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Abstract : We study the degree of the inverse of an automorphism f of the
affine n-space over a C-algebra k, in terms of the degree d of f and of other
data. For n = 1, we obtain a sharp upper bound for deg(f−1) in terms of d
and of the nilpotency index of the ideal generated by the coefficients of f ′′.
For n = 2 and arbitrary d ≥ 3, we construct a (triangular) automorphism f
of Jacobian one such that deg(f−1) > d. This answers a question of A. van
den Essen (see [3]) and enables us to deduce that some schemes introduced
by authors to study the Jacobian Conjecture are not reduced. Still for n = 2,
we give an upper bound for deg(f−1) when f is triangular. Finally, in the
case d = 2 and any n, we complete a result of G. Meisters and C. Olech and
use it to give the sharp bound for the degree of the inverse of a quadratic
automorphism, with Jacobian one, of the affine 3-space.

1. Introduction

In this paper, unless explicitly mentioned, k will denote a C-algebra.
If n is a positive integer, we have the polynomial algebra

k[n] = k[X1, ..., Xn] and the affine space Ank = Spec(k[n]). When n = 1,
we will use X instead of X1 and when n = 2, we will use X,Y instead
of X1, X2. A k-endomorphism f of Ank will be identified with its sequence
f = (f1, ..., fn) of coordinate functions fi ∈ k[n] (i = 1, ..., n). Its Jacobian
matrix is J(f) = ( ∂fi∂Xj

)1≤i,j≤n, its Jacobian determinant is Jac(f) = detJ(f)

and its degree is deg(f) = max1≤i≤ndeg(fi). The chain rule J(f ◦ g) =
J
(
f
)
(g) . J(g), where g is a k-endomorphism of Ank , shows us that if f

is invertible, then, J(f) is invertible, i.e. Jac(f) ∈ (k[n])∗. The Jacobian
Conjecture asserts the converse when k = C. If d is a positive integer, spe-
cializing this conjecture to endomorphisms of degree less than or equal to d,
we get :
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JC(n,d) : If f is a C-endomorphism of AnC with deg(f) ≤ d, then

f is invertible ⇐⇒ J(f) is invertible (i.e., Jac(f) ∈ C∗).

Following the notations introduced by different authors investigating the
Jacobian Conjecture, Endk(Ank) is the space of all k-endomorphisms of Ank
and we set (where In is the identity matrix of rank n) :

En(k) = {f ∈ Endk(Ank) such that f(0) = 0 and J(f)(0) = In}
Jn(k) = {f ∈ En(k) such that Jac(f) = 1}
Gn(k) = {f ∈ Jn(k) such that f is invertible}
En,d(k) = {f ∈ En(k) such that deg(f) ≤ d}
Jn,d(k) = Jn(k) ∩ En,d(k)
Gn,d(k) = Gn(k) ∩ En,d(k)
c(k, n, d) = sup{ deg(f−1), f ∈ Gn,d(k)}

We have c(k, n, d) ∈ N ∪ {∞} and we define c(n, d) ∈ N ∪ {∞} as the
supremum of the c(k, n, d) when k varies through all C-algebras.

If r is a positive integer, we also set

Gn,d,r(k) = {f ∈ Gn,d(k) such that deg(f−1) ≤ r}

When n = 2, the subgroup T2(k) of G2(k) of triangular automorphisms will
play an important role in this paper :

T2(k) = {f = (f1, f2) ∈ G2(k) such that
∂f1
∂Y

= 0}.

The following theorem of H. Bass ([1]) is enough to motivate the problem
of estimating the degree of the inverse of an automorphism of the affine
space.

Theorem ([1]). The following four assertions are equivalent :
i) JC(n, d) is true ;
ii) for all C-algebras k, Jn,d(k) = Gn,d(k) ;
iii) for all C-algebras k and all k-endomorphism f of Ank satisfying

deg(f) ≤ d, f is invertible if and only if J(f) is invertible ;
iv) c(n, d) <∞.

If k is a reduced C-algebra, it is well known that c(k, n, d) = dn−1 (cf [1],
the main point is a formula of Gabber asserting that for any automorphism
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f of Ank , we have deg(f−1) ≤
(
deg(f)

)n−1
). But what about the degree of

the inverse of an automorphism of affine n-space in the general case ?

In section 2 (resp. 3), we study the case n = 1 (resp. n = 2).
The main goal of section 2 is an application to section 3, but the following

sharp estimation (see Theorem 1) may have interest for its own :

Theorem. If f =
(
P (X)

)
is an automorphism of A1

k and if the ideal I in
k generated by the coefficients of the polynomial P ′′ satisfies Ie+1 = 0 where
e ≥ 0 is an integer, then deg(f−1) ≤

(
deg(f)− 1

)
.e+ 1.

