that each A≤m := A∩U≤m is locally
closed in U≤m, but such that:
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(1) the inductive limit and the induced topologies of A do not coincide;
(2) A is not locally closed in U ;
(3) A 6=

⋃
m

A≤m.

Let U be a vector space with a countable basis (em)m≥1. For example, one can
take U = C[X] and em = Xm−1. Since the linear subspace U≤m := Span(e1, . . . , em) is
naturally an algebraic variety (being an affine space), U is an infinite-dimensional variety.

For each m, let us consider the line Dm := me1 + Span(em) and D∗m := Dm \ {me1}.
Let us set A := D2 ∪

⋃
m≥ 3

D∗m and A≤m := A ∩ U≤m for each m.

One would easily check that each A≤m is locally closed in U≤m and that A satisfies
assertions (1-3) above:

(3): it is enough to check that A =
⋃
m≥ 1

Dm and
⋃
m

A≤m =
⋃
m≥ 2

Dm.

(2): it is enough to check that A \A = D1 \ {2e1} is not closed in U .

(1): it is enough to check that
⋃
m≥ 3

D∗m is closed in A for the inductive limit topology

but not for the induced topology.

3 Locally finite plane polynomial automorphisms

3.1 Characterization

According to [8], a polynomial endomorphism is called locally finite (LF for short) if it ad-
mits a non-zero vanishing polynomial. The class of LF plane polynomial automorphisms
will be denoted by LF . We recall that an automorphism is said to be triangularizable if
it is conjugate to some triangular automorphism (aX + p(Y ), bY + c), where a, b ∈ C∗,
c ∈ C and p ∈ C[Y ]. Using the amalgamated structure of G (see [12, 17, 21]), one can
show the following:

Theorem 4. If f ∈ G, the following assertions are equivalent:
(i) f is triangularizable;
(ii) the dynamical degree dd(f) := lim

n→∞
(deg fn)1/n is equal to 1;

(iii) deg f2 ≤ deg f ;
(iv) ∀ n ∈ N, deg fn ≤ deg f ;
(v) for each ξ ∈ C2, the sequence n 7→ fn(ξ) is a linear recurrence sequence;
(vi) f is LF.

Proof. The equivalence between (i), (ii), (v) and (vi) is explained in the final remark
of [6, section I]. However, the equivalence between (i) and (ii) is proved in [4] and the
equivalence between (i) and (vi) is proved in [8]. The equivalence between (i), (iii) and
(iv) is proved in [5]. �
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In this case, the minimal polynomial µf of f is defined as the (unique) monic poly-
nomial generating the ideal {p ∈ C[T ], p(f) = 0}. Even if the class LF is invariant by
conjugation, the minimal polynomial is not.

Corollary 5. LF is closed in G.

Proof. For any m ≥ 1, we have LF≤m = {f ∈ G, ∀n ∈ N, deg fn ≤ m}. The
inclusion (⊆) comes from the implication (vi) =⇒ (iv) of the last theorem, while the
reverse inclusion (⊇) comes from the implication (ii) =⇒ (vi). This proves that LF≤m
is closed in G≤m. �

3.2 The pseudo-eigenvalues

Any f ∈ LF is conjugate to some triangular automorphism t = (aX + p(Y ), bY + c). It
is explained in [4, p. 87] that the unordered pair {a, b} is an invariant: if t has a fixed
point, then a and b are equal to the two eigenvalues of the derivative at that fixed point
and if t has no fixed point, then the pair {a, b} must be equal to {1, Jac f}.

Definition. a, b are called the pseudo-eigenvalues of f .

Let < a, b > := {akbl, k, l ∈ N} be the submonoid of C∗ generated by a, b and let
f∗ : r 7→ r ◦ f be the algebra automorphism of C[X,Y ] associated to f . The following
result relates the pseudo-eigenvalues of f with the eigenvalues of f∗.

Lemma 6. If a, b are the pseudo-eigenvalues of f ∈ LF , then < a, b > is the set of
eigenvalues of f∗.

Proof. We may assume that f = (aX + p(Y ), bY + c). Let d be the degree of p(Y ).
Let M := {XkY l, k, l ≥ 0} be the set of all monomials in X,Y and let us endow M

with the monomial order ≺ (see [3]) defined by
XkY l ≺ XmY n ⇐⇒ k < m or (k = m and l < n).

