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Abstract. We provide the existence, for every complex rational smooth a�ne curve
Γ, of a linear action of Aut(Γ) on the a�ne 3-dimensional space A3, together with a
Aut(Γ)-equivariant closed embedding of Γ into A3.

It is not possible to decrease the dimension of the target, the reason for this ob-
struction is also precisely described.

14R20, 14H45

1. Introduction

Throughout this article, all varieties are algebraic varieties de�ned over the �eld C of
complex numbers. The a�ne (resp. projective) n-space is denoted by An (resp. Pn).

It is well known that any smooth a�ne variety X of dimension n admits a closed
embedding into Am, when m ≥ 2n + 1 [Sri91, Theorem 1]. If moreover m ≥ 2n + 2,
then, by a result of Nori, Srinivas and Kaliman (see [Sri91] and [Kal91]), any two closed
embeddings ι, ι′ : X → Am are equivalent in the sense that there exists an automorphism
f ∈ Aut(Am) such that ι′ = f ◦ ι .

In particular, if ι : X → Am is a closed embedding of a smooth a�ne variety of
dimension n into some a�ne space of dimension m ≥ 2n + 2, then it follows that every
automorphism ϕ of X extends to an automorphism of the ambient space Am, since the
two embeddings ι ◦ ϕ and ι are equivalent.

However, Derksen, Kutzschebauch and Winkelmann showed in [DKW99] that it is not
always possible to extend the group structure of Aut(X), i.e. to �nd a closed embedding
ι : X → Am and an action of Aut(X) on Am that restricts onX to the action of Aut(X) on
it. More precisely, they proved that there does not exist, for any integer m, any injective
group homomorphism from Aut(C∗ × C∗) ∼= GL2(Z) n (C∗)2 to the group Diff(Rm) of
di�eomorphisms of Rm.

Recall that, if G is an algebraic group acting on an a�ne varietyX, thenX admits a G-
equivariant closed embedding into a �nite dimensional G-module (see [Bor91, Proposition
1.12, p. 56]). In particular, there exist, for every smooth a�ne curve Γ, a linear action
of Aut(Γ) on an a�ne space Am and a Aut(Γ)-equivariant closed embedding of Γ into
Am. A natural question is then to �nd the smallest possible m.

In this article, we settle the case of rational smooth a�ne curves. In this setting,
the proof of Borel only gives the embedding dimension m = 2 · |Aut(Γ)|, when the
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automorphism group Aut(Γ) is �nite. However, our main result shows that it is already
possible to obtain m = 3:

Theorem 1. Every rational smooth a�ne curve Γ admits an Aut(Γ)-equivariant closed
embedding into the a�ne space A3. Furthermore, there exist such embeddings for which

the action of Aut(Γ) on A3 is linear.

It is easy to construct closed embeddings into the a�ne plane A2 for all rational smooth
a�ne curves Γ. But it is of course not possible in general to ask for Aut(Γ)-equivariant
embeddings into A2. Indeed, there exist rational smooth a�ne curves whose automor-
phism groups are isomorphic to the alternating group A4, to A5, or to the symmetric
group S4 (see Section 6) and it is well known that the group A4 has no faithful represen-
tation of dimension two. Since all �nite subgroups of Aut(A2) are linearizable, it follows
that we cannot embed equivariantly such a curve into the plane, even if we allow non
linear actions on A2.

In fact, we establish stronger impossibility statements showing that it would be also
too optimistic in general to look for closed embeddings into A2 in such a way that every
single automorphism of the curve extends to an automorphism of the ambient space (see
Corollary 2.6).

Theorem 2. There exist rational smooth a�ne curves Γ with Aut(Γ) 6= 1 and such that

for every closed embedding of Γ into A2, the identity on Γ is its only automorphism that

extends to an automorphism of A2.

Let us also emphasize that Theorem 1 cannot be generalized to all smooth a�ne
curves. Actually, there even exist, for every natural number n, smooth a�ne curves Γ
which do not admit any Aut(Γ)-equivariant closed embedding into An.

To see this, recall that every �nite group G is equal to the automorphism group of a
smooth projective curve, and thus of an a�ne one [Gre63], and take a smooth a�ne curve

Γn whose automorphism group is isomorphic to (Z/2Z)n+1. Then, Γn does not admit

any Aut(Γn)-equivariant embedding into An, because (Z/2Z)n+1 does not act faithfully
on An. Indeed, by Smith theory, the action of a �nite p-group on An has always a �xed
point (see e.g. [Bre72, Th. 7.11, p 145], [PR86, p. 204], or [DKW99, Proposition 1]) and
the induced tangential (linear) representation at that �xed point should be faithful too
(see e.g. [DKW99, Lemma 4]).

It would however be interesting to know what happens in the case of smooth a�ne
curves of genus 1. Sathaye proved that such curves admit closed embeddings into A2

[Sat77]. Nevertheless, we do not know what is the minimal m (if it exists) such that
every smooth a�ne curve Γ of genus 1 admits an Aut(Γ)-equivariant closed embedding
into Am.

The article is organized as follows.
Section 2 concerns embeddings of rational smooth a�ne curves into the a�ne plane.

We give examples of automorphisms of such curves that do not extend, and prove The-
orem 2 (see Corollary 2.6).

Section 3 is devoted to the study of embeddings of smooth rational curves into A3

whose images are contained in a hyperplane. We prove that they are all equivalent and
thus that any two closed embeddings of a rational smooth a�ne curve into A2 become
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equivalent, when seen as embeddings in A3 (Proposition 3.1). This answers a question
of Bhatwadekar and Srinivas in this case.

In section 4 we realize every non-empty subset of P1 that is invariant by a subgroup
H of Aut(P1) as the �xed-point set of a H-equivariant endomorphism of P1 (Corollary
4.4). This result is used in Section 5 to prove Theorem 1 (see Theorem 5.2). Explicit
formulas are given in Section 6.

2. Embeddings of rational smooth affine curves into the plane

Let us recall that every rational smooth a�ne curve Γ is isomorphic to P1 \ Λ, where
Λ is a �nite set of r ≥ 1 points.

In particular, it admits a closed embedding into A2. Indeed, Γ can also be seen as the
complement in A1 of a �nite number (possibly zero) of points and we can consider the
closed embedding τ : Γ → A2 given by x 7→ (x, 1

P (x)), where P ∈ C[x] is a polynomial

whose roots are exactly the removed points. Note that the image of τ is the curve of A2

de�ned by the equation P (x)y = 1.
Moreover, the automorphism group Aut(Γ) of the curve Γ = P1 \ Λ is equal to the

group of automorphisms of P1 that preserve the set Λ. This gives a group homomorphism
from Aut(Γ) to the symmetric group Symr. Note that this homomorphism is injective if
and only if r ≥ 3.

If r is equal to 1 or 2, then Γ is isomorphic to A1 or A1 \ {0}, and its automorphism
group is C∗ nC or {±1}nC∗ respectively. If r ≥ 3, then Aut(Γ) is a �nite group.

