On the variety of automorphisms of the affine plane

Jean-Philippe FURTER

Abstract : The main subject of our study is $GA_{2,n}$, the variety of automorphisms of the affine plane of degree bounded by a positive integer n. After precising some definitions and notations in section 1, we give in section 2 an algorithm to decide whether an endomorphism of the affine plane over an integral domain is a tame automorphism. Then, by applying this algorithm to the Nagata automorphism, we recover easily the known results on it. In section 6, we compute the number of irreducible components of $GA_{2,n}$ when $n \leq 9$ and we show that $GA_{2,n}$ is reducible when $n \geq 4$. Our proofs are based on a precise decomposition theorem for automorphisms given in section 3 and a characterization of length one automorphisms given in section 5. Finally, in section 7, we give some details on the case n = 4.

1. Definitions and notations.

Let k be an integral domain. k[X,Y] is the polynomial algebra in the indeterminates X, Y (endowed with the degree function and the valuation function at the origin, which are denoted by deg and val) and $\mathbb{A}_k^2 =$ Spec k[X,Y] is the affine plane over k. A k-endomorphism f of \mathbb{A}^2_k will be identified with its sequence $f = (f_1, f_2)$ of coordinate functions $f_i \in k[X, Y]$ (i = 1, 2). If g is a k-endomorphism of \mathbb{A}_k^2 , we agree that fg will denote the k-endomorphism of \mathbb{A}^2_k obtained by the composition of f and g. We define :

the degree of f by deg $f = \max \{ \deg f_1, \deg f_2 \};$ the bidegree of f by bideg $(f) = (\deg f_1, \deg f_2)$;

the total degree of f by tdeg $(f) = \deg f_1 + \deg f_2$; the Jacobian of f by $\operatorname{Jac}(f) = \frac{\partial f_1}{\partial X} \frac{\partial f_2}{\partial Y} - \frac{\partial f_1}{\partial Y} \frac{\partial f_2}{\partial X}$

and we introduce the following groups :

 $GA_2(k)$, the group of all k-automorphisms of \mathbb{A}^2_k ;

 $Af_2(k)$, the subgroup of $GA_2(k)$ of affine automorphisms, i.e. automorphisms of the shape (aX + bY + c, dX + eY + f) where a, b, c, d, e, f are elements of k satisfying $ae - bd \in k^*$;

 $GL_2(k)$, the subgroup of $Af_2(k)$ of linear automorphisms ;

 $BA_2(k)$, the subgroup of $GA_2(k)$ of triangular or "de Jonquières" automorphisms, i.e. automorphisms of the shape (aX + P(Y), bY + c) where a, bare units of k, c is an element of k and P(Y) is an element of k[Y];

 $TA_2(k)$, the subgroup of $GA_2(k)$ of tame automorphisms, i.e. the subgroup of $GA_2(k)$ generated by $Af_2(k)$ and $BA_2(k)$.

2. An algorithm to decide whether an endomorphism is a tame automorphism.

The following proposition is the key of the announced algorithm : if $f \in TA_2(k)$ satisfies tdeg $f \geq 3$, it ensures the existence of $\alpha \in GA_2(k)$ of a very special shape such that tdeg $(\alpha^{-1}f) < \text{tdeg } f$.

Proposition 1. Let $f = (f_1, f_2) \in TA_2(k)$ with $bideg(f) = (d_1, d_2)$. Denote by g_i the homogeneous component of degree d_i of f_i for i = 1, 2. Then $d_1|d_2$ or $d_2|d_1$. If we suppose moreover that deg(f) > 1, then we have :

i) if $d_1 < d_2$, then there exists $\lambda \in k$ such that $g_2 = \lambda . g_1^{d_2/d_1}$;

ii) if $d_2 < d_1$, then there exists $\lambda \in k$ such that $g_1 = \lambda g_2^{d_1/d_2}$;

iii) if $d_1 = d_2$, then there exists $(\alpha, h) \in Af_2(k) \times TA_2(k)$ such that $f = \alpha h$ and deg $h_1 > deg h_2$ where $h = (h_1, h_2)$.

Remarks.

1. Let us assume that deg (f) > 1. We set $\alpha = (X, Y + \lambda X^{d_2/d_1})$ in case i), $\alpha = (X + \lambda Y^{d_1/d_2}, Y)$ in case ii) and if we are in case iii), we keep α as explained there. Then, it is clear that we have tdeg $(\alpha^{-1}f) < \text{tdeg } f$.

2. If $d_1 = d_2$, in general, there does not exist $\lambda \in k$ such that $g_2 = \lambda g_1$ or $g_1 = \lambda g_2$, as shown by the following example :

$$f = ((1 - Z)X + ZY + (1 - Z)Y^2, -ZX + (1 + Z)Y - ZY^2)$$

It can be checked that $f = \alpha \gamma$ where $\alpha = ((1-Z)X + ZY, -ZX + (1 + Z)Y) \in Af_2(\mathbb{C}[Z])$ and $\gamma \in (X+Y^2, Y) \in BA_2(\mathbb{C}[Z])$ so that $f \in TA_2(\mathbb{C}[Z])$. However, bideg f = (2, 2), the homogeneous component of degree 2 of f is $((1-Z)Y^2, -ZY^2)$ and there exists no $\lambda \in \mathbb{C}[Z]$ such that $(1-Z)Y^2 = \lambda . (-ZY^2)$ or $-ZY^2 = \lambda . (1-Z)Y^2$. 3. Nevertheless, still in the case $d_1 = d_2$, if $k = \mathbb{C}$ and deg f > 1, the equality Jac $f \in \mathbb{C}^*$ implies that $Jac(g_1, g_2) = 0$ which is well known to imply that g_1 and g_2 are proportional polynomials.

