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Abstract : For a polynomial automorphism f of A%, we set
7 = (deg f?)/(deg f). We prove that 7 < 1 if and only if f is
triangularizable. In this situation, we show (by using a deep result
from number theory known as the theorem of Skolem-Mahler-Lech)
that the sequence (deg f™)nen is periodic for large n. In the opposite
case, we prove that 7 is an integer (7 > 2) and that the sequence
(deg f™)nen is a geometric progression of ratio 7. In particular, if f

is any automorphism, we obtain the rationality of the formal series
oo

Z (deg f™)T™.

n=0
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Introduction. Let f be an automorphism of A%. By a result of
Friedland and Milnor, either f is triangularizable (i.e. conjugate to
a triangular automorphism), or f is conjugate to an automorphism
g such that deg g > 2 and deg ¢" = (deg g)" for each nonnegative
integer n (see [F-M]). Their proof uses the description of the group
of automorphisms of AZ as an amalgamated product (see [vdK] and
[.2) and some general arguments about amalgamated products (see
[Ser]).

We can easily deduce from this result that there exists a (unique)
nonzero positive integer ¢ such that the sequence (log(deg f™) —
nlog c¢)pen is bounded. Furthermore, f is triangularizable if and only
if c=1.

The purpose of this paper is to study the exact values of the
sequence (deg f™)nen and in particular to establish the rationality of



the formal series Z(deg fHrm.

In part I, we nin(‘;roduce the notion of an amalgamated product
with degree mapping ; an example is the group of automorphisms
of A% with the usual degree. Then we obtain the following result
(which is an easy consequence of Propositions 4 and 5). Let g be an
element of an amalgamated product with degree mapping G and let
us set 7 = (deg ¢g%)/(deg g). Then, either 7 < 1 and the sequence
(deg g™ )nen is bounded, or 7 is an integer greater than or equal to 2
and the sequence (deg ¢g")nen is a geometric progression of ratio 7.
In particular, we obtain a very simple criterion for an automorphism
f of A% to be triangularizable, i.e. f will be triangularizable if and
only if deg f? < deg f.

Part II is devoted to the iteration of f when f is triangularizable.
In II.1, we briefly present the theory of linear recurrence sequences.
We apply it in I1.2 to show that the coeflicients of the iterate of f are
linear recurrence sequences. In I1.3, using the fact that if u(n),ey is
a linear recurrence sequence, then those n for which u(n) = 0 form a
finite union of arithmetic progressions after a certain stage (theorem
of Skolem-Mahler-Lech), we show that the sequence (deg f™)nen is
periodic for large n.

I. Amalgamated product with degree mapping.
1. Definition.

Let G be a group and let G, G2 be subgroups of G. We suppose
that G is the amalgamated product of G; and G5 over Gs := G1NGo
(which we denote by G = G *¢g, G2). This means that

i. if g is any element of GG, then there exist a nonnegative integer
[ and two sequences (o;)1<i<i+1 in G2 and (7;)1<i<; in G such that

g = aimay2 - Qg4
ViE{l,... ,l}, 71¢G2
Vi€{2,... ,l}, OéigéGl

and that
ii. the above expression is unique in the following sense : if m is a
nonnegative integer and (a)i<i<m+1 (resp. (7)i<i<m) IS a sequence



of Gy (resp. G1) such that

9= 1Va5Y) O Y Ot
Vze{l, 7m}a ’7;¢G2
Vie{2,...,m}, o ¢ Gy

then [ = m and there exist (ﬁi)lgigla (6i)1§i§l in Gg such that

-1
o = a1
; / -1
Vie {2, ce ,l}, o; = 52‘710(1',824
/
OélJrl = (5lal+1

and Vi€ {1,...,1}, v/ = Bimido; "

The expression g = ajyiazys - - - apyioq41 will be called a reduced
expression of g. Observe that [ is independant of the reduced expres-
sion. We define the length [(g) of g by I(g) = I. This differs from
the usual convention (see [Ser|) where the length of g is 20 + 1 (resp.
21, resp. 21 — 1) if a1, a1 do not belong to Gg (resp. if exactly one
among «, a4 belongs to Gs, resp. if both aq, ;11 belong to Gs).