For any s ≥ 0, we observe that the vector space Vs generated by the XkY l such that
dk+ l ≤ s is stable by f∗. Let us denote by f∗||Vs the induced linear endomorphism of Vs.

Since f∗(XkY l) − akblXkY l ∈ Span(XmY n)XmY n≺XkY l (exercise), the matrix of
f∗||Vs in the basis XkY l (where the XkY l are taken with the order ≺) is upper triangular
with the akbl’s on the diagonal. The result follows from the equality C[X,Y ] =

⋃
s

Vs. �

It is well-known that the eigenvalues of a linear automorphism are roots of its minimal
polynomial. The same result holds for LF plane polynomial automorphisms:

Lemma 7. The pseudo-eigenvalues are roots of the minimal polynomial.

Our proof of this lemma (as well as forthcoming results in this paper) will use the basic
language of linear recurrence sequences that we now recall (see [2] for a nice overview
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of this subject). If U is any complex vector space, the set of sequences u : N → U is
denoted by UN. For p =

∑
k

pk T
k ∈ C[T ], we define p(u) ∈ UN by the formula

∀ n ∈ N,
(
p(u)

)
(n) =

∑
k

pk u(n+ k).

Let U [ν] be the set of polynomials in the indeterminate ν with coefficients in U , alias
the set of polynomial maps from C to U . The theory of linear recurrence sequences relies
on the next result (see [2]):

Theorem 8. Let p = α
∏

1≤ k≤ c
(T − ωk)rk be the decomposition into irreducible factors

of some non-zero polynomial p ∈ C[T ]. The equality p(u) = 0 holds if and only if there
exist q1, . . . , qc ∈ U [ν] with deg qk ≤ rk − 1 such that

∀ n ∈ N, u(n) =
∑

1≤ k≤ c
ωnk qk(n).

We set Iu := {p ∈ C[T ], p(u) = 0}. Since Iu is a vector subspace of C[T ] which is
closed under multiplication by T , it is clear that Iu is an ideal of C[T ]. We say that u is
a linear recurrence sequence when Iu 6= {0}. In this case, the minimal polynomial of u
is the (unique) monic polynomial µu generating the ideal Iu.

We say that u is of exponential type if the following equivalent assertions are satisfied:

(i) there exist ω1, . . . , ωc ∈ C, q1, . . . , qc ∈ U such that ∀ n, u(n) =
∑

1≤ k≤ c
ωnk qk.

(ii) µu has single roots.

Remark. If l : U → V is any linear map, let us note that v := l(u) is still a linear
recurrence sequence and that µv divides µu.

If f is a linear endomorphism of CN , it is clear that its minimal polynomial is equal
to the minimal polynomial of the linear recurrence sequence n 7→ fn. More generally,
the same statement holds if f is a LF polynomial endomorphism of CN .

We now obtain

Proof of lemma 7.
By [4, lemma 6.2], any triangular automorphism is conjugate via a triangular auto-

morphism either to an automorphism of the form
(aX + ap(Y ), bY ) (1)

where a, b 6= 0 and p satisfies the identity p(bY ) = ap(Y ), or to an automorphism of the
form

(aX, Y + c) (2)
where a 6= 0. However, the automorphism (Y,X) ◦ (aX, Y + c) ◦ (Y,X)−1 = (X + c, aY )
is of the form (1). As a conclusion, any f ∈ LF can be expressed f = ϕ ◦ t ◦ ϕ−1 where
ϕ, t ∈ G and t is of the form (1).

As noted in [4, p. 87], we have a simple expression for the n-fold iterate of t:
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tn = (anX + nanp(Y ), bnY ).
Let us set ψ := ϕ−1. We recall that ϕ = (ϕ1, ϕ2) and ψ = (ψ1, ψ2). Let (e1, e2) be the

canonical basis of the C[X,Y ]-module C[X,Y ]2. Since the family ψi1ψ
j
2 for i, j ≥ 0 is a

basis of C[X,Y ], the family ψi1ψ
j
2ek is a basis of E = C[X,Y ]2. If g ∈ E and j, k ∈ {1, 2},

let us denote by Πj,k(g) its ψjek-component.
Let us set λ = p(0) and let us write ϕk =

∑
i,j

ϕk,i,j X
iY j for k = 1, 2.