The following group-theoretical lemma will be used in the proof of Proposition 1.

Lemma 1. If a group G is generated by two subgroups H and K, then each element g of G can be written

$$g = h_1.k_1.h_2.k_2.\cdots.h_l.k_l.h_{l+1}$$

where l is a non negative integer, the h_i (resp. k_i) are elements of H (resp. K) satisfying the additional condition ($\forall 2 \leq i \leq l, h_i \notin K$ and $\forall 1 \leq i \leq l, k_i \notin H$).

Proof. If g is an element of G, we have

$$g = h_1.k_1.h_2.k_2.\cdots.h_l.k_l.h_{l+1}$$

where l is a non negative integer and the h_i (resp. k_i) are elements of H (resp. K). If the additional condition ($\forall 2 \leq i \leq l, h_i \notin K$ and $\forall 1 \leq i \leq l, k_i \notin H$) is not satisfied, then we can obtain an expression for g of the same shape but where l is replaced by l-1. Indeed, if for example, $h_{i_0} \in K$ ($2 \leq i_0 \leq l$), then we have

$$g = h_1 \cdot k_1 \cdot h_2 \cdot k_2 \cdots h_{i_0-1} \cdot (k_{i_0-1} \cdot h_{i_0} \cdot k_{i_0}) \cdot h_{i_0+1} \cdots \cdot h_l \cdot k_l \cdot h_{l+1}$$

where $k_{i_0-1} \cdot h_{i_0} \cdot k_{i_0} \in K$. After a finite number of such reductions, we will necessarily obtain the desired expression for g.

Proof of Proposition 1. By Lemma 1 applied with $G = \text{TA}_2(k)$, $H = \text{Af}_2(k)$, $K = \text{BA}_2(k)$ and g = f, we obtain the existence of a non-negative integer l and of $(\alpha, \beta) \in (\text{Af}_2(k))^2$, $(\alpha_i)_{1 \le i \le l-1} \in (\text{Af}_2(k) \setminus \text{BA}_2(k))^{l-1}$, $(\gamma_i)_{1 \le i \le l} \in (\text{BA}_2(k) \setminus \text{Af}_2(k))^l$ such that

$$f = \alpha \gamma_1 \alpha_1 \gamma_2 \cdots \alpha_{l-2} \gamma_{l-1} \alpha_{l-1} \gamma_l \beta.$$

We show by a decreasing induction on i, beginning with i = l and finishing with i = 1 that

$$\operatorname{bideg}(\gamma_i \alpha_i \cdots \gamma_{l-1} \alpha_{l-1} \gamma_l \beta) = (\prod_{j=i}^l \operatorname{deg} \gamma_j, \prod_{j=i+1}^l \operatorname{deg} \gamma_j).$$

The conclusion is clear for i = l. Let us suppose it is true for a given iwith $2 \leq i \leq l$. Let us write $\alpha_{i-1} = (a_{i-1}X + b_{i-1}Y + c_{i-1}, d_{i-1}X + e_{i-1}Y + f_{i-1})$. The relations $\alpha_{i-1} \notin BA_2(k)$ and $\gamma_{i-1} \notin Af_2(k)$ imply that $d_{i-1} \neq 0$ and $\deg(\gamma_{i-1}) \geq 2$. We now obtain bideg $(\alpha_{i-1}\gamma_i\alpha_i\cdots\gamma_{l-1}\alpha_{l-1}\gamma_l\beta) = (p_i, \prod_{j=i}^l \deg \gamma_j)$ with $p_i \leq \prod_{j=i}^l \deg \gamma_j$ and $\operatorname{bideg}(\gamma_{i-1}\alpha_{i-1}\cdots\gamma_{l-1}\alpha_{l-1}\gamma_l\beta) = (\prod_{j=i-1}^l \deg \gamma_j, \prod_{j=i}^l \deg \gamma_j)$.

It is now proven that

$$\operatorname{bideg}(\gamma_1\alpha_1\cdots\gamma_{l-1}\alpha_{l-1}\gamma_l\beta) = (\prod_{j=1}^l \operatorname{deg}\,\gamma_j, \prod_{j=2}^l \operatorname{deg}\,\gamma_j)$$

Let us write $\alpha = (aX + bY + c, dX + eY + f)$. To conclude, we just have to check that we are in case i) or ii) or iii) according as a = 0 or d = 0 or $ad \neq 0$.

