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Abstract : The main subject of our study is GA2,n, the variety of automor-
phisms of the affine plane of degree bounded by a positive integer n. After
precising some definitions and notations in section 1, we give in section 2 an
algorithm to decide whether an endomorphism of the affine plane over an
integral domain is a tame automorphism. Then, by applying this algorithm
to the Nagata automorphism, we recover easily the known results on it. In
section 6, we compute the number of irreducible components of GA2,n when
n ≤ 9 and we show that GA2,n is reducible when n ≥ 4. Our proofs are
based on a precise decomposition theorem for automorphisms given in sec-
tion 3 and a characterization of length one automorphisms given in section
5. Finally, in section 7, we give some details on the case n = 4.

1. Definitions and notations.

Let k be an integral domain. k[X,Y ] is the polynomial algebra in
the indeterminates X,Y (endowed with the degree function and the val-
uation function at the origin, which are denoted by deg and val) and A2

k =
Spec k[X,Y ] is the affine plane over k. A k-endomorphism f of A2

k will be
identified with its sequence f = (f1, f2) of coordinate functions fi ∈ k[X,Y ]
(i = 1, 2). If g is a k-endomorphism of A2

k, we agree that fg will denote the
k-endomorphism of A2

k obtained by the composition of f and g.
We define :

the degree of f by deg f = max {deg f1, deg f2} ;
the bidegree of f by bideg (f) = (deg f1, deg f2) ;
the total degree of f by tdeg (f) = deg f1 + deg f2 ;
the Jacobian of f by Jac(f) = ∂f1

∂X
∂f2
∂Y −

∂f1
∂Y

∂f2
∂X

and we introduce the following groups :
GA2(k), the group of all k-automorphisms of A2

k ;
Af2(k), the subgroup of GA2(k) of affine automorphisms, i.e. automor-

phisms of the shape (aX + bY + c, dX + eY + f) where a, b, c, d, e, f are
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elements of k satisfying ae− bd ∈ k∗ ;
GL2(k), the subgroup of Af2(k) of linear automorphisms ;
BA2(k), the subgroup of GA2(k) of triangular or “de Jonquières” auto-

morphisms, i.e. automorphisms of the shape (aX+P (Y ), bY + c) where a, b
are units of k, c is an element of k and P (Y ) is an element of k[Y ] ;

TA2(k), the subgroup of GA2(k) of tame automorphisms, i.e. the sub-
group of GA2(k) generated by Af2(k) and BA2(k).

2. An algorithm to decide whether an endomorphism is a tame
automorphism.

The following proposition is the key of the announced algorithm : if
f ∈ TA2(k) satisfies tdeg f ≥ 3, it ensures the existence of α ∈ GA2(k) of
a very special shape such that tdeg (α−1f) < tdeg f .

Proposition 1. Let f = (f1, f2) ∈ TA2(k) with bideg(f) = (d1, d2). Denote
by gi the homogeneous component of degree di of fi for i = 1, 2. Then
d1|d2 or d2|d1. If we suppose moreover that deg (f) > 1, then we have :

i) if d1 < d2, then there exists λ ∈ k such that g2 = λ.g
d2/d1
1 ;

ii) if d2 < d1, then there exists λ ∈ k such that g1 = λ.g
d1/d2
2 ;

iii) if d1 = d2, then there exists (α, h) ∈ Af2(k)× TA2(k) such that f =
αh and deg h1 >deg h2 where h = (h1, h2).

Remarks.
1. Let us assume that deg (f) > 1. We set α = (X,Y +λXd2/d1) in case

i), α = (X + λY d1/d2 , Y ) in case ii) and if we are in case iii), we keep α as
explained there. Then, it is clear that we have tdeg (α−1f) < tdeg f .

2. If d1 = d2, in general, there does not exist λ ∈ k such that g2 = λ.g1
or g1 = λ.g2, as shown by the following example :

f =
(
(1− Z)X + ZY + (1− Z)Y 2,−ZX + (1 + Z)Y − ZY 2)

It can be checked that f = αγ where α =
(
(1−Z)X +ZY,−ZX + (1 +

Z)Y
)
∈ Af2(C[Z]) and γ ∈ (X+Y 2, Y ) ∈ BA2(C[Z]) so that f ∈ TA2(C[Z]).

However, bideg f = (2, 2), the homogeneous component of degree 2 of f is(
(1 − Z)Y 2,−ZY 2

)
and there exists no λ ∈ C[Z] such that (1 − Z)Y 2 =

λ.(−ZY 2) or −ZY 2 = λ.(1− Z)Y 2.
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3. Nevertheless, still in the case d1 = d2, if k = C and deg f > 1, the
equality Jac f ∈ C∗ implies that Jac(g1, g2) = 0 which is well known to
imply that g1 and g2 are proportional polynomials.

The following group-theoretical lemma will be used in the proof of Propo-
sition 1.

Lemma 1. If a group G is generated by two subgroups H and K, then each
element g of G can be written

g = h1.k1.h2.k2. · · · .hl.kl.hl+1

where l is a non negative integer, the hi (resp. ki) are elements of H (resp.
K) satisfying the additional condition (∀ 2 ≤ i ≤ l, hi /∈ K and ∀ 1 ≤ i ≤
l, ki /∈ H).