The Abhyankar-Moh-Suzuki theorem states that all closed embeddings of A1 into A2

are equivalent to the one given by t 7→ (t, 0). This implies that every automorphism of
an a�ne line embedded into A2 extends to an automorphism of the ambiant space. If
r ≥ 2 we can on the contrary construct embeddings of the curve Γ which do not have
this property. Actually, we can choose embeddings such that, except the identity, no
automorphisms of Γ extend.

Lemma 2.1. Let Γ = A1 \ ∆, where ∆ is a non-empty �nite set. Then, there exist

in�nitely many non-equivalent closed embeddings ι : Γ→ A2 such that the identity is the

only automorphism of A2 that preserves ι(Γ).

Proof. We can assume that ∆ = {0, a1, . . . , am} with m ≥ 0 and a1, . . . , am ∈ C \ {0, 1}.
For every k ≥ 2, we denote by ιk : Γ→ A2 the embedding given by x 7→

(
x, x−1

xk
∏m

i=1(x−ai)

)
.

It induces an isomorphism between Γ and the curve ιk(Γ) de�ned by the equation
x = yxk

∏m
i=1(x− ai) + 1.

We �rst remark that any automorphism of A2 that sends ιk(Γ) onto a curve of degree
at most deg(ι(Γ)) = k + m + 1 is necessarily a�ne. If f : (x, y) 7→ (f1(x, y), f2(x, y)) is
the inverse of such an automorphism, we get indeed:

deg(f1 − f2(f1)k
∏m
i=1(f1 − ai)− 1) = (k +m) deg f1 + deg f2 ≤ k +m+ 1.

This implies that deg(f1) = deg(f2) = 1, i.e. that f (and its inverse too) is a�ne. In
particular, all above embeddings are non-equivalent. We now show that the identity is
the only a�ne automorphism of A2 that preserves the curve ιk(Γ).
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Any such automorphism extends to an automorphism τ of P2 preserving the line at
in�nity given by z = 0 and the curve of equation

xzk+m − yxk
m∏
i=1

(x− aiz)− zk+m+1 = 0.

On the line at in�nity we get the two points [0 : 1 : 0] and [1 : 0 : 0]. The point [1 : 0 : 0]
is smooth with tangent y = 0 and the point [0 : 1 : 0] is singular with tangent cone given
by xk

∏m
i=1(x − aiz) = 0. Hence, both lines x = 0 and y = 0 are invariant. Therefore,

τ is given by a diagonal automorphism of the form [x : y : z] 7→ [µx : νy : z], µ, ν ∈ C∗.
Replacing in the equation yields µ = ν = 1. �

The curves A1 and A1 \ {0} admit closed embeddings into A2 such that all their
automorphisms extend to automorphisms of A2. Consider for example the curves of
equations y = 0 and xy = 1. However, it is no longer true for the curve A1 \ {0, 1}.

Proposition 2.2. Let Γ = A1 \ {0, 1}. For every closed embedding τ : Γ → A2, there

exists an automorphism of Γ that does not extend to A2.

Before proving this statement, let us recall the following classical result (see e.g. [Fur83,
Theorem 2]).

Lemma 2.3. Every �nite subgroup of Aut(A2) is conjugate to a subgroup of GL(2,C).

Proof of Proposition 2.2. Note that the group of automorphisms of Γ is the group Sym3

of permutations of a set of three elements, corresponding to the three points �at in�nity�,
i.e. the points of P1 \ ι(Γ), where ι is any (open) embedding of Γ in P1. It is generated
by the automorphisms ρ : x 7→ 1/(1− x) and σ : x 7→ 1− x and we have

Aut(Γ) = 〈σ, ρ | σ2 = ρ3 = 1, σρσ−1 = ρ−1〉 = Sym3.

Suppose for contradiction that there exists a closed embedding τ : Γ → A2 for which
every automorphism of Γ extends. Since the identity is the only automorphism of A2

that restricts to the identity on a closed curve isomorphic to A1 \ {0, 1} (see Lemma 2.4
below), we would have a subgroup G ⊂ Aut(A2) isomorphic to Sym3 whose restriction
to τ(Γ) yields Aut(Γ).

We now prove that this is impossible. First, recall that G is conjugate to a subgroup
of GL(2,C) (see Lemma 2.3 above). Then, one easily checks that G is conjugate to the
subgroup G′ of GL(2,C) generated by

ρ̂ : (x, y) 7→ (y,−x− y) and σ̂ : (x, y) 7→ (y, x).

We let f ∈ Aut(A2) be an automorphism such that fGf−1 = G′ and we consider the
embedding τ̂ = f ◦ τ of Γ in A2. The automorphism group of Γ extends then to G′ for
this embedding.

Remark that the set {ω | ω2 − ω + 1 = 0} ⊂ Γ, which is the set of �xed points of ρ, is
an orbit of size 2 of Aut(Γ). But one checks that G′ ⊂ GL(2,C) does not have any orbit
of size 2 in the a�ne plane A2. This gives a contradiction. �

Lemma 2.4. The set of �xed points of a plane polynomial automorphism is either a

�nite set of points (possibly empty), a �nite disjoint union of subvarieties isomorphic to

A1, or the whole plane.
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Proof. Using the amalgamated structure of Aut(A2), it is observed in [FM89] that a plane
polynomial automorphism is conjugate either to a triangular automorphism (x, y) 7→
(ax+ p(y), by+ c) with a, b, c ∈ C and p(y) ∈ C[y], or to some cyclically reduced element
(see [Ser80, I.1.3] or [FM89, p. 70] for the de�nition of a cyclically reduced element). In
the �rst case, an obvious computation shows that the set of �xed points is either empty,
a point, a �nite disjoint union of subvarieties isomorphic to A1, or the whole plane. In
the second case, by [FM89, Theorem 3.1], the set of �xed points is a non-empty �nite
set of points. �

Using tools of birational geometry, we can actually specify the statement of Propo-
sition 2.2. Indeed, Theorem 2.5 below shows that there is no closed embedding of the
curve A1 \ {0, 1} into A2 such that the automorphism ρ : x 7→ 1/(1 − x) extends to an
automorphism of the a�ne plane.

Before we state this result, let us recall that any automorphism f of P1 of �nite order
n > 1 is conjugate to [x : y] 7→ [x : ξy], where ξ is a primitive n-th root of unity. In
particular, it has the following properties:

(1) the automorphism f �xes exactly two points of P1;
(2) all other orbits under the action of f have size n.

Thus, the following holds for every automorphism g ∈ Aut(Γ) of order n > 1 of a rational
smooth curve Γ.

(1) The automorphism g �xes 0, 1 or 2 points of Γ;
(2) all other orbits under the action of g have size n.

Theorem 2.5. Let Γ be a rational smooth a�ne curve and let g ∈ Aut(Γ) be an auto-

morphism.

(1) If g �xes at most one point of Γ, there is a closed embedding τ : Γ→ A2 such that

g extends to an automorphism of A2.