The main result of section 3 is (see Proposition 2 and the commentary
preceding Lemma 5) :

Proposition. There exists a C-algebra k and an element f of T2(k) such
that deg(f−1) > deg(f).

and we prove moreover (see Proposition 3) that :

Proposition. If f is an element of T2(k), then deg(f−1) ≤ 4
(
deg(f)

)4
.

Section 4 is devoted to the quadratic case. We complete there a result
of G. Meisters and C. Olech (see Proposition 4) and prove that c(3, 2) = 6.

2. Automorphisms of the affine line

Let us recall that k is any C-algebra. In particular, it is not necessarily
reduced. We will use the following definition :

Definition. If m ≥ 0 is an integer and P (X) =
∞∑
i=0

aiX
i is an element of

k[X], we define I(m,P ) as the ideal of k generated by am, am+1, . . . .

Let us note that for any integer l ≥ 0, we have I(m,P (l)) = I(m+ l, P )
where P (l) is the l-th derivative of P . It is well known that the polynomial
P (X) is invertible in k[X] if and only if P (0) is invertible in k and I(1, P )
is a nilpotent ideal. We also know that an endomorphism f =

(
P (X)

)
of
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A1
k is invertible if and only if the polynomial P ′(X) is invertible in k[X].

We could deduce it from the last quoted theorem of H. Bass because the
Jacobian Conjecture is true in dimension one. However, we can prove it
easily, using the following version of Hensel’s lemma :

Hensel’s lemma. Let A be a C-algebra, I a nilpotent ideal of A, g ∈ A[Z]
(where Z is an indeterminate) and α0 ∈ A. If g′(α0) ∈ A∗ and g(α0) ∈ I,
then the sequence

αi+1 = αi −
g(αi)

g′(αi)

is well defined and it satisfies the relation g(αi) = 0 when i is big enough.

Proof. It is sufficient to show by induction on i that g′(αi) ∈ A∗ and
g(αi) ∈ I2

i
. For i = 0, it follows from the hypothesis. If i ≥ 0, using

Taylor’s expansion, we get the existence of β, γ ∈ A such that

g′(αi+1) = g′(αi) + β.(αi+1 − αi) and

g(αi+1) = g(αi) + g′(αi).(αi+1 − αi) + γ.(αi+1 − αi)2

and if we suppose that g′(αi) ∈ A∗ and g(αi) ∈ I2
i
, the equality g′(αi+1)−

g′(αi) = −β. g(αi)
g′(αi)

shows us that g′(αi+1)− g′(αi) ∈ I whence g′(αi+1) ∈ A∗

while the equality g(αi+1) = γ g(αi)
2

g′(αi)2
shows us that g(αi+1) ∈ I2

i+1
. 2

If f =
(
P (X)

)
is invertible, we have already mentioned that P ′ has to

be an invertible polynomial. Conversely, if P ′ is an invertible polynomial,
we can suppose that P (0) = 0 and P ′(0) = 1 which means that we can write
P = X+a2X

2+· · ·+adXd where d is a positive integer and a2, . . . , ad belong
to k. Then, by taking A = k[X], I = I(2, P ).A, g(Z) = P (Z)−X,α0 = X,
we check that g′(α0) = 1 + 2a2X + · · ·+ dadX

d−1 ∈ k[X]∗ and that g(α0) =
a2X

2 + · · · + adX
d ∈ I(2, P ).A. We can thus apply Hensel’s lemma and

deduce the existence of an element Q(X) ∈ k[X] such that P
(
Q(X)

)
= X

which is enough to prove that f is invertible with inverse g =
(
Q(X)

)
.

The following amusing lemma shows us the importance of knowing more
than the degree of f to estimate the degree of its inverse (of course, the
automorphisms of Lemma 1 do not have their Jacobian equal to one) :

Lemma 1. If d ≥ 2, d′ ≥ 2 are two integers, then there exist a C-algebra k
and an automorphism f of A1

k such that deg(f) = d and deg(f−1) = d′.
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Proof. By, if necessary, exchanging f and f−1, we can suppose that d ≤ d′.
Let us consider the following algebraic equation :

(1 + εX)d = 1 + εX ′.

By solving this equation for X ′, we get

X ′ =
(1 + εX)d − 1

ε

=
d∑
i=1

(
d

i

)
εi−1Xi

and by solving it for X, we get :

X =
(1 + εX ′)

1
d − 1

ε

=
∞∑
i=1

(
1
d

i

)
εi−1X ′

i

We just have to note that for all i > 0,
( 1
d
i

)
6= 0 and then, it is clear that we

can take k = C[ε]/(ε)d
′

and f = (
d∑
i=1

(
d

i

)
εi−1Xi). 2

If P is invertible with deg(P ) = d and I(1, P )e+1 = 0, it is easy to check
that

deg(P−1) ≤ de.