Definition. We will say that (G,G1,Ga,deg) is an amalgamated
product with degree mapping if we are given a mapping deg : G1 —
N satisfying both following properties :

i. let g be an element of G, then g belongs to G3 if and only if
degg =1;

ii. if g, h belong to G, then deg(gh) < max{deg g,deg h}.

Using the degree mapping deg : GG; — N, we can define the de-

gree of any element g in G. Suppose that g = a1y1a9y2 - - - Y11
l

is a reduced expression of g. We set deg g = H deg ~;. It is easy
i=1

to check that deg g does not depend on the reduced expression of g

we used.

2. Fundamental example.

Let & be a field. An automorphism f of the k-variety
A? = Spec k[X,Y] is identified with its sequence f = (f1, f2) of
coordinate functions f; € k[X,Y] (i = 1,2). We set deg f =
max{deg f1, deg fo} and we define :



GA, the group of automorphisms of A% ;

BA, the subgroup of triangular or ”de Jonquiéres” automorphisms,
i.e. automorphisms of the shape (aX + P(Y),bY + ¢) where a, b are
in £*, cisin k and P(Y) is any element in k[Y] ;

Af, the subgroup of affine automorphisms, i.e. automorphisms of
the shape (a X +bY +¢,dX +eY + f) where a,b, ¢, d, e, f are elements
of k such that ae — bd is in k*.

By W. van der Kulk ([vdK]), we know that GA = BA g Af where
B = BA n Af. The two following assertions are easily checked :

i. let f be an element of BA, then f belongs to B if and only if
deg f = 1;

ii. if f, g belong to BA, then deg(fg) < max{deg f, deg g},

so that (GA, BA, Af, deg) is an amalgamated product with degree
mapping.

We could also check that the extension of the mapping deg: BA —
N-¢ to the mapping deg : GA — N5 (as explained in I.1.) coincides
with the usual degree mapping on GA (as defined in this section) (see
Proposition 1.9 of [Wri] or Theorem 2.1 of [F-M]).

3. The multidegree of an element of an amalgamated prod-
uct with degree mapping.

From now on, (G, G, Gz, deg ) will denote an amalgamated
product with degree mapping.

If g is an element of G, we define the multidegree d(g) of g by
d(g) = (deg v1,deg 7a,... ,deg ;) where g = a1yiaay2 -+~ vy
is a reduced expression of g. It is easy to check that d(g) does not
depend on the reduced expression of g that we use. The multidegree
belongs to D, the set of all finite sequences of integers greater than
or equal to 2. If d,e belong to D, we denote by de the concatenation
of d and e. This clearly endows D with the structure of a monoid
(where the unit is the empty sequence).

As an illustration of the previous definitions we will prove the :

Proposition 1. If g, h belong to G, then deg(gh) < (deg g)(deg h)
and we have equality if and only if d(gh) = d(g)d(h).



Proof. Let g = ayyiaoys - - - aqyjau11 be a reduced expression of g.
We begin by proving that deg(gh) < (deg g)(deg h) when h belongs
to G1 U Gs.

If h belongs to G, it is clear that deg(gh) = deg g. If h belongs
to G, either a1 belongs to G5 in which case

-1
deg(gh) = [[(deg ) . deg(vicus1h)
=1

1

H(deg vi) - max {deg(v, a;y1),deg h}
i=1
l

[1(deg ) . (deg h)
=1
< (deg g)(deg h),

or a1 does not belong to G5 and we have deg(gh) = (deg g)(deg h).

IN

IN

If h is any element of G, let h = B1616202 - BindmBm+1 be a
reduced expression of g. By applying repeatedly our preliminary
result, we get

deg(gh) < (deg g)(deg B1)(deg d1)...(deg om)(deg Bm+1)
< (deg g)(deg h).

If o111 does not belong to Gs, then we have d(gh) = d(g)d(h)
whence deg(gh) = (deg g)(deg h).

On the other hand, if ;4161 belongs to Gz, then we have gh =
919293 where
g1 = a171-.--17-109
g2 = Mou+1P101
g3 = [202. .. BmOmbm+1

and the relations

deg g1 = (deg v1)(deg 12)...(deg y-1)
deg go < max {deg vy, deg 61} < (deg ~;)(deg 1)

deg g3 (deg d2)(deg 03) . .. (deg dm)

imply that

deg(gh) < (deg g1)(deg g2)(deg g3) < (deg g)(deg h).



