
On the degree of iterates
of automorphisms of the affine plane

Jean-Philippe FURTER
UMPA, ENSL, 46 Allée d’Italie, 69 007 LYON, FRANCE

email : jfurter@umpa.ens-lyon.fr

Abstract : For a polynomial automorphism f of A2
C, we set

τ = (deg f2)/(deg f). We prove that τ ≤ 1 if and only if f is
triangularizable. In this situation, we show (by using a deep result
from number theory known as the theorem of Skolem-Mahler-Lech)
that the sequence (deg fn)n∈N is periodic for large n. In the opposite
case, we prove that τ is an integer (τ ≥ 2) and that the sequence
(deg fn)n∈N is a geometric progression of ratio τ . In particular, if f
is any automorphism, we obtain the rationality of the formal series
∞∑
n=0

(deg fn)Tn.

Mathematics Subject Classification : 14E09, 11B99

Introduction. Let f be an automorphism of A2
C. By a result of

Friedland and Milnor, either f is triangularizable (i.e. conjugate to
a triangular automorphism), or f is conjugate to an automorphism
g such that deg g ≥ 2 and deg gn = (deg g)n for each nonnegative
integer n (see [F-M]). Their proof uses the description of the group
of automorphisms of A2

C as an amalgamated product (see [vdK] and
I.2) and some general arguments about amalgamated products (see
[Ser]).

We can easily deduce from this result that there exists a (unique)
nonzero positive integer c such that the sequence (log(deg fn) −
n log c)n∈N is bounded. Furthermore, f is triangularizable if and only
if c = 1.

The purpose of this paper is to study the exact values of the
sequence (deg fn)n∈N and in particular to establish the rationality of
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the formal series
∞∑
n=0

(deg fn)Tn.

In part I, we introduce the notion of an amalgamated product
with degree mapping ; an example is the group of automorphisms
of A2

C with the usual degree. Then we obtain the following result
(which is an easy consequence of Propositions 4 and 5). Let g be an
element of an amalgamated product with degree mapping G and let
us set τ = (deg g2)/(deg g). Then, either τ ≤ 1 and the sequence
(deg gn)n∈N is bounded, or τ is an integer greater than or equal to 2
and the sequence (deg gn)n∈N is a geometric progression of ratio τ .
In particular, we obtain a very simple criterion for an automorphism
f of A2

C to be triangularizable, i.e. f will be triangularizable if and
only if deg f2 ≤ deg f .

Part II is devoted to the iteration of f when f is triangularizable.
In II.1, we briefly present the theory of linear recurrence sequences.
We apply it in II.2 to show that the coefficients of the iterate of f are
linear recurrence sequences. In II.3, using the fact that if u(n)n∈N is
a linear recurrence sequence, then those n for which u(n) = 0 form a
finite union of arithmetic progressions after a certain stage (theorem
of Skolem-Mahler-Lech), we show that the sequence (deg fn)n∈N is
periodic for large n.

I. Amalgamated product with degree mapping.

1. Definition.

Let G be a group and let G1, G2 be subgroups of G. We suppose
that G is the amalgamated product of G1 and G2 over G3 := G1∩G2

(which we denote by G = G1 ∗G3 G2). This means that
i. if g is any element of G, then there exist a nonnegative integer

l and two sequences (αi)1≤i≤l+1 in G2 and (γi)1≤i≤l in G1 such that
g = α1γ1α2γ2 · · ·αlγlαl+1

∀ i ∈ {1, . . . , l}, γi /∈ G2

∀ i ∈ {2, . . . , l}, αi /∈ G1

and that
ii. the above expression is unique in the following sense : if m is a

nonnegative integer and (α′i)1≤i≤m+1 (resp. (γ′i)1≤i≤m) is a sequence
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of G2 (resp. G1) such that
g = α′1γ

′
1α
′
2γ
′
2 · · ·α′mγ′mα′m+1

∀ i ∈ {1, . . . ,m}, γ′i /∈ G2

∀ i ∈ {2, . . . ,m}, α′i /∈ G1

then l = m and there exist (βi)1≤i≤l, (δi)1≤i≤l in G3 such that
α′1 = α1β

−1
1

∀ i ∈ {2, . . . , l}, α′i = δi−1αiβ
−1
i

α′l+1 = δlαl+1

and ∀ i ∈ {1, . . . , l}, γ′i = βiγiδ
−1
i .

