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Abstract. We study the normal subgroup 〈f〉N generated by an element f 6= id in the
group G of complex plane polynomial automorphisms having Jacobian determinant 1.
On one hand if f has length at most 8 relatively to the classical amalgamated product
structure of G, we prove that 〈f〉N = G. On the other hand if f is a sufficiently generic
element of even length at least 14, we prove that 〈f〉N 6= G.

Introduction

Let Aut[C2] denote the group of complex plane polynomial automorphisms and
let G be the subgroup of automorphisms having Jacobian determinant 1. In this
paper, we deal with normal subgroups of G generated by a single element.

It is easy to check that G is equal to the commutator subgroup of Aut[C2] and
to its own commutator subgroup as well (see Proposition 10). It is more diffi-
cult to decide whether G is a simple group or not. There does not seem to exist
any natural morphism whose kernel is a proper normal subgroup of G. However,
in a short note published in 1974 that seems to have been quite forgotten, V. I.
Danilov [Dan74] proves that G is not a simple group. He uses results from P.
Schupp [Sch71], namely the so-called small cancellation theory in the context of
an amalgamated product. To be precise, he shows that the normal subgroup gen-
erated by the automorphism (ea)13 where a = (y,−x) and e = (x, y + 3x5 − 5x4)
is a strict subgroup of G. In fact, he writes (ea)12, because he uses a slightly
erroneous definition of the condition C ′(1/6) (see subsection 3.1).

We now introduce the algebraic length of an automorphism in order to state our
main result. The theorem of Jung, Van der Kulk and Nagata asserts that Aut[C2]
is the amalgamated product over their intersection of the groups A and E of affine
and elementary automorphisms (see 1.1). Let f be an element of Aut[C2]. If f
is not in the amalgamated part A ∩ E, its algebraic length |f | is defined as the
least integer m such that f can be expressed as a composition f = g1 . . . gm, where
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each gi is in some factor (A or E) of Aut[C2]. If f is in the amalgamated part, by
convention we set |f | = 0 (see [Ser77], §1.3).

The normal subgroup generated by an element f of G will be denoted by 〈f〉N .
Of course, 〈f〉N remains unchanged when replacing f by one of its conjugates in
G. So, one can assume f of minimal algebraic length in its conjugacy class (see
subsection 1.4 ). If |f | 6= 1, this amounts to saying that |f | is even (indeed, if |f |
is even, it is clear that f is strictly cyclically reduced in the sense of subsection 3.1
below). This is for example the case for the previous automorphism (ea)13 which
has length 26.

Here are the two main results of our paper:

Theorem 1. If f ∈ G satisfies |f | ≤ 8 and f 6= id, then 〈f〉N = G.

Theorem 2. If f ∈ G is a generic element of even length |f | ≥ 14, then the
normal subgroup generated by f in Aut[C2] (or a fortiori in G) is different from
G.

Here the genericness means that if we write f±1 = a1e1 . . . alel, where l ≥ 7,
a1, . . . , al ∈ A \E and each ei = (x+Pi(y), y), then there exists an integer D such
that for any sequence d1, . . . , dl of integers ≥ D, (P1, . . . , Pl) can be chosen generi-
cally (in the sense of algebraic geometry, i.e. outside a Zariski-closed hypersurface)
in the affine space

∏
1≤ i≤ l

C[y]≤ di , where we have set C[y]≤ d = {P ∈ C[y]; degP ≤

d}.
Theorems 1 and 2 correspond in the text below to Theorems 32 and 45. Note

that in the latter statements we use a geometric notion of length coming from Bass-
Serre theory (see subsection 1.2). This geometric length allows us to obtain more
natural statements. In fact, Theorem 45 deals with automorphisms satisfying the
special condition (C2) (see Definition 27). The proof that this condition is indeed
generic is postponed to the annex. To convince the reader that such a condition
is necessary, we now give examples of automorphisms of arbitrary even length and
generating normal subgroups equal to G.

Example 3. Consider the three automorphisms

a = (y,−x), e1 = (x+ P (y), y), e2 = (x+Q(y), y),

where P (resp. Q) is an even (resp. odd) polynomial of degree ≥ 2, and set
f = ae1(ae2)

n, where n ≥ 1 is an integer. If u = −id, we get au = ua, e2u = ue2
and e1u = ue−11 , so that the commutator [f, u] = fuf−1u−1 is equal to

[f, u] = ae1(ae2)
nu(ae2)

−n(ae1)
−1u−1 = ae1ue

−1
1 a−1u−1 = ae21a

−1.

Since [f, u] ∈ 〈f〉N , we get e21 ∈ 〈f〉N , so that 〈f〉N = G by Theorem 1 (or by
Lemma 30 below).

One motivation for this work is the still open question of the simplicity of
the Cremona group Cr2, i.e. the group of birational transformations of C2. For
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instance in [Giz94] the question is explicitly stated and Gizatullin gives several
criterion that would prove that Cr2 is simple. Recently Blanc [Bla10] proved that
Cr2 is simple as an infinite dimensional algebraic group. In this respect, we should
mention that Shafarevich claimed that the group Aut1[Cn] of automorphisms of the
affine space Cn having Jacobian determinant 1 is simple as an infinite dimensional
algebraic group for any n ≥ 2 (see [Sha66, Th. 5] and [Sha81, Th. 5]). However, it
is known that these two papers contain some inaccuracies (see [Kam96, Kam03]),
so the status of this question is not clear to us.

After studying the polynomial case, our sentiment is that Cr2, view as an ab-
stract group, could be not simple as well. Indeed, it is known since Iskovskikh
[Isk85] that Cr2 admits a presentation as the quotient of an amalgamated product
by the normal subgroup generated by a single element. Take H1 = (PGL(2) ×
PGL(2))oZ/2Z the group of birational transformations that extend as automor-
phisms of P1×P1 and takeH2 the group of transformations that preserve the pencil
of vertical lines x = cte. Note τ = (y, x) ∈ H1 \H2 and e = (1/x, y/x) ∈ H2 \H1;
then Cr2 is equal to the quotient

(H1 ∗H1∩H2 H2) /〈f〉N

where f = (τe)3. To prove that Cr2 is not simple it would be sufficient to find
an element g in the amalgamated product of H1 and H2 (that should correspond
to a sufficiently general birational transformation) such that the normal subgroup
〈f, g〉N is proper. This is similar to the results we obtain in this paper; but the
problem seems harder in the birational setting.

As a final remark on these matters, we would like to mention a nice reinterpre-
tation of Iskovskikh’s result by Wright (see [Wri92, Th. 3.13]). Let H3 = PGL(3)
be the group of birational transformations that extend as automorphisms of P2.
Then Wright proves that the group Cr2 is the free product of H1, H2, H3 amalga-
mated along their pairwise intersection in Cr2.

In this paper we chose to work over the field C of complex numbers, even if
most of the results could be adapted to any base field. Note that in the case
of a finite field the nonsimplicity result is almost immediate. Let Fq denote the
finite field of q = pn elements, where p is prime and n ≥ 1. Let Aut[F2

q] be the
group of automorphisms of the affine plane A2

Fq
= F2

q and let Aut1[F2
q] be the

normal subgroup of automorphisms having Jacobian determinant 1. If X is a
finite set, let Per(X) (resp. Per+(X)) be the group of permutations (resp. even
permutations) of X. Since the natural morphism φ : Aut[F2

q] → Per(F2
q) induces

a non-constant morphism Aut1[F2
q] → Per(F2

q) (consider the translations!), it is
clear that Aut1[F2

q] is not simple.

Remark 4. If q is odd (i.e. the characteristic p of Fq is odd), one can easily
check that φ(Aut1[F2

q]) = Per+(F2
q). Indeed, φ is surjective (see [Mau01]), so

that φ(Aut1[F2
q]) is a normal subgroup of Per(F2

q). However, if the cardinal of X
is different from 4, it is well known that Per+(X) is the only nontrivial normal
subgroup of Per(X) (see e.g. [Rot95, ex. 3.21, p. 51]). Therefore, it is enough
to show that φ(Aut1[F2

q]) ⊆ Per+(F2
q). But on one hand Aut1[F2

q] is generated by
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the elementary automorphisms (x + P (y), y) and (x, y + Q(x)), where P ∈ C[y],
Q ∈ C[x] are any polynomials. On the other hand, it is straightforward to check
that such automorphisms induce even permutations of F2

q.

As a final remark, we would like to stress the importance of translations in
getting our results. Let Aut0[C2] be the group of automorphisms fixing the origin
and let Jn be the natural group-morphism associating to an element of Aut0[C2]
its n-jet at the origin (for n ≥ 1). For n ≥ 2, the kernel of Jn is a nontrivial normal
subgroup of G0 = G ∩Aut0[C2], so that this latter group is not simple. Of course
for Aut[C2] the morphism Jn does not exist. This explains the fact that our paper
strongly relies on translations (see Lemmas 7 and 16).

Remark 5. It results from [Ani83] that the image of Jn is exactly the group of
n-jets of polynomial endomorphisms fixing the origin and whose Jacobian deter-
minant is a non-zero constant. The precise statement can be found in [Fur07,
Proposition 3.2].

Our paper is organized as follows.
In section 1 we gather the results from Bass-Serre theory that we need: this in-

cludes some basic definitions and facts but also some quite intricate computations,
such as in the characterization of tripods (subsection 1.7). This is also the place
where we define precisely the condition (C2) that we need in Theorem 45.

Section 2 is devoted to the proof of Theorem 1. This is the most elementary
part of the paper. We only use Lemma 7 from section 1.

In section 3 we deal with R-diagrams. This field of combinatorial group theory
has been introduced by Lyndon and Schupp in relation with condition C ′(1/6)
from small cancellation theory (see 3.1). A noteworthy feature of our work is that
we use R-diagrams in a completely opposite setting (positive curvature).

In section 4 we are able to give a proof of Theorem 2, using the full force of
both Bass-Serre and Lyndon-Schupp theories.

We briefly discuss in section 5 the cases not covered by Theorems 1 and 2, that
is to say when the automorphism has length 10 or 12.

Finally, in the annex, we prove that condition (C2) is generic and we also give
explicit examples of automorphisms satisfying this condition.

1. The Bass-Serre tree

1.1. Generalities
The classical theorem of Jung, van der Kulk and Nagata states that the group
Aut[C2] is the amalgamated product of the affine group

A = {(αx+ βy + γ, δx+ εy + ζ);α, . . . , ε ∈ C, αε− βδ 6= 0}

and the elementary group

E = {(αx+ P (y), βy + γ);α, β, γ ∈ C, αβ 6= 0, P ∈ C[y]}

over their intersection (see [Jun42, vdK53, Nag72]). This is usually written in the
following way:
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Theorem 6. Aut[C2] = A ∗A∩E E.

A geometric proof of this theorem and many references may be found in [Lam02].
Let us also recall that elements of E are often called triangular automorphisms.

