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LENGTH IN THE CREMONA GROUP
JEREMY BLANC AND JEAN-PHILIPPE FURTER

ABSTRACT. The Cremona group is the group of birational transformations of the plane.
A birational transformation for which there exists a pencil of lines which is sent onto
another pencil of lines is called a Jonquiéres transformation. By the famous Noether-
Castelnuovo theorem, every birational transformation f is a product of Jonquiéres
transformations. The minimal number of factors in such a product will be called the
length, and written lgth(f). Even if this length is rather unpredictable, we provide an
explicit algorithm to compute it, which only depends on the multiplicities of the linear
system of f.

As an application of this computation, we give a few properties of the dynamical
length of f defined as the limit of the sequence n +— lgth(f™)/n. It follows for example
that an element of the Cremona group is distorted if and only if it is algebraic. The
computation of the length may also be applied to the so called Wright complex associ-
ated with the Cremona group: This has been done recently by Lonjou. Moreover, we
show that the restriction of the length to the automorphism group of the affine plane
is the classical length of this latter group (the length coming from its amalgamated
structure). In another direction, we compute the lengths and dynamical lengths of all
monomial transformations, and of some Halphen transformations. Finally, we show
that the length is a lower semicontinuous map on the Cremona group endowed with its
Zariski topology.
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1. INTRODUCTION

1.1. The length of elements of the Cremona group. Let us fix an algebraically
closed field k. The Cremona group over k, often written Cry(k), is the group Bir(P?)
of k-birational transformations of the projective plane P2. Such transformations can be
written in the form

[x:y:z] --» [u(z,y,2) ui(x,y, 2) : us(z,y, 2)]

where ug, uy,us € k[z,y, 2] are homogeneous polynomials of the same degree, and this
degree is the degree of the map, if the polynomials have no common factor. The Cremona
transformations of degree 1 are the automorphisms of P2, i.e. the elements of the group
Aut(P?) = PGL3(k). The Cremona transformations of degree 2 are called quadratic.

The group Bir(P?) is generated by the automorphism group Aut(P?) and by the single
involution o: [z : y : 2] --» [yz : xz : xy|, called the standard quadratic transformation.
In Castelnovo’s proof of this result [Cas1901], an element of Bir(P?) is first decomposed
into a product of Jonquiéres elements (also called Jonquiéres transformations).

These latter maps are defined as the birational maps f for which there exist points
p,q € P? such that f sends the pencil of lines passing through p to the pencil of lines
passing through ¢. In this text, the group of Jonquiéres transformations preserving the
pencil of lines passing through a given point p € P? is denoted by Jong,, C Bir(P?). The
set of all Jonquiéres transformations is then equal to

Jonq = U Aut(P?)Jong, Aut(P?) = U Aut(P?)Jong, = Aut(P?)Jong,, Aut(P?),

peP? pEP?

for any fixed point p, € P2. The above equalities follow from the equality a o Jong, o
o~ = Jonq,,), which holds for each o € Aut(P?).
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Nowadays, one can also see the proof of Castelnuovo’s theorem by using the Sarkisov
program (see [Cor1995]), and the number of Jonquiéres transformations needed corre-
sponds to the number of links involved, which do not preserve a fibration. The proof
that every Jonquiéres transformation is a product of linear maps and o is then an easy
exercise (see for example [Alb2002, §8.4]).

In order to study the complexity of an element of Bir(P?), according to the above
decomposition, the following definition seems natural:

Definition 1.1.1. For each Cremona transformation f € Bir(P?) we define its length
lgth(f) as follows. If f € Aut(P?), we set lgth(f) = 0. Otherwise we set lgth(f) = n,
where n is the least positive integer for which f admits a decomposition

f=wpno---0p, Vi, ¢; € Jonq.

With this definition, note that we have lgth(f~') = Igth(f).

For any fixed point py € P? the group Bir(P?) is generated by its two subgroups
Aut(P?) and Jongq, . The length of f might also be seen as the least non-negative
integer n for which f admits a decomposition

f=a,0p,0--0a;0¢p0ap, Vi, a; €Aut(P?) and V3, ¢, € Jong,, .

In particular, this least integer n does not depend on py. All this follows from the
equality Jonq = Aut(P?)Jong,, Aut(P?).

This notion of length is similar to the case of automorphisms of the affine plane.
Taking a linear embedding A% < P2, the classical Jung-Van der Kulk theorem says that
Aut(A?) is generated by Affy := Aut(P?) N Aut(A®) and Jong, 4> := Jong, N Aut(A?)
for any p € P?\ A? [Jun1942, vdK53, Lam2002|. Furthermore, there are no relations
except the trivial ones, i.e. the group Aut(A?) is the amalgamated product of Affy and
Jong,, 42 over their intersection.

The length in Aut(A?) is then easy to compute, by writing an element in a reduced
form (i.e. as a product of elements of Aff; and Jonq, > where two consecutive elements
do not belong to the same group). It has moreover natural properties. For example, it is
lower semicontinuous for the Zariski topology on Aut(A?), as shown in [Fur2002] when
char(k) = 0 (in fact this result also holds in positive characteristic by Theorem 3 and
Proposition 4.2.2 below).

The case of Bir(P?) is more complicated, as Bir(P?) is not the amalgamated product
of Aut(P®) and Jong,,. There is only one relation, of very small length [Bla2012],
which makes the group Bir(P?) more complicated than the group Aut(A?) (see also
|Giz1982, Tsk1985] for other presentations with generators and relations of Bir(P?)). In
particular, there exist elements of Bir(PP?) of finite order (finitely many families up to
conjugacy) which are neither conjugate to an element of Aut(P?) nor to an element
of Jonq, [Bla2011], contrary to the case of amalgamated products. Another way to
see the difference is that Aut(A?) acts on a tree thanks to its amalgamated structure
[Ser1980, Lam2001], but Bir(P?) only acts on a simply connected simplicial complex
of dimension two [Wri1992]. The group Bir(P?) does not act (non-trivially) on a tree
because it is not a non-trivial amalgamated product [Cor2013].

Computing the length of an element f € Bir(P?) is then more tricky than the case of
Aut(A?) and we cannot only take a reduced decomposition (i.e. a product f = ¢, 0---0¢;
of Jonquiéres elements such that ¢; 11 o ¢; is not Jonquiéres for i = 1,...,n —1). The
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length of such reduced decompositions is unbounded (Proposition 4.5.4). One way to
give an upper bound for the length of an element is to follow the proof of Castelnuovo
and to apply successive Jonquiéres elements to decrease the degree (details are given in
Algorithm 3.3.6). There is no reason a priori to expect this upper bound to be equal to
the length, but in one of our main results, Corollary 3.3.11, we prove that this is actually
the case. We also prove that in the (possible) case where the Algorithm of Castelnuovo
does not provide the smallest possible degree after finitely many steps, then, this smallest
possible degree can be obtained by composing on the right with a single quadratic map
(Corollary 3.3.12).

Multiplying an element f € Bir(P?) with a Jonquiéres element ¢, we have lgth(f o
) = lgth(f) + ¢ where ¢ € {—1,0,1}. The possibilities occur in a rather chaotic
way since there are examples where deg(f o ) > deg(f) but lgth(f o ¢) = lgth(f) —
1 (Proposition 4.3.1(3)). Moreover, the number of Jonquiéres elements ¢ such that
lgth(f o) = lgth(f) —1 can be infinite, even up to right multiplication with an element
of Aut(P?) (Proposition 4.3.1(4)).

We will however show that there is a natural algorithm that yields the length. More-
over, we will show that the length only depends on combinatorial properties of the maps,
namely the multiplicities of the base-points. Let us briefly recall the definition of the
base-points and their multiplicities.

Let f be an element of Bir(P?). Write it in the form

[Ty :z] --» [u(z,y, 2) s ui(x,y, 2) : us(z,y, 2)]

where ug, uq, us are homogeneous of the same degree d := deg f. Then, the linear system
of f is the net of curves

)\()UO -+ )\1U1 + )\QU,Q = O, [)\0 . )\1 . /\2] S ]P)2.

Equivalently, it is the inverse image by f of the net of lines in P2. A linear system of this
form is called homaloidal. 1t consists of curves of degree d passing through finitely many
points py, ..., p, (lying on P? or infinitely near) with some multiplicities my, ..., m, such
that >-m; = 3(d — 1) and > (m;)*> = d* — 1 (see below, in particular Remark 2.1.11
and Lemmas 2.1.14 and 2.2.5). The points p; are called the base-points of f and the set
{p1,...,pr} of base-points is denoted Base(f).

In particular, maps of degree 1 have no base-points and maps of degree 2 have three
base-points of multiplicity 1. We say that (my, ..., m,) is the homaloidal type of f. It is a
finite sequence up to permutation, or equivalently a multiset (a multiset, unlike a set, al-
lows for multiple instances for each of its elements). We often write (d;my, ..., m,) to see
the degree, even though the degree of course is uniquely determined by the multiplicities.
In our text and by definition, each homaloidal type will be of this form, i.e. will be the
homaloidal type of at least one birational transformation of P? (in [A1b2002, BlaCal2016]
such homaloidal types are called proper homaloidal types). We also define the comulti-
plicity of f to be deg(f) — max; m;. This notion is sometimes used in the literature, for
instance in the proof of the Noether-Castelnuovo theorem given by Alexander [Ale1916].
One can observe that comult(f) = 1 if and only if f is a Jonquiéres element (follows
from Lemma 2.3.12 and Definition 2.3.10). To state our main result, we use the following
notion:
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Definition 1.1.2. Let f € Bir(P?). A predecessor of f is an element of minimal degree
among the elements of the form f o ¢ where ¢ is a Jonquiéres transformation.

A precise description of the predecessors of an element of Bir(IP?) is algorithmic and
not very difficult to obtain. In particular, the following holds:

Lemma 1.1.3. Let [ € Bir(P?).

(1) The homaloidal type of a predecessor of f is uniquely determined by the homa-
loidal type of f.

(2) There are infinitely many predecessors of f, but only finitely many classes up to
right composition with an element of Aut(P?).

(3) If ¢ is a Jonquiéres transformation such that f o ¢ is a predecessor of f, then
Base(p™!) C Base(f).

Remark 1.1.4. Lemma 1.1.3(2) asserts that any Cremona transformation f € Bir(P?)
admits finitely many predecessors up to right multiplication by an element of Aut(P?).
However, we will see in Lemma 4.4.2 that this number is not uniformly bounded on
Bir(P?), even if it is bounded by an integer only depending on deg(f) (Remark 4.4.3).

Computing a sequence of predecessors (which is algorithmic, as said before, and whose
homaloidal types are uniquely determined by the one of the map we start with) yields
then a finite algorithm to compute the length of any element of Bir(P?), as our main
theorem states:

Theorem 1. Let fy be an element of Bir(P?), let n > 1 be an integer, and let (f;)ien be
a sequence of elements of Bir(P?) such that f; is a predecessor of fi_y for eachi > 1. For
all Jonquicres elements 1, . .., o, of Bir(P?), the element g, = f oy 0---0p, satisfies

(1) deg(fn) < deg(gn);

(2) comult(f,) < comult(g,),

(3) If deg(f,) = deg(gn), then f, and g, have the same homaloidal type.

In particular, 1gth(f) = min{n | deg(f,) = 1}.

Thus the length of all maps of some given degree can be easily computed (see §4.1 for
tables up to degree 12).

Another consequence of Theorem 1 is that the length of an element of Aut(A?), viewed
as an element of Bir(P?), is the same as the classical length given by the amalgamated
product structure (Proposition 4.2.2).

In the general case, the length in Bir(P?) can be interpreted in terms of the natural
distance defined on the already mentioned Wright complex [Wril992] or simply on its
associated graph. We now recall the construction of this graph (the Wright complex
being then the two-dimensional simplicial complex obtained from this graph by adding
a two-dimensional face to each triangle). We fix two distinct points p,q € P? and look
at the three subgroups Gy, G, Gy of Bir(P?) given by

Go = Aut(P?), Gy = Jong,, Go = " Aut(P' x P')m

where 7: P? --» P! x P! is the birational map induced by the projections away from p
and ¢ respectively. We then consider as vertices the set AygU.A; U Ay, where A; = {G; f |
f € Bir(P?)} is the set of right cosets modulo G;, for i = 0,1,2. There is a triangle
between three elements of the three sets A; if and only if these are of the form Ggf,
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G1f and Gof, for some f € Bir(P?). As proven in [Wril992|, the associated simplicial
complex (i.e. the Wright complex) is simply connected, which corresponds to saying
that Bir(P?) is the amalgamated product of the three groups G; along their pairwise
intersections. The set Aj corresponds to the set of homaloidal linear systems and the
distance between Gop and Gy = Gyid is given by 21gth(p) for each ¢ € Bir(P?) (see
Lemma 2.4.1 below).

Hence, Theorem 1 provides a way to compute the distance in this graph. In particular,
the graph of Wright is of unbounded length (follows for instance from Lemma 4.6.1), a
fact that does not follow directly from its definition. Another application of Theorem 1,
done by Lonjou, is that the graph of Wright is not hyperbolic in the sense of Gromov
[Lon2018|.

In §4.7, we compute the length and dynamical length of all monomial elements of
Bir(P?). We relate these notions with some decompositions of elements in GLy(Z) and
also with continued fractions.

1.2. Dynamical length. Since lgth(fog) < lgth(f)+1gth(g) for all f, g € Bir(P?), the

sequence n — lgth(f™) is subadditive so that the sequence n — % admits a finite
limit when n goes to infinity. This allows the following definition:

Definition 1.2.1. For each f € Bir(P?), the dynamical length is defined as

. lgth(f™
Vygtn(f) == lim —() e R,.
n—oo n
Note that Oy, (f) is invariant under conjugation (contrary to the length), and satisfies
0 < Vgen(f) < lgth(f). It is not very easy to compute g, (f) in general, but we will do
it precisely for all monomial elements of Bir(P?), and relate this to continued fractions

and decompositions in GL2(Z) (Section 4.7). We will also show that

5720 U 3720 C 0 (Bix(B)) = {0y (/) | f € Bix(F?))

(Corollary 4.6.3), but we do not have any example of a Cremona transformation f €
Bir(P?) such that 9y (f) ¢ 3Z>0U3Z>o. In particular, every monomial map of Bir(P?)
has a dynamical length in $Z> (follows from Proposition 4.7.15).

Question 1.2.2. What does the set Digpn(Bir(P?)) = {01gen(f) | f € Bir(P?)} look like?
1.3. Distorted elements. We begin with the two following definitions.

Definition 1.3.1. If G is a group generated by a finite subset F' C G, the F-length |g|r
of an element g of GG is defined as the least non-negative integer ¢ such that ¢ admits
an expression of the form g = f; ... fo where each f; belongs to F'U F~!. We then say

that g is distorted if lim % = 0 (note that the limit lim % always exists and is a
n—oo n—oo

real number since the sequence n +— |¢"|p is subadditive). This notion actually does not
depend on the chosen F', but only on the pair (g, G).

If G is any group, an element g € G is said to be distorted if it is distorted in some
finitely generated subgroup of G.

Definition 1.3.2. An element f € Bir(P?) is said to be algebraic (or elliptic) if it
is contained in an algebraic subgroup of Bir(P?), or equivalently if the sequence n
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deg(f™) is bounded (|BlaFur2013, §2.6]). By [BlaDés2015, Proposition 2.3| (see also
Proposition 4.8.10 which explains why the proof also works in positive characteristic),

this is also equivalent to saying that f is of finite order or conjugate to an element of
Aut(P?).

An easy computation shows that every element of Aut(P?) is distorted in Bir(P?)
(Lemma 4.8.9). Consequently, every algebraic element of Bir(P?) is distorted. Using the
dynamical length, we will prove the converse statement (which has also be proven in the
recent preprint [CC2018|, with another technique):

Theorem 2. Any distorted element of Bir(P?) is algebraic.

A function S: Bir(P?) — Ry is said to be subadditive if it satisfies S(f o g) <
S(f) + S(g) for all f,g € Bir(P?). For such a function, the sequence n @ admits
a finite limit for any f, and this limit is moreover equal to zero when f is distorted.

It turns out that the three following functions are subadditive on Bir(P?): the length,
the number of base-points, and the logarithm of the degree. For any such S, the cor-
responding limit of the sequence n % is: the dynamical length di5,(f), the dy-
namical number of base-points (written u(f) in [BlaDés2015]), and the logarithm of the
dynamical degree log(A(f)), where the dynamical degree is A\(f) = Ji_grolo(deg(f"))l/”.

We will show that f is algebraic if and only if Oy, (f) = p(f) = log(A(f)) = 0, thus
proving Theorem 2. More precisely, we can decompose elements of Bir(IP?) into five
disjoint subsets of elements (see §4.8), and the situation is as in Figure 1. In particular,
Corollary 4.8.6 is sufficient for showing that an element f of Bir(PP?) is algebraic if and

f Vigen (f) p(f) | log(A(f))
Algebraic elements 0 0 0
Jonquiéres twists 0 >0 0
Halphen twists > 0 (Corollary 4.8.6) 0 0
Regularisable loxodromic elements > 0 (Proposition 4.8.8) 0 >0
Non-regularisable loxodromic elements | sometimes > 0 (Lemma 4.6.1) | > 0 >0

FIGURE 1. Positivity of dgn(f), 1(f), log(A(f)) for elements f € Bir(P?)

only if digen(f) = p(f) = log(A(f)) = 0. However, Proposition 4.8.8 shows us that this
is also equivalent to i (f) = p(f) = 0.

1.4. Lower semicontinuity of the length. Even if Bir(P?) is not naturally an ind-
group (|BlaFur2013, Theorem 1]), following [Dem1970, Ser2010], it admits a natural
Zariski topology (see Definition 5.2.2). We prove that the length is compatible with this
topology, and thus behaves well in families:

Theorem 3. The length map lgth: Bir(P?) — N, f + lgth(f) is lower semicontinuous.
In other words, for each integer £ > 0, the set {f € Bir(P?) | lgth(f) < ¢} is closed.

As explained before, this implies the same result for automorphisms of A2, already
proven in [Fur2002] when char(k) = 0. It also shows that some degenerations of bira-
tional maps are not possible. For instance, it is not possible to have a family of birational
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maps with homaloidal type (8;4, 3%, 1?) which degenerates to a birational map of homa-
loidal type (8;43,23 3%) as the first homaloidal type has length 2 and the second has
length 3 (see §4.1). See [BCM2015, BlaCal2016| for more details on this question.

The authors warmly thank the referees for their detailed reading and helpful sugges-
tions.

2. REMINDERS

When we want to decompose a birational transformation of P2, we have to study the
multiplicities of the linear system at points, and also the position of the points (if one
is infinitely near to another, if they are on the same line, ...). A very fruitful approach
consists of looking at the (linear and faithful) action of Bir(IP?) on the so called Picard-
Manin space. Forgetting the position of the points and studying only the arithmetic part
can be done by studying an infinite Weyl group W, as done in [BlaCan2016|. This
group still acts on the Picard-Manin space and contains Bir(P?). An analogous Weyl
group is used in [BlaCal2016], but with a slightly different definition.

2.1. The bubble space and the Picard-Manin space. Let us recall the following
classical notions.

Definition 2.1.1. Let Y be a smooth projective rational surface. We denote by B(Y)
the bubble space of Y. It is the set of points that belong, as proper or infinitely near
points to Y. More precisely, an element of B(Y') is the equivalence class of a triple
(p, X, ), where X is a smooth projective surface, 7: X — Y is a birational morphism
(a sequence of blow-ups) and p € X. Two triples (p, X, 7) and (p/, X, 7’) are equivalent
if (7')"'om: X --» X' restricts to an isomorphism U — U’, where U C X, U’ C X’ are
two open neighbourhoods of p and p/, and if p is sent to p’ by this isomorphism.

Definition 2.1.2. There is a natural order on B(Y'). We say that (p, X, 7) > (p/, X', 7’)
if (7')"om: X --» X’ restricts to a morphism U — X', where U C X is an open subset
containing p and if p is sent on p’ by this morphism.

Remark 2.1.3. We have an inclusion P? — B(P?), that sends a point p € P? onto the
equivalence class of (p,P?,id). We will also see elements of B(P?) as points, the surfaces
and the morphisms being then implicit.

Every birational map ¢: P? --» P2 has a finite number of base-points. The set of
all such points is denoted Base(y) C B(P?). Moreover, ¢ induces a bijection B(IP?) \
Base(p) — B(P?) \ Base(p™1).

Let us recall the following classical notions. See for example [Alb2002| and references
there.

Definition 2.1.4. Let p,q € B(PP?). We say that p is infinitely near q if p > ¢ (for the
order defined above). We say that p is in the first neighbourhood of q if p > ¢ and if
there is no r € B(P?) with p > r > ¢q. We say that a point p € B(IP?) is a proper point
of P? if p is minimal. This corresponds to saying that p € P? C B(P?).

Definition 2.1.5. Let Y be a smooth projective rational surface. Its Picard-Manin
space Zy is defined as the inductive limit of all the Picard groups Pic(X), where X is a
smooth projective rational surface and X — Y is a birational morphism.
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More precisely, an element ¢ € Zy corresponds to an equivalence class of triples
(C, X, ), where X is a smooth projective rational surface, 7: X — Y is a birational
morphism and C' € Pic(X). Two triples (C1, X1, m) and (Cy, Xs, m9) are identified if
one can find another smooth projective rational surface X3 together with birational
morphisms 77: X3 — Xj, m5: X3 — X, such that m o 7] = my o7}, and such that
(m)"(C1) = (m3)"(Ca).

The Z-module Zy is endowed with an intersection form and canonical form w: Zy —
Z. The canonical form sends a triple (C, X, 7) onto Kx - C € Z, where Kx is the
canonical class of X. To intersect two classes, we take representants (C, X, 7) and
(Cq, X, ) on the same surface by taking a common resolution and compute C - Cy € Z.

Remark 2.1.6. If (C, X, 7) is a triple as in the above definition and ¢: X’ — X is a
birational morphism, then (e*(C'), X', woe) is equivalent to (C, X, 7). Moreover, Kx-C =
6*(Kx) . 6*(0) = KX/ . 6*(0)

Using this remark we obtain that the canonical form w: Zy — Z defined above is
independent of the choice of the triple in the equivalence class of an element of Zy. The

intersection form is also well-defined since €*(C') - €*(D) = C - D for all C, D € Pic(X).

Definition 2.1.7. Let Y be a smooth projective rational surface. For each point ¢ €
B(Y'), we define an element e, € Zy as follows: the point ¢ is the class of (p, X, ), and

eq € Zy is the class of (Ep,f(,w o €), where €: X — X is the blow-up of p € X, and
E, = ¢ '(p) € Pic(X) is the exceptional divisor.

Lemma 2.1.8. Let Y be a smooth projective rational surface. The group Zy is naturally
isomorphic to

Moreover, the restriction of the intersection form of Zy on Pic(Y') is the classical one,
and we have

Coep=0,e=-1,¢e,-¢,=0,w(C)=C"Ky, wle,) =—1.
for allp,q € B(Y), C € Pic(Y), p # q.

Proof. The map sending C' € Pic(Y) onto the class of (C,Y,id) yields an inclusion
Pic(Y') < Zy. By definition, the restriction of the intersection form and the canonical
form of Zy on Pic(Y') are the classical ones.

If : X — X is the blow-up of a point p € X, then PiC(X') = ¢" Pic(X) & Ze,, where
the exceptional divisor e, € X satisfies e2 = —1, e, - R = 0 for each R € €*(Pic(X)).
Moreover, K¢ = 7*(Kx) + e,. This provides the result, as every birational morphism
X — Y, where X is a smooth projective rational surface, is a sequence of blow-ups of
finitely many points of B(Y). O

Corollary 2.1.9. The group Zp2 s naturally isomorphic to

where eq € Pic(P?) is the class of a line and e, corresponds to the exceptional divisor of
p € B(P?). Moreover, we have
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(e0)® =1, 612; =—1, w(ey,) =—1, w(ey) = -3 and e, -e, =0
for allp,q € B(P?), p # q.

Proof. Follows from Lemma 2.1.8 and the fact that Pic(P?) = Zey, (e9)* = 1, Kpz =
—3eq, S0 w(eg) = —3. O

Definition 2.1.10. Let a € Zpe and ¢ € B(P?). We define the degree of a to be
deg(a) = eg - a € Z and the multiplicity of a at q to be m,(a) = e, - a € Z. We then
define the set of base-points Base(a) of a to be {q € B(P?) | my(a) # 0}.

Remark 2.1.11. Let A be a linear system on P? which we assume of positive dimension
and without fixed component. Denote by p1,...,p, its base-points and by 7: X — P?
the blow-up of the points p; on P2. Then, the strict transform A of A on X is a base-point
free linear system and we have

) A =dn*(eo) — Y miey, € Pic(X),
i=1
where d is the degree of A, mq,...,m, > 1 are its multiplicities at the points p,...,p,

and e,, € Pic(X) is the pull-back (or total transform) of the exceptional curve produced
by blowing-up p;.

Indeed, since we have Pic(X) = 7*(Pic(P?)) & (B;_, Ze,,), there exist integers d,
mq, ..., m, for which the equality ({») holds. We then compute

d=m"(eq) - A =m"(eg) - m(A) = e - A = deg(A)
and we see that the multiplicity of A at p; is e, - A = m;. Hence, the definitions of
base-points, degree and multiplicities coincide with the classical ones.