An easy computation would show that:

Π1,k(f
n) =

∑
i≥ 1

iλi−1ϕk,i,0 n
i−1ani and Π2,k(f

n) =
∑
i≥ 0

λiϕk,i,1 n
i(aib)n.

But the matrix
[
ϕ1,1,0 ϕ1,0,1

ϕ2,1,0 ϕ2,0,1

]
corresponds to the linear part of ϕ so that it is

invertible. Therefore at least one of the ϕk,1,0 is non-zero. By theorem 8, a is a root of
the minimal polynomial of the linear recurrence sequence n 7→ Π1,k(f

n). By the remark
following this theorem, a is a root of the minimal polynomial of the linear recurrence
sequence n 7→ fn. This means that µf (a) = 0. In the same way, at least one of the ϕk,0,1
is non-zero showing that µf (b) = 0. �

3.3 The trace

It is natural to set the following

Definition. If f ∈ LF has pseudo-eigenvalues {a, b}, its trace is Tr f := a+ b.

Remark. The trace is by construction an invariant of conjugation. It is well-known that
the Jacobian determinant map Jac : G → C∗ also. In the locally finite case, we have of
course Jac f = ab.

Question 9. Is the map Tr : LF → C regular?

This means that for any m the restricted map LF≤m → C is regular. This regularity
would imply a positive answer to the following

Question 10. Is the map Tr : LF≤m → C continuous for the transcendental topology?

Remark. This continuity would easily prove the most difficult point of our main the-
orem. If f, g are semisimple automorphisms such that g belongs to the closure of the
conjugacy class of f , we want to show that they have the same pseudo-eigenvalues. In-
deed, it is clear that Jac f = Jac g and the above continuity would show that Tr f = Tr g.

Definition. Let U (resp. S) be the set of LF polynomial automorphisms whose pseudo-
eigenvalues are equal to 1 (resp. are different from 1).

Remarks. 1. By [8, theorem 2.3], U is the set of polynomial automorphisms f satisfying
the following equivalent assertions:
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(i) f is unipotent, i.e. f is annihilated by (T − 1)d for some d;
(ii) f is the exponential of some locally nilpotent derivation of C[X,Y ].

2. It is easy to check that S is the set of LF automorphisms admitting a single
fixed point (in fact, we will see in proposition 12 below that we can get rid of the LF
hypothesis).

3. Since U = Tr−1({2}) ∩ Jac−1({1}) and S = {f ∈ LF , Tr(f) 6= 1 + Jac(f)}, the
regularity of the trace map would imply directly that U (resp. S) is closed (resp. open)
in LF .

Let us check that U is closed. If m ≥ 1, let d be the dimension of E≤m and let p(T ) =
(T − 1)d ∈ C[T ]. By assertion (iv) of theorem 4, we get U≤m = {f ∈ E≤m, p(f) = 0}.
This shows that U≤m is closed in E≤m for any m, i.e. U is closed in E .

We will show in the next subsection that S is open in LF .

3.4 The set S

Definition. If f, g are polynomial endomorphisms of A2, let us define their coincidence
ideal ∆(f, g) as the ideal generated by the f∗(p)− g∗(p), where p describes C[X,Y ].

The coincidence ideal ∆(f, id) is called the fixed point ideal of f .

Remarks. 1. The closed points of SpecC[X,Y ]/∆(f, g) correspond to the points ξ ∈ A2

such that f(ξ) = g(ξ).
2. Using the relation f∗(uv)− g∗(uv) = f∗(u)[f∗(v)− g∗(v)] + g∗(v)[f∗(u)− g∗(u)],

we see that if the algebra C[X,Y ] is generated by the uk (1 ≤ k ≤ l), then the ideal
∆(f, g) is generated by the f∗(uk)− g∗(uk) (1 ≤ k ≤ l).

3. In particular, ∆(f, g) =
(
f∗(X)− g∗(X), f∗(Y )− g∗(Y )

)
= (f1 − g1, f2 − g2).