The Bass-Serre theory ([Ser77]) associates a simplicial tree to any amalgamated
product. In our context, let us denote by T this tree. By definition, the vertices
of T are the disjoint union of the left cosets modulo A (vertices of type A) and
modulo E (vertices of type E). The edges of T are the left cosets modulo (A∩E).
Finally, if φ ∈ Aut[C2], the edge φ(A ∩ E) links the vertices φA and φE. Since
Aut[C2] is generated by A and E, T is connected. Thanks to the amalgamated
structure, T contains no loop, so that it is indeed a tree.

The group Aut[C2] acts naturally on T by left multiplication: for any g, φ ∈
Aut[C2], we set g.φA = (gφ)A, g.φE = (gφ)E and g.φ(A ∩ E) = (gφ)(A ∩ E). It
turns out that this action gives an embedding of Aut[C2] into the group of sim-
plicial isometries of T (see [Lam01, Remark 3.5]). This action is transitive on the
set of edges, on the set of vertices of type A and on the set of vertices of type E.
The stabilizer of a vertex φA (resp. of a vertex φE, resp. of an edge φ(A ∩E)) is
the group φAφ−1 (resp. φEφ−1, resp. φ(A ∩ E)φ−1).

Following [Wri79, Lam01], one can define systems of representatives of the non-
trivial left cosets A/A ∩ E and E/A ∩ E by taking:

a(λ) = (λx+ y,−x); λ ∈ C
e(Q) = (x+Q(y), y); Q(y) ∈ y2C[y] \ {0}.

Note that the minus sign in the expression of a(λ) did not appear in [Wri79,
Lam01]. We have to introduce it in the present paper in order to get automor-
phisms with Jacobian determinant 1 (see subsection 1.4).

Then any element g ∈ Aut[C2] may be uniquely written g = ws where w is a
product of factors of the form a(λ) or e(Q), successive factors being of different
forms, and s ∈ A ∩ E (see e.g. [Ser77, chap. I, 1.2, th. 1]). Similarly, any edge
(resp. vertex of type A, resp. vertex of type E) may be uniquely written w(A∩E)
(resp wA, resp. wE) where w is as above.

We call a (directed) path a sequence of consecutive edges in T . To denote
a path we enumerate its vertices separated by −. For instance the path P of
two edges containing the vertices idA, idE, eA, where e ∈ E \ A will be denoted
P = idA− idE − eA. If we are only interested in the type of the vertices, we say
for example that P is of type A− E −A.

If two vertices of T are fixed by an automorphism of Aut[C2], then the path
relating them is also fixed. Therefore, the subset of T fixed by an automorphism
is either empty or a subtree. Up to conjugation, this subset has been computed
for any automorphism in [Lam01, proof of Proposition 3.3]. In particular, it has
been computed for the translation (x + 1, y). The following easy and technical
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lemma is a slight variation of this computation. As in the latter paper, this anal-
ogous statement turns out to be very useful. The proof is given for the sake of
completeness.

Lemma 7. The subtree of T fixed by the translation (x+ c, y), c ∈ C∗, is exactly
the union of the paths

idE − e(P )A− e(P )a(λ)E − e(P )a(λ)e(Q)A

where P ∈ y2C[y], λ ∈ C and Q(y) = αy2, α ∈ C∗.
Note that we (exceptionally) allow P to be zero. In that case, the path should

rather be written
idE − idA− a(λ)E − a(λ)e(Q)A.

In particular, the fixed subtree does not depend on c, has diameter 6 and contains
the closed ball of radius 2 centered at idE, i.e. the union of the paths

idE − e(P )A− e(P )a(λ)E, P ∈ y2C[y], λ ∈ C.

Proof. If P,Q ∈ y2C[y] and λ ∈ C we have

(x+ c, y) ◦ e(P ) = e(P ) ◦ (x+ c, y);

(x+ c, y) ◦ a(λ) = a(λ) ◦ (x, y + c);

(x, y + c) ◦ e(Q) = e(Q) ◦ f ;

where f = (x+Q(y)−Q(y + c), y + c), so that

(x+ c, y)e(P )a(λ)e(Q) = e(P )a(λ)e(Q)f.

Therefore, the vertex e(P )a(λ)e(Q)A is fixed by (x+ c, y) if and only if f ∈ A, i.e.
deg(Q(y)−Q(y + c)) ≤ 1, i.e. deg(Q) ≤ 2. If Q = αy2, this vertex is fixed. Since
the vertex idE is also (obviously) fixed, this shows that the following path is fixed:

idE − e(P )A− e(P )a(λ)E − e(P )a(λ)e(Q)A.

If Q = αy2, where α 6= 0 and µ ∈ C, it remains to show that the vertex
e(P )a(λ)e(Q)a(µ)E is not fixed. Indeed, an easy computation shows that

(x+ c, y)e(P )a(λ)e(Q)a(µ) = e(P )a(λ)e(Q)a(µ)g,

where g = (x− c, 2αcx+ y + µc− αc2) /∈ E.

1.2. Algebraic and geometric lengths
We will use two notions of length on Aut[C2].

The algebraic length has been defined in the introduction: if g ∈ Aut[C2] is
not in the amalgamated part, |g| is defined as the least integer m such that g can
be expressed as a composition g = g1 . . . gm where each gi is in some factor of the
amalgam. If g is in the amalgamated part, we set |g| = 0.

The geometric length is defined by lg(g) = infv∈V dist(g.v, v), where V is the
set of vertices of T and dist(., .) is the simplicial distance on T .

By Lemma 8 we almost always have lg(g) = min{|φgφ−1|;φ ∈ Aut[C2]}, the
only exception being when g is conjugate to an elementary automorphism which
is not conjugate to an element in the amalgamated part.
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1.3. Elliptic and hyperbolic elements
Elements g of Aut[C2] may be sorted into two classes according to their action on
T .

If lg(g) = 0 (i.e. g has at least one fixed point on T ), we say that g is elliptic.
This corresponds to the case where g is conjugate to an element belonging to some
factor (A or E) of Aut[C2]. Since any element of A is conjugate to some element
of E, this amounts to saying that g is triangularizable (i.e. conjugate to some
triangular automorphism).

If lg(g) > 0, we say that g is hyperbolic. This corresponds to the case where
g is conjugate to a composition of generalized Hénon transformations h1 . . . hl (see
[FM89]). We recall that a generalized Hénon transformation is a map of the form

h = (y, ax+ P (y)) = (y, x) ◦ (ax+ P (y), y),
where a ∈ C∗ and P (y) is a polynomial of degree at least 2. Equivalently, g is
conjugate to an automorphism of the form

f = a1e1 . . . alel,
where each ai ∈ A \ E and each ei ∈ E \A.

The set of points v ∈ T satisfying dist(g.v, v) = lg(g) defines an infinite geodesic
of T denoted by Geo(g). Furthermore, g acts on Geo(g) by translation of length
lg(g). It is not difficult to check that lg(g) = lg(f) = |f | = 2l and that the geodesic
of f is composed of the path idA−a1E−a1e1A−· · ·−a1e1 . . . alelA and its trans-
lated by the fk’s (k ∈ Z). If g = φfφ−1 with φ ∈ Aut[C2], we have of course
Geo(g) = φ(Geo(f)).

The proof of the following easy result is left to the reader. Note that these
two sets of equivalent conditions correspond to the notions of strictly and weakly
cyclically reduced elements given in subsection 3.1.

Lemma 8. Let g ∈ Aut[C2] be a hyperbolic element.
(1) The following assertions are equivalent:

(i) |g| = lg(g); (ii) Geo(g) contains the vertices idA and idE.
(2) The following assertions are equivalent:

(iii) |g| ≤ lg(g) + 1; (iv) Geo(g) contains the vertex idA or idE.

1.4. The group G

In this subsection we prove two basic facts about G. Let us set A1 = A ∩ G and
E1 = E ∩G. Theorem 6 easily implies the following result:

Proposition 9. G = A1 ∗A1∩E1
E1.

Proof. By [Ser77, chap. I, n◦ 1.1, Prop. 3], it is sufficient to prove that any
g ∈ G is a composition of affine and triangular automorphisms with Jacobian
determinant 1. We know that we can write g as a composition of a(λ) and e(Q),
with a correcting term s ∈ A∩E. Note that the a(λ) and e(Q) are automorphisms
with Jacobian determinant 1, so s is also of Jacobian determinant 1 and we are
done.

As a consequence of this proposition the whole discussion of the previous subsec-
tion still applies to G. In particular we can make the same choice of representatives
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a(λ) and e(Q) to write edges and vertices, so that there exists a natural bijection
between the trees associated to Aut[C2] and to G.

Proposition 10. The group G is the commutator subgroup of the group Aut[C2],
and is also equal to its own commutator subgroup.

Proof. Using Proposition 9, it is sufficient to check that the commutator subgroup
of G contains SL(2,C) and all triangular automorphisms of the form (x+P (y), y).
But on one hand it is well-known that SL(2,C) is equal to its own commutator
subgroup; on the other hand any triangular automorphism (x+λyn, y), with n ≥ 2
and λ ∈ C, is the commutator of (x+λ(1− b)−1yn, y) and

(
bx, b−1y

)
, where b 6= 1

is a n-th root of the unity. Finally, any translation (x+ c, y) is the commutator of
(−x,−y) and (x− c

2 , y).

1.5. The color

We now introduce the color of a path of type A − E − A. This notion will be
used to make precise the genericness assumptions we need. Note that any path of
type A− E − A can be written P = ψe1A− ψE − ψe2A, where ψ ∈ Aut[C2] and
e1, e2 ∈ E.

Definition 11. The color of P is the double coset (A ∩ E)e−11 e2(A ∩ E).

One verifies easily that this definition does not depend on the choice of e1, e2.
The color is clearly invariant under the action of Aut[C2]. In fact, given two paths
of type A − E − A one could even show that one can send one to the other (by
an element of Aut[C2]) if and only if they have the same color. However, we will
not use this result. For an illustration of the notion of color, let us for example
note that the color of the path e(P )A− e(P )a(λ)E− e(P )a(λ)e(Q)A appearing in
Lemma 7 has color (A ∩ E)e(Q)(A ∩ E).

If P ∈ C[y] is such that the color of P is equal to the double coset (A ∩
E)e(P )(A ∩ E), we say that P represents the color of P. The following lemma
implies that this notion does not depend on the orientation of the path. Its proof
is easy and left to the reader.

Lemma 12. Let P,Q ∈ C[y] be polynomials of degree ≥ 2. Then P and Q rep-
resent the same color if and only if there exist α, . . . , ε with αβ 6= 0 such that
Q(y) = αP (βy + γ) + δy + ε.

Remark 13. Note that any path of type A − E − A can be sent by an automor-
phism to a path of the form idA − idE − e(P )A. It is easy to check that the
vertices e(P )A and e(Q)A are equal if and only if there exists α, β ∈ C such that
Q(y) = P (y) + αy + β.