Definition 2.1.12. Let ¢: Y] --» Y; be a birational map between two smooth projective
rational surfaces. We define an isomorphism ¢,: Zy, — Zy, in the following way:

An element ¢ € Zy, corresponds to the class of a triple (C, X, 7). By blowing-up
more points if necessary, we may assume that m; is such that m ;= pom: X — Vs is a
birational morphism. We then define ¢.(c) € Zy, to be the class of (C, X, m).

Remark 2.1.13. If ¢: Y] --» Y5 and ¢: Yy --» Y3 are two birational maps between
smooth projective rational surfaces, then (1) o ¢)s = 10 © . This implies that ¢ and v
are isomorphisms of Z-modules. They moreover preserve the intersection form and the
canonical form (which can be checked on blowing-ups).

We then obtain the following result:

Lemma 2.1.14. The group Bir(P?) acts faithfully on Zp: and preserves the inter-
section form and the canonical form. Moreover, if f € Bir(P?), then (f.) (eo) =
deg — >i_ miep,, where d = deg f, p1,...,p. € B(P?) are the base-points of [ and
mi,...,m, > 1 are their multiplicities.

Proof. We decompose every [ € Bir(P?) into f = non~!, where n: X — P? 7: X — P2
are blow-ups of the base-points of f~! and f respectively.
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We have Pic(X) = 7*(Pic(P?)) ® (B)_, Ze,,), where €,,, ..., e, are the pull-backs in
Pic(X) of the exceptional divisors of the base-points py, ..., p, of f (or equivalently of )
and can thus write n*(eg) € Pic(X) as n*(eg) = d7*(ep) — > mye,,, where d is the degree
of the linear system and myq, ..., m, > 1 are the multiplicities of the linear system at the
points pi, ..., p, (see Remark 2.1.11). The fact that for each non-trivial f € Bir(P?), we
can choose a general point p € P2, sent by f onto another point ¢, yields f(e,) = e, # e,
and shows that the action is faithful. O

Ezample 2.1.15. Let o: [x 1y : z] --» [yz : xz : xy| be the standard quadratic transfor-
mation of P2 Tts base-points are p; = [1:0: 0], po=1[0:1:0], p3 =[0:0: 1]. We then
write

X ={([zo: @1 2], [yo 1 91 2 w2]) [ @oyo = w11 = w2y2}
and denote by m: X — P? and n: X — P? the first and second projections, which are
blow-ups of p1, p2, ps and satisfy n = gom. There are six (—1)-curves Ey, Fy, E3, F1, Fy, F3
on X, where E; = 77 '(p;) and F; = n~!(p;) for i = 1,2,3.

The action of o on Zp= is given as follows. Firstly we have g4(eg) = 2eg—e€p, —€p, —€p,
(Lemma 2.1.14). Secondly we have o4(e,,) = €9 — €,, — €, thanks to the corresponding
equality Ey = n*(eg) — F» — F3 which holds in Pic(X). The latter equality holds because
E; is the strict transform of the line through ps, ps by 1. Similarly, we obtain o, (e,,) =
€o — €p, — €py and o4(€p,) = €9 — €y, — €,

For all other points g € B(P?) \ {p1, p2, p3}, we have o.(e,) = ey, for some ¢’ € B(P?).

In the sequel, the isomorphism ¢,: Zy, — Zy, associated with ¢: Y; --» Y, will be
denoted by .

2.2. The infinite Weyl group.

Definition 2.2.1. Denote by Aut(Zpz) the group of linear automorphisms of the Z-
module Zp> that preserve the intersection form and define Symp: C Aut(Zp2) to be the
subgroup of elements that fix ey and permute the e,, p € B(P?).

We define W,, C Aut(Zp2) to be the infinite Weyl group generated by Bir(P?) and
the group Symyps:.

Remark 2.2.2. Note that Aut(PP?) = Symp. N Bir(P?). Moreover, the Noether-Castelnuovo
theorem yields Bir(P?) = (Aut(P?), o), which implies that W, = (Symp., o). Later on
(see Corollary 2.2.13), we will prove that W, = Symp. Bir(P?) Symps.

Definition 2.2.3. Let f € W, and ¢ € B(P?). We define the degree of f to be
deg f = eo- f~'(e0) € Z and the multiplicity of f at q to be my(f) = e, f(eo) € Z.
We denote Base(f) C B(P?) the set of points g such that m,(f) # 0.

Remark 2.2.4. By construction, the degree, base-points and multiplicities of f € W
are the same as for f~!(ey) € Zp2 (which were defined in Definition 2.1.10). By
Lemma 2.1.14, this definition coincides with the classical definition if f € Bir(P?).

Lemma 2.2.5.

(1) Every element of W, preserves the intersection form and the canonical form.
(2) For each f € Wy we have

f M eo) = (deg f)-eo— Y. my(f)-e

q € Base(f)
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and the following equalities hold (Noether equalities), where d = deg f:

S omg(f)=3d-1), D (m(f)’=d -1
g € Base(f) g € Base(f)
(3) For each f € Wy, we have deg f~1 = deg f.
(4) Symp> = {f € W | fleo) = o} = {f € We | deg(f) =1} = {f € W |
deg(f) = £1}.
(5) For each a € Symps, we have o0 o oo € Symp: if and only if a preserves the set
{6[1:0:0}, €[0:1:0]» 6[0:0:1]}-

Proof. (1): Follows from the fact that Bir(P?) and Symp. preserve the intersection form
and the canonical form.
(2): The first equality follows from Definition 2.2.3 and from the next identity:

Vae€ Zp2, a=(a-e)ey— Z (a-e,) e,
q € B(P?)

The Noether equalities follows from (1), since f~1(eg)? = d* — >_(m;)* = (ep)? = 1 and
w(fep)) = =3d+ > m; = w(eg) = —3.

(3): We have deg f = eg - f1(eg) = f(eo) - eg = deg f~1.

(4): Let f € W, be such that deg f = d = +1. It follows successively from the
Noether equalities that all multiplicities m,(f) are zero, d = 1 and f(eg) = ep. For each
p € B(P?) we have f(e,) - e = 0, so f(e,) = Y_i_; aieq,, for some qi,...,q € B(P?).
As =1 = (e,)* = (f(ep))? = — > (a;)? we find that f(e,) = +e, for some i. Since
w(ep) = w(f(ep)), we get f(e,) = e,. Hence, f € Symps.

(5): By (4), we have 0 o @ 0o 0 € Symp if and only o o aw o g(eg) = ep. Since
this corresponds to a o g(ey) = o(eg), the result follows from the equality o(ey) =
2eq — €[1:0:0] — €[0:1:0] — €[0:0:1] (Example 2.1.15). O

Corollary 2.2.6. Let f,g € W,. The following conditions are equivalent:

(1) f~*(eo) = g~ (eo)-
(2) There exists a € Sympa such that g = ao f.

Proof. Let us write @ = go f~!. By Lemma 2.2.5(4), a € Symys if and only if a(ey) = €.
Applying ¢!, this condition is equivalent to f~1(eg) = g7 (eg). O

Corollary 2.2.7. If f,g € W, we have
deg fog™ = (deg f)(degg) = > my(f)my(9):
qeB(P?)

Proof. We have deg fog™ =ey- (fog ) eg) = feo) - g (en), so that the result
follows from Lemma 2.2.5(2). O
Lemma 2.2.8. Let g € Wy, and let ¢ € B(P?).

(1) If ¢ € Base(g), then g(e,) = my(g9)eo — ZpeBase(g,l) apep, ap € 7.
(2) If q ¢ Base(g), then g(e,) = ez for some ¢ € B(P?) \ Base(g™1).

In particular, g induces a bijection B(P?) \ Base(g) — B(P?) \ Base(g™!).
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Proof. We write g(e,) = deg + Y a;ep,, for some {p1,...,p,} C B(P?). We then observe
that d = eg - g(e,) = g (e0) - e = my(g).

If ¢ ¢ Base(g), we then obtain g(e,) = > aep,. Since 1 = —w(e,) = —w(D_ aep,) =
Sa; and 1 = —(e,)* = > (a;)?, we find that g(e,) is equal to e; for some ¢ € B(P?).
Moreover, ¢ € Base(g™), since mz(g™') = e; - g(eg) = e, - eg = 0. This yields (2).

To get (1), we consider the case ¢ € Base(g) and need to show that if p; ¢ Base(g™!),
then a; = 0. This is because a; = e,, - g(e,) = g *(ep,) - €, and because g~ (e,,) is equal
to ey, for some p; € B(P?) \ Base(g) by (2). O

Corollary 2.2.9. For each g € Wy, and each q € B(P?), we have
q ¢ Base(g) & g(e,) = eq for some G € B(P?).
Proof. Follows from Lemma 2.2.8. U

Corollary 2.2.10. Let f,g € W, be such that Base(f) C Base(g™!'), then we have
Base(f o g) C Base(g).

Proof. Take q € B(P?) \ Base(g). Then, by Lemma 2.2.8, we have g(e,) = e; for some
G € B(P?) \ Base(g~"). It follows that ¢ € B(P?) \ Base(f), so that f(ez) = e; for some

G € B(P?), ie. fog(e,) = ez, proving that q ¢ Base(f o g). O

As explained before, the infinite Weyl group Wy, contains Bir(P?). In some sense,
this corresponds to forgetting the configuration of points. However, several properties
of the action of Bir(P?) on Zp: extend to W,,. For instance, the Noether equalities
(Lemma 2.2.5(2)) are fulfilled by any element of W.,. A priori, the degree and mul-
tiplicities could be negative, but we will show that it is not the case (Lemma 2.2.11).
Also, there are some elements of Zp2 which satisfy the Noether equalities but which are
not in the orbit of ey. However, there is an algorithm to decide if an element is in this
orbit (Algorithm 3.1.7 below, corresponding to the classical Hudson test).

Lemma 2.2.11. Let f € W, ~\ Symyps.

(1) For each finite set A ={qi,...,q:} C B(P?) of s > 1 points there exists a dense
open set U C (P?)* such that for each (pi,...,ps) € U:
(i) The points pq,...,ps are distinct;
(1) There exists an element g € Bir(P?) satisfying

degg=degf and my(g9) =mg(f) fori=1,...,s.
(2) The degree and multiplicities of f satisfy
deg f>2 and my(f) >0 for each q € B(P?).
(3) There exist v, 3 € Symp> and g € Bir(P?), such that f = aogo 3.

Proof. Let us first observe that (2) and (3) follow from (1). Indeed, take for A the
set Base(f) = {q1,...,qs} and let U be the corresponding open subset of (P?)* given
by (1). Choose (p1,...,ps) € U and choose g € Bir(P?) such that degg = deg f and
my,(g) = mg,(f) fori =1,...,s. Then choose f € Symp. that sends e,, onto e,, for each
i, and note that 3o f~'(ey) = g7 (eg). Hence, the element o = f o 37 0 g~ belongs to
Symgp: by Lemma 2.2.5(4).
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To prove (1), we write f = aq;o00---0a;000ay where l > 1, a, ...,y € Symps
and prove the result by induction on [. As the result does not change under right or left
multiplication by elements of Sympz, we can moreover assume that oy and «; are equal
to the identity. We can also always enlarge the set A.

If | =1, then f = o, so that f has degree 2 and three base-points of multiplicity 1 (see
Example 2.1.15). We may assume that ¢1, g2, g3 are the base-points of f. Then, we can
choose for U the open subset of points (py,...,ps) in (P?)® where py, ..., p, are distinct
and where p1, pe, p3 are not collinear. For each (p1,...,ps) € U, we choose an element
a € Aut(P?) sending p; onto ¢; for i = 1,2,3 and choose g = f o a.

For [ > 2, we write f = f’oo and apply the induction hypothesis to f’. Up to enlarging
A={q,...,qs}, we may assume that ¢ =[1:0:0],¢o=[0:1:0],¢g3=[0:0:1]. For
each i > 4, define ¢/ as the unique point of B(P?) such that o(e,,) = eq- Fori=1,2,3,
set ¢, = ¢;. One can assume that Base(f’) C {q},...,¢.}. Let U’ C (P?)* be an open
subset associated to f and A’ = {q,...,¢.} via the induction hypothesis.

Let T C (P?)? be the open subset of triplets (p1, p2, p3) € (P?)? such that the p; are
in the affine chart {[x : y : z] € P?, x # 0} and are not collinear. We have

1 1 1
T = ([1:(11:ag],[l:a3:a4],[1:a5:a6])]al,...,a(;ek, det ay as das 7£O
o QA4 Qg
Let p: T — Aut(P?) = PGL3(k) be the morphism defined by
1 1 1
p([1:ay:as),[1:as:aq4],[1:a5:0a¢]) = a1 as as
o QA4 Qg

If T = (p1, p2, p3) belongs to T', we set
or:=p(T)ocop(T) ' e Bir(P?).

Note that o7 is a quadratic involution having base-points at p1, ps, ps.
We then denote by U C (P?)* the dense open subset of s-uples p = (py, ..., ps) such
that:

(1) No three of the points p; are collinear (so that in particular the points p; are
distinct) ;

(2) The triple T = (p1, p2, p3) belongs to T

(3) The s-uple p’ = (p},...,p,) belongs to U’, where the elements p, are defined by
pi = p; for i <3 and by p := or(p;) € P? for i > 4.

For each p € U, the corresponding p’ € U’ yields an element ¢ € Bir(P?) satisfying
deg g’ = deg f’ and my/(f) = my (f') for each i. Taking ' € Symg. that sends e, onto
ey for each i, the fact that Base(f') C {q},...,q} implies as before that 5'(f"~'(eo)) =
g '(eg), s0 f' =aog off, for some o € Symps.

We write v = p(T) € Aut(P?), o7 = voo ov~! € Bir(P?) as before and obtain

f=foo=aocgofco=aocgop,
where ¢ = ¢’ o o7 € Bir(P?) and 8 = o070/ o0 =vocovtof oo € W,. For

i € {1,2,3}, both v and ' send e, to e,,, hence v o 3’ fixes e,. This shows that
f € Symp: (Lemma 2.2.5(5)), and thus that deg g = deg f.
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It remains to observe that 5 sends e, to e, for each i, to obtain m,,(g) = mg,(f)
for each i. The fact that v~ o 8 fixes ey — €, — €4, implies that 0 o ™! o 0 o fixes
o(eg — eq — €4,) = €45 (see Example 2.1.15) and thus that § sends ey, to e,,. The same
works for e, , eq4,. For i > 4, we have

/B(eqi) =0To° 5/ © 0(6Qi) =070 B’(qu) = UT(GP;) = €p;- O
The first two corollaries of Lemma 2.2.11 are stated for an easier reading. The first
one is [BlaCal2016, Proposition 2.4:
Corollary 2.2.12. For each homaloidal type (d;my, ..., my), there exists a dense open
subset U C (P?)* such that for each (py,...,ps) € U the following holds:

(1) The points p1,...,ps are distinct;
(2) There exists a Cremona transformation f € Bir(P?) such that

f(eo) = deg — Z miep, .
i=1

Corollary 2.2.13. We have W, = Symgp: Bir(P?) Symgp..

In the next two corollaries, we give information about the orbits of ey, e, and ey — e,
where ¢ is a point of B(P?). The first one is the following positivity result on the degree
and multiplicities of elements in the orbit of ey, which also follows from [BlaCan2016,
Lemma 5.3] (with another proof).

Corollary 2.2.14. Each element a € Woo(eg) can be written as

a = (deg a) "€ — quBase(a) mq(a> " €qs

where dega > 1, m,(a) > 1 for each q € Base(a) and
ZqEBase(a) mq(a) = 3(dega - 1)7 quBase(a) (mq(a))2 = deg(a)2 -1

Moreover, for any two distinct q,q" € B(P?) we have my(a) + my(a) < dega.

Proof. Write a = f(eq) for some f € W, and decompose f = a o go  where o, 5 €
Symyp: and g € Bir(P?), using Lemma 2.2.11(3). Hence, a = a o g(eg). The description
above follows then from Lemmas 2.1.14 and 2.2.5. The inequality m,(a) + my(a) <
deg(a) can be checked for g(ep), since & € Symp. We can moreover assume that ¢ € P?
and ¢ is either in P? or in the first blow-up of ¢ (since m,(g(eo)) < my(g(eo)) if ¢ > ¢').
The result follows then from Bézout theorem, by intersecting the line through ¢ and ¢’
with the linear system corresponding to g(ep). O

The following result is obvious for orbits of Bir(P?) and is here generalised to orbits
of W,. This allows to say that elements of W, have a behaviour “not too far” from
elements of Bir(P?). See also Lemma 2.2.11(3) for another result in this direction.

Corollary 2.2.15. Let g € B(P?) and let a € Weo(ep).

(1) For each b € W(eg), we have a-b > 1.
(2) For each b € Wy (e — €,), we have a-b> 1.
(3) For each b € Wy (e,), we have a-b > 0.
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Proof. We apply an element of W, and assume that b is equal to ey, ey — ¢4, €4 re-
spectively. By Corollary 2.2.14, we have a = (dega) - €0 — >~ cpase(a) M (@) - €5, Where
dega > 1, my(a) > 1 for each p € Base(a) and 3 p,co(a)(mp(a))® = deg(a)® — 1. We
then find that a - b is equal to dega, dega — m,(a), my(a) respectively. Assertions (1),
(2), (3) are then given by dega > 1, (my(a))? < deg(a)* — 1 and my(a) > 0. O]

2.3. Jonquiéres elements viewed in the Weyl group. We now define the analogue
of the groups Jonq, C Bir(IP?) in the Weyl group:
Definition 2.3.1. For each q € B(P?) we define J, C W, as the subgroup
Jo={p e Wy | pleo —e;) =€ — e}
Lemma 2.3.2. For each q € P?, we have Jonq, = J, N Bir(P?).

Proof. Let m: P2 -——» P! be the projection from ¢, and let n: X — P? be the blow-up
of g. The result follows from the fact that ey — e, € Zp2 corresponds to the divisor of
Pic(X) corresponding to the fibres of the morphism 7 on: X — P! O

Definition 2.3.3. For each ¢ € B(P?) and for each finite set A C B(P?) \ {¢q} of even
order 2n, we define ¢, A € J, to be the involution given by

aleo) = (n41)eg—neg— 3 er, tgaler) = eg—eq—ep,1m €A,
reA

tan(eq) = meg— (n—1l)e, — %:Aer, tnler) = e,re B[P\ (AU{q}).

Remark 2.3.4. In order to see that the elements ¢, o belong to J, € W, we can observe
that ¢ is the identity, that ¢, A is equal to o, up to left and right multiplication by
elements of Symp. when A contains 2 elements, and that tqa © tga7 = Lg,(AuA )~ (ANAY)-

Definition 2.3.5. Let py, po, p3 € B(P?) be 3 distinct points. We define 0, 1, ps € Woo
as the involution given by

Op1,p2,p3 (60) = 260 — €p; — €py T Cpg; Op1,p2,p3 (epl) = €0 — €p, — Epg
Op1,p2,p3 <€p2> = €0~ €p — €2P37 Op1,p2,p3 (eps = €0 = €p; — Epy,
Upl,Pz,ps(eT) = €T € B(P ) \ {p17p27p3}7

We observe that o, p,p, € Jp, for ¢ = 1,2, 3, and that o}, ;, ps = Tpy p3 © Lpy {po,ps}, Where
Tpyps € SyMpe is the transposition permuting ps and ps.

Remark 2.3.6. When p; = [1:0:0], po =[0:1:0], p3 =1[0:0: 1], we observe that
Opy1.paps 1S similar to the standard quadratic involution o: [x 1y : 2] --» [yz : xz : xy]. It
is however not realised by an element of Bir(PP?) as it fixes all points of P2\ {pi, p2, p3}.
Moreover, op, p, ps a0d Ly, (4, o3 both belong to Symp: 0 = {ao o | @ € Symp} C W

Lemma 2.3.7.
(1) For each q € B(P?) and each ¢ € J,, we have m,(p) = deg(p) — 1.
(2) For each q € B(P?) and each ¢ € W, with my(¢) = deg(p) — 1, the set A =
Base(p) \ {¢} has even cardinality 2n > 0 and

P (eo) = (tga)Meo) = (n+1)eg —ne, — > e, =eo+ Y (60 3 “a_ er) .

reA reA
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This yields the existence of a € Sympe such that
O =0 gA.
Moreover, a € J, if and only if p € J,.
Proof. (1) The fact that ¢ € J, implies that

deg() — ma() = (e — €q) - 9~ (e0) = (60 — €) - €0 = 1.
(2) Since A = Base(p) \ {¢} and m,(p) = deg(y) — 1, we can write

v~ (eo) = (n+ 1)eo — neq — 3o, en Muer
where n > 0 and m, > 1 for each r € A (Corollary 2.2.14). The Noether equalities
(Lemma 2.2.5(2)) yield > _amy = Y., a(my)? = 2n, so m, = 1 for each r € A, and
thus A contains 2n elements.
Since p~!(eg) = (14.4) *(e0), we have ¢ = aor, A for some o € Symp: (Corollary 2.2.6).
Since g a € Jg, we have a € J, if and only ¢ € J,. O

Corollary 2.3.8. Any element ¢ € J, admits an expression

O =0y,
where A := Base(p) \{q} has even order and o € Symp> NJ, = {f € Sympe, B(q) = ¢}.
Proof. Directly follows from Lemma 2.3.7. OJ

Corollary 2.3.9. If q,q' € B(P?) are two distinct points, then J,NJ, consists of ele-
ments of degree 1 or 2.

Proof. Tt follows from Lemma 2.3.7 that if ¢ € J, is a Jonquieres element with deg ¢ > 3,
the multiplicity at ¢ is deg ¢y—1 > 2 and ¢ is the unique point having this multiplicity. [

We now give the following definition, which generalise the one of Jonquiéres elements
of Bir(P?), as Lemma 2.3.12 explains.

Definition 2.3.10. An element ¢ € W is said to be a Jonquiéres element if there
exists a point ¢ € B(P?) such that m,(p) = deg(p) — 1.

Lemma 2.3.11. Let v € W,. The following conditions are equivalent:

(1) ¢ is a Jonquieres element of W

(2) There exist a, 3 € Sympz, q € B(P?) and ¢ € J, such that 1) = a0 o 3;

(3) There exist o € Symyps, q € B(P?) and ¢ € J, such that 1) = a o p;

(4) There exist a € Sympz, q € B(P?) and ¢ € J, such that ) = p o a;

(5) There exist a € Symypz, ¢ € B(P?) and a finite set of even order A C B(P?)\ {q}
such that ¥ = a oy a.

Proof. (1) = (5) is given by Lemma 2.3.7(2); (5) = (3) is given by the fact that ¢, A € J,
and (3) = (2) follows by taking = id.
(2) = (4): Writing ¢’ = aopoa™, we have ¢'(eg—e,) = eg—e, where p € B(P?) is the
element such that a(e,) = e,. Hence ¢ = ¢’ oo/ where ¢’ € J, and o = a0 f € Sympe.
(4) = (1): Taking p € B(P?) such that a(e,) = e, we get
Lemma 2.3.7(1)

mp(1) = e, - (eo) = aley) -~ (€0) = eq- 0 (€0) = mg(p) deg(p) — 1.
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It remains to observe that

deg(1)) = e - o™ (™" (e0)) = aen) - ' (e0) = e - ¢~ (€) = deg(yp). O
Lemma 2.3.12. Let f € Bir(P?). The following conditions are equivalent:

(1) f is a Jonquicres element of Bir(IP?);

(2) f is a Jonquiéres element of W,

(3) There exist o, 8 € Aut(P?), ¢ € P?, and ¢ € Jonq, C Bir(P?) such that f =
aowof3;

(4) There exist a € Aut(P?), g € P?, and ¢ € Jonq, C Bir(P?) such that f = a o ¢;

(5) There exist a € Aut(P?), g € P?, and ¢ € Jonq, C Bir(P?) such that f = ¢ o a.

Proof. By definition, f is a Jonquiéres element of Bir(P?) if and only if there exist two
points p, ¢ € P? such that the pencil of lines through p is sent to the pencil of lines through
q. Composing at the source or the target with a linear automorphism exchanging p and
q yields then an element of Jong,, or Jong,. This yields the equivalence of (1),(3),(4),(5).
As Aut(P?) C Symg. and every Jonquicres element of Bir(P?) is a Jonquieres element
of Wy, we have (3) = (2) (Lemma 2.3.11). It remains then to prove (2) = (1).
Assertion (2) implies that f has a base-point p of multiplicity deg(f) — 1. We can
moreover assume that p is a proper point of P? (replacing p with the proper point
p' € P? above which p lies only increases the multiplicity). The image of the pencil of
lines through p is then a pencil of lines, passing thus through a point ¢ € P2. This
achieves the proof. O

Definition 2.3.13. Two elements a, a’ of Zp2 are said to be equal modulo Symp. if there
/

exists an element o € Symg: such that o’ = a(a). This is written a =gym,, a'.
Remark 2.3.14. Two elements a,a’ of Zp2 are equal modulo Symp. if and only if they
have the same degree and if there exists a bijection ¢t: Base(a) — Base(a’) such that
myp)(a’) = my(a) for each p € Base(a).

In particular, the set W, (eg)/ Symp: of equivalence classes modulo Symp. in W (eg)
corresponds to the set of homaloidal types.

Lemma 2.3.15. For any element a € Zp2 and any Jonquieres element ¢ € W, the
element (a) is equal to some element 1, a(a) modulo Symps.

Proof. This is a direct consequence of Corollary 2.3.8 and Definition 2.3.13. O

We will use the following easy observation twice in the sequel.