(2) If g is of �nite order n > 1 with n odd and if it �xes exactly two points of Γ, then
there is no closed embedding τ : Γ→ A2 such that g extends to an automorphism

of A2.

Proof. (1) Let P ∈ C[x] be a non-zero polynomial such that Γ is isomorphic to A1 \ {x ∈
A1 | P (x) = 0}. Let g ∈ Aut(Γ) be an automorphism that �xes at most one point of Γ.
Let us denote also by g its extension as an automorphism of P1. We can assume that g
�xes the point of P1 at in�nity, so that it is of the form x 7→ ax+ b, for some a ∈ C∗ and
b ∈ C. Moreover P (ax+ b) = µP (x) for some µ ∈ C∗.

When we embed Γ into A2 via the map x 7→ (x, 1
P (x)), the automorphism g extends

to (x, y) 7→ (ax+ b, µ−1y).
(2) Let g ∈ Aut(Γ) be of �nite order n > 1 with n odd such that it �xes 2 points of

Γ. Suppose, for contradiction, that there exists a closed embedding τ : Γ→ A2 for which
g extends to an automorphism h of A2. Since g has �nite order n, the automorphism
hn ∈ Aut(A2) �xes pointwise the curve τ(Γ). Because g �xes two points of Γ, τ(Γ) is
not isomorphic to A1, hence hn is trivial by Lemma 2.4.

Recall that every automorphism of A2 of �nite order is conjugate to a linear one
(Lemma 2.3). Thus, there exists an automorphism f ∈ Aut(A2) such that ĥ = f ◦h◦f−1
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is linear. Moreover, the automorphism g ∈ Aut(Γ) extends to ĥ, when we consider the
embedding τ̂ = f ◦ τ : Γ→ A2.

The linear automorphism ĥ extends to an automorphism of P2, and the closure of
τ̂(Γ) in P2 is a projective rational curve C, having all its singular points on the line
L = P2 \ A2.

If C is smooth, it is isomorphic to P1. Hence, it is a conic or a line, and thus intersects
L into 1 or 2 points, which contradicts the fact that g acts on C with order n > 2 and
with no �xed point at in�nity. This implies that C is singular.

Denote by η1 : X1 → P2 the blow-up of the points of P2 that are singular points of
C, and write C1 ⊂ X1 the strict transform of C in X1. If C1 is singular, we denote by
η2 : X2 → X1 the blow-up of the points of X1 that are singular points of C1, and write C2

the strict transform of C1 in X2. We continue like this until we end with a smooth curve
Cm ⊂ Xm such that the intersection of Cm with all curves contracted by η1η2 . . . ηm is
transversal. Note that Cm is isomorphic to P1. For i = 1, . . . ,m, the lift of ĥ yields an
automorphism hi of Xi which preserves the curve Ci. It also preserves the pull-back of
A2 in Xi, which is again isomorphic to A2.

For i = 1, . . . ,m, we denote by Bi ⊂ Ci the (�nite) set of points not lying in A2. Each
point p ∈ Bi has a multiplicity m(p) as a point of Ci. This multiplicity is a positive
integer and it is equal to 1 if and only if Ci is smooth at this point p. Denote by B0 the
set of points of C0 = C ⊂ X0 = P2 not lying in A2 and let us use the same notation as
above for the multiplicities of the points of B0.

Writing d the degree of C ⊂ P2, the geometric genus of C can be computed with the
following classical formula. (Note that it is equal to 0, since C is rational.)

(?) 0 =
(d− 1)(d− 2)

2
−

m∑
i=0

∑
p∈Bi

m(p) · (m(p)− 1)

2
.

Let us now prove the following assertion by descending induction on j ≤ m.

(�)
Let j ∈ {1, . . . ,m} and let J ⊂ Bj be an orbit under the action of hj .
Then m(p) = m(p′) for all p, p′ ∈ J, and the integer

∑
p∈J

m(p) is a multiple of n.

For j = m, the assertion (�) holds for all orbits J ⊂ Bm. Indeed, Cm is isomorphic to
P1 and the action of hm on Bm ⊂ Cm is �xed-point-free, so all orbits have size n and all
multiplicities are equal to 1.

Then, we can prove (�) for j < m, assuming it holds for every integer k with j + 1 ≤
k ≤ m. For this, let J ⊂ Bj be an orbit under the action of hj and let us denote by mJ

the multiplicity m(p) of a point p ∈ J . Note that this multiplicity does not depend of
the choice of p, since hj acts transitively on J .

If mJ = 1, all points of J are smooth, and so the pull-back by ηj+1 of J consists of |J |
points of multiplicity mj = 1. This implies

∑
p∈J m(p) ∈ nN, by induction hypothesis.

If mJ > 1, then all points of J are singular points of the curve Cj and are thus blown-
up by ηj+1 : Xj+1 → Xj . The number mJ is the multiplicity of the curve Cj at the point
p ∈ J . Denoting by Ep ⊂ Xj+1 the curve contracted by ηj+1 onto p, the number mJ is
the intersection number Ep ·Cj+1. This latter is equal to the sum of mq(Ep) ·mq(Cj+1),
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where q runs through all points in�nitely near to p, and where mq(Ep) and mq(Cj+1) are
the multiplicities of the strict transforms of Ep and Cj+1 at q, respectively. Note that
mq(Ep) is equal to 0 or 1.

Therefore, the sum
∑

p∈J mJ is equal to a sum of multiplicities of orbits in Bk for

k ≥ j + 1. By induction hypothesis, it is a multiple of n. This achieves to prove (�).
In order to �nish the proof, we will show how Equation (?) and Assertion (�) imply

that the integers (d−1)(d−2)
2 and d are both multiple of n. Since the greatest common

divisor of d and (d−1)(d−2)
2 is 1 or 2, this will contradict the assumption n > 2.

To show that n divides (d−1)(d−2)
2 , we decompose the sum of (?) according to orbits

(d− 1)(d− 2)

2
=

m∑
j=0

∑
J⊂Bj

∑
p∈J

m(p) · (m(p)− 1)

2
.

By Assertion (�), the multiplicities m(p) are all equal among the same orbit J , so∑
p∈J m(p) · (m(p) − 1) is a multiple of

∑
p∈J m(p), which is a multiple of n by (�).

Since n is odd,
∑

p∈J
m(p)·(m(p)−1)

2 is also a multiple of n, and so is (d−1)(d−2)
2 .

It remains to show that d is also a multiple of n. For this, we observe that the
intersection number d = L · C is the sum of multiplicities of all points of C that belong
to L, as proper or in�nitely near points. Since L is invariant under the extension of the
a�ne automorphism ĥ, the union of these points decomposes into orbits of hj and the
sum is then a multiple of n by Assertion (�). �

Corollary 2.6. There exist rational smooth a�ne curves Γ with Aut(Γ) 6= 1 and such

that for every closed embedding of Γ in A2, the identity on Γ is its only automorphism

which extends to an automorphism of A2.