Fundamental example 14. Let g be a hyperbolic automorphism of geometric
length lg(g) = 2l. We know that g is conjugate to an automorphism of the form
f = a1e1 . . . alel where each ai ∈ A \ E and each ei ∈ E \ A. Then, the geodesic
of g (and f) carries the l colors (A ∩ E)ei(A ∩ E) (1 ≤ i ≤ l) which are repeated
periodically.
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1.6. General color

Definition 15. A polynomial P ∈ C[y] of degree d ≥ 5 is said to be general if it
satisfies:
∀α, β, γ ∈ C, deg(P (y)− αP (βy + γ)) ≤ d− 4 =⇒ α = β = 1 and γ = 0.
The color (A∩E)e(P )(A∩E) is said to be general if P is general. Lemma 12

implies that this notion does not depend on the choice of a representative P .

Lemma 16. Let Q ∈ y2C[y] be general. The stabilizer of the path P = e(Q)A −
idE − idA is equal to {(x + βy + γ, y);β, γ ∈ C}. Furthermore, if β 6= 0, the
automorphism (x+ βy + γ, y) does not fix any path strictly containing P.

Proof. We know that f ∈ Aut[C2] fixes the path idE− idA if and only if f ∈ A∩E.
In this case, there exists constants α, . . . , ζ, with αε 6= 0 such that f = (αx+βy+
γ, εy+ ζ). Since fe(Q) = e(Q)g, where g = (αx+βy+αQ(y)−Q(εy+ ζ), εy+ ζ),
the vertex e(Q)A is fixed by f if and only if g ∈ A, i.e. deg(αQ(y)−Q(εy+ζ)) ≤ 1.
The polynomial Q being general, this is equivalent to α = ε = 1 and ζ = 0.

The second assertion comes from the following simple observation:

(x+ βy + γ, y)a(λ)E = a(λ− β)E.

Indeed, since (x+ βy + γ, y)e(Q) = e(Q)(x+ βy + γ, y), we also have

(x+ βy + γ, y)e(Q)a(λ)E = e(Q)a(λ− β)E.

Therefore, the vertices a(λ)E and e(Q)a(λ)E are fixed by (x + βy + γ, y) if and
only if β = 0.

Remark 17. Lemma 16 is a kind of converse to Lemma 7. Precisely, we obtain
that if φ fixes a general path of 4 edges centered on idE, then φ = (x+ c, y) (Here
by general we mean that the color supported by the two central edges of the path
is general; see Def. 11 and below).

Note also that since (x, y + c) = a(0) ◦ (x− c, y) ◦ a(0)−1, the subset of T fixed
by (x, y + c) is the image by a(0) of the subset fixed by (x − c, y). In particu-
lar, it contains the closed ball of radius 2 centered at a(0)E. Furthermore, if φ
fixes a general path of 4 edges centered at a(0)E, it can be written as φ = (x, y+c).

We now apply the notion of a general color to prove a technical result that
we need to prove Theorem 45. We consider a hyperbolic automorphism f and
g = ϕfϕ−1 6= f a conjugate of f . We want to show that if f is sufficiently general
then Geo(f)∩Geo(g) is a path of length at most 4. More precisely, we also describe
all possibles types of such paths.

Definition 18. We say that a hyperbolic automorphism of geometric length 2l
satisfies condition (C1) if the l colors supported by its geodesic (see Example 14)
are general and distinct.

In the annex we show that this condition is generic in a natural sense.
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Proposition 19. Let f and g = φfφ−1 be two distinct conjugate automorphisms
satisfying condition (C1). If the intersection Geo(f)∩Geo(g) contains at least one
edge then this path is of type:

A− E, E −A− E, A− E −A, or E −A− E −A− E

Proof. There is no restriction to assume that P ′ = Geo(f) ∩ Geo(g) = Geo(f) ∩
φ(Geo(f)) contains a path of type A − E − A, because otherwise P ′ is at most a
path of type E −A− E.

Let us call v the central vertex of type E of this subpath of P ′. Since φ−1(v) ∈
Geo(f), there exists an integer k such that dist(fk(v), φ−1(v)) = dist((φfk)(v), v) <
lg(f) = 2l. Replacing φ by φfk, we do not change g, but we now have dist(φ(v), v) <
2l. By condition (C1), the geodesic of f carries l distinct colors which are repeated
periodically. Therefore, dist(φ(v), v) ∈ 2lZ and finally we get φ(v) = v, so that φ
is elliptic.

Let us set P = φ−1(P ′) = Geo(f)∩ φ−1(Geo(f)). Equivalently, one may define
P as the maximal path such that P ⊆ Geo(f) and φ(P) ⊆ Geo(f).

The path P contains a path of type A−E−A whose central vertex is v. Without
loss of generality, one can now conjugate and assume that this subpath is of the
form e(Q)A− idE − idA. In particular v = idE.

There are two subcases, depending on whether φ:P → φ(P) preserves the
orientation induced by Geo(f).

If φ preserves this orientation, then φ fixes P point by point. We may assume
that P is strictly greater than e(Q)A − idE − idA, because otherwise there is
nothing to show. Then, by Lemmas 7 and 16, we get φ = (x + γ, y). Since the
colors of Geo(f) are general, Lemma 7 shows us that P is of the form e(Q)a(λ)E−
e(Q)A− idE − idA− a(µ)E, so that it is of type E −A− E −A− E.

If φ does not preserve this orientation, then φ fixes only the vertex v of Geo(f).
One can show that φ has to be an involution (see Lemma 20 below). This implies
that P contains an even number of edges and is centered on v. Since the l colors
supported by Geo(f) are distinct, P contains only one color, so that it is of type
A− E −A or E −A− E −A− E.

Lemma 20. Let P be a path of type A − E − A carrying a general color. If
φ ∈ Aut[C2] exchanges the two ends of P then φ2 = id.

Proof. Without loss of generality, one can conjugate and assume that the path P is
of the form e(Q)A−idE−idA (see Remark 13). Note that φ1 = e(Q)◦(−x, y) is an
involution that exchanges the two vertices e(Q)A and idA. Thus φ1φ fixes the path
P point by point, and since Q is general by Lemma 16 we get φ = φ1◦(x+βy+γ, y).
Remark that φ1 ◦ (x+ βy + γ, y) = (x+ βy + γ, y)−1 ◦ φ1, hence

φ2 = φ1 ◦ (x+ βy + γ, y) ◦ (x+ βy + γ, y)−1 ◦ φ1 = id.

Example 21. Here we show that all cases allowed by Proposition 19 can be
realized. In the following examples we suppose that Geo(f) contains the path
a(0)E − idA− idE − e(Q)A− e(Q)a(µ)E where Q is a general polynomial and we
choose φ such that the path P has various forms.

(1) Examples with φ fixing at least one edge:
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• φ = (x+ P (y), y) with degP ≥ 2, P = idA− idE;
• φ = (αx, βy) with αβ 6= 0 and (α, β) 6= (1, 1), P = a(0)E − idA −
idE;
• φ = (x+ by, y) with b 6= 0, P = idA− idE − e(Q)A;
• φ = (x + c, y) with c 6= 0, P = a(0)E − idA − idE − e(Q)A −
e(Q)a(µ)E.

(2) Examples with φ reversing the orientation:
• φ = (y, x) exchanges a(0)E and idE, P = a(0)E − idA− idE;
• φ = (−x + Q(y), y) exchanges idA and e(Q)A, P is of length 4 or

2 depending if µ = 0 or not.

(3) Example with φ hyperbolic:
• φ = e(Q)a(µ)u with u = (−x,−y) sends P = a(0)E− idA− idE to
φ(P) = idE − e(Q)A − e(Q)a(µ)E (the reader should verify that
a(µ)ua(0) = (x− µy, y) ∈ A ∩ E).

1.7. Independent colors and tripods

Definition 22. A family of polynomials Pi ∈ C[y] (1 ≤ i ≤ l) is said to be
independent if given any αk, βk, γk ∈ C with αkβk 6= 0 and ik ∈ {1, . . . , l}, for
1 ≤ k ≤ 3, we have:

deg
∑

1≤ k≤ 3

αkPik(βky + γk) ≤ 1 =⇒ i1 = i2 = i3.

The family of colors (A∩E)e(Pi)(A∩E) (1 ≤ i ≤ l) is said to be independent
if the family Pi (1 ≤ i ≤ l) is independent. Lemma 12 implies that this notion
does not depend on the choice of the representatives Pi.

Definition 23. Three paths P1, P2, P3 of the tree T define a tripod if

• For each i 6= j, Pi ∩ Pj contains at least one edge;
• The intersection P1 ∩ P2 ∩ P3 consists of exactly one vertex v.

The three paths Pi ∩Pj are called the branches of the tripod. The vertex v is
called the center of the tripod.

If we have a center of type E, we can consider the three colors associated with
the three paths of type A−E−A containing the center and included in the tripod.
In this situation we say that any one of these colors is a mixture of the two other
ones.

Lemma 24. Let P1, P2, P3 ∈ C[y] be polynomials of degree ≥ 2. The following
assertions are equivalent:

(1) (A∩E)e(P3)(A∩E) is a mixture of the (A∩E)e(Pi)(A∩E)’s (1 ≤ i ≤ 2);
(2) ∃α1, β1, γ1, α2, β2, γ2, δ, ε ∈ C with α1β1α2β2 6= 0 such that

P3(y) = α1P1(β1y + γ1) + α2P2(β2y + γ2) + δy + ε.
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Proof. (1) =⇒ (2). Assume that there exists a tripod admitting the 3 colors
(A ∩ E)e(Pi)(A ∩ E) (1 ≤ i ≤ 3).

We may assume that the center of this tripod is idE and that one of its branch
is idE− idA. Let P̃1, P̃2 ∈ C[y] be such that the 2 other branches are idE−e(P̃1)A,
and idE− e(P̃2)A and such that (E ∩A)e(P1)(A∩E) = (E ∩A)e(P̃1)(A∩E) and
(E ∩A)e(P2)(A ∩ E) = (E ∩A)e(P̃2)(A ∩ E). By Lemma 12, for 1 ≤ i ≤ 2, there
exists αi, βi, γi, δi, εi with αiβi 6= 0 such that P̃i = αiPi(βiy + γi) + δiy + εi.

We then have (E∩A)e(P3)(A∩E) = (E∩A)e(P̃3)(A∩E), where P̃3 = P̃1− P̃2,
so (still by Lemma 12) this shows that P3 has the desired form.

(2) =⇒ (1). Set P̃1 = α1P1(β1y+γ1), P̃2 = −α2P2(β2y+γ2) and P̃3 = P̃1−P̃2 =

α1P1(β1y + γ1) + α2P2(β2y + γ2). By Lemma 12, we have (E ∩ A)e(P̃i)(A ∩
E) = (E ∩ A)e(Pi)(A ∩ E) for 1 ≤ i ≤ 3. Since e(P̃2)

−1e(P̃1) = e(P̃3) /∈ A,
the vertices e(P̃1)A and e(P̃2)A are distinct. Consider the tripod with center idE
and branches idE − idA, idE − e(P̃1)A and idE − e(P̃2)A. Its three colors are
(E ∩ A)e(P̃i)(A ∩ E) for 1 ≤ i ≤ 3. This shows that (A ∩ E)e(P3)(A ∩ E) is a
mixture of (A ∩ E)e(P1)(A ∩ E) and (A ∩ E)e(P2)(A ∩ E).