Lemma 2.3.16. Let x = (d;my, ..., m,) be the homaloidal type of a birational transfor-

mation of P?, and let us assume that d > 2 and that mg > --- > m, > 1. If mg+m, = d,

then x = (d;d—1,1,...,1) is the homaloidal type of a Jonquiéres element. In particular,
——

2d—2
we remark for later use that r = 2d — 2 is even.

Proof. As my + m; < d for each i > 1 (Corollary 2.2.14), we have m; = mg = --+ =
m, = d — mgy. The second Noether equality (Lemma 2.2.5(2)) then gives d* — 1
(d —my)? 4+ rm?, whence my(2d — my(r +1)) =1,s0 m; =1 and r = 2d — 2. O
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2.4. Relation between the graph of Wright and Zp:. As explained in the intro-
duction, the graph of Wright is associated to the right cosets modulo the three groups

Gp = Aut(P?), Gi = Jong,, Go =" Aut(P' x P'),

given by two points p, ¢ € P2. Looking at the action of Bir(P?) on Zp2, we can show that
Go, G1, Gy are the subgroups of Bir(P?) that fix the elements eq, eg — €,, 2e9 — €, — €.
One can thus see the graph of Wright as a subset of Zp2. Here is the announced relation
between the length in the Cremona group and the distance in the graph of Wright:

Lemma 2.4.1. Let ¢ be an element of Bir(P?). Then, the distance between Gop and
Goid in the graph of Wright is equal to 21gth(p).

Proof. Denote by d(z,y) the distance between two vertices x,y of the graph of Wright.
As Gp = Aut(P?), we have lgth(¢) = 0 < ¢ € Aut(P?) & Gy = Gop < d(Gop, Go) = 0.

We can thus assume that d(Gop, Go) = n > 0. This distance is equal to the length n
of the smallest path

U[):GO,Ul,...,Un:GO(p

such that vy, ..., v, are vertices of the graph and such that there is an edge between v;
and v, fori =0,...,n— 1.

For i = 0,...,n, we write s; € {0,1,2} the element such that v; € As,. We then
associate to the vertices elements ¢q,..., ¢, 1 € Bir(]P’Q), such that v; = Gg,¢; and

Vig1 = G i, fori=0,...,n—1. Fori=1,...,n— 1, we have v; = G,,0; = Gy, i1,
so there exists a; € G, such that ¢; = a;p;,—1. We moreover have Gop = v, = Gopn_1,
so there is a,, € G such that ¢ = a,p,_1. Writing ag = ¢ € G, we obtain

@ = QpQdp—1 - - a149.

Conversely, every such decomposition provides a path, so d(Goyp, Go) is the smallest
integer n such that ¢ = a,a,_1 - - - a1a9, with ag, a,, € Gpand a4, ...,a,_1 € GoUGUG,.
Every decomposition of smallest length is such that two consecutive a; do not lie in the
same group (otherwise we replace them by their composition and reduce the length).

Let us now show that there always exists a decomposition of smallest length involving
only Gy and G;. Recall that Aut(P! x P!) = Aut®(P! x P!) x (7), where 7 is the exchange
of the two factors and Aut®(P! x P!') = PGLy(k) x PGLa(k). As Gy = 7! Aut(P' x P)w
where m: P? ——s P! x P! is the birational map induced by the projections away from
p and ¢, the relations 7= Aut®(P! x PY)r € Gy and 777 € Gy give us the inclusion
Gy C (GoGy1) N (G1Gp). We can then replace in any decomposition of smallest length
an element of Gy by an element of GoGG; or G1 Gy, and simplify one of the elements with
the next or the previous element.

We have then proven that d(Gop, Gy) is the smallest integer n = 2m such that ¢ =
Apln_1 - - a1ag, with a; € G if i is even and a; € Gy for i odd. This yields d(Goyp, Go) =
21gth(yp). O

3. THE ALGORITHM THAT COMPUTES THE LENGTH AND THE PROOF OF
THEOREM 1

In this section, we give the proof of Theorem 1, by first working in the infinite Weyl
group introduced in Section 2 (in particular in §2.2) and get the analogue of Theorem 1
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in W, namely Proposition 3.2.12. We then show (in Section 3.3) that the algorithm
given in W, can actually be applied in Bir(P?).

3.1. Degree, maximal multiplicity and comultiplicity.

Definition 3.1.1. Let a € Zp2. We define the maximal multiplicity of a to be
Mmax(a) = max{m,(a) | ¢ € B<P2)}

and say that a has mazimal multiplicity at q € B(P?) if my(a) = mupax(a).

We define the comultiplicity of a to be comult a = dega — mpax(a).

Following the spirit of Definition 2.2.3 (see also Remark 2.2.4) the maximal multiplicity
and comultiplicity of an element f € W, are defined by

Mumax(f) = Mumax(f ' (€g)) and comult f = comult f~*(ep).

Lemma 3.1.2. Let a € W (ep).
(1) If dega =1, then a = ey, Mpax(a) =0 and comulta = 1.
(2) Ifdega > 1, then 1 < mpax(a) < dega —1 and 1 < comulta < dega — 1.
(3) dega = 2 < Mmuyx(a) = 1.
(4) comulta =1 < a = p(eg) for some Jonquiéres ¢ € W.

Proof. If dega = 1, then a = ey (Corollary 2.2.14), 0 Mpay(a) = 0 and comulta = 1.
If dega > 1, then 1 < mpyax(a) < dega — 1 follows from Noether equalities and
positivity of multiplicities, see Corollary 2.2.14. This yields 1 < comulta < dega — 1.
Moreover, we have mp.c(a) = 1 if and only if deg a = 2 (again by Corollary 2.2.14), and
comulta = 1 if and only if a = ¢(ey), where ¢ is Jonquiéres (Lemma 2.3.7(2)). O

We will often apply quadratic maps in the sequel, and need the following basic lemma.

Lemma 3.1.3. Let py,pa, p3 € B(P?) be three distinct points, let 0, pyps € Weo be as in
Definition 2.3.5 and let a € Zp2. Then the following hold:
(1) Op1paps(@) = a & deg oy, p, p(a) = dega < deg(a) = my, (a) +my,(a) +my,(a);
(2) deg(0p; pops(a)) < deg(a) < deg(a) < my, (a) +1mp,(a) +my,(a);
(3) deg(0p, pps(a)) < deg(a) = comult(oy, p, ps(a)) < comult(a).

Proof. Writing £ = ey — €, — €5, — €py, We prove that gy, ,, 5, (V) = v+ (£ v) - £ for each
v € Zp2. As v (€-v) - is Zlinear, it suffices to check this for v = ey and v = e,
q € B(P?), and this follows directly from the definition given in Definition 2.3.5. We find

deg 0p, pops (@) = €o-(a+(€-a)-&) = deg(a) +&-a = 2deg(a) —my, (a) —my, (a) = my,(a).
Hence, deg oy, p, ps(@) = dega if and only if a- & = 0, which is equivalent to g,, ;, s (@) =
a. This yields (1). Assertion (2) also follows from the above equalities. To prove (3),
we write b = 0, 1, ps(a) = a — n& where n = —(£ - a) > 0 and choose a point ¢ € B(P?)
where a has maximal multiplicity. We have comult(a) = deg(a) —my(a) = a-(eo—¢e,) =
b-(eo—eq) +n(&-(eo—ey)). Asb-(eg—e,) = deg(b) —m,(b) > comult(b), it suffices to
observe that £ - (eg — ¢,) € {0, 1}. O

Corollary 3.1.4. If p1,ps,ps € B(P?) are three distinct points and a € Zp2 satisfies
deg(a) = myp, (a) + mp,(a) + mp,(a), then iy, (p,psy(a) = 7(a), where T € Symy, is the
permutation of ps and ps.

Proof. Follows from Lemma 3.1.3 and from the equality tp, po.ps} = T © Op, pops- O
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The following result is quite old, and was first showed by Max Noether. We give here
a proof inspired by [A1b2002, Proposition 2.6.4].

Lemma 3.1.5. Let a € Zp2 be such that a* = 1, w(a) = —3, deg(a) > 2 and my(a) > 0
for each q € B(P?). Then, there exist three distinct points p1,ps,ps € Base(a) such that

S my,(a) > deg(a) (Noether inequality).
Moreover, for all py,ps, ps as above, we have deg oy, 1, ps(a) < dega.

Proof. We write a = deg—Y_;_, m;q; where d = dega > 2, p1, ..., p, € B(IP?) are distinct
points and m; = m,, (a) for each i, and m; > mgy > -+ > m, > 0. The fact that a® =1
and w(a) = =3 yield Y- m? = d*> — 1, >.m; = 3(d — 1). This implies that m; < d for
each 7, and thus that » > 3 and mz > 0. We then compute

(d=1)Bms — (d+ 1)) = ma(X my) = Smi = Smi(ms —mi) > 327 m(mg —my).
Adding (d — 1)(mq + my — 2mg) to both sides, we get
(d—1)(my+mo+mg—(d+1)) > (my —mg)(d—1—mq) + (mg —mz)(d — 1 —msy).

The right hand side being non-negative, we obtain m; +ms +mg > d, as expected. The
last part follows from Lemma 3.1.3(2). O

Corollary 3.1.6. Let a € W (eq) be such that deg(a) > 2 and let p € B(P?) be a point
of mazimal multiplicity of a. Then, there exists p € J, such that deg(p(a)) < deg(a).

Proof. By Lemma 3.1.5, there exist three distinct points py, ps, p3 € Base(a) such that
2?21 my,(a) > deg(a). As p is a point of maximal multiplicity, we can assume p = p;.
We then choose ¢ = 0}, ps € Jpp, Which satisfies deg(¢(a)) < deg(a) (Lemma 3.1.5). O

Algorithm 3.1.7 (Hudson Test). Lemma 3.1.5 yields the following algorithm, that decides
whether an element of Zp2 belongs to W (eg) or not. If a belongs to W, (eg), one
first needs to have a®> = 1, w(a) = —3 (Noether equalities). If dega = 1, then a =
ep € Wao(ep). Otherwise, one needs to have dega > 2 and m,(a) > 0 for each ¢ €
B(P?) (Corollary 2.2.14). Then one can apply Lemma 3.1.5 to obtain an element o’ €
W (a) of smaller degree, satisfying again the Noether equalities. If dega’ > 2 and the
multiplicities are again non-negative, one again applies the corollary and decreases the
degree. At some moment, either we obtain ey, and then a € W (eg), or we get some
negative degree or multiplicity, and then a ¢ W (eg) (by Corollary 2.2.14).

Ezample 3.1.8. Take 12 different points gy, ..., g2 € B(P?).

The element a = —7eq + Zzl 2eq, € Zp2 satisfies the Noether equalities, but has
negative degree (and negative multiplicities), hence does not belong to W (ep).

The element o' = 3eg + €4, — 2224 eq, satisfies the Noether equalities, has positive
degree but has one negative multiplicity, hence does not belong to W, (ep).

By Definition 2.3.5, the element oy, 4, 4(a’) is equal to a” = Tey — 3e,, — deg, —
deq, — Zjﬁ 4 €q- This element satisfies the Noether equalities, has positive degree and
non-negative multiplicities but does not belong to W, (eg), as a’ does not.
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3.2. Predecessors.

Lemma 3.2.1. Let a € W (eg), g € W, and p1,pa € B(P?) be two distinct points.
Denote by T € Symyp: the transposition that exchanges p; and py. The comparison of the
two elements b= g(a) and c =T ogoT(a) of Wuo(eg) is given as follows:

(%) deg(c) — deg(b) = (myp, (a) = my, (a))(my, (9) — 1, (9))-
Moreover, the following hold:

(1) deg(b) = deg(c) & b =sym,, ¢

(2) deg(b) > deg(c) = comult(b) > comult(c),

(3) deg(b) < deg(c) = comult(b) < comult(c).
Proof. For all o € Zp2 we have 7(a) — o = (my, (o) — my,(a))(ep, — €p,). This yields

(®)  (7(@) —a)- B = (my,(a) = my, (@) (my, (5) —my,(B)) for all a, 5 € Zp2.
We then write A = g~*(ep), and obtain m,, (A) = m,,(g) for i = 1,2. As deg(c) =

deg(g o 7(a)), we get

deg(c) — deg(b) = (gor(a)—gl(a)) e = (7(a) —a) - g~*(eo) = (r(a) —a) - A
£ (my, (@) — mpy (@) (M, (A) — iy, (A))
= (mm(a) — My, (a)>(mp1 (9) — My, 9))’

which achieves the proof of (é).

(1): If b =sym, ¢, then c-eg = b eg, as eg is fixed by Symgpe, i.e. deg(c) = deg(b).
Conversely, we suppose that deg(c) = deg(b), which implies that my, (a) = my,(a) or
My, (g) = my,(g) (by &), and we want to prove that b =sym, ¢. If my, (a) = my,(a),
then 7(a) = a, which yields c =1o0go7(a) = 7(9(a)) = 7(b). If m,, (g) = myp,(g), then
7(A) = A, ie. (goT) ' (eg) = g7 (eg). There exists thus 8 € Symp. such that fog = goT
(Corollary 2.2.6). This yields c=7ogo71(a) =70 fog(a) = (70 )(b) € We(c).

(2): Assume that deg(b) > deg(c). Up to exchanging p; and ps, we can assume that
my, (a) > my,(a) and my, (g) < my,(g) (by &). To show that comultb = comult g(a) >
comult 7 o g o 7(a) = comult ¢, we denote by ¢ € B(P?) a point of maximal multiplicity
of b and write I' = g~ (e — ¢,). This yields

comultb = (eg—e,)-gla) = g teo—e,) - a = I'aq,
comultc < (eg—7(eg)) ¢ = (togor)Heo—7(eq))-a = 7(I)-a.
We then have comult ¢c—comult b < (7(I')-TI")-a L (M, (D) =1y, (1)) - (2, (@) =y, (@),

hence to prove the inequality comultd > comulte, it remains to see that m, (I’
my,(I') > 0 is impossible (as my, (a) > my,(a)). Indeed, this would yield (as m,, (A

My, (A)) .
(T(T) =) - A= (my, () = mp, (1)) - (m, (A) =y, (A)) <0,
which implies that 7(I') - A < T - A =g (eg — e;) - g (o) = (e — €4) - €0 = 1. This is
impossible as 7(I') € W (e — ;) and A € W(ep) (see Corollary 2.2.15(2)).
Assertion (3) follows from (2) by replacing ¢ with Togor, which exchanges b and ¢. [

Definition 3.2.2. Let a € W (ep). A predecessor of a is an element of
{p(a) | ¢ € Wy, is a Jonquicres element}

of minimal degree.
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If a € Wy (eg) has degree at least 2 (i.e. a # eg, see Corollary 2.2.14), it follows from
Corollary 3.1.6 that the predecessors of a have degree smaller than a. The following
fundamental lemma establishes (among others) the uniqueness of a predecessor modulo
Symypz, and gives an explicit way to compute a predecessor.

Lemma 3.2.3. Leta € W (eg) be an element of degree d > 1. Denote by (d;my, ..., m,)
its homaloidal type, where we may assume that mg > --- > m, > 1. Setting m; = 0
for i > r, we obtain an infinite non-increasing sequence (m;);>o. We will say that an
ordering po, . ..,pr of the base-points of a is non-increasing if the (finite) sequence of
multiplicities i — my, (a) is non-increasing. Equivalently, this means that my,(a) = m;
for 0 < i <r. Then, the following assertions are satisfied:

(1) The set S = {s > 1| mo+mas_1+mas > d > mg+masi1+masia} is a non-empty
subset of consecutive integers of the interval [1; 5] C R (whence r > 2).

(2) All predecessors of a are equal modulo Symp..

(3) Choose any non-increasing ordering po, . . ., p, of the base-points of a. Then, for
each integer s € [1; 5] and each o € Symgpe, the element o © Ly gy, po3(@) 5 @
predecessor of a if and only if s € S.

(4) If p € Wy is a Jonquieres element such that ¢(a) is a predecessor of a, then ¢
is equal t0 Qo Ly, fp, ... ps.} fOr sSOMeE choice of a non-increasing ordering po, . . ., pr
of the base-points of a, and for some o € Sympz, s € S. In particular, we have
Base(p) C Base(a).

(5) If ¢ € Wy, is a Jonquieres element, and c is a predecessor of a, then comult(p(a)) >
comult(c). In particular, we have comult(a) > comult(c).

Proof. We prove three assertions:

(I): Proof of (1). The inequality r > 2 follows from Lemma 3.1.5. We now show
that the non-increasing sequence i +— u; defined by u; := mg + mo;_1 + mo; for i > 1
satisfies

(Ia) : u; > d, and (Ib) : w; < d for i > r/2.

(Ia) : The inequality u; = mgy + my + mg > d is Noether inequality (Lemma 3.1.5).

(Ib) : The inequality 2i > r yields my; = 0, which gives u; = mg + mo;_1 < mo +
Mai—o < -+ < my+my <d (Corollary 2.2.14). It remains to observe that m; = my =
oo =mgi_1 =d—mp and r = 2i — 1 is impossible (Lemma 2.3.16). Therefore, (Ia) and
(Ib) are proven. These assertions imply (1) because of the equality S = {s > 1 | us >
d > Uerl}.

(IT): For any non-increasing ordering py, ..., p, of the base-points of a, for
any o € Symg:, and for any s € S, the elements o o ¢, (... p,.1(a) are all equal
modulo Symgps.

Firstly, we fix a non-increasing ordering po,...,p, of the base-points of a. Define
Ls = Lo {pr,pas} A ¢ = 15(a) for each integer s € [1; 7], and show that ¢, =sym,, ¢y
for all s,s" € S. By (1), it suffices to prove this in the case where s’ = s+ 1. The
fact that s,s +1 € § implies that d = us11 = my + Mmaosi1 + Mogio, which means
that (eo — €py — €psyy — €poyyz) - @ = 0 and implies that tpg po. 1 poein}(@) = T(a) where
T € Symyps is the permutation of pygsyq and pasio (Corollary 3.1.4). We moreover observe
that s = tpg fp1,..pes} fiX€S Dogy1 and pogio, and thus commutes with 7. This yields

Cyr = Ls11(@) = ts(Lpo {paer1.poesa} (@) = ts(T(a)) = T(15(a)) = T(cs) as desired.
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Secondly, we observe that the class of ts(a) does not depend on the non-increasing
ordering po, ..., p, of the base-points of a. Indeed, two different orderings only differ by
some product of transpositions of two points having the same multiplicity. The result
then follows from Lemma 3.2.1.

(III): For each Jonquiéres element ¢ € W, one of the following holds:

(A) ¢ = @0y p,.p) fOr some non-increasing ordering py,...,p, of the
base-points of a, for some a € Symp., and some s € S.

(B) There exists a Jonquiéres element ¢ € W, such that deg(y'(a)) <
deg(p(a)) and comult(¢’(a)) < comult(p(a)).

Moreover, for any non-increasing ordering po,...,p, of the base-points of a,
for any o € Symp:, and any integer s € [1; 5]\ S, if we set ¢ = @ 0 1y (p1,.. po.}s
then the assertion (B) is satisfied.

We fix a Jonquiéres element ¢ € W, and choose [+1 distinct points py, . .., p; € B(P?)
such that {p,...,p} = Base(yp) UBase(a) (whence [ > r).

Suppose that there exist 4,7 € {0,...,1} such that (myp,(a) — my, (a))(my, (@) —
my. (¢)) < 0. We denote by 7 € Symp. the permutation of p; and p;, write ¢’ =
7o o7 (which is again a Jonquiéres element, by Lemma 2.3.11), and get deg(¢'(a)) —

deg(p(a)) R (1, (@) —my, (@) (my, (9)—my, () < 0. Moreover, Lemma 3.2.1(3)
yields comult(¢’(a)) < comult(y(a)). We are then in case (B).
We can therefore assume, after reordering the points p;, that

mpo(a’) > Mp, ((Z) > 2 mpl(a)7 mpo(@) > mpl(SO) > 2 mpl(gp).

In particular, Base(a) = {pi | k € {1,...,1} and m,,(a) > 0} = {po,...,pr}, and the
base-points py, ..., p, of a are given in non-increasing order. Moreover, ¢ has maximal
multiplicity at py. By Corollary 3.1.2(2), this implies that 1 < my,(¢) < deg(y) — 1.
Since ¢ is a Jonquiéres element of W, it has a point of multiplicity deg(y) — 1, so that
we have my,(¢) = deg(¢) — 1. There exists thus a € Symyp. such that ¢ = a0y, ,
where A = Base(y) \ {po} = {px | k € {1,...,{} and m,, (¢) > 0} has even cardinality
(Lemma 2.3.7(2)). It follows that the set A is equal to {p1,...,pas} for some s > 1. If
s € S, we are in case (A).

We now assume that s ¢ S, and show that we are in case (B), with ' = ©p, (p1,...p,}5
for some s' € {s £ 1}. We then only need to show that deg(cy) < deg(cs) and
comult(cy) < comult(cs), where ¢, ¢y are defined as in the proof of (II). As s € S,
we have either u; < d or ugy1 > d (where u is the sequence defined above, in the proof
of (I)).

If us < d, then s > 1 by (Ia), and we choose s =5 — 12> 1. As ¢y = tpy {pse_1,p2:}(Cs)
is equal t0 0py py. 1.pee(€s) modulo Symyp. (Definition 2.3.5), it suffices to prove that
(€0 — €py — €ppe 1 — €py.) - Cs < 0 (Lemma 3.1.3), which follows from

(60 ~ €po T Cpas1 T €P2s) cs = Ls(eo — €po — Epas1 T est) " a
= —(eo— €po — Epas1 T 61025) ca=u; —d.
If us1 > d, we choose s’ = s + 1, which belongs to [1;£] C [1;£] by (Ib). As before,
it suffices to check that (eg — ep, — €p,..1 — €p..1s) - Cs < 0, which follows from

(60 — €pg — Cpygyr T 6p2s+2) "Cs = Ls(eo — €py — Cposi1 6p25+2) " a
= (60 ~ €py T Cpas T 61?25) ca=d— usq.
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This achieves the proof of (III), which gives (4). Together with (II) and since a admits
at least one predecessor, this also gives (2) and (3). It remains to prove (5). We do
it by induction on deg(¢(a)). The minimal case is when ¢(a) is a predecessor of a, so
¢(a) =symy, ¢ by (2), whence comult(p(a)) = comult(c). If deg(p(a)) > deg(c), then,
by (III), there exists a Jonquiéres element ¢’ € W, such that deg(yp(a)) > deg(¢'(a))
and comult(p(a)) > comult(¢’(a)). Since we have comult(¢’(a)) > comult(c) by the
induction hypothesis, the result follows. U

Here is an example where the set S of Lemma 3.2.3 contains 2 elements. However, we
do not know whether S can contain more than 2 elements or not.

Ezample 3.2.4. Take 6 different points po,...,ps € B(P?). By Definition 2.3.5, the
element g, 1.9, © Ops paps (€0) € Weo(€p) is equal to a = 4ey — 2e,, — 2e,, — 2e,, — €, —
€p, —€ps- 1ts homaloidal type is (4;2,2,2,1,1,1) and the set S of Lemma 3.2.3(1) is equal
to S = {1,2}. By Lemma 3.2.3(3), the elements tp, (p,... po.1(a), s € S, are predecessors
of a. By Definition 2.3.3, we get

.....

Lpoy{m,pz}(a) = 2e0 — €p; — €py — €ps = lpo p1,.., p4}(a)-

As claimed by Lemma 3.2.3(2), these two predecessors are equal modulo Symp. (since
they are even equal).

Corollary 3.2.5. All predecessors of an element a € W, (eg) are equal modulo Symp:
and only depend on the class of a modulo Symps.

Proof. We first observe that the predecessors of a € W (eg) are equal modulo Symps.
If a = eq, this is because ey is the only predecessor of a; otherwise, it follows from
Lemma 3.2.3(2). We then observe that the sets of predecessors of a and of «(a) are
equal, for each a € Symyps. O

Remark 3.2.6. By Remark 2.3.14, a homaloidal type may be identified with an element
of Wo(eg)/ Symp:. It follows from Corollary 3.2.5 that for each homaloidal type x €
Woo(€g)/ Sympz, one can define its (unique) predecessor y; € W (eg)/ Sympz in the
following way: Choose any representative a € W, (eg) of the coset x, then x; is defined
as the equivalence class modulo Sympz in W (eg) of any predecessor a; € W (ep) of a.

Assume that xy = (d;mg,...,m,) with d > 2 and mg > --- > m, > 1. Choose an
integer s € [1, §] such that mqg 4 mas_1 + mas > d > mg + Mag1 + Magio (this is doable
thanks to Lemma 3.2.3(1)). Then

X1:(d—€;m0—f:“,d—mo—mly---,d—mo—mzs,m2s+1,---,m7«)

where € = Y7, (mo 4+ ma;_1 + my; — d) is positive (the form of x; follows from Lem-
ma 3.2.3(3)). Of course, as usual, we can remove the multiplicities which are zero and
order the remaining ones in a non-decreasing manner.

Example 3.2.7. To simplify the notation, a sequence of s multiplicities m is written
m®. In the following list, the notation x-y; means that y; is the predecessor of the

homaloidal type x.

(d;d — 1,1%42)-(1); (4;23,1%)-(2;13);  (38;18,133,12%,6)~(23; 12,83, 73,6, 3);
(16;6°;5%)-(12; 53,44, 2);  (5;29)+(3;2,1%);  (74;28,27°,19%,18)~(58; 27,195, 18,12).
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Lemma 3.2.8. Let f,g € W, be elements such that Base(f) N Base(g™!) = 0 and
deg(g) =d > 1. Defining h = f o g, the following hold:
(1) deg(h) = deg(f) - deg(g) and [Base(h)| = [Base(f)] + |Base(g)].
(2) If ¢ € Wy, is a Jonquieres element such that ¢(g~'(eg)) is a predecessor of
g (eg), then o(h™(ey)) is a predecessor of h™'(ep).

