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Abstract.

We study polynomial endomorphisms F of CN which are locally finite in the follow-
ing sense: the vector space generated by r ◦ Fn (n ≥ 0) is finite dimensional for each
r ∈ C[x1, . . . , xN ]. We show that such endomorphisms exhibit features similar to lin-
ear endomorphisms: they satisfy the Jacobian Conjecture, have vanishing polynomials,
admit suitably defined minimal and characteristic polynomials, and the invertible ones
admit a Dunford decomposition into “semisimple” and “unipotent” constituents. We
also explain a relationship with linear recurrent sequences and derivations. Finally, we
give particular attention to the special cases where F is nilpotent and where N = 2.
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INTRODUCTION.

This paper is devoted to the study of polynomial endomorphisms F of CN satisfying
the following equivalent conditions (see Theorem 1.1 for details):
(i) dim Span

n≥0
Fn < +∞;

(ii) sup
n≥0

deg Fn < +∞;

(iii) dim Span
n≥0

r ◦ Fn < +∞ for each r ∈ C[x1, . . . , xN ].

Such a polynomial endomorphism is called locally finite (LF for short) since condition
(ii) exactly means that the linear endomorphism r 7→ r ◦ F is locally finite in a more
familiar sense (see [10] and Definition 1.2 below). The most intuitive way of understand-
ing a LF polynomial endomorphism is probably via condition (i) which says that such
an endomorphism is characterized by the requirement that it satisfy a relation of the
kind p(F ) = 0 where p ∈ C[T ] is non-zero. Our motivation for studying these endomor-
phisms stems from the Jacobian Conjecture. This conjecture generalizes the classical
result saying that a finite-dimensional linear endomorphism is invertible if and only if
its determinant is non-zero. For linear endomorphisms, the determinant amounts to the
last coefficient of the characteristic polynomial. Furthermore, by the Cayley-Hamilton
theorem, the characteristic polynomial of a linear endomorphism, when evaluated at the
endomorphism itself, vanishes. These observations raise the question whether and how
this kind of relationship extends to polynomial endomorphisms.

It should be pointed out immediately that many (heuristically “almost all”) poly-
nomial endomorphisms are not LF, though. Indeed, it is worth noting that a LF en-
domorphism is necessarily dynamically trivial in the sense that its dynamical degree

dd(F ) := lim
n→∞

(deg Fn)
1
n is equal to one; for an automorphism, this is equivalent to re-

quiring that the topological entropy be zero, see [11] and [30]. Nevertheless, surprisingly
many polynomial endomorphisms are LF:

1. Affine endomorphisms are LF.
2. Triangular and elementary maps are LF. We recall that an elementary map is one

of the kind (x1, . . . , xL−1, xL + p, xL+1, . . . , xN ), where p ∈ C[x1, . . . , x̂L, . . . , xN ].
3. The Nagata automorphism F := (x − 2yw − zw2, y + zw, z) ∈ Aut(C3) where

w = xz+y2 is LF. Indeed, this automorphism is a root of the polynomial p(T ) = (T−1)3.
This observation means that F 3− 3F 2 + 3F − I = 0, which is not the same as requiring
that (F − I)3 = 0 (since F is not linear!).

4. In [4], de Bondt has recently used so-called quasi-translations as the main tool to
obtain strong new results. Such a quasi-translation is defined to be a map of the kind
I+H whose inverse is I−H. It is not very difficult to check that F is a quasi-translation
if and only if F is a root of the polynomial (T − 1)2.

5. Every automorphism of finite order (i.e. a map satisfying F k = I for some k ≥ 1)
is LF. However, it is still unknown whether or not such maps are linear up to conjugation.

6. When D is a locally finite derivation (including the locally nilpotent case), then
expD is a LF automorphism (see II.2). Thus the question arises whether the converse
is true, that is, whether any LF automorphism is the exponential of a LF derivation.
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7. Nilpotent endomorphisms are LF.

So, even though “very few” endomorphisms are LF, they constitute an important
subclass, and the purpose of the present paper is to begin exploring LF endomorphisms
systematically. Up to now, little work seems to have been undertaken in this direction.
For example, only recently has it been proved that the Nagata automorphism is not tame
(see [27] and [28]). This result shows that LF and dynamically trivial endomorphisms
are not trivial. At the present stage, the search for generators of the automorphism
group is wide open. In [10], van den Essen asked whether the automorphism group is
generated by exponentials of locally nilpotent derivations. Less ambitiously, we may ask
whether this group is generated by LF automorphisms.

The paper is divided into four sections. In section I, we define the minimal polynomial
(Definition 1.1), prove an extension of the Cayley-Hamilton theorem (Theorem 1.2) and
relate the theory of LF polynomial endomorphisms to the theory of linear recurrent
sequences (Proposition 1.3). In section II, we study the case of automorphisms. We
give a Dunford decomposition (Theorem 2.1) and explain some (possible) connections
with LF derivations. In section III, we show that when F is a nilpotent polynomial
endomorphism of CN , then FN = 0 (Theorem 3.1). In section IV, we explore the
special case where the dimension is two. In this case, the amalgamated structure of
the automorphism group provides considerable simplification. Given a LF polynomial
endomorphism F of C2 satisfying F (0) = 0, we define an explicit vanishing polynomial

of degree
d(d+ 3)

2
where d = deg F , and we show that the minimal polynomial of F

has degree at most d+ 1.

I. GENERALITIES.

1. LF ENDOMORPHISMS.

We denote by AN = CN the complex affine space of dimension N and by End =
End(AN ) the set of polynomial endomorphisms of AN . As usual, we identify an element
F of End with the N -uple of its coordinate functions F = (F1, . . . , FN ) where each
FL belongs to the ring C[X] := C[x1, . . . , xN ] of regular functions on AN . We set
deg F = max

1≤L≤N
deg FL. We denote by F# : C[X] → C[X], r 7→ r ◦ F , the C-algebra

morphism associated with F . To simplify the notation, we use the indeterminates x, y, z
instead of the xL when N ≤ 3.

We recall that a (complex) near-algebra A is a linear space on which a composition
is defined such that (i) A forms a semigroup under composition; (ii) composition is right
distributive with respect to addition (i.e. (a+ b) ◦ c = a ◦ c+ b ◦ c for all a, b, c ∈ A); (iii)
λ(a◦b) = (λa)◦b for all a, b ∈ A and λ ∈ C. If a ∈ A, we set Ia := {p ∈ C[T ], p(a) = 0}.
Since Ia is a vector subspace of C[T ] which is closed under multiplication by T , it is
clear that Ia is an ideal of C[T ].