Remark 25. The second condition of Lemma 24 may be written under the following
symmetric form:

For 1 ≤ k ≤ 3, there exists αk, βk, γk ∈ C with αkβk 6= 0 such that

deg
∑

1≤ k≤ 3

αkPk(βky + γk) ≤ 1.

Therefore, the following lemma is an easy consequence of the previous one.

Lemma 26. Consider three colors represented by P1, P2, P3 ∈ C[y] which are poly-
nomials of degree ≥ 2. The following assertions are equivalent:

(1) the three colors (A ∩ E)e(Pi)(A ∩ E) (i = 1, 2, 3) are independent;
(2) For any i1, i2, i3 ∈ {1, 2, 3}, if (A ∩ E)e(Pi3)(A ∩ E) is a mixture of (A ∩

E)e(Pi1)(A ∩ E) and (A ∩ E)e(Pi2)(A ∩ E), then i1 = i2 = i3.

Definition 27. We say that a hyperbolic automorphism of geometric length 2l
satisfies condition (C2) if the l colors supported by its geodesic (see Example 14)
are general and independent.

In the annex we show that this condition is generic in a natural sense.

Remark 28. One could easily check that independent colors are necessarily dis-
tinct. Therefore, condition (C2) is stronger than condition (C1).

By misuse of language, we will say that three hyperbolic automorphisms g1, g2, g3
define a tripod if their geodesics Geo(g1),Geo(g2),Geo(g3) define a tripod.

Lemma 29. A tripod associated with three conjugates of a hyperbolic automor-
phism f satisfying condition (C2) admits branches of length at most 2.
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Proof. If the center of the tripod is of type A, by Proposition 19 there is nothing
to do. Assume now that the center of the tripod is of type E. Without loss of
generality one can conjugate and assume that the center is idE, and that Geo(f)
contains the vertices idA and a(0)E. Let us note g = ufu−1 and h = vfv−1 the
two conjugates of f involved in the tripod.

By condition (C2) the three colors centered on idE in the tripod must be equal.
Indeed, if (A∩E)e(Pi)(A∩E), 1 ≤ i ≤ l are the l colors supported by Geo(f), then
there exist i1, i2, i3 ∈ {1, . . . , l} such that these three colors are (A∩E)e(Pik)(A∩
E), 1 ≤ k ≤ 3. By Definition 22 and Lemma 24 (see also Remark 25), we get
i1 = i2 = i3, so that the three colors are equal.

Let us prove that u can be chosen fixing the center α = idE of the tripod. Since
α ∈ Geo(f) ∩ Geo(g) = Geo(f) ∩ u(Geo(f)), we get u−1(α) ∈ Geo(f), so that
there exists an integer k such that dist(fk(α), u−1(α)) < lg(f) = 2l. Replacing u
by ufk, we do not change g, but we now have dist(u(α), α) < 2l. By condition
(C1) (cf. Remark 28), the geodesic of g carries l distinct colors which are repeated
periodically. Therefore, dist(u(α), α) ∈ 2lZ and finally we get u(α) = α. We would
prove in the same way that v can be chosen fixing α = idE. In other words, we
have u, v ∈ E.

Let us now assume that there exists a branch, say Geo(f) ∩ Geo(h), of length
strictly greater than 2. Then, by Proposition 19, this branch has length 4, with
middle point a(0)E (see Fig. 1). Since v fixes point by point the general path
Geo(f) ∩Geo(h), by Remark 17, it can be written as v = (x, y + c).

Let e = e(P ) = (x+P (y), y) ∈ E be such that the vertex eA ∈ Geo(f)∩Geo(h).
Since Geo(h) = v(Geo(f)), the vertex veA ∈ Geo(h) and finally veA ∈ Geo(g) ∩
Geo(h).

We assume that the orientation induced by g on idE − eA is opposite to the
one of f , the other case being symmetric.

•

•

•

•

• • • • •

eA

???????

veA

�������

idE idA a(0)e(Q)A

a(0)e(Q)a(λ)E

a(0)E

???????

???????

f
dd

h

zz

g

��

Figure 1.

Since Geo(g) = u(Geo(f)), u sends the path idA− idE − eA to the path eA−
idE − veA.

On one hand, u sends idA to eA, i.e. uA = eA, i.e. e−1u ∈ A, i.e. e−1u ∈ A∩E.
Since e−1u ∈ A ∩ E, it can be written as s1s2, where s1 = (a1x, b1y + c1), s2 =
(x+ βy + γ, y) ∈ A ∩ E and we have u = es1s2.
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On the other hand u sends eA to veA, i.e. ueA = veA, i.e. es1s2eA = veA.
Since s2e = es2, we have es1s2eA = es1eA, so that es1eA = veA. This last
equality is still equivalent to e−1v−1es1e ∈ A. We compute

e−1v−1es1e = (a1x+ a1P (y) + P (b1y + c1)− P (b1y + c1 − c), b1y + c1 − c).

We should have deg(a1P (y) + P (b1y + c1) − P (b1y + c1 − c)) ≤ 1. Since a1 6= 0
and deg(P (b1y + c1)− P (b1y + c1 − c)) < degP , this is impossible.

2. The proof of Theorem 1

We start by looking at the case of an automorphism of algebraic length ≤ 1,
i.e. a triangular or affine automorphism. Note that similar results in the context
of birational transformations are proved in [Giz94] and [CD08].

Lemma 30. If f ∈ G satisfies |f | ≤ 1 and f 6= id, then 〈f〉N = G.

Proof. Let g, h ∈ G. Note that if g or h belongs to 〈f〉N , then so does the
commutator [g, h] = ghg−1h−1. We show that G = 〈f〉N by making the following
observations:

• If f ∈ SL(2,C) and f 6= ±id, we obtain SL(2,C) ⊆ 〈f〉N . We used the fact
that {±id} is the unique nontrivial normal subgroup of SL(2,C). Indeed,
if H is a normal subgroup of SL(2,C) not included into {±id}, we get
SL(2,C) = H ∪ (−H) by simplicity of PSL(2,C). Therefore, if g = (y,−x),
we get g ∈ H or −g ∈ H, so that −id = g2 = (−g)2 ∈ H and finally
H = SL(2,C).
Now, if α, β ∈ C, we get

[(x+ α, y + β), (−x,−y)] = (x+ 2α, y + 2β)

so that A ⊆ 〈f〉N .
If b 6= 1 is a n-th root of the unity (n ≥ 2) and λ ∈ C, we get

[(x+ λ(1− b)−1yn, y), (bx, b−1y)] = (x+ λyn, y)

and we are done.
• If f is a translation, then, conjugating by SL(2,C), we see that 〈f〉N con-

tains all translations. So, it contains the commutator

[(x, y + 1), (x+ y2, y)] = (x− 2y + 1, y)

and also the linear automorphism (x−2y, y). We conclude by the previous
case.
• If f is an affine automorphism which is not a translation, then there exists a
translation g which does not commute with f . Therefore, the commutator
[f, g] is a nontrivial translation belonging to 〈f〉N and we conclude by the
previous case.
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• Finally if f = (ax+P (y), a−1y+c) is a triangular non affine automorphism,
then, up to replacing f by [f, g], where g is a triangular automorphism non
commuting with f , we may assume that a = 1. Still replacing f by [f, g],
where g is a triangular automorphism non commuting with f , we may even
assume that c = 0. Therefore, f is of the form (x+P (y), y). Remark then
that the commutator

[(x, y + 1), (x+ P (y), y)]

is a triangular automorphism of the form (x + R(y), y), with degR =
degP−1. By induction on the degree we obtain the existence of a nontrivial
translation (x+ c, y) in 〈f〉N . This case has already been done.

Corollary 31. If f ∈ G is elliptic (i.e. triangularizable) and f 6= id, then 〈f〉N =
G.

We are now ready to prove Theorem 1. In fact, we will prove the following
stronger and more geometric version:

Theorem 32. If f ∈ G satisfies lg(f) ≤ 8 and f 6= id, then 〈f〉N = G.

Proof. The crucial fact we use here is the knowledge of the subtree fixed by trans-
lations (x+ c, y). We know that this subtree is of diameter 6, centered in idE, and
that the closed ball of radius 2 and center idE is contained in this subtree (see
Lemma 7). In consequence, given an arbitrary path of type E − A− E − A− E,
there exists a conjugate ψ of (x+ 1, y) fixing this path point by point.

Let us choose such a path contained in the geodesic of f and let us set g =
ψfψ−1. Then if lg(f) = 2 or 4 it is clear that f ◦g−1 is elliptic, so we can conclude
by Corollary 31. If lg(f) = 6 then lg(f ◦ g−1) ≤ 4 so we are done by the previous
case.

The case where lg(f) = 8 is more subtle and we have to refine the above
argument. Replacing f by one of its conjugates, we may assume |f | = lg(f) = 8.
We can then assume (maybe replacing f by f−1) that

f = e1a1e2a2e3a3e4a4

where ai ∈ A \ E, ej ∈ E \ A. Without loss of generality we can further assume
that each ej is of the form ej = e(Pj) = (x+ Pj(y), y) and that deg(e1) ≤ deg(ej)
for j = 2, 3, 4.

We know that any translation (x+c, y) fixes the closed ball of radius 2 and center
idE. Note also that for any s ∈ A ∩ E, s(x + 1, y)s−1 is still a translation of the
form (x+ c, y). In consequence, if we write e1a1 under the form e1a1 = e(P )a(λ)s
with s ∈ A ∩ E, the automorphism

ẽ1 = e1a1(x+ 1, y)a−11 e−11

= (x+ P (y), y) ◦ (λx+ y,−x) ◦ (x+ c, y) ◦ (−y, λy + x) ◦ (x− P (y), y)
= (x+ λc+ P (y − c)− P (y), y − c)
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Figure 2. Proof of Theorem 32

fixes the closed ball of radius 2 and center e1a1E. Note that deg ẽ1 = deg e1 − 1.
Consider

g = ẽ1fẽ
−1
1 and h = g−1f.

By construction the geodesics Geo(g) and Geo(f) have at least 4 edges in common.
By Lemma 7 we also know that they have at most 6 edges in common. Then we
can check (see Fig. 2) that h sends the vertex v = a−14 e−14 a−13 E to a vertex at
distance at most 8 (and at least 6) of v. Explicitly, one can compute

h = ẽ1a
−1
4 e−14 a−13 ẽ3a3e4a4

where ẽ3 = e−13 a−12 (x − 1, y)a2e3 is a triangular automorphism with deg(ẽ3) =
deg(e3)− 1.

If deg(ẽ1) = deg(ẽ3) = 1 then lg(h) = 4. This corresponds to the case when
Geo(g) and Geo(f) share 6 edges. Note that a−13 ẽ3a3 and a4ẽ1a−14 are indeed non
triangular affine automorphisms.