Proof. Tf deg(f) = 1, we get Base(f) =0, f~'(eo) = eo and h™'(eg) = g~ '(ep), so that
there is nothing to check. We can then assume that deg(f) = D > 1. If (d;my,...,m,)
and (D; ttyy1, - .., ) are the homaloidal types of g and f with mg > --- > m, > 1 and
fry1 > -+ > pp > 1, choose orderings po, ..., p, and ¢.y1, ..., q of the base-points of g
and f such that

9 ' (e0) = deg — > i_gmiep, and  f'(eg) = Deg — Zé:r—l—l HiCq; -

Since Base(f) N Base(¢g~!) = 0, there exist points p,i1,...,p € B(P?) \ Base(g) =
B(P*)\ {po,...,p-} such that g~ '(e,) = e, fori =r+1,...,l (Lemma 2.2.8). We then
obtain

h='(eo) = g '(Deg— Zi:rJrl [i€q;) :l Dg~'(eo) — Zi:r+1 HiCp;
= Ddegy — Z:;:o Dmye,, — Zi:r+1 Hi€p; -

This already proves (1). It then remains to show (2). As ¢(g7*(eg)) is a predecessor
of g7'(ey), Lemma 3.2.3(4) provides (up to a re-ordering of the points po,...,p,) an

element a € Symp: and an integer s € [1; §] satisfying

(Q) Mo + Mas—1 + Mas > d > Mg + Masi1 + Masto

.....

lary 2.2.14), we have
mpo(h) =moD > --- > mpr(h) =m,D > Mp, 1 (h) = frg1 =0 2 mpl(h> = K.

According to Lemma 3.2.3(3) for showing that ¢(h™!(eg)) is a predecessor of h™!(eg) it
is sufficient (and necessary) to prove that

Mypqy (h) + mp2sfl(h) + My, (h) > Dd > Mypqy (h) + mp25+1(h) + Mpygis (h).

If 2s + 2 < r, this is just (©) multiplied by D. Let us therefore now assume that
2s 4+ 2 > r, so that we have 2s +2 € {r + 1,7 + 2}. If 2s +2 = r + 2, it suffices to
prove that Dd > Dmg + pi,41 + pir42. This follows from the inequalities 41 + piryo <
D and my < d — 1 (Corollary 2.2.14). If 2s + 2 = r + 1, it suffices to prove that
Dd > Dmg+ Dm, + ptyy1. If mg+m, < d — 1, this follows from p,,1 < D — 1. It
remains to show that the case mg + m, > d can not occur. Indeed, otherwise we would
have mgo + m, = d (Corollary 2.2.14) and then r should be even by Lemma 2.3.16. A
contradiction. O

Algorithm 3.2.9 (Computing the length in W,). To each ay € W (eg) we can associate
a sequence ar, as, ..., of elements of W, (eg) such that a; is a predecessor of a;_; for
each ¢ > 1. We then say that a; is a ¢-th predecessor of ay.

At some step n > 0, we have a,, = ¢y and then a; = e( for all j > n. This provides then
a finite sequence (ay, . .., a,) ending with ey. Corollary 3.2.5 shows that this sequence is
unique modulo Symgpz, and Lemma 3.2.3 provides an explicit way to compute it.
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The fact that the number n of steps is really the length in W, will be proven in
Proposition 3.2.12 below.

Example 3.2.10. As before, a sequence of s multiplicities m is written m®. We apply
Algorithm 3.2.9 to a list of homaloidal types:
« (11;6,5,4,3%, 22, 1)~(5; 3,2%,13)(2, 1%)~(1);
o (10:77,4,1)~(13;5%,4,12)(8; 4, 3%, 12)(4; 3, 1°)+(1);
o (40;18,17,142, 124, 32)~(25; 12,103, 82, 5, 33)~(13; 8, 52, 35)~(5; 26)+(3; 2, 14)~(1);
« (38;14%,112,5)~(29; 13, 11, 10%, 52)~(16; 65, 53)~(12; 53, 4%, 2)~(7; 34, 23)
(422, 17)2(2; 1°)-(1);
o (184;75,615, 60, 48)~(145; 60, 487, 36)~(112; 48, 37, 36, 27)~(82; 36, 277, 18)
+(58;27,19%,18,12)~(37; 18,127, 6)~(22; 12, 75, 6, 3)~(10; 6, 37)~(4; 3, 1%)~(1).

Example 3.2.11. Applying Algorithm 3.2.9 to (17;6%) yields a sequence of homaloidal
types of particular interest:

(17:6%)(14;6,5°, 3)+(8; 37)+(5;2°)+(3; 2,1)~(1)
It provides all the symmetric homaloidal types (symmetric means here that all multi-
plicities are the same) except the simplest one, namely (2;1%) [Alb2002, Lemma 2.5.5|.

Note that (17;6%) and (8;3") are the homaloidal types of classical Bertini and Geiser
involutions, associated to the blow-ups of 8, respectively 7 general points of P2

We can now give the following result, which is the analogue of Theorem 1 for W .

Proposition 3.2.12. Let n > 1, let ag € Wuo(eg) and let a, € Wyo(eg) be a n-th
predecessor of ag. For all Jonquiéres elements n,...,0, € Wy, the element b, =
tp o0y (ag) satisfies

(1) deg(an) < deg(bn);

(2) comult(a,) < comult(b,),

(3) If deg(an) = deg(by), then a, and b, are equal modulo Sympz.

Proof. We prove the result by induction on the triples (n,lgth(ag),deg(b;)), ordered
lexicographically, where b; = v (ay).

If n = 1, (1) is given by the definition of a predecessor, and (2) and (3) follow
respectively from Lemma 3.2.3(5) and Lemma 3.2.3(2). We will then assume that n > 1
in the sequel.

We write ¢ = ¢, 0--- 01y € W, and write Base(ag) U Base(v)) = {p1,...,p}, for
some distinct points p; that we can assume to be such that my, (ag) > --- > my,(ag) > 0.
If there exist 7,5 € {1,...,l} such that i < j and m,, (1)) < my,(¢), we denote by
7 € Symp: the permutation of p; and p;, write b, = 7 o1 o 7(ag) and replace b,
with b/, and v¢; with 7 o4, o7 for i = 1,...,n, which are Jonquiéres elements of W,
(Lemma 2.3.11). To see that this is possible, we use

deg(by,) — deg(bn) my, (ao) — 1y, (a0)) (my, () — my, () < 0.
If deg(b))) = deg(b,) then b, and b, are equal modulo Symp. (Lemma 3.2.1(1)). And
if deg(b!)) < deg(b), then comult(d),) < comult(b,) (Lemma 3.2.1(2)). In both cases,
proving the result for o/, gives the result for b,. After finitely many steps, we then
reduce to the case where

mpl(ao) > 2 mpz<a0) > 0 and mpl(dj) > 2 mpz<w) > 0.

Lemma_S.Q.l.q'o (
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In particular, both ay and 1 have maximal multiplicity at p;.

For i = 1,...,n — 1, we define a; to be a i-th predecessor of ag, and write b; =
io---othy(ag). If a, = ey, all assertions hold, so we can assume that deg(a,) > 2, which
implies that comult(a,_1) > 2 (by Lemma 3.1.2(4) the equality comult(a,_1) = 1 would
give a, = ey). By induction hypothesis, we have comult(b,_;) > comult(a,_1) > 2, so
b, # eg. As this is true for any choice of Jonquiéres elements 11, ..., 1,, we find that

lgth(ag) > n+ 1.

We now apply the algorithm to Ag = ¢)"!(eg). As p; is a point of maximal multiplicity of
Ay, there exists 6; € J,, such that Ay = 6,(Ao) is a predecessor of Ay (Lemma 3.2.3(3)).
We then define a sequence (A;);>2, and Jonquicres elements (6;);>2 such that A; =
0;(A;_1) is a predecessor of A; ; for each i > 1. Since ¢ is a product of n Jonquiéres
elements, we have lgth(Ag) < n < lgth(ap). The pair (n,lgth(ag)) is thus bigger than
(n,lgth(Ag)), so we find that deg A,, < deg(Ay) = degep = 1 by induction hypothesis.
This yields A, = e, and thus § = 6, o --- o 0 satisfies ¢y = 0(Ag) = 0( " (ep)),
which yields 0 o 9)™! € Symp. (Lemma 2.2.5(4)). Hence, we can replace v; with 6; for
i=1,...,n,since b, = 1(ag) is equal to 0(ap) modulo Sympz. This reduces to the case
where ¢ € Jp,.

Applying induction hypothesis to b; and the n — 1 Jonquiéres s,...,1,, we can
reduce to the case where b; is a predecessor of b;_q for i = 2,...,n. We can moreover
assume that ¢y € J, where ¢ € B(P?) is a base-point of b; of maximal multiplicity
(Lemma 3.2.3).

If deg(a;) = deg(by), then a; and b; are equal modulo Symgp: (Lemma 3.2.3), so the
result follows, as in this case b; is a predecessor of b;_; for + = 1,...,n, hence b; is equal
to a; modulo Symp. for i = 1,...,n. We can then assume that deg(a,) < deg(b,).

If b; has maximal multiplicity at p;, then we can assume that 1, € J,, (since by =
19(by) is a predecessor of by ), and apply the induction hypothesis to ¥y 01,13, ..., ¥, to
obtain that deg(a,_1) < deg(b,) and comult(a,_;) < comult(b,). The result follows in
this case from deg(a,) < deg(a,_1) and comult(a,) < comult(a,_;) (Lemma 3.2.3(5)).

Otherwise we can find a point ¢ € B(P?) \ {p:} such that b; has maximal multiplicity
at ¢ and ¢y € J,. We claim that there exists r € B(P?) \ {p1, ¢} such that deg(b) <
My, (b1) + my(b1) + m,(b1). Let us first show why this claim achieves the proof, before
proving the claim. We choose the involution oy, ,, € J,, NJ, as in Definition 2.3.5, write
Y = 0pqro1 € Jp, and Yy = Y00y, 4, € J;. We can thus replace ¢, and v, with the
Jonquiéres elements ] and v} respectively, without changing b; for ¢ = 2,...,n. This
replaces by with b} = 0, ,.-(b1), which satisfies deg(d}) < deg(b;) (Lemma 3.1.3(2)). The
result then follows by induction hypothesis.

It remains to prove the claim. As p; is a point of maximal multiplicity of ag, there
exists @1 € J,,, such that ¢q(ag) is a predecessor of ag, so that ¢1(ag) is equal to a; mod
Sympe (Lemma 3.2.3). We set v = ¢y 0 (¢1) ! € J,,, and find a set A C B(P?) \ {p1} of

— ep—e
even order, such that v"(eg) = eg+ Y, cn —52

— e, (Lemma 2.3.7). In particular,

deg p1(ag) = degrv ovpi(a) = v=(ep) - by = deg by + ZTGA (M - mr(b1)> )
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Since deg ¢1(ag) < deg by, there exist two distinct points r1, 75 € A such that

0 > (fEhmpml) g (b)) + (S0 b))

= deg by — My, (b1> — My, (bl) — My, (b2)

Since my(by) > max{m,, (b1), m,,(b1)} and ¢ # p;, we can replace one of the two points
r1, 7o with ¢ and denote by r the other one. This achieves the proof of the claim. 0]

3.3. From the Weyl group to the Cremona group. Starting from an element of
Bir(P?), Algorithm 3.2.9 yields a way to decompose it into a product of Jonquiéres ele-
ments of W, and the optimality of the algorithm in W, is given by Proposition 3.2.12.
We now show that the algorithm also works in Bir(P?). To do this, we first make the
following easy observation, which relates the two notions of predecessors already defined
for elements of Bir(IP?) and for elements of W, (eg) (Definitions 1.1.2 and 3.2.2 respec-
tively). We will then prove that the hypothesis of Lemma 3.3.1 is in fact always satisfied
(Proposition 3.3.7), and this will allow us to give a stronger version of Lemma 3.3.1
(Corollary 3.3.8 below).

Lemma 3.3.1. Let f € Bir(P?). If there exists a Jonquiéres element ¢ € Bir(P?) such
that o(f~(eq)) € Zp2 is a predecessor of f~1(ey) (in the sense of Definition 3.2.2), then:

(1) foe™t € Bir(IP?) is a predecessor of f (in the sense of Definition 1.1.2).
(2) g7 (eq) is a predecessor of f~1(ey), for each predecessor g € Bir(P?) of f.

Proof. (1): To prove that f o ¢! is a predecessor of f, we only need to show that
deg(f o) > deg(f o =) (which is equivalent to deg(ip(f~(eo))) < dea(t(f~(e0)))
for each Jonquicres element ¢ € Bir(P?). As o(f'(eg)) is a predecessor of f~!(eg) it
satisfies deg(o(f™!(eo))) < deg(w(f(eg))) for each Jonquieres element ¢ € W, and
thus in particular for each Jonquiéres element 1 € Bir(P?) (Lemma 2.3.12).

(2): If g € Bir(P?) is a predecessor of f, then g = fok for some Jonquiéres transforma-
tion x € Bir(P?), and deg(g) = deg(fop™!) by (1). The element g~ *(eg) = k= 1(f 1 (eg))
has then the same degree as the predecessor o(f!(eg)) of f~1(eg), and is thus also a
predecessor of f~!(eg) (by Definition 3.2.2). O

We first recall the following famous result, corresponding to the algorithm defined in
[A1b2002, Chapter 8|, adapting the proof of Castelnuovo [Cas1901].

Proposition 3.3.2 (Castelnuovo reduction). Let f € Bir(P?) be of degree d > 1, let
p € P2 be a base-point of f of mazimal multiplicity. We define M = {q € Base(f)\ {p} |
my +2my > d}. Then, M contains at least two elements, and the following hold:

(1) If [M] is even, there is an element o € Jonq, such that Base(y) = {p} U M.
(2) If [M| is odd, there is ¢ € M of minimal multiplicity and an element ¢ € Jonq,
such that Base(p) = {p} U (M \ {q}).

For each ¢ as above, we have deg(f o ™) < deg(f).

Remark 3.3.3. In [A1b2002|, the elements of M are called the major base-points of f and
their number |M| is written h (see [A1b2002, Definition 8.2.1]).

Proof. The proof of the proposition lies in Chapter 8 and especially in §8.3 of [A1b2002].
The fact that h = | M| > 2 is [A1b2002, Lemma 8.2.6]. The existence of ¢ and the fact
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that deg(f o p™1) < deg(f) is given at page 242, in the proof of [A1b2002, Theorem
8.3.4]. O

Definition 3.3.4. Let f € Bir(P?). If deg(f) > 1, we define a Castelnuovo-predecessor
of f to be an element of the form fop~! where the Jonquiéres transformation ¢ € Bir(IP?)
has been described in Proposition 3.3.2. If deg(f) = 1, we define f to be its own
Castelnuovo-predecessor.

Lemma 3.3.5. Let f € Bir(P?) be a Jonquieres element of degree d > 1. Then every
Castelnuovo-predecessor of f has degree 1.

Proof. The homaloidal type of f is (d;d — 1,1%¢72). If p € P? is a base-point of f
of maximal multiplicity, then the set M of Proposition 3.3.2 has even cardinality and
satisfies {p} U M = Base(f). If ¢ € Jonq, is such that Base(y) = {p} U M, then we
have deg(fop™ ) =d*>— (d—1)> — (2d —2) = 1. O]

Algorithm 3.3.6 (Algorithm of Castelnuovo). Taking fy € Bir(P?) \ Aut(P?), Proposi-
tion 3.3.2 yields a Jonquiéres element ¢; € Bir(P?) such that the Castelnuovo-predecessor
f1 = foo ;" satisfies deg(f1) < deg(fy). Applying again the result finitely many times,
we find a sequence of Castelnuovo-predecessors fy, fi, ..., f, and a sequence of Jonquiéres
elements @1, o, ..., @,, which lead to a decomposition of fy into f, 0@, 0- -0y, where
fn € Aut(P?). Since ¢!, := f, o ¢, is Jonquicres, this algorithm actually provides a
decomposition of fy into the product of n Jonquiéres elements

fo=wn0pn10---00.

As we will show in Corollary 3.3.11, this integer n (which is the integer n for which the
algorithm stops, i.e. for which deg f,, = 1) is the length of fj.

Recall that a predecessor of an element a € W (ep) is an element of minimal degree
among all the elements of the form ¢(a) where ¢ is a Jonquiéres element of W,. The

next fundamental result shows that we can choose ¢ to be in Bir(P?) if a = f~!(eg) for
some [ € Bir(P?).

Proposition 3.3.7. Let f € Bir(P?) \ Aut(P?) and let py € P? be a base-point of f of
maximal multiplicity.

(1) There exists a Jonquiéres element v € Jonq,, such that ¥(f~'(eg)) € Zp2 is a
predecessor of f~Y(eg). For each such 1), it follows from Lemma 3.3.1(1) that the
element fo~! € Bir(P?) is a predecessor of f.

(2) Let ¢ € Jonq,, be a Jonquiéres element such that f o ot is a Castelnuovo-
predecessor of f (see Proposition 3.3.2 and Definition 3.3.4). Then, we can choose
Y as above such that one of the following assertions is satified:

(4) ¥ =¢;

(i)) p = o~ is a quadratic map. Moreover there is a unique (proper) base-
point p' of maximal multiplicity of f o ¢~t. This point is also a base-point
of maximal multiplicity of f o ™' (but not necessarily unique). We have
p' # po and p € Jonq,, N Jong,, .

1

Proof. Let ¢ € Jong, be a Jonquiéres element provided by the Castelnuovo reduction.
Write Base(f) = {po,...,p-} where the points p; are distinct and set m; = my,(f) for
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each 7. Choose the order such that mg > my > --- > m,, and such that for any ¢ > 1,
either p; is a proper point of P? or p; is in the first neighbourhood of some p; with j < i.
We then define m; = 0 for each integer i > r, and write M = {p; | i > 1, mo + 2m; > d}
as in Proposition 3.3.2.

Suppose first that |M]| is even. In this case, ¢ € Jong, satisfies Base(y) = {po} U
M (Proposition 3.3.2(1)) and is then equal to ¢ = « o 1,y for some a € Symp.
(Lemma 2.3.7(2)). Writing 2s = | M|, we find mg + maos_1 + mas = ((mo + 2mas—1) +
(Mo =+ 2mag,)) /2 > d > ((mo + 2mage1) + (Mo + 2magta)) /2 = Mo + Masi + Magte, Which
implies that ty, (pr,. pe.3(f 1 (€0)) is a predecessor of f~'(ep) (Lemma 3.2.3(3)), so the
same holds for ¢(f~1(eg)). This achieves the proof, by choosing 1 = ¢, whence p = id.

Suppose now that [M| is odd. In this case, ¢ € Jonq, satisfies Base(y) = {po} U
(M \ {q}) for some ¢ € M of minimal multiplicity (Proposition 3.3.2(2)) and is equal to
© = O Ly, m\{q} fOr some a € Symyp, (Lemma 2.3.7(2)). Writing 2s + 1 = |M|, we can
assume that pos 1 = ¢, which yields ¢, am\{g} = Lo {p1,....p0s > a0d find mg +mos_1 +mos =
((mo 4+ 2mas—1) + (mo + 2mas))/2 > d. We then obtain two cases:

If d > mg + Masi1 + Masia, then iy . 3 (f71(eo)) is a predecessor of f~*(ep)
(Lemma 3.2.3(3)), so the same holds for ¢(f~'(ep)). We then choose ¥ = ¢ as before.

The last case is when d < mg + masi1 + Masi2, which implies that mas o > 0 (Corol-
lary 2.2.14) and thus that 2s + 2 < r. We can assume that posyo is not infinitely near
to a point p; with i > 2s + 2 (otherwise we have m; = mas 0, S0 we exchange pos o
with p;). Since d > mg + Magsy3 + Masig, the element ag g = Lpo,{pl,...,pzs+2}(f_l(GO)) is a
predecessor of f~!(eg) (Lemma 3.2.3(3)). Moreover, as = tpy {pr,...p0.1 (/" (€0)) is not a
predecessor of f~!(ey) (Lemma 3.2.3(3)), which implies that deg(as) > deg(asi1). We
will prove the following numerical assertions:

I)  The point pys o is a base-point of a,y; of maximal multiplicity;

II)  my,,..(as) > my,(as) fori=1,..., 2s;

) (€0 = €py = €paeis — Cpaayn) = As = deglas) — mpy(as) — My, (as) — myp,,,,(as) < 0;
IV) The point pssyq is the unique base-point of ag of maximal multiplicity.

o~~~

Before proving these assertions, let us show how they imply the result.

We write A = ¢(f *(eg)), which corresponds to the linear system of f o ¢~ For
i = 1,...,7, we then denote by ¢; € B(P?) the point such that a(e,) = e,. As
© = QO Ly (py,..pss}» We find Base(A) € {qo, ..., q }. Moreover, ¢ and ¢y, (p,,..p,.} belong
to Jp,, so that a also belongs to J,,. This gives us a(eg — e,,) = €o — €,, and finally
qo = po is a proper point of P2. Assertion (IV) implies that p’ := gos1; is the unique
base-point of f o ¢~! of maximal multiplicity, in particular p’ is a proper point of P2.
We then observe that ¢o.19 is either a proper point of P? or a point infinitely near pq
or p'. Indeed, it cannot be infinitely near ¢; if i € {1,...,2s} by (II) and if i > 25 + 1,
because po,y1 is not infinitely near p;. Moreover, pg, P, gas12 are not collinear because
of (III) and Bézout Theorem. Up to change of coordinates, we can thus assume that
{po,p’} = {[1:0:0][0:1:0]} and that py,p’, g2s+2 are the three base-points of a
quadratic involution p € Jong, N Jonq, C Bir(P?) which is one of the two following

[x:y:2] > [yz:az:aylor [x:y:z] - [22ay a2,
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and satisfies then p = 0 0y 1 g0.,0 fOr some f € Symp. (see Definition 2.3.5). The
result then follows by setting ¢ := po ¢ € Jonq, . Indeed, as Base(8 0 0y, p/,g5,.» © ) =
{p07p28+17p28+2}7 we have [ o Opo.p'sq2s+2 © X = 7 © lpo,{past1,p2s+2} for some v € Symps,
which yields ¥ = 80 0y 1/ gosis © QO Lyg fp1,post = Y O Lpg {p1,passo}> and implies that
¥(f 1 (eg)) = v(asi1) is a predecessor of f~1(ey). Moreover, p' = gos11 € P? is such that
p € Jong, and is a point of maximal multiplicity of ¥/(f~"(ep)); this follows from (I)
and from y(ep,,,,) = €y, which is given by ey — ey = p(eg — ey) = poaley —ep,.,,) =

Yo Lpo,{p2s+1,p25+2}(60 - €p2s+1) = /7(60 - 6P25+2) = €0 — 7(6p25+2)'

It remains to prove the assertions (I)—(IV).

(I) ertmg w = d_2m07 we have myo 2 Z Mas Z Mast1 > U Z M2sy2 Z Z my
and 20 = d — my < Mast1 + Masya. This yields my, ., (as41) = d — my — Magir =
20 — Masy2 > p > 2 —m; = d—my —m; = my,(as41) for each i € {1,...,2s + 1}.
We moreover have my,, . ,(as11) > > m; = my,(as41) for each @ € {25 +3,...,r}. It
then remains to show that m,, ,(asi1) > mp,(as+1). This holds, because otherwise py
would be a point of maximal multiplicity of as,;, which would yield the existence of
k € J,, such that deg(k(a)) < deg(a) (Corollary 3.1.6), contradicting the fact that a,;;
is a predecessor of f~!(ep).

(IT): Follows from my,_,,(as) = maosya > d —my — magy1 > d — my — m; = my,(as),
fori € {1,...,2s}.

(IIT)~(IV): Set v = myp,(as) + mp,, ., (as) + My, ., (as) — deg(as). The equality a1 =
Lpo {pasr1,paesa) (Gs) gives deg(asy1) = deg(as) —v, whence v > 0, i.e. (III). It also provides

My, (aS) = My, (aS-H) TV, Mpyyy (aS) = Mpoeio (as+1) TV, Mpyg s (CLS) = Mpystq (aS-l—l) +,

and my, (as) = my,(asy1) for i # 0,2s + 1,25 + 2. Since pasi2 was a base-point of
maximal multiplicity of as (by (I)), it follows that pos,; is a base-point of maximal
multiplicity of asy; and that such base-points of maximal multiplicity of as;; belong
to the set {po, past1,P2sio}. However, we have already seen in the proof of (I) that
Moo (@si1) > My, (asy1) for i =0 or ¢ = 25 4+ 1. This proves (IV). O]

Corollary 3.3.8. Let f, g € Bir(P?). Then, the two following assertions are equivalent:

(1) g is a predecessor of f (Definition 1.1.2);
(2) g7 (eo) is a predecessor of f~'(ey) (Definition 3.2.2) and f~'og € Jonq C
Bir(P?).

Proof. By Proposition 3.3.7(1), the assumptions of Lemma 3.3.1 are always fulfilled.
Therefore, the implication (1) = (2) follows from Lemma 3.3.1(2) and the implication
(2) = (1) follows from Lemma 3.3.1(1) applied with o = g~' o f € Jonq. O

We are now ready to give the proof of Lemma 1.1.3 and Theorem 1.