Remark. The same arguments show that I(gh) < I(g) +I(h) and
that the three following assertions are equivalent :

L d(gh) =d(g)d(h) ;

ii. deg(gh) = (deg g)(deg h) ;

iii. I(gh) = l(g) +1I(h).

4. Reduced sequences.

Proposition 2. Let (g1, g2,-..,9n) be a sequence of elements of G.
The four following assertions are equivalent :

L d(g192.---gn) =d(g1)d(g2) ... d(gn) ;

ii. 1(g1g2---gn) =1Ug1) +1(g2) + ... +1(gn) ;

iil. deg(g192...9n) = deg(g1).deg(g2). ... .deg(gn) ;

iv. for all ¢ in {1,... ,n — 1}, d(gigi+1) = d(9i)d(gi+1)-

Proof. The implications i. = ii. and i. = iii. are clear.

Let dt = (di, di,... ,dlll),..., d" = (df, dj,...,d) be the
multidegrees of g1, go,... , gn.

Suppose that

1111 1.1 .1
g1 = Q1109 o O
gn = afTaRYy o Yo

are reduced expressions of the g;. The assertion i. is not satis-

fied if and only if there exists an integer i in {1,...,n — 1} such
that o, Ho/frl belongs to G3. This latter assertion is equivalent
to saying that there exists an integer ¢ in {1,... ,n — 1} such that

d(gigi+1) # d(gi)d(gi+1), i.e. such that iv. is not satisfied. We have
proven that i. <= iv.
Let us now suppose that i. is not satisfied (ie. there exists an

. .. ; i+1
integer 7 in {1,... ,n—1} such that o; , ;7" belongs to G3) and let
us prove that ii. and iii. are not satisfied.
We have
i i i i i il il it i+, i+l il
9i9i+1 = 0qN1Q7 017,10,V Yo Q30 YV O 4

where v = fyliiozfﬁlaiﬂfyi“ belongs to Gj.
This shows that I(gigi+1) < 1(gi) + U(gi+1)-

We now obtain directly I1(g192...9n) < U(g1)+1(g2)+...+1(gn)-



Using Proposition 1, we have deg(g;gi+1) < (deg g;)(deg gi+1)
and we obtain deg(g1g2...9n) < deg(g1).deg(ga).... .deg(gn). O

We introduce the notion of reduced sequences of G :

Definition. The sequence (g1, g2,...,9n) of G is called reduced if
it satisfies one of the equivalent assertions of Proposition 2.

Remark. By Proposition 2, we know that the sequence (g1,... ,gn)
is reduced if and only if the sequences (g1, 92), (92, 93),--- » (Gn—1, gn)
are reduced.

Proposition 3. Let g be an element of G. The seven following
assertions are equivalent :

i. the sequence (g, g) is reduced ;

ii. d(g*) =d(g)*;

iii. 1(g%) =2l(g) ;

iv. deg g°> = (deg g)* ;

v. for all positive integers n, d(¢") = d(g)" ;

vi. for all positive integers n, [(¢") = nl(g) ;

vii. for all positive integers n, deg ¢g" = (deg g)".

Proof. The equivalence of the first four assertions is clear. The

equivalence of i. with the last three assertions comes from the above

remark. Indeed, the sequence (g, g) is reduced if and only if the

sequence (g, g,...,g) is reduced (n > 2). O
—_—

n

5. The sequence (deg ¢"),cn When g belongs to an amalga-
mated product with degree mapping.

Let g be an element of G. The two following propositions give us
rather precise information on the sequence u,, = deg g".

Proposition 4. Let g = ayyiasvys - - - ayyiaqy1 be a reduced expres-
sion of g. For 1 < <, let b; (resp. e;) be the product of the first
(resp. last) @ terms of the sequence («y, 71, ag,...,q, Y, a;41) and
let us set v; = e;b;. Then g is conjugate to an element of G; U Gy if
and only if v; belongs to Gs.

On the opposite case, let us set m = inf {i, v; ¢ G3} and p(g) =



deg(egi—2m+3b2m—2) which is an integer bigger than or equal to 2.
Then we have for all nonnegative integers n,

deg g" = (deg g).p(g)" "

Proof. If vy = ¢b; belongs to G, let 8 be the (I + 1)-th term
of the sequence (a1, v, ag,...,q, Y, aiy1). If [ is even, then §
belongs to G and if [ is odd, then S belongs to G2. The expression
g = bfe = bl(ﬁvl)bl_l shows us that ¢ is conjugate to Bv; which
belongs to G1 U Gs.