(we can suppose that P (0) = 1 and then, if we write P = 1+Q, the formula

P−1 =
∞∑
i=0

(−1)iQi gives us the result). The next proposition establishes the

converse of this inequality :

Proposition 1. If P is an invertible polynomial of k[X] with deg(P ) = d
and deg(P−1) = d′, then

I(1, P )min(d,d′).(d+d′−1)+1 = 0.
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Remark. Before giving the proof, it may be interesting to see how we can
first deduce the existence of an integer e depending only on d and d′ such
that I(1, P )e+1 = 0 for each P satisfying the hypothesis of the proposition.
Of course, we can always suppose that such a P satisfies P (0) = 1 and then,

by writing again P = 1 +Q and expressing P−1 as
∞∑
i=0

(−1)iQi, it suffices to

prove the following lemma :

Lemma 2. If d, d′ are nonzero integers, A = {A1, ..., Ad} is a set of inde-
terminates, (Pi)i≥1 is the sequence of elements of C[A] defined by

(1 +
d∑
i=1

AiX
i)−1 = 1 +

∞∑
i=1

Pi(A1, ..., Ad)X
i

(where the inverse is meant for the multiplicative law of C[A][[X]])

and if I (resp. J) is the ideal of C[A] generated by the (Pi)i>d′ (resp. by
A1, A2, ..., Ad), then there exists an integer e such that : Je+1 ⊂ I.

Proof of Lemma 2. If (a1, ..., ad) ∈ Cd, we have(
∀ i > d′, Pi(a1, ..., ad) = 0

)
⇒ (a1, ..., ad) = 0

because the relation
(
∀ i > d′, Pi(a1, ..., ad) = 0

)
implies that 1 +

d∑
i=1

aiX
i is

an invertible element of C[X]. So, the zero locus of I is the zero locus of J
and we conclude by applying the Hilbert Nullstellensatz. 2

Proof of Proposition 1. If we take P as in the proposition, we can
suppose that P (0) = 1. Let us set R(Y ) = Y dP (1/Y ). R(Y ) is a monic
element of k[Y ] so that there exists a C-algebra k′ containing k and elements
ε1, ..., εd in k′ such that R(Y ) =

∏d
i=1(Y + εi). Finally, observing that

P (X) = XdR(1/X), we obtain

P (X) =
d∏
i=1

(1 + εiX).

Then, for all 1 ≤ i ≤ d, we have εd+d
′

i = 0 because of the relation

deg(1 + εiX)−1 ≤ d+ d′ − 1.
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Let E be the ideal of k′ generated by the εi. The relations εd+d
′

i = 0 (for
1 ≤ i ≤ d) show us that Ed(d+d′−1)+1 = 0. Furthermore, we have I(1, P ) ⊂ E
so that I(1, P )d(d+d

′−1)+1 = 0.

In the same way, we get I
(
1, P−1

)d′(d+d′−1)+1
= 0 and so, we conclude

by noting that I(1, P ) = I
(
1, P−1

)
. Indeed, by writing P = 1 + Q and

expressing P−1 as
∞∑
i=0

(−1)iQi, we get I
(
1, P−1

)
⊂ I(1, P ) and in the same

manner we get I(1, P ) ⊂ I
(
1, P−1

)
. 2

The next theorem gives us an accurate bound for the degree of the inverse
of an automorphism f =

(
P (X)

)
of the affine line in terms of the degree of

the automorphism and of the nilpotency index of the ideal I(2, P ) :

Theorem 1. If d ≥ 1, e ≥ 0 are integers and f =
(
P (X)

)
is an automor-

phism of A1
k satisfying deg(f) ≤ d and I(2, P )e+1 = 0, then

deg(f−1) ≤ (d− 1)e+ 1.

Remark. If f−1 =
(
Q(X)

)
, then the previous formula may also be written

deg(Q′) ≤ e.deg(P ′)

but we did not find any way to prove it directly.

Proof. We can suppose d ≥ 2, otherwise the proof is obvious. The result is
then a consequence of the following lemma :

Lemma 3. If d ≥ 2 is an integer, A = {A2, ..., Ad} is a set of indetermi-
nates, (Bi)i≥2 is the sequence of elements of C[A] defined by

(X +
d∑
i=2

AiX
i)−1 = X +

∞∑
i=2

Bi(A2, ..., Ad)X
i

(where the inverse is meant for the composition law of C[A][[X]])

and if J is the ideal of C[A] generated by A2, ..., Ad, then we have :

∀ i ≥ 2, Bi ∈ Jd
i−1
d−1
e,
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(where dxe is the least integer n such that x ≤ n if x is any real number).