The computation of the set of fixed points of a triangular automorphism is easy and
left to the reader. We obtain the following result (see also [4, lemma 3.8]).

Lemma 11. If f ∈ LF , the set of its fixed points is either empty, either a point of
multiplicity 1 (if and only if f ∈ S) or either a finite disjoint union of subvarieties
isomorphic to A1.

An automorphism admits exactly one fixed point with multiplicity 1 if and only if
its fixed point ideal is a maximal ideal of C[X,Y ]. Using the amalgamated structure of
G, it is observed in [4] that a polynomial automorphism f ∈ G is either triangularizable
(i.e. belongs to LF) or conjugate to some cyclically reduced element g (see [23, I.1.3] or
[4, p. 70] for the definition). In this latter case, the degree d of g is ≥ 2 and it is shown
in [4, theorem 3.1] that dimC[X,Y ]/∆(g, id) = d. As a conclusion, we obtain the nice
characterization of elements of S:

Proposition 12. If f ∈ G, the following assertions are equivalent:
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(i) f ∈ S;
(ii) f has a unique fixed point of multiplicity 1;
(iii) the fixed point ideal of f is a maximal ideal of C[X,Y ].

The next result is taken from [8, lemma 4.1] and will be used to prove propositions
14 and 18 below.

Lemma 13. Any triangularizable automorphism f can be triangularized in a "good" way
with respect to the degree: there exist a triangular automorphism t and an automorphism
ϕ such that f = ϕ ◦ t ◦ ϕ−1 with deg f = deg t (deg ϕ)2.

The vector space A2 will be endowed with the norm ‖ (α, β) ‖=
√
|α|2 + |β|2. The

open (resp. closed) ball of radius R ≥ 0 centered at a point ξ ∈ A2 will be denoted by
Bξ,R (resp. B′ξ,R). If ξ = 0, we will write BR (resp. B′R) instead of B0,R (resp. B′0,R).

Since E is composed of C∞ maps from A2 to A2, it is endowed with the Ck-topology
(for each k ≥ 0) which is the topology of uniform convergence of the k first derivatives on
all compact subsets. However, E≤m being a finite-dimensional complex vector space, it
admits a unique Hausdorff topological vector space structure. Therefore, the Ck-topology
on E≤m is nothing else than the transcendental topology. A subset of some topological
space is called constructible when it is a finite union of locally closed subsets. We finish
these topological remarks by recalling that for any constructible subset in some complex
algebraic variety, the (Zariski-)closure coincide with the transcendental closure (see for
example [19]).

Proposition 14. S is open in LF .

Proof. We want to show that S≤m is open in LF≤m.

Claim. S≤m is constructible in LF≤m.
Let T be the variety of triangular automorphisms of the form (aX + p(Y ), bY + c)

where a, b ∈ C \ {0, 1}, c ∈ C and p ∈ C[Y ] is a polynomial of degree ≤ m.
The image W of the morphism G≤m × T → G, (ϕ, t) 7→ ϕ ◦ t ◦ ϕ−1 is constructible

and S≤m = W ∩ LF≤m by lemma 13 so that the claim is proved.

It is enough to show that S≤m is open for the transcendental topology. Let f be a
given element of S≤m and let ξ ∈ A2 be its fixed point. The map F := f − id is a local
diffeomorphism near ξ since F ′(ξ) is invertible. Let ε, η > 0 be such that Bη ⊆ F (Bξ,ε)
and ∀x ∈ Bξ,ε, | detF ′(x)| ≥ η. If g is "near" f for the C1-topology, then G := g − id
will be "near" F so that we will have Bη/2 ⊆ G(Bξ,ε) and ∀x ∈ Bξ,ε, |detG′(x)| ≥ η/2.
Therefore, g will have an isolated fixed point in Bξ,ε. If g ∈ LF , lemma 11 shows us that
g ∈ S. �

The next statement is given in [11, p. 49] (cf. the application of theorem 3). The
result is also given for the field of rationals in [18, p. 312]. However, the proof remains
unchanged for the field of complex numbers. Finally, [22, § 57] contains a similar result.
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Theorem 15. Let K := d + (sd)2n. If p, p1, . . . , ps ∈ C[X1, . . . , Xn] are of degree ≤ d
and if p ∈ (p1, . . . , ps), there exist λ1, . . . , λs ∈ C[X1, . . . , Xn] such that

(i) p =
∑

1≤ i≤ s
λi pi and (ii) deg λi ≤ K for all i.