If v; does not belong to (3, then we will distinguish two cases
according to the parity of m.

If m = 2p + 1, then vy,11 belongs to G2 but not to Gz. This
ensures us that the following expression is reduced :

h = QmYmQmi1 - - - QU p—2Y1—p—2V2p 1 Vp+1Xp+2VYp+2 - - - U1V —1-

We have h = egj—_om13b2m—2 so that if n is any nonnegative inte-
ger, then we obtain ¢" = ba,,_2h™ Leg_oms.

It is straightforward that the sequences (h,h) and (bay—2, h,
€91—2m+3) are reduced. We now get

deg g" = (deg byn—2)(deg k)" " (deg ex—om+3)-

Of course, deg ¢ = (deg bay,—2)(deg €2;—92/m+3) so that we can
conclude.

If m = 2p, then vy, belongs to G but not to G3. By the same
arguments as before, this ensures us that the following expression is
reduced :

h = @ YmQma1Ym+1 - - - L pYi—pQU—pt1V2pQpr1Vp+1 - - - Un—1Vm—1-

We have h = eg_om13bam—2 so that if n is any nonnegative integer,
then we obtain ¢g" = b2m_2hn71€2l_2m+3. We can conclude as in the
previous case. O

Proposition 5. The three following assertions are equivalent :
i. g is conjugate to an element of G; U Gy ;
ii. there exists an integer n > 2 such that deg ¢" < deg g ;



iii. for each nonnegative integer n, we have deg g" < deg g.
Proof. The implication iii. = ii. is clear.
The implication ii. = 1i. is clear by Proposition 4.

Let us prove i. = iii. Suppose that g is conjugate to an element
of
G1 U Gy. Let h be an element of G of minimal length such that
B := h~lgh belongs to G1 U Gy. Let h = ajy10072 - c-oqyiage1 be a
reduced expression of h. We consider three disjoint cases :

1. If B belongs to G5 and al+16al_+11 belongs to G3, then we
claim that [ = 0. Otherwise, if we set 3 = 'ylalﬂﬁal__:l'yl_l and
I = ay1yias7ys - - - oy, then 3 would belong to G and we would have
g=Wpa'N ' with [(h') < [ which is absurd. It is now easy to check
that :

deg g = deg g™ = 1.

2. If 8 belongs to G5 and al+1ﬁal_+11 does not belong to G, then
let us set 8 = a1 ﬂal;ll. The expression

fo—1 1 1 -1 -1
g=a1viaey2 - rapyBy o ag Y o

is reduced and we obtain deg ¢ = (deg h)(deg h™!) whereas the
expression

m _ —1 —1 -1 -1 -1 -1
g" =iy oy 0y Qg Qg

shows us that deg ¢g" < (deg h)(deg h™1).

3. If 8 belongs to Gp but not to (Ga, then we have
deg g = (deg h)(deg h~')(deg ) and the expression g" = h3"h~!
shows us that

deg g" < (deg h)(deg h™')(deg B") < (deg h)(deg h™*)(deg B).

d



II. The iteration of a triangularizable automorphism.

The langage of linear recurrence sequences will be a very useful
tool to handle the iteration of a triangularizable automorphism. In
section 1, we recall some classical facts on linear recurrence sequences.
We can find all these results in the paper [C-M-P].

1. Linear recurrence sequences.

Definition. A linear recurrence sequence with constant coefficients
(Lr.s. for short) is a complex sequence u(n),en such that for each
positive integer n

u(ntk) = vp_q.u(ntk—1)+vg_s.u(n+k—2)+. . .4vy.u(n+1)+vo.u(n)

where the v; are complex numbers not dependent on n and k.

Theorem 1. A sequence u(n),en is a Lr.s. if and only if there exist
polynomials Pj, ... , P, in C[T] and complex numbers wy, ... ,w, such
that for each positive integer n

u(n) = Pi(n)wl + ...+ Pr(n)w,".

We will use in section 2 the following two lemmas.
Lemma 1. If v and v are lL.r.s., then u + v and uv are also.

