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In this paper we propose to compute the maximal degree of the inverse of a cubic

automorphism of the affine plane with Jacobian 1 via Gröbner Bases. This degree is
equal to 9 and we give coefficients of the inverse.

1. Introduction

If k is any commutative ring, k[X,Y ] will denote the algebra of polynomials with coeffi-
cients in k in the indeterminates X,Y and A2

k = Spec k[X,Y ] the affine plane over k. A
k-endomorphism f of A2

k will be identified with its coordinate functions f = (f1, f2) where

fi (i = 1, 2) belongs to k[X,Y ]. We define the Jacobian of f by Jac(f) = ∂f1
∂X

∂f2
∂Y −

∂f1
∂Y

∂f2
∂X

and the degree of f by deg(f) = max1≤i≤2 deg(fi).

Let d be a nonnegative integer and f an endomorphism of A2
C whose degree is less than

or equal to d. The Jacobian Conjecture in degree d (CJ(d)) states that f is invertible if
and only if its Jacobian is a nonzero constant.

Let Cd be the smallest integer C such that if k is a Q-algebra and f a k-automorphism
of A2

k satisfying Jac(f) = 1 and deg(f) ≤ d, then we have deg(f−1) ≤ C.
H. Bass has proven the following result in (Bass, 1983):

Theorem 1.1. The three following assertions are equivalent :

(i) CJ(d) is true,
(ii) if k is any Q-algebra and f any k-endomorphism of A2

k whose degree is less than
or equal to d, then f is invertible if and only if Jac(f) is an invertible element of
k[X,Y ],

(iii) Cd <∞.

If k is a reduced Q-algebra and f a k-automorphism of A2
k satisfying Jac(f) = 1 and
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deg(f) ≤ d, it follows from a formula of O. Gabber (see (Bass, Connel, Wright, 1982) and
(Cheng, Wang, Yu, 1994)) that deg f−1 = deg f . What happens if k is not reduced ? Is
it true that Cd = d (see Question 2.19 of the paper (van den Essen, 1991)) ?

A negative answer to this question is given in (Furter, to appear) where it is proven
that Cd ≥ d + 1 as soon as d ≥ 3. Also, T. T. Moh has proven that CJ(d) is true when
d ≤ 100 (see (Moh, 1983)). It then follows from Theorem 1.1 that Cd is finite for d ≤ 100.

We could easily check that C1 = 1. Theorem 2 of (Furter, to appear) shows us that
C2 = 2. The purpose of this paper is to establish the following result :

Theorem 1.2. C3 = 9.

As far as we know, there is no explicit upper bound for Cd when d ≥ 4 and there is
even no conjectured upper bound. An investigation of C4 seems rather important to us
in order to get some insight in the behaviour of Cd in general.

2. Computation of C3

Let k be the algebra of polynomials with coefficients in Q in the indeterminates a1, a2,
a3, b1, b2, b3, b4, c1, c2, c3, d1, d2, d3, d4 and let f = (f1, f2) be the k-endomorphism of
A2

k whose coordinate functions are

{
f1 = X + a3X

2 + a2XY + a1Y
2 + b4X

3 + b3X
2Y + b2XY

2 + b1Y
3,

f2 = Y + c3X
2 + c2XY + c1Y

2 + d4X
3 + d3X

2Y + d2XY
2 + d1Y

3.

Let g = (g1, g2) be the formal inverse of f . The formal series g1 and g2 have expressions
of the form 

g1 = X +
∑

(i,j)∈N2, i+j≥2

xi,jX
iY j ,

g2 = Y +
∑

(i,j)∈N2, i+j≥2

yi,jX
iY j ,

where xi,j ,yi,j belong to k.