Proof. Let ω = e2iπ/3 and a1 = 1. Let a2, . . . , ak be complex numbers algebraically
independent over Q. We consider the curve Γ = P1 \ Λ, where Λ is the following set of
3k points

Λ =
{

[aiω
j : 1] | i = 1, . . . , k, j = 0, . . . , 2

}
.

The map h : [x : y] 7→ [x : ωy] is obviously an automorphism of Γ. We will now prove
that it generates the whole automorphism group Aut(Γ) if k ≥ 3. This will conclude the
proof, since h and h2 do not extend to automorphisms of A2 by Theorem 2.5.

Let g ∈ Aut(Γ) be an automorphism of Γ. It extends to an automorphism of P1 that
preserves the set Λ. Let us denote this latter also by g.

Consider the 4-tuple V =
(
[1 : 1], [ω : 1], [ω2 : 1], [a2 : 1]

)
. Since a2, . . . , ak are alge-

braically independent over Q, the image of V by g is a 4-tuple of points contained in the
set

S =
{

[1 : 1], [ω : 1], [ω2 : 1], [a2 : 1], [a2ω : 1], [a2ω
2 : 1]

}
.

Indeed, the cross-ratio of g(V ) must be equal to the cross-ratio of V , i.e. to ω(ω −
a2)/(a2 − 1).

The same argument with the 4-tuple
(
[1 : 1], [ω : 1], [ω2 : 1], [a3 : 1]

)
allows us to con-

clude that g preserves the set
{

[1 : 1], [ω : 1], [ω2 : 1]
}
. Therefore, g is either a power of

h, or it is one of the maps ϕi : [x : y] 7→ [y : xωi] with i = 0 . . . 2.
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Finally, note that g cannot be one of the ϕi's, since ϕi sends the point [a2 : 1] onto

[
1

a2ωi
: 1], which does not belong to the set S. �

Remark 2.7. The proof of Corollary 2.6 shows that if k ≥ 3 and if the set Λ ⊂ P1 is
general among all sets of distinct 3k points invariant by the map [x : y] 7→ [x : ωy],
then for all closed embeddings of the curve Γ = P1 \ Λ into A2, the identity is the only
automorphism of Γ that extends to an automorphism of A2.

On the contrary, when k ≤ 2, every such curve Γ admits an automorphism of order 2
and Proposition 2.8 below implies then that this latter extends to an automorphism of
A2 for a well-chosen closed embedding of Γ into A2.

Proposition 2.8. Let Γ be a rational smooth a�ne curve and let σ ∈ Aut(Γ) be an

automorphism of Γ of order 2. There exists a closed embedding of Γ in A2 and an

automorphism σ̂ ∈ Aut(A2) of order 2 whose restriction to Γ yields σ.

Proof. Let Γ = P1 \Λ, where Λ is a �nite set of points. Let us denote by σ the extension
of the automorphism σ ∈ Aut(Γ) as an automorphism of P1. If it �xes at most one point
of Λ, the result follows from Theorem 2.5.

We can thus assume that the two points of P1 �xed by (the extension of) σ belong
to Γ. Let p be a point of Λ. Its orbit {p, σ(p)} is then contained in Λ. Let C be the
curve C = P1 \ {p, σ(p)}. Note that C is isomorphic to A1 \ {0} and that σ restricts
to an automorphism of C. Remark that all automorphisms of A1 \ {0} of order 2 with
two �xed points are conjugate to the automorphism x 7→ x−1 ∈ Aut(Spec(C[x, x−1])).
Therefore, there is a closed embedding τ : C → A2 whose image is the curve de�ned by
the equation

y2 − 1 = x2

and such that the automorphism σ ∈ Aut(C) extends to the automorphism σ̂ : (x, y) 7→
(−x, y). Moreover, the curve τ(Γ) is then equal to a set of points of τ(C) satisfying that∏n
i=1(y − ai) 6= 0, for some n ≥ 0 and distinct a1, . . . , an ∈ C \ {±1}.
Let Y ⊂ A2 be the closed curve de�ned by the equation

y2 − 1 = x2 ·

(
n∏
i=1

(y − ai)

)2

.

Consider �nally the birational transformation of A2 de�ned by

(x, y) 99K

(
x∏n

i=1(y − ai)
, y

)
,

which restricts to an isomorphism between τ(Γ) and Y . Since it commutes with the
automorphism (x, y) 7→ (−x, y), this yields the result. �

3. Planar embeddings in the space

The following question of Bhatwadekar and Srinivas is asked at the end of [Sri91]:
are any two embeddings of a smooth a�ne curve in A2 equivalent, when considered as
embeddings in A3?

The next result answers positively for the case of rational smooth a�ne curves.
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Proposition 3.1. Let Γ be a rational smooth a�ne curve.

(1) If τ1, τ2 : Γ → A3 are two closed embeddings whose images are contained in a

hyperplane (planar embeddings in the space), there exists an automorphism α ∈
Aut(A3) such that τ2 = α ◦ τ1, i.e. any two planar embeddings in the space are

equivalent.

(2) In particular, �xing a planar embedding Γ → A3, every automorphism of Γ ex-

tends to A3.

Proof. Let Γ = A1 \ {x ∈ A1 | P (x) = 0}, where P ∈ C[x] is a polynomial with simple
roots. Note that the coordinate ring of Γ is C[Γ] = C[x, 1

P (x) ] and recall that the map

x 7→ (x, 1
P (x)) de�nes a closed embedding of Γ in A2. To prove the proposition, it su�ces

to prove that any planar embedding is equivalent to the one given by x 7→ (x, 1
P (x) , 0).

Let τ : Γ → A3 be a planar embedding of Γ. We can compose τ with an a�ne
automorphism f1 of A3 and get an embedding τ2 = f1 ◦ τ : Γ → A3 of the form x 7→
(0, Q(x), R(x)), where Q,R ∈ C(x) are rational functions without poles on Γ.

Since τ2 is a closed embedding of the curve Γ, the equality C[x, 1
P (x) ] = C[Q(x), R(x)]

holds. In particular, there exists a polynomial A ∈ C[X,Y ] such that A(Q(x), R(x)) = x.
Now, we compose τ2 with the automorphism of A3 de�ned by f2(X,Y, Z) = (X +
A(Y,Z), Y, Z) and obtain the embedding τ3 : Γ→ A3 given by

τ3 : x 7→ (x,Q(x), R(x)) .

Because of the equality C[x, 1
P (x) ] = C[Q(x), R(x)], all zeros of P (x) are poles of

aQ(x) + bR(x) for general complex numbers a, b ∈ C. We can thus compose τ3 with
a linear automorphism of the form (X,Y, Z) 7→ (X, aY + bZ, Z) and get an embedding
τ4 : Γ→ A3 of the form

τ4 : x 7→
(
x,
Q1(x)

Q2(x)
,
R1(x)

R2(x)

)
,

where Q1, Q2, R1, R2 ∈ C[x] are polynomials such that Q1 and Q2 (resp. R1 and R2)
have no common factor, and such that P (x) divides Q2(x).