Proof. If g is an element of G, we have

g = h1.k1.h2.k2. · · · .hl.kl.hl+1

where l is a non negative integer and the hi (resp. ki) are elements ofH (resp.
K). If the additional condition (∀ 2 ≤ i ≤ l, hi /∈ K and ∀ 1 ≤ i ≤ l, ki /∈ H)
is not satisfied, then we can obtain an expression for g of the same shape
but where l is replaced by l−1. Indeed, if for example, hi0 ∈ K (2 ≤ i0 ≤ l),
then we have

g = h1.k1.h2.k2. · · ·hi0−1.(ki0−1.hi0 .ki0).hi0+1. · · · .hl.kl.hl+1

where ki0−1.hi0 .ki0 ∈ K. After a finite number of such reductions, we will
necessarily obtain the desired expression for g. 2

Proof of Proposition 1. By Lemma 1 applied with G = TA2(k), H =
Af2(k), K = BA2(k) and g = f , we obtain the existence of a non-negative

integer l and of (α, β) ∈
(
Af2(k)

)2
, (αi)1≤i≤l−1 ∈

(
Af2(k) \ BA2(k)

)l−1
,

(γi)1≤i≤l ∈
(
BA2(k) \Af2(k)

)l
such that

f = αγ1α1γ2 · · ·αl−2γl−1αl−1γlβ.

We show by a decreasing induction on i, beginning with i = l and finishing
with i = 1 that

bideg(γiαi · · · γl−1αl−1γlβ) = (
l∏

j=i

deg γj ,
l∏

j=i+1

deg γj).
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The conclusion is clear for i = l. Let us suppose it is true for a given i
with 2 ≤ i ≤ l. Let us write αi−1 = (ai−1X+ bi−1Y + ci−1, di−1X+ ei−1Y +
fi−1). The relations αi−1 /∈ BA2(k) and γi−1 /∈ Af2(k) imply that di−1 6= 0
and deg(γi−1) ≥ 2. We now obtain bideg (αi−1γiαi · · · γl−1αl−1γlβ) =
(pi,

∏l
j=i deg γj) with pi ≤

∏l
j=i deg γj and bideg (γi−1αi−1 · · · γl−1αl−1γlβ) =

(
∏l

j=i−1 deg γj ,
∏l

j=i deg γj).
It is now proven that

bideg(γ1α1 · · · γl−1αl−1γlβ) = (
l∏

j=1

deg γj ,
l∏

j=2

deg γj).

Let us write α = (aX+ bY + c, dX+ eY + f). To conclude, we just have
to check that we are in case i) or ii) or iii) according as a = 0 or d = 0 or
ad 6= 0. 2

We deduce at once from this last proposition an algorithm to decide if a
k-endomorphism of A2

k belongs to TA2(k) :

Algorithm :

1. Enter a k-endomorphism f of A2
k

2. Let (d1, d2) = bideg(f1, f2)
3. If d1 = d2 = 1, then goto 8
4. If d1 6= d2, then goto 6
5. If there exists α ∈ Af2(k) such that tdeg(αf) < tdeg (f), then replace f
by αf and goto 2, else STOP : f /∈ TA2(k)
6. If d2 < d1, then replace f = (f1, f2) by (f2, f1).

7. If (d1|d2 and there exists λ ∈ k such that g2 = λg
d2/d1
1 ), then replace f

by (X,Y − λXd2/d1)f and goto 2, else STOP : f /∈ TA2(k)
8. If Jac(f) ∈ k∗, then STOP : f ∈ TA2(k), else STOP : f /∈ TA2(k).

Application :

Let us consider the Nagata automorphism

φ =
(
X − 2Y (XZ + Y 2)− Z(XZ + Y 2)2, Y + Z(XZ + Y 2)

)
∈ GA2(k)

for k = C[Z] and k = C[Z,Z−1].
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By expanding φ, we get

φ = (X − 2ZXY − Z3X2 − 2Y 3 − 2Z2XY 2 − ZY 4, Y + Z2X + ZY 2)

so that the homogeneous components of highest degree of φ are −ZY 4 and
ZY 2.

1) If k = C[Z], (ZY 2)2 does not divide −ZY 4 and so φ /∈ TA2(C[Z]).
2) If k = C[Z,Z−1], the equation −ZY 4 = −Z−1(ZY 2)2 allows us to

obtain :

φ = (X − Z−1Y 2, Y )(X + Z−1Y 2, Y + Z2X + ZY 2)

and we easily see that :

(X + Z−1Y 2, Y + Z2X + ZY 2) = (X,Y + Z2X)(X + Z−1Y 2, Y )

whence φ = (X − Z−1Y 2, Y )(X,Y + Z2X)(X + Z−1Y 2, Y )
and φ ∈ TA2(C[Z,Z−1]).

3. A precise decomposition theorem for automorphisms of the
affine plane.

From now on, we set k = C and we agree to note GA2 instead of GA2(C),
Af2 instead of Af2(C), etc . . .

Let us recall that by a famous result of H.W.E. Jung and W. van der
Kulk ([vdK]), we have GA2=TA2.

We give here a precise decomposition theorem for elements of GA2 : any
such element has a unique expression of a given shape (see Theorem 1). This
result allows us (see section 6, Proposition 10) to compute the dimension of
the algebraic variety GA2,n.

Before stating the theorem, we need the following definitions :
T2 is the subgroup of GA2 of automorphisms of the shape (X+P (Y ), Y )

where P (Y ) is an element of C[Y ] satisfying val(P ) ≥ 1 ;
UA2 is the subgroup of T2 of elements of the shape (X+P (Y ), Y ) where

P (Y ) is any element of C[Y ] satisfying val(P ) ≥ 2 ;
for all (a, b) ∈ C2, we set τ(a,b) = (X+a, Y + b) ∈ GA2 and for all c ∈ C,

we set σc = (Y,X + cY ) ∈ GA2. We note σ = σ0 = (Y,X).
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Theorem 1. (Precise Decomposition Theorem) Let f = (f1, f2) ∈
GA2 \Af2, then :

i) if deg(f1) > deg(f2),

∃! (a, b) ∈ C2, ∃! l ∈ N,∃! (γi)1≤i≤l ∈
(
T2\GL2

)l−1×(UA2\GL2
)
,∃! β ∈ GL2

such that f = τ(a,b) ◦ γ1 ◦ σ ◦ γ2 ◦ σ ◦ · · · ◦ σ ◦ γl−1 ◦ σ ◦ γl ◦ β.
ii) if deg(f1) ≤ deg(f2),

∃! (a, b, c) ∈ C3, ∃! l ∈ N, ∃! (γi)1≤i≤l ∈
(
T2\GL2

)l−1×(UA2\GL2
)
,∃! β ∈ GL2

such that f = τ(a,b) ◦ σc ◦ γ1 ◦ σ ◦ γ2 ◦ σ ◦ · · · ◦ σ ◦ γl−1 ◦ σ ◦ γl ◦ β.