The Jacobian of f is a polynomial with coefficients in k in the indeterminates X,Y .
Its constant term is equal to 1 and we could check that its other nontrivial coefficients
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are equal to 

−3 b3 d4 + 3 b4 d3,
−6 b2 d4 + 6 b4 d2,
−9 b1 d4 − 3 b2 d3 + 3 b3 d2 + 9 b4 d1,
−6 b1 d3 + 6 b3 d1,
−3 b1 d2 + 3 b2 d1,
−3 a2 d4 + 2 a3 d3 − 2 b3 c3 + 3 b4 c2,
−6 a1 d4 − a2 d3 + 4 a3 d2 − 4 b2 c3 + b3 c2 + 6 b4 c1,
−4 a1 d3 + a2 d2 + 6 a3 d1 − 6 b1 c3 − b2 c2 + 4 b3 c1,
−2 a1 d2 + 3 a2 d1 − 3 b1 c2 + 2 b2 c1,
d3 − 2 a2 c3 + 2 a3 c2 + 3 b4,
2 d2 − 4 a1 c3 + 4 a3 c1 + 2 b3,
3 d1 − 2 a1 c2 + 2 a2 c1 + b2,
c2 + 2 a3,
2 c1 + a2.

Let I be the ideal of k generated by the 14 polynomials given above.
Let us set k = k/I. By reducing all the coefficients of f modulo I, we obtain a

k-endomorphism of A2
k

which we will denote by f . Clearly, f is the generic cubic en-
domorphism with Jacobian 1 of the affine plane with the following meaning. Let A be
any Q-algebra and α be any cubic A-endomorphism of A2

A with Jacobian 1. Up to an
affine change of coordinates, we can always suppose that α(0) = 0 and α′(0) = Id.
Therefore, there exists a canonical algebra-homomorphism φ : k → A such that the
A-endomorphism of A2

A obtained by replacing the coefficients of f by their image under
φ will be equal to α. As CJ(3) is true, the endomorphism f is an automorphism and we
have clearly C3 = deg (f)−1. Hence, the integer C3 is the smallest integer C such that
xi,j , yi,j belong to I as soon as i+ j > C.

Using a computer, we found that the smallest integer N such that xi,j , yi,j belong to
I as soon as i + j = N is equal to 10. This encouraged us to believe that C3 = 9 (and
this already proved that C3 ≥ 9). Let h denote the k-endomorphism obtained from g by
truncating its terms of degree bigger than or equal to 10. Then, to show that C3 = 9,
we only had to check that all coefficients of the endomorphism f ◦ h − Id of A2

k (whose
degree is 93 = 729) belong to I. Indeed, denoting by h = (h1, h2) the k-endomorphism
of A2

k
obtained by reducing the coefficients of h modulo I, the latter fact is equivalent to

saying that the endomorphism f ◦ h − Id of A2
k

is identically zero, which is well known

to ensure that h = (f)−1.

All computations were done using computer algebra system axiom (see (Jenks, Sutor,
1983)).

3. Inversion formula

Let us endow k = Q[a1, . . . , d4] with the total degree-inverse lexicographical order (see
(Davenport, Siret, Tournier, 1993)) for the following order of the indeterminates :

a1 < a2 < a3 < c1 < c2 < c3 < b1 < b2 < b3 < b4 < d1 < d2 < d3 < d4.
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Considering the automorphism (Y,X) ◦ f ◦ (Y,X), one could easily show that the
coefficient of XiY j in h2 is obtained from the coefficient of XjY i in h1 by replacing a1,
a2, a3, c1, c2, c3, b1, b2, b3, b4, d1, d2, d3, d4 by c3, c2, c1, a3, a2, a1, d4, d3, d2, d1, b4, b3, b2,
b1 respectively. Now we give the coefficients of h1, or, to be more precise, the coefficients
of h1 reduced modulo the Gröbner basis of I (see (Davenport, Siret, Tournier, 1993)).

coefficient of X2 1
2c2

coefficient of XY 2c1

coefficient of Y 2 −a1

Coefficients of degree 2

coefficient of X3 1
2b4 + 1

2d3

coefficient of X2Y d2

coefficient of XY 2 − 1
2b2 + 3

2d1

coefficient of Y 3 −b1

Coefficients of degree 3

coefficient of X4 1
8c2b4 −

1
2c3d2 + 3

8c2d3 −
1
2c1d4

coefficient of X3Y c1b4 − 2c3d1 + c1d3

coefficient of X2Y 2 − 3
2 (a1b4 + c2d1 + a1d3)

coefficient of XY 3 1
3c1b2 − 3c1d1 − 4

3a1d2

coefficient of Y 4 c1b1 + 1
4a1b2 −

1
4a1d1

Coefficients of degree 4
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coefficient of X5 3
4b