Example 1.1. When l belongs to the algebra L(V ) of linear endomorphisms of a vector
space V , it is well known that Il is an ideal of C[T ]. When W is a subspace which is
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closed under l and if l||W ∈ L(W ) denotes the induced endomorphism, let us note that
Il ⊂ Il||W .

Example 1.2. When F belongs to the near-algebra End(AN ), IF is an ideal of C[T ],
but since F# ∈ L(C[X]), IF# is also an ideal of C[T ]. In general we do not have
IF = IF# (see Theorem 2.2), but only IF# ⊂ I(F#)||W

= IF , where

W = Span
(

(F#)n(xL)
)
n∈N, 1≤L≤N.

Indeed, p(F ) = 0 ⇐⇒ ∀L, xL ◦ p(F ) = 0, i.e. p(F#) (xL) = 0 ⇐⇒ W ⊂ Ker p(F#).

Definition 1.1. When a belongs to a near-algebra A and if Ia 6= 0, we define the
minimal polynomial µa of a as the (unique) monic polynomial generating the ideal Ia.

We now recall a few things on LF linear endomorphisms. When l is a linear endomor-
phism of a vector space V , let us denote by F(l) the set of finite dimensional subspaces
W of V such that l(W ) ⊂ W .

Definition 1.2. A linear endomorphism l is LF if it satisfies the following equivalent

assertions (see [10]): (i) dim Span
n≥0

ln(v) < +∞ for each v ∈ V ; (ii) V =
⋃

W∈F(l)

W ;

(iii) any finite dimensional subspace of V is included into some W ∈ F(l).

In other words: l is LF if it is an (inductive) limit of finite dimensional linear en-
domorphisms. Indeed, it is uniquely determined by l||W , W ∈ F(l). Therefore, most
definitions made in the finite dimensional case extend to the LF case (see [10]):

Definition 1.3. A LF endomorphism l is semisimple when l||W is semisimple for each
W ∈ F(l); it is unipotent when l||W unipotent for each W ∈ F(l); and it is locally
nilpotent when l||W is nilpotent for each W ∈ F(l).

By applying the additive Jordan decomposition to each l||W , we obtain the additive
Jordan decomposition for l: there exist unique LF endomorphisms ls, ln such that:

(i) l = ls+ ln with ls ◦ ln = ln ◦ ls ; (ii) ls is semisimple ; (iii) ln is locally nilpotent.
In the same way, we obtain the multiplicative Jordan decomposition (or Dunford

decomposition) in the invertible case: there exist unique LF endomorphisms ls, lu such
that: (i) l = ls ◦ lu = lu ◦ ls ; (ii) ls is semisimple ; (iii) lu is unipotent.

Theorem 1.1. Let F ∈ End. The three following assertions are equivalent:
(i) IF 6= {0}; (ii) sup

n≥0
deg Fn < +∞; (iii) F# is LF.

Proof. (i) =⇒ (ii). If F d = ad−1F
d−1 + . . .+ a0F

0, an easy induction would show that
Fn ∈ Span(F 0, . . . , F d−1) (for each n ≥ 0), so that deg Fn ≤ C := max

0≤k≤d−1
deg F k.

(ii) =⇒ (iii). If r ∈ C[X] and deg Fn ≤ C for any n, then deg r ◦ Fn ≤ deg r × C,
so that dim Span

n≥0
r ◦ Fn < +∞.

(iii) =⇒ (i). If W is as in Example 1.2, then dim W < +∞, so that I(F#)||W
6= {0}. �
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Definition 1.4. A polynomial endomorphism F satisfying (i)-(iii) of Theorem 1.1. is
said to be LF.

As in the linear case, the following result holds.

Proposition 1.1. When F ∈ End is LF, the five following assertions are equivalent:
(i) F is an automorphism; (ii) F is injective; (iii) F is surjective;
(iv) µF (0) 6= 0; (v) Jac F 6= 0 (where Jac F is the Jacobian determinant of F ).

Proof. (i) and (ii) are equivalent even if F is not LF (see Proposition 17.9.6 p. 80 in
[15] for the original idea, but the precise result is proved in [2], [5], [3], [8] and [24]). (i)
=⇒ (iii) and (i) =⇒ (v) are obvious. Let us prove (iii) =⇒ (iv) =⇒ (ii) and (v) =⇒ (i).
(iii) =⇒ (iv). If we had µF (0) = 0, then p(T ) := µF (T )T−1 ∈ C[T ] and p(F ) ◦ F = 0.
Since F is onto, this would imply p(F ) = 0 contradicting the definition of µF .
(iv) =⇒ (ii). If µF (0) 6= 0, there exists p ∈ C[T ] such that p(T )T ≡ 1 mod µF (T ), so
that p(F ) ◦ F = I and F is injective.
(v) =⇒ (i). If F is not an automorphism, we have µF (0) = 0 and we have seen that
p(F ) ◦ F = 0 where p(T ) := µF (T )T−1 ∈ C[T ]. Since p(F ) 6= 0 (by definition of µF ),
there exists some non-zero component r ∈ C[X] of the endomorphism p(F ). We have
r(F1, . . . , FN ) = 0, which shows that F1, . . . , FN are algebraically dependant over C.
This last condition is equivalent to Jac F = 0 (see [23] and [14]). �

Corollary 1.1. When F is LF, then Jac F is a constant.

Corollary 1.2. When F is LF, then the Jacobian conjecture holds for F , i.e. F is an
automorphism if and only if Jac F is a non-zero constant.

2. THE CHARACTERISTIC POLYNOMIAL.

When F is a finite dimensional linear endomorphism, the Cayley-Hamilton theorem
shows us that χF (F ) = 0 where χF is the (classical) characteristic polynomial of F . We
note that this characteristic polynomial χF is given by a closed formula. When F is a LF
polynomial endomorphism, we would like to find a closed formula giving a polynomial
χF such that χF (F ) = 0. The next result gives us a partial answer since it allows us to
find a vanishing polynomial of F depending only on the linear part L(F ) of F and on
sup
n∈N

deg Fn. However, there remains the problem of computing sup
n∈N

deg Fn.

Theorem 1.2. Let F ∈ End(AN ) be such that F (0) = 0 and d := sup
n∈N

deg Fn < +∞,

let (λL)1≤L≤N denote the eigenvalues of L(F ) and, for α = (αL)L ∈ NN , let λα :=
∏
L

λαLL

and |α| :=
∑
L

αL. Then
∏
α∈NN

0<|α|≤d

(T − λα) is a vanishing polynomial of F .