The expression g = α1γ1α2γ2 · · ·αlγlαl+1 will be called a reduced
expression of g. Observe that l is independant of the reduced expres-
sion. We define the length l(g) of g by l(g) = l. This differs from
the usual convention (see [Ser]) where the length of g is 2l+ 1 (resp.
2l, resp. 2l − 1) if α1, αl+1 do not belong to G3 (resp. if exactly one
among α1, αl+1 belongs to G3, resp. if both α1, αl+1 belong to G3).

Definition. We will say that (G,G1, G2, deg) is an amalgamated
product with degree mapping if we are given a mapping deg : G1 →
N>0 satisfying both following properties :

i. let g be an element of G1, then g belongs to G3 if and only if
deg g = 1 ;

ii. if g, h belong to G1, then deg(gh) ≤ max{deg g,deg h}.

Using the degree mapping deg : G1 → N>0, we can define the de-
gree of any element g in G. Suppose that g = α1γ1α2γ2 · · ·αlγlαl+1

is a reduced expression of g. We set deg g =
l∏

i=1

deg γi. It is easy

to check that deg g does not depend on the reduced expression of g
we used.

2. Fundamental example.

Let k be a field. An automorphism f of the k-variety
A2
k = Spec k[X,Y ] is identified with its sequence f = (f1, f2) of

coordinate functions fi ∈ k[X,Y ] (i = 1, 2). We set deg f =
max{deg f1, deg f2} and we define :
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GA, the group of automorphisms of A2
k ;

BA, the subgroup of triangular or ”de Jonquières” automorphisms,
i.e. automorphisms of the shape (aX + P (Y ), bY + c) where a, b are
in k∗, c is in k and P (Y ) is any element in k[Y ] ;

Af, the subgroup of affine automorphisms, i.e. automorphisms of
the shape (aX+bY +c, dX+eY +f) where a, b, c, d, e, f are elements
of k such that ae− bd is in k∗.

By W. van der Kulk ([vdK]), we know that GA = BA ∗B Af where
B = BA ∩ Af. The two following assertions are easily checked :

i. let f be an element of BA, then f belongs to B if and only if
deg f = 1 ;

ii. if f , g belong to BA, then deg(fg) ≤ max{deg f, deg g},
so that (GA, BA, Af, deg) is an amalgamated product with degree

mapping.
We could also check that the extension of the mapping deg : BA→

N>0 to the mapping deg : GA→ N>0 (as explained in I.1.) coincides
with the usual degree mapping on GA (as defined in this section) (see
Proposition 1.9 of [Wri] or Theorem 2.1 of [F-M]).

3. The multidegree of an element of an amalgamated prod-
uct with degree mapping.

From now on, (G, G1, G2, deg ) will denote an amalgamated
product with degree mapping.

If g is an element of G, we define the multidegree d(g) of g by
d(g) = (deg γ1, deg γ2, . . . , deg γl) where g = α1γ1α2γ2 · · ·αlγlαl+1

is a reduced expression of g. It is easy to check that d(g) does not
depend on the reduced expression of g that we use. The multidegree
belongs to D, the set of all finite sequences of integers greater than
or equal to 2. If d,e belong to D, we denote by de the concatenation
of d and e. This clearly endows D with the structure of a monoid
(where the unit is the empty sequence).

As an illustration of the previous definitions we will prove the :

Proposition 1. If g, h belong to G, then deg(gh) ≤ (deg g)(deg h)
and we have equality if and only if d(gh) = d(g)d(h).
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Proof. Let g = α1γ1α2γ2 · · ·αlγlαl+1 be a reduced expression of g.
We begin by proving that deg(gh) ≤ (deg g)(deg h) when h belongs
to G1 ∪G2.

