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Abstract : The automorphism group of the affine plane is a mysterious and
challenging object. Although we know that it is an amalgamated product of
two well known subgroups, many questions are still unsolved. Moreover, the
group has the structure of an infinite-dimensional algebraic group. But the
interactions between these two structures are not yet clear. In this paper, we
study the length of an element (defined using the amalgamated structure)
with respect to the algebraic structure. If the ground field is of characteristic
zero, we prove that the length is a lower semicontinuous function on the
group.

1. Introduction.

a. Notations.

If K is a field, End will denote the monoid of K-endomorphisms of
A2 := Spec K[X,Y ] and GA the group of K-automorphisms of A2. An ele-
ment f in End will be identified with its sequence f = (f1, f2) of coordinate
functions fj ∈ K[X,Y ]. We define the degree of f by deg f = max

1≤j≤2
deg fj .

Let
Af := {(aX + bY + c, dX + eY + f), a, b, c, d, e, f ∈ K, ae− bd 6= 0}

be the subgroup of affine automorphisms and
BA := {(aX + P (Y ), bY + c), a, b, c ∈ K,P ∈ K[Y ], ab 6= 0}

be the subgroup of triangular automorphisms (BA may be viewed as a Borel
subgroup of GA).

If f ∈ GA, by [J] and [K], one can write f = α1.γ1. . . . .αk.γk.αk+1

where the αj (resp. γj) belong to Af (resp. BA). By contracting such an
expression, one might as well suppose that it is reduced, i.e. ∀j, γj /∈ Af
and ∀j, 2 ≤ j ≤ k, αj /∈ BA. It follows from the amalgamated structure of
GA that if f = α′1.γ

′
1. . . . .α

′
l.γ
′
l.α
′
l+1 is another reduced expression of f , then

k = l and there exist (βj)1≤j≤k, (γj)1≤j≤k in Af∩BA such that α′1 = α1.β
−1
1 ,

α′j = δj−1.αj .β
−1
j (for 2 ≤ j ≤ k), α′k+1 = δk.αk+1 and γ′j = βj .γj .δ

−1
j (for
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1 ≤ j ≤ k). Therefore, following [F-M], we define the multidegree of f by
d(f) := (deg γ1, . . . , deg γk).

Let n ≥ 0 be an integer. We set End≤n := {f ∈ End, deg f ≤ n} and
GA≤n := {f ∈ GA, deg f ≤ n}. The set End≤n is a K-affine space and can
therefore be given the structure of a K-algebraic variety. It is well known
that GA≤n is locally closed in End≤n (see [B-C-W]), so that GA≤n can also
be given the structure of a K-algebraic variety.

Finally, the equalities End =
⋃
n

End≤n and GA =
⋃
n

GA≤n yield struc-

ture of infinite-dimensional algebraic varieties on End and GA (see [S]).

Let us recall that a set X with a fixed sequence of subsets Xn, each of
which has a structure of a finite-dimensional algebraic variety, is called an
infinite-dimensional algebraic variety if the following conditions are satisfied :

1) X =
⋃
n

Xn ;

2) Xn is a closed algebraic subvariety of Xn+1.

Each of the Xn will be considered with its Zariski topology and we endow
X with the topology of the inductive limit, in which a set Z ⊂ X is closed
if and only if Z ∩Xn is closed in Xn for all n.

Let X =
⋃
n

Xn and Y =
⋃
n

Yn be two infinite-dimensional algebraic va-

rieties. A morphism between X and Y is a map f : X → Y such that for
each n there exists m satisfying f(Xn) ⊂ Ym and such that the restriction
f : Xn → Ym is a morphism of finite-dimensional varieties. Any morphism
is easily seen to be continuous.

b. A conjecture.

We will denote by D the set of multidegrees. From the definition, we
see that D is the set of finite sequences of integers greater than or equal
to 2 (including the empty sequence). If d = (d1, . . . , dk) is a multidegree,
then GAd ⊂ GA will denote the set of automorphisms whose multidegree is
equal to d. We obviously have GA =

∐
d∈D
GAd. We believe that the following

statement is true :

Conjecture. If K = C and d = (d1, . . . , dk) is a multidegree, then
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GAd =
∐
d′�d
GAd′ where � is the partial order induced on D by the relations :

(i) ∀d ∈ D, ∅ � d ;
(ii) If d = (d1, . . . , dk), e = (e1, . . . , ek) ∈ D and if ∀j, dj ≤ ej , then

d � e ;
(iii) If d = (d1, . . . , dk) ∈ D and if 1 ≤ j ≤ j+1 ≤ k, then d(j,j+1) � d,

where we set d(j,j+1) := (d1, . . . , dj−1, dj + dj+1 − 1, dj+2, . . . , dk).