Indeed, we can suppose that P is of the shape P = X +
d∑
i=2

aiX
i and,

by lemma 3, the coefficient of Xi in f−1 will vanish as soon as i−1
d−1 > e, i.e.,

i > (d− 1)e+ 1. 2

Proof of Lemma 3. We prove the result by induction on i. If 2 ≤ i ≤ d,
we have d i−1d−1e = 1 and it is clear that Bi ∈ J .

Suppose i > d. For each j ∈ N, let us define C(j) in C[A] as the
coefficient of Xi in the X-polynomial (X + A2X

2 + ... + AdX
d)j . When

j < i
d or j > i, we have C(j) = 0 and also C(i) = 1, so, the equality

X +
d∑

k=2

AkX
k +

∞∑
j=2

Bj(X +A2X
2 + ...+AdX

d)j = X

implies that
Bi = −

∑
i
d
≤j≤i−1

Bj .C(j) (1)

When i
d ≤ j ≤ i− 1, we claim that C(j) ∈ J [ i−j−1

d−1
]+1.

Indeed, let us consider the expansion of (X + A2X
2 + ...+ AdX

d)j . To
obtain terms of degree i in X, we have to take at least [ i−j−1d−1 ] + 1 terms

of the shape AkX
k (2 ≤ k ≤ d). Otherwise, if we only took p of these

terms, with p < [ i−j−1d−1 ] + 1 then we would get a term of degree at most

(j − p).1 + p.d < i because p < i−j
d−1 .

So, using our induction hypothesis and (1), it suffices to show that when
i
d ≤ j ≤ i− 1, we have :

d j − 1

d− 1
e+ [

i− j − 1

d− 1
] + 1 ≥ d i− 1

d− 1
e.

This can be proved by distinguishing three cases :
a) If j−1

d−1 and i−2
d−1 are both integers, then i−j−1

d−1 is also an integer and
the inequality can be written i+ d− 3 ≥ i− 1 which is true because d ≥ 2.
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b) If j−1
d−1 is not an integer, then, d j−1d−1e = d j

d−1e and the inequality
follows from the inequality :

∀ (x, y) ∈ R2, dxe+ [y] + 1 ≥ dx+ ye.

c) If i−2
d−1 is not an integer, then, d i−1d−1e = d i−2d−1e and the inequality follows

from the same inequality as in b). 2

We now prove that the inequality in Theorem 1 is optimal. We can
suppose that d ≥ 2. The following lemma shows us that if we take k =
C[ε]/(εe+1), then, the automorphism f = (X − εXd) of A1

k satisfies deg
(f−1) = (d− 1)e+ 1.

Lemma 4. If d ≥ 2 is an integer, then the inverse (for the composition law
of formal power series) of f(X) = X − εXd ∈ C[ε][[X]] is of the shape

g(X) =
∞∑
i=0

αiε
iX1+i(d−1),

where (αi)i∈N is a sequence of nonzero positive integers.

Proof. Let us set f1(X) = X − Xd ∈ C[[X]] and let g1(X) be its inverse
(for the composition law of formal power series). If ω is a primitive (d− 1)-
root of unity, then we have the relation f1(ωX) = ωf1(X) from which we
get g1

(
ωf1(X)

)
= ωX. By making the substitution X := g1(X), we obtain

g1(ωX) = ωg1(X) so that

g1(X) =
∞∑
i=0

αiX
1+i(d−1),

where (αi)i∈N is a sequence of real numbers. However, by writing f1
(
g1(X)

)
=

X, we get α0 = 1 and

αk+1 =
∑

i1+i2+...+id=k

αi1αi2 ...αid

from which we get easily by induction on i that ∀ i ∈ N, αi ∈ N∗. The same
computation for f as for f1 (inserting some ε in the right places) ends up
the proof of Lemma 4. 2

3. Automorphisms of the affine plane
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The following theorem, which was already known when k = C (see [5]),
implies (taking d = 2) that c(2, 2) = 2.

Theorem 2. If d ≥ 2 is an integer, h is an endomorphism of A2
k which

is homogeneous of degree d and if f = Id + h is an endomorphism of A2
k

satisfying Jac(f) = 1, then f is invertible and f−1 = Id− h.