In particular, there exist two polynomials U, V ∈ C[x] such that UQ1 + V P = 1. It
follows

1

P
=
UQ1 + V P

P
= U

Q1

P
+ V = SU

Q1

Q2
+ V,

where S ∈ C[x] satis�es PS = Q2.

This implies C[x, 1
P ] ⊂ C[x, Q1

Q2
] and thus

C[x,
Q1

Q2
,
R1

R2
] = C[x,

1

P
] = C[x,

Q1

Q2
].

Therefore, there exist polynomials B,C ∈ C[X,Y ] such that B(x, Q1(x)
Q2(x)

) = 1
P (x) −

R1(x)
R2(x)

and C(x, 1
P (x)) = Q1(x)

Q2(x)
. Finally, we consider the automorphisms of A3 de�ned by

f4(X,Y, Z) = (X,Y, Z + B(X,Y )) and f5(X,Y, Z) = (X,Z, Y − C(X,Z)). One checks
that f5 ◦ f4 ◦ τ4 : Γ→ A3 is the desired embedding x 7→ (x, 1

P (x) , 0). �
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Note that the proof above is constructive. In particular, a planar embedding of a
smooth rational curve Γ in A3 and an automorphism ϕ of Γ being given, it allows us to
construct an explicit automorphism of A3 which extends ϕ.

Example 3.2. Let Γ be the curve Γ = A1\{0, 1} and let ρ ∈ Aut(Γ) be the automorphism
of Γ de�ned by ρ(x) = 1/(1−x). We saw in Section 2 that there is no closed embedding
of Γ into A2 such that ρ extends to an automorphism of A2. However, it extends to
an automorphism of A3, when we consider the embedding τ : Γ → A3 de�ned by x 7→
(x, 1/x(x− 1), 0).

Following the proof of Proposition 3.1, we let f1, f2, . . . , f5 be the automorphisms of A3

de�ned by f1(X,Y, Z) = (Z, Y,X), f2(X,Y, Z) = (X+Y +2−Y Z2, Y, Z), f3(X,Y, Z) =
(X, aY +bZ, Z), f4(X,Y, Z) = (X,Y, Z− 1

ab [(b+(a−b)X)(Y −aX+2a)−(a−b)2](1+X))
and f5(X,Y, Z) = (X,Z, Y − aX + 2a + aZ + (b − a)XZ), where a, b ∈ C are general
complex numbers.

Setting F = f5 ◦ f4 ◦ · · · ◦ f1, one checks F ◦ τ ◦ ρ = τ . This implies that F−1 is an
extension of the automorphism ρ ∈ Aut(Γ).

Remark 3.3. To our knowledge, there is no known example of a smooth a�ne curve
admitting two non-equivalent embeddings into A3. Paradoxically, we do not know any
smooth a�ne curve such that all its embeddings into A3 are equivalent!

The case of the a�ne line is of particular interest. On one hand, all closed embeddings
of A1 into A2 are equivalent by the famous Abhyankar-Moh-Suzuki theorem. On the
other hand, all closed embeddings of A1 into An with n ≥ 4 are also equivalent (see
[Sri91] or [Kal91]).

4. Actions of SL(2,C) on End(A2) and of PGL(2,C) on P1

The aim of this section is to construct, for every non-empty subset Λ of P1 that is
invariant by a subgroup H of Aut(P1), a H-equivariant endomorphism of P1 whose �xed-
point set is equal to the set Λ (Corollary 4.4). We will use this result later on to construct
embeddings of every rational smooth a�ne curve into A3 in such a way that the whole
automorphism group of the curve extends to a subgroup of Aut(A3).

For the rest of the paper we will consider the following actions of the group SL(2,C)
on O(A2) = C[x, y] and End(A2) = C[x, y]× C[x, y].

SL(2,C)×O(A2) → O(A2)
(g, P ) 7→ g · P := P ◦ g−1

and
SL(2,C)× End(A2) → End(A2)

(g, F ) 7→ g · F := g ◦ F ◦ g−1.

Note that these actions come from the natural action of SL(2,C) on A2. Indeed, denote
by V the space A2 as a complex vector space of dimension 2 and identify the set of the
linear forms on it as the dual space V ∗. The action of SL(V ) on V yields actions on V ∗ ,
on the symmetric algebra S(V ∗) and on S(V ∗)⊗ V . The natural isomorphisms between
S(V ∗) and C[x, y] = O(A2) , and between S(V ∗) ⊗ V and C[x, y] × C[x, y] = End(A2),
lead then to the SL(2,C)-actions that we de�ned above.
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Lemma 4.1. The map ρ : End(A2)→ O(A2) de�ned by

C[x, y]× C[x, y] → C[x, y]
(f1, f2) 7→ f1y − f2x

is SL(2,C)-equivariant, when we consider the actions de�ned above.

Proof. The result could of course be checked by direct computations, but let us mention
that it also follows from the fact that ρ corresponds to the morphism S(V ∗)⊗V → S(V ∗)
given by the composition τ2 ◦ τ1, where τ1 and τ2 are the two following homomorphisms
of SL(V )-modules.

τ1 : S(V ∗)⊗ V → S(V ∗)⊗ V ⊗ V ∗ ⊗ V
p⊗ v 7→ p⊗ v ⊗ id,

where id denotes the identity element seen as an element of V ∗ ⊗ V = Hom(V, V ), and

τ2 : S(V ∗)⊗ V ⊗ V ∗ ⊗ V → S(V ∗)
p⊗ v1 ⊗ v∗2 ⊗ v3 7→ det(v1, v3)(pv

∗
2).

�

Lemma 4.2. Let G ⊂ SL(2,C) be a �nite subgroup of SL(2,C) and let P ∈ C[x, y]. The
following conditions are equivalent:

(1) The polynomial P satis�es P (0, 0) = 0 and is �xed by G.
(2) There exists an endomorphism F = (f1, f2) of A2 that is �xed by G and such that

ρ(F ) = f1y − f2x = P .

Proof. Let EP ⊂ End(A2) be the set

EP = ρ−1(P ) = {(f1, f2) ∈ C[x, y]× C[x, y] | f1y − f2x = P} .
This de�nes an a�ne subset of the C-vector space End(A2), since the endomorphism
(λf1 + (1− λ)f3, λf2 + (1− λ)f4) belongs to EP , for any (f1, f2), (f3, f4) ∈ EP and any
λ ∈ C. Moreover, EP is non-empty if and only if P (0, 0) = 0.

If F ∈ End(A2) is �xed by G and belongs to EP , then

g · P = g · ρ(F ) = ρ(g · F ) = ρ(F ) = P

hold for any g ∈ G. This shows (2)⇒ (1).
If P is �xed by G, then the set EP is invariant by G, since

ρ(g · F ) = g · ρ(F ) = g · P = P

hold for any F ∈ EP and g ∈ G.
Therefore, if F belongs to EP , then

1
|G|
∑

g∈G g · F is an element of EP that is �xed

by G. This shows (1)⇒ (2) and concludes the proof. �

Proposition 4.3. Let H ⊂ PGL(2,C) = Aut(P1) be a �nite subgroup and set G =
π−1(H), where π : SL(2,C)→ PGL(2,C) is the canonical surjective map. Let Λ ⊂ P1 be

a non-empty H-invariant �nite subset.