To prove this theorem, we will use the following three decomposition
lemmas :

Lemma 2. Let f = (f1, f2) ∈ GA2 satisfy deg(f1) > deg(f2) > 1, then
∃! (γ, p) ∈

(
T2 \GL2

)
× GA2 such that f = γ ◦ p and p = (p1, p2) satisfies

deg(p1) < deg(p2) = deg(f2).

Proof. Existence : We begin by proving that for each automorphism f =
(f1, f2) ∈ GA2 satisfying deg(f1) ≥ deg(f2) > 1 there exists (γ, p) ∈ T2 ×
GA2 such that f = γ ◦ p and p = (p1, p2) satisfies deg(p1) < deg(f1).

Let gi denotes the homogeneous component of degree deg fi of fi. From
Proposition 1 and Remark 3 following it, we deduce that d2|d1 and that

there exists λ ∈ C such that g1 = λ.g
d1
d2
2 . We can now just write f =

(X + λY
d1
d2 , Y ) ◦ p where p ∈ GA2 and it is easy to check that p = (p1, p2)

satisfies deg(p1) < deg(f1).
From this fact, we deduce by an immediate induction on deg f1 that for

each automorphism f = (f1, f2) ∈ GA2 satisfying deg(f1) ≥ deg(f2) > 1,
there exists (γ, p) ∈ T2 × GA2 such that f = γ ◦ p and p = (p1, p2) satisfies
deg(p1) < deg(p2) = deg f2. It terminates the proof of the existence.

Unicity : Let γ, δ, p, q ∈ GA2. We suppose that γ = (X +R(Y ), Y ), δ =
(X + S(Y ), Y ) where R(Y ) and S(Y ) are elements of C[Y ] such that
val (R) ≥ 1 and val (S) ≥ 1. We also suppose that p = (p1, p2) and
q = (q1, q2) satisfy deg p1 < deg p2 and deg q1 < deg q2. Then, the equality
γ ◦ p = δ ◦ q implies that

(
p1 + R(p2), p2

)
=
(
q1 + S(q2), q2

)
from which we

deduce firstly that p2 = q2 and secondly that p1−q1 = S(p2)−R(p2). In the
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last equality, the left hand term is of degree strictly less than deg p2 which
implies that S −R = 0 and finally γ = δ and p = q. 2

Lemma 3. Let f = (f1, f2) ∈ GA2 satisfy f(0, 0) = (0, 0) and deg(f1) >
deg(f2) = 1, then ∃! (γ, β) ∈

(
UA2 \GL2

)
×GL2 such that f = γ ◦ β.

Proof. Existence : Let f = (f1, f2) ∈ GA2 satisfy f(0, 0) = (0, 0) and
deg(f1) > deg(f2) = 1. We define β as the linear part of f . Then, if
β = (β1, β2), we have C[β1, β2] = C[X,Y ] and so f writes down in the
following shape f = (β1 +g1(β1, β2), β2) where g1 ∈ C[X,Y ] and val(g1)≥ 2.
Let us set γ = (X + g1, Y ). On the one hand, we have f = γ ◦ β and on the
other hand, γ being an automorphism, we have necessarily g1 ∈ C[Y ] and
finally γ ∈ UA2 \GL2.

Unicity : If f = γ◦β where (γ, β) ∈
(
UA2\GL2

)
×GL2, then β is necessarily

equal to the linear part of f and this gives us the uniqueness. 2

Lemma 4. Let f = (f1, f2) ∈ GA2 satisfy f(0, 0) = (0, 0) and deg(f1) >
deg(f2), then

∃! l ∈ N∗, ∃! (γi)1≤i≤l ∈
(
T2 \GL2

)l−1 × (UA2 \GL2
)
,∃! β ∈ GL2

such that f = γ1 ◦ σ ◦ γ2 ◦ σ ◦ · · · ◦ σ ◦ γl−1 ◦ σ ◦ γl ◦ β.

Proof. Existence : we show it by induction on deg(f2). If deg(f2) = 1, we
are done by Lemma 3.

If deg(f2) > 1, by Lemma 2, f can be writen f = γ ◦σ ◦ f̃ where (γ, f̃) ∈(
T2 \GL2

)
× GA2 and f̃ = (f̃1, f̃2) with deg(f̃2) < deg(f̃1) = deg(f2). The

equality f(0, 0) = (0, 0) implies the equality f̃(0, 0) = (0, 0). We have the
result by applying the induction hypothesis to f̃ .

Uniqueness : it comes from the uniqueness in Lemmas 2 and 3 by noting

that if l ≥ 2, (γi)1≤i≤l ∈
(
T2 \ GL2

)l−1 × (UA2 \ GL2
)

and β ∈ GL2, then
the automorphism p = (p1, p2) = σ ◦ γ2 ◦ σ ◦ · · · ◦ σ ◦ γl−1 ◦ σ ◦ γl ◦ β satisfies
deg p1 < deg p2. 2

Proof of Theorem 1. Let f ∈ GA2 \Af2. First of all, whether we are in
case i) or ii), it is clear that we must have (a, b) = f(0, 0). Conversely, if we
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set (a, b) = f(0, 0), then the automorphism f̃ = (f̃1, f̃2) = τ−1(a,b) ◦ f satisfies

f̃(0, 0) = (0, 0). If deg(f̃1) > deg(f̃2), we obtain the result by Lemma 4
applyed to f̃ . If deg(f̃1) ≤ deg(f̃2), there exists a unique c ∈ C such that
f̂ = (f̂1, f̂2) = σ−c ◦ f̃ satisfies deg f̂1 > deg f̂2. We again apply Lemma 4
to f̂ to obtain the result. 2

4. On the multidegree of an automorphism of the affine plane.

We introduce here the definition of the multidegree of an automorphism
of the affine plane and give a few basic properties of it. The multidegree of
an automorphism is an element of D.