If h belongs to G2, it is clear that deg(gh) = deg g. If h belongs
to G1, either αl+1 belongs to G3 in which case

deg(gh) =
l−1∏
i=1

(deg γi) . deg(γlαl+1h)

≤
l−1∏
i=1

(deg γi) . max {deg(γl, αl+1), deg h}

≤
l∏

i=1

(deg γi) . (deg h)

≤ (deg g)(deg h),

or αl+1 does not belong toG3 and we have deg(gh) = (deg g)(deg h).

If h is any element of G, let h = β1δ1β2δ2 · · ·βmδmβm+1 be a
reduced expression of g. By applying repeatedly our preliminary
result, we get

deg(gh) ≤ (deg g)(deg β1)(deg δ1) . . . (deg δm)(deg βm+1)
≤ (deg g)(deg h).

If αl+1β1 does not belong to G3, then we have d(gh) = d(g)d(h)
whence deg(gh) = (deg g)(deg h).

On the other hand, if αl+1β1 belongs to G3, then we have gh =
g1g2g3 where 

g1 = α1γ1 . . . αl−1γl−1αl

g2 = γlαl+1β1δ1
g3 = β2δ2 . . . βmδmβm+1

and the relations
deg g1 = (deg γ1)(deg γ2) . . . (deg γl−1)
deg g2 ≤ max {deg γl, deg δ1} < (deg γl)(deg δ1)
deg g3 = (deg δ2)(deg δ3) . . . (deg δm)

imply that

deg(gh) ≤ (deg g1)(deg g2)(deg g3) < (deg g)(deg h).

2
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Remark. The same arguments show that l(gh) ≤ l(g) + l(h) and
that the three following assertions are equivalent :

i. d(gh) = d(g)d(h) ;
ii. deg(gh) = (deg g)(deg h) ;
iii. l(gh) = l(g) + l(h).

4. Reduced sequences.

Proposition 2. Let (g1, g2, . . . , gn) be a sequence of elements of G.
The four following assertions are equivalent :

i. d(g1g2 . . . gn) = d(g1)d(g2) . . . d(gn) ;
ii. l(g1g2 . . . gn) = l(g1) + l(g2) + . . .+ l(gn) ;
iii. deg(g1g2 . . . gn) = deg(g1).deg(g2). . . . .deg(gn) ;
iv. for all i in {1, . . . , n− 1}, d(gigi+1) = d(gi)d(gi+1).

Proof. The implications i. =⇒ ii. and i. =⇒ iii. are clear.
Let d1 = (d11, d

1
2, . . . , d

1
l1

), . . . , dn = (dn1 , d
n
2 , . . . , d

n
ln

) be the
multidegrees of g1, g2, . . . , gn.

Suppose that
g1 = α1

1γ
1
1α

1
2γ

1
2 · · ·α1

l1
γ1l1α

1
l1+1

...
gn = αn

1γ
n
1α

n
2γ

n
2 · · ·αn

ln
γnlnα

n
ln+1

are reduced expressions of the gi. The assertion i. is not satis-
fied if and only if there exists an integer i in {1, . . . , n − 1} such
that αi

li+1α
i+1
1 belongs to G3. This latter assertion is equivalent

to saying that there exists an integer i in {1, . . . , n − 1} such that
d(gigi+1) 6= d(gi)d(gi+1), i.e. such that iv. is not satisfied. We have
proven that i. ⇐⇒ iv.