Our proof will use the next two lemmata. We recall a few facts about symmetric
powers (for more details, see chap. 3, § 6 in [6], app. 2 in [9] or any book dealing with
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multilinear algebra). When E is a vector space with basis e1, . . . , eN , the k-th symmetric
power of E, denoted by SymkE, is naturally isomorphic to the vector space whose
elements are the k-homogeneous polynomials in the indeterminates e1, . . . , eN . Since any
element of E can be thought of as a 1-homogeneous polynomial in the indeterminates
e1, . . . , eN , we have E ' Sym1E. In the same way, a1 . . . ak can be seen as an element
of SymkE where all aL belong to E. Finally, when u : E → F is a linear map,
Symku : SymkE → SymkF is the unique linear map sending a1 . . . ak ∈ SymkE to
u(a1) . . . u(ak) ∈ SymkF .

Lemma 1.1. Let E be a finite dimensional complex vector space and let u ∈ L(E).

Given the characteristic polynomial χ(u,E) =
∏

1≤L≤N
(T − λL) of u, the characteristic

polynomial of the k-th symmetric power Symku ∈ L(SymkE) is the polynomial

χ(Symku,SymkE) =
∏
α∈NN
|α|=k

(T − λα).

Proof. It is a classical result. Let us prove it anyway for the sake of completeness. Let
(e1, . . . , eN ) be a basis of E such that the matrix of u in this basis is an upper triangular

matrix

 λ1 ∗
. . .

0 λN

, i.e. ∀ L, u(eL)− λLeL ∈ Span(eM )M<L.

For α = (α1, . . . , αN ) ∈ NN , let us set eα := eα1
1 . . . eαNN ∈ Sym|α|E. Let M :=

{eα, α ∈ NN} be the set of all monomials in e1, . . . , eN and let us endow M with any
monomial order ≺ such that e1 ≺ e2 ≺ . . . ≺ eN (we say that ≺ is a monomial order
if m1 ≺ m2 implies m1 ≺ mm1 ≺ mm2 for any m,m1,m2 ∈M with m 6= 1, see [9]).
We can for example take the orders ≺1 or ≺2 defined by

eα ≺1 eβ ⇐⇒ αL < βL for the last integer L such that αL 6= βL and
eα ≺2 eβ ⇐⇒ αL > βL for the first integer L such that αL 6= βL

where α = (α1, . . . , αN ), β = (β1, . . . , βN ) ∈ NN .
It is well known that Mk := {eα, |α| = k} is a basis of SymkE. Furthermore, since

≺ is a monomial order: ∀ eα ∈Mk, Symku(eα)− λαeα ∈ Span(eβ)eβ∈Mk and eβ ≺ eα.

The matrix of Symku in the basis eα where the eα are taken with the order ≺ is
upper triangular with the λα on the diagonal. �

We will omit the proof of the following familiar result.

Lemma 1.2. Let E be a finite dimensional complex vector space and let u ∈ L(E) be
a linear endomorphism of E. We assume that E = E1 ⊃ E2 ⊃ . . . ⊃ Ed ⊃ Ed+1 = {0}
is a filtration of E by subspaces which are closed under u (i.e. u(Ek) ⊂ Ek). When
χ(u,E) denotes the characteristic polynomial of u and if χ(u,Ek/Ek+1) denotes the
characteristic polynomial of the endomorphism induced by u on Ek/Ek+1, then

χ(u,E) =
∏

1≤k≤d
χ(u,Ek/Ek+1).
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Proof of Theorem 1.2. If W is defined as in Example 1.2, then W ∈ F(F#) and
χ(F#,W ) is a vanishing polynomial of F . LetM be the maximal ideal of C[X] generated
by x1, . . . , xN . Since F (0) = 0, we have F#(M) ⊂ M, so that F#(Mk) ⊂ Mk (for
k ≥ 0). If we set Wk := W ∩Mk (for 1 ≤ k ≤ d + 1), then Wk is closed under F#

and we have the filtration: W = W1 ⊃ W2 ⊃ . . . ⊃ Wd ⊃ Wd+1 = {0}. By Lemma

1.2, we have χ(F#,W ) =
∏

1≤k≤d
χ(F#,Wk/Wk+1). But, there is a natural embedding

of Wk/Wk+1 = W ∩Mk / W ∩Mk+1 in Mk/Mk+1, so that χ(F#,Wk/Wk+1) divides
χ(F#,Mk/Mk+1). We denote by uk ∈ L(Mk/Mk+1) the linear endomorphism induced
by F# on Mk/Mk+1. If k = 1, M/M2 is classically called the cotangent space at the
origin of the affine space AN . The dual map of u1 is naturally identified to the differential
at the origin of the map F : AN → AN , which is itself identified to the linear part L(F )

of F , so that χ(F#,M/M2) =
∏

1≤L≤N
(T − λL). If k ≥ 1 is any integer, Mk/Mk+1

is naturally isomorphic to Symk
(
M/M2

)
and uk is naturally identified to Symku1.

Therefore, by Lemma 1.1, we have χ(F#,Mk/Mk+1) =
∏
α∈NN
|α|=k

(T − λα). �

3. LINEAR RECURRENT SEQUENCES.

We now introduce the language of linear recurrent sequences (LRS for short), because
they are a nice tool for some proofs (see section IV). Let V be any complex vector
space. The set of sequences u : N → V will be denoted by V N. For p = p(T ) =∑
k

pk T
k ∈ C[T ], we define p(u) ∈ V N by the formula

∀ n ∈ N,
(
p(u)

)
(n) =

∑
k

pk u(n+ k).

The theory of LRS relies on the next result (see [7]).

Proposition 1.2. Let u = u(n)n∈N ∈ V N and let p be a non-zero polynomial of C[T ].

When p(T ) = α
∏

1≤k≤c
(T − ωk)rk is the decomposition into irreducible factors of p, then

the two following assertions are equivalent: (i) p(u) = 0 ; (ii) there exist q1, . . . , qc ∈ V [T ]

with deg qk ≤ rk − 1 such that ∀ n, u(n) =
∑

1≤k≤c
ωnk qk(n) (*).

Remarks. 1. The vector space V [T ] is the set of polynomials in T with coefficients in
V alias the set of ”polynomial” maps from C to V .

2. The expression (*) is called an exponential-polynomial. We say that u is polyno-
mial when c = 1 and ω1 = 1. We say that u of exponential type when all the qk’s are
constant.