We deduce at once from this last proposition an algorithm to decide if a k-endomorphism of \mathbb{A}_k^2 belongs to $\operatorname{TA}_2(k)$:

Algorithm :

1. Enter a k-endomorphism f of A_k^2 2. Let $(d_1, d_2) = \text{bideg}(f_1, f_2)$ 3. If $d_1 = d_2 = 1$, then goto 8 4. If $d_1 \neq d_2$, then goto 6 5. If there exists $\alpha \in \text{Af}_2(k)$ such that $\text{tdeg}(\alpha f) < \text{tdeg}(f)$, then replace f by αf and goto 2, else STOP : $f \notin \text{TA}_2(k)$ 6. If $d_2 < d_1$, then replace $f = (f_1, f_2)$ by (f_2, f_1) . 7. If $(d_1|d_2$ and there exists $\lambda \in k$ such that $g_2 = \lambda g_1^{d_2/d_1}$, then replace f by $(X, Y - \lambda X^{d_2/d_1})f$ and goto 2, else STOP : $f \notin \text{TA}_2(k)$ 8. If $\text{Jac}(f) \in k^*$, then STOP : $f \in \text{TA}_2(k)$, else STOP : $f \notin \text{TA}_2(k)$.

Application :

Let us consider the Nagata automorphism

$$\phi = (X - 2Y(XZ + Y^2) - Z(XZ + Y^2)^2, Y + Z(XZ + Y^2)) \in GA_2(k)$$

for $k = \mathbb{C}[Z]$ and $k = \mathbb{C}[Z, Z^{-1}].$

By expanding ϕ , we get

$$\phi = (X - 2ZXY - Z^3X^2 - 2Y^3 - 2Z^2XY^2 - ZY^4, Y + Z^2X + ZY^2)$$

so that the homogeneous components of highest degree of ϕ are $-ZY^4$ and ZY^2 .

1) If $k = \mathbb{C}[Z]$, $(ZY^2)^2$ does not divide $-ZY^4$ and so $\phi \notin \mathrm{TA}_2(\mathbb{C}[Z])$.

2) If $k = \mathbb{C}[Z, Z^{-1}]$, the equation $-ZY^4 = -Z^{-1}(ZY^2)^2$ allows us to obtain :

$$\phi = (X - Z^{-1}Y^2, Y)(X + Z^{-1}Y^2, Y + Z^2X + ZY^2)$$

and we easily see that :

$$(X + Z^{-1}Y^2, Y + Z^2X + ZY^2) = (X, Y + Z^2X)(X + Z^{-1}Y^2, Y)$$

nce $\phi = (X - Z^{-1}Y^2, Y)(X, Y + Z^2X)(X + Z^{-1}Y^2, Y)$

whence $\phi = (X - Z^{-1}Y^2, Y)(X, Y + Z^2X)(X + Z^{-1}Y^2, Y)$ and $\phi \in TA_2(\mathbb{C}[Z, Z^{-1}]).$

3. A precise decomposition theorem for automorphisms of the affine plane.

From now on, we set $k = \mathbb{C}$ and we agree to note GA_2 instead of $GA_2(\mathbb{C})$, Af₂ instead of Af₂(\mathbb{C}), etc ...

Let us recall that by a famous result of H.W.E. Jung and W. van der Kulk ([vdK]), we have $GA_2=TA_2$.

We give here a precise decomposition theorem for elements of GA_2 : any such element has a unique expression of a given shape (see Theorem 1). This result allows us (see section 6, Proposition 10) to compute the dimension of the algebraic variety $GA_{2,n}$.

Before stating the theorem, we need the following definitions :

T₂ is the subgroup of GA₂ of automorphisms of the shape (X + P(Y), Y)where P(Y) is an element of $\mathbb{C}[Y]$ satisfying val $(P) \ge 1$;

UA₂ is the subgroup of T₂ of elements of the shape (X + P(Y), Y) where P(Y) is any element of $\mathbb{C}[Y]$ satisfying val $(P) \ge 2$;

for all $(a, b) \in \mathbb{C}^2$, we set $\tau_{(a,b)} = (X + a, Y + b) \in GA_2$ and for all $c \in \mathbb{C}$, we set $\sigma_c = (Y, X + cY) \in GA_2$. We note $\sigma = \sigma_0 = (Y, X)$. **Theorem 1.** (Precise Decomposition Theorem) Let $f = (f_1, f_2) \in GA_2 \setminus Af_2$, then :

i) if $deg(f_1) > deg(f_2)$,

lemmas :

$$\exists ! (a,b) \in \mathbb{C}^2, \exists ! l \in \mathbb{N}, \exists ! (\gamma_i)_{1 \le i \le l} \in (T_2 \backslash GL_2)^{l-1} \times (UA_2 \backslash GL_2), \exists ! \beta \in GL_2$$

such that $f = \tau_{(a,b)} \circ \gamma_1 \circ \sigma \circ \gamma_2 \circ \sigma \circ \cdots \circ \sigma \circ \gamma_{l-1} \circ \sigma \circ \gamma_l \circ \beta$. *ii) if* $deg(f_1) \leq deg(f_2)$,