Remarks. 1. Note the analogy with the Bruhat decomposition of reductive
complex connected linear algebraic groups. If G is such a group with Bo-
rel subgroup B and Weyl group W , then we have G =

∐
w∈W

BwB (disjoint

union). Furthermore, BwB =
∐
w′≤w

Bw′B where ≤ is the Bruhat order onW

(see [Sp]).
2. If the multidegree of an automorphism is d = (d1, . . . , dk), then its

degree is d1d2 . . . dk (see Proposition 1.9 of [W] or Theorem 2.1 of [F-M]).
Hence, as soon as n ≥ d1 . . . dk, we have GAd ⊂ GA≤n and GAd is the usual
Zariski closure of GAd in GA≤n.

3. It is shown in [F-M] that GAd is an analytic variety which is biholo-
morphic to Cd1+...+dk+6.

4. The condition (iii) may seem mysterious. To motivate it, let us consider
the family of automorphisms of GA≤4 induced by the Nagata automorphism
(see [N]) N : C→ GA≤4, Z 7→ NZ where

NZ := (X − 2Y (XZ + Y 2)− Z(XZ + Y 2)2, Y + Z(XZ + Y 2)).
If Z 6= 0, we have NZ = γZ .αZ .δZ where γZ = (X − Z−1Y 2, Y ) ∈ BA \ Af ,
αZ = (X,Y + Z2X) ∈ Af \ BA and δZ = (X + Z−1Y 2, Y ) ∈ BA \ Af , so
that the multidegree of NZ is (2, 2). However, N0 = (X + 2Y 3, Y ) so that
the multidegree of N0 is (3). By using this example and Proposition 12 of
[F], one can show the above conjecture for d = (2, 2).

5. In order to study the Jacobian Conjecture, an analysis of the irredu-
cible components of GA≤n seems interesting (see [B-C-W]). Let us first notice
that GA≤n =

∐
d∈Dn

GAd whereDn denotes the set of multidegrees (d1, . . . , dk)

such that d1 . . . dk ≤ n. But GAd is an irreducible algebraic variety (see [F]).
As a result, by admitting the above conjecture, the irreducible components
of GA≤n would precisely be the GAd where d is any maximal element of Dn

for �.
This statement is another formulation of the conjecture we gave in [F]

on page 620. It asserts that the irreducible components of GA≤n are the
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GAd where d is any maximal element of Dn for the order ≤ induced by the
relations :

(i) ∀d ∈ D, ∅ ≤ d ;
(ii) If d = (d1, . . . , dk), e = (e1, . . . , ek) ∈ D and if ∀j, dj ≤ ej , then

d ≤ e ;
(iii)’ If d = (d1, . . . , dk) ∈ D and if 1 ≤ j ≤ k, then d̂ ≤ d, where we

set d̂ := (d1, . . . , dj−1, dj+1, . . . , dk).
Indeed, it is easily checked that the maximal elements of Dn for � and

≤ coincide.

c. The length of an automorphism.

If the multidegree of f ∈ GA is (d1, . . . , dk), we will say that its length is
k and write l(f) = k. It is clear that the length of f is the minimal number of
triangular automorphisms we need to write f as a composition of affine and
triangular automorphisms. Let us denote by GA≤k the set of automorphisms
whose length is less than or equal to k. The aim of this paper is to show the
following result (which is a particular case of the above conjecture) :

Theorem 1. If the characteristic of K is zero and if k ≥ 0 is an integer,
then GA≤k is closed in GA. Equivalently, the map l : GA → Z is lower
semicontinuous.

Remark. This is equivalent to saying that the map l : GA≤n → Z is lower
semicontinuous for each n ≥ 0. If K = C, this implies that this map is lower
semicontinuous when GA≤n is endowed with the transcendental topology.
The above example, based on Nagata automorphism, helps to understand
why this statement is not completely obvious (at least for us). The point is
that the reduced expression of NZ when Z 6= 0 does not pass to the limit
when Z goes to 0.

d. The length of a variable.