Definitions. D denotes the set of all finite sequences of integers greater
than or equal to 2 and D∗ denotes the set D with the vacuum sequence
omitted.

We define the following partial order ≤ on D :
if d = (d1, ..., dl) ∈ D and if e = (e1, ..., em) ∈ D, then we say that d ≤ e
if l ≤ m and if there exist 1 ≤ i1 < i2 < · · · < il ≤ m such that ∀ j ∈
{1, . . . , l}, dj ≤ eij . Also, we will denote the concatenation of d and e by
de = (d1, ..., dl, e1, ..., em).
We set :

l(d) = l ;
|d| = d1 + d2 + ...+ dl ;
deg(d) = d1 × d2 × ...× dl ;
d−1 = (dl, . . . , d1).

Let us set B2 = Af2 ∩ BA2. W. van der Kulk proved that GA2 is
the amalgamated product of Af2 and BA2 over B2. The following theorem
expresses this result :

Theorem (vdK). Let f ∈ GA2, then there exists l ∈ N, there exist
(αi)1≤i≤l+1 ∈ (Af2)

l+1, there exist (γi)1≤i≤l ∈ (BA2)
l such that

f = α1γ1α2γ2 · · ·αlγlαl+1

∀ i ∈ {1, . . . , l}, γi /∈ Af2
∀ i ∈ {2, . . . , l}, αi /∈ BA2
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Moreover, if m ∈ N, (α′i)1≤i≤m+1 ∈ (Af2)
m+1 and (γ′i)1≤i≤m ∈ (BA2)

m

are such that 
f = α′1γ

′
1α
′
2γ
′
2 · · ·α′mγ′mα′m+1

∀ i ∈ {1, . . . ,m}, γ′i /∈ Af2
∀ i ∈ {2, . . . ,m}, α′i /∈ BA2

then l = m and there exist (βi)1≤i≤l ∈ (B2)
l and (δi)1≤i≤l ∈ (B2)

l such that
α′1 = α1β

−1
1

∀ i ∈ {2, . . . , l}, α′i = δi−1αiβ
−1
i

α′l+1 = δlαl+1

and ∀ i ∈ {1, . . . , l}, γ′i = βiγiδ
−1
i .

Remarks.
1. If (α′i)1≤i≤l+1 ∈ (Af2)

l+1 and (γ′i)1≤i≤l ∈ (BA2)
l satisfy the latter

relations, we easily check that

α′1γ
′
1α
′
2γ
′
2 · · ·α′lγ′lα′l+1 = α1β

−1
1 β1γ1δ

−1
1 δ1α2β

−1
2 β2γ2δ

−1
2 δ2 · · ·

· · · δl−1αlβ
−1
l βlγlδ

−1
l δlαl+1

= α1γ1α2γ2 · · ·αlγlαl+1

2. If γ ∈ BA2, then γ ∈ B2 if and only if deg γ = 1. Furthermore, for
all β, β′ in Af2, we have deg (βγβ′) = deg γ.

Thanks to the Theorem of W. van der Kulk and to the point 2 of the
Remarks, we can define the multidegree d(f) of f and the length l(f) of f .

Definition. d(f) = (deg γ1, . . . , deg γl) ∈ D ; l(f) = l
(
d(f)

)
.

Remark. The definition of the length l(f) of f that we use in this paper is
different from the usual one which is equal to the length of f as an element
of the amalgamated product Af2 ∗B2

BA2.

Proposition 2. We have deg f = deg (d(f)).

Proof. Let us write f = α1γ1α2γ2 · · ·αlγlαl+1 as in the last Theorem.
By exactly the same way as in Proposition 1, we would show by a de-

creasing induction on i, beginning with i = l and finishing with i = 1 that

bideg(γiαi+1γi+1 · · · γl−1αlγlαl+1) = (
l∏

j=i

deg γj ,
l∏

j=i+1

deg γj).

9



So we have

bideg(γ1α2γ2α3 · · · γl−1αlγlαl+1) = (
l∏

j=1

deg γj ,
l∏

j=2

deg γj),

whence the result. 2

The next result is obvious from the definitions.

Proposition 3. d(f−1) = d(f)−1. 2

Remark. From the last two propositions, we get : deg(f−1) = deg(f),
which is nothing else than the n = 2 case of the following formula of Gabber :
any automorphism f of An

C satisfies deg f−1 ≤
(
deg f

)n−1
.

Proposition 4. If f and g are elements of GA2, then d(fg) ≤ d(f)d(g)
and we have the equality if and only if deg(fg) = deg (f) deg (g).

Proof. Let us prove d(fg) ≤ d(f)d(g).
If f ∈ Af2, we have d(fg) = d(g) and d(f) = ∅ so that d(fg) = d(f)d(g).
If f ∈ BA2, let us write g = α′1γ

′
1α
′
2γ
′
2 · · ·α′mγ′mα′m+1 as in the last

Theorem. If α′1 /∈ B2, it is clear that d(fg) = d(f)d(g). So, let us suppose
α′1 ∈ B2, whence fα′1γ

′
1 ∈ BA2. We now claim that :

either fα′1γ
′
1 ∈ B2, in which case d(fg) = (deg γ′2, . . . , deg γ′m) so that

d(fg) ≤ d(g) ≤ d(f)d(g),
either fα′1γ

′
1 /∈ B2, in which case deg fα′1γ

′
1 ≤ max { deg f, deg γ′1}

so that d(fg) = ( deg fα′1γ
′
1, deg γ′2, . . . , deg γ′m) ≤ d(f)d(g).