 $\exists ! (a, b, c) \in \mathbb{C}^3, \exists ! l \in \mathbb{N}, \exists ! (\gamma_i)_{1 \le i \le l} \in (T_2 \setminus GL_2)^{l-1} \times (UA_2 \setminus GL_2), \exists ! \beta \in GL_2$ such that $f = \tau_{(a,b)} \circ \sigma_c \circ \gamma_1 \circ \sigma \circ \gamma_2 \circ \sigma \circ \cdots \circ \sigma \circ \gamma_{l-1} \circ \sigma \circ \gamma_l \circ \beta.$

To prove this theorem, we will use the following three decomposition

Lemma 2. Let $f = (f_1, f_2) \in GA_2$ satisfy $deg(f_1) > deg(f_2) > 1$, then $\exists ! (\gamma, p) \in (T_2 \setminus GL_2) \times GA_2$ such that $f = \gamma \circ p$ and $p = (p_1, p_2)$ satisfies $deg(p_1) < deg(p_2) = deg(f_2)$.

Proof. Existence : We begin by proving that for each automorphism $f = (f_1, f_2) \in \operatorname{GA}_2$ satisfying $\operatorname{deg}(f_1) \geq \operatorname{deg}(f_2) > 1$ there exists $(\gamma, p) \in \operatorname{T}_2 \times \operatorname{GA}_2$ such that $f = \gamma \circ p$ and $p = (p_1, p_2)$ satisfies $\operatorname{deg}(p_1) < \operatorname{deg}(f_1)$. Let g_i denotes the homogeneous component of degree deg f_i of f_i . From Proposition 1 and Remark 3 following it, we deduce that $d_2|d_1$ and that there exists $\lambda \in \mathbb{C}$ such that $g_1 = \lambda . g_2^{\frac{d_1}{d_2}}$. We can now just write $f = (X + \lambda Y^{\frac{d_1}{d_2}}, Y) \circ p$ where $p \in \operatorname{GA}_2$ and it is easy to check that $p = (p_1, p_2)$ satisfies $\operatorname{deg}(p_1) < \operatorname{deg}(f_1)$.

From this fact, we deduce by an immediate induction on deg f_1 that for each automorphism $f = (f_1, f_2) \in \text{GA}_2$ satisfying deg $(f_1) \ge \text{deg}(f_2) > 1$, there exists $(\gamma, p) \in \text{T}_2 \times \text{GA}_2$ such that $f = \gamma \circ p$ and $p = (p_1, p_2)$ satisfies deg $(p_1) < \text{deg}(p_2) = \text{deg } f_2$. It terminates the proof of the existence.

Unicity: Let $\gamma, \delta, p, q \in GA_2$. We suppose that $\gamma = (X + R(Y), Y), \delta = (X + S(Y), Y)$ where R(Y) and S(Y) are elements of $\mathbb{C}[Y]$ such that val $(R) \geq 1$ and val $(S) \geq 1$. We also suppose that $p = (p_1, p_2)$ and $q = (q_1, q_2)$ satisfy deg $p_1 < \deg p_2$ and deg $q_1 < \deg q_2$. Then, the equality $\gamma \circ p = \delta \circ q$ implies that $(p_1 + R(p_2), p_2) = (q_1 + S(q_2), q_2)$ from which we deduce firstly that $p_2 = q_2$ and secondly that $p_1 - q_1 = S(p_2) - R(p_2)$. In the

last equality, the left hand term is of degree strictly less than deg p_2 which implies that S - R = 0 and finally $\gamma = \delta$ and p = q.

Lemma 3. Let $f = (f_1, f_2) \in GA_2$ satisfy f(0, 0) = (0, 0) and $deg(f_1) > deg(f_2) = 1$, then $\exists ! (\gamma, \beta) \in (UA_2 \setminus GL_2) \times GL_2$ such that $f = \gamma \circ \beta$.

Proof. Existence : Let $f = (f_1, f_2) \in \text{GA}_2$ satisfy f(0, 0) = (0, 0) and $\deg(f_1) > \deg(f_2) = 1$. We define β as the linear part of f. Then, if $\beta = (\beta_1, \beta_2)$, we have $\mathbb{C}[\beta_1, \beta_2] = \mathbb{C}[X, Y]$ and so f writes down in the following shape $f = (\beta_1 + g_1(\beta_1, \beta_2), \beta_2)$ where $g_1 \in \mathbb{C}[X, Y]$ and $\operatorname{val}(g_1) \geq 2$. Let us set $\gamma = (X + g_1, Y)$. On the one hand, we have $f = \gamma \circ \beta$ and on the other hand, γ being an automorphism, we have necessarily $g_1 \in \mathbb{C}[Y]$ and finally $\gamma \in \operatorname{UA}_2 \setminus \operatorname{GL}_2$.