Let us set P := K[X,Y ].
We have P =

⋃
n

P≤n where P≤n := {P ∈ P, deg P ≤ n}. This endows

P with the structure of an infinite-dimensional algebraic variety.
Let P be an element of P. We say that P is a variable if P is the com-

ponent of an automorphism of A2. In this case, let us recall thatK[X,Y ]/(P )
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is K-isomorphic to K[T ] where T is an indeterminate. Therefore, P is an
irreducible element of K[X,Y ].

Let us denote by V the set of variables (of P). If p1 : End → P is the
first projection (defined by p1(P,Q) = P ), then V = p1(GA).

If k ≥ 0 is an integer, we set V≤k := p1(GA≤k). In other words, an element
of P belongs to V≤k if and only if it is the component of an automorphism
f of A2 satisfying l(f) ≤ k.

Finally, if P is a variable, we set l(P ) := min{k, P ∈ V≤k}.
By introducing in section 2 the multidegree of a variable, we will show

the following elementary but fundamental result :

Theorem 2. If f = (f1, f2) ∈ GA, then l(f) = max(l(f1), l(f2)).

Since l : GA → Z is equal to max(l◦p1, l◦p2) where p1 (resp. p2) : GA →
V is the first (resp. second) projection and since the supremum of any set
of lower semicontinuous maps is lower semicontinuous, Theorem 1 will be a
consequence of Theorem 2 and of the following result :

Theorem 3. We assume that the characteristic of K is zero. If k ≥ 0, then
V≤k is closed in V. Equivalently, the map l : V → Z is lower semicontinuous.

We shall prove this result in section 3.

2. The multidegree of a variable.

a. Preliminary remarks.

The next result, which is well known in characteristic zero, holds in any
characteristic :

Lemma 1. Let γ = (γ1, γ2) ∈ GA. If γ2 = Y , then γ ∈ BA.

Proof. Since γ1 ∈ K[X,Y ], there exists a unique polynomial P (Y ) ∈ K[Y ]
such that γ1 − P (Y ) is divisible by X. But (γ1 − P (Y ), Y ) ∈ GA, hence
γ1 − P (Y ) is a variable, hence γ1 − P (Y ) is irreducible, hence there exists
a ∈ K∗ such that γ1 − P (Y ) = aX. �

Definition 1. Let ∼ be the equivalence relation defined on V by P1 ∼ P2 if
there exist a in K∗ and b in K such that P1 = aP2 + b.
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If P ∈ V, let us denote by P its equivalence class (for ∼).
Also, let us denote by V the set of equivalence classes (for ∼) of V.

Remark. If P1 = P2, then deg P1 = deg P2. Furthermore, if Q1 = Q2, then
(P1, Q1) ∈ GA if and only if (P2, Q2) ∈ GA. Thus, we can define the relation
� on V in the following manner :

Definition 2. We set P � Q if and only if deg P > deg Q and (P,Q) ∈ GA.
If P � Q, we will say that Q is a predecessor of P .

Lemma 2. If P ∈ V and if deg P ≥ 2, then P admits a unique predecessor.

Proof. Existence. By hypothesis, there exists R ∈ V such that f := (R,P )
is an element of GA. By [K], there exists S(Y ) ∈ K[Y ] such that if we set
γ := (X + S(Y ), Y ) ∈ BA and if we denote by Q the first component of the
automorphism (R+ S(P ), P ) = γ.f , then deg Q < deg P . Therefore, Q is a
predecessor of P .
Unicity. Let Q1, Q2 ∈ V be such that P � Q1 and P � Q2. We want to show
that Q1 = Q2.

Let γ = (γ1, γ2) ∈ GA be such that (Q2, P ) = γ.(Q1, P ). We have γ2 = Y
so that γ ∈ BA by Lemma 1. Hence, there exist a ∈ K∗ and R(Y ) ∈ K[Y ]
such that γ1 = aX +R(Y ), whence Q2 = aQ1 +R(P ).

Hence deg(Q2 − aQ1) is divisible by deg P .
But, by hypothesis, deg(Q2 − aQ1) < deg P , so that Q2 − aQ1 ∈ K. �

b. Composition sequence and multidegree of a variable.

Definition 3. Let P be a variable. We say that (P0, P1, . . . , Pk) is a compo-
sition sequence of P if P0 = P , deg Pk = 1 and if P0 � P1 � . . . � Pk.