Now that we have proven d(fg) ≤ d(f)d(g) when f is either in Af2
or in BA2, we can deduce the same inequality for any f by writing f =
α1γ1α2γ2 · · ·αlγlαl+1 as in the last Theorem.

Indeed

d(fg) = d(α1γ1α2γ2 · · ·αlγlαl+1g)
≤ d(α1)d(γ1)d(α2)d(γ2) · · · d(αl)d(γl)d(αl+1)d(g)
≤ d(γ1)d(γ2) · · · d(γl)d(g)
≤ d(f)d(g).

If d(fg) = d(f)d(g), it is clear that deg(fg) = deg (f) deg (g) by Propo-
sition 2. Conversely, if d(fg) 6= d(f)d(g), then d(fg) < d(f)d(g) so that
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deg d(fg) < deg
(
d(f)d(g)

)
and we obtain

deg (fg) = deg
(
d(fg)

)
< deg

(
d(f)d(g)

)
= deg f deg g

2

For any d ∈ D, we define the sets Ud and Vd which will be in the central
position of section 6. In the present section, we will show that they have a
very simple characterization in terms of the multidegree.

Definition. We set :

φd : Af2 ×
l∏

i=1

T2,di × GL2 → GA2,deg(d)

( α , (γ1, ..., γl) , β ) 7→ αγ1σγ2 · · ·σγlβ

Ud = Im(φd) ;
ψd = φd|Af2×

∏l−1

i=1
(T2,di

\T2,di−1)×(UA2,dl
\UA2,dl−1)×GL2

and finally

Vd = Im(ψd).

Proposition 5. For any d ∈ D, Vd = {f ∈ GA2 such that d(f) = d}.

Proof. For any d ∈ D, let us set V ′d = {f ∈ GA2 such that d(f) = d}. We
have clearly Vd ⊂ V ′d. By the Theorem 1, we have GA2 =

∐
d∈D Vd. The

equality GA2 =
∐

d∈D V
′
d now shows us that Vd = V ′d. 2

Before characterizing nicely Ud, we need Proposition 6, which is a de-
composition theorem for elements of Vd. When α = σ, the following lemma
is nothing else than the existence result of Lemma 2.

Lemma 5. Let f = (f1, f2) ∈ GA2 satisfy deg (f1) > deg (f2) > 1 and let
α ∈ Af2 \B2, then there exists (γ, p) ∈ (T2 \GL2)×GA2 such that f = γαp
with deg p1 > deg p2 and deg p1 = deg f2.

Proof. Because α /∈ B2, we have α−1 /∈ B2 so that α−1 = (aX + bY +
c, dX + eY + f) where a, b, c, d, e, f are complex numbers with d 6= 0.

On the one hand, we have

α−1 = (aX + (b− ae

d
)Y + c, dX + f)(X +

e

d
Y, Y )

11



which is equivalent to

(X − e

d
Y, Y ) = α(aX + (b− ae

d
)Y + c, dX + f)

and on the other hand, by Lemma 2, we know the existence of (γ′, g) ∈
(T2 \GL2) ×GA2 such that γ′f = g with deg g1 < deg g2 = deg f2. So,
we have :

(X − e

d
Y, Y )γ′f = α(ag1 + (b− ae

d
)g2 + c, dg1 + f).

By setting {
γ = γ′−1(X + e

dY, Y )
p = (ag1 + (b− ae

d )g2 + c, dg1 + f)

we have the desired result (we use the fact that b − ae
d 6= 0, which is true

because (aX + bY + c, dX + eY + f) is an automorphism). 2

Proposition 6. If f ∈ GA2 satisfies d(f) = d ∈ D with l(d) = l ∈ N,
then, for any (αi)1≤i≤l−1 ∈ (GL2 \ B2)

l−1, there exist (α, β) ∈ Af2 × GL2

and (γi)1≤i≤l ∈ (T2)
l such that

f = αγ1α1 · · · γl−1αl−1γlβ.

Proof. If l = 0, there is nothing to do. So, let us suppose l ≥ 1, so that
deg f ≥ 2. We know the existence of α ∈ Af2 such that g = α−1f satisfies
g(0, 0) = (0, 0) and deg(g1) > deg(g2).

Now, the result comes from the fact that if (αi)i∈N∗ ∈ (GL2 \ B2)
N∗

and if g ∈ GA2 satisfies g(0, 0) = (0, 0) and deg(g1) > deg(g2), then
there exist m ∈ N∗, (γi)1≤i≤m ∈ (T2 \ GL2)

m and β ∈ GL2 such that
g = γ1α1 · · · γm−1αm−1γmβ. This result is proved by exactly the same way
as the Lemma 4 (of course using Lemma 5 instead of Lemma 2). 2

Proposition 7. For any e in D, we have Ue =
∐

d≤e Vd.

Proof. By the Proposition 4, it is clear that Ue ⊂
∐

d≤e Vd.

Conversely, to prove that d ≤ e implies Vd ⊂ Ue, it is sufficient to prove
that if e = (e1, . . . , em), k ∈ {1, . . . ,m} and d = (e1, . . . , êk, . . . , em) then

12



Vd ⊂ Ue. Let f ∈ Vd. By definition, there exist (α, β) ∈ Af2 × GL2 and
(γi)1,... ,k̂,... ,m ∈ (T2)

m−1 such that

f = αγ1σγ2σ · · ·σγk−1σγk+1σ · · ·σγmβ,

i.e. f = φd
(
α, (γ1, . . . , γ̂k, . . . , γm), β

)
. If k = 1, we have

f = φe
(
ασ, (Id, γ2, . . . , γm), β

)
and if k = m, we have

f = φe
(
α, (γ1, . . . , γm−1, Id), σβ

)
so that in these two cases we have f ∈ Ue.