Unicity : If $f = \gamma \circ \beta$ where $(\gamma, \beta) \in (UA_2 \setminus GL_2) \times GL_2$, then β is necessarily equal to the linear part of f and this gives us the uniqueness. \Box

Lemma 4. Let $f = (f_1, f_2) \in GA_2$ satisfy f(0, 0) = (0, 0) and $deg(f_1) > deg(f_2)$, then

 $\exists ! \ l \in \mathbb{N}^*, \exists ! \ (\gamma_i)_{1 < i < l} \in (T_2 \setminus GL_2)^{l-1} \times (UA_2 \setminus GL_2), \exists ! \ \beta \in GL_2$

such that $f = \gamma_1 \circ \sigma \circ \gamma_2 \circ \sigma \circ \cdots \circ \sigma \circ \gamma_{l-1} \circ \sigma \circ \gamma_l \circ \beta$.

Proof. Existence : we show it by induction on $\deg(f_2)$. If $\deg(f_2) = 1$, we are done by Lemma 3.

If deg $(f_2) > 1$, by Lemma 2, f can be writen $f = \gamma \circ \sigma \circ \tilde{f}$ where $(\gamma, \tilde{f}) \in (T_2 \setminus GL_2) \times GA_2$ and $\tilde{f} = (\tilde{f}_1, \tilde{f}_2)$ with deg $(\tilde{f}_2) < \text{deg}(\tilde{f}_1) = \text{deg}(f_2)$. The equality f(0,0) = (0,0) implies the equality $\tilde{f}(0,0) = (0,0)$. We have the result by applying the induction hypothesis to \tilde{f} .

Uniqueness : it comes from the uniqueness in Lemmas 2 and 3 by noting that if $l \geq 2$, $(\gamma_i)_{1 \leq i \leq l} \in (\mathbf{T}_2 \setminus \mathrm{GL}_2)^{l-1} \times (\mathrm{UA}_2 \setminus \mathrm{GL}_2)$ and $\beta \in \mathrm{GL}_2$, then the automorphism $p = (p_1, p_2) = \sigma \circ \gamma_2 \circ \sigma \circ \cdots \circ \sigma \circ \gamma_{l-1} \circ \sigma \circ \gamma_l \circ \beta$ satisfies deg $p_1 < \deg p_2$.

Proof of Theorem 1. Let $f \in GA_2 \setminus Af_2$. First of all, whether we are in case i) or ii), it is clear that we must have (a, b) = f(0, 0). Conversely, if we

set (a,b) = f(0,0), then the automorphism $\tilde{f} = (\tilde{f}_1, \tilde{f}_2) = \tau_{(a,b)}^{-1} \circ f$ satisfies $\tilde{f}(0,0) = (0,0)$. If $\deg(\tilde{f}_1) > \deg(\tilde{f}_2)$, we obtain the result by Lemma 4 applyed to \tilde{f} . If $\deg(\tilde{f}_1) \le \deg(\tilde{f}_2)$, there exists a unique $c \in \mathbb{C}$ such that $\hat{f} = (\hat{f}_1, \hat{f}_2) = \sigma_{-c} \circ \tilde{f}$ satisfies $\deg \hat{f}_1 > \deg \hat{f}_2$. We again apply Lemma 4 to \hat{f} to obtain the result.

4. On the multidegree of an automorphism of the affine plane.

We introduce here the definition of the multidegree of an automorphism of the affine plane and give a few basic properties of it. The multidegree of an automorphism is an element of D.

Definitions. D denotes the set of all finite sequences of integers greater than or equal to 2 and D^* denotes the set D with the vacuum sequence omitted.

We define the following partial order \leq on D: if $d = (d_1, ..., d_l) \in D$ and if $e = (e_1, ..., e_m) \in D$, then we say that $d \leq e$ if $l \leq m$ and if there exist $1 \leq i_1 < i_2 < \cdots < i_l \leq m$ such that $\forall j \in \{1, \ldots, l\}, d_j \leq e_{i_j}$. Also, we will denote the concatenation of d and e by $de = (d_1, ..., d_l, e_1, ..., e_m)$. We set :

$$\begin{split} l(d) &= l \; ; \\ |d| &= d_1 + d_2 + \ldots + d_l \; ; \\ deg(d) &= d_1 \times d_2 \times \ldots \times d_l \; ; \\ d^{-1} &= (d_l, \ldots, d_1). \end{split}$$

Let us set $B_2 = Af_2 \cap BA_2$. W. van der Kulk proved that GA_2 is the amalgamated product of Af_2 and BA_2 over B_2 . The following theorem expresses this result :

Theorem (vdK). Let $f \in GA_2$, then there exists $l \in \mathbb{N}$, there exist $(\alpha_i)_{1 \leq i \leq l+1} \in (Af_2)^{l+1}$, there exist $(\gamma_i)_{1 \leq i \leq l} \in (BA_2)^l$ such that

$$\begin{cases} f = \alpha_1 \gamma_1 \alpha_2 \gamma_2 \cdots \alpha_l \gamma_l \alpha_{l+1} \\ \forall i \in \{1, \dots, l\}, \ \gamma_i \notin Af_2 \\ \forall i \in \{2, \dots, l\}, \ \alpha_i \notin BA_2 \end{cases}$$