3. In the case where u is of exponential-type, we will sometimes be more precise and
say that u is of Ω-exponential type, where Ω := {ω1, . . . , ωc}. When u is a complex se-
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quence of Ω-exponential type, then u+v is obviously of Ω∪Ω′-exponential type; likewise,
when u′ is a complex sequence of Ω′-exponential type, then uv is of Ω.Ω′-exponential
type. In particular, when u1, . . . , ue are of Ω exponential type, then u1u2 . . . ue is of Ωe-
exponential type, where Ωe = Ω.Ω. . . . .Ω︸ ︷︷ ︸

e

. Therefore, when u1, u2 are of Ω-exponential

type and when q(x, y) ∈ C[x, y] is such that q(0, 0) = 0 and deg q ≤ e, then the sequence

q(u1, u2) is of
⋃

1≤k≤e
Ωk-exponential type.

Using Proposition 1.2, it is clear that if u ∈ V N, then Iu := {p ∈ C[T ], p(u) = 0} is
an ideal of C[T ].

Definition 1.5. We say that u ∈ V N is a LRS if Iu 6= {0}. In this case, we define the
minimal polynomial of u as the (unique) monic polynomial µu generating the ideal Iu.

Remarks. 1. The LRS are classically complex sequences, but we found it convenient
to extend their definition to the case of vector spaces.

2. A LRS is polynomial if and only if its minimal polynomial is of the kind (T −1)m;
it is of exponential type if and only if its minimal polynomial has only single roots.

3. Let E be a finite dimensional vector space and let F ∈ L(E) be a linear endomor-
phism of E. It is a classical fact that F is unipotent if and only if the sequence (Fn)n∈N
is polynomial and, likewise, F is semisimple if and only if the sequence (Fn)n∈N is of
exponential type. We will later on generalize this definition to the case of LF polynomial
endomorphisms.

Proposition 1.3. For F ∈ End and u := (Fn)n∈N ∈ EndN, we have IF = Iu. In
particular, F is LF if and only if u is a LRS. If this is the case, we have µF = µu.

Proof. If p =
∑
k

pkT
k ∈ C[T ],

∑
k

pk F
k = 0 ⇐⇒ ∀ n ∈ N,

∑
k

pk F
k+n = 0. �

Remark. When F ∈ End is LF, then (Fn(a))n∈N is a LRS for any a ∈ AN , but the
converse is false: take F = (xy, y) ∈ End(A2). When C(X) := C(x1, . . . , xN ) and
K := {r ∈ C(X), r ◦ F = r}, it is shown in [13] that the following assertions are
equivalent :

(i) (Fn(a))n∈N is a LRS for any a; (ii) p(F ) = 0 for some non-zero p ∈ K[T ].

II. LF AUTOMORPHISMS.

1. DUNFORD DECOMPOSITION.

Proposition 2.1. When F ∈ End is LF, the following assertions are equivalent:
(i) F# is unipotent; (ii) µF = (T − 1)m for some m ≥ 0;

(iii) the sequence (Fn)n∈N is polynomial.

For F (0) = 0, these assertions are still equivalent to the following one:
(iv) the linear map L(F ) is unipotent.
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Proof. (i) =⇒ (ii). Let W be as in Example 1.2. Since F#
||W is unipotent, its character-

istic polynomial is equal to χ(F#,W ) = (T − 1)dim W and it is a vanishing polynomial
of F .

(ii) ⇐⇒ (iii) is obvious from the theory of LRS.

(iii) =⇒ (i) Let W ∈ F(F#). We want to show that F#
||W is unipotent.

But for all w ∈W , the sequence n 7→
(
F#
)n

(w) is polynomial since
(
F#
)n

(w) = w◦Fn.

This implies that the sequence n 7→
(
F#
||W

)n
is polynomial and this means that F#

||W
is unipotent (see rem. 3 following Definition 1.5).

We now assume that F (0) = 0.
(iii) =⇒ (iv). Since F (0) = 0, we have L(Fn) = L(F )n and since the sequence

(Fn)n∈N is polynomial, the sequence(L(F )n)n∈N also, so that L(F ) is unipotent.
(iv) =⇒ (ii). We know that the characteristic polynomial of L(F ) is equal to (T−1)N .

Therefore, by Theorem 1.2, F admits a vanishing polynomial of the kind (T − 1)p. �

Definition 2.1. When F satisfies (i)-(iii) of Proposition 2.1, we say that F is unipotent.

Example. When the Nagata automorphism is LF, it has to be unipotent by Proposition
2.1. It is indeed the case because one checks easily that its minimal polynomial is (T−1)3.

When F (0) 6= 0, let us show by two examples that (i)-(iii) and (iv) are independant.
We take N = 2. If F = (F1, F2) ∈ End(A2) and a ∈ A2, F ′(a) will denote the Jacobian
matrix of F at the point a. We will identify L(F ) and F ′(0). We set a := (1, 1) ∈ A2 and
let us consider the group H of all automorphisms ϕ of A2 such that ϕ(0) = 0, ϕ′(0) = I
and ϕ(a) = a. If ϕ ∈ H, it is clear that ϕ′(a) ∈ SL2 since detϕ′(a) = detϕ′(0) = 1.
We show that the group-morphism m : H → SL2, ϕ 7→ ϕ′(a) is onto. If we
set αu := (x + uy2(y − 1), y) and βu := (x, y + ux2(x − 1)) ∈ H for each u ∈ C,

then m(αu) =

[
1 u
0 1

]
and m(βu) =

[
1 0
u 1

]
. Since SL2 is generated by these

matrices, we actually obtain m(H) = SL2. If G is any automorphism of A2 such that
G(0) = a and if ϕ is any element of H, then F := F(G,ϕ) := ϕ−1 ◦ G ◦ ϕ satisfies
F ′(0) = ϕ′(a)−1G′(0)ϕ′(0) = ϕ′(a)−1G′(0) and the equality Fn = ϕ−1 ◦ Gn ◦ ϕ shows
that F is unipotent if and only if G is unipotent.

First example. If G := (x + 1, y + 1) and ϕ ∈ H, then F := F(G,ϕ) is unipotent and
F ′(0) = ϕ′(a)−1. Therefore, if we choose ϕ such that m(ϕ) = ϕ′(a) is not unipotent,
then L(F ) = F ′(0) will not be unipotent. We can just take ϕ := α1 ◦ β1, because

ϕ′(a) =

[
1 1
0 1

] [
1 0
1 1

]
=

[
2 1
1 1

]
is not unipotent.

Second example. If G := (1−x, 1−y) and ϕ ∈ H, then F := F(G,ϕ) is not unipotent and
F ′(0) = −ϕ′(a)−1. Therefore, if we choose ϕ such that −m(ϕ) = −ϕ′(a) is unipotent,
then L(F ) = F ′(0) will be unipotent. We can just take ϕ := (α2 ◦ β−1)2, because

ϕ′(a) =

([
1 2
0 1

] [
1 0
−1 1

])2

= −I.
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The next result is established in the same way as Proposition 2.1:

Proposition and definition 2.2. When F satisfies the following equivalent assertions,
we say that F is semisimple: (i) F# is semisimple; (ii) µF has single roots;

(iii) the sequence (Fn)n∈N is of exponential type.