Let us suppose that k ∈ {2, . . . ,m − 1}. We set θ = (X + Y, Y ) ∈ T2,
so that σθσ = (X,X + Y ) ∈ GL2 \ B2. So, if we define (αi)1≤i≤m−1 ∈
(GL2 \ B2)

m−1 by αi = σ if i 6= k and αk = σθσ, by the Proposition 6, we
deduce the existence of (α′, β′) ∈ Af2 × GL2 and (γ′i)1,... ,k̂,... ,m ∈ (T2)

m−1

such that
f = α′γ′1σγ

′
2σ · · ·σγ′k−1σθσγ′k+1σ · · ·σγ′mβ′,

i.e.
f = φe

(
α′, (γ′1, . . . , γ

′
k−1, θ, γ

′
k+1, . . . , γ

′
m), β′

)
.

So f ∈ Ue. 2

Corollary 1. Ud = {f ∈ GA2, such that d(f) ≤ d} 2

Corollary 2. d ≤ e is equivalent to Ud ⊂ Ue. 2

5. Automorphisms of length less than or equal to one.

The next proposition gives us some simple characterizations for an au-
tomorphism to be of length less than or equal to one :

Proposition 8. Let f = (f1, f2) ∈ GA2. Write f =
∞∑
i=0

(Pi, Qi), where

the (Pi, Qi) are homogeneous C-endomorphisms of A2
C of degree i and set

(P,Q) = (
∞∑
i=2

Pi,
∞∑
i=2

Qi). Then, the six following assertions are equivalent :

13



i) P and Q are linearly dependent polynomials.
ii) l(f) ≤ 1
iii) ∀ i, j ≥ 2, Jac(Pi, Qj) = 0
iv) Jac(P,Q) = 0
v) P and Q are algebraically dependent over C.
vi) ∃ (u, v) ∈ C[t], ∃ R ∈ C[X,Y ] such that (P,Q) =

(
u(R), v(R)

)
.

We use the following lemma :

Lemma 6. Let (u, v) ∈ C[t]2\{(0, 0)} and R ∈ C[X,Y ] such that u(R) ∂R
∂X +

v(R) ∂R∂Y = 0, then there exist (a, b) ∈ C2 and w ∈ C[t] such that R =
w(aX + bY ).

Proof. We can suppose that u and v are relatively prime, so that u(0) 6= 0 or
v(0) 6= 0. The relation R | u(0) ∂R

∂X +v(0) ∂R∂Y shows us that u(0) ∂R
∂X +v(0) ∂R∂Y =

0. By making a linear change of coordinates in this last equality, we obtain
the existence of w ∈ C[t] such that R = w

(
v(0)X − u(0)Y

)
. 2

Proof of Proposition 8. The implications i) ⇒ ii) ⇒ iii) ⇒ iv) are clear.
The equivalence of iv), v) and vi) comes from the equivalence of the following
three assertions (see [No]), where g1 and g2 are any elements of C[X,Y ] :

1) Jac(g1, g2) = 0
2) g1 et g2 are algebraically dependent over C.
3) ∃ (u, v) ∈ C[t],∃ R ∈ C[X,Y ] such that (g1, g2) =

(
u(R), v(R)

)
.

Let us now prove that vi)⇒ i). We can suppose that f =
(
X+u(R), Y +

v(R)
)

where u(0) = v(0) = R(0, 0) = 0, val
(
u(R)

)
≥ 2 and val

(
v(R)

)
≥ 2.

Since f is an automorphism, we necessarily have Jac(f) = 1, which implies
that u′(R) ∂R

∂X + v′(R) ∂R∂Y = 0. By Lemma 6, if (u′, v′) 6= (0, 0), there exist
(a, b) ∈ C2 and w ∈ C[t] such that R = w(aX + bY ). So, we can suppose
that R = aX+bY . The condition u′(R) ∂R

∂X +v′(R) ∂R∂Y = 0 implies that u′(R)
and v′(R) are linearly dependent. It follows easily that u(R) and v(R) are
also linearly dependent. 2

6. On the irreducible components of GA2,n.
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If n is a positive integer, let E2,n be the vector space of C-endomorphisms
f of A2

C satisfying deg(f) ≤ n. Let us set GA2,n = GA2 ∩ E2,n, T2,n =T2 ∩
E2,n and UA2,n =UA2 ∩ E2,n.

We set J2,n = {f ∈ E2,n, such that Jac f = 1} and G2,n = GA2,n ∩ J2,n.
E2,n is an affine space and J2,n is a (Zariski) closed subset of it. H.

Bass, E.H. Connell and D. Wright show in the paper [B-C-W] that G2,n is
also a closed subset of E2,n. By slightly modifying their proof, we obtain
that GA2,n is a locally closed subset of E2,n. In particular, it is an algebraic

variety. We have GA2,n ' C∗×G2,n via f = (f1, f2) 7→
(
Jac(f), ( f1

Jac(f) , f2)
)
,

so that the irreducible components of GA2,n are in one to one correspondence
with the irreducible components of G2,n. Our interest in the irreducible
components of G2,n is motivated by the Jacobian Conjecture in dimension 2
and degree n asserting that an element of E2,n is invertible if and only if its
Jacobian is a nonzero constant. This conjecture is equivalent to the equality
J2,n = G2,n.