(1) There exist homogeneous polynomials f1, f2 ∈ C[x, y] of the same degree such that

(f1, f2) is an endomorphism of A2 �xed by G and such that

Λ =
{

[x : y] ∈ P1 | f1(x, y)y − f2(x, y)x = 0
}
.
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(2) The morphism δ : P1 → P1 de�ned by

[x : y] 7→ [f1(x, y) : f2(x, y)]

is H-equivariant, for all pairs (f1, f2) given by the statement (1) above.

(3) There exist polynomials f1, f2 satisfying the statement (1) and also the extra prop-

erty

Λ =
{
q ∈ P1 | δ(q) = q

}
.

This latter holds moreover for all pairs (f1, f2) given by the statement (1), in the

case where the set Λ consists of exactly one orbit of H.

Proof. (1) We let p ∈ C[x, y] be the (unique up a nonzero constant) square-free homoge-
neous polynomial whose roots correspond to the points of Λ. Because Λ is invariant by
H, there exists a character χ : G→ C∗ such that

p ◦ g = χ(g)p,

for all g ∈ G. Since G is �nite, there exists a positive integer d such that the polynomial
P = pd is �xed by G.

By Lemma 4.2, there exists an endomorphism (f1, f2) ∈ C[x, y]×C[x, y] of A2 that is
�xed by G and such that f1y − f2x = P . Since P is homogeneous and since the action
of G on End(A2) is linear and preserves the �ltration by degrees, we can assume that f1
and f2 are homogeneous of the same degree. This proves (1).

Statement (2) follows directly from the fact that the endomorphism (f1, f2) is �xed
by G.

(3) Since δ is H-equivariant, its �xed-point set is invariant by H. Let us denote it by

Ωδ and write f1 = αf̃1 and f2 = αf̃2, where α, f̃1, f̃2 are homogeneous polynomials such
that f̃1 and f̃2 have no common root in P1. Then, δ([x : y]) = [f̃1(x, y) : f̃2(x, y)] holds

for all [x : y] ∈ P1. The set Ωδ = {q ∈ P1 | δ(q) = q} is thus the zero set of f̃1y − f̃2x.
In particular, it is non-empty. Moreover, the equalities P = f1y − f2x = α(f̃1y − f̃2x)
imply that Ωδ is contained in Λ.

If Λ consists of exactly one orbit of H, then Ωδ = Λ follows from the fact that Ωδ is
invariant by H.

Let us now consider the general case, where Λ consists of r > 1 orbits of H and write
Λ =

⋃r
i=1 Λi, where Λ1, . . . ,Λr are disjoint orbits of H. For each i, there exist, by the

previous argument, homogeneous polynomials fi,1, fi,2 of the same degree such that the
zero set of Pi = fi,1y − fi,2x is equal to Λi and such that the pair (fi,1, fi,2) de�nes an
endomorphism of A2 which is �xed by G.

Set

g1 =
1

r

r∑
i=1

fi,1∏
j 6=i

Pj

 and g2 =
1

r

r∑
i=1

fi,2∏
j 6=i

Pj

 .

Note that g1 and g2 are homogeneous of the same degree and satisfy the equality g1y −
g2x =

∏r
i=1 Pi. Moreover, the endomorphism (g1, g2) ∈ End(A2) is �xed by G. In other

words, it satis�es the statement (1) of the lemma.

We will now show that the set Ωδ̃ of �xed points of the morphism δ̃ : P1 → P1 de�ned

by δ̃([x : y]) = [g1(x, y) : g2(x, y)] is equal to Λ, which will conclude the proof. Note that

it is contained in Λ and invariant under the action of H, since δ̃ is H-equivariant.
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Let us write g1 = βg̃1 and g2 = βg̃2, where β, g̃1, g̃2 are homogeneous and g̃1, g̃2 have
no common root in P1. Note that the set Ωδ̃ is equal to the zero set of the homogeneous
polynomial g̃1y − g̃2x .

We claim that none of the Pi divides β. Indeed, otherwise such a Pi would divide both
g1 and g2 and thus also fi,1

∏
j 6=i Pj and fi,2

∏
j 6=i Pj . Since Pi has no common root with

any of the Pj , this would imply that Pi divides fi,1 and fi,2. This is impossible, since
Pi = fi,1y − fi,2x, hence Pi has degree bigger than fi,1 and fi,2.

Therefore, it follows from the equalities

r∏
i=1

Pi = g1y − g2x = β(g̃1y − g̃2x)

that, for every index i, at least one point of Λi is contained in Ωδ̃. This latter set being
invariant by H and Λi being an orbit under the action of H, we get that the whole set
Λi is contained in Ωδ̃, for each i = 1 . . . r. This achieves the proof. �

Corollary 4.4. Let H ⊂ PGL(2,C) = Aut(P1) be a �nite subgroup and let Λ ⊂ P1 be a

�nite subset. The following conditions are equivalent:

(1) The set Λ is non-empty and invariant by H.

(2) There exists a H-equivariant morphism δ : P1 → P1 such that

Λ = {q ∈ P1 | δ(q) = q}.

Proof. The implication (1)⇒ (2) follows directly from Proposition 4.3. Let us prove the
other one.

Let δ : P1 → P1 be a H-equivariant morphism whose �xed-point set is equal to Λ. The
set Λ is then invariant under the action of H, since δ(h(q)) = h(δ(q)) = h(q) hold for all
h ∈ H and all q ∈ Λ.

Furthermore, let f1, f2 ∈ C[x, y] be two homogeneous polynomials of the same degree
and without common root in P1 such that δ([x : y]) = [f1(x, y) : f2(x, y)] for all points
[x : y] ∈ P1. Since Λ is the zero set of f1y − f2x, it is clearly non-empty. �

5. Equivariant embeddings into the affine three-space

Let us recall that the following morphism

P1 × P1 ↪→ P3

([y0 : y1], [z0 : z1]) 7→ [y0z0 : y0z1 : y1z0 : y1z1]

is a classical closed embedding of P1 × P1 into P3 and that it induces an isomorphism
between P1 × P1 and the quadric in P3 de�ned by the equation x0x3 = x1x2. Moreover,
since this embedding is canonical (it is given by the linear system |−1

2KP1×P1 |), every
automorphism of P1 × P1 extends to a unique automorphism of P3.

Identifying A3 with the complement in P3 of the hyperplane de�ned by the equation
x1 = x2, we obtain a closed embedding (P1×P1)\∆ ↪→ A3, where ∆ denotes the diagonal
curve ∆ = {(q, q) | q ∈ P1} ⊂ P1 × P1.

Consider the diagonal action of PGL(2,C) = Aut(P1) on P1 × P1. Note that each
automorphism of P1 × P1 coming from this action extends to an automorphism of P3

which preserves the plane of equation x1 = x2. This yields an action of PGL(2,C) on
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A3 for which the closed embedding (P1×P1) \∆ ↪→ A3, that we de�ned above, becomes
PGL(2,C)-equivariant.