If f ∈ S, its fixed point ξ = (α, β) ∈ A2 is implicitly defined by the equality of
the ideals (f1 − X, f2 − Y ) and (X − α, Y − β). Using theorem 15, one can express
more "effectively" α, β in terms of f1, f2. Indeed, if m ≥ 1 and Km := m + (2m)4,
then for any f ∈ S≤m there exist λ1, . . . , λ4 ∈ C[X,Y ] of degree ≤ Km such that
X − α = λ1 (f1 −X) + λ2 (f2 − Y ) and Y − β = λ3 (f1 −X) + λ4 (f2 − Y ). Even with
such "effective" results, we were not able to answer the following

Question 16. Is the map Fix : S → A2 sending f ∈ S to its unique fixed point regular?

This means that for any m the restricted map S≤m → A2 is regular. The proof of
proposition 14 shows us at least that it is continuous for the transcendental topology.

3.5 Semisimple automorphisms

According to [8], a plane polynomial automorphism f is said to be semisimple if the
following equivalent assertions are satisfied:

(i) f∗ is semisimple (i.e. C[X,Y ] admits a basis of eigenvectors);
(ii) f ∈ LF and µf has single roots;
(iii) f admits a vanishing polynomial with single roots.
The class of semisimple automorphisms is invariant by conjugation. Therefore, it

results from proposition 18 below that (i-iii) are still equivalent to:
(iv) f is diagonalizable.

Lemma 17. If t = (aX + p(Y ), bY + c) is a triangular semisimple automorphism, there
exists a triangular automorphism χ of the same degree such that t = χ ◦ (aX, bY ) ◦ χ−1.

Proof.
First step. Reduction to the case c = 0.

If b = 1, let us show that c = 0. The second coordinate of the nth iterate tn is Y +nc.
Since t is semisimple, the sequence n 7→ Y + nc must be of exponential type showing
that c = 0.

If b 6= 1, set l := (X,Y + c
b−1) and replace t by l ◦ t ◦ l−1 = (aX + p(Y − c

b−1), bY ).

Second step. Reduction to the case p = 0.
If χ := (X + q(Y ), Y ), we get χ ◦ (aX, bY ) ◦ χ−1 = (aX + q(bY ) − aq(Y ), bY ). Let

us write p =
∑

kpkY
k. To show the existence of q (of the same degree as p) satisfying

q(bY )− aq(Y ) = p(Y ) it is enough to show that a = bk implies pk = 0.
For any n ≥ 0, let un be the Y k-coefficient of the first component of tn. If a = bk, we

get un+1 = aun+pka
n, so that un = nan−1pk. The sequence n 7→ un being of exponential

type, we obtain pk = 0. �
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Combining lemmas 13 and 17, any semisimple automorphism can be written as
f = (ϕ ◦ χ) ◦ (aX, bY ) ◦ (ϕ ◦ χ)−1 with deg f = degχ (degϕ)2.

Since deg(ϕ ◦ χ) ≤ degϕ degχ ≤ deg f , we get:

Proposition 18. Any semisimple automorphism f can be written as f = ψ ◦ (aX, bY ) ◦
ψ−1 where ψ is an automorphism satisfying degψ ≤ deg f .

Since the automorphisms (aX, bY ) and (aY, bX) are conjugate, we obtain:

Corollary 19. Two semisimple automorphisms are conjugate if and only if they have
the same pseudo-eigenvalues.

If f ∈ G, let C(f) := {ϕ ◦ f ◦ ϕ−1, ϕ ∈ G} be its conjugacy class. Recall that C(f) is
closed in G if and only if each C(f)≤m is closed in G≤m.

Corollary 20. If f is a semisimple automorphism, then C(f)≤m is constructible in E≤m
(for any m ≥ 1).

Proof. We can assume that f = (aX, bY ). The image A of the map G≤m → G,
ϕ 7→ ϕ ◦ f ◦ ϕ−1 is constructible and C(f)≤m = A ∩ G≤m by proposition 18. �

Remarks. 1. This result shows us that the Zariski-closure of C(f)≤m coincide with its
transcendental closure (see subsection 4.2).