Proof of Lemma 1.1.3. Let f € Bir(P?), and let g € Bir(P?) be a predecessor of f, which
is then equal to g = f o ¢ for some Jonquiéres element ¢ € Bir(P?).

By Corollary 3.3.8, g *(eg) = ¢ ' (f(ep)) is a predecessor of f~!(ey). This implies
that Base(p™!) C Base(f !(ey)) = Base(f) (Lemma 3.2.3(4)), and gives (3). More-
over, the homaloidal type of g, which is the class of g7!(ey) modulo Symygs:, is uniquely
determined by the homaloidal type of f (Corollary 3.2.5). This proves (1).
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It remains to prove (2). The set of predecessors being invariant under right multipli-
cation by elements of Aut(P?), it is infinite. It remains to see that the number of classes
modulo Aut(PP?) is finite. This corresponds to saying that the number of possibilities for
Base(p™!) is finite, and is thus given by (3). O

Proof of Theorem 1. For each i > 0, we set a; := (f;)"'(e0) € Wu(eg). By Corol-
lary 3.3.8, a; is a predecessor of a;_; for each i > 1, so a; is a i-th predecessor of ag for
each 7 > 1.

We then write b, = g, ! (eg) = ¢ o---0p; (ag). Aspy, ..., p, are Jonquiéres elements
of Bir(P?), they are all the more Jonquiéres elements of W, (Lemma 2.3.12). Then, the
three assertions (1)-(2)-(3) of Theorem 1 directly follow from the three corresponding
assertions (1)-(2)-(3) of Proposition 3.2.12 that we now recall: (1) deg(a,) < deg(by,);
(2) comult(a,) < comult(b,); (3) if deg(a,) = deg(b,), then a,, and b,, are equal modulo
SymW.

It remains to observe that lgth(fy) = min{n | deg(f,) = 1}. To do this, we write
¢ =1gth(fy), m = min{n | deg(f,) = 1}, and prove ¢ > m and m > /.

The fact that ¢ = lgth(f) yields the existence of Jonquiéres elements ¢1,...,p; €
Bir(P?) such that deg(f o ¢i0---0¢s) = 1. By (1), we find deg(f,) < 1, which yields
{>m.

Writing for each i a Jonquiéres element v; € Jonq such that f;_; = f; o 1;, we obtain
fo=fmotmo---o1y. As deg(f,,) =1, this implies that ¢ = Igth(fy) < m. O

Corollary 3.3.9 (Length of predecessors, associated to any point of maximal multiplic-
ity). Let f € Bir(P?) \ Aut(P?). For each point ¢ € P? of mazimal multiplicity of f,
there exists ¢ € Jong, C Bir(P?) such that f oy is a predecessor of f. Moreover, every
predecessor g of [ satisfies 1gth(g) = lgth(f) — 1 and deg(g) < deg(f).

Proof. The existence of ¢ is given by Proposition 3.3.7. Any predecessor g of f satisfies
deg(g) < deg(f) because such an inequality already holds for a Castelnuovo-predecessor
according to (the well-known) Proposition 3.3.2. Finally, we have lgth(g) = lgth(f) — 1
by Theorem 1. O

Corollary 3.3.10. Let f be an element of Bir(P?) \ Aut(P?). Take p € P? a proper
base-point of mazximal multiplicity of f, and ¢ € Jonq, a Jonquicres element such that
h:= fop™tis a Castelnuovo-predecessor of f. Then, the following hold:
(1) There exist a Jonquicres element ¢ € Jong, and a point q € P? such that:
(1) g := fovt is a predecessor of f;
(#) q is a point of maximal multiplicity of g and of h;
(111) The element p := 1 o o~ belongs to Jongq, and has degree < 2.
(2) For all+,q,g,p as in (1), and for each k € Jong,, we have the following equiva-
lence:

h ok is a predecessor of h < h o Kk is a predecessor of g.
Furthermore, there always exists an element k satisfying these two equivalent
conditions.

Proof. Assertion (1) follows from Proposition 3.3.7 (if 1) = ¢ we choose any point q € P?
of maximal multiplicity of g = h).
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To prove (2), we first observe that h = g o p, with p € Jonq,, which implies that the
two sets
An={hok|r € Jonq,} and Ay = {gox'| k" € Jong,}
are equal. Secondly, since ¢ has maximal multiplicity for g and h, the set 4, contains a
predecessor of g and the set A4, contains a predecessor of h (Proposition 3.3.7). Hence,
an element of A; = A, is a predecessor of g (respectively of h) if and only if it has
minimal degree in A, = A;,. This yields (2). The situation is as follows:

) *’[ Castelnuovo-predecessor ]/
fop = =h
p

g=fov ™t =hop™

s=hok=gokK

OJ

Corollary 3.3.11 (The Algorithm of Castelnuovo also provides the length). For each
f € Bir(P?) \ Aut(P?) and each Castelnuovo predecessor h € Bir(P?) of f, we have
lgth(h) = lgth(f) — 1.

Hence, writing f = fo and denoting by fi, fo, ... elements of Bir(P?) such that f; is a
Castelnuovo-predecessor of f;_1 for i > 1, we find lgth(f) = min{n | deg(f,) = 1}.

Proof. By definition of a Castelnuovo-predecessor there exists a proper base-point p of
maximal multiplicity of f and a Jonquiéres tranformation ¢ € Jonq, such that h =
fop™

By Corollary 3.3.10, there exists ¢ € Jonq,, such that g = f o 1! is a predecessor of
f and an element s € Bir(P?) which is a predecessor of both g and h.

As f ¢ Aut(P?), we have deg(f) > 1. Corollary 3.3.9 yields lgth(g) = lgth(f) —1 > 0,
because g is a predecessor of f. It remains to prove that lgth(h) = lgth(g).

If fis a Jonquiéres element, then lgth(f) = 1, whence lgth(g) = 0. By Lemma 3.3.5,
we also have lgth(h) = 0.

If fis not a Jonquiéres element, then deg(h) > 1 and deg(g) > 1. We find lgth(s) =

lgth(h) — 1 = lgth(g) — 1, as s is a predecessor of g and h (Corollary 3.3.9). O
Corollary 3.3.12. Let f = fy be an element of Bir(P?) \ Aut(P?). Let fi,...,fn be
elements of Bir(P?) such that f; is a Castelnuovo-predecessor of f;_1 fori =1,... n.

Then, setting go = f, there exist g1, ga, . .., gn € Bir(P?) such that g; is a predecessor of
gi—1 fori=0,...,n, and such that deg((g;) "t o f;) <2 fori=0,...,n.

Proof. Note that if deg(f;) = 1 for some i < n, then for each m € {i+1,...,n} we have
fm = fi (Definition 3.3.4), so we can simply choose g,, = f,. It suffices then to do the
case where deg(f;) > 1 for each i € {0,...,n —1}.

For each i € {0,...,n—1}, let p; € P? be a proper base-point of maximal multiplicity
of f;, such that fis1 = fio (p;)”" for some Jonquiéres element ¢; € Jong, C Bir(P?) as
in Proposition 3.3.2.

For i = 0,...,n — 1, we define inductively g;1; € Bir(P?). To do this, we apply
Proposition 3.3.7, and find v; € Jong,, such that g;;; = f; o (¢;)~! is a predecessor of
fi, and that either v; = ¢;, or ¥; o (p;)~! is a quadratic map that belongs to Jong,,,



LENGTH IN THE CREMONA GROUP 35

where ¢ € P? is the unique base-point of maximal multiplicity of fi,; (so that ¢ = pi;1
if i <n). We then find that (g;;1)"' o fiy1 = ;o (¢;) ! has degree at most 2.

It remains to show that g;,, is a predecessor of g; for t =0,...,n — 1. If f; = g;, this
is true, since g;1; is a predecessor of f;. Otherwise, we have i > 1, fi = f;_1 0 (p;_1)7 ",
gi = ficro (i)™ and ¢y o (pi1) 7" € Jong,, . As git1 = fio (1:)~" is a predecessor
of f; and v; € Jonq,,, it is also a predecessor of g; (Corollary 3.3.10(2)). O

4. EXAMPLES AND APPLICATIONS

4.1. Length of birational maps of small degree. The next table gives all homaloidal
types of degree < 6. The homaloidal types are given in the second column (as already
said before, a sequence of s multiplicities m is written m®). In the first column (#)
a label is associated to each homaloidal type: This is the degree “d 7 if the type is
Jonquiéres, or “d.i” for the others (the order, for each degree, being the anti-lexicographic
order according to the multiplicities). Then, the third column (¢) gives the length and
the fourth (pr.) gives the predecessor (designated by its label). If the Castelnuovo-
predecessor is different from the predecessor, it is also given, but in parenthesis. We see
that the lengths are not directly related to the ordering of homaloidal types that we use.

# | h.type | ¢ | pr.| | # | h. type | ¢ | pr. # | h. type | £ | pr.
111 0 4.1]23,13 2|2 6 |5,1%° 1]|1?
2113 1 5 4,18 1|1 614,248,132 2
312,14 11 513,235,132 209) 623321423
413,1° 11 52|26 2|3 633224123

The types of degree 7, 8, 9 are given below, and provide the first types of length 3:

# | hom. type | ¢ | pr. # | hom. type | ¢ | pr. # | hom. type (| pr.
7 16,112 1|1 8315,3%2° 2|3 9216,3%2,1° 2|3
711(5,2°,13 2| 2(9) 84 |43,3,1° 2|4 9.316,3%,2% 1 2|3
724,315 2| 34) 851432313 3|41 945,43 17 2| 4)
7814,3%,23,1212| 3 86| 42,3223 13| 41(61)| | 95|5,42,3,23,12 | 3| 4.1(5.1)
74| 34,23 3| 41(51) | | 87|4,3%,12 2|4 96| 5,4,3% 13 2|4
§ |7,11 1]|1? 88137 352 97|5,4,33,23 3|41
816,213 2|2 9 |81 1|1 98 | 44,24 3151(61)
825,322 1312 3 917,27, 13 2| 29 99|43,33%,2,1 3|51
There are then 17 types of degree 10 and 19 types of degree 11, each of length < 3.
# | hom. type | £ | pr. +# hom. type | ¢ | pr. # hom. type | ¢ | pr.
0 19,1% 1)1 106 164232231 3] 41 1012]5%4,332,12 [ 3| 5.1
10.118,28 13 2|2 107 | 6,37 2|4 1013 | 52,3%,2 3|52
102]7,3%,1° 2| 3(4) 108 | 5%,4,18 2|5 1014 | 5,4%,3%,22 | 3 | 5.1
103]7,34,2%12 2|8 109 |533,231% |3 |51 10.15 | 49,13 3|61
104 16,4323 13| 3| 41(61)| | 10.10 | 53,2° 3|52 1016 | 4°,3%,1 3|63
105]6,4%,3%,14 | 2| 4 1011 | 5242281 | 3| 51(6.1)
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# | hom. type | ¢ | pr. +# hom. type |/ | pr. # hom. type | ¢ | pr.

11 ]10,1%° 11 1.7 [ 7,4,3%1 2|4 11.14 | 6,43, 34 3|51
11.119,29 13 21203 11.8 16,5317 2 | 5(6) 11.15 | 5%, 2° 3| 61(71)
11.218,3%,22,1% |23 1.9 16,5%4,2%12 | 3| a1(61)| | 11.16 | 53,4,3%,1% | 3 | 62(72)
11.51] 8,34 2° 2|3 11.10 | 6,5% 332,13 | 3 | 5.1 11.17|5%,44,2,1%2 | 3 | 61
114(7,43,3%,15 |24 11.11 | 6,52 32 2* 3|52 11.18 | 5%,43,3%,2 | 3| 6.3
11.5(7,433,23,12 | 3| 4.1 11.12 1 6,5,423%2%1 | 3 | 5.1

1.6 | 7,4%,33%,23 | 3| 41(5.1)| | 11.13] 6,45, 1% 215

There are 29 types of degree 12, each of length < 4.

# | hom. type |/ | pr. # hom. type |/ | pr. # hom. type | ¢ | pr.

2 [11,1% 1]1 121017,5%,3%,2% | 3|52 22|625,4,3%23 | 3| 63(79)
121110,2% 13 2|2 1211 7,5,44,1° 215 1221 | 6% 4% 2,13 3|61
12219,35,2 14 2|3 12121 7,5,433,2% |3 5.1 1226%4%3%,2,1|3 |63
1251(9,3%, 241 23 1213 7,5,4%3%1 |3 5.1 122316,5%,3%,2,1 | 3| 62(82)
124 8,44, 3,16 2|/ 1214 | 63, 5,110 2|6 122/ 16,5%24%2%21 | 3| 6.1
1251(8,44, 2313 | 3| 41 12151 63,4,2*, 13 |3 61 129 | 6,5,4% 32 3| 63(73)
126 8,43,32231 | 3| 41(51)| | 1216 | 63,33,2,1* | 3| 62 2% |5%423,12 | 3|13
127]8,4%,3512 |24 1217163,32,24 1 | 3|63 1227 5%, 4,33 4|74
128 7,5%24 1% | 3] 51(71)| | 1218 | 6% 52251 3| 61(71)| | 28] 53,442 4|74
129 7,5%4,3%22212| 3 | 5.1 12191 6%5,4,331% | 3| 62(72)

We could of course continue like this but the number of homaloidal types grows very
quickly. We give below the homaloidal types of length £ € {2,..., 7} of smallest degree:

¢ | d | mult. ¢ d | mult. ¢ d | mult. ¢ d | mult.
21412%13 41121]5% 4,33 5116 |6° 53 6|27 ]10% 9% 2
3713423 4112153, 44,2 6|27 |11% 10, 6% 71381145 112,5

4.2. Automorphisms of the affine plane. As explained before, there is a natural
length in the group Aut(A?), since this group is an amalgamated product of Affy =
Aut(P?) N Aut(A?) and Jong, 42 = Jong, N Aut(A?), where we fix a linear embedding
A? — P2, and a point p € P? outside the image. By construction, the length of an
element of Aut(A?), viewed in the amalgamated product, is at least equal to its length
in Bir(P?). We show in Proposition 4.2.2 that the two lengths are in fact equal, using
the following result.

Lemma 4.2.1. Let f, g € Bir(P?) be elements such that Base(f)NBase(g™') = 0. Then,

deg(f o g) = deg(f) - deg(g), [Base(f o g)| = [Base(f)|+ [Base(g)| and
lgth(f o g) = lgth(f) + lgth(g).

Proof. The two first equalities follow from Lemma 3.2.8(1). We prove the third one by
induction on lgth(g), the case where lgth(g) = 0 being obvious, since g € Aut(P?) in
that case.

We then consider the case where d = deg(g) = deg(g™') > 1, and take ¢ € Jonq C
Bir(P?) such that g; = g o ¢! is a predecessor of g. Then, g;'(eo) = ¢(g7 (eo))
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is a predecessor of g~'(eg) (Corollary 3.3.8). This implies that o((f o g)7'(eg)) is a
predecessor of (f o g)7'(ep) (Lemma 3.2.8) and thus that fog = fogoplisa
predecessor of f o g (Corollary 3.3.8). Hence, we obtain lgth(g;) = lgth(g) — 1 and
lgth(f o g1) = lgth(f o g) — 1 (Theorem 1).

Since Base(p) C Base(g) (Lemma 1.1.3), we have Base(g;') = Base(p o g7!) C

Base(g~!) (Corollary 2.2.10), and thus Base(f) N Base(g; ') = §). We can thus apply the
induction hypothesis to get lgth(fog;) = lgth(f)+1gth(g;). This achieves the proof. O

Proposition 4.2.2. Let f € Aut(A?). Taking an inclusion Aut(A?) — Bir(P?) given
by a linear embedding A? — P2, the length of f in Bir(P?) is equal to its length in the
amalgamated product Aut(A?).

Proof. We write f = a, o, o---0aj o] oag, where each a; is an element of Aff; and
each ; is an element of Jong, ,2. If f belongs to A, then its length is 0 in Bir(P?) and
in the amalgamated product, so we can assume that n > 1, that ¢; € Jonq, 42 \ Aff, for
i=1,...,nand that a; € Aff; \Jonq,, 4 fori =1,...,n—1. We then need to prove that
lgth(f) = n. To do this, we first observe that ¢; and (¢;)~! contract exactly one curve
of P?, namely the line L, = P?\ A% Tt implies that (¢;) ™' and ¢; have only one proper
base-point, and since both preserve lines through p, then p is the unique proper base-
point of ¢; and (¢;)~'. Moreover, each a; is an automorphism of P? that does not fix p,
fort=1,...,n—1. Hence by induction the element a;o0;0---0a;0p;oay contracts the
line L, onto a;(p) # p, which is the unique proper base-point of (a;0¢;0- - -0a;0¢p;0ag) ™ .
In particular, (a;0¢@;0---0aj0¢p;0ay)~! and ¢;;1 do not have any common base-point,
so lgth(a; 1 0 pip1 0+ 0ay 09y 0ag) = lgth(a; o p;0-+-0ay 0y o0ay) + 1 for each i.
This provides the result. 0

4.3. Decreasing the length and increasing the degree via a single Jonquiéres
element. In this section, we mainly provide an example of a Cremona transformation
f and a Jonquiéres element ¢ such that lgth(f o¢™!) = lgth(f) — 1 and deg(fop~!) >

deg(f):

Proposition 4.3.1. Fizing 8 general points po, . .., pr € P2, the following hold:

(1) There exists a birational involution f € Bir(P?) of homaloidal type (17;6%) such
that

7 7
fleo) =17eq — 3 bey, and f(e;) = 6eg — ey, —2 ) €y, fori=0,...,T.
=0 7=0

iz
(2) For each general point q € P2, there exists a Jonquicres element @, such that
goq_l(eo) = Deg —4dep, — €y, — - — €y, — Eq.
(3) For all f and ¢, as in (1) and (2), the birational map f, = f o cp;l satisfies:
lgth(f,) =4 <5 =Igth(f) and deg(f,) =19 > 17 = deg(f).

(4) For any two distinct general points q,q' € P, and all choices of fq, f; as in (3),
we have

fo & fo Aut(P?).
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Proof. (1)-(2): Let Up C (P?)® be the subset of 8-uples (py, . .., p7) such that the points
p; are pairwise distinct and the blow-up m: X — P? of py, ..., pr is a Del Pezzo surface.
By Lemma 4.3.2 below, Up is a dense open subset of (P?)®. For each (py, ..., pr) € Up,
we can then define f € Aut(X) to be the Bertini involution (see [Dol2012, §8.8.2]) and
obtain that f = 7o f o 7! € Bir(P?) has degree 17 and satisfies the conditions given
in (1). Since (5;4,1%) is a homaloidal type, Corollary 2.2.12 yields a dense open subset
Vo C (P?)? such that for all each (po,...,pr,q) € Vo there exists ¢, € Bir(P?) satisfying
the condition given in (2). The element ¢, is Jonquiéres by Lemma 2.3.12. We denote
by V the open set V = Vo N (Up x P?) C (P?)?, by x: (P?)° — (P?)® the projection on
the first eight factors, and by U C (P?)® the open set given by U = x(V). For each
(po, - .., p7) € U, the assertions (1) and (2) are then satisfied.
(3): We take f and g, as in (1) and (2), write f, = f o ¢!, and observe that

foleo) = f(5eq — depy —epy — -+ — ey, —€g) = 19eq — ey, — Tep, — -+ — Tey, — fley),
whence the homaloidal type of fl;l is (19;77,4,1). In particular, we have deg(f,) =
deg(f, ') = 19. Recall that we also have lgth(f,) = lgth(f,"). Therefore, to show that
lgth(f) = 5 and lgth(f,) = 4, it suffices to look at Examples 3.2.10 and 3.2.11, where
we already observed that Algorithm 3.2.9 applied to (19;77,4,1) and (17;6%) yields the
following sequences of homaloidal types:
(17;6%) - (14;6,5%,3) - (8;37) - (5520 - (3;2,1%) (1)
(19;77,4,1) - (13;5%,4,1%) - (8;4,3°,1%) -~ (43,1°) - (D).
One could also check that the homaloidal type of f, is (19;11,8,57). However, it is
useless for the proof we propose.

(4): Take two general points ¢, ¢’ and suppose that f, = f, o« for some a € Aut(P?).
Then, f,(e0) = fy(eo), which implies that f(e,) = f(ey), whence ¢ = ¢'. O

The following result is classical:

Lemma 4.3.2. Let m: X — P? be the blow-up of r distinct proper points, with 1 < r < 8.
Then, X is a Del Pezzo surface if and only if the following conditions are satisfied: no
3 of the points are collinear, no 6 lie on the same conic, and no 8 of the points lie on
the same cubic singular at one of the points. Moreover, these conditions correspond to
a dense open subset of (P?)", and are thus satisfied for sufficiently general points.

Proof. Follows from [Dol2012, Proposition 8.1.25]. O

4.4. The number of predecessors is not uniformly bounded. Let f € Bir(P?)
be a Cremona transformation. If deg(f) < 4, one can check that f admits a unique
predecessor up to right multiplication by an element of Aut(P?). If deg(f) < 5, then
f may admit more than one predecessor modulo Aut(P?) (but all having the same
homaloidal type, by Lemma 1.1.3). Example 4.4.1 gives an example of degree 5 with
two predecessors having distinct configurations of base-points, and Lemma 4.4.2 shows
that the number of predecessors modulo Aut(PP?) is not uniformly bounded.

Example 4.4.1. Let us consider the birational involution g € Bir(P?) given by

g:lr:y:z]— = [zvw:yuw: zuv)
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where u = —yz + 2z + 2y, v = yz — rz + 2y, and w = yz + vz — xy. We see that
g is of degree 5. It has moreover 6 base-points of multiplicity 2, namely the 3 points
pr=1[1:0:0],p=[0:1:0], p3=1[0:0:1], and 3 other points q1, g2, g3, where each ¢;
is infinitely near to p;. The homaloidal type of g is therefore (5;26).

The algorithm consists of applying a cubic birational transformation whose linear
system consists of cubics singular at one of the p; and passing through 4 of the remaining
5 base-points. The predecessors of g are thus of degree 3. However, we get distinct classes
up to automorphism of P2, depending on our choice of the 4 points.

Denoting by pi, po € Bir(IP?) the birational maps of degree 3 given by

p1: [riy:z] — [ﬁ:y:z}:[yz%yw:zw]and
z "y

z

p2: |riy:iz] — [_1+11+1:y:z}:[xyz:yu:zu],
z Ty

we observe that a; = p1gp; ! and oy = pagps~! are the two linear involutions
apsrryzl—=lriy:2e—zland ag: [x 1y 2] =[x 20—y 20 — 2.

For each i € {1,2} the map p; € Bir(P?) is a Jonquiéres map, preserving a general
line through [1: 0 : 0]. This implies that 1); = p; ' o a; = go p; ! is a predecessor of g.

The linear system of p; consists of cubics singular at p; and passing through ps, p3, q1, qa-
The linear system of ps consists of cubics singular at p; and passing through ps, ps3, g2, q3.
The configuration of the points being different (for py, there is a tangent direction fixed
at the singular point, contrary to p;), this shows that 1; & Aut(P?) o 15 o Aut(PP?).

Lemma 4.4.2. For each integer i > 1, there erists f € Bir(P?) which has at least i
predecessors up to left and right composition with elements of Aut(P?).

Proof. We choose n such that 2n — 1 > ¢ and 2n — 1 > 5, and then observe that
X = (n* 4+ 1;n? —n + 1,n*"1 12"71) is a homaloidal type, whose predecessor is x; =
(n;m —1,12"72). We take 4n — 1 general points pg, p1, - - - Poan_1,q1, - - - s Gon_1 € P? and
choose f € Bir(P?) such that f~'(eq) = (n>41)eg—(n*—n-+1)e,—S 10y  nep, =S ey,
(which exists by Lemma 2.2.11).

For each j € {1,...,2n — 1}, there exists a Jonquiéres element y; € Bir(P?) such
that (¢;)"(eo) = neg — (n — 1)ep, — >y ' €p — €, (again by Lemma 2.2.11). Then,
fi=1fo gpj_l is a predecessor of f (follows from Lemma 3.2.3(3) and Lemma 3.3.1).

As Base(p;) C Base(f), we get Base(f;') = Base(gp; o f~') C Base(f™") (Corol-
lary 2.2.10). Moreover, f; is Jonquiéres of degree n (because of the type of x1), so the
same holds for fj_l.

It remains to see that if j,k € {1,...,2n — 1} are such that j # k, then there are
no elements o, f € Aut(P?) such that f; = a o fx o . Indeed, otherwise we would
have fj(eo) = a(fi(ep)), so a sends the 2n — 1 base-points of f, ' onto those of fj_l,
respecting the multiplicities. Note that f;(eq) # fr(eo), because ¢ '(eo) # ¢, ' (€o). The
map o € Aut(PP?) has then to send a sequence of 2n — 1 points of Base(f™!) onto another
sequence of 2n — 1 points of Base(f~!). This is impossible, as the points are general
points and 2n — 1 > 5. O
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Remark 4.4.3. Tt directly follows from Lemma 1.1.3 that the number of predecessors of
f € Bir(P?) is bounded by some number depending only on deg(f). This follows from
Lemma 1.1.3(3) and from the fact that the number of base-points of f is at most deg(f)+
2 if f is not Jonquiéres ([BCM2015, Lemma 39|). Giving a meaningful bound does not
seem so easy. The number of points of maximal multiplicity is at most 8 (this follows
from the Noether inequality of Lemma 3.1.5 and the Noether equalities of Lemma 2.2.5),
and the number of predecessors for each base-point of maximal multiplicity is bounded
by the choice of the base-points of multiplicity one (for the Jonquiéres element) among
the remaining base points of f. This choice seems to be smaller when the number of
base-points of maximal multiplicity is large.