In Remark (1.7) of the last quoted paper, the authors note that to show
this equality, it would suffice to show, if possible, that dim J2,n = dim G2,n

and that the algebraic variety J2,n is irreducible (because we have of course
J2,n ⊂ G2,n).

We answer here negatively to this hope. Indeed, on the one hand
J2,n = G2,n when n ≤ 100, by T.T. Moh ([Mo]) and on the other hand,
the Proposition 11 asserts that G2,n is reducible when n ≥ 4. We obtain
thus the Corollary of Proposition 11 : the variety J2,n is reducible when
4 ≤ n ≤ 100.

The results of section 3 lead us to believe that we can get some insight
into the decomposition in irreducible components of GA2,n via purely com-
binatorial means (see the Conjecture formulated in this section). Before
stating this conjecture, we will give a few definitions and apply them to
obtain various results which will end by the computation of the dimension
of GA2,n (see Proposition 10).

Let us recall that for any d ∈ D, we introduced in section 4 the subsets
Ud and Vd of GA2 which turned out to be{

Ud = {f ∈ GA2 such that d(f) ≤ d}
Vd = {f ∈ GA2 such that d(f) = d}

15



Definition. We note that by the definition of Ud and Vd (see section 4),
their Zariski closures in GA2,deg(d) are equal.

We set Wd = Ud = Vd (Zariski closure in GA2,deg(d)).

If n is an integer greater than or equal to two, the element (n) ∈ D will
play an important role in the following lines. We begin with a crucial result :

Proposition 9. If n is an integer greater than or equal to two, then U(n) is
a closed subvariety of GA2,n.

Proof. U(n) = {f ∈ GA2,n such that l(f) ≤ 1} and the condition iii)
(

or
iv)
)

of Proposition 8 shows us that this condition is closed. 2

Lemma 7. If d ∈ D, then Wd is an irreducible variety of dimension |d|+ 6.

Proof. If d = ∅, the lemma is true. Let us now suppose that d ∈ D∗.

We have :

Wd = ψd(Af2 ×
l−1∏
i=1

(T2,di \ T2,di−1)× (UA2,dl \UA2,dl−1)×GL2)

where Af2×
l−1∏
i=1

(T2,di \T2,di−1)× (UA2,dl \UA2,dl−1)×GL2 is an irreducible

variety (as a product of irreducible varieties) so that Wd is an irreducible
variety.

Let us set :
ψ1,d = ψd|A1×

∏l−1

i=1
(T2,di

\T2,di−1)×(UA2,dl
\UA2,dl−1)×GL2

where A1 is the group of translations of A2
C ;

ψ2,d = ψd|A2×
∏l−1

i=1
(T2,di

\T2,di−1)×(UA2,dl
\UA2,dl−1)×GL2

where A2 is the set of automorphisms of A2
C of the shape (Y +a,X+cY +b)

where a, b, c are elements of C ;
V1,d = Im(ψ1,d) ;
V2,d = Im(ψ2,d).

We have Vd = V1,d t V2,d (by Theorem 1). ψ1,d and ψ2,d being injective
morphisms (always by Theorem 1), it comes out : dim(V1,d) = |d| + 5 and
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dim(V2,d) = |d|+ 6. Finally,

dimWd = dimVd
= dim(V1,d ∪ V2,d)
= max{dimV1,d, dimV2,d}
= |d|+ 6

2

Definition. For n ∈ N∗, we set Dn = {d ∈ D, deg(d) ≤ n} and Cn denotes
the set of maximal elements of Dn.

For example :
C1 = {∅} ;
C2 = {(2)} ;
C3 = {(3)} ;
C4 = {(4), (2, 2)} ;
C5 = {(5), (2, 2)} ;
C6 = {(6), (2, 3), (3, 2)} ;
C7 = {(7), (2, 3), (3, 2)} ;
C8 = {(8), (2, 4), (4, 2), (2, 2, 2)} ;
C9 = {(9), (2, 4), (3, 3), (4, 2), (2, 2, 2)}.

The next lemma is obvious :

Lemma 8. If n is a nonzero positive integer, then we have :

GA2,n =
⋃

d∈Cn

Ud =
∐

d∈Dn

Vd =
⋃

d∈Cn

Wd.

2

Proposition 10. If n is a nonzero positive integer, then GA2,n is an alge-
braic variety of dimension 6 if n = 1 and of dimension n+ 6 otherwise.

Proof. By lemma 7 and 8, we have :

dim GA2,n = maxd∈Dn |d|+ 6

17



If n = 1, D1 = {∅} and the proposition is clear.
If n > 1, ∀ d = (d1, ..., dl) ∈ Dn, we have :

|d| =
l∑

i=1

di ≤
l∏

i=1

di ≤ n

hence, maxd∈Dn |d| is obtained for d = (n) where it is equal to n. 2

Being now familiarized with the definitions, we give the announced con-
jecture :

Conjecture. If n is a nonzero positive integer, then GA2,n =
⋃

d∈Cn

Wd is

the decomposition in irreducible components of GA2,n.

This conjecture is equivalently formulated as :

∀ (d, e) ∈ (Cn)2, d 6= e⇒Wd 6⊂We.

We will prove this conjecture in case n ≤ 9 by using the next lemma :

Lemma 9. If n is an integer greater than or equal to two and if d ∈ Cn

with d 6= (n), then we have :

Wd 6⊂W(n) and W(n) 6⊂Wd.

Proof. Ud contains an automorphism f such that l(f) ≥ 2 and so : Ud 6⊂
U(n).

U(n) being closed, this implies Wd 6⊂W(n). We deduce at once from this
that W(n) 6⊂ Wd, because, if we had W(n) ⊂ Wd, the inequality dimWd ≤
dimW(n) together with the irreducibility of Wd, would imply W(n) = Wd,
which is not the case. 2

Theorem 2. If 1 ≤ n ≤ 9, then the Conjecture is true.