Let us now suppose that i. is not satisfied (ie. there exists an
integer i in {1, . . . , n− 1} such that αi

li+1α
i+1
1 belongs to G3) and let

us prove that ii. and iii. are not satisfied.
We have

gigi+1 = αi
1γ

i
1α

i
2γ

i
2 · · ·αi

li−1γ
i
li−1α

i
liγα

i+1
2 γi+1

2 αi+1
3 · · ·αi+1

li+1
γi+1
li+1

αi+1
li+1+1

where γ = γiliα
i
li+1α

i+1
1 γi+1

1 belongs to G1.
This shows that l(gigi+1) < l(gi) + l(gi+1).
We now obtain directly l(g1g2 . . . gn) < l(g1)+ l(g2)+ . . .+ l(gn).
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Using Proposition 1, we have deg(gigi+1) < (deg gi)(deg gi+1)
and we obtain deg(g1g2 . . . gn) < deg(g1).deg(g2). . . . .deg(gn). 2

We introduce the notion of reduced sequences of G :

Definition. The sequence (g1, g2, . . . , gn) of G is called reduced if
it satisfies one of the equivalent assertions of Proposition 2.

Remark. By Proposition 2, we know that the sequence (g1, . . . , gn)
is reduced if and only if the sequences (g1, g2), (g2, g3), . . . , (gn−1, gn)
are reduced.

Proposition 3. Let g be an element of G. The seven following
assertions are equivalent :

i. the sequence (g, g) is reduced ;
ii. d(g2) = d(g)2 ;
iii. l(g2) = 2l(g) ;
iv. deg g2 = (deg g)2 ;
v. for all positive integers n, d(gn) = d(g)n ;
vi. for all positive integers n, l(gn) = nl(g) ;
vii. for all positive integers n, deg gn = (deg g)n.

Proof. The equivalence of the first four assertions is clear. The
equivalence of i. with the last three assertions comes from the above
remark. Indeed, the sequence (g, g) is reduced if and only if the
sequence (g, g, . . . , g︸ ︷︷ ︸

n

) is reduced (n ≥ 2). 2

5. The sequence (deg gn)n∈N when g belongs to an amalga-
mated product with degree mapping.

Let g be an element of G. The two following propositions give us
rather precise information on the sequence un = deg gn.

Proposition 4. Let g = α1γ1α2γ2 · · ·αlγlαl+1 be a reduced expres-
sion of g. For 1 ≤ i ≤ l, let bi (resp. ei) be the product of the first
(resp. last) i terms of the sequence (α1, γ1, α2, . . . , αl, γl, αl+1) and
let us set vi = eibi. Then g is conjugate to an element of G1 ∪G2 if
and only if vl belongs to G3.

On the opposite case, let us set m = inf {i, vi 6∈ G3} and ρ(g) =
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deg(e2l−2m+3b2m−2) which is an integer bigger than or equal to 2.
Then we have for all nonnegative integers n,

deg gn = (deg g).ρ(g)n−1.

Proof. If vl = elbl belongs to G3, let β be the (l + 1)-th term
of the sequence (α1, γ1, α2, . . . , αl, γl, αl+1). If l is even, then β
belongs to G1 and if l is odd, then β belongs to G2. The expression
g = blβel = bl(βvl)b

−1
l shows us that g is conjugate to βvl which

belongs to G1 ∪G2.

If vl does not belong to G3, then we will distinguish two cases
according to the parity of m.

If m = 2p + 1, then v2p+1 belongs to G2 but not to G3. This
ensures us that the following expression is reduced :

h := αmγmαm+1 . . . αl−p−2γl−p−2v2p+1γp+1αp+2γp+2 . . . αm−1γm−1.

We have h = e2l−2m+3b2m−2 so that if n is any nonnegative inte-
ger, then we obtain gn = b2m−2h

n−1e2l−2m+3.
It is straightforward that the sequences (h, h) and (b2m−2, h,

e2l−2m+3) are reduced. We now get

deg gn = (deg b2m−2)(deg h)n−1(deg e2l−2m+3).

Of course, deg g = (deg b2m−2)(deg e2l−2m+3) so that we can
conclude.

If m = 2p, then v2p belongs to G1 but not to G3. By the same
arguments as before, this ensures us that the following expression is
reduced :

h := αmγmαm+1γm+1 . . . αl−pγl−pαl−p+1v2pαp+1γp+1 . . . αm−1γm−1.