2. One could show that C(f)≤m is constructible in E≤m for any f , but we do not
need this result.

Lemma 21. If f is semisimple, any element of C(f)≤m also.

Proof. By proposition 18, we may assume that f = (aX, bY ). Any element which is
linearly conjugate to f is annihilated by µf , but for a general element of C(f), this is
no longer true. However, we will build a polynomial p with single roots annihilating any
element of C(f)≤m. Still by proposition 18, any g ∈ C(f)≤m can be written g = ϕ◦f◦ϕ−1

with degϕ ≤ m. Therefore, for any n ≥ 0, we have gn = ϕ ◦ (anX, bnY ) ◦ ϕ−1. If we
set Ω := {akbl, 0 ≤ k + l ≤ m}, there exists a family of polynomial endomorphisms hω
(ω ∈ Ω) such that gn =

∑
ω∈Ω

ωnhω for any n. By theorem 8, we get p(g) = 0, where

p(T ) :=
∏
ω∈Ω

(T − ω). The equality p(g) = 0 remains true if g ∈ C(f)≤m. �

4 Proof of the main theorem.

4.1 Algebraic lemma

The aim of this subsection is to prove the following result which in some sense means
that the spectrum of a linear endomorphism remains unchanged at the limit (see lemma
6).
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Lemma 22. Let f = (aX, bY ) ∈ G. If (αX, βY ) ∈ C(f)≤m, then < α, β >=< a, b >.

Our proof will use the valuative criterion that we give below. Even if such a criterion
sounds familiar (see for example [20, chapter 2, Section 1, pp. 52-54] or [9, Section 7]),
we have given a brief proof of it in [7].

Let C[[t]] be the algebra of complex formal power series and let C((t)) be its quotient
field. If V is a complex algebraic variety and A a complex algebra, V (A) will denote the
points of V with values in A, i.e. the set of morphisms SpecA → V . If v is a closed
point of V and ϕ ∈ V

(
C((t))

)
, we will write v = lim

t→0
ϕ(t) when:

(i) the point ϕ : SpecC((t))→ V is a composition SpecC((t))→ SpecC[[t]]→ V ;
(ii) v is the point SpecC→ SpecC[[t]]→ V .

For example, if V = A1 and ϕ ∈ V
(
C((t))

)
= C((t)), we will write v = lim

t→0
ϕ(t) when

ϕ ∈ C[[t]] and v = ϕ(0).

Valuative criterion. Let f : V → W be a morphism of complex algebraic varieties
and let w be a closed point of W . The two following assertions are equivalent:

(i) w ∈ f(V );
(ii) w = lim

t→0
f(ϕ(t)) for some ϕ ∈ V

(
C((t))

)
.

Remark. Note the analogy with the metric case where w ∈ f(V ) if and only if there
exists a sequence (vn)n≥1 of V such that w = lim

n→+∞
f(vn).

Proof of lemma 22. Assume that γ := (αX, βY ) ∈ C(f)≤m.
If Ω := {akbl, 0 ≤ k+ l ≤ m}, the proof of lemma 21 tells us that α, β ∈ Ω ⊆< a, b >,

so that < α, β >⊆< a, b >.

Let us prove the reverse inclusion. By proposition 18, C(f)≤m is included in the
image of the map G≤m → G, ϕ 7→ ϕ−1 ◦ f ◦ ϕ. Using the above valuative criterion,
we get the existence of ϕ ∈ G≤m

(
C((t))

)
such that if g := ϕ−1 ◦ f ◦ ϕ ∈ G

(
C((t))

)
,

then γ = lim
t→0

gt. We have g∗t = ϕ∗t ◦ f∗ ◦ (ϕ∗t )
−1 as linear endomorphisms of the C((t))-

vector space C((t))[X,Y ]. Therefore uk, l := ϕ∗t (X
kY l) is an eigenvector of g∗t associated

with the eigenvalue akbl. Let m ∈ Z be such that vk, l := tmuk, l admits a non-zero
limit vk, l when t goes to zero. We have g∗t (vk, l) = akblvk, l and setting t = 0, we get
γ∗(vk, l) = akblvk, l. Hence akbl is an eigenvalue of γ∗, so that akbl ∈< α, β >. �

4.2 Topological lemmas

Lemma 23. Let f = (aX, bY ) ∈ G. If (αX, βY ) ∈ C(f)≤m with α, β 6= 1, then
{α, β} = {a, b}.