If deg(ẽ1) = 1 and deg(ẽ3) ≥ 2 then lg(h) = 6. In this case Geo(g) and Geo(f)
share 5 edges : the vertices idA and ẽ1A coincide.

In the two cases above we are done by the first part of the proof.
Finally if deg(ẽ1) ≥ 2 then h admits a factorization similar to the one of the

f we started with except that the first triangular automorphism has a strictly
smaller degree. By induction, we can produce an element of length 8 in 〈f〉N with
the first triangular automorphism of degree 2, and we are done by the previous
argument.

3. R-diagrams

3.1. Generalities on small cancellation theory
In this subsection we consider H = H1 ∗H1∩H2

H2 a general amalgamated product
of two factors. Of course our motivation is to apply the theory to the group Aut[C2]
of plane automorphisms.
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The following definitions are taken from [LS01], chap. V, §11 (p. 285). If u
is an element of H, not in the amalgamated part H1 ∩ H2, a normal form of
u is any sequence x1 · · ·xm such that u = x1 · · ·xm, each xi is in a factor of H,
successive xi come from different factors of H, and no xi is in the amalgamated
part. The length of u is defined by |u| = m. This definition does not depend on
the chosen normal form, but only on u. If u is in the amalgamated part of H, by
convention we set |u| = 0.

We call a word an element u ∈ H given with a factorization u = u1 · · ·uk,
where ui ∈ H for i = 1, · · · , k. A word u = u1 · · ·uk is said to have reduced form
if |u1 · · ·uk| = |u1|+ · · ·+ |uk|.

Suppose u and v are elements of H with normal forms u = x1 · · ·xm and v =
y1 · · · yn. If xmy1 is in the amalgamated part, we say that there is cancellation
between u and v in forming the product uv. Equivalently, this means that |uv| ≤
|u| + |v| − 2. If xm and y1 are in the same factor of H and xmy1 is not in the
amalgamated part, we say that xm and y1 are consolidated in forming a normal
form of uv. Equivalently, this means that |uv| = |u|+ |v| − 1.

A word is said to have semi-reduced form u1 · · ·uk if there is no cancellation
in this product. Consolidation is expressly allowed.

A word u = x1 · · ·xm in normal form is strictly (resp. weakly) cyclically
reduced if m ≤ 1 or if xm and x1 are in different factors of H (resp. the product
xmx1 is not in the amalgamated part). These two notions correspond to the two
sets of equivalent conditions given in Lemma 8

A subset R of H is symmetrized if all elements of R are weakly cyclically
reduced and for each r ∈ R, all weakly cyclically reduced conjugates of both r and
r−1 belong to R.

If f is strictly cyclically reduced, R(f) denotes the symmetrized set generated
by f , i.e. the smallest symmetrized set containing f . It is clear that R(f) is equal
to the set of conjugates of f±1 of length ≤ |f |+ 1.

We now discuss briefly the condition C ′(λ) (mostly used with λ = 1/6). We do
not need this notion in our construction, but this was the original setting where the
notion of R-diagram (see next subsection) was introduced. Let R be a symmetrized
subset of H. A word b is said to be a piece (relative to R) if there exists distinct
elements r1, r2 of R such that r1 = bc1 and r2 = bc2 in semi-reduced form.

Lemma 33. If 0 < λ < 1 and ∀ r ∈ R, |r| > 1/λ, the following assertions are
equivalent:

(1) If r ∈ R admits a semi-reduced form r = bc, where b is a piece of R, then
|b| < λ|r|;

(2) ∀ r1, r2 ∈ R such that r1r2 6= 1, |r1r2| > |r1|+ |r2| − 2λmin{|r1|, |r2|}+ 1.

Proof. The equivalence is easily obtained from the following claim.
Let r1 = bc1 and r2 = bc2 be semi-reduced expressions with b 6= 1 and r1 6= r2.

Claim. There exists b′, c′1, c′2 such that:

a) the equalities r1 = b′c′1 and r2 = b′c′2 hold;
b) these expressions are semi-reduced;
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c) exactly one of these expressions is reduced;
d) the expression (c′1)

−1c′2 is reduced;
e) |b′| ≥ |b|.

Definition 34. When the equivalent assertions of Lemma 33 are satisfied, we say
that R satisfies condition C ′(λ).

The first assertion is the one used by Lyndon and Schupp. The second one is
used by Danilov, except that he forgets the +1 in the formula. This leads to the
slight error in his statement that we mentioned in the introduction. Let us finish
this subsection by recalling one of the main theorems of small cancellation theory
(see [LS01, Th. 11.2, p. 288]):

Theorem 35. Let R be a symmetrized subset of the amalgamated group H. Sup-
pose that R satisfies condition C ′(λ) with λ ≤ 1/6, then the normal subgroup
generated by R in H is different from H.

3.2. Construction of an R-diagram
The idea of associating diagrams in the Euclidean plane to some products in amal-
gamated groups appears in [VK33].

In 1966, Lyndon independently arrived at the same idea and Weinbaum redis-
covered van Kampen’s paper (see [Lyn66, Wei66] and [LS01], p. 236). For the
basic definition of a diagram, we refer to [LS01], chap. V, §1, p. 235. Here
follows a quick review of this notion.

A diagram is a plane graph (or more generally a graph on an orientable surface,
we will consider spherical diagrams in Lemma 42). Vertices are divided into two
types, primary and secondary. Any edge joining two vertices gives rise to two
directed edges (according to the chosen directions) which we call half-segments.
If e denotes one of these half-segments, e−1 will refer to the other one (obtained
by reversing the direction of e). The notation ’edge’ will be used later on to refer
to some special unions of half-segments (see the remark on terminology below). A
half-segment will always join vertices of different types. By definition, segments
will denote some special successions of two half-segments that we now describe.
If e1, . . . , er are the half-segments arriving at some secondary vertex v and taken
counterclockwise, then, by definition, the segments passing through v are the suc-
cessive half-segments ei, e−1i+1 and their inverses ei+1, e

−1
i , for 1 ≤ i ≤ r, where i

and i+1 are taken modulo r. If two successive half-segments e, e′ define a segment,
the latter will be noted ee′. Note that the initial and terminal vertices of a segment
have to be primary. By convention, each segment (resp. half-segment) has length
1 (resp. 1/2). Each oriented half-segment e will be labeled by an element φ(e)
belonging to a factor of Aut[C2], with the labels on successive half-segments at a
secondary vertex belonging to the same factor. The identity φ(e−1) = φ(e)−1 is re-
quired. This labelling gives a labelling on segments, by taking φ(ee′) = φ(e)φ(e′).
The label on an individual half-segment may be in the amalgamated part, but
if e, e′ are the two half-segments of a segment, we will usually insist that φ(ee′)
is not in the amalgamated part (in fact, there will be only one exception to this
rule, see step 4 in the proof of Theorem 36). We call region a bounded connected
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component of the complement of the graph in the surface. A boundary cycle of
a region D is a collection of half-segments that run along the entire boundary of
D (say counterclockwise in the case of the plane, or in a way compatible with the
orientation in general) with initial vertex of primary type. Similarly, a boundary
cycle of the diagram is a collection of half-segments that run along the boundary
of the diagram. Let us note that a segment necessarily belongs to the boundary
of some region and/or to the boundary of the diagram.

Now let f be an element of Aut[C2] and consider R(f) the associated sym-
metrized set. We say that a diagram is a R(f)-diagram if for any region D and
any boundary cycle e1 . . . es of D, we have φ(e1) . . . φ(es) ∈ R(f).

Terminology. Note that we use two kinds of graph in this paper: the Bass-Serre
tree and the diagrams of Lyndon-Schupp. In the context of the Bass-Serre tree we
have already used the term edge, and we have called a path the union of several
edges. In the context of Lyndon-Schupp diagrams, we have segments and half-
segments. We call edge in this context a connected component of the intersection
of the boundary of two regions, which is a collection of half-segments.

The following result will be the key ingredient for the proof of Theorem 2. Its
proof will occupy the rest of this subsection.

Theorem 36. Let f ∈ G be a strictly cyclically reduced element of G of (even)
algebraic length |f | ≥ 2. Assume that the normal subgroup generated by f in
Aut[C2] is equal to G. Then there exists a planar R(f)-diagram M such that:

(1) M is connected and simply connected;
(2) The boundary of M has length 1

2 or 1;
(3) If e1e′1 . . . ete′t is a boundary cycle of some region of M , then t = |f | and

φ(e1e
′
1) . . . φ(ete

′
t) is a reduced form of a strictly cyclically reduced conjugate

of f .

Proof. We start by choosing an element g 6= id with lg(g) = 0. By assumption we
can write

g = (φ1f
±1φ−11 ) · · · (φnf±1φ−1n ).

with φi ∈ Aut[C2].
We assume that we have chosen g such that n is minimal. By Lemma 37, we

may assume that each φif
±1φ−1i is expressed under reduced form ψiriψ

−1
i (i.e.

|ψiriψ−1i | = |ψi|+ |ri|+ |ψ
−1
i |) where ri ∈ R(f). There is no restriction to assume

that |ψi| = 0 if and only if ψi = id. Note also that the four following assertions
are equivalent:

a) ri is strictly cyclically reduced; b) |ri| = |f |; c) |ri| is even; d) |ψiriψ−1i |
is even.

If any one of these assertions is satisfied, we necessarily have ψi = id (since the
expression ψiriψ−1i is reduced).

Let us now explain the construction of M , that we perform in several steps:
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Step 1. We associate a diagram to each ψiriψ−1i .
Our construction will involve a base point O which will be considered as a

primary vertex. Let ri = x1 . . . xm be a normal form of ri.
• Assume that ri is strictly cyclically reduced, i.e. m = |f |.
The diagram for ψiriψ−1i = ri is the loop at the base point O consisting of 2m

half-segments d1, d′1, . . . , dm, d′m such that φ(djd′j) = xj for each j.
• Assume that ri is not strictly cyclically reduced, i.e. m = |f |+ 1. Note that

in this case (xmx1)x2 · · ·xm−1 is strictly cyclically reduced.
The diagram for ψiriψ−1i is a loop at a vertex v joined to the base point O by

a path.
Let ψi = z1 . . . zk be a normal form of ψi.
The path Ov consists of 2k half-segments e1, e′1, . . . , ek, e′k such that φ(eje′j) = zj

for each j and an additional final half-segment e.
The loop at v consists of 2m− 2 half-segments b, d2, d′2, . . . , dm−1, d′m−1, c such

that φ(djd′j) = xj for each j.
The three half-segments e, b, c which meet at the secondary vertex v are labeled

to satisfy the necessary (and compatible) conditions φ(eb) = x1, φ(ce−1) = xm
and φ(cb) = xmx1. For instance we can take φ(b) = x1, φ(c) = xm and φ(e) = id.

Step 2. The initial diagram for the composition

g = (ψ1r1ψ
−1
1 ) · · · (ψnrnψ−1n )

consists of the initial diagrams for each ψiriψ−1i arranged, in counterclockwise or-
der, around the base point O. This initial diagram has the desired properties (1)
and (3).