Lemma 2. If v and v are complex sequences such that for each
positive integer n

v(n) =agun+k)+ap_1un+k—1)+...+ar.u(n+ 1)+ ag.u(n)

where the a; are complex numbers not all zero, then u is a Lr.s. if
and only if v is a L.r.s.

2. Triangular automorphisms and l.r.s.

d
Let t = (aX + Z 1Y, bY +¢) be a triangular automorphism
i=0
(a,b are nonzero complex numbers, ¢ and the p; are complex num-
bers). By a straightforward induction, we see that for each positive

10



integer n

d
"= (a"X+>_ N(n)Y", b"Y +c(n))
i=0
where ¢(n) and the \;(n) are complex numbers.
Lemma 3. The sequences ¢(n),ey and \;(n),en are lr.s.

Proof. The equality "' = ¢(t") gives us

d d d
SXiln+ DY =ad M)V +> (0" +c(n)” (1)
=0 =0 =0
c(n+1)=bc(n)+c (2)

By (2) and Lemma 2, the sequence (n +— ¢(n)) is a Lr.s.

By expanding the terms (b"Y + ¢(n))* (for 0 < i < d) and by
using Lemma 1, the equation (1) shows us that the sequences (n —
Ai(n+1) —aXi(n)) are L.r.s. (for 0 <i < d). We conclude by Lemma
2. O

Let g, h be endomorphisms of AZ. If we set M = (deg g)(deg h)
(deg t), then for each nonnegative integer n we have deg(gt"h) < M.
Thus, there exist sequences A; j, B; j (for i, j nonegative integers with
i+ j < M) such that

gt"h=( > Ay;(n)X'Y7, > B;;(n)X'YY)

i+j<M i+j<M

Lemma 4. The sequences A; ; and B; ; are Lr.s.

Proof. Using Lemma 3, it is clear that the sequences A; ; and B; ; are
obtained from lLr.s. by additions and multiplications. We conclude
by Lemma 1. a

3. The theorem of Skolem-Mahler-Lech.

Theorem 2 (see [S-T] for a statement and [Lech] for a proof). If
(n — u(n)) is a lL.r.s., then the sequence (n — 53(71)) (where (5; is the
Kronecker symbol, i.e. 5; = 11if i = j and 0 otherwise) is periodic for
large n.

11



Using this result, we can deduce the
Proposition 6. The sequence deg(gt"h),ecn is periodic for large n.

Proof. Fori+j < M, let us define sequences u; j and v; j by u; j(n) =
564 0 and v j(n) = (569 b, By Theorem 2, each of these sequences
is periodic for large n. Hence, there exists a positive integer 17" such
that for large n we have u; j(n+1T) = u; j(n) and v; j(n+T') = v; j(n)
(for all 4,5 with ¢ + j < M). The formula

deg(gt"h) = max{i + j such that u; j(n) # 0 or v; ;(n) # 0}

gives us the result. a
4. Conclusion.

If f is an automorphism of AZ, let us set 7 = (deg f?)/(deg f).
If 7 > 1, then we saw (in Propositions 4 and 5) that 7 is an integer
and that for any nonnegative integer n we have

deg f = (deg f).7" L.

If 7 < 1, then (by Proposition 5) f is conjugate to an element of Af
or BA. However, each element of Af is conjugate to an element of BA
so that we can suppose that f = gtg~! where g, t are automorphisms,
t being triangular. By proposition 6, the sequence (deg f™)nen is
periodic for large n.

o0
Finally, in both cases, we see that the series Z(deg M1 is
n=0
rational.

Question. Does this result still hold if we suppose only that f is an
endomorphism of A% ?

Remark. If f is a triangularizable automorphism, let us define
u : Nsg — Nyg by u(n) = deg f™. We have the relations u(n+p) <
u(n)u(p) (by Proposition 1) and u(np) < u(p) (by Proposition 5. iii.
applied to f™) for all positive integers n and p. One can look for a
more direct proof of Proposition 6 and ask whether these conditions
imply the periodicity of u(n) for large n.

The answer is positive if u takes the value 1. Indeed, if u(T) =1
for some T', then for each positive integer n we have u(n+17) < u(n).

12



Therefore, for each p, the sequence (n — u(nT + p)) will be constant
for large n and we see that u(n +T') = u(n) for large n.

In general, the answer is negative as shown by the sequence u
defined by u(n) =3 if n =1 or n is a prime and u(n) = 2 otherwise.
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