We have h = e2l−2m+3b2m−2 so that if n is any nonnegative integer,
then we obtain gn = b2m−2h

n−1e2l−2m+3. We can conclude as in the
previous case. 2

Proposition 5. The three following assertions are equivalent :
i. g is conjugate to an element of G1 ∪G2 ;
ii. there exists an integer n ≥ 2 such that deg gn ≤ deg g ;
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iii. for each nonnegative integer n, we have deg gn ≤ deg g.

Proof. The implication iii. =⇒ ii. is clear.

The implication ii. =⇒ i. is clear by Proposition 4.

Let us prove i. =⇒ iii. Suppose that g is conjugate to an element
of
G1 ∪ G2. Let h be an element of G of minimal length such that
β := h−1gh belongs to G1 ∪ G2. Let h = α1γ1α2γ2 · · ·αlγlαl+1 be a
reduced expression of h. We consider three disjoint cases :

1. If β belongs to G2 and αl+1βα
−1
l+1 belongs to G3, then we

claim that l = 0. Otherwise, if we set β′ = γlαl+1βα
−1
l+1γ

−1
l and

h′ = α1γ1α2γ2 · · ·αl, then β′ would belong to G1 and we would have
g = h′β′h′−1 with l(h′) < l which is absurd. It is now easy to check
that :

deg g = deg gn = 1.

2. If β belongs to G2 and αl+1βα
−1
l+1 does not belong to G3, then

let us set β′ = αl+1βα
−1
l+1. The expression

g = α1γ1α2γ2 · · ·αlγlβ
′γ−1l α−1l · · ·α

−1
2 γ−11 α−11

is reduced and we obtain deg g = (deg h)(deg h−1) whereas the
expression

gn = α1γ1α2γ2 · · ·αlγlβ
′nγ−1l α−1l · · · γ

−1
2 α−12 γ−11 α−11

shows us that deg gn ≤ (deg h)(deg h−1).

3. If β belongs to G1 but not to G2, then we have
deg g = (deg h)(deg h−1)(deg β) and the expression gn = hβnh−1

shows us that

deg gn ≤ (deg h)(deg h−1)(deg βn) ≤ (deg h)(deg h−1)(deg β).

2
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II. The iteration of a triangularizable automorphism.

The langage of linear recurrence sequences will be a very useful
tool to handle the iteration of a triangularizable automorphism. In
section 1, we recall some classical facts on linear recurrence sequences.
We can find all these results in the paper [C-M-P].

1. Linear recurrence sequences.

Definition. A linear recurrence sequence with constant coefficients
(l.r.s. for short) is a complex sequence u(n)n∈N such that for each
positive integer n

u(n+k) = vk−1.u(n+k−1)+vk−2.u(n+k−2)+. . .+v1.u(n+1)+v0.u(n)

where the vi are complex numbers not dependent on n and k.

Theorem 1. A sequence u(n)n∈N is a l.r.s. if and only if there exist
polynomials P1, . . . , Pr in C[T ] and complex numbers ω1, . . . , ωr such
that for each positive integer n

u(n) = P1(n)ωn
1 + . . .+ Pr(n)ωn

r .

We will use in section 2 the following two lemmas.

Lemma 1. If u and v are l.r.s., then u+ v and uv are also.

Lemma 2. If u and v are complex sequences such that for each
positive integer n

v(n) = ak.u(n+ k) + ak−1.u(n+ k − 1) + . . .+ a1.u(n+ 1) + a0.u(n)

where the ai are complex numbers not all zero, then u is a l.r.s. if
and only if v is a l.r.s.

2. Triangular automorphisms and l.r.s.

Let t = (aX +
d∑

i=0

µiY
i, bY + c) be a triangular automorphism

(a, b are nonzero complex numbers, c and the µi are complex num-
bers). By a straightforward induction, we see that for each positive
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integer n

tn = (anX +
d∑

i=0

λi(n)Y i, bnY + c(n))

where c(n) and the λi(n) are complex numbers.

Lemma 3. The sequences c(n)n∈N and λi(n)n∈N are l.r.s.