Step 3. We will now proceed to the identification of some half-segments of M
until the boundary length of M is ≤ 2.

Note that in these identifications:

• We shall always identify primary vertices with primary vertices and sec-
ondary vertices with secondary vertices, preserving this distinction;
• The label of a segment will never be in the amalgamated part;
• The number n of regions of M will not change and (1) and (3) will be

satisfied at each stage;
• If α is a boundary cycle of M , then φ(α) is conjugate to g.

For grounds of brevity, the tiresome and easy verification of the second point
(on label of segments) has been omitted in the two cases below.

If the boundary length of M is ≥ 3, there necessarily exists successive segments
ee′ and ff ′ in ∂M such that the labels φ(ee′) and φ(ff ′) are in the same factor
of Aut[C2]. Indeed, otherwise, any boundary cycle α = e1e

′
1 . . . eie

′
i of M would

have even length i ≥ 4 and its label φ(α) = φ(e1e
′
1) . . . φ(eie

′
i) would be a strictly

cyclically reduced conjugate of g: A contradiction.
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So we consider the element s = φ(ee′)φ(ff ′) which lies in a factor of Aut[C2].

Case 1 Assume that s is not in the amalgamated part.

Change the label on the half-segment e′ to 1, readjusting the labels on
the other half-segments at the secondary vertex separating e and e′. In
other words this amounts, for each half-segment g ending at this secondary
vertex, to replace its label φ(g) by φ(ge′).
In the same way, change the label on the half-segment f to 1, readjusting
the labels on the other half-segments at the secondary vertex separating f
and f ′.
Then we identify the (oriented) half-segments e′ and f−1 (which now have
the same labels) (see Fig. 3, where the • are primary vertices and the ◦
are secondary vertices).

• • •◦ ◦

• •

//
φ(e)

//
φ(e′)

//
φ(f)

//
φ(f ′)

GG����
φ(g)

���� ��
////

φ(h)
////

• • •◦ ◦

• •

//
φ(ee′)

//1 //1 //
φ(ff ′)

GG����
φ(ge′)

���� ��
////

φ(fh)
////

•

•

•◦

• •

//
φ(ee′)

1

//
φ(ff ′)

CC����
φ(ge′)

���� ��
8888

φ(fh)8888

relabel
//

identify





Figure 3. Relabellings and identifications in case 1.

Case 2 Assume that s is in the amalgamated part.

Note first that the diagram has no loop of length ≤ 2 with total label in
one of the factors of Aut[C2]. Indeed, such a loop α would be a boundary
cycle of some strictly smaller subdomain, so that, by Lemma 38 below,
φ(α) would be the product of strictly less that n conjugates of f . This
would contradict the minimality of n.
Therefore, if u is the initial vertex of ee′, v its terminal vertex (as well as
the initial vertex of ff ′) and w the terminal vertex of ff ′, then the vertices
u, v, w are distinct.
Recall that φ(f)φ(f ′) = φ(e′)−1φ(e)−1s. We change the labels in the
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following way (see Fig. 4):
• we change the label of f to φ(e′)−1, readjusting the labels on the

other half-segments at the secondary vertex separating f and f ′;
• we change the label of f ′ to φ(e)−1;
• for each half-segment g having w as initial vertex, we replace its
label φ(g) by sφ(g).

Then we identify the (oriented) segments e, e′ and f ′−1, f−1 (which now
have the same labels).

• • •◦ ◦ ◦

•

u
//

φ(e)
//

φ(e′)

v
//

φ(f)
//

φ(f ′)

w
//

φ(g)

��
////

φ(h)
////

• • •◦ ◦ ◦

•

u
//

φ(e)
//

φ(e′)

v
//

φ(e′)−1

//
φ(e)−1

w
//

sφ(g)

��
////

φ(e′fh) ////

•

•

◦

◦

•

u=w

�� φ(e)

v

��
φ(e′)

//
sφ(g)

//

φ(e′fh)

relabel
44

identify

��

Figure 4. Relabellings and identifications in case 2.

Note that after performing the identification in case 1 (resp. in case 2) the
boundary length drops by 1 (resp. by 2). Note also that if two regions D1 and
D2 share at least one half-segment, and if r1, r2 are two boundary cycles of these
regions with respect to a common starting point, then we can not have r1 = r−12 .
Indeed, if it was the case, removing the two regions from the diagram and apply-
ing Lemma 38 we would obtain a new element in R(f) that would contradicts the
minimality of n. In fact, by Lemma 39, two regions in the diagram never share an
edge of length greater than 4.

Step 4. By induction, the previous step gave us a diagram with a boundary
length ≤ 2. We now perform one last more identification to obtain that the
boundary length of M is at most 1. If the last identification falls under case 1
there is no particular problem. However, if we are in case 2, then we can no longer
assume that the vertices u and w are disjoint. So we slightly modify the procedure:
we keep the label of f ′ to be φ(e)−1s and we only identify the half-segments e′
and f . It may happen that after this identification the label of the segment ef ′
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on the boundary of M is in the amalgamated part: apart from being slightly non
aesthetic, this will not be a problem in the proof of Theorem 45.

Lemma 37. Any conjugate of f (notation as in Theorem 36) can be written under
reduced form ψrψ−1, where r is a weakly cyclically reduced conjugate of f .

Proof. Recall that a hyperbolic element of Aut[C2] is strictly (resp. weakly)
cyclically reduced if and only if its geodesic contains (resp. intersects) the edge
e = id(A ∩ E) in the Bass-Serre tree (see Lemma 8). Let now g be a conjugate of
f . If the geodesic of g intersects e, we can just set ψ = id, r = g. Therefore, let us
assume that this geodesic does not intersect e.

Let d be the natural distance on the Bass-Serre tree and I be the middle of the
edge e. For any element h of G, we have |h| = d(I, h(I)).

Let p ∈ Geo(g) be the unique vertex such that d(Geo(g), e) = d(p, e). Since
d(p, e) ≥ 1, there exists a unique point I ′ on the geodesic [p, I] such that d(p, I ′) =
1
2 . The group G acting transitively on the middles of the edges of the Bass-
Serre tree, there exists an element ψ of G such that ψ(I) = I ′. Let us set
r = ψ−1gψ. We have Geo(r) = ψ−1(Geo(g)) and d(Geo(g), I ′) = 1

2 , so that
d(Geo(r), I) = 1

2 and Geo(r) meets e, i.e. r is weakly cyclically reduced. Finally,
we have |g| = d(I, g(I)) = lg(g) + 2d(I,Geo(g)) = |f |+2d(I, I ′) + 1, |ψ| = d(I, I ′)
and |r| = |f |+ 1, so that |g| = |ψ|+ |r|+ |ψ−1|.

The following result can be proven similarly as Lemma 1.2 in [LS01, p. 239]
(that is, by induction on the number m of regions).

Lemma 38. Let M be an oriented connected and simply connected diagram with
m regions D1, . . . , Dm. Let α be a boundary cycle of M (beginning at some vertex
of ∂M) and let βi be a boundary cycle of Di (beginning at some vertex of ∂Di),
for 1 ≤ i ≤ m. Then φ(α) belongs to the normal subgroup generated by the φ(βi),
1 ≤ i ≤ m. More precisely, there exists u1, . . . , um in Aut[C2] such that

φ(α) = (u1 φ(β1)u
−1
1 ) . . . (um φ(βm)u−1m ).

3.3. A dictionary between Bass-Serre and Lyndon-Schupp theories
Let α be a boundary cycle of some region of M (as in Theorem 36) beginning
at some vertex v. If v is primary (resp. secondary), φ(α) is a reduced form of a
strictly cyclically reduced (resp. non strictly cyclically reduced) element of R(f).

Lemma 39. If D1, D2 are two distinct regions of a diagram M having a common
edge, there exists a primary vertex v of ∂D1 ∩ ∂D2 such that the labels g1, g2 of
the boundary cycles of D1, D2 beginning at v satisfy

|Geo(g1) ∩Geo(g2)| ≥ |∂D1 ∩ ∂D2|.
Proof. If k is the largest integer such that k < |∂D1 ∩ ∂D2|, there exists a path of
k segments s1, . . . , sk included into ∂D1∩∂D2. We can just take for v the initial or
terminal vertex of this path (if k = 0, these two vertices coincide). Indeed, we may
assume that g1 has normal form g1 = φ(s1) . . . φ(sk)x1 . . . xm (where each xi is in
some factor of G). Therefore, g−12 has normal form g−12 = φ(s1) . . . φ(sk)y1 . . . ym
(where each yi is in some factor of G).
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The geodesics Geo(g1) and Geo(g−12 ) = Geo(g2) contain the k + 1 consecutive
edges:

id (A ∩ E), φ(s1) (A ∩ E), . . . , φ(s1) . . . φ(sk) (A ∩ E).

Example 40. Assume that M contains the two regions depicted in Fig. 5 (the •
are primary vertices, the secondary vertices are denoted by ◦ only when they have
valence ≥ 3).

• •◦ ◦

• •

• •
D1

D2��????e4

????
oo
a3

??����

e3����

������
e1

����
//
a2

__????
e2

????

id idoo
a1 v

Figure 5.

We get g1 = a1e1a2e2, g2 = e3a3e4a
−1
1 and Fig. 6 gives the picture in the Bass-

Serre tree. Note that here for simplicity we took D1 and D2 with boundary length
4, but in the context of Theorem 36 any region has boundary length at least 10.

•

•

• • •

•

•

e−1
2 A

???????

e3A

�������

idE idA

a1e1A

�������

a1e
−1
4 A

???????

a1E

g1

::

g2
zz

Figure 6.

Lemma 41. If v is a vertex of valence 3 of M with regions D1, D2, D3 meeting at
v and if g1, g2, g3 are the labels of the boundary cycles of these regions beginning
at v, then the geodesics of the gi’s form a tripod in the Bass-Serre tree and for all
i, j’s:

|Geo(gi) ∩Geo(gj))| ≥ |∂Di ∩ ∂Dj |.

Proof. The vertex v is necessarily secondary. Let e1 (resp. e2, resp. e3) be the
(oriented) half-segment having v as initial vertex and included into ∂D2 ∩ ∂D3

(resp. ∂D1 ∩ ∂D3, resp. ∂D1 ∩ ∂D2). The φ(ei)’s are in the same factor of G and
if i 6= j, φ(ei)φ(ej)−1 is not in the amalgamated part. As in Lemma 39, let k be
the largest integer such that k < |∂D1 ∩ ∂D2| and let s1, . . . , sk be segments such
that the path e3, s1, . . . , sk is included into ∂D1 ∩ ∂D2. We may assume that g1
has normal form

g1 = φ(e3)φ(s1) . . . φ(sk)x1 . . . xmφ(e2)
−1,
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where each xi is in some factor of G. Therefore, g′1 = φ(e3)
−1g1φ(e3) is strictly

cyclically reduced and has normal form
g′1 = φ(s1) . . . φ(sk)x1 . . . xm+1,

where xm+1 = φ(e2)
−1φ(e3). Since the geodesic of g′1 contains the consecutive

edges
id (A ∩ E), φ(s1) (A ∩ E), . . . , φ(s1) . . . φ(sk) (A ∩ E),

it is clear that the geodesic of g1 contains the consecutive edges
φ(e3) (A ∩ E), φ(e3)φ(s1) (A ∩ E), . . . , φ(e3)φ(s1) . . . φ(sk) (A ∩ E).