2
4 + 1

4d
2
3 + 3

4b3d4 −
1
4d2d4

coefficient of X4Y 3
4b3b4 + 1

4b3d3 + 3
4d2d3 + 2b2d4 − 3

4d1d4

coefficient of X3Y 2 1
2b2b4 −

3
2b3d2 + 1

2d
2
2 + 2b2d3 + 3

2d1d3 + 6b1d4

coefficient of X2Y 3 − 3
2b1b4 + 2d1d2 + 3

2b1d3

coefficient of XY 4 − 3
4b1b3 + 3

2d
2
1 − 1

4b1d2

coefficient of Y 5 − 1
4b1b2 −

3
4b1d1

Coefficients of degree 5

coefficient of X6 1
8c2b

2
4 − 1

4c3d2d3 + 1
4c2d

2
3 + 1

2c1b4d4 + 7
4c3d1d4 −

5
8c2d2d4

coefficient of X5Y 3
2c1b

2
4 − 5c3d1d3 + 7

4c2d2d3 − 2c1d
2
3 + 12c1b3d4 + 33a1b4d4

− 51
4 c2d1d4 + 57

2 c1d2d4 + 19a1d3d4

coefficient of X4Y 2 − 15
4 a1b

2
4 − 5

2c1b3d3 −
25
4 c2d1d3 + 35

4 c1d2d3 + 15
2 a1d

2
3

+15c1b2d4 + 5a1b3d4 + 75
4 c1d1d4 −

15
4 a1d2d4

coefficient of X3Y 3 − 5
3a1b3b4 −

85
21c1d

2
2 − 145

63 c1b2d3 −
5
7a1b3d3 + 115

21 c1d1d3

− 215
63 a1d2d3 + 5

7c1b1d4 −
55
7 a1b2d4 + 40

7 a1d1d4

coefficient of X2Y 4 − 5
4a1b2b4 −

5
6c1b2d2 + 10

3 a1b3d2 − 5c1d1d2 − 5
12a1d

2
2

− 5
2c1b1d3 −

55
12a1b2d3 − 5a1d1d3 − 45

4 a1b1d4

coefficient of XY 5 3
23c1b1b3 + 3a1b1b4 − 3

2c1d
2
1 + c1b1d2 − a1d1d2

coefficient of Y 6 1
3c1b1b2 + 1

4a1b1b3 + c1b1d1 − 1
4a1d

2
1 + 1

6a1b1d2

Coefficients of degree 6



6 M. Fournié, J.-Ph. Furter and D. Pinchon

coefficient of X7 5
72d

3
3 + 3

8b3b4d4 −
5
12b3d3d4 −

11
24d2d3d4 + 2b2d

2
4 + 27

8 d1d
2
4

coefficient of X6Y 7
24d2d

2
3 + 21

8 b2b4d4 − 4d22d4 − 1
4b2d3d4 + 12d1d3d4 + 18b1d

2
4

coefficient of X5Y 2 49
24d1d

2
3 + 113

24 b2b3d4 −
75
4 b1b4d4 + 53

6 b2d2d4 + 7
4d1d2d4 −

43
4 b1d3d4

coefficient of X4Y 3 5
36d1d2d3 −

65
18b1d

2
3 + 35

72b
2
2d4 + 35

3 b1b3d4 + 305
8 d21d4 + 445

12 b1d2d4

coefficient of X3Y 4 5
4b1b3d3 + 105

8 d21d3 + 5b1d2d3 + 75
8 b1b2d4 + 135

4 b1d1d4

coefficient of X2Y 5 − 7
24b

2
2d2 + 63

8 d
2
1d2 − 5

4b1d
2
2 + 2b1b2d3 + 39

2 b1d1d3 + 27
2 b

2
1d4

coefficient of XY 6 − 5
8b1b2b3 + 3

8b
2
1b4 + 21

8 d
3
1 − 3

8b1b2d2 −
3
2b

2
1d3

coefficient of Y 7 − 1
8b1b

2
2 − 9

8b1d
2
1 − 3

4b
2
1d2

Coefficients of degree 7
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coefficient of X8 − 1
144c2d

3
3 − 23

192c2d2d3d4 + 29
48c1d

2
3d4 − 11

16c1b3d
2
4 − 33

16a1b4d
2
4

+ 147
64 c2d1d

2
4 − 31

8 c1d2d
2
4 − 11

8 a1d3d
2
4

coefficient of X7Y − 1
9c1d

3
3 − 11

6 c1b3d3d4 −
23
12c1d2d3d4 − 3a1d

2
3d4 + 11

2 c1b2d
2
4

+ 81
4 c1d1d

2
4 + 9a1d2d

2
4

coefficient of X6Y 2 7
18a1d

3
3 + 21

4 c1b2d3d4 + 203
12 a1b3d3d4 + 35

24a1d2d3d4 −
189
4 c1b1d

2
4

− 203
4 a1b2d

2
4 − 189

8 a1d1d
2
4

coefficient of X5Y 3 7
18a1d2d

2
3 + 21c1b2d2d4 + 21

2 a1d
2
2d4 − 63c1b1d3d4 + 203

12 a1b2d3d4

−35a1d1d3d4 − 609
4 a1b1d

2
4

coefficient of X4Y 4 35
36a1d1d

2
3 − 315

4 c1b1b3d4 − 2975
144 a1b2b3d4 −

805
16 a1b1b4d4 −

945
4 c1d

2
1d4

− 315
2 c1b1d2d4 − 2905

72 a1b2d2d4 − 245
3 a1d1d2d4 − 875

24 a1b1d3d4

coefficient of X3Y 5 21
2 c1b1d2d3 + 217

36 a1d1d2d3 + 581
18 a1b1d

2
3 − 7

9a1b
2
2d4 + 7

3a1b1b3d4

− 189
2 c1b1d1d4 − 217

4 a1d
2
1d4 − 581

6 a1b1d2d4

coefficient of X2Y 6 − 21
4 c1b1b2d3 −

7
36a1b

2
2d3 − 63

4 a1b1b3d3 −
77
24a1b1d2d3 + 189

4 c1b
2
1d4

+49a1b1b2d4 + 231
8 a1b1d1d4

coefficient of XY 7 −3c1b1b2d2 − 1
9a1b

2
2d2 − 11

6 a1b1d
2
2 + 9c1b

2
1d3 − 23

12a1b1b2d3

+ 11
2 a1b1d1d3 + 81

4 a1b
2
1d4

coefficient of Y 8 9
8c1b

2
1b3 + 5

32a1b1b2b3 + 51
32a1b

2
1b4 + 27

8 c1b1d
2
1 − 3

8a1d
3
1 + 9

4c1b
2
1d2

+ 5
16a1b1b2d2 + 3

4a1b1d1d2 + 15
16a1b

2
1d3

Coefficients of degree 8
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coefficient of X9 − 131
144d

2
2d

2
4 − 131

288b2d3d
2
4 + 131

48 d1d3d
2
4 + 131

32 b1d
3
4

coefficient of X8Y 131
32 b2b3d

2
4 − 1179

32 b1b4d
2
4 + 131

16 b2d2d
4
4 − 393

16 b1d3d
2
4

coefficient of X7Y 2 − 131
32 b1d

2
3d4 − 131

32 b
2
2d

2
4 + 393

32 b1b3d
2
4 + 393

32 b1d2d
2
4

coefficient of X6Y 3 917
12 b1b3d3d4 + 917

24 b1d2d3d4 −
917
4 b1b2d

2
4 − 2751

8 b1d1d
2
4

coefficient of X5Y 4 917
8 b1d

2
2d4 + 917

16 b1b2d3d4 −
2751
8 b1d1d3d4 − 8253

16 b21d
2
4

coefficient of X4Y 5 8253
32 b21b4d4 + 8253

32 d31d4 + 8253
32 b1d1d2d4 + 8253

32 b21d3d4

coefficient of X3Y 6 917
96 b

2
1d

2
3 + 917

96 b1b
2
2d4 − 917

32 b
2
1b3d4 − 917

32 b
2
1d2d4

coefficient of X2Y 7 − 131
4 b21b3d3 − 131

8 b21d2d3 + 393
4 b21b2d4 + 1179

8 b21d1d4

coefficient of XY 8 − 131
16 b

2
1d

2
2 − 131

32 b
2
1b2d3 + 393

16 b
2
1d1d3 + 1179

32 b31d4

coefficient of Y 9 − 131
64 (b31b4 + b1d

3
1 + b21d1d2 + b31d3)

Coefficients of degree 9
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