Remark. When F is semisimple and F (0) = 0, one can show that L(F ) is semisimple.
The converse is false even if F (0) = 0 (take the Nagata automorphism).

We can now state the Dunford decomposition for LF polynomial automorphisms.

Theorem 2.1. Let F be a LF polynomial automorphism of AN , then there exist unique
LF polynomial automorphisms Fs and Fu such that

(i) F = Fs ◦ Fu = Fu ◦ Fs ; (ii) Fs is semisimple ; (iii) Fu is unipotent.

The proof is a direct consequence of the following result applied to F#:

Lemma 2.1. When l is a LF automorphism of a C-algebra A, then its semisimple and
unipotent parts (ls and lu) are algebra-morphisms.

Proof. Let a, b ∈ A. We want to show that ls(ab) = ls(a)ls(b) and lu(ab) = lu(a)lu(b).
Let W ∈ F(l) be such that a, b and ab ∈ W . Let H ⊂ GL(W ) be the closed subgroup
defined by H := {h ∈ GL(W ), h(ab) = h(a)h(b)}. Since l||W ∈ H, by the classical Dun-
ford decomposition for linear algebraic groups (see [16]), we know that the semisimple
and unipotent parts of l||W still belong to H. �

Lemma 2.2. When a unipotent automorphism F of AN satisfies IF# 6= {0}, then
F = I.

Proof. Let r ∈ C[X]. Since the sequence n 7→ (F#)n(r) is polynomial, its minimal
polynomial is of the kind µr = (T − 1)mr , where mr ≥ 0 is an integer.

However, since IF# 6= {0}, the sequence n 7→ (F#)n is a LRS with minimal poly-
nomial µ. The polynomial µ is the least common multiple of the µr (r ∈ C[X]). This
shows that µ = (T − 1)m, where m = max

r
mr. We show by contradiction that m = 1.

Otherwise, let r ∈ C[X] be such that mr = m ≥ 2. This means that the sequence
n 7→ (F#)n(r) is polynomial of degree m− 1. Therefore, the sequence n 7→ (F#)n(r2) is
polynomial of degree 2(m− 1), showing that mr2 = 2m− 1 > m. This is impossible. �

Theorem 2.2. The only automorphisms F of AN such that IF# 6= {0} are the auto-
morphisms of finite order.

Proof. When F k = I, we clearly have (F#)k = I and T k − 1 ∈ IF# .
We now assume that F is an automorphism of AN such that IF# 6= {0}. Let Fs

be its semisimple and Fu its unipotent constituent. When l is a linear endomorphism,
let E(l) be the set of its eigenvalues. Since E(F#) is a finite subset of C∗ (because
IF# 6= {0}) which is closed under multiplication (because F# is an algebra-morphism),
it is a finite subgroup of C∗, so that it is equal to some Uk := {z ∈ C, zk = 1}. However,
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E(F#
s ) = E(F#), so that (Fs)

k = I. The automorphism G := F k = (Fu)k is unipotent
and satisfies IG# 6= {0}. By Lemma 2.2, we have G = I. �

2. DERIVATIONS.

We begin by noting that the exponential of a LF linear endomorphism l : V → V is
well defined by (exp l)||W := exp l||W , W ∈ F(l). We observe that exp l is LF.

Lemma 2.3 (i) the exponential defines a surjective map from the LF linear endomor-
phisms of V to the LF linear automorphisms of V ;

(ii) the exponential defines a bijective map from the locally nilpotent linear endo-
morphisms to the LF unipotent automorphisms.

Proof. When V is finite-dimensional, the statement is well known. When V is not
necessarily finite-dimensional, (ii) is a direct consequence of the finite dimensional case.
The assertion (i) is more complicated. It is easy to show that the exponential of a LF
endomorphism is an automorphism. We now prove that if l is a LF automorphism, then
there exists a LF endomorphism m such that expm = l. Let l = ls ◦ lu be the Dunford
decomposition of l.

For λ ∈ C, the characteristic space Nλ of l is defined by Nλ :=
⋃
k∈N

Ker(l − λ I)k.

Since l is a LF automorphism, it is easy to prove that V =
⊕
λ∈C∗

Nλ. Furthermore, it

is well known that ls||Nλ = λ INλ . For each λ ∈ C∗, let us choose lnλ ∈ C such that
exp(lnλ) = λ (of course, the map ln : C∗ → C is not continuous !).

There exists a unique endomorphism ms ∈ L(V ) such that ms||Nλ = (lnλ) INλ ,
λ ∈ C∗. It is clear that ms is a LF (semisimple) endomorphism such that expms = ls.
Also, since lu is unipotent, by (ii), there exists a unique locally nilpotent endomorphism
mu such that expmu = lu.

Since l = ls ◦ lu = expms ◦ expmu, in order to see that l = exp(ms +mu) it remains
to show that ms and mu commute (in particular, if ms and mu commute, ms + mu

will still be LF !). But this is clear, because for each λ ∈ C∗ we have ms(Nλ) ⊂ Nλ,
mu(Nλ) ⊂ Nλ and ms||Nλ = (lnλ) INλ so that ms||Nλ commutes with any endomor-
phism of Nλ ! �

We recall that a derivation of C[X] is an operator of the kind D =
∑

1≤L≤N
aL

∂

∂xL
where

the aL belong to C[X] (see [10]). It turns out that if D is a LF derivation of C[X], then
expD is a LF algebra-automorphism of C[X]. Therefore, there exists a LF polynomial
automorphism F of AN such that F# = expD. One often writes (improperly) F = expD
and we have of course F = ((expD)(x1), . . . , (expD)(xN )).

If we assume furthermore that D is locally nilpotent, then we know that F# is a
LF unipotent linear automorphism, which means that F is unipotent. Conversely, if F
(and therefore F#) is unipotent, we know that there exists a unique locally nilpotent
linear endomorphism D of C[X] such that expD = F#. Moreover, D must be a deriva-
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tion. Indeed, for any locally nilpotent linear endomorphism l of a C-algebra A, the two
following assertions are equivalent (see Exercise 6, p. 50 of [10]):

(i) exp l is an algebra-morphism ; (ii) l is a derivation.
Hence, we have shown the following result.

Theorem 2.3. The exponential defines a bijective map from the locally nilpotent
derivations of C[X] to the unipotent polynomial automorphisms of AN .

Example. Since the Nagata automorphism is unipotent (see the remark following Def-
inition 2.1), it is the exponential of a locally nilpotent derivation (see [29]).