Proof. If h = (h1, h2), the equality Jac(f) = 1 implies :

∂h1
∂X

+
∂h2
∂Y

+
∂h1
∂X
· ∂h2
∂Y
− ∂h1
∂Y
· ∂h2
∂X

= 0

and by considering the homogeneous components of degree d−1 and 2d−2,
we get :

∂h1
∂X

+
∂h2
∂Y

= 0 and
∂h1
∂X
· ∂h2
∂Y
− ∂h1
∂Y
· ∂h2
∂X

= 0

The first of these equations shows us that there exists a unique homogeneous
polynomial P of degree d+ 1 in k[X,Y ] such that (h1, h2) = (−∂P

∂Y ,
∂P
∂X ) and

the remaining equation writes now :

∂2P

∂X2
· ∂

2P

∂Y 2
− (

∂2P

∂X∂Y
)2 = 0.

We set D = h1
∂
∂X + h2

∂
∂Y = −∂P

∂Y
∂
∂X + ∂P

∂X
∂
∂Y which is a derivation of

k[X,Y ] and we check that

D2X = ∂P
∂Y ·

∂2P
∂X∂Y −

∂P
∂X ·

∂2P
∂Y 2

= 1
d(X · ∂2P

∂X∂Y + Y · ∂2P
∂Y 2 ) · ∂2P

∂X∂Y −
1
d(X · ∂2P

∂X2 + Y · ∂2P
∂X∂Y ) · ∂2P

∂Y 2

= −1
dX ·

(
∂2P
∂X2 · ∂

2P
∂Y 2 − ( ∂2P

∂X∂Y )2
)

= 0

and, in a similar manner, D2Y = 0.
Therefore, by Leibnitz’s formula, D is a locally nilpotent derivation of

k[X,Y ] (∀ a ∈ k[X,Y ],∃ i ∈ N such that Dia = 0) and so we can associate
to D the following mapping which defines an action of (k,+) over k[X,Y ] :

k × k[X,Y ] → k[X,Y ]

(t, a) 7→ exp(tD).a =
∞∑
i=0

(tD)i

i!
· a
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Hence, the mappings exp(D) and exp(−D) are k-automorphisms of
k[X,Y ], one being the inverse of the other. These automorphisms are de-
fined by their action on X and Y . The automorphism exp(D) sends (X,Y )
to (X + h1, Y + h2) whereas the automorphism exp(−D) sends (X,Y ) to
(X − h1, Y − h2). 2

If d ≥ 3, the next proposition shows that c(2, d) > d. This is a very
interesting phenomenon. Indeed, let n be a positive integer. On the first
hand, if one believes that the Jacobian Conjecture in dimension n and degree
d
(
JC(n,d)

)
is true, then we know that c(n, d) <∞ and on the second hand,

if k is a reduced C-algebra, we know that c(k, n, d) = dn−1. That is why
we may be tempted to make the following Generalized Jacobian Conjecture
(for n = 2, this corresponds to Question 2.19 of A. van den Essen, in the
paper [3]) :

GJC(n,d). c(n, d) = dn−1.

Proposition 2 shows us that this Generalized Jacobian Conjecture is
wrong. It means that we no longer have any candidate for c(n, d). In
particular, when d ≤ 100, we know that c(2, d) < ∞ because JC(2, d) has
been proved in this case by T.T. Moh ([7]), but we do not know how to
estimate c(2, d).

The first counter-example to this Generalized Jacobian Conjecture was
found for n = 2, d = 3, using a computer. It turned out that the auto-
morphism we obtained was triangular and that the counter-example could
be easily generalized to n = 2, d ≥ 3. We will give here these generalized
counter-examples. We use the following lemma, whose proof is left to the
reader :

Lemma 5. T2(k) is the subgroup of G2(k) consisting of the elements of the
shape

f =
(
P (X), P ′(X)−1Y +Q(X)

)
where g =

(
P (X)

)
is any automorphism of A1

k belonging to E1(k) and Q
is any element of k[X] such that Q(0) = Q′(0) = 0. Moreover, if g−1 =(
R(X)

)
, then

f−1 =
(
R(X), R′(X)−1Y −R′(X)−1Q(R(X))

)
.
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2

Proposition 2. If d ≥ 3 is an integer, then

f =
(
X + εXd, (1− dεXd−1)Y +X2) ∈ T2

(
C[ε]/(ε2)

)
,

deg(f) = d and deg(f−1) = d+ 1.

Proof. We can just apply Lemma 5 with k = C[ε]/(ε2), P = X + εXd, Q =
X2 so that R = X − εXd, R′−1 = 1 + dεXd−1, f ∈ T2

(
C[ε]/(ε2)

)
and

f−1 =
(
X − εXd, (1 + dεXd−1)Y −X2 − (d− 2)εXd+1).

2

We now introduce the schemes Jn,d and Gn,d,r. Proposition 2 allows us
to deduce that these schemes are not always reduced (see Remark (3.3) in
[1]).