4.5. Reduced decompositions of arbitrary lengths. Recall that a reduced decom-
position of an element f € Bir(P?) is a product f = ¢, 0 -0, of Jonquiéres elements
such that ;1 o ¢; is not Jonquiéres for ¢ = 1,...,n — 1. One can of course always
obtain a reduced decomposition by starting with any decomposition, simply replacing
@; and ;1 with their product if this one is Jonquiéres. Proposition 4.5.4 shows that
the length of reduced decompositions is unbounded.

We begin with the following classical result:

Lemma 4.5.1. Let py, p1,p2 be three non-collinear points of P2. There is a quadratic
birational involution v € Bir(P?) preserving the pencil of lines through any of the three
base-points and satisfying Base(v) = {po, p1,p2}-

Proof. 1t suffices to change coordinates to have {pg, p1,p2} = {[1:0:0],[0:1:0],[0:
0:1]} and to choose v: [z :y: 2] --» [yz : zz : xy]. O

Lemma 4.5.2. Let py,...,ps € P? be siz distinct points such that no 3 of them are
collinear and not all lie on the same conic. Then, there exist three quadratic birational
involutions 11,1y, 103 € Bir(P?), each having (three) proper base-points, such that the
following hold:

(1) Base(¥1) = {po, p1,p2};
(2) Base(t)2) N Base(t) = Base(13) N Base(1z) = 0;

(3) (30U 0t) Y (eo) = Beg — 2327 g €p,-

Proof. The blow-up m: X — P? of the six points po,...,ps is a Del Pezzo surface
(Lemma 4.3.2) and there exists a quadratic birational involution v¢; € Bir(P?) with
Base(1) = {po, p1,p2} (Lemma 4.5.1). We then write q; = ¥ (p;) € P? for i = 3,4, 5.
We now prove that m = ¢, o m: X — P? is the blow-up of pg, p1, P2, @3, @4, ¢5: We have
a commutative diagram

where 7 is the blow-up of pg, p1, po, 7,&1 € Aut(Y) is an automorphism of order 2, 7y is
the blow-up of {n~'(p;) | i = 3,4,5}, and 7 is the blow-up of {n~!(g) = v1(n7 (p:)) |
i=3,4,5}.
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Because X is a Del Pezzo surface, the points g3, g4, g5 are not collinear (Lemma 4.3.2),
so there is a quadratic birational involution v, € Bir(P?) with Base(vs) = {q3,q4,¢5}
(Lemma 4.5.1). We then write ¢; = 19(p;) € P? for i = 0, 1,2 and obtain similarly that
Q,---,q5 € P? are such that no 3 of them are collinear (since 1 0 9 o 7y : X — P? is
the blow-up of qo, ..., qs).

We now choose a quadratic birational involution ¢3 € Bir(P?) with Base(1s) =
{q0, q1,¢2} (again by Lemma 4.5.1). It remains to calculate

(Y3010 ¢1)_1(60) = 1(12(2e0 — €qp — g — eq2))
= P1(deg — €py — €p, — €py — 264, — 2e4, — 2€,,)
= 5S¢ — 230 e,

where we have used the fact that ¢ (e,,) = € — €p, — €y, Y1(€p,) = €0 — €4y — €py, and
Y1 (ep,) = eg — €y, — €5, (see Example 2.1.15). O

Corollary 4.5.3. There exist quadratic birational maps 1, ..., pe, each having (three)
proper base-points, such that

(1) %60 @50 Pa0p30ps0p =id;
(2) Base(p; ') N Base(pir1) =0 fori=1,...,5.

Proof. Let py,...,ps € P? be six distinct points such that no 3 are collinear and not
all lie on the same conic. Then, choose 1,15,1%3 as in Lemma 4.5.2. Recall that
we have in particular (3 0 19 0 ¢1) ! (eg) = Heg — 2 Z?:o ep;- Applying Lemma 4.5.2
to the same points, but taken in the order ps,p4, ps, po, P1, P2, We get quadratic bi-
rational involutions v, ¥}, 15 € Bir(P?), each having three proper base-points, such
that Base() = {ps,pu.ps}, Base(y) N Base(y) = Base(y}) N Base(ys) = 0 and
(1 0 % 0 9)) ™ (e0) = Beg — 2307 e,

The birational map o = 1501, 01)] 01h; 01hy 01)5 satisfies then a1 (eg) = eg, so that it is
an automorphism of P2. Tt remains to choose (g, . . ., ©1) = (4, Wb, W], P1, e, h30a™t)
to obtain the result. ([l

Proposition 4.5.4. For each f € Bir(P?) the set of reduced decompositions of f has
unbounded length.

Proof. To prove the result, we start with a reduced decomposition f = ¢, 0---0p, and
construct another one, with length > n+5. To do this, we take quadratic birational maps
Y1, ..., € Bir(P?), each having three proper base-points, such that ¢g o --- o = id
and Base(¢; ') N Base(¢;41) = 0 for i = 1,...,5 (which exist by Corollary 4.5.3). For
i =1,...,5, we observe that lgth(¢;.; o ;) = 2 (Lemma 4.2.1), so ;11 o ¢; is not
Jonquiéres. Replacing all ¢; with a o 1); o a™! for some general o € Aut(P?), we can
assume that Base(p; ') N Base(¢1) = @), which implies that lgth(¢; o ,,) = lgth(p,) + 1
(Lemma 4.2.1) and is thus not Jonquiéres if ,, € Aut(P?). In this latter case, we obtain
a reduced decomposition of f of length n+6 as f =¥go---0Y;0p,0---0¢p;. The last
case is when ¢, € Aut(P?). This implies that n = 1, as otherwise ¢, o ¢,_; would be
Jonquiéres. Hence, f = ¢,, € Aut(P?). In this case, it suffices to write f = 5o - - -0ty
with ¢ = f o 1, to get a reduced decomposition of length 6 = n + 5. O

4.6. Examples of dynamical lengths.
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Lemma 4.6.1. The element k € Bir(P?) given by [z : y : z] --» [yz + 2% : xz : 2%
satisfies
lgth(k®) = a, deg(k®) =2 |Base(k®")|= 3a
for each integer a > 1. In particular, we have
Vgen(K™) =m,  A(K™)=2", p(k™)=3m
for each m > 1.

Proof. As k is a Jonquiéres element of degree 2, we have lgth(x) = 1, deg(x) = 2 and
|Base(x®)|= 3 (this last assertion follows from Noether equalities, see Lemma 2.2.5).
Denoting by L C P? the line given by 2z = 0, the restriction of x is automorphism of
P2\ L ~ A?% so the same holds for %, for each a € Z. There can then be at most one
proper base-point of k% namely the image by =% of the line z = 0. We check that x
contracts L onto ¢ = [1 : 0 : 0], which is then the unique proper base-point of £, and
that p = [0 : 1 : 0] is the unique proper base-point of x. This implies that kK contracts
the line L onto ¢ for each a > 1, and thus ¢ is the unique proper base-point of k= for
each a > 1. We obtain, for each a > 1, that Base(x) N Base(x™ %) = (). Lemma 4.2.1
then yields deg(k®™) = deg(k) - deg(x®), |Base(k*™)| = |Base(r)| + |Base(k®)| and
lgth(k*™) = lgth(x) + lgth(k®). This provides the result, by induction over a. O]

Lemma 4.6.2. Choosing o, s, a3 € Bir(P?) aso: [z :y: 2] --» [yz : 22 : 2y,

ag:[z:y:zl—=z+y:ax+ziylandas: [x:y:z]—y+z:2:y]

we obtain Mg (a20) = 5 and digm(azo) = 3.

Proof. The birational involution ¢ = o~ ! is quadratic with base-points p; = [1: 0 : 0],
pa=1[0:1:0], p3 =[0:0:1] and its action on Zp: satisfies
o(eg) =2e0 — €y, — €p, — €py, O(€p,) = €0 — €p, — €py — €py + €p,, 0 =1,2,3,
as in Example 2.1.15. Writing py = [1:0: 1], p5 = [1 : 1 : 0], one gets
aa(p1) = pa, a2(p2) = pa, a2(ps) = ps and az(pr) = p2, az(p2) = pa, az(ps) = p1-

Since p, and ps5 are general points of the lines contracted by o onto respectively ps and
ps, we find o(e,,) = e,4, and o(e,,;) = €4, Where ¢q, g3 are points infinitely near to p, and
p3 respectively. In particular, writing

T, = {Ze,|qec B(P?), q¢is infinitely near or equal to ps or ps} C Z(P?),
Ty = {Ze,|qec B(P?), qis infinitely near or equal to p4} C Z(P?),

and writing V; = Zey ® Ze,, ® Zey, © Ze,, & T;, one observes that
a;0(T;) CT; and oo (V;) CV; for i = 2,3.

We then get, for i = 2,3, a linear map V;/T; — V;/T; given by a matrix M; with respect
to the basis e, €y, , €p,, €y, as follows :

21 1 1 2 1 1 1
00 0 0 1 -1 -1 0
My=1 1 ¢ 4 q |edMs=|f o 4

00 0 O 0 0 0 O
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We then compute

3 2 11 3 1 1 2
e | o 000 RO (RS R QS |
0O 000 00 0 0

Let us check that f := (ay0)? and g := (a30)? have dynamical lengths equal to 1.

The expression of A shows us that deg f = 3 and comult(f) < 3 —2 =1, so that f
is a Jonquiéres transformation. Set d_; = 0, dy = 1 and d,, = 3d,,_1 — d,,_5 for n > 1.
A straightforward induction on n would show that for each non-negative integer n, the
coefficients (1,1) and (1,3) of A" satisfy:

(An)l,l = dna (An)l,?) = dn - dn—l-

Since 2(d,, — d, 1) +1 > d,, it follows from Corollary 2.2.14 that d,, —d,,_; is the highest
multiplicity of f™. Therefore, a predecessor g, of f" satisfies

deg g, > comult(f") =d, — (d, — dp—1) = dp—1 = deg L

This proves that f"~! is a predecessor of f", so that lgth(f") = lgth(f""!) + 1, proving
that lgth(f") = n and dgu(f) = 1.

One would prove analogously that g has dynamical degree 1, since the coefficients
(1,1) and (1,4) of B™ satisty:

(Bn)l,l = dna (Bn>1,4 = dn - dn—l- O]

Corollary 4.6.3. We have

1 1 . .

52z0U 3220 C Oigen (Bir(P?)) = {dugen(f) | f € Bir(P*)}
Proof. Lemma 4.6.2 yields elements fs, f3 € Bir(P?) such that dig(f2) = 2 and g (f3) =
%. We then get 0ign(f2"") = 5 and 0 (f3"™) = % for each m > 0. O

4.7. Length of monomial transformations. Recall that the group GLy(Z) can be
viewed as the subgroup of monomial transformations of Bir(P?): a matrix < Z 3 )

corresponds to the transformation [x : y : 1] --» [2%° : 2y : 1]. In this section, we give
an algorithm to compute the length and dynamical length in Bir(P?) of all monomial
transformations.

In §4.7.1, we first introduce the submonoids Sg C SLy(Z)>o of SLa(Z) (see Lemma 4.7.1)
and explain how to compute the lengths of their elements. In §4.7.2, we deal with the
particular case of ordered elements (see Definition 4.7.7) and relate the computation
or their lengths with continued fractions (this relation is not needed in the sequel). In
§4.7.3, we give the length of every element of GLy(Z) by reducing to the case of ele-
ments of Sg (Lemma 4.7.11). The dynamical length of every element of GLy(Z) is then
computed in §4.7.4.
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4.7.1. The length of elements of SLy(Z)>o. In our first lemma we introduce some piece
of notation and recall basic results:

Lemma 4.7.1. Writing SLy(Z)so = {< ! 3 ) € SLy(Z)

a,b,c,d> 0}, we get:

(1) SLo(Z)so = Sp W Sg W {id} (disjoint union), where

S, = {(i Z)ESLQ(Z) “2520}

c>d>0 = SLa(Z)>0- L,
b 0<a<b
Srp = {(CCL d)ESLQ(Z)' Ozzzd} = SLy(Z)so- R.

(2) SLo(Z)>q is the free monoid generated by L =

(3)L.SL2(Z)>0.R—{(CC‘ S)ESLQ(Z)’ 0;a<i§§}.

Proof. We write
a>b>0 - a b
02020 (2 ) estce

SL:{(CCLfZ)esLQ(Z) 2}

and obtain S, U Sg C SLy(Z)>o. The sets Sp, Sg and {id} are pairwise disjoint. To
show SLy(Z)>o = Sp U Sgr U {id}, we take M = CCL cbl € SLa(Z)>o \ {id} and show
that M € S, USg. As a,b,c,d > 0 and ad — bc = 1, we have a,d > 0. If b = 0, then
a=d=1and c>0,s0 M = L° € S;. Similarly, if ¢ = 0, then M = R* € Sz. We can
thus assume that a, b, ¢,d > 0. The equality 1 = ad — bc = (a — b)d — b(c — d) shows us
that if @ — b is positive (resp. negative), then ¢ — d is non-negative (resp. non-positive).
We have therefore (a — b) - (¢ — d) > 0, which yields M € S; U Sg.

We then observe that SLo(Z)so - L C Sy and Sp - L' C SLy(Z)so, which yield
SLy(Z)so - L = S. We similarly obtain SLy(Z)>o - R = Sg. This yields (1), which

implies (2). Assertion (3) follows from

L-SLy(Z)so- R = (L-SLa(Z)0) N (SLa(Z)0 - R) = *(SLa(Z)s0 - R) N (SLa(Z)s0 - R). O

o o
IAINA

a
C

IAIA

Definition 4.7.2. For each sequence (si,...,s,) of positive integers with n > 1, we
denote by M(sy,...,s,) € Sg C SLy(Z)>o the element given by

M( ) = RenLPn=1... R®L2 R if n is odd,
S Sn) = psnRseci. L RSLRRY fnis even,

10 11
whereL:(1 1)’R:(O 1>€SL2(Z).

The length of M(sy,...,s,) in Bir(P?) is denoted by £(s1, ..., s,).

Remark 4.7.3. A matrix belongs to Sk if and only if it is of the form M (sq,. .., s,) where
n and sq,...,S, are positive integers.

The next proposition gives the length of an element of Sg:
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Proposition 4.7.4. Let n > 1. For each sequence (s1,...,S,) of positive integers,
M(s1,...,8,) is a product of {(sy,...,s,) elements of length 1 that are of the form
R, L°, LR® or RL® for some s > 1 and thus belong to SLa(Z)>o. Moreover, we have:

1 ifn=1,
1 ifn=2and sy =1,
0(S1,...,8,) = 2 ifn=2and sy # 1,
O(sg—1,83,...,8,)+1 ifn>3,80>2,
0(s3,...,8,) + 1 if n > 3,89 = 1.
Proof. We write M = M(sy,...,s,) =---L*>R**. For each s > 1, R®, LR® are

R: [z:y:z]w—[wy’iyz® 25t LR®: [w:y:z] --» [wyz: xysth: 2572
and thus have length equal to 1. The same holds for L*, RL® (by conjugating with 7,
see Remark 4.7.6). This gives the proof when n =1 or (n,ss) = (2,1). We thus assume
n > 3,orn =2 and sy > 2. Since lgth(LR*') = 1, we have Igth(M) < lgth(M’) + 1,
where M’ = M(LR*)~!'. Tt remains to show that equality holds to obtain the result
(using Remark 4.7.6). Applying Lemma 4.7.1, we can write

(a b ,(d bV [ a+(asi—b) b—as

M_(c d)’M _(c’ d’)_<c—|—(csl—d) d—cs
with b > a > 0,d > ¢ > 0 and a',V/,d,d > 0. The degrees of M and M’, as birational
maps of P2, are respectively D = max{a+0b,c+d} > 2 and D' = max{d' +V,d +d'} =

max{a, c}. The element M corresponds to the birational map

c d_D—c—d .

M:[x:y:z] - [2%P2P770 %z D]

z

)

which has degree D and exactly two proper base-points, namely p; = [1 : 0 : 0] and
pa = [0 : 1 : 0], having multiplicity m; = D — max{a,c} and my = D — max{b,d}
respectively. Hence, p; is a base-point of maximal multiplicity and every predecessor of

M has degree at least D —m; = D', O
Corollary 4.7.5. Letn > 1. If s1,...,s, and s} are positive integers, we have

0(s1y. .y 8n) = L(S], 82, -, 5n).
Proof. Directly follows from Proposition 4.7.4. U

Remark 4.7.6. The conjugation by 7 = ( (1) (1)

> € GLy(Z) exchanges L and R, so

((s1,...,5,) is also the length of

M 7 = Lo Rén=1 ... [ R%2 L5 if n is odd,
TS -5 8n)T = Rsnfsn-1... [3R2L5  if n is even.

Hence, Proposition 4.7.4 allows to compute the length of any element of SLy(Z)>o.

4.7.2. Ordered elements and continued fractions.

Definition 4.7.7. We say that an element M = ( Z 3 ) of SLy(Z) > is ordered if we

have 0 < a < b < dand 0 < a < ¢ < d. Equivalently, this means that M belongs to
L -SLy(Z)so - R (see Lemma 4.7.1(3)).
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Remark 4.7.8. In the above definition, as ad — bc = 1, we have a > 0, so that all
coefficients of M are positive.

We recall the following very classical result, whose proof is easy and well-known.

We keep it as it is short, and for self-containedness. See also [Fral949, Equation (22),
page 102] or [BPSZ2014, §2.1].
Proposition 4.7.9. A matriz M € SLy(Z) = CCL 2 > is ordered if and only if it may
be written in the form M = L R~ ... R®3L*>R*" for some integers si,...,S, > 1 with
n > 2 even. In this case, the integers si,...,S, and a,b,c,d are linked by the continued
fractions

b d

- =5+ and — =51+ 1

a N c L
1

1
So + ‘ 1 ‘
.+ P R
Sp—1 Sn,
Proof. The fact that a matrix M € SLy(Z) is ordered if and only if it can be written M =

Lo Rén=1 ... R[22 R% with n > 2 even and sq,...,s, > 1 follows from Lemma 4.7.1.
We then prove the equalities given by the continued fractions by induction on n.

1 S1
— 82 S1 ——
If n =2, then L?R" = sy Sisy 1 )

!/ /
Ifn>2,then(ccl Z) = <CCL, Z,)LSQRsl,WhereZ—::(Sg—l—;andi—f:
..+1

Sn—1
c c/s1+d (s15241) 1 b 1
= = =S8 and - =S . |:|
d c/+d'so 1 + 52_:,_6% a 1 + $9 Z’/

So +

b — d _ siso+l _ 1
so . =s;and £ = = =51

s3 + —L1—_ We replace these in

.. 1
'+5n

Remark 4.7.10. The above result, together with Proposition 4.7.4, gives a way to com-

pute the length of an ordered element A = < CCL 3 ) of SLy(Z) by writing ¢ as a contin-

ued fraction with an even number of terms. Let us for example take A = ( i? g? )
Since lf’Tl = 3~|—;1 =3+ %, we have A = M (3,5,7,1) by Proposition 4.7.9.
+ 3 5+ —T
7 +I

In particular, the length of A is equal to ¢(3,5,7,1) = ¢(4,7,1) + 1 =¢(6,1) +2 = 3 by
Proposition 4.7.4.

4.7.3. The length of elements of GLa(Z). We now give a way to compute the length of
any element of GLy(Z) by reducing to the case of elements of Sk, i.e. elements of the
form M(s1,...,58,).

Lemma 4.7.11. For each M € GLy(Z), the following hold:

(1) lgth(M) = 0 & M € GLy(Z) N Aut(P?) = << v ) , ( b )> ~ Sym,.

(2) There exist A, B € GLy(Z) N Aut(P?) such that either AMB or —AM B belongs
to SLQ(Z)ZO
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(3) Iflgth(M) > 1, there exist A, B € GLy(Z) N Aut(P?) such that either AMB or
—AMB is equal to M’ = M(sy, ..., s,) for somen > 1 and some positive integers
S1y...ySn > 1. We then have lgth(M) = lgth(M') (which can be computed
directly by Proposition 4.7.4).

Proof. (1): We observe that the group GLy(Z) N Aut(P?) corresponds to the group
Sym, of permutations of the coordinates, generated by [z : y : 2] — [y : z : 2] and
[:y:z]— [z:2z:y], which correspond to 7 = (1) (1) and v = (1) :1 .

(2): We consider the natural action of GLy(Z) on the circle P'(R) ~ S!, via GLy(Z) —
PGLy(R). This action induces an isomorphism between Symy = GLy(Z) N Aut(P?) and
the group of permutations of the set A = {[1 : 0],[0 : 1],[1 : 1]}. These three points

delimit the three closed intervals of P*(R) given by
L=Ala:f]l[azp =0} L={la:p]|0<a<p}ls={la:f][a=0,5<0}

0:1] 1,
]3 [1 : 1]
[1 :0 Il

Suppose first that M(A) is contained in the union of two of these three intervals. Re-
placing M with AM where A € Syms, we can assume that M(A) is contained in the
interval Iy U Iy = {[a: f] | a, B € Rxo}.

The open interval I3 being infinite, M () contains elements of P!(R)\ A. Replacing
then M with M B, with B € Sym,, we can assume that M~1(13) N5 # 0 or equivalently
M(I3)N 15 # 0.

We finish by replacing M with =M or £7M, to assume moreover that det(M) = 1
and that the first column of M has non-negative coefficients. It remains to observe that
M € SLy(Z)>p. Indeed, we have M = ( Cé 2 ) € SLy(Z) with a,¢ > 0 and bd > 0 since
[b:d € [UIL. Ifb,d > 0, we are done. Otherwise b, d < 0, which yields M (I3) C I U1,
contradicting M (I5) N I # 0.

To finish the proof of (2), we suppose that M(A) is not contained in the union of two
of the three intervals Iy, I5, I3 and derive a contradiction. This implies that the three
points of M(A) are in the interiors of three distinct intervals. Replacing M with +AM,
with A € Sym,, we can assume that M ([0 : 1]) € I, M([1 : 0]) € I, M([1 : 1]) € I3,
and that the coefficients of the first column of M are positive. The second column has
a —b

—d
yields det(M) = —ad + be = a(b — d) + b(c — a) > 2, a contradiction.

(3): Using (2), we find A, B € GLy(Z) N Aut(P?) such that M’ = +AM B belongs
to SLy(Z)>o. Since lgth(M) > 1, then M’ is not the identity. We can thus replace M’
with 7M'7 if needed and assume that M’ € S = SLy(Z)>o - R is an ordered matrix
(follows from Lemma 4.7.1). This implies that M’ has the desired form. It remains to
prove that lgth(M) = lgth(M'). If M’ = ABM, this is because lgth(A) = lgth(B) = 0.
If M' = —ABM, we observe that —M’ is a product of lgth(—M") elements of length 1

then negative coefficients. We get M = ) with 0 < a <cand b>d > 0. This
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of the form R*, L*, LR® or RL®, s > 1 (Proposition 4.7.4). Since
—R*: [yl [P iaytT i ayt], LR [wiycz] --» [25T gz ayf

have length 1, the same hold for —L*, — RL*® (using conjugation by 7 as in Remark 4.7.6).
We thus get lgth(M’) = lgth(—M’) = 1gth(M). O

4.7.4. The dynamical length of elements of GLy(Z). We begin to compute the dynamical
length of an ordered element (see Corollary 4.7.13 and Remark 4.7.14), then extend to the
case of a general element of SLy(7Z) (see Proposition 4.7.15). This provides the dynamical
length of every element of GLy(Z), as dign (M) = 301 (M?) for cach M € GLy(Z).

It will follow from our computation that din(SLa(Z)) = Z and 01 (GL2(Z)) = 37Z...

Finally, at the end of the section, we prove in Corollary 4.7.17 that an element of
GL3(Z) has dynamical length % if and only if it is conjugate in GLy(Z) to + ( (1) 1 )
Lemma 4.7.12. Let m,n > 1 and let (s1,...,8,), (t1,...,tm) be two sequences of
positive integers, such that t; > 2 and m > 2. We then have

6(51,...,Sn,t1,...,tm) :g(Sl,...,Sn)+£(t1,...7tm).