When F is any LF polynomial automorphism of AN , there still exists a LF linear
endomorphism D such that F# = expD (by Lemma 2.3), but D does not need to be a
derivation ! However, there exist infinitely many D such that F# = expD and one can
ask our main question.

Question 2.1. Is any LF polynomial automorphism of AN the exponential of a LF
derivation of C[X] ?

We are not even able to answer the following.

Question 2.2. Is any semisimple polynomial automorphism of AN the exponential of
a semisimple derivation of C[X] ?

Remark. Of course, if l is a LF linear endomorphism, then l is semisimple if and only if
exp l is semisimple (this is just the generalization of the corresponding fact in the finite
dimensional case).

At this point, let us recall that a famous linearization conjecture asserts that if F
is a finite order automorphism of AN (i.e. F k = I for some non negative integer k),
then F should be conjugate to some linear automorphism (i.e. there should exist an
automorphism ϕ such that ϕ◦F ◦ϕ−1 is linear). This conjecture is still open for N ≥ 3.
Since the polynomial T k − 1 has single roots, F is necessarily semisimple. One can
generalize the linearization conjecture in the following manner.

Question 2.3. Is any semisimple polynomial automorphism of AN linearizable ?

It had also been conjectured by Kambayashi in 1979 (see [18] or section 9.4 in [10])
that any (algebraic) action of a reductive algebraic group G on AN is linearizable. How-
ever, Schwarz gave a counterexample in 1989 (see [25]) for G = SL2 (and some other
groups) and Knop gave counterexamples in 1991 (see [19]) when G is any non com-
mutative connected reductive (algebraic) group. What happens if G is a commutative
connected reductive group, i.e. G = (C∗)p is a torus ? The next question (which seems
very difficult) is still open.

Question 2.4. Is any action of a torus (C∗)p on the affine space AN linearizable ?

It has been pointed to us by Mathieu that a positive answer to question 2.3 would
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imply a positive answer to question 2.4. Indeed, if we are given an action of G = (C∗)p
on AN and if we choose an element g ∈ G such that the subgroup generated by g in G
is Zariski dense, then the automorphism of AN induced by g is semisimple. Therefore,
it should be linearizable and the G-action also.

Finally, we can ask a question similar to question 2.3 at the level of derivations.

Question 2.5. Is any semisimple derivation of C[X] ”linearizable” ?

In other words, is it conjugate to some D =
∑

1≤L≤N
λLxL

∂

∂xL
, λL ∈ C ?

We can express question 2.5 in the following way: does there exist an automorphism
F = (F1, . . . , FN ) of AN such that F1, . . . , FN are eigenvectors of D ? A positive answer
to questions 2.2 and 2.5 would imply a positive answer to question 2.3.

III. NILPOTENT ENDOMORPHISMS.

In the linear case, it is well known that if F is a nilpotent linear endomorphism of CN ,
then FN = 0. It turns out that this result is still true for polynomial endomorphisms.

Theorem 3.1. Let F ∈ End(AN ) be nilpotent, then FN = 0.

Proof. Let F be any polynomial endomorphism of AN and let us endow AN with
the Zariski topology. If k is a non negative integer, we set Vk := F k(AN ). This is an
irreducible closed variety of AN . Indeed, F k(AN ) is irreducible since it is the image
of the irreducible variety AN and we know that the closure of an irreducible subset
remains irreducible. We have Vk+1 = F k (F (AN )) ⊂ F k(AN ) = Vk, so that AN =
V0 ⊃ V1 ⊃ . . . ⊃ Vk ⊃ Vk+1 ⊃ . . .. We show that Vk+1 = F (Vk). We have F (Vk) =

F
(
F k(AN )

)
⊂ F (F k(AN )) = Vk+1, whence F (Vk) ⊂ Vk+1. We have used the fact

that if F is a continuous map, then for any set A, we have F (A) ⊂ F (A). Indeed,

A is a subset of the closed set F−1
(
F (A)

)
, so that A ⊂ F−1

(
F (A)

)
, which proves

that F (A) ⊂ F (A). On the converse F (Vk) = F
(
F k(AN )

)
⊃ F

(
F k(AN )

)
so

that F (Vk) ⊃ F k+1(AN ) = Vk+1. If we assume that dim Vk = dim Vk+1 for
some k, since Vk+1 is a closed subvariety of the irreducible variety Vk, this implies that
Vk+1 = Vk. Hence, we also have F (Vk+1) = F (Vk), i.e. Vk+2 = Vk+1. Finally, we
will have Vk = Vk+1 = . . . = Vn for each n ≥ k. We now assume that F is nilpotent
and let m be the smallest integer such that Fm = {0}. If k < m, we cannot have
dim Vk = dim Vk+1, because otherwise we would have Vk = Vk+1 = . . . = Vm = {0}.
Therefore, N = dim V0 > dim V1 > . . . > dim Vm = 0 and m ≤ N . �

Remark. When F is a nilpotent linear endomorphism, it is well known that the sequence
un := dim Im Fn − dim Im Fn+1 is decreasing. In the polynomial case, it is no longer
true. When we take the endomorphism F := (xz, yz, 0) of A3, we have dim Im F 0 = 3,
dim Im F 1 = 2 and dim Im F 2 = 0.
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IV. DIMENSION TWO.

From now on, we set N = 2. In Subsection 1 we analyze LF polynomial endomor-
phisms of A2 which are invertible and in Subsection 2 we analyze those which are not
invertible. In Subsection 3 we apply these results to characteristic polynomials and in
Subsection 4 to minimal ones.

1. THE INVERTIBLE CASE.

One of the direct consequences of the amalgamated structure of the group of poly-
nomial automorphisms of A2 (see [17], [20], [26], [11]) is the well known fact that an
automorphism of A2 is dynamically trivial if and only if it is conjugate to a triangular
automorphism. One can show easily that for an automorphism F the following assertions
are equivalent (see [12]):

(i) F is dynamically trivial ; (ii) F is triangularizable ; (iii) F is LF ;
(iv) deg F 2 ≤ deg F ; (v) ∀ n ∈ N, deg Fn ≤ deg F .

In fact, any triangularizable automorphism F can be triangularized in a ”good” way
with respect to the degree:

Lemma 4.1. When F is a triangularizable automorphism of A2, then there exist a
triangular automorphism G and an automorphism ϕ such that

F = ϕ ◦ G ◦ ϕ−1 and deg F = degG (deg ϕ)2.

Proof. Let Aut be the group of polynomial automorphisms of A2, let A be the subgroup
of affine automorphisms, and let T be the subgroup of upper triangular ones. We have

A = {K ∈ Aut, deg K = 1} and T = {K = (K1,K2) ∈ Aut, ∂K2

∂x1
= 0}.