Proof. The equality tn+1 = t(tn) gives us
d∑

i=0

λi(n+ 1)Y i = a
d∑

i=0

λi(n)Y i +
d∑

i=0

µi(b
nY + c(n))i (1)

c(n+ 1) = b.c(n) + c (2)

By (2) and Lemma 2, the sequence (n 7→ c(n)) is a l.r.s.
By expanding the terms (bnY + c(n))i (for 0 ≤ i ≤ d) and by

using Lemma 1, the equation (1) shows us that the sequences (n 7→
λi(n+ 1)− aλi(n)) are l.r.s. (for 0 ≤ i ≤ d). We conclude by Lemma
2. 2

Let g, h be endomorphisms of A2
C. If we set M = (deg g)(deg h)

(deg t), then for each nonnegative integer n we have deg(gtnh) ≤M .
Thus, there exist sequences Ai,j , Bi,j (for i, j nonegative integers with
i+ j ≤M) such that

gtnh = (
∑

i+j≤M
Ai,j(n)XiY j ,

∑
i+j≤M

Bi,j(n)XiY j)

Lemma 4. The sequences Ai,j and Bi,j are l.r.s.

Proof. Using Lemma 3, it is clear that the sequences Ai,j and Bi,j are
obtained from l.r.s. by additions and multiplications. We conclude
by Lemma 1. 2

3. The theorem of Skolem-Mahler-Lech.

Theorem 2 (see [S-T] for a statement and [Lech] for a proof). If

(n 7→ u(n)) is a l.r.s., then the sequence (n 7→ δ
u(n)
0 ) (where δij is the

Kronecker symbol, i.e. δij = 1 if i = j and 0 otherwise) is periodic for
large n.
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Using this result, we can deduce the

Proposition 6. The sequence deg(gtnh)n∈N is periodic for large n.

Proof. For i+j ≤M , let us define sequences ui,j and vi,j by ui,j(n) =

δ
Ai,j(n)
0 and vi,j(n) = δ

Bi,j(n)
0 . By Theorem 2, each of these sequences

is periodic for large n. Hence, there exists a positive integer T such
that for large n we have ui,j(n+T ) = ui,j(n) and vi,j(n+T ) = vi,j(n)
(for all i, j with i+ j ≤M). The formula

deg(gtnh) = max{i+ j such that ui,j(n) 6= 0 or vi,j(n) 6= 0}

gives us the result. 2

4. Conclusion.

If f is an automorphism of A2
C, let us set τ = (deg f2)/(deg f).

If τ > 1, then we saw (in Propositions 4 and 5) that τ is an integer
and that for any nonnegative integer n we have

deg fn = (deg f).τn−1.

If τ ≤ 1, then (by Proposition 5) f is conjugate to an element of Af
or BA. However, each element of Af is conjugate to an element of BA
so that we can suppose that f = gtg−1 where g, t are automorphisms,
t being triangular. By proposition 6, the sequence (deg fn)n∈N is
periodic for large n.

Finally, in both cases, we see that the series
∞∑
n=0

(deg fn)Tn is

rational.

Question. Does this result still hold if we suppose only that f is an
endomorphism of A2

C ?

Remark. If f is a triangularizable automorphism, let us define
u : N>0 → N>0 by u(n) = deg fn. We have the relations u(n+p) ≤
u(n)u(p) (by Proposition 1) and u(np) ≤ u(p) (by Proposition 5. iii.
applied to fn) for all positive integers n and p. One can look for a
more direct proof of Proposition 6 and ask whether these conditions
imply the periodicity of u(n) for large n.

The answer is positive if u takes the value 1. Indeed, if u(T ) = 1
for some T , then for each positive integer n we have u(n+T ) ≤ u(n).
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Therefore, for each p, the sequence (n→ u(nT + p)) will be constant
for large n and we see that u(n+ T ) = u(n) for large n.

In general, the answer is negative as shown by the sequence u
defined by u(n) = 3 if n = 1 or n is a prime and u(n) = 2 otherwise.
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