Proof. We prove the result by induction on n.
If n = 1, then Proposition 4.7.4 yields #(sy,t1,...,tm) = L(t1 — Lto, ... tn) +

Coroua:ry e g(tla t27 s 7tm) +1= €<81) + g(tb s 7tm)

If n =2 and sy = 1, then Proposition 4.7.4 yields €(s1, So,t1,...,tm) = C(t1, ..., tm)+
1 = lty,...,tm) + €(s1,82). If n = 2 and sy > 2, then Proposition 4.7.4 yields
0(s1, 89,11, .. ty) = L(sg — 1,t1,...,t,) + 1, which is equal to £(tq,...,t,) + 2 by
induction hypothesis. This achieves the proof since ¢(s;, s3) = 2 by Proposition 4.7.4.
If n > 3, then Proposition 4.7.4 yields

6(52—1,83,...,8n,t1,...,tm)+1 ifSQZZ,
g(Sg,...,Sn,th...,tm)—'—l if82:1.
sy —1,83,...,8,)+1 if 59 > 2,
0(s3y...,8,) + 1 if s9 =1,

1

6(81,...,8n,t1,...,tm) =

0(S1,...,8,) =

so the result follows by induction. O

Corollary 4.7.13. Let n > 2 be an even integer and let (s1,...,s,) be a sequence of
positive integers such that either s; > 2 or sy = --- = s, = 1. Then, the ordered element
M = M(s1,...,s,) € SLo(Z) satisfies
Oygtn (M) = lgth(M).
Proof. 1f s; = 2, then Lemma 4.7.12 yields lgth(M™) = m - lgth(M) for each m > 1,
which yields O, (M) = lgth(M).
Ifs; = - =s, =1, then M™ = ((LR)™)™. It then suffices to show that lgth((LR)") =

n for each n > 1. For n = 1, this is directly given by Proposition 4.7.4. For n > 1, we
also apply Proposition 4.7.4 and get lgth((LR)") = lgth((LR)"') + 1, which yields the

result by induction. O
Remark 4.7.14. Note that M(sy,...,s,) is conjugate in SLy(Z) to M(sa,...,Sn,s1).
Hence, each element M(sy,...,s,) admits a conjugate which satisfies the hypotheses of

Corollary 4.7.13.
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Proposition 4.7.15. Let M € SLy(Z).
(1) If trace(M) € {0,£1} then M has order m € {3,4,6} so 0ign(M) = 0.
(2) If trace(M) € {£2} then M is conjugate to i( La

0 1
Dlgth(M) — 0
(3) If [trace(M)| > 3 then £M is conjugate to an ordered element M', 50 0ign (M) =
Vgt (M) is a positive integer.

for some a € Z, so

Proof. Writing A = trace(M), the characteristic polynomial of M is equal to xy =
X2 —AX +1. If A € {0, £1}, we obtain then orders 3,4, 6, yielding (1). If A = £2, the
X = (X +£1)% so there is an eigenvector of eigenvalue +1, which can be choosen in Z?
with coprime coefficients. This yields (2).

In case (3) we can replace M with —M if needed and assume that A > 3. We will then
show that M is conjugate to an ordered matrix. The fact that A = trace(M) > 3 implies
that M has distinct positive real eigenvalues p, p=! with max{u, u='} = ’\J“Tm > 2.
Write M = ( CCL Z ) The two eigenspaces are spanned by two vectors (1,&;) and
(1,&), where &, & are nonzero reals (note that (1,0) and (0, 1) are not eigenvectors of
M since be # 0).

(a) If &€& < 0, then we may assume without loss of generality that & > 0 and
& < 0 (by exchanging the names of & and &). Up to replacing M with M~ we may
furthermore assume that we have p > 1, where we have used the two following facts:

(i) We have trace(M 1) = trace(M);
(ii) The inverse of an ordered matrix is conjugate to an ordered matrix since the

matrix P = ( _(1) (1) ) satisfies PR™'P~' = L and PL™'P~! = R.
a+b& =p 5(511—52)?#—#71 )
c+d& = p& L co§ =& )=pn—p o
Then, we have o+ by = ) which yields 0= il = b which in
c+dé = 6 d=p—&te

turn proves that b,c > 0, and then a,d > 0. Therefore, M belongs to the monoid
generated by L and R (Lemma 4.7.1). As trace(M) # 2, M is not conjugate to a matrix
of the form L® or R® for some s € Z and is thus conjugate to an element which starts
with L and ends with R, hence to an ordered element (Lemma 4.7.1). The result then
follows from Corollary 4.7.13.

(b) If there exists s € Z such that (§; + s)(§&2 + s) < 0, we conjugate M with L®. This
replaces &; with & + s and reduces to case (a).

(c) If (b) is not possible, there exists s € Z such that 0 < & +s < 1 for i = 1,2.
Replacing s with s — 1 if needed, we can rather assume that |§; + s| < 1 for both ¢ and
that | + s| < % for at least one i, which we will assume to be 1 (by exchanging the
names of & and &, if needed). Therefore, by conjugating M with L® we may assume

0 1
-1 0
with & = —é for i = 1,2 and we have [£] — &| = [&1 — & - \é] : ]é\ > 2. & — &l. After
finitely many such steps we obtain |{; — &| > 1, which then gives case (b). O

that |&| < & and |&] < 1. We then conjugate M with

5 ) This replaces &;
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Ezxample 4.7.16. The ordered matrices M (5,1) =

have lengths lgth(M(5,1)) = 1 and lgth(M(1,1,1,1
dynamical lengths

Ogen (M (5,1)) = 1gth(M(5,1)) = 1 and g (M(1,1,1,1)) = Igth(M(1,1,1,1)) =2

(Corollary 4.7.13). In particular, the matrices M(5,1), M(1,1,1,1) have different dy-
namical lengths, even if they have the same trace and determinant, and thus the same
eigenvalues and dynamical degrees.

and M(1,1,1,1) = (g g)

15
16
)) = 2 (Proposition 4.7.4), and then

)

Corollary 4.7.17. For each M € Gl(Z), the following conditions are equivalent:
(1) We have dign(M) = L.

2
(2) The matriz M is conjugate in GLy(Z) to +

(3) We have det(M) = —1 and trace(M) € {£1}.

01
1 1)

Proof. (2) = (3) is obvious.
(3) = (1). If M satisfies (3), we have trace(M?) = (trace(M))*—2det(M) = 3, so that
M? is conjugate to an ordered element of trace 3 by Proposition 4.7.15(3). The unique

1 ; ) = LR = M(1,1) of dynamical

ordered element of trace 3 being the matrix (
length 1, this proves (1).

(1) = (2). If M satisfies (1), we necessarily have det(M) = —1 and g (M?) = 1
(Proposition 4.7.15). By Proposition 4.7.15 and up to conjugation of M into GLy(Z),
there exists an element € € {+1} such that M’ := eM? is an ordered matrix satisfying
Ogen (M) = lIgth(M') = 1. This yields the existence of an integer s > 1 such that

M’:LR5:<1 Sj1>.WritingM:(Z Z),Weobtain

A2 — a?+be bla+d) (1 s
“\cela+d) d+be | 1 s+1)°
The equality c(a+d) = € gives us trace(M) = a+d = +1, so that (as above) trace(M?) =
(trace(M))? — 2det(M) = 3. This implies (s + 2) = 3, so that ¢ = s = 1. This proves
that b = ¢ = a +d € {£1} and since a* + bc = 1, we finally obtain a = 0 and

b:c:de{:lzl},provingthatM::I:((1) i) O

4.8. Dynamical length of regularisable elements and the proof of Theorem 2.
Recall the two following definitions:

Definition 4.8.1. An element f € Bir(P?) is said to be regularisable if there exists a
birational map n: X --» P2, where X is a smooth projective surface, such that n=! o
fomn e Aut(X). By [BlaDés2015, Theorem B|, this is equivalent to u(f) = 0, where p
denotes the dynamical number of base-points, as explained in the introduction. (The
statement of [BlaDés2015, Theorem B| is made over C but its proof works over any
algebraically closed field).
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Definition 4.8.2. An element f € Bir(P?) is said to be lozodromic if log(A(f)) >
0 (where A(f) = lim (deg(f™))"/" is the dynamical degree of f, as explained in the
n—oo

introduction).

It follows from [Giz1980, DF2001, BlaDés2015| that a Cremona transformation f €
Bir(P?) belongs to exactly one of the five following categories:

(1) Algebraic elements ;

(2) Jonquiéres twists: f € Bir(P?) is a Jonquiére twist if the sequence n —
deg(f™) grows linearly, i.e. if the sequence n % admits a nonzero limit
when n goes to infinity. Equivalently, f preserves a rational fibration P? --» P!
and is not algebraic;

(3) Halphen twists: f € Bir(P?) is a Halphen twist if the sequence n — deg(f™)
grows quadratically, i.e. if the sequence n — % admits a nonzero limit when
n goes to infinity. Equivalently, f preserves an elliptic fibration P? --» P! and is
not algebraic;

(4) Regularisable loxodromic elements: In this case, A(f) is a Salem number or
a reciprocical quadratic integer (see [DF2001, BlaCan2016]);

(5) Non-regularisable loxodromic elements: In this case, A(f) is a Pisot number

by [BlaCan2016].

If f is a Halphen twist or a regularisable loxodromic element, we will prove that
the dynamical length 944, (f) is positive in Corollary 4.8.6 and Proposition 4.8.8. In
Lemma 4.6.1, an example of non-regularisable loxodromic element f € Bir(P?) whose
dynamical length 04, (f) is positive was given. These results are summarised in Figure 1
and achieve the proof of Theorem 2.

The following result follows from the proof of [BlaCan2016, Lemma 5.10].

Lemma 4.8.3. Let fi, fo € W, be two elements such that Base(fi)UBase(fa) contains
at most 9 points. Then,

\/deg(fio fo') < \/deg(f1) + v/deg(f2)

Lemma 4.8.4. Let ¢ € Bir(P?) \ Aut(P?) be a birational map, and let r be its number
of base-points. Recall that we have r > 3 by Lemma 3.1.5. Then, the following hold:

(1) lgth(¢) > log(deg(w))_

= log(“H)

(2) Ifr <9, then lgth(y) > /28,
Proof. We prove the result by induction on Igth(¢)). When lgth(¢)) = 1, then ®¢ is a
Jonquiéres transformation of degree d = deg(v) > 1, which implies that r = 2 deg(¢))—1.
Hence, (1) is an equality and (2) holds, as r < 9 yields deg(¢)) < 5.

Suppose now that Igth(¢)) > 1, and let ¢ € Bir(P?) be a Jonquiéres element such that
W' =) o p is a predecessor of ¢ (which implies in particular that lgth(y)') = lgth(¢)) —
1). We then have Base(p™!) C Base(v) (Lemma 1.1.3), which yields Base(y/~') C
Base(¢)~1) (Corollary 2.2.10). This proves that ¢ and 1)’ have at most r base-points. In

particular, we have deg(p) < =31
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To prove (1) we start with deg(y) < deg(¢’) - deg(p) < deg(¢’) - “, which yields
log(deg(v)) < log(deg(¢'))+log(*$*). Applying induction to ¢, we then get —log(deg( ) <

og("5+)
lolgo(gd(ei(llb))) + 1 <lgth(¢’) + 1 = 1gth()), as desired.

To prove (2), we denote by m: Z — P? the blow-up of the base-points of ¢=1. As
Base(¢ ™) C Base(t), there is a birational morphism e: X — Z, such that 7 o € is the
blow-up of the base-points of ). We then get a commutative diagram

where 7, are the blow-ups of the base-points of ¢ and ¢! respectively. As 7’ blows-up
r points, the same holds for noe. Hence, we find that Base(¢’)UBase(y) C Base((noe)™1)
contains at most r < 9 points. We can then apply Lemma 4.8.3, which yields y/deg(y)) =

Vdeg(y o 1) < y/deg(¥') + /deg(p) < \/deg(y) + V5. Applying induction to v/,
we find

deg(y) _  [deg(v)

. —— + 1 <lgth(¢) + 1 = Igth(s). O

Proposition 4.8.5. Let m: X — P? be a birational morphism which is the blow-up of at

most 9 points and let p € m Aut(X)r~! C Bir(P?) be a Cremona transformation. Then,

deg (™)
n2

the sequence n +— admits a limit L € R when n goes to infinity and we have

Vigtn () > %

Proof. Denote by A C B(P?) the set of points blown-up by 7. For each n € Z, we
have Base( ") C A In particular we have /deg(p™t") = /deg(p™ o (p=")1) <

Vdeg(o™) + \/deg(p) = /deg(p™) + \/deg ) for all m,n > 1 (Lemma 4.8.3).
This means that the sequence n — y/deg(y") is subadditive, so lim w exists,
n—oo

which is equivalent to saying that lim exists.

n—oo

For each n > 1, the number of base-points of ¢" is at most 9. This yields lgth(¢™) >
\/ deg( ") (Lemma 4.8.4(2)), whence lgthffn) > 1/ 28 and the result follows by taking

deg(p™)
TL2

5n2
the hmlt when n goes to infinity. O

Corollary 4.8.6. If v € Bir(P?) is a birational transformation such that (deg( ") ps1
deg(

grows quadratically (i.e. ¢ is a Halphen twist), then dign(¢) > \/% - lim ) > 0.
n—oo
Proof. A birational transformation of P? has a quadratic growth if and only if it is

conjugate to an automorphism of a Halphen surface, obtained by blowing-up 9 points
of P? |Giz1980]. The result then follows from Proposition 4.8.5. O
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Remark 4.8.7. Using an analogue method as in [BlaDés2015, Proposition 5.1] we are
able to give a uniform lower bound C' > 0 such that 9, (¢) > C for all Halphen twists.
However, this bound is far from being reached from the known examples.

Proposition 4.8.8. Let ¢ € Bir(P?) be a lozodromic birational map which is reqular-
isable, i.e. such that there exists a birational map r: P? -+ X that conjugates ¢ to an
automorphism g = ko @ o k™t € Aut(X) where X is a smooth projective surface.

Then, each X as above is isomorphic to the blow-up of finitely many points p1,...,p, €
B(P?) with r > 10, and the dynamical length of ¢ satisfies Digm(p) > ﬁgg((’\—rﬁ))) > 0.

2

Proof. We first show that there exists a birational morphism n: X — P2. Suppose the
converse, for contradiction. Then, [Har1987, Corollary 1.2| implies that the action of
Aut(X) on Pic(X) is finite (i.e. factorises through the action of a finite group). This is
impossible: the dynamical degree of g, equal to the one of ¢ as both are conjugate, is
the spectral radius of the action of g on Pic(X) ®z C (see the introductions of [DF2001|
and [BlaCan2016] for details on these two facts). This dynamical degree is therefore
equal to 1, contradicting the fact that ¢ is loxodromic.

We then obtain the existence of a birational morphism 1: X — P? which is the blow-
up of finitely many points pi,...,p, € B(P?). Observe moreover that r > 10 because
¢ is loxodromic. One way to see this classical fact is to use Proposition 4.8.5 which
implies that {deg(¢")},>1 grows at most quadratically if » < 9, where p =nogon™ '
This is impossible since {deg(¢™)},>1 grows exponentially and because ¢, € Bir(P?)
are conjugate (by n o r € Bir(P?)).

We then replace ¢ with its conjugate no gon~ € Bir(P?). After this, we get " =
nog*on! for each n > 1, so Base(¢") C {p1,...,p,}. By Lemma 4.8.4(1) we have
lgth(pn) > eldesle™) - prom ILm (deg(™)Y™ = M), we deduce lim ‘egldes) —

- log( T;il) n—00 n

log(A(¢)), which then yields

. lgth(e™) _ . log(deg(¢™)) _ log(A(y))
= lim =————= > 1 = 0
Qn(p) = lim = 2 i e () T Tog(RY)

as desired. O
Lemma 4.8.9. Every element of Aut(P?) is distorted in Bir(P?).

Proof. Let us first start with a diagonalisable element of Aut(P?). Up to conjugation, we
may assume that this element is locally given in the diagonal form g: (z,y) — (az, fy)
for some a, 8 € k*. Consider the monomial transformation 7: (x,y) --+ (y, zy) (which is
a monomial transformation of minimal positive dynamical length by Corollary 4.7.17).
For each n > 1 we obtain 7": (x,y) --» (x%1y x%y*+) where (ag,as,as, ) =
(0,1,1,2,3,5,8,--+) is the Fibonacci sequence. We then set p: (z,y) — (y,z) and
k: (z,y) --» (274 y), and get 1 = 7" 0 p: (x,y) --» (x¥y®—1 2%+1y9) and @, =
Ko pr ok (y) —-r (a™y i aT Y ) s0 progopr opogopy: (v,y) =
(@®ang, B2iny) = g?n. Hence, writing F' = {g,7,p,x} C Bir(P?), we get |¢**|r <
2(l¢1|F + |@2lF + l9lF) < 4n + 10. This implies that ¢ is distorted, since lim = = 0.

n—oo 4n
We now consider the case of a non-diagonalisable element of Aut(P?). This element is

either conjugate to g: [x :y : z] — [ax 1y + 2z : 2] for some a € k* or to h: [x :y : 2] —
[t +y:y+z:z]. If char(k) = p > 0, then g” and hP* are diagonal and thus distorted,
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so g and h are distorted. Hence, we may assume that char(k) = 0. Write g, h locally as
g: (z,y) = (az,y+1) and h: (x,y) — (v +y,y + 1), and observe that we only need to
show that g is distorted, as h is conjugate to g (with a = 1) by (z,y) — (x — @, Y).
As g is the composition of the two commuting automorphisms ¢: (z,y) — (x,y+1) and
r: (z,y) — (ax,y), it suffices to prove that both ¢ and r are distorted. As r is diagonal,
we only need to show that ¢ is distorted. We set ¢: (z,y) — (x,2y) and F' = {q, ¢}.
For each n > 1 we have ¢" o qo ¢~ = ¢*". Hence |¢*"|r< 2n + 1, which implies that ¢

is distorted. O

We finish this section by recalling the following result, stated in [BlaDés2015] for
k = C, but whose proof in fact works for each algebraically closed field, as we explain
Nnow:

Proposition 4.8.10. An element ¢ € Bir(P?) is algebraic if and only if it is of finite
order or conjugate to an element of Aut(P?).

Proof. By definition, every element of finite order or conjugate to an element of Aut(P?)
is algebraic. It then remains to show that an algebraic element ¢ € Aut(P?) of infinite
order is conjugate to an element of Aut(P?). As ¢ is algebraic, we can conjugate ¢
to an element g € Aut(S), where S is a smooth projective rational surface, and such
that the action on Pic(S) is finite. There exists then a birational morphism S — X,
where X = P? or X is a Hirzebruch surface F,, for some n > 0 (see |[BlaDés2015,
Proposition 2.1], which is stated in the case where k = C but whose proof works over
any algebraically closed field ; it is proven there that we may assume n # 1, but we
will not need it). If X = P? we are done. The reduction to this case is then done in
[BlaDés2015, Proposition 2.1] for k = C; we follow the proof checking what is dependent
of the field. If X = Fy = P! x P!, we blow-up a fixed point (which exists as every
automorphism of P! x P! is of the form (u,v) — (71(u), 72(v)) or (u,v) — (12(v), 71 (u))
where 71, 7 are automorphisms of P! and as each automorphism of P! fixes at least a
point of P!) and contract the strict transforms of the two horizontal and vertical lines
of self-intersection 0 through the point, to get a birational map X --» P2, As the point
is fixed and the union of the two curves contracted is invariant, we obtain an element of
Aut(P?).

It remains to consider the case of the Hirzebruch surface F,, with n > 1. Recall that
I, is the quotient of (A?\ {0})? by the action of (G,,)? given by

(Gn)? x (A*\{0})* — (A%\ {0})?
(1, 0), (o, y1, 20, 21)) = (P~ "Yo, By1, P20, P1)-

The class of (yo,y1, 20, 21) is denoted by [yo : y1;20 : 21] and the natural P!-fibration
F,, — P! [yo : y1;20 : 21] — [20 : 21] by 7. Tt is well-known that each automorphism of
IF,, exchanges the fibres of 7 and is of the form

(Yo : Y1520 21) = [Yo : y1 + Yo P (20, 21); azg + bz1 : czo + c21]

for some ( CCL 3 € GLy(k) and some polynomial P € k[z, z1], homogeneous of de-
gree n. If one point of IF,, that does no lie on the exceptional section s given by yo = 0 is
fixed, we can perform the elementary link F,, --+ [F,,_; (blowing up the point and con-

tracting the strict transform of the fibre through that point) to decrease the integer n.
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We can thus assume that each fixed point of g is on the exceptional section. Conjugating
by an element of GLy(k), we obtain two possibilities, namely

o :yi;20:21] = [yo: y1 +yoP (20, 21); Azo t pza] or
[Yo :y1520 : 21] = [yo 1 1 + Yo P (20, 21); Az Az1 + 2]
for some A\, pu € k*.
In the first case, the actions on the two fibres zy = 0 and z; = 0 having no fixed points
outside of s, we have \" = p™ =1 and P(0,1)P(1,0) # 0.
In the second case, the action on the fibre z; = 0 having no fixed points outside of s
implies that A" =1 and P(1,0) # 0.
In both cases, we look at the action on the image of the open embedding A? — F,,,
(x,y) — [1:x;1:y]. This action is given respectively by

(,y) — (a:—i—P(l,y),%y) or (z,y) — (x+P(1,y),y—|— %) .

In the first case, we write p(y) = P(1,y) and o = £ € k*, where «a is a primitive
k-th root of unity for some integer £ > 1 that divides n. We can conjugate with
(z,y) = (x4 vy, y) and replace p(y) with p(y) + v(a? — 1)y?, so we may assume that
p € k[y*]. We then conjugate with (x,y) — (ﬁ, y) to obtain (x,y) — (z+ 1, ay) which
actually induces an automorphism of P2

In the second case, we necessarily have char(k) = 0, as otherwise g would be of
finite order. We write p(y) = P(1,y) and § = § € k*. It is enough to prove that
the polynomial automorphism of A% given by (z,y) — (x + p(y),y + B3) is conjugate
to the affine polynomial automorphism a: (z,y) — (x,y + ). Conjugating a with
the polynomial automorphism (x,y) — (z 4 q(y),y), where ¢ is a polynomial, we get
the polynomial automorphism (z,y) — (z + q(y + o) — q(y),y + ). Since we are in
characteristic zero, there exists a polynomial ¢ such that ¢(y + ) — q(y) = p(y). O

5. LOWER SEMICONTINUITY OF THE LENGTH: THE PROOF OF THEOREM 3

Throughout this section, IT: P? --» P! will denote the standard linear projection

P2 --» P!
[x:y:z] — |x:y]

5.1. Variables. The proof of Theorem 3 uses the notion of variables, that we now define.

Definition 5.1.1. A rational map v: P2 —-» P! is called a variable, if there exists a
birational map f € Bir(P?) such that ITo f = v.

Writing a variable v: P2 --» P as [z : y : 2] --» [vo(z, ¥, 2) : vi(x, ¥y, 2)] where vy, v, €
k[x,y, z] are homogeneous of the same degree, without common factor, we define its
degree as the common degree of vy and v; (which is also the degree of a general fibre
of v).
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Remark 5.1.2. Let us make the following observations:

(1) A rational map v: P? --» P! is a variable if and only if there exists a rational
map w: P? --» P! such that the rational map (v, w): P? --» P! x P! is birational.

(2) Writing a rational map v: P? --» Pl as [z : y : 2] --» [vo(z,y,2) : vi(z,vy, 2)]
where vy, v; € k[z,y, 2| are homogeneous of the same degree d, then v is a
variable if and only if there exist an integer D > d and homogeneous polynomials
h,vy € K[z, y, 2] of degrees D — d and D, such that [z : y : z] -=» [hvg : hvy @ vg]
is an element of Bir(P?).

(3) For each p € P?, every projection 7,: P? --» P! away from p is a variable of
degree 1. Conversely, all variables of degree 1 are obtained like this.

(4) The group Bir(P?) acts transitively on the set of variables by right composition.
Similarly, Aut(P') acts on the set of variables by left-composition.

Definition 5.1.3. Let v: P? --s P! be a variable. We define the length of v, written
lgth(v), to be the minimum of the lengths of the birational maps ¢ € Bir(P?) such that
Moy =w.

Lemma 5.1.4. Letv: P? --» P! be a variable. For each ¢ € Bir(P?) such that Ilop = v,
we have

lgth(¢) € {lgth(v), lgth(v) + 1}.

Proof. By definition, there exists ¢ € Bir(PP?) such that [Tot = v and Igth(¢)) = lgth(v).
Since ITo o (1)~ =TI, the map po(¢p) 7! is a Jonquiéres transformation, which implies
that the lengths of ¢ and ¢ differ at most by one. As lgth(v) < lgth(y) by definition,
we get the result. O

Lemma 5.1.5. Let v: P? -5 P! be a variable, and let 0: P' — P! be a morphism.
Then, the following are equivalent:

(1) The rational map 0 ov: P* --» P! is a variable.
(2) The morphism 0: P1 — P! is an automorphism.

Proof. (1)=-(2): If § o v is a variable, its general scheme theoretic fibre is irreducible,
and hence the general scheme theoretic fibre of  is irreducible as well. This proves that
0 has degree 0 or 1. As 6 o v is non-constant, so is #, which is thus an automorphism.
(2)=(1): If 6 is an automorphism of P!, we have already noted in Remark 5.1.2(4)
that 6 o v is a variable. O

Lemma 5.1.6. Let f: P? --» P? be a non-dominant and non-constant rational map and
let v: P2 ——» P! be a variable. Then, the following are equivalent:

(1) There exists a morphism r: P! — P? such that kov = f.

(2) For each linear projection w: P?> --» P!, there exists a morphism 0: P! — P!
such that mo f =60 ow.

(3) There exists a linear projection w: P? --» P! and a non-constant morphism
0: P! — P! such that mo f = 6 ow.

Proof. As f is non-constant, 7w o f: P? --» P! is a well-defined rational map for each
linear projection 7: P? --» PL.
(1) = (2): For each linear projection 7: P? --» P! we get mo f = (T oK) 0w,
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(2) = (3): Since f is not constant, there is a linear projection 7: P? --» P! such that
mo f is not constant.

(3) = (1): Let us choose a € Aut(P?), 8 € Aut(P!), and g € Bir(P?) such that
fomoa=wvog=II. We then replace (r, f,6,v) with (Boroa,a o fog,fof,v0g)
and can assume that 7 =v = II.