Let F = A[1] ◦ T [1] ◦ A[2] ◦ T [2] ◦ . . . ◦ A[l] ◦ T [l] ◦ A[l+1] be a reduced expression of F
where the A[k]’s belong to A and the T [k]’s to T : this means that ∀ k, T [k] /∈ A and
that ∀ k ∈ {2, . . . , l}, A[k] /∈ T (see [26]).

Let B be the composition (in the same order) of the first l terms and E that of the
last l terms of the sequence A[1], T [1], A[2], . . . , A[l], T [l], A[l+1] and let M be the
middle term (i.e. M = A[k+1] if l = 2k and M = T [k+1] if l = 2k + 1), so that we have
F = B ◦M ◦ E.

The triangularizability of F is equivalent to saying that E ◦B ∈ A∩T (see Proposi-
tion 4 of [12]). Thus we have F = B ◦H ◦B−1 where H := M ◦E ◦B ∈ A∪T . The first

expression of F being reduced, we get deg F =
∏
k

deg T [k] = deg B deg M deg E.

But deg E = deg B−1 = deg B and deg M = deg M ◦E ◦B = deg H, so that
deg F = deg H(deg B)2. For H ∈ T , we can just set ϕ := B and G := H.

For H ∈ A, let A ∈ A be such that G := A−1 ◦H ◦ A ∈ A ∩ T . We can now just
set ϕ := B ◦A and we are done since deg G = deg H (= 1) and deg ϕ = deg B. �

Remark. When F (0) = 0, we can assume that ϕ(0) = 0 and G(0) = 0 by using the
groups Aut0 := {F ∈ Aut, F (0) = 0}, A0 := A ∩Aut0 and T0 := T ∩Aut0.
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Before computing a vanishing polynomial for triangularizable automorphisms (see
Lemma 4.3 below), we deal with the triangular case:

Lemma 4.2. Let G = (ax + r(y), by) be a triangular endomorphism of degree d with
a, b ∈ C and r(y) ∈ C[y] satisfying r(0) = 0. Then p(T ) := (T −a)(T −b)(T −b2) . . . (T −
bd) is a vanishing polynomial of G.

Proof. We may assume that r =
d∑
l=1

rly
l is a fixed polynomial.

First case. We assume that ∀ l ∈ {1, . . . , d}, a 6= bl. By induction, we get (for any
n ≥ 0)

Gn =

(
anx+

n−1∑
k=0

akr(bn−1−ky), bny

)
. But we have

n−1∑
k=0

ak r(bn−1−ky) =
n−1∑
k=0

ak
d∑
l=1

rly
l (bn−1−k)l =

d∑
l=1

rly
l
n−1∑
k=0

ak(bl)n−1−k

=
d∑
l=1

rly
l a

n − (bl)n

a− bl
.

Therefore there exist endomorphisms K0, . . . ,Kl such that
∀ n ∈ N, Gn = anK0 + bnK1 + (b2)nK2 + . . .+ (bd)nKd.

If we set Ω := {a, b, . . . , bd}, this means that the sequence (Gn)n∈N is of Ω-exponential
type (see rem. 3 following Proposition 1.2) and this proves our result in this case.

Second case. The general case.
If we set Ga,b := (ax+ r(y), by) and pa,b := (T − a)(T − b)(T − b2) . . . (T − bd), we have
shown above that pa,b(Ga,b) = 0 for all (a, b) ∈ C2 outside the curve (a−b)(a−b2) . . . (a−
bl) = 0. Therefore, by density, this equality remains true for any (a, b) ∈ C2. �

Lemma 4.3. Let F = ϕ ◦ G ◦ ϕ−1 be an endomorphism of A2 where ϕ is an au-
tomorphism of degree e with ϕ(0) = 0 and where G = (ax + r(y), by) is a triangular
endomorphism of degree d with a, b ∈ C and r(y) ∈ C[y] satisfying r(0) = 0. Then F is
a zero of

p(T ) :=
∏

(k,l)∈N2
0 < dk+l ≤ de

(T − akbl).

Proof. First case. We assume that ∀ l ∈ {1, . . . , d}, a 6= bl.
We have seen in the proof of Lemma 4.2 that in this case the sequence (Gn)n∈N is of

Ω-exponential type where Ω := {a, b, b2, . . . , bd}.
The sequence (Gn ◦ ϕ−1)n∈N will still be of Ω-exponential type.
If we write Gn ◦ϕ−1 = (u1(n), u2(n)) and ϕ = (ϕ1, ϕ2), we have Fn = ϕ◦Gn ◦ϕ−1 =

(ϕ1(u1(n), u2(n)), ϕ2(u1(n), u2(n))). Since the sequences u1 and u2 are of Ω-exponential

type, the sequences ϕ1(u1, u2) and ϕ2(u1, u2) are of Ω′-exponential type with Ω′ =

e⋃
k=1

Ωk
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(see rem. 3 following Proposition 1.2).
But Ω′ = {aj0bj1+2j2+...+djd , j = (j0, . . . , jd) ∈ Nd+1, 0 < |j| ≤ e} is included into

Ω′′ = {akbl, (k, l) ∈ N2, 0 < dk + l ≤ de} because the inequality j0 + . . . jd ≤ e implies
the inequality dj0 + (j1 + 2j2 + . . .+ djd) ≤ de.

So, the sequence (Fn)n∈N is of Ω′′-exponential type and this implies that p(F ) = 0.

Second case. The general case. As in Lemma 4.2, we conclude by a density argument.
�

2. THE NON-INVERTIBLE CASE.

Below, we will identify a polynomial map u : A2 → A1 with a polynomial u(x, y) ∈
C[x, y], and we will identify a polynomial map v : A1 → A2 with a pair v = (v1, v2)
where v1, v2 ∈ C[x].

Lemma 4.4. Let F be a LF endomorphism of A2 which is not invertible and such that
F (0) = 0. Then, there exist polynomial maps u : A2 → A1 and v : A1 → A2 such that

(i) F = v ◦ u; (ii) u(0, 0) = 0 and v(0) = (0, 0);
(iii) the map L := u ◦ v : A1 → A1 is linear, i.e. L(x) = ax for some a ∈ C.

Proof. We may assume that F 6= 0. We have already seen that Jac(F1, F2) = 0. This
condition is equivalent to saying that F1 and F2 are algebraically dependant over C or
to saying that there exist u(x, y) ∈ C[x, y] and v1(x), v2(x) ∈ C[x] such that F1 = v1(u)
and F2 = v2(u) (see [14], [23] and [22]). We may assume that u(0, 0) = 0 and since
F (0) = 0, we obtain v1(0) = v2(0) = 0.