Proof.
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Claim. For any ε > 0 there exists a C0-neighborhood U of γ := (αX, βY ) in E≤m such
that any g ∈ U admits a fixed point in Bε.

Indeed, there exists an η > 0 such that Bη ⊆ (γ − id)(Bε), so that there exists a
C0-neighborhood U of γ such that any g ∈ U satisfies 0 ∈ (g − id)(Bε).

Let (gn)n≥1 be a sequence of C(f)≤m such that γ = lim
n→∞

gn for the C1-topology. By

the claim, there exists a sequence (ξn)n≥1 of points of A2 such that gn(ξn) = ξn and
lim
n→∞

ξn = 0. Therefore, we have γ′(0) = lim
n→∞

g′n(ξn) for the usual topology of M2(C).
Since the pseudo-eigenvalues of a LF automorphism admitting a fixed point are equal to
the eigenvalues of its derivative at that fixed point, we get Tr g′n(ξn) = a + b. However,
we have Tr γ′(0) = α+ β, so that we get α+ β = a+ b. The equality αβ = ab (obtained
using the Jacobian) gives us {α, β} = {a, b}. �

We will use the following convexity lemma.

Lemma 24. If B′ is a closed ball in an euclidean space, there exists a C2-neighborhood
of the identity map on the space such that for any g in this neighborhood, g(B′) is convex.

Sketch of proof. Let us endow the space E = RN with the usual euclidean norm
‖ x ‖ := (

∑
j x

2
j )

1/2, where x = (x1, . . . , xN ). If l is a linear endomorphism of E, we set
||| l ||| := sup{ ‖ l(x) ‖ / ‖ x ‖, x 6= 0 ∈ E}. We may assume that B′ is the closed unit
ball B′ = {x ∈ E,ϕ(x) ≤ 1}, where ϕ : E → R is defined by ϕ(x) = ‖ x ‖2.

Let h : E → E be a map of class C1 satisfying |||h′(x) ||| ≤ 1/2 for any x in a convex
open subset C of E. The map h is 1/2-Lipschitzian on C:

∀x, y ∈ C, ‖ h(y)− h(x) ‖ ≤ 1
2 ‖ y − x ‖.

Therefore, the map x 7→ x+ h(x) defines a C1-diffeomorphism on C.
Taking for C the open ball B(0, 3), we obtain the existence of a C1-neighborhood

U of the identity map on E such that for any g ∈ U , g defines a C1-diffeomorphism
on B(0, 3). Restricting U , we may even assume that g(B′) ⊆ B(0, 2) ⊆ g(B(0, 3)), so
that g(B′) = {x ∈ B(0, 2), ϕ ◦ g−1(x) ≤ 1} where g−1 denotes the inverse bijection of
g : B(0, 3)→ g(B(0, 3)).

Let ψ : C → R be a map of class C2, where C is a convex open subset of E. It is
clear that (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) in the following assertions:

(i) ∀x ∈ C, ψ′′(x) is positive definite, i.e. ∀u 6= 0 ∈ RN , ψ′′(x)(u, u) > 0;
(ii) ψ is strictly convex: ∀λ ∈]0, 1[, ∀x 6= y ∈ C, ψ((1− λ)x+ λy) < (1− λ)ψ(x) +

λψ(y);
(iii) ψ is convex;
(iv) the set {x ∈ C, ψ(x) ≤ 1} is convex.
One would easily check that there exists a C2-neighborhood V of the identity map

on B(0, 2) ⊆ E such that for any g ∈ V , the differential (ϕ ◦ g)′′(x) is positive definite
for each x ∈ B(0, 2).