Proof. If n = 1, then GA2,n = W(∅) and if 2 ≤ n ≤ 3, then it is clear that
GA2,n = W(n) and the conjecture is then checked.
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Let us now suppose that 4 ≤ n ≤ 9. By Lemma 9, it is sufficient to prove
that if d and e are two elements of Cn different from (n), then Wd 6⊂ We.
But the condition n ≤ 9 implies the equality dim Wd = dim We. It is then
sufficient to show that Wd 6= We. Now, Vd is a dense constructible subset of
Wd and Ve is a dense constructible subset of We. Furthermore, Vd ∩ Ve = ∅.
This proves that we cannot have Wd = We. 2

Even if we cannot yet compute the number of irreducible components of
GA2,n, we can however decide whether this variety is irreducible :

Proposition 11. If n is a nonzero positive integer, then the variety GA2,n

is irreducible if and only if n ≤ 3.

Proof. It is sufficient to prove that if n ≥ 4 is any integer, then GA2,n

is reducible. Now, W(n) is an irreducible component of GA2,n (because it
is an irreducible variety of the same dimension as GA2,n). The element
(X + Y 2, Y +X2 + 2XY 2 + Y 4) is in W(2,2) ⊂ GA2,n but not in W(n). 2

Corollary of Proposition 11. If 4 ≤ n ≤ 100, then the variety J2,n is
reducible. 2

Remark. It is not true that the mapping

d : GA2 → D
f 7→ d(f)

is a lower-continuous function, i.e. if d ∈ D, it is not necessarily true that
Ud is a closed subset of GA2,deg(d).

To point out this fact, we can just consider the family of GA2 given by
the Nagata automorphism :

χ : C → GA2,4

Z 7→ χ(Z),

where χ(Z) =
(
X−2Y (XZ+Y 2)−Z(XZ+Y 2)2, Y +Z(XZ+Y 2)

)
. Then,

if Z ∈ C∗, we have χ(Z) = γ1α1γ2 where
γ1 = (X − Z−1Y 2, Y ) ∈ BA2 \ B2

α1 = (X,Y + Z2X) ∈ Af2 \ B2

γ2 = (X + Z−1Y 2, Y ) ∈ BA2 \ B2
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so that d
(
χ(Z)

)
= (2, 2). However d

(
χ(0)

)
= (3) so that χ(0) ∈ U(2,2)\U(2,2).

7. More details on the irreducible components of GA2,4.

It results from Theorem 2 that W(4) 6⊂W(2,2). The next proposition gives
us an explicit equation satisfied by all elements of W(2,2) but not necessarily
by elements of W(4).

Proposition 12. Let f = (f1, f2) ∈ W(2,2). Write f =
4∑

i=0

(Pi, Qi), where

(Pi, Qi) are C-endomorphisms of A2
C which are homogeneous of degree i.

Then, P2P3 − 2P1P4 and Q2Q3 − 2Q1Q4 are proportional polynomials.
This is equivalent to the algebraic condition :

Jac(P2P3 − 2P1P4, Q2Q3 − 2Q1Q4) = 0.

Proof. Let f = (f1, f2) =
4∑

i=0

(Pi, Qi) ∈ Im(φ(2,2)) where (Pi, Qi) are C-

endomorphisms of A2
C which are homogeneous of degree i.

We begin by proving that there exists a complex number λ such that

(Q2Q3 − 2Q1Q4)
2 = λ(P1Q2 − P2Q1)

2Q4.

If Q4 = 0, we see easily that Q3 = 0. In this case, it is sufficient to take
λ = 0.
Otherwise, there exists a complex number α such that deg(f1 − αf2) = 2.

We set g = (g1, g2) = (f1 − αf2, f2) =
( 2∑
i=0

(Pi − αQi),
4∑

i=0

Qi
)
∈ GA2. There

exists w ∈ C[t] such that deg(g2−w(g1)) ≤ 2. We necessarily have deg w = 2.
Let β be the coefficient of t2 in w. We obtain the relations :{

Q3 = 2β(P1 − αQ1)(P2 − αQ2)
Q4 = β(P2 − αQ2)

2
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which give us successively :

Q2Q3 − 2Q1Q4 = 2β(P2 − αQ2)
(
(P1 − αQ1)Q2 − (P2 − αQ2)Q1

)
Q2Q3 − 2Q1Q4 = 2β(P2 − αQ2)(P1Q2 − P2Q1)

(Q2Q3 − 2Q1Q4)
2 = 4β2(P2 − αQ2)

2(P1Q2 − P2Q1)
2

(Q2Q3 − 2Q1Q4)
2 = 4β(P1Q2 − P2Q1)

2Q4

Whence the existence of λ. By the same argument, we show the existence
of µ such that (P2P3− 2P1P4)

2 = µ(P1Q2−P2Q1)
2P4. Since P4 and Q4 are

proportional polynomials, (P2P3 − 2P1P4)
2 and (Q2Q3 − 2Q1Q4)

2 also and
finally P2P3 − 2P1P4 and Q2Q3 − 2Q1Q4 too.
We have thus proved the relation :

Jac(P2P3 − 2P1P4, Q2Q3 − 2Q1Q4) = 0

and this relation remains true if we only suppose that f ∈W(2,2) = Im(φ(2,2)).
2

Proposition 12 is enough to prove that g = (X + Y 4, X + Y + Y 4) ∈
W(4) \ W(2,2). Indeed, the homogeneous components (Pi, Qi) of degree i
of g are (P1, Q1) = (X,X + Y ), (P2, Q2) = (0, 0), (P3, Q3) = (0, 0) and
(P4, Q4) = (Y 4, Y 4) so that P2P3 − 2P1P4 and Q2Q3 − 2Q1Q4 are equal to
−2XY 4 and −2(X + Y )Y 4 which are not proportional polynomials.
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