One would show in the same way that these edges are also contained in the
geodesic of g2, so that we get |Geo(g1) ∩ Geo(g2)| ≥ |∂D1 ∩ ∂D2|. The other
inequalities are proven similarly. We finish the proof by noting that Geo(g1) ∩
Geo(g3) contains the edge φ(e2) (A ∩E) and that Geo(g2) ∩Geo(g3) contains the
edge φ(e1) (A∩E). If the φ(ei)’s are in the factor A (resp. E), it is clear that the
three edges φ(ei) (A ∩ E) intersect at the vertex idA (resp. idE).

4. The proof of Theorem 2

4.1. A result about curvature
Let us recall some notations from [LS01]. If v is a vertex of a diagram M , the
degree d(v) (or valence) of v will denote the number of oriented edges having v
as initial vertex (thus, if an edge has both endpoints at v, we count it twice). If
D is a region, the degree d(D) of D will denote the number of edges of D. The
following formula defines a curvature contribution for each region:

δ(D) = 2− d(D) +
∑
v∈D

2

d(v)
.

Lemma 42. For any diagram on the 2-sphere, we have

4 =
∑
D

δ(D).

Proof. Let V,E, F be the numbers of vertices, edges and faces of the diagram. The
formula is a direct consequence of Euler’s formula on the sphere 2 = V −E+F and
of the obvious relations 2E =

∑
(v,D) 1, V =

∑
(v,D)

1
d(v) and F =

∑
(v,D)

1
d(D) :

4 = 2V + 2F − 2E =
∑
(v,D)

(
2

d(v)
+

2

d(D)
− 1

)
=
∑
D

δ(D)

where the first sum runs over the couples (v,D) with v a vertex and D a face such
that v ∈ D.

Corollary 43. For any planar diagram homeomorphic to the disk, we have

2 ≤
∑
D

δ(D).
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Proof. Let K be this diagram. Let L be the spherical diagram obtained by sticking
along their boundaries two copies K1 and K2 of K. Since L is homeomorphic to
the sphere, we have 4 =

∑
D∈L

δ(D), i.e.

4 =
∑
D∈K1

δ(D) +
∑
D∈K2

δ(D) = 2
∑
D∈K1

δ(D) ≤ 2
∑
D∈K

δ(D).

The last inequality comes from the fact that for each boundary region D in K the
contribution curvature δ(D) computed in the disk diagram is strictly bigger than
the contribution computed in the spherical diagram.

Remark 44. Here is a (non complete) list of faces D having negative or zero cur-
vature:

• D with d(D) ≥ 6;
• D with d(D) = 5 and at most 3 vertices of D are tripods;
• D with d(D) = 4 and each vertex of D has valence at least 4;
• D with d(D) = 4 and D admits a tripod, two vertices of valence at least 4

and a fourth vertex of valence at least 6;
• D with d(D) = 3 and each vertex of D has valence at least 6.

4.2. The end of the proof
We are now in position to prove Theorem 2. As in Theorem 1, we will prove a
stronger and more geometric version:

Theorem 45. If f ∈ G is a hyperbolic element of geometric length lg(f) ≥ 14
satisfying conditions (C2), then the normal subgroup generated by f in Aut[C2] is
different from G.

Proof. We can assume that f is a strictly cyclically reduced element of length
lg(f) = |f | = 2l ≥ 14. If the normal subgroup generated by f in Aut[C2] was
equal to G then, by Theorem 36, there would exist an Aut[C2]-labeled oriented
diagram M such that:

(1) M is connected and simply connected;
(2) The perimeter of M is ≤ 1;
(3) If e1e′1 . . . ete′t is a boundary cycle of some region of M , then t = |f | and

φ(e1e
′
1) . . . φ(ete

′
t) is a reduced form of a strictly cyclically reduced conju-

gate of f .

Let D1, D2 be two distinct regions ofM having a common edge. By Proposition
19 and Lemma 39, we have |∂D1 ∩ ∂D2| ≤ 4. Since |∂D1| ≥ 14, we conclude that
any interior region has at least 4 edges.

Furthermore, if D1, D2, D3 are three distinct regions of M having a common
vertex of valence 3, by Lemmas 29 and 41, we know that each edge ∂Di ∩ ∂Dj is
at most of length 2. In consequence, if an interior region has at least 1 interior
vertex of valence 3, then this region has at least 5 edges. Similarly, if an interior
region has at least 3 interior vertices of valence 3, then this region has at least 6
edges.
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By the previous observations, and using Remark 44, we conclude that the cur-
vature contribution δ(D) of any interior region D is non positive. Let us examine
now the contribution of the boundary regions. Since the perimeter is at most 1
(i.e. at most two half-segments), there are at most 2 boundary regions.

Suppose there are exactly 2 boundary regions. Since the boundary edge of such
a region D is an half-segment, it is easy to check that D has at least 5 edges, and
that if at least one interior vertex is of valence 3 then D has at least 6 edges. Thus
δ(D) ≤ 0.

Assume now that there is only 1 boundary region D. Then the only boundary
vertex of D (which has to be counted twice) has valence at least 4. So D has at
least 5 edges, and if D has exactly 5 edges then the 3 interior vertices can not be
of valence 3, and again we obtain δ(D) ≤ 0.

In conclusion we have
∑
δ(D) ≤ 0, which is contradictory with Lemma 43. We

conclude that the normal subgroup generated by f in Aut[C2] can not be equal to
G.

5. The remaining cases: length 10 and 12

In this section we present some of the problems that await the reader who would
like to extend our results to the case of an automorphism of length 10 or 12, along
with two striking examples of configuration in the Bass-Serre tree.

5.1. Length 12
The main problem to adapt our strategy to the case of f with lg(f) = 12 is that
we have to deal with regions in a R(f)-diagram that are triangles with 3 edges of
length 4. Then we would have to study not only tripods coming from 3 conjugates
of f , but their generalization, which we call n-pods, coming from n conjugates fi
(0 ≤ i ≤ n − 1) of f . It is the case where the geodesics Geo(fi) have a common
vertex and where each pair Geo(fi),Geo(fi+1) has at least one edge in common
(where i = 0, ..., n − 1 and the index are taken modulo n). Precisely to be sure
that the curvature of such a triangle is non positive it would be sufficient to have
the following

Lemma/conjecture 46. If n conjugates of f form a n-pod in the Bass-Serre
tree, with two consecutive branches of length 4, then n ≥ 6.

We believe that this result is true, but the verification seems to have to involve
a very long list of cases: that is why we do not think reasonable to try to present
a proof. However it is interesting to note that there exists 6-pods with branches
of length 4.

Example 47 (6-pod with all branches of length 4). Let us consider the fol-
lowing automorphism f0 of length 2l ≥ 8:

f0 = e1ae2a · · · ela

where a = a(0) = (y,−x). We suppose that e1 = (x+P (y), y), and we note e = e1.
We are going to construct f1, · · · , f5 five conjugates of f0 such that their geodesics
form a 6-pod (see Figure 7).
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Figure 7. A 6-pod with all branches of length 4 (example 47)

For i = 1, · · · , 5 we choose constants ci 6= 0 and we set ti = (x, y+ ci). We take
fi = φif0φ

−1
i where

φ1 = et1e
−1

φ2 = et1e
−1t2

φ3 = et1e
−1t2et3e

−1

φ4 = et1e
−1t2et3e

−1t4

φ5 = et1e
−1t2et3e

−1t4et5e
−1

are all elements of E.
We claim that for each i = 0, · · · , 4, the geodesics of fi and fi+1 share a path

of 4 edges with idE as an extremity.
Consider the case i = 0. We have Geo(f1) = φ1(Geo(f0)). Recall that t1 fixes

the ball of radius 2 centered on a(0)E (Remark 17), so φ1 fixes the ball of radius
2 centered on ea(0)E, hence the claim.

Now take i = 1. Note that f2 = φ1t2f0t
−1
2 φ−11 = φ1t2φ

−1
1 f1φ1t

−1
2 φ−11 , and

φ1t2φ
−1
1 fixes the ball of radius 2 centered at φ1a(0)E. Thus the geodesic of f1

and f2 share 4 edges. We can make a similar computation for i = 2, 3, 4.
Suppose now that the constants ci satisfy:

c1 + c2 + c3 = 0

c2 + c3 + c4 = 0

c3 + c4 + c5 = 0

For instance one can take (c1, c2, c3, c4, c5) = (1, 1,−2, 1, 1).
A straightforward computation shows that

φ5 = et1e
−1t2et3e

−1t4et5e
−1 =

(x+ P (y + c1 + c2 + c3 + c4 + c5)− P (y + c2 + c3 + c4 + c5) + P (y + c3 + c4 + c5)

−P (y + c4 + c5) + P (y + c5)− P (y), y + c1 + c2 + c3 + c4 + c5) = (x, y − c3).
Since (x, y − c3) fixes the ball of radius 2 centered at a(0)E, this implies that the
geodesics of f0 and f5 share 4 edges, as shown on Fig. 7.
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5.2. Length 10
The case of f of length 10 seems even more doubtful. For instance one could have
pentagonal regions with all edges of length 2 and all vertices of valence 3. It is
probably easy to rule out this case, but there are some harder ones. One could
have triangular regions with edges of length 4, 4, 2. The example 47 allows us to
glue 6 such triangles along their edge of length 4, to obtain a R(f)-diagram with
boundary length 12. One can wonder if it possible to glue two such diagrams to
obtain a R(f)-diagram on a sphere (in this case our strategy would fail). One would
need to have 4-pods with branches 4, 2, 4, 2. We do not know if this is possible,
but the following example shows again that we would have to rely on very careful
computations to exclude this case (note also that the assumption ’consecutive’ was
crucial in the statement of Lemma 46)

Example 48 (4-pod with branches of length 4, 1, 4, 1). Similarly to the pre-
vious example we take fi = φif0φ

−1
i where

φ1 = et1e
−1

φ2 = et1e
−1t2

φ3 = et1e
−1t2et3e

−1

with t1 = t3 = (x + c, y) and t2 = (−x, y − c). Then one can verify that φ3 =
(−x, y + c) and the geodesics of the fi form a 4-pods as on Figure 8.

•

•

• • • • • ••••
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Figure 8. A 4-pod with branches 4,1,4,1 (example 48)

Annex: genericness of condition (C2)

We begin with a reformulation of Theorem 45:

Theorem 49. Let l ≥ 7 be an integer. Assume that the polynomials P1, . . . , Pl ∈
C[y] are general and independent. If the element f of G can be written f =
a1e1 . . . alel where ei = e(Pi) and ai ∈ A \E for each i, then the normal subgroup
generated by f in Aut[C2] is different from G.