By Lemma 2, we see that any variable admits a composition sequence
and that such a sequence is unique modulo the equivalence relation ∼.

Definition 4. Let P be a variable and let (P0, . . . , Pk) be a composition
sequence of P . We define the multidegree of P by

d(P ) :=
(deg P0

deg P1
,
deg P1

deg P2
, . . . ,

deg Pk−1

deg Pk

)
and the altitude of P by a(P ) := k.
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Remark. The condition Pj � Pj+1 shows that
deg Pj

deg Pj+1
is actually an integer

greater than or equal to 2.

The following statement relates the multidegree of a variable and the
multidegree of an automorphism :

Lemma 3. Let P be a variable and let (P0, . . . , Pk) be a composition se-
quence of P . If k ≥ 1, then the multidegree of the automorphism (P0, P1) is
equal to the multidegree of the variable P = P0.

Proof. Let us set σ := (Y,X) ∈ Af . If 0 ≤ j ≤ k− 2, let γj+1 ∈ GA be such
that (Pj , Pj+1) = γj+1.σ.(Pj+1, Pj+2). Also, let α ∈ Af be such that its last
coordinate is Pk (it is possible because deg Pk = 1) and let γk ∈ GA be such
that (Pk−1, Pk) = γk.α.

It is easy to see that each γj admits Y as its last coordinate, so that

γj ∈ BA. Furthermore, we observe that deg γj =
deg Pj−1

deg Pj
≥ 2.

By noting that σ ∈ Af \ BA and that each γj ∈ BA \ Af , we conclude
that the following expression is reduced (P0, P1) = γ1.σ.γ2.σ. . . . .σ.γk.α.

Therefore, d(P0, P1) = d(P0) = (deg γ1, . . . , deg γk). �

c. Proof of Theorem 2.

Lemma 4. Let f = (f1, f2) ∈ GA.
(i) If deg f1 > deg f2, then l(f) = a(f1) = a(f2) + 1 ;
(ii) If deg f1 = deg f2, then l(f) = a(f1) = a(f2).

Proof. The statement (i) is a direct consequence of Lemma 3, since in that
case we can complete the sequence (f1, f2) in order to obtain a composition
sequence of f1.

Let us assume that deg f1 = deg f2. If deg f = 1, we have clearly l(f) =
a(f1) = a(f2) = 0.

Otherwise, there exists λ ∈ K such that
deg(f2 − λf1) = deg(f1 − λ−1f2) < deg f

and the statement (ii) follows from the statement (i) by noting that the
automorphisms (f1, f2), (f1, f2−λf1) and (f2, f1−λ−1f2) all have the same
length. �

Corollary. If P is a variable, then l(P ) = a(P ).
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Proof. Let (P0, . . . , Pk) be a composition sequence of P .
If k = 0, we clearly have l(P ) = a(P ) = 0.
If k ≥ 1, then (P0, P1) is an automorphism whose length is k by Lemma

3. By Lemma 4, any automorphism of the shape (P0, Q) has a length greater
than or equal to k, so that l(P ) = a(P ) = k. �

In view of this Corollary and of Lemma 4, Theorem 2 is now obvious.
We end this section by a result which will be used in section 3. Its proof

is obvious and is left to the reader.

Lemma 5. If P ∈ V≤k+1, then there exists Q ∈ V≤k such that (P,Q) ∈ GA
and deg Q ≤ deg P .

3. Computation of the closure of V≤k in P.

In this section, we assume that the characteristic ofK is zero. The closure
of V≤k in P = K[X,Y ] will be denoted by V≤k.

a. Description of V≤k.

Define Wk ⊂ P by
Wk := {P ∈ P, ∃(Q,R) ∈ K[T ]× V≤k−1, P = Q(R)}

for k ≥ 1 and by W0 := K for k = 0.

Theorem 4. If k ≥ 0, then V≤k = V≤k ∪Wk.

Let us first show that this result implies Theorem 3. In fact we will only
use the inclusion V≤k ⊂ V≤k ∪Wk to prove that V≤k is closed in V.
The closure of V≤k in V is equal to V ∩V≤k so that Theorem 3 is equivalent
to the inclusion V ∩Wk ⊂ V≤k. Let us prove it.