If we set L(x) := u◦v(x) ∈ C[x], we have ∀ k ∈ N, (F#)k(u) = u◦F k = Lk◦u. Since
the degree of (F#)k(u) must be upper bounded and since deg(Lk ◦u) = (deg L)kdeg u,
this implies deg L ≤ 1 (since deg u 6= 0). �

Lemma 4.5. Let F be a LF endomorphism of A2 which is not invertible and such that
F (0) = 0. We write F = v ◦ u as in Lemma 4.4 and let a be such that u ◦ v(x) = ax. If
d := deg F , then p = T (T − a)(T − a2) . . . (T − ad) is a vanishing polynomial of F .

Proof. If u = 0, we obtain at once F = 0, p = T and p(F ) = 0. If u 6= 0 let us note
that deg v1 and deg v2 ≤ d and that ∀ n ∈ N, Fn+1 = (v1(anu), v2(anu)). We set
Ω := {a, a2, . . . , ad}. The sequences n 7→ p1(anu) and n 7→ p2(anu) are of Ω-exponential
type, so that the sequence n 7→ Fn+1 is also of Ω-exponential type. This means that
q := (T − a)(T − a2) . . . (T − ad) is a vanishing polynomial of this sequence. This
is equivalent to saying that p(T ) = Tq(T ) is a vanishing polynomial of the sequence
n 7→ Fn. By Proposition 1.3, this is still equivalent to p(F ) = 0. �

Remark. If supp r := {k, rk 6= 0} for r =
∑
k

rkx
k and if Ω′ := {ak, k ∈ supp v1 ∪

supp v2}, we can show that µF = T
∏
ω∈Ω′

(T − ω) when u 6= 0.

We will now explain how to build any LF polynomial endomorphism F of A2 which
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is not invertible and such that F (0) = 0. We will distinguish two cases:

First case. F is nilpotent.
1. Choose any non-zero polynomial map v : A1 → A2 such that v(0) = (0, 0);
2. Since v is proper, its image is a closed curve of A2. Therefore, Iv := {r ∈

C[x, y], r ◦ v = 0} is a non-zero principal ideal of C[x, y], i.e. Iv = (r) for some (non-
zero) element r ∈ C[x, y];

3. When q ∈ C[x, y], then u := qr ∈ Iv defines a map u : A2 → A1 such that
u ◦ v = 0;

4. If we set F := v◦u, then F is a nilpotent endomorphism of A2 such that F (0) = 0.

Second case. F is not nilpotent.
We will now show that F is conjugate to a polynomial endomorphism of the kind

G = (λx + yq(x, y), 0) where λ ∈ C∗ and q(x, y) ∈ C[x, y]. This will imply that Im F
is a closed curve of A2 isomorphic to A1 and that Im Fn = Im F (for n ≥ 1), since
Gn = (λnx+ λn−1yq(x, y), 0) (for n ≥ 1).

We write F = v ◦ u as in Lemma 4.4. We have u ◦ v(x) = ax with a 6= 0. By
the Abhyankar-Moh theorem (see [1]), there exists an automorphism ϕ of A2 such that
ϕ ◦ v(x) = (x, 0). Therefore, if we set G := ϕ ◦ F ◦ ϕ−1, then the second coordinate
of G is zero. We write the first coordinate in the form G1 = r(x) + yq(x, y). Since
the sequence n 7→ Gn is of bounded degree, the sequence n 7→ Gn ◦ (x, 0) also. But
Gn ◦ (x, 0) = (rn(x), 0), where rn stands for the composition r ◦ r ◦ . . . ◦ r︸ ︷︷ ︸

n

. We must

have deg r ≤ 1 and finally we obtain r(x) = λx for some non-zero complex number λ.

3. THE CHARACTERISTIC POLYNOMIAL.

Theorem 4.1. Let F ∈ End(A2) be LF and such that F (0) = 0. If d := deg F and if

λ1, λ2 are the eigenvalues of L(F ), then
∏
α∈N2

0<|α|≤d

(T − λα) is a vanishing polynomial of F .

Proof. This comes from Theorem 1.2. since deg Fn ≤ d for n ≥ 0 (if F is invertible,
it has already been said and if F is not, it is a consequence of Lemma 4.4). �

Remark. This characteristic polynomial is of degree
d(d+ 3)

2
. If d = 1, we find the

classical characteristic polynomial of a linear endomorphism (in dimension two).

4. THE MINIMAL POLYNOMIAL.

Theorem 4.2. Let F be a LF endomorphism of A2 such that F (0) = 0 and let µF be
the minimal polynomial of F , then deg µF ≤ deg F + 1.

Proof. When F is not invertible, this comes from Lemma 4.5. When F is invertible, we
can write F = ϕ ◦G ◦ ϕ−1 with ϕ(0) = G(0) = 0 and deg F = de2, where d = deg G
and e = deg ϕ (see Lemma 4.1 and the remark following it). By Lemma 4.3, deg µF is
less than or equal to the cardinal of the set A := {(k, l) ∈ N2, 0 < dk + l ≤ de}. But
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|A|+ 1 = |{(k, l) ∈ N2, 0 ≤ dk + l ≤ de}| =
e∑

k=0

(de− dk + 1) = e+ 1 + d
e∑

k=0

(e− k)

= e+ 1 + d
e(e+ 1)

2
= (e+ 1)

(
de

2
+ 1

)
so that |A| = e

(
de

2
+
d

2
+ 1

)
and

we want to prove that |A| ≤ de2 + 1. If
de

2
+
d

2
+ 1 ≤ de, i.e. 2 ≤ d(e− 1), we are

done. Otherwise, we get e = 1 or (e, d) = (2, 1) so that |A| = de2 + 1. �

Acknowledgements. We are indebted to the referees and to the editor for a number
of comments which helped improve the exposition. The second author is grateful to the
University of La Rochelle for financial support for two pleasant stays at this place.

References

[1] S.S. Abhyankar, T.T. Moh, Embeddings of the line in the plane, J. Reine Angew. Math., 276 (1975),
148-166.

[2] J. Ax, The elementary theory of finite fields, Ann. of Math. (2) 88 (1968), 239-271.

[3] J. Ax, Injective endomorphisms of varieties and schemes, Pac. J. Math. 31 (1969), 1-7.

[4] M. de Bondt, Quasi-translations and counterexamples to the homogeneous dependence problem, to
appear in the Proc. of the A.M.S.

[5] A. Borel, Injective endomorphisms of algebraic varieties, Arch. Math. (Basel) 20 (1969), 531-537.
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