Moreover, if $m \in \mathbb{N}$, $(\alpha'_i)_{1 \leq i \leq m+1} \in (Af_2)^{m+1}$ and $(\gamma'_i)_{1 \leq i \leq m} \in (BA_2)^m$ are such that $\int f = \alpha'_1 \gamma'_1 \alpha'_2 \gamma'_2 \cdots \alpha'_m \gamma'_m \alpha'_{m+1}$

$$\begin{cases} f = \alpha'_1 \gamma'_1 \alpha'_2 \gamma'_2 \cdots \alpha'_m \gamma'_m \alpha'_{m+1} \\ \forall i \in \{1, \dots, m\}, \ \gamma'_i \notin Af_2 \\ \forall i \in \{2, \dots, m\}, \ \alpha'_i \notin BA_2 \end{cases}$$

then l = m and there exist $(\beta_i)_{1 \leq i \leq l} \in (B_2)^l$ and $(\delta_i)_{1 \leq i \leq l} \in (B_2)^l$ such that

$$\begin{cases} \alpha_1' = \alpha_1 \beta_1^{-1} \\ \forall i \in \{2, \dots, l\}, \ \alpha_i' = \delta_{i-1} \alpha_i \beta_i^{-1} \\ \alpha_{l+1}' = \delta_l \alpha_{l+1} \end{cases}$$

and $\forall i \in \{1, \ldots, l\}, \ \gamma'_i = \beta_i \gamma_i \delta_i^{-1}.$

Remarks.

1. If $(\alpha'_i)_{1 \le i \le l+1} \in (Af_2)^{l+1}$ and $(\gamma'_i)_{1 \le i \le l} \in (BA_2)^l$ satisfy the latter relations, we easily check that

$$\begin{aligned} \alpha_1'\gamma_1'\alpha_2'\gamma_2'\cdots\alpha_l'\gamma_l'\alpha_{l+1}' &= & \alpha_1\beta_1^{-1}\beta_1\gamma_1\delta_1^{-1}\delta_1\alpha_2\beta_2^{-1}\beta_2\gamma_2\delta_2^{-1}\delta_2\cdots \\ & & \cdots\delta_{l-1}\alpha_l\beta_l^{-1}\beta_l\gamma_l\delta_l^{-1}\delta_l\alpha_{l+1} \\ &= & \alpha_1\gamma_1\alpha_2\gamma_2\cdots\alpha_l\gamma_l\alpha_{l+1} \end{aligned}$$

2. If $\gamma \in BA_2$, then $\gamma \in B_2$ if and only if deg $\gamma = 1$. Furthermore, for all β , β' in Af₂, we have deg $(\beta \gamma \beta') = \text{deg } \gamma$.

Thanks to the Theorem of W. van der Kulk and to the point 2 of the Remarks, we can define the multidegree d(f) of f and the length l(f) of f.

Definition. $d(f) = (deg \ \gamma_1, \dots, deg \ \gamma_l) \in D \ ; \ l(f) = l(d(f)).$

Remark. The definition of the length l(f) of f that we use in this paper is different from the usual one which is equal to the length of f as an element of the amalgamated product $Af_2 *_{B_2} BA_2$.

Proposition 2. We have deg f = deg(d(f)).

Proof. Let us write $f = \alpha_1 \gamma_1 \alpha_2 \gamma_2 \cdots \alpha_l \gamma_l \alpha_{l+1}$ as in the last Theorem.

By exactly the same way as in Proposition 1, we would show by a decreasing induction on i, beginning with i = l and finishing with i = 1 that

$$\operatorname{bideg}(\gamma_i \alpha_{i+1} \gamma_{i+1} \cdots \gamma_{l-1} \alpha_l \gamma_l \alpha_{l+1}) = (\prod_{j=i}^l \operatorname{deg} \gamma_j, \prod_{j=i+1}^l \operatorname{deg} \gamma_j).$$

So we have

$$\operatorname{bideg}(\gamma_1 \alpha_2 \gamma_2 \alpha_3 \cdots \gamma_{l-1} \alpha_l \gamma_l \alpha_{l+1}) = (\prod_{j=1}^l \operatorname{deg} \gamma_j, \prod_{j=2}^l \operatorname{deg} \gamma_j),$$

whence the result.

The next result is obvious from the definitions.

Proposition 3. $d(f^{-1}) = d(f)^{-1}$.

Remark. From the last two propositions, we get : $\deg(f^{-1}) = \deg(f)$, which is nothing else than the n = 2 case of the following formula of Gabber : any automorphism f of $\mathbb{A}^n_{\mathbb{C}}$ satisfies $\deg f^{-1} \leq (\deg f)^{n-1}$.

Proposition 4. If f and g are elements of GA_2 , then $d(fg) \leq d(f)d(g)$ and we have the equality if and only if deg(fg) = deg(f) deg(g).

Proof. Let us prove $d(fg) \leq d(f)d(g)$.