It is easy to see that
(
k 7→ Jn,d(k)

)
can be identified with the functor of

points of an affine scheme defined over C, which we shall of course call Jn,d.
Indeed, we have Jn,d = Spec(An,d), where the C-algebra An,d (called the

Jacobian algebra of dimension n and degree d) is described as follows :
We set En,d = {α = (α1, ..., αn),∀ i αi ∈ N, 2 ≤ α1 + ...+ αn ≤ d}

and let Y = {Yi,α, 1 ≤ i ≤ n, α ∈ En,d} be a set of indeterminates. We
define the endomorphism gn,d of AnC[Y ] by the formula :

gn,d =
(
Xi +

∑
α∈En,d

Yi,αX
α1
1 ...Xαn

n

)
1≤i≤n

Let us write : JacX(gn,d)− 1 =
∑

(α1,... ,αn)∈Nn

PαX
α1
1 ...Xαn

n , where the Pα

are in C[Y ]. If I is the ideal generated by the Pα(α ∈ Nn), we have An,d =
C[Y ]/I.

Furthermore, if r is a positive integer, it is proved in [1] that
(
k 7→

Gn,d,r(k)
)

can be identified with the functor of points of an affine scheme
defined over C, which we call Gn,d,r.
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Let fn,d be the endomorphism of AnAn,d
which is obtained by replacing

each coefficient of the monomials appearing in the expression of gn,d by its
reduction modulo I. The endomorphism fn,d is of Jacobian one by construc-
tion and so, if CJ(n, d) is true, fn,d is invertible and it is now easy to see
that c(n, d) = deg(f−1n,d). Always assuming that CJ(n, d) is true, we also
deduce the existence of a positive integer r such that Gn,d,r = Jn,d.

Because JC(2, d) is true when 3 ≤ d ≤ 100 ([7]) and c(k, 2, d) = d if k is
a reduced C-algebra, we get :

Corollary of Proposition 2. For each 3 ≤ d ≤ 100, the scheme J2,d is
not reduced and there exists a positive integer r such that the scheme G2,d,r

is not reduced. 2

However, we get a bound for the degree of the inverse of an element of
T2(k) :

Proposition 3. If f is an element of T2(k), then we have deg(f−1) ≤
4
(
deg(f)

)4
.

Proof. We set d = deg(f) and let P,Q ∈ k[X] be such that

f =
(
P (X), P ′(X)−1Y +Q(X)

)
.

We know that g =
(
P (X)

)
is an automorphism of A1

k and let R ∈ k[X] be
such that g−1 =

(
R(X)

)
.

Then, f−1 =
(
R(X), R′(X)−1Y −R′(X)−1Q(R(X))

)
.

We get successively :
deg(P ) ≤ d ;
deg(P ′) ≤ d− 1 ;
deg

(
P ′−1

)
≤ d− 1 ;

I(2, P )(d−1)(2d−3)+1 = 0
(
by Prop. 1 and because I(2, P ) = I(1, P ′)

)
;

deg(R) ≤ (d− 1)2(2d− 3) + 1 (by Theorem 1) ;
deg

(
R′−1

)
≤ (d− 1)[(d− 1)2(2d− 3) + 1] (because R′−1 = P ′(R)) ;

deg(f−1) ≤ (2d−1)[(d−1)2(2d−3)+1] ≤ 4d4 (by the formula for f−1). 2

Remarks. The majorations made in the proof of Proposition 3 are of course
not optimal at several places. Concerning the problem of estimating c(2, d)
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(d ≥ 3), with Michel Fournie and Didier Pinchon, we have checked that
c(2, 3) = 9, using a computer.

4. Quadratic automorphisms of the affine space

In this section, n will denote a positive integer. Contrary to the fore-
going, X will denote the set of indeterminates X1, X2, . . . , Xn and Y will
denote the set of indeterminates Y1, Y2, . . . , Yn. q = q(X) will denote an
endomorphism of Ank which is homogeneous of degree two and f will denote
the endomorphism of Ank defined by the formula f = Id + q.

Let us begin by recalling that JC(n, 2) has been proven by S. Wang ([9])
so that c(n, 2) < ∞ and Gn,2(k) = Jn,2(k). It is easy to deduce from this
that the three following assertions are equivalent :

i) Jq is a nilpotent matrix ;
ii) In + Jq is an invertible matrix (in Mn(k[X])) ;
iii) f is an automorphism.

The following result of G. Meisters and C. Olech gives us, in some par-
ticular cases, explicit formula for f−1 which allow us to bound deg (f−1).
Their proof is for k = C but it may remain unchanged in the case where k
is any C-algebra :

Theorem ([6]). i) If (Jq)
2 = 0, then we have f−1(X) = X − q(X) ;

ii) If (Jq)
3 = 0, then we have f−1(X) = X − q(X) + Jq(X).q(X) −

q
(
q(X)

)
+ 1

2Jq
(
q(X)

)2
.X − 1

2Jq
(
q(X)

)2
.q(X).