This is obvious if k = 0, because V ∩W0 = ∅.
If k ≥ 1, it is sufficient to show that V ∩Wk ⊂ V≤k−1.
Let P ∈ V∩Wk. There exists (Q,R) ∈ K[T ]×V≤k−1 such that P = Q(R).

By writing Q(T ) = TQ1(T ) + b where Q1(T ) ∈ K[T ] and b ∈ K, we obtain
P − b = RQ1(R). However, P is a variable, so that P − b is also a variable,
so that P − b is irreducible, so that Q1(R) ∈ K∗. If we set a := Q1(R), then
we have P = aR+ b and we are done.

To prove Theorem 4, we will successively show that Wk ⊂ V≤k (subsec-
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tion b) and that V≤k ∪Wk is closed in P (subsection c).

b. Proof of the inclusion Wk ⊂ V≤k.

First case. k = 0.
Let a ∈ K. We define h : A1 → P by h(ε) := εX + a. If ε 6= 0, we have

h(ε) ∈ V≤0, so that h(0) = a ∈ V≤0.

Second case. k ≥ 1.
Assume that (Q,R) ∈ K[T ]× V≤k−1.
There exists S ∈ V such that (R,S) ∈ GA.
We define h : A1 → P by h(ε) := εS + Q(R). If ε 6= 0, we have

(R, εS + Q(R)) ∈ GA and R ∈ V≤k−1, so that h(ε) ∈ V≤k by Lemma 4.
Hence h(0) = Q(R) ∈ V≤k.

c. Proof of the closed nature of V≤k ∪Wk.

First step : preliminary reduction.
Let Π := {P ∈ P, P (0, 0) = 0}. As a subset of P, Π is endowed with the

induced topology. Let us set Π≤n := {P ∈ Π, deg P ≤ n} = P≤n ∩ Π. The
subset Z ⊂ Π is closed if and only if Z ∩Π≤n ⊂ Π≤n is closed for each n.

Since the sets V≤k and Wk are invariant by any translation P 7→ P + c
where c ∈ K, it is sufficient to show that V ≤k ∪Wk is closed in Π, where we
set V ≤k := V≤k ∩Π and Wk :=Wk ∩Π.

Second step : reduction to a projective problem.
Let us denote by P the set of lines of the K-vector space Π.

If P≤n denotes the set of lines of Π≤n, then the equality P =
⋃
n

P≤n endows

P with the structure of an infinite-dimensional algebraic variety.
By definition, C ⊂ Π is called a cone if 0 ∈ C and if ∀ λ ∈ K, ∀ u ∈

C, λu ∈ C.
Let us recall that there exists a natural correspondence between the cones

of Π and the subsets of P. Furthermore, a cone of Π is closed if and only if
the corresponding subset of P is closed. Let us denote by Fk ⊂ P the subset
corresponding to the cone (V ≤k ∪ Wk) ⊂ Π. We just want to show that
Fk ⊂ P is closed.

We argue by induction on k.
For k = 0, this is clear, because V ≤0 ∪W0 = Π≤1, so that F1 = P≤1. Before
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proving the induction step, let us introduce the Jacobian variety.

Third step : the Jacobian variety.
If (P,Q) ∈ End, its Jacobian is [P,Q] := ∂P

∂X
∂Q
∂Y −

∂P
∂Y

∂Q
∂X . Furthermore,

the kernel of the derivation D := X ∂
∂X +Y ∂

∂Y of K[X,Y ] is equal to K, since
the characteristic is zero. Therefore, if we set < P,Q >:= D([P,Q]), which
is the same as < P,Q >:= [DP,Q] + [P,DQ]− 2[P,Q], then < P,Q >= 0 if
and only if [P,Q] belongs to K.

Finally, the map Π × Π → K[X,Y ] which sends (P,Q) to < P,Q >
is bilinear. As a result, the equality < P,Q >= 0 defines a closed subset
J ⊂ P× P which we will call the Jacobian variety.

Here, we endow P× P with the structure of an infinite-dimensional alge-
braic variety thanks to the equality P× P =

⋃
n

(P≤n × P≤n).

Fourth step : the induction.
We assume that Fk ⊂ P is closed and we want to show that Fk+1 ⊂ P is

closed. We will denote by p1 (resp. p2): P × P → P the first (resp. second)
projection. The main idea is to establish that Fk+1 = p1

(
J ∩ p−12 (Fk)

)
.