If $f \in Af_2$, we have d(fg) = d(g) and $d(f) = \emptyset$ so that d(fg) = d(f)d(g). If $f \in BA_2$, let us write $g = \alpha'_1\gamma'_1\alpha'_2\gamma'_2\cdots\alpha'_m\gamma'_m\alpha'_{m+1}$ as in the last Theorem. If $\alpha'_1 \notin B_2$, it is clear that d(fg) = d(f)d(g). So, let us suppose $\alpha'_1 \in B_2$, whence $f\alpha'_1\gamma'_1 \in BA_2$. We now claim that :

either $f\alpha'_1\gamma'_1 \in B_2$, in which case $d(fg) = (\deg \gamma'_2, \ldots, \deg \gamma'_m)$ so that $d(fg) \leq d(g) \leq d(f)d(g)$,

either $f\alpha'_1\gamma'_1 \notin B_2$, in which case deg $f\alpha'_1\gamma'_1 \leq \max \{ \deg f, \deg \gamma'_1 \}$ so that $d(fg) = (\deg f\alpha'_1\gamma'_1, \deg \gamma'_2, \dots, \deg \gamma'_m) \leq d(f)d(g).$

Now that we have proven $d(fg) \leq d(f)d(g)$ when f is either in Af₂ or in BA₂, we can deduce the same inequality for any f by writing $f = \alpha_1 \gamma_1 \alpha_2 \gamma_2 \cdots \alpha_l \gamma_l \alpha_{l+1}$ as in the last Theorem.

Indeed

$$d(fg) = d(\alpha_1 \gamma_1 \alpha_2 \gamma_2 \cdots \alpha_l \gamma_l \alpha_{l+1} g) \\ \leq d(\alpha_1) d(\gamma_1) d(\alpha_2) d(\gamma_2) \cdots d(\alpha_l) d(\gamma_l) d(\alpha_{l+1}) d(g) \\ \leq d(\gamma_1) d(\gamma_2) \cdots d(\gamma_l) d(g) \\ \leq d(f) d(g).$$

If d(fg) = d(f)d(g), it is clear that $\deg(fg) = \deg(f) \deg(g)$ by Proposition 2. Conversely, if $d(fg) \neq d(f)d(g)$, then d(fg) < d(f)d(g) so that

deg d(fg) < deg (d(f)d(g)) and we obtain

$$\deg (fg) = \deg(d(fg)) < \deg (d(f)d(g)) = \deg f \deg g$$

For any $d \in D$, we define the sets U_d and V_d which will be in the central position of section 6. In the present section, we will show that they have a very simple characterization in terms of the multidegree.

Definition. We set :

$$\begin{split} \phi_d : & Af_2 \times \prod_{i=1}^l T_{2,d_i} \times GL_2 \to GA_{2,deg(d)} \\ & (\alpha \ , \ (\gamma_1,...,\gamma_l) \ , \ \beta \) \mapsto \alpha\gamma_1\sigma\gamma_2\cdots\sigma\gamma_l\beta \\ U_d &= Im(\phi_d) \ ; \\ \psi_d &= \phi_{d_|Af_2 \times \prod_{i=1}^{l-1} (T_{2,d_i} \setminus T_{2,d_i-1}) \times (UA_{2,d_l} \setminus UA_{2,d_l-1}) \times GL_2 \ and finally \\ V_d &= Im(\psi_d). \end{split}$$

Proposition 5. For any $d \in D$, $V_d = \{f \in GA_2 \text{ such that } d(f) = d\}$.

Proof. For any $d \in D$, let us set $V'_d = \{f \in GA_2 \text{ such that } d(f) = d\}$. We have clearly $V_d \subset V'_d$. By the Theorem 1, we have $GA_2 = \coprod_{d \in D} V_d$. The equality $GA_2 = \coprod_{d \in D} V'_d$ now shows us that $V_d = V'_d$.

Before characterizing nicely U_d , we need Proposition 6, which is a decomposition theorem for elements of V_d . When $\alpha = \sigma$, the following lemma is nothing else than the existence result of Lemma 2.

Lemma 5. Let $f = (f_1, f_2) \in GA_2$ satisfy $deg(f_1) > deg(f_2) > 1$ and let $\alpha \in Af_2 \setminus B_2$, then there exists $(\gamma, p) \in (T_2 \setminus GL_2) \times GA_2$ such that $f = \gamma \alpha p$ with deg $p_1 > deg p_2$ and deg $p_1 = deg f_2$.

Proof. Because $\alpha \notin B_2$, we have $\alpha^{-1} \notin B_2$ so that $\alpha^{-1} = (aX + bY + bY)$ c, dX + eY + f) where a, b, c, d, e, f are complex numbers with $d \neq 0$.

On the one hand, we have

$$\alpha^{-1} = (aX + (b - \frac{ae}{d})Y + c, dX + f)(X + \frac{e}{d}Y, Y)$$

which is equivalent to

$$(X - \frac{e}{d}Y, Y) = \alpha(aX + (b - \frac{ae}{d})Y + c, dX + f)$$

and on the other hand, by Lemma 2, we know the existence of $(\gamma', g) \in (T_2 \setminus GL_2) \times GA_2$ such that $\gamma' f = g$ with deg $g_1 < \deg g_2 = \deg f_2$. So, we have :

$$(X - \frac{e}{d}Y, Y)\gamma' f = \alpha(ag_1 + (b - \frac{ae}{d})g_2 + c, dg_1 + f).$$

By setting

$$\begin{cases} \gamma = \gamma'^{-1} (X + \frac{e}{d}Y, Y) \\ p = (ag_1 + (b - \frac{ae}{d})g_2 + c, dg_1 + f) \end{cases}$$

we have the desired result (we use the fact that $b - \frac{ae}{d} \neq 0$, which is true because (aX + bY + c, dX + eY + f) is an automorphism).