We write locally the non-constant morphism 6: P! — P! as [1 : t] --» [1 : r(t)] for
some 7(t) € k(t) \ k. The equation ITo f = 6 o IT implies that f is locally given as

[1:t:u]l --»[1:r(t): s(t,u)]

for some rational function s € k(t,u). As f is not dominant, the two elements s(¢, u)
and r(t) are algebraically dependent over k. Since k(t) is algebraically closed in k(¢, u),
this shows that s € k(¢). We can thus write f as

[z:y: 2] - [fo(z,y) : filz,y) : falz,y)]

for some homogeneous polynomials fy, fi1, fo € klx,y], and can choose k: P! — P2 to be

[u:v] = [folu,v) : fi(u,v): fou,v)]. O

5.2. Definition of the Zariski topology on Bir(P?) and basic properties. Follow-
ing [Dem1970, Ser2010], the notion of families of birational maps is defined, and used in
Definition 5.2.2 for describing the natural Zariski topology on Bir(X).

Definition 5.2.1. Let A, X be irreducible algebraic varieties, and let f be a A-birational
map of the A-variety A x X, inducing an isomorphism U — V', where U,V are open
subsets of A x X, whose projections on A are surjective.

The rational map f is given by (a,z) --+ (a,p2(f(a,z))), where py is the second
projection, and for each k-point a € A, the birational map = --+ ps(f(a, z)) corresponds
to an element f, € Bir(X). The map a — f, represents a map from A (more precisely
from the k-points of A) to Bir(X), and will be called a morphism from A to Bir(X).

Definition 5.2.2. A subset F' C Bir(X) is closed in the Zariski topology if for any
algebraic variety A and any morphism A — Bir(X) the preimage of F'is closed.

If d is a positive integer, we set Bir(P?); := {f € Bir(P?), deg(f) < d}. We will use
the following result, which is |[BlaFur2013, Proposition 2.10]:

Lemma 5.2.3. A subset F' C Bir(P?) is closed if and only if F N Bir(P?), is closed in
Bir(P?)y for any d.

The aim of this whole section 5 is to prove that for each non-negative integer ¢ the set
Bir(P?)* .= {f € Bir(P?), lgth(f) < ¢}

is closed in Bir(P?). By Lemma 5.2.3, this is equivalent to proving that Bir(P?)§ :=
Bir(P?), N Bir(P?)¢ is closed in Bir(IP?), for any d. We will now describe the topology of
Bir(P?);. A convenient way to handle this topology is through the map m;: Bir(P?); —
Bir(P?),; that we introduce in the next definition and whose properties are given in
Lemma 5.2.7 below.

Let us now fix the integer d > 1. We will constantly use the following piece of notation:
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Definition 5.2.4. Denote by RRat(P?), the projective space associated with the vector
space of triples (fo, f1, f2) where fo, f1, fo € k[z,y, z] are homogeneous polynomials of
degree d. The equivalence class of (fy, f1, f2) will be denoted by [fo : f1: fo].

For each f = [fo : f1: f2] € Rat(P?),, we denote by ¢, the rational map P? --» P2
defined by

[To 2 w1 2 @a] = [folwo, 21, 2) & fi(wo, 71, 2) ¢ fowo, 71, 72)].

Writing Rat(P?) the set of rational maps from P? to P? and setting Rat(P?)y := {h €
Rat(P?), deg(h) < d}, we obtain a surjective map

v, %at(]PQ)d — Rat(]P’Q)d, f — wf'

This map induces a surjective map m4: Bit(P?); — Bir(P?)4, where Bit(P?), is defined
to be W' (Bir(P?),).

Remark 5.2.5. For each field extension k C k’, we can similarly associate to each f €
Rat(P?),(k') a rational transformation ¢;: PZ, --» P}, defined over k’. This will be
needed in the sequel to use a valuative criterion.

We will need the following result:

Proposition 5.2.6. The set Bit(P?), is locally closed in Rat(P?); and thus inherits
from Rat(P?), the structure of an algebraic variety. Moreover, the following assertions
hold:
(1) For each f € Bir(P?), \ Bie(P?),, the rational map yp: P? --» P? is non-
dominant.
(2) For each field extension k C K, the set Bir(P?) (k') of K -points of Bic(P?), is
equal to the set {f € Rat(P?)y(K'), os: PE --» PL is birational }.

Proof. Even if the first assertion is [BlaFur2013, Lemma 2.4(2)], we recall the argument
since it will be used to prove the rest of the proposition. Denote by F C Rat(P?); x
Rat(P?), the closed algebraic variety corresponding to pairs ([go : g1 : g2], [fo : f1 1 fo])
such that the “formal composition”

go f=1lho:hi:he) =[g0(fo, f1, f2) : 91(fo, [1, [2) = go(fo, f1, f2)]

is a “multiple” (maybe zero) of the identity. This corresponds to asking that hoy = hix,
hoz = hex, hiz = hsy. We then define Fy C F to be the closed subset such that the
formal composition is zero. If (g, f) € Fp, let us observe that the formal composition
g o f is zero, so that the rational map t¢;: P? --» P? is non-dominant. Conversely,
if (g, f) € F'\ Fo, the formal composition g o f is non-zero, so that the rational map
Yyp: P? --» P? is birational.

The second projection pry: Rat(P?), x Rat(P?); — Rat(P?), yields two closed subva-
rieties

Go = pI'Q(Fo) - G = pI'Q(F) - %at(]P’Q)d.

By what has been said above, 1 is non-dominant when f € G, and birational when
f € G\ Gy. Tt follows that (G \ Gy) C Bir(P?),. Since deg(p!) = deg(yp) for each
¢ € Bir(P?) (Lemma 2.2.5(3)), we even get the equality Bit(P?); = G\ Go. This shows
that Bir(P?), is locally closed in Rat(PP?)y, and also gives (1). To obtain (2), we observe
that the construction made in the proof is defined over k’, and that the inverse of any
birational transformation of P? defined over k' is still defined over k'. OJ
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The following result, which is [BlaFur2013, Corollary 2.9|, will be crucial for us since it
provides us a bridge from the “weird” topological space Bir(PP?), to the “nice” topological
space Bir(P?), which is an algebraic variety.

Lemma 5.2.7. The map 7q: Bir(P?); — Bir(P?), is continuous and closed. In partic-
ular, it is a quotient topological map: A subset F' C Bir(IP?), is closed if and only if its
preimage ;' (F) is closed.

Recall that our aim is to prove that Bir(P?) = {f € Bir(P?)y, lgth(f) < ¢} is closed
in Bir(P?);. By Lemma 5.2.7, this reduces to prove that Bir(P?)} := 7' (Bir(P?)%) is
closed in (the algebraic variety) Bit(P?),.

We conclude this section by noting that the conjonction of Lemmas 5.2.3 and 5.2.7

gives us the following usefull characterisation (already contained in [BlaFur2013, Corol-
lary 2.7]) of closed subsets of Bir(P?):

Lemma 5.2.8. A subset F C Bir(P?) is closed if and only if =;*(F N Bir(P?),) C
Bir(P?), is closed for any d.

5.3. The use of a valuative criterion. Let us set
R:=Xk[[t]], and K :=Xk((¢)),

where k[[t]] is the ring of formal power series and k((t)) its field of fractions (also known
as formal Laurent series).

We will also write K = J,-, k((t/*)) since this latter field is an algebraic closure of
K by Newton-Puiseux theorem [Rui1993, Proposition 4.4].

Definition 5.3.1. Let n > 1 be an integer and let a = a(t) = [ag : -+ - : a,] € P"(K) be a
K-point of the n-th projective space P". Then, up to multiplying (ay, . .., a,) with some
power of t, we may assume that all coefficients a; belong to R and that the evaluation
(ap(0),...,a,(0)) at t = 0 is nonzero. This enables us to define non ambigously the
element a(0) € P", also denoted PH(I) a(t), by

—

a(0) =lima(t) := [ao(0) : - - - : a,(0)].

t—0
Remark 5.3.2. More generally, if X is a complete k-variety and x = z(t) € X(K)
is a K-point of X, one can define z(0) = Pna z(t) € X in the following way: The

_)

morphism z: Spec(K) — X admits a unique factorisation of the form = = Z o+ where
t: Spec(K) < Spec(R) is the open immersion induced by the natural injection R — K
and where : Spec(R) — X is a k-morphism (see the valuative criterion of properness
given in [Har1977, (II, Theorem 4.7), page 101]).

The following valuative criterion is classical, see e.g. [MFK1994, chap. 2, §1, pp 52-
54]. We refer to [Fur2009] for a proof in characteristic zero and to [Bla2016| for a proof
in any characteristic.

Lemma 5.3.3. Let ¢: X — Y be a morphism between algebraic k-varieties, X being
quasi-projective, and Y being projective. Let yo be a (closed) point of Y. Then, the two
following assertions are equivalent:

(1) We have yo € p(X);
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(2) There exists a K-point x = x(t) € X(K) such that the K-point y = y(t) =
o(x(t)) € Y(K) satisfied yo = y(0).
Remark 5.3.4. Lemma 5.3.3 is analogue to the case of a continuous map ¢: X — Y

between metric spaces where a point yy of Y belongs to ¢(X) if and only if there exists
a sequence (x,),>1 of X such that yy = lirf o(xy,).
- n——+oo

Remark 5.3.5. Applying Definition 5.3.1 to an element f = f(t) = [fo : f1 : fo] of
Rat(P?),(K) allows us to define f(0) € Rat(P?);. If we assume furthermore that
[ € Bir(P?)y(K) C Rat(P?)y4(K), note that f(0) necessarily belongs to Bir(P?); by
Lemma 5.3.3, so that ¢ s): P* — P? is either birational or non-dominant by Proposi-
tion 5.2.6. Let us recall for clarity that for any f € PRat(P?);(K), we have defined a
K-rational transformation ¢;: P5 --» P% in Remark 5.2.5, and that this transformation
is moreover birational if we assume that f € Bir(P?),(K) by Proposition 5.2.6(2).

We will prove that Bit(P?)4 is closed in Bir(P?),;. For this, we will prove that its
closure Bit(P?)} in Rat(P?); is such that Bic(P2)) N Bic(P?), = Bir(P?). We begin
with the following result which is just a (technical) application of the valuative criterion
given above. If k' is an extension field of k, Auty (P?) ~ PGL3(k'), resp. Biry(P?),
denotes the group of automorphisms, resp. birational transformations, of P? defined over
k’. Actually, we will only consider the cases where k' = K (since we will use the valuative

criterion given in Lemma 5.3.3) and where k' = K (since we need an algebraically closed
field in order to apply the machinery about the length that we have developed).

Proposition 5.3.6. For any h € Bic(P?)} there exists f € Bir(P?)y(K) such that
h = f(0), and such that the birational map 1; € Birg(P?) associated to f € Bir(P?)4(K)
has length at most £.

The proof of Proposition 5.3.6 relies on the two following lemmas:

Lemma 5.3.7. For each p € P?, the set Jong,q := V' (Jonq, N Bir(P?),) is closed in
%it(IPﬂ)d.

Proof. Up to applying an automorphism of P?, we may assume that p = [0 : 0 : 1].
Denote by £ the projective space (of dimension 3) associated with the vector space
of pairs (go,g1) where go, g1 € k[z,y] are homogeneous polynomials of degree 1. The
equivalence class of (go, g1) will be denoted by [go : g1]. Denote by Y C Bir(P?); x £
the closed subvariety given by elements ([fo : f1 : fa], [g0 @ ¢1]) satisfying fog1 = figo-
Since the first projection pry: Bir(P?); x £ — Bir(P?), is a closed morphism, the lemma
follows from the equality Jong, s = pr;(Y). O

Remark 5.3.8. Lemma 5.3.7 asserts that Jong, s = m,;'(Jong, N Bir(P?),) is closed in
Bit(P?), for each d. By Lemma 5.2.8, this means that Jong, is closed in Bir(IP?).

Lemma 5.3.9. Any Cremona transformation g € Bir(P?) of length { admits an expres-
sion of the form
g=a10{p10-:+0ar0 PO a1,

where ay, . .., ap 1 € Aut(P?), ¢1,..., 00 € Jong,,, and deg(yp;) < deg(g) for each i.
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Proof. This follows from Theorem 1 and the fact that if ¢ is a Jonquiéres transformation
such that go ¢ is a predecessor of g, then Base(¢ ') C Base(g) (Lemma 1.1.3(3)), which
implies that g hast at least 2 deg(y) — 1 base-points, so deg(g) > deg(p) (every element
of Bir(P?) of degree d > 2 has at most 2d — 1 points, and equality holds if and only if
the map is Jonquiéres [BCM2015, Lemma 13]). O

Proof of Proposition 5.3.6. In order to use Lemma 5.3.3, we realise Bit(P?) as the image
of a morphism of algebraic varieties. Let us fix p=[0:0: 1] € P2. By Lemma 5.3.9, an
element f of Bir(P?),; belongs to Bir(P?) if and only if the birational transformation
1 admits an expression of the form

Y =0a10@1 000 PO a1,

where a1, ..., ap1 € Aut(P?), @1, ..., ¢, € Jong,, and degp; < d for each i.

We now use the closed subvariety Jong, s C Bir(P?), given in Lemma 5.3.7. Define
the product P := (PGL3)"*! x (Jong, )" and let Comp: P — Bir(P?)y be the formal
composition morphism defined by

(ai)i<i<es1 X (@i)i<ice F> a10P10-++0ap0 PO ap.

Let A C Bir(P?); x Bir(P?)x be the pseudo-diagonal, i.e. the set of pairs (f,g)
such that ¢y = 1,. Being given by the equations f;g; = f;g;, for all 7, j, where f =
[fo : f1: fo] € Bix(PHy, g = [g0 : 91 : g2] € Bir(P?)ye, the set A is closed into
Bir(P?),; x Bir(P?) .

Denote by id x €omp: Bir(P?); x P — Bir(P?)y x Bir(P?),, the morphism sending
(f,p) to (f,Comp(p)) and by A’ the closed variety defined by

A" = (id x€omp) H(A) C Bir(P?), x P.

By what has been said above, we have Bit(P?)§ = pr;(A’) where pry : Bir(P?); x P —
Bir(P?), is the first projection. Setting ¢ = 1o pr; where ¢: Bit(P?); — Rat(P?), is the
natural injection, we also have Bit(P?)§ = p(A’).

Since h € p(A’), Lemma 5.3.3 yields us the existence of an element (f,p) = (f(t),p(t)) €
A'(K) C Bir(P?)4(K) x B(K) such that h = f(0). We observe that the birational map

Y € Birg(P?) associated to f € Bir(P?)4(K) has length at most /. O

5.4. The end of the proof of Theorem 3. The main result of the previous section
(Proposition 5.3.6) asserts that any element h € Bit(P?)4 is equal to f(0) for a certain
element f € Bir(P?),(K) such that the length of ¢); € Birg(P?) is at most ¢. The
main technical result of the present section is Proposition 5.4.2 which establishes that
the limit ¢¢(): P? --» P? is either birational of length < ¢ or non-dominant (however,
in the non-dominant case, we need to prove a stronger statement in order to make an
induction). This information is sufficient for showing that Bit(P?)5 is closed in Bit(P?),
thus proving Theorem 3. We begin with the following simple lemma to be used in the
proof of Proposition 5.4.2.

Lemma 5.4.1. Let V be a finite dimensional vector space over k and let u,v € K @3V
be two vectors such that

(1) The vectors u,v are linearly independent over K ;
(2) The vector v belongs to R @y V' and its evaluation v(0) at t = 0 is nonzero.
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Then, there exist a, B € K such that:

(1) The vector @ := au + [v belongs to R ®; V;
(2) The vectors u(0) and v(0) are linearly independent over k.

Proof. Let us complete the vector e; := v(0) in a basis ey,..., e, of V. Decomposing
the vectors u, v in this basis, we obtain expressions

UZE Ui€i, UZE Vi€,
i i

where uy,...,u, € K, vy,...,v, € R and v;(0) = 1,v;(0) = 0 for i = 2,...,n. The
vector w := u — v is nonzero and admits an expression

w = E W;€;,
i

where wy,...,w, € K and w; = 0. Let 5 be the unique integer such that the vector
W := tw belongs to R ®;, V and its evaluation w(0) at ¢ = 0 is nonzero. The vectors
w(0) and v(0) = e; are linearly independent over k because w(0) € (kea®- - - ke, )\ {0}.
Since W = #/(u — $1v), it is enough to set a =/ and f = —t/ 1. O

Proposition 5.4.2. Let f = f(t) € Bir(P?)y(K) C Bir(P?)y(K) be an element such
that the associated birational map vy € Birg(P?) has length £ > 0 and denote by f(0) €

Bir(P?2); C Rat(P?), the evaluation of f = f(t) at t = 0 (see Definition 5.3.1 and
Remark 5.3.5). Then, the following implications hold:

(1) If f(0) € Bir(P?)y, then the birational map ) is of length < L.
(2) If f(0) € Bir(P?), \ Bie(P?)y, then the rational map Py is equal to ko v for
some variable v: P2 ——s P! of length < { and some morphism r: P — P2,
In particular, for each linear projection 7: P? —-» P!, the composition TOY (o) P2 -5 P!
is either not defined or equal to p o v for some variable v: P? ——s P of length < ¢ and
some endomorphism p: P* — P

Proof. We prove the result by induction on /.

Case of length ¢ = 0. The equality £ = 0 corresponds exactly to asking that
Yr € Autg(P?). We write f = [hag : hay : hag], where h € K|z,y, z] is homogeneous
of degree d — 1 and [ag : a; : as] € Bir(P?),(K) ~ PGL3(K). We can moreover assume
that the coefficients of h belong to R C K and that the evaluation h(0) of h at t = 0 is
non-zero. Similarly, we can assume that ag, a1, as have coefficients in R and that at least
one of these has a non-zero value at ¢ = 0. The element [ag(0) : a1(0) : ag(0)] € Rat(P?),
corresponds to a 3 X 3-matrix. If the matrix is of rank 3, the element f(0) € Bir(P?),
corresponds to a linear automorphism ) € Bir(P?) of length 0. If the matrix is of
rank 2, then 14 admits a decomposition in the form xowv where k: P! — P? is a linear
morphism and v: P? --» P! is a linear variable, i.e. of degree 1. The last case is when the
matrix has rank 1, which corresponds to the case where ¢)y(g): P? — P? is the constant
map to some point a € P2. Let x: P! — P? be the constant map to a and let v be any
variable of length 0, then we have ¢y = Kk ow.

Case of length ¢ > 1.

This implies that the birational transformation (1/;)~! € Birg(P?) admits at least one
base-point. The proof is divided into the following steps:
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Reduction to the case where all base-points are defined over K:

By assumption, the birational map v¢; € Birg(P?) has length ¢. Replacing ¢ with ta
for some a > 1, we can thus assume that all base-points of (¢);)~! are defined over K.

Denote by p € P?(K) a base-point of maximal multiplicity of (¢;)!.

Reduction to the case where p=[0:0:1].

Write p = [po : p1 : p2] where each p; belongs to K. Up to multiplying (po, p1, p2) by t*
for some well chosen (and unique) integer ¢, we may assume that po, p1, p € R and that
pi(0) # 0 for some 4. Let us choose coefficients b;; in the field k such that the following
matrix has nonzero determinant:

boo  bor po(0)
M = bio b1 p1(0)
bao b2 p2(0)

In other words, we have M € GLj(k). This implies that the matrix

boo bo1  po
B(t) = blO b11 P1 € Matg(R)

bao 21 po

is invertible in Mats(R) (because its determinant is invertible). The evaluation at ¢t =
0 of the corresponding automorphism 3 € Autyx(P?) = PGL3(K) is the element of
PGL3(k) = GL3(k)/k* given by the class of the matrix M € GL3(k). We can replace f
with f = 7' o f € B)(K) (formal composition), because we have f(0) = 3(0)~! o £(0),
where 5(0) belongs to PGL3(k). After this change, the point p is equal to [0: 0 : 1] €
P2 C P(K).

As in Definition 5.3.1 (see also Remark 5.3.5), we write f = [fy : f1 : fo] where the
components f; € R[z,y, z] satisfy (fo(0), f1(0), f2(0)) # (0,0,0).

If (f0(0), f1(0)) = (0,0), then 1)) is the constant map to p: Hence we have f(0) ¢
Bir(P?), and the result is trivially true by taking x: P! — P? the constant map to p and
v: P? --» P! any variable of length < ¢. We can thus assume that (fy(0), f1(0)) # (0,0),
which means that 17 is not the constant map to p, and can consider the rational map
ITo sy : P2 --» P!, given by [z : y : 2] --» [fo(0)(2,y,2) : f1(0)(z,y,z)]. We achieve
the proof by studying two cases, depending on whether this rational map is constant or
not.

Case A: The rational map Il o ¥y is not constant — construction of an
element of length ¢ — 1.

Since p = [0 : 0 : 1] is a base-point of maximal multiplicity of (¢;)~* € Birg(P?), by
Corollary 3.3.9 there exists an element ¢ € Jong,(K) (i.e. an element of Birg(P?) which
preserves the pencil of lines through p) such that ¢ o ¢y € Birg(P?) is of length ¢ — 1
and of degree smaller than deg(¢f) < d.

We may moreover assume that ¢ satisfies the two following assertions:

(i) ¢ is defined over K, i.e. ¢ € Jonq,(K).
(ii) ¢ preserves a general line through p, i.e. [To p = II.

To obtain (i), we could use the fact that all base-points of ¢ are defined over K (since
they are contained in the base locus of (¢;)~!). Alternatively, we can use the same trick
as above: Since ¢ is defined over k((t!/%)) for some integer a > 1, it is enough to replace
t with ¢'/°.
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To obtain (ii), it is enough to note that any element ¢ € Jonqg, may be written as a
composition a o @ where a € Aut(PP?) N Jonq, and ¢ € Jong, preserves a general line
through p.

Let g € Bir(P?),(K) be such that 1), = ¢ o). Note that the assumption (ii)
above shows us that Il o ¢y = Il o ¢),. As before, write ¢ = [go : g1 : ¢2] where the
components g; € R[x,y, 2] satisfy (g0(0),91(0),92(0)) # (0,0,0). The fact that 1)) is
not the constant map to p corresponds exactly to saying that (fo(0), f1(0)) # (0,0).
Replacing ¢ with its composition with [z :y : 2] — [t7%x : t 7%y : 2] for some well chosen
integer ¢ > 0 we may replace (go, g1,92) With (t7go,t g1, g2) and then assume that
(90(0),91(0)) # (0,0). We obtain then a rational map

v: P2 -5 P!
[y :zl = [fo(0)(z,y,2) : f1(0)(z,y, 2)] = [90(0)(z,y, 2) : g1(0)(z,y, 2)]

which satisfies v = Il 0 ¢4y = Il 0 140y and is thus non-constant by hypothesis.

Applying the induction hypothesis to g (and ¢(0)), the map v = Il o ¢,y = IL o ¢4 ()
is equal to # o v, where v: P? --s P! is a variable of length at most £/ —1 and 6: P! — P!
is an endomorphism. Moreover, 6 is non-constant since v is non-constant.

a) If 1) is a birational map, then v = Il 0 ¥4y is a variable. Since v = 6 o v, this
implies that # € Aut(P') (Lemma 5.1.5) and thus that lgth(v) = lgth(v) < ¢ —1. In
particular, 1gth(¢¢g)) < £ since v = IT 0 ¥y (Lemma 5.1.4) as we wanted.

b) If 14 (0) is not a birational map, then it is non-dominant (see Remark 5.3.5). The
equality v = Il o ¢y) = 0 o v yields the existence of a morphism r: P* — P? such that
kov =1rq) (Lemma 5.1.6). This achieves the proof in this case.

Case B: The rational map Il o ¢ is constant.

Let [ : u] € P! be the constant value of the map ITot) (). There exists a homogeneous
polynomial h € k[z,y, z] such that (f1(0), f2(0)) = (Ah, ph). Up to replacing f with ao f,
where a € Aut(P?) is of the form [z : y : z] = [az + by : cy + dy : z], we can assume
that (A, 1) = (0, 1), which implies that f5(0) =0 and f;(0) # 0.

In this case, we have f(0) ¢ Biv(P?); and () is the rational map [z :y: 2] --» [0 :
[1(0)(z,y, 2) : f2(0)(z,y, 2)]. Writing 7: P? -=» P! [z : y : 2] — [y : 2] the projection
away from [1 : 0 : 0], it remains to see that the rational map 7 o 9 fq): P2 - P!
[z :y: 2] --» [f1(0)(z,y, 2) : f2(0)(x,y, 2)] is the composition of a variable P? --» P! of
length < ¢ and an endomorphism of P!,

_ To show this, let us note that by Lemma 5.4.1, there exist a,3 € K such that
fo=afo+ Bfi € R[z,y,z] and fy(0) does not belong to k - f1(0).

We observe that the result holds for f := [fo : f1 : fo] € Bir(P?)4(K). Indeed, Y7 and
¢ only differ by an element of Aut(P?)(K) that fixes p = [0:0: 1], so ¢7 and ¢y have

the same length, p is a base-point of w};l of maximal multiplicity, and all base-points of
d)le are defined over K. Moreover, f satisfies Case A. The result then holds for f, since
Wowf(o)zﬂowf(o). O
Proof of Theorem 3. We have already explained why Proposition 5.4.2 implies Theo-

rem 3. Let us however summarise the proof. We want to show that Bir(P?)¢ = {f €
Bir(P?), lgth(f) < ¢} is closed in Bir(P?) for each integer ¢ > 0. By Lemma 5.2.8, this



LENGTH IN THE CREMONA GROUP 65

is equivalent to saying that Bir(P?)4 = m, ' (Bir(P?)%) is closed in Bir(P?), for each d.

This latter point directly follows from Propositions 5.3.6 and 5.4.2. O
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