The next proposition answers the question made in [6] asking whether

the terms 1
2Jq

(
q(X)

)2
.X and 1

2Jq
(
q(X)

)2
.q(X) could effectively be nonzero

in case ii) when k = C :

Proposition 4. Let q be the endomorphism of A6
C defined by

q = (2X2X6 − 2X2
3 −X4X5, 2X3X5 −X4X6, X5X6, X

2
5 , X

2
6 , 0),

then we have (Jq)
3 = 0, hence, f = Id + q is an automorphism of A6

C.
Moreover, deg(f−1) = 6.
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Proof. By a calculation, one checks that (Jq)
3 = 0 and that the inverse

g = (g1, g2, g3, g4, g5, g6) of f is given by :

g1 = X1 − 2X2X6 + 2X2
3 +X4X5 − 3X4X

2
6 −X3

5 + 3X2
5X

2
6 − 3X5X

4
6 +X6

6

g2 = X2 − 2X3X5 +X4X6 + 2X3X
2
6 +X2

5X6 − 2X5X
3
6 +X5

6

g3 = X3 −X5X6 +X3
6

g4 = X4 −X2
5 + 2X5X

2
6 −X4

6

g5 = X5 −X2
6

g6 = X6

2

Remark : For d = 3, A. van den Essen already gave a counter-example in
[4] to a Conjecture of K. Rusek (see [8]) asserting that for any automorphism
g = Id + h of AnC, where h is a homogeneous endomorphism of AnC of degree
d ≥ 2, we have deg(f−1) ≤ diN (Jh)−1 where iN (Jh) is the nilpotency index of
Jh. The automorphism given in Proposition 4 gives us a counterexample in
the case d = 2. However, in the quadratic case, we can correct the previous
formula (see Proposition 5), using the next definition which is taken from
[6] :

Definition. Jq, which can be seen as a (linear) mapping from Cn to Mn(C),
is said to be strongly nilpotent of order l (l is an integer) if

∀ (x1, . . . , xl) ∈ (Cn)l, Jq(x
1).Jq(x

2). · · · .Jq(xl) = 0.

We define iSN (Jq) as the smallest integer l satisfying the above relation.

Proposition 5. If k = C and f is an automorphism, then deg(f−1) ≤
2iSN (Jq)−1.

Proof. We may have iSN (Jq) =∞ (cf [6]), but, in this case, there is nothing
to prove. So, let us suppose that iSN (Jq) = l ∈ N. For 1 ≤ i ≤ l, we denote
by Vl−i the vector space spanned by⋃

(x1,... ,xi)∈(Cn)i

Im
(
Jq(x

1).Jq(x
2). · · · .Jq(xi)

)
and we set Vl = Cn.
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(Vi)0≤i≤l is an increasing sequence of subspaces of Cn satisfying

∀ 0 < i ≤ l,∀ x ∈ Cn, Jq(x)(Vi) ⊂ Vi−1

and Vl = Cn. By the hypothesis of strong nilpotency of order l, we have
V0 = {0}. So, there exist l + 1 integers n0 = 0 ≤ n1 ≤ n2 ≤ · · · ≤ nl−1 ≤
nl = n and a basis e1, . . . , en of Cn such that ∀ 0 ≤ i ≤ l, e1, . . . , eni is a
basis of Vi. This implies the existence of an element G ∈ GLn(C) such that
G−1.Jq.G = (Ai,j)1≤i,j≤l where the Ai,j are (ni − ni−1, nj − nj−1) matrices
such that Ai,j = 0 when i ≤ j. The formula JG−1◦q◦G(x) = G−1.Jq(G.x).G
shows us that JG−1◦q◦G(x) is of the same shape and so, by conjugating f by
the mapping (x→ G.x), we can suppose that Jq is of the same shape. Now,
writing q = (q1, ..., qn), this implies that for ni < j ≤ ni+1 (where 0 ≤ i < l)
qj depends only on the variables Xni+1+1, Xni+1+2, . . . , Xn and so the sys-
tem X + q(X) = Y (in the unknown X with parameter Y ) is triangular.
We can see, by induction on i (beginning with i = l − 1 and finishing with
i = 0) that when ni < j ≤ ni+1 we have degY

(
Xj(Y )

)
≤ 2l−1−i and the

proof is finished. 2

In the proof of the next proposition and in the remark following it, we
will see some close connections between the case where n = 3, k is any
C-algebra and the case where there is no condition on n, k = C, (Jq)

3 = 0.