Proposition 6. If $f \in GA_2$ satisfies $d(f) = d \in D$ with $l(d) = l \in \mathbb{N}$, then, for any $(\alpha_i)_{1 \leq i \leq l-1} \in (GL_2 \setminus B_2)^{l-1}$, there exist $(\alpha, \beta) \in Af_2 \times GL_2$ and $(\gamma_i)_{1 < i < l} \in (T_2)^l$ such that

$$f = \alpha \gamma_1 \alpha_1 \cdots \gamma_{l-1} \alpha_{l-1} \gamma_l \beta.$$

Proof. If l = 0, there is nothing to do. So, let us suppose $l \ge 1$, so that deg $f \ge 2$. We know the existence of $\alpha \in Af_2$ such that $g = \alpha^{-1}f$ satisfies g(0,0) = (0,0) and $\deg(g_1) > \deg(g_2)$.

Now, the result comes from the fact that if $(\alpha_i)_{i\in\mathbb{N}^*} \in (\mathrm{GL}_2 \setminus \mathrm{B}_2)^{\mathbb{N}^*}$ and if $g \in \mathrm{GA}_2$ satisfies g(0,0) = (0,0) and $\deg(g_1) > \deg(g_2)$, then there exist $m \in \mathbb{N}^*$, $(\gamma_i)_{1\leq i\leq m} \in (T_2 \setminus \mathrm{GL}_2)^m$ and $\beta \in \mathrm{GL}_2$ such that $g = \gamma_1 \alpha_1 \cdots \gamma_{m-1} \alpha_{m-1} \gamma_m \beta$. This result is proved by exactly the same way as the Lemma 4 (of course using Lemma 5 instead of Lemma 2).

Proposition 7. For any e in D, we have $U_e = \coprod_{d \le e} V_d$.

Proof. By the Proposition 4, it is clear that $U_e \subset \coprod_{d \le e} V_d$.

Conversely, to prove that $d \leq e$ implies $V_d \subset U_e$, it is sufficient to prove that if $e = (e_1, \ldots, e_m), k \in \{1, \ldots, m\}$ and $d = (e_1, \ldots, \hat{e_k}, \ldots, e_m)$ then $V_d \subset U_e$. Let $f \in V_d$. By definition, there exist $(\alpha, \beta) \in Af_2 \times GL_2$ and $(\gamma_i)_{1,\ldots,\hat{k},\ldots,m} \in (T_2)^{m-1}$ such that

$$f = \alpha \gamma_1 \sigma \gamma_2 \sigma \cdots \sigma \gamma_{k-1} \sigma \gamma_{k+1} \sigma \cdots \sigma \gamma_m \beta,$$

i.e. $f = \phi_d(\alpha, (\gamma_1, \ldots, \hat{\gamma_k}, \ldots, \gamma_m), \beta)$. If k = 1, we have

$$f = \phi_e(\alpha\sigma, (\mathrm{Id}, \gamma_2, \ldots, \gamma_m), \beta)$$

and if k = m, we have

$$f = \phi_e(\alpha, (\gamma_1, \ldots, \gamma_{m-1}, \mathrm{Id}), \sigma\beta)$$

so that in these two cases we have $f \in U_e$.

Let us suppose that $k \in \{2, \ldots, m-1\}$. We set $\theta = (X + Y, Y) \in T_2$, so that $\sigma\theta\sigma = (X, X + Y) \in GL_2 \setminus B_2$. So, if we define $(\alpha_i)_{1 \leq i \leq m-1} \in (GL_2 \setminus B_2)^{m-1}$ by $\alpha_i = \sigma$ if $i \neq k$ and $\alpha_k = \sigma\theta\sigma$, by the Proposition 6, we deduce the existence of $(\alpha', \beta') \in Af_2 \times GL_2$ and $(\gamma'_i)_{1,\ldots,\hat{k},\ldots,m} \in (T_2)^{m-1}$ such that

$$f = \alpha' \gamma_1' \sigma \gamma_2' \sigma \cdots \sigma \gamma_{k-1}' \sigma \theta \sigma \gamma_{k+1}' \sigma \cdots \sigma \gamma_m' \beta'$$

i.e.

$$f = \phi_e(\alpha', (\gamma'_1, \dots, \gamma'_{k-1}, \theta, \gamma'_{k+1}, \dots, \gamma'_m), \beta').$$

So $f \in U_e$.

Corollary 1.
$$U_d = \{f \in GA_2, \text{ such that } d(f) \leq d\}$$

Corollary 2. $d \leq e$ is equivalent to $U_d \subset U_e$.

5. Automorphisms of length less than or equal to one.

The next proposition gives us some simple characterizations for an automorphism to be of length less than or equal to one :

Proposition 8. Let $f = (f_1, f_2) \in GA_2$. Write $f = \sum_{i=0}^{\infty} (P_i, Q_i)$, where the (P_i, Q_