After a change of coordinates in A3, we obtain a PGL(2,C)-equivariant embedding of
(P1 × P1) \∆ into A3, where the action of PGL(2,C) on A3 is linear.

Lemma 5.1. The morphism

ι : (P1 × P1) \∆ ↪→ A3

([y0 : y1], [z0 : z1]) 7→
(
y0z1 + y1z0
y0z1 − y1z0

,
2y0z0

y0z1 − y1z0
,

2y1z1
y0z1 − y1z0

)
is a closed embedding whose image is the hypersurface of A3 de�ned by the equation

yz = x2 − 1.
Moreover, ι is PGL(2,C)-equivariant, when we consider the actions of PGL(2,C) on

(P1 × P1) \∆ and A3 de�ned by

PGL(2,C)× (P1 × P1) \∆ → (P1 × P1) \∆((
a b
c d

)
, ([y0 : y1], [z0 : z1])

)
7→ ([ay0 + by1 : cy0 + dy1], [az0 + bz1 : cz0 + dz1])

and

PGL(2,C)× A3 → A3( a b
c d

)
,

 x
y
z

 7→ 1

ad− bc

 ad+ bc ac bd
2ab a2 b2

2cd c2 d2

 ·
 x

y
z

 .

Proof. Let Q denotes the quadric hypersurface of A3 de�ned by the equation yz = x2−1.
One checks that the morphism ι induces an isomorphism between (P1 × P1) \∆ and Q
whose inverse morphism is given by

Q → (P1 × P1) \∆

(x, y, z) 7→
{

([x+ 1 : z], [y : x+ 1]) if x 6= −1,
([y : x− 1], [x− 1 : z]) if x 6= 1.

It is also straightforward to check that ι is PGL(2,C)-equivariant for the given actions.
�

Combining the latter lemma with the results of the previous section, we �nally get
Aut(Γ)-equivariant embeddings of every smooth a�ne rational curve Γ into A3.

Theorem 5.2. For every rational smooth a�ne curve Γ, there exist a linear action of

Aut(Γ) on A3 and a closed embedding τ : Γ ↪→ A3 which is Aut(Γ)-equivariant for this

action.

Proof. If Γ = A1, it su�ces to consider the embedding τ : A1 → A3 de�ned by τ(t) =
(t, 0, 0), and to let Aut(Γ) = {x 7→ ax+ b | a ∈ C∗, b ∈ C} act on A3 via the maps
(x, y, z) 7→ (ax+ b(y + 1), y, z).

If Γ = C∗, we consider the embedding τ : Γ → A3 de�ned by τ(t) = (t, 1/t, 0). Its
image is the curve in A3 de�ned by the equations z = 0 and xy = 1. Recall that the au-
tomorphism group of Γ is Aut(Γ) = {ϕλ : x 7→ λx | λ ∈ C∗} ∪

{
ψλ : x 7→ λx−1 | λ ∈ C∗

}
.

The embedding τ becomes Aut(Γ)-equivariant, when we let Aut(Γ) act on A3 via the
maps Φλ : (x, y, z) 7→ (λx, λ−1y, z) and Ψλ : (x, y, z) 7→ (λy, λ−1x, z).
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If Γ is equal to P1\Λ, where Λ is a �nite set of at least 3 points, then its automorphism
group H = Aut(Γ) is the �nite subgroup of PGL(2,C) = Aut(P1) that preserves the
set Λ. Applying Corollary 4.4, let δ : P1 → P1 be a H-equivariant morphism such that
Λ =

{
q ∈ P1 | δ(q) = q

}
. This allows us to de�ne a closed embedding τ̂ : Γ→ (P1×P1)\∆

by letting τ̂(q) = (q, δ(q)) for all q ∈ Γ = P1 \ Λ. The morphism τ̂ is moreover H-
equivariant, when H acts diagonally on (P1 × P1) \∆.

Composing τ̂ with the PGL(2,C)-equivariant closed embedding ι : (P1×P1)\∆ ↪→ A3

that we de�ned in Lemma 5.1, we obtain a closed embedding τ : Γ → A3 which is H-
equivariant, as desired. �

6. Explicit formulas for the equivariant embeddings into A3

The proof of Theorem 5.2 is constructive and already contains explicit Aut(Γ)-equivariant
embeddings into A3 for the curves Γ = A1 and Γ = A1 \ {0}. Let us now describe the
construction for the other cases, i.e., when the automorphism group Aut(Γ) is �nite.

We consider the curves Γ = P1 \ Λ, where Λ is a set of at least 3 points of P1. Let
us denote by H the subgroup of Aut(P1) = PGL(2,C) that restricts to Aut(Γ), and
denote as before by G its pull-back in SL(2,C), which is a �nite group of order 2|H|.
The set Λ decomposes into r orbits Λ =

⋃r
i=1 Λi of H. An orbit Λi of H is given by

the zero set of a homogeneous polynomial pi ∈ C[x, y]. Some power Pi = pdii of pi is
invariant by the action of G on P1 de�ned in Section 4. For each i, Lemma 4.2 yields
the existence of a G-invariant pair (fi,1, fi,2) ∈ End(A2) which satisfy fi,1y − fi,2x = Pi.
The H-equivariant morphism δ : P1 → P1 given by Proposition 4.3 (or Corollary 4.4) is
thus δ : [x : y] 99K [f1(x, y) : f2(x, y)], where

f1 =
1

r

(
r∏
i=1

Pi

)
r∑
i=1

fi,1
Pi

and f2 =
1

r

(
r∏
i=1

Pi

)
r∑
i=1

fi,2
Pi
.

Moreover, (f1, f2) is invariant by G and satis�es f1y − f2x =
∏r
i=1 Pi.

Following the proof of Theorem 5.2, we de�ne a closed embedding Γ = P1 \ Λ →
(P1 × P1) \ ∆ by [x : y] 7→ ([x : y], [f1 : f2]). We compose then this latter with the
embedding ι : (P1 × P1) \ ∆ → A3 de�ned by Lemma 5.1, and obtain the following
Aut(Γ) = H-equivariant closed embedding of Γ into A3.

Γ = P1 \ Λ → A3

[x : y] 7→

(
1

r

r∑
i=1

xfi,2 + yfi,1
xfi,2 − yfi,1

,
1

r

r∑
i=1

2xfi,1
xfi,2 − yfi,1

,
1

r

r∑
i=1

2yfi,2
xfi,2 − yfi,1

)
.

So it su�ces to determine the polynomials fi,1 and fi,2, which depend on H and Λ, to
get explicit embeddings.

Recall that any �nite subgroup of Aut(P1) = PGL(2,C) is isomorphic to Z/nZ (the
cyclic group of order n), D2n (the dihedral group of order 2n), A4 (the tetrahedral group),
S4 (the octahedral or cubic group) or A5 (the icosahedral or dodecahedral group) and
that there is only one conjugacy class for each of these groups (see e.g. [Beau10]).