A. van den Essen pointed out to us that the following well known lemma
when k = C (see for example [2]) remains true when k is any C-algebra :

Lemma 6. If d ≥ 2 is an integer and h is an endomorphism of Ank which
is homogeneous of degree d, then det(In + Jh) = 1⇒ (Jh)n = 0.

Proof. If det(In + Jh) = 1, then the degrees of the polynomials appearing
as coefficients of the matrix (In+Jh)−1 do not exceed (n−1).(d−1) (by the
formula of the inverse of a matrix). However, for all i ≥ 0, the coefficients
of the matrix (Jh)i are homogeneous of degree (d − 1).i, so, the formula

(In + Jh)−1 =
∞∑
i=0

(−1)i(Jh)i gives us the result. 2

Proposition 6. c(3, 2) = 6.

Proof. If n = 3 and f is an element of G3,2(k), then it follows from Lemma
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6 that (Jq)
3 = 0 and by the Theorem quoted earlier from [6], we have

deg(f−1) ≤ 6.
We now claim that if we take

k = C[ε1, ε2, ε3]/(ε1 + ε2 + ε3, ε
2
1 + ε22 + ε23, ε

3
1 + ε32 + ε33)

and q = (2ε1X1X3 −X2
2 , 2ε2X2X3 −X2

3 , ε3X
2
3 ),

then f = Id + q belongs to G3,2(k) and its inverse is of degree (at least) 6.
To check it, we begin by remarking that

k = C[ε1, ε2, ε3]/(ε1 + ε2 + ε3, ε1ε2 + ε1ε3 + ε2ε3, ε1ε2ε3)

which implies that if Z is any indeterminate

3∏
i=1

(1 + εiZ) = 1 ( in k[Z]).

By this remark, we see firstly that Jac(f) = 1 (so f ∈ J3,2(k) = G3,2(k))
and also deg(1 + εiZ)−1 ≤ 2, so, ε3i = 0. To compute the inverse of f , we
have to solve the following system in the unknown (X1, X2, X3) with the
parameters (Y1, Y2, Y3) :

Y1 = X1 + 2ε1X1X3 −X2
2

Y2 = X2 + 2ε2X2X3 −X2
3

Y3 = X3 + ε3X
2
3

If f−1 = (g1, g2, g3) where the gi are elements of k[Y1, Y2, Y3], we see that

g1(0, 0, Y3) = (1 + 2ε1X3)
−1(1 + 2ε2X3)

−2X4
3 ,

where X3 = Y3 − ε3Y 2
3 + 2ε23Y

3
3 . The relations between the εi imply that

g1(0, 0, Y3) = (1 + 2ε1X3)(1 + 2ε3X3)
2X4

3 ,

whence :

g1(0, 0, Y3) = X4
3 + (2ε1 + 4ε3)X

5
3 + (8ε1ε3 + 4ε23)X

6
3 + 8ε1ε

2
3X

7
3 .

We calculate that the coefficients of Y 6
3 in the Y3-polynomials Xi

3 (i =
4, 5, 6, 7) are respectively : 14ε23,−5ε3, 1, 0 and we finally get that the coef-
ficient of Y 6

3 in g1(0, 0, Y3) is

14ε23 − 5ε3(2ε1 + 4ε3) + (8ε1ε3 + 4ε23) = −2(ε1 + ε3)ε3 = 2ε2ε3 6= 0.
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2

Remark : The automorphism exhibited in the proof of Proposition 6 gives
us quite naturally an endomorphism q̃ of A18

C which is homogeneous of degree
2, such that (Jq̃)

3 = 0 and that deg(f̃−1) = 6 where f̃ = Id + q̃. Indeed,
let us take k = C[ε1, ε2, ε3]/(ε1 + ε2 + ε3, ε

2
1 + ε22 + ε23, ε

3
1 + ε32 + ε33) and

q = (2ε1X1X3 −X2
2 , 2ε2X2X3 −X2

3 , ε3X
2
3 ). The mapping

i : C6 → k
(a, b, c, d, e, f) 7→ a+ bε1 + cε2 + dε21 + eε22 + fε21ε2

is an isomorphism of C-vector spaces and so the following mapping is an
isomorphism too :

j : C18 = C6 × C6 × C6 → A3
k

(u, v, w) 7→
(
i(u), i(v), i(w)

)
We just now have to set q̃ = j−1 ◦ q ◦ j.

Questions.
1. Can one finds explicit upper bounds for c(n, 2) ?
2. If l is a positive integer, does there exist a constant cl (independent

of n) such that (Jq)
l = 0 implies that deg(f−1) ≤ cl ?

3. Can we take cl = c(l, 2) ?
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