Remarks. 1. Unfortunately, this last equality is not sufficient to prove that
Fk+1 ⊂ P is closed. Indeed, by the fundamental theorem of elimination
theory, for each n ≥ 0 the map p1 : P≤n × P≤n → P≤n is closed, but
the map p1 : P× P→ P is no longer closed.

To see this, consider a sequence (xn)n≥1 of distinct points of P≤1 ⊂ P the
union of which is not P≤1 and a sequence (yn)n≥1 of points of P such that yn
belongs to P≤n+1 \ P≤n for each n. Then, the union Z ⊂ P× P of the points
(xn, yn) ∈ P × P is a closed subset, while p1(Z) ⊂ P is not closed (because
p1(Z) is an infinite subset of the projective line P≤1 which is not P≤1).

2. However, it is clear that if Z ⊂ P× P is closed and such that p1(Z) ∩
P≤n = p1 (Z ∩ (P≤n × P≤n)) for each n, then p1(Z) ⊂ P is closed.

Let us observe that
(
J ∩ p−12 (Fk)

)
⊂ P×P is closed. Therefore the conclu-

sion will follow from our last statement :

Lemma 6. If k ≥ 0 is an integer and if Zk :=
(
J ∩ p−12 (Fk)

)
⊂ P× P, then

Fk+1 = p1(Zk). Moreover Fk+1 ∩ P≤n = p1(Zk ∩ (P≤n × P≤n)) for all n ≥ 1.

Proof. We begin by showing that p1(Zk) ⊂ Fk+1. This amounts to proving
that if P ∈ Π is such that there exists a nonzero element Q of V ≤k ∪Wk
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satisfying < P,Q >= 0, then P belongs to V ≤k+1 ∪Wk+1.
First case. Q ∈ V ≤k

First subcase. [P,Q] ∈ K∗.
Since Q is a variable, the condition [P,Q] ∈ K∗ is well known to imply that
(P,Q) is an automorphism (since the characteristic is zero). We also have
Q ∈ V ≤k, so that P ∈ V ≤k+1 by Lemma 4.

Second subcase. [P,Q] = 0.
By [No], this implies that there exist R,S ∈ K[T ] and L ∈ K[X,Y ] such
that P = R(L) and Q = S(L) (here, we use again the zero characteristic).
Since Q is a variable, we saw in subsection 3.a that the equality Q = S(L)
implies that there exist a ∈ K∗ and b ∈ K such that Q = aL+ b. Therefore,
P can be expressed as a polynomial in Q. This shows that P ∈Wk+1.

Second case. Q ∈Wk.
Because Q is nonzero, we necessarily have k ≥ 1. By the definition of Wk,
there exist R ∈ K[T ] and S in V≤k−1 such that Q = R(S). We can suppose
without restriction that S belongs to V ≤k−1 and because Q is nonzero, R is
also nonzero.

The equality < P,Q >= 0 means that [P,Q] ∈ K, which can be written
[P,R(S)] = [P, S]R′(S) ∈ K, which implies that [P, S] ∈ K, which implies
that < P,S >= 0. This takes us back to the first case.

Now, we must show that Fk+1∩P≤n ⊂ p1(Zk∩(P≤n×P≤n)) for all n ≥ 1.
Equivalently, we must prove that if P is a nonzero element of V ≤k+1∪Wk+1,
then there exists a nonzero element Q of V ≤k ∪Wk satisfying < P,Q >= 0
and deg Q ≤ deg P .

First case. P ∈ V ≤k+1.
By Lemma 5, there exists Q ∈ V≤k such that (P,Q) ∈ GA and deg Q ≤
deg P . Using a translation, there is no restriction to assume that Q ∈ V ≤k.
Moreover, it is well known that the condition (P,Q) ∈ GA implies the condi-
tion [P,Q] ∈ K∗ (the converse being the Jacobian Conjecture), so that
< P,Q >= 0.

Second case. P ∈Wk+1.
There exist R in K[T ] and Q in V ≤k such that P = R(Q). We clearly have
deg Q ≤ deg P and [P,Q] = [R(Q), Q] = R′(Q)[Q,Q] = 0. �

Remark. Thanks to the description of V≤k, one may easily show that the
closure of V in P is equal to V ∪W where we set

W := {P ∈ P, ∃(Q,R) ∈ K[T ]× V, P = Q(R)}.
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