In this section, we will show that if P1, . . . , Pl are generic (in some sense), then
they are general and independent. We will also finish by giving explicit examples.
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A. Genericness of condition (C1)

The aim of this subsection is to show that condition (C1) is generic (see Corollary
57 and Remark 58). For technical purposes we introduce a variation of the notion
of general polynomial (see Def. 15).

Lemma 50. Let Q ∈ C[y] be a polynomial. The following assertions are equiva-
lent:

(1) ∀α, β, γ ∈ C, Q(y) = αQ(βy + γ) =⇒ α = β = 1 and γ = 0;
(2) ∀α, β, γ ∈ C, Q(y) = αQ(βy + γ) =⇒ β = 1.

Proof. (1) ⇒ (2) is obvious. Let us prove (2) ⇒ (1). If Q satisfies (2), note that
Q can not be constant. If Q(y) = αQ(y+ γ), it is enough to show that γ = 0. Let
ζ be a root of Q. Since ζ + nγ is also a root of Q for any integer n, we must have
γ = 0.

Definition 51. We say that Q is weakly general if it satisfies the equivalent
assertions of Lemma 50.

Remark 52. Clearly if Q
′
is weakly general then Q is also weakly general. Fur-

thermore, Q(k) is weakly general if and only if the following equivalent assertions
are satisfied:

(1) ∀α, β, γ ∈ C, deg(Q(y)− αQ(βy + γ)) < k =⇒ α = β = 1 and γ = 0;
(2) ∀α, β, γ ∈ C, deg(Q(y)− αQ(βy + γ)) < k =⇒ β = 1.

In other words, a polynomial Q of degree d ≥ 5 is general if and only if Q(d−3) is
weakly general.

Lemma 53. The following assertions are equivalent:
(1) Q is not weakly general;
(2) there exists c ∈ C, R ∈ C[y], k ≥ 0, n ≥ 2 such that Q(y + c) = ykR(yn).

Proof. (1) =⇒ (2). If Q is not weakly general, there exists α, β, γ with β 6= 1 such
that Q(y) = αQ(βy+ γ). If we set c = γ

1−β , then the polynomial P (y) = Q(y+ c)

satisfies P (y) = αP (βy). Writing P =
∑
i piy

i, the last equation is equivalent to
∀i, (1− αβi)pi = 0. If β is not a root of unity, this implies that there exists k ≥ 0
such that P = pky

k. Assume now that β is a primitive nth root of the unity. If
P 6= 0, there exists k ≥ 0 such that pk 6= 0 and so α = β−k. Since pi 6= 0 implies
i ≡ k (mod n), we get P = ykR(yn), where R(y) =

∑
i pk+niy

i.
(2) =⇒ (1). This is a consequence of the previous computation.

Proposition 54. (1) If d ≥ 3, the generic element of C[y]≤ d is weakly gen-
eral;

(2) If d ≥ 5, the generic element of C[y]≤ d is general.

Proof. If u ∈ R, we denote its integer part by [u].
(1) If Q ∈ C[y]≤ d is not weakly general, by Lemma 53 we can write

Q(y) = (y − c)kR ((y − c)n)

where 0 ≤ k ≤ d, 2 ≤ n ≤ d, c ∈ C, e = [d/n] and R ∈ C[y]≤ e. Therefore, Q
belongs to the image of the following morphism
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ϕk,n : C× C[y]≤ e → C[y], (c,R(y)) 7→ (y − c)kR((y − c)n). However

dim Imϕk,n ≤ dim(C× C[y]≤ e) = e+ 2 ≤ d

n
+ 2 ≤ d

2
+ 2 < d+ 1 = dimC[y]≤ d.

(2) is a direct consequence of (1), by considering the map Q 7→ Q(d−3), and
using Remark 52.

Proposition 55. If d1, d2 ≥ 5 and (P1, P2) is a generic element of C[y]≤ d1 ×
C[y]≤ d2 , then P1, P2 represent different colors.

Proof. By Lemma 12, if P1, P2 represent the same color, then (P1, P2) belongs to
the image of the following morphism: ϕ : C[y]≤ d1×C5 → C[y]×C[y], (P1, (α, β, γ, δ, ε)) 7→
(P1, αP1(βy + γ) + δy + ε). However,

dim Imϕ ≤ d1 + 6 < dimC[y]≤ d1 × C[y]≤ d2 . �

Remark 56. If d1 6= d2, Proposition 55 is still more obvious. Indeed, the generic
element Pi of C[y]≤ di has degree di. Therefore, if (P1, P2) is a generic element
of C[y]≤ d1 × C[y]≤ d2 , then degP1 6= degP2, which clearly implies that P1, P2

represent different colors.
Propositions 54 and 55 give us the following result.

Corollary 57. Fix a sequence of integers d1, . . . , dl ≥ 5. If (P1, · · · , Pl) is a
generic element of

∏
1≤ i≤ l C[y]≤ di , then the polynomials Pi are general and rep-

resent distinct colors.

Remark 58. In other words, if ai ∈ A \ E and ei = e(Pi) for 1 ≤ i ≤ l, then the
automorphism a1e1 . . . alel satisfies condition (C1).

B. Genericness of condition (C2)

The aim of this subsection is to show that condition (C2) is generic (see Corollary
61 and Remark 62).

Proposition 59. If d1, d2, d3 ≥ 8 and (P1, P2, P3) is generic in
∏

1≤ i≤ 3 C[y]≤ di ,
then the polynomials P1, P2, P3 are independent.

Proof. By permutations, it is enough to show the following two points:
1) If (P1, P2) is generic in C[y]≤d1 × C[y]≤d2 , then (A ∩ E)e(P2)(A ∩ E) is not

a mixture of (A ∩ E)e(P1)(A ∩ E) and (A ∩ E)e(P1)(A ∩ E).
2) If (P1, P2, P3) is generic in C[y]≤d1×C[y]≤d2×C[y]≤d3 , then (A∩E)e(P3)(A∩

E) is not a mixture of (A ∩ E)e(P1)(A ∩ E) and (A ∩ E)e(P2)(A ∩ E).
Proof of 1. Define φ : C[y]≤d1 × C8 → C[y]≤d1 × C[y],

(P1, (α, . . . , θ)) 7→ (P1, αP1(βy + γ) + δP1(εy + ζ) + ηy + θ).

We have dim Imφ ≤ d1 + 1 + 8 < dimC[y]≤d1 × C[y]≤d2 . If (P1, P2) ∈ (C[y]≤d1 ×
C[y]≤d2) \ Imφ, it is clear that (A ∩ E)e(P2)(A ∩ E) is not a mixture of (A ∩
E)e(P1)(A ∩ E) and (A ∩ E)e(P1)(A ∩ E).

Proof of 2. Define ψ : C[y]≤d1 × C[y]≤d2 × C8 → C[y]≤d1 × C[y]≤d2 × C[y],
(P1, P2, (α, . . . , θ)) 7→ (P1, P2, αP1(βy + γ) + δP2(εy + ζ) + ηy + θ).

We have dim Imφ ≤ (d1 + 1) + (d2 + 1) + 8 < dimC[y]≤d1 ×C[y]≤d2 ×C[y]≤d3 . If
(P1, P2, P3) ∈ (C[y]≤d1×C[y]≤d2×C[y]≤d3)\Imψ, it is clear that (A∩E)e(P3)(A∩
E) is not a mixture of (A ∩ E)e(P1)(A ∩ E) and (A ∩ E)e(P2)(A ∩ E).



32 JEAN-PHILIPPE FURTER AND STÉPHANE LAMY

Corollary 60. Fix a sequence of integers d1, . . . , dl ≥ 8. The generic element
(P1, · · · , Pl) of

∏
1≤ i≤ l C[y]≤ di is an independent sequence.

Combining Corollaries 57 and 60, we get:

Corollary 61. Fix a sequence of integers d1, . . . , dl ≥ 8. The generic element
(P1, · · · , Pl) of

∏
1≤ i≤ l C[y]≤ di defines a sequence of general and independent poly-

nomials.

Remark 62. In other words, if ai ∈ A \ E and ei = e(Pi) for 1 ≤ i ≤ l, then the
automorphism a1e1 . . . alel satisfies condition (C2).

C. Explicit examples
Lemmas 63 and 66 below will allow us to give explicit examples of polynomials
P1, . . . , Pl ∈ C[y] which are general an independent (see Example 67).

Lemma 63. Let P ∈ C[y] be a polynomial of degree d ≥ 3 and let M = −pd−1
dpd

be the arithmetic mean of its roots. If there exists two consecutive integers k ≥ 0
such that P (k)(M) 6= 0, then P is weakly general.

Proof. If P (y) = αP (βy + γ), then the automorphism f of the affine line given
by f(y) = βy + γ permutes the roots of P . Since f is affine, we must have
f(M) =M . By substituting M for y in the equality P (k)(y) = αβkP (k)(f(y)), we
get (1− αβk)P (k)(M) = 0. Whence the result.

Remark 64. We always have P (d−1)(M) = 0. Therefore, if P has degree 2, it
is not possible to find two consecutive integers k such that P (k)(M) 6= 0. As
a consequence, it is not possible to show that P is weakly general by using an
analogous version of Lemma 63. In fact, it is easy to check that no polynomial of
degree 2 is weakly general!

Example 65. Let P =
∑
i piy

i be a polynomial of degree d ≥ 5.
(1) If pd−1 = 0 and pd−2pd−3 6= 0, then P is general;
(2) If pd−1 6= 0 and pd−2 = pd−3 = 0, then P is general.

Lemma 66. A family (Pi)i of general polynomials satisfying |deg Pi−deg Pj | > 3
for any i 6= j is independent.

Proof. Let us assume (by contradiction) that deg
∑

1≤ k≤ 3

αkPik(βky + γk) ≤ 1 and

that we do not have i1 = i2 = i3.

First case. i1, i2, i3 are distinct.
By the assumption, degPi1 ,degPi2 ,degPi3 are distinct, this is impossible.

Second case. i1, i2, i3 are not distinct.
We may assume that i1 = i2 6= i3.
Since Pi1 is general, for any α, β, γ, the polynomial Pi1(y)−αPi1(βy+γ) either

has degree ≥ deg Pi1 − 3 or is null. More generally, the same result holds for
Q(y) =

∑
1≤ k≤ 2

αkPi1(βky + γk). But |degPi3 − degPi1 | > 3 by the assumption, so

that degQ 6= degPi3 . Therefore, we cannot have deg(Q+α3Pi3(β3y+γ3)) ≤ 1.
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Example 67. By Example 65, the polynomial yd + yd−1 is general for d ≥ 5.
Therefore, if we set Pd = y4d+1 + y4d, the polynomials P1, . . . , Pl are general and
independent (for any l). As a consequence, if ai ∈ A \ E and ei = e(Pi) for
1 ≤ i ≤ l, then f = a1e1 . . . alel satisfies condition (C2). If we assume furthermore
that f ∈ G and l ≥ 7, then < f >N 6= G by Theorem 45.
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