Furthermore, one would also easily show that there exists a C2-neighborhoodW ⊆ U
of the identity map such that for any g ∈W , the restriction of g−1 to B(0, 2) will belong
to V . We recall that g−1 denotes the inverse bijection of g : B(0, 3)→ g(B(0, 3)).
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It is now clear that g(B′) is convex when g ∈W . �

Remark. Let B′ := {ρeiθ, θ ∈ R, 0 ≤ ρ ≤ 1} be the unit disc in C. If g is "near"
the identity for the C2-topology, then we will have g(B′) = {ρeiθ, θ ∈ R, 0 ≤ ρ ≤ r(θ)}
where r : R→ R is a 2π -periodic map which is "near" the map s ≡ 1 for the C2-topology.
The curvature of the parametrized curve θ 7→ r(θ)eiθ at the point θ is well-known to be

C =
r2 + 2 r′ 2 − r r′′

(r2 + r′ 2)
3
2

. If r is "near" s for the C2-topology, it is clear that C > 0 at each

point, showing that g(B′) is convex.

Lemma 25. If f is a finite-order automorphism, C(f) is closed in G.

Proof. We may assume that f = (aX, bY ) where aq = bq = 1 for some q ≥ 1 (cf. [13, 16],
the introduction or proposition 18). By proposition 18 and lemma 21, it is enough to
show that if γ = (αX, βY ) ∈ C(f)≤m for some m, then {α, β} = {a, b}.

We begin to note that the equality gq = id holds for any g ∈ C(f). Therefore, this
equality also holds for any g ∈ C(f).

Claim. For any ε > 0 there exists a C2-neighborhood U of γ in E≤m such that if g ∈ U
and gq = id, then g admits a fixed point in B′ε.

Since αq = βq = 1, we have γ(B′ε) = B′ε. It is enough to take for U a C2-neighborhood
of γ such that for any g ∈ U and any 0 ≤ k < q, gk(B′ε) is a convex set containing the
origin (such a neighborhood exists by lemma 24). Indeed, if g ∈ U and gq = id, then
K :=

⋂
0≤ k< q

gk(B′ε) is a non-empty compact convex set such that g(K) = K. By Brouwer

fixed point theorem, g admits a fixed point in K ⊆ B′ε and the claim is proved.

We finish the proof exactly as in lemma 23. �

4.3 The proof

(=⇒) Thanks to proposition 18 it is enough to show that if f = (aX, bY ) ∈ G, then C(f)
is closed in G. Thanks to lemma 21 it is enough to show that if γ = (αX, βY ) ∈ C(f)≤m
for some m, then {α, β} = {a, b}.

First case. α, β 6= 1.
We conclude by lemma 23.

Second case. α or β = 1. We can assume that α = 1.
Since Jac γ = Jac f , we have β = ab. But < a, b >=< β > by lemma 22, so that

there exist k, l ≥ 0 such that a = βk, b = βl.

First subcase. β is not a root of unity.
The equality β = ab gives us β = βk+l, so that 1 = k + l. We get {k, l} = {0, 1}, so

that {a, b} = {1, β} = {α, β}.

Second subcase. β is a root of unity.
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It is clear that a, b are also roots of unity. Therefore, f is a finite-order automorphism
and we conclude by lemma 25.

(⇐=) Let f be any polynomial automorphism. We want to show that C(f) contains
a semisimple polynomial automorphism. It is sufficient to show that it contains a linear
automorphism. Indeed, in the linear group it is well-known that any conjugacy class
contains in its closure a (linear) semisimple automorphism.

First case. f is triangularizable.
We can assume that f = (aX + p(Y ), bY + c). If lt := (tX, Y ) and rt := (X, tY ) ∈ G

for t ∈ C∗, we have lim
t→0

lt◦f ◦(lt)−1 = (aX, bY +c). Therefore, u := (aX, bY +c) ∈ C(f).

But rt ◦ u ◦ (rt)
−1 ∈ C(f) for any t 6= 0 and lim

t→0
rt ◦ u ◦ (rt)

−1 = (aX, bY ).

Second case. f is not triangularizable.
We can assume that f is cyclically reduced of degree d ≥ 2. By [4, theorem 3.1], f has

exactly d fixed points (counting the multiplicities). In particular, it has a fixed point and
by conjugating we can assume that it fixes the origin. Therefore, if ht := (tX, tY ) ∈ G
for t 6= 0, then lim

t→0
(ht)

−1 ◦ f ◦ ht is equal to the linear part of f . �
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