1) In the cyclic case, we can assume that H ⊂ PGL(2,C) is generated by [x : y] 7→
[ξnx : y], where ξn is a primitive n-th root of unity. Its pullback G ⊂ SL(2,C) is then
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generated by

(
ζ 0
0 ζ−1

)
, where ζ is a primitive 2n-th root of unity. An orbit Λi of H

is given by the zero set of a polynomial pi = aix
n + biy

n for some (ai, bi) ∈ C2 \ {(0, 0)}
(the cases where ai = 0 or bi = 0 provide a �xed point with multiplicity n). We thus get

Pi = (pi)
2 ∈ O(A2)G

and

(fi,1, fi,2) =
(
biy

n−1(aix
n + biy

n),−aixn−1(aixn + biy
n)
)
∈ End(A2)G

which satisfy fi,1y−fi,2x = Pi (note that the fi,1 and fi,2 are here not unique, and could
also be chosen without common factor). The corresponding embedding is

Γ = P1 \ Λ → A3

[x : y] 7→

(
1

r

r∑
i=1

aix
n − biyn

aixn + biyn
,
1

r

r∑
i=1

−2bixy
n−1

aixn + biyn
,
1

r

r∑
i=1

2aix
n−1y

aixn + biyn

)
.

2) In the dihedral case, we can assume that H is generated by the maps [x : y] 7→

[ξnx : y] and [x : y] 7→ [y : x]. So G is generated by

(
ζ 0
0 ζ−1

)
and

(
0 i
i 0

)
, where i

denotes the imaginary unit
√
−1.

An orbit Λi of H is given by the zero set of pi = ai(x
2n + y2n) + 2bix

nyn for some
(ai, bi) ∈ C2 \ {(0, 0)} and we thus get

Pi = (pi)
2 ∈ O(A2)G

and

(fi,1, fi,2) =
(
yn−1(bix

n + aiy
n)pi,−xn−1(aixn + biy

n)pi
)
∈ End(A2)G

which satisfy fi,1y−fi,2x = Pi (note that Pi = pi is also possible if n is even, and that as
before the polynomials fi,1, fi,2 are not unique, and could also be chosen without common
factor). This leads to the embedding Γ = P1 \ Λ → A3 which sends a point [x : y] ∈ Γ
onto(

1

r

r∑
i=1

ai(x
2n − y2n)

ai(x2n + y2n) + 2bixnyn
,
1

r

r∑
i=1

−2xyn−1(bix
n + aiy

n)

ai(x2n + y2n) + 2bixnyn
,
1

r

r∑
i=1

2xn−1y(aix
n + biy

n)

ai(x2n + y2n) + 2bixnyn

)
.

3) In the case of the tetrahedral group, we can assume that H ∼= A4 is generated by
the maps [x : y] 7→ [i(x + y) : x − y] and [x : y] 7→ [x : −y]. This implies that G is

generated by 1
2

(
i− 1 i− 1
i + 1 −i− 1

)
and

(
−i 0

0 i

)
. An orbit Λi of H is given by the

zero set of

pi = 6ai(x
5y − xy5)2 + bi(x

4 + y4)(x8 + y8 − 34x4y4),

for some (ai, bi) ∈ C2 \ {(0, 0)}. We thus get

Pi = pi ∈ O(A2)G

fi,1 = ai(x
10y − 6x6y5 + 5x2y9) + bi(−11x8y3 − 22x4y7 + y11)

fi,2 = −ai(5x9y2 − 6x5y6 + xy10)− bi(x11 − 22x7y4 − 11x3y8)
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which satisfy (fi,1, fi,2) ∈ End(A2)G and fi,1y − fi,2x = Pi as before. This gives the
embedding Γ = P1 \ Λ→ A3 de�ned by

[x : y] 7→



1
r

r∑
i=1

4aix
2y2(x4+y4)(x4−y4)+bi(x12−11x8y4+11x4y8−y12)
6ai(x5y−xy5)2+bi(x4+y4)(x8+y8−34x4y4)

1
r

r∑
i=1

−2x(ai(x10y−6x6y5+5x2y9)+bi(−11x8y3−22x4y7+y11))
6ai(x5y−xy5)2+bi(x4+y4)(x8+y8−34x4y4)

1
r

r∑
i=1

2y(ai(5x
9y2−6x5y6+xy10)+bi(x11−22x7y4−11x3y8))

6ai(x5y−xy5)2+bi(x4+y4)(x8+y8−34x4y4)


∈ A3.

It is also possible to describe similarly the other cases (S4 and A5), but the formulas are
even more intricate.

References

[Beau10] A. Beauville, Finite subgroups of PGL2(K), Vector bundles and complex geometry, 23�29,
Contemp. Math. 522, Amer. Math. Soc., Providence, RI, 2010.

[Bor91] A. Borel, Linear algebraic groups, Second edition, Graduate Texts in Mathematics 126,
Springer-Verlag, New York, 1991, 288 pp., ISBN 0-387-97370-2

[Bre72] Bredon, G E Introduction to compact transformation groups, Académie Press, 1972
[DKW99] H. Derksen, F. Kutzschebauch, J. Winkelmann, Subvarieties of Cn with non-extendable auto-

morphisms, J. Reine Angew. Math. 508 (1999), 213�235.
[FM89] S. Friedland, J. Milnor, Dynamical properties of plane polynomial automorphisms, Ergod. Th

& Dyn. Syst. 9 (1989), 67�99.
[Fur83] M. Furushima, Finite groups of polynomial automorphisms in Cn, Tohoku Math. J. (2) 35

(1983), no 3, 415�424.
[Gre63] L. Greenberg, Maximal Fuchsian groups, Bull. Amer. Math. Soc. 69 (1963), 569�573.
[Kal91] S. Kaliman, Extensions of isomorphisms between a�ne algebraic subvarieties of kn to auto-

morphisms of kn, Proc. Amer. Math. Soc. 113, no. 2 (1991), 325�334.
[PR86] T. Petrie, J. D. Randall, Finite-order algebraic automorphisms of a�ne varieties, Comment.

Math. Helv. 61 (1986), no. 2, 203�221.
[Sat77] A. Sathaye, On planar curves, Amer. J. Math. 99 (1977), no. 5, 1105�1135.
[Ser80] J.-P. Serre, Trees, Springer Verlag, Berlin, Heidelberg, New York, 1980.
[Sri91] V. Srinivas, On the embedding dimension of an a�ne variety.Math. Ann. 289 (1991) 125�132.

J. Blanc, Universität Basel, Mathematisches Institut, Rheinsprung 21, CH-4051 Basel,

Switzerland.

E-mail address: jeremy.blanc@unibas.ch

J.-P. Furter, Dpt. of Math., Univ. of La Rochelle, av. Crépeau, 17000 La Rochelle,

France

E-mail address: jpfurter@univ-lr.fr

P.-M. Poloni, Universität Basel, Mathematisches Institut, Rheinsprung 21, CH-4051
Basel, Switzerland.

E-mail address: pierre-marie.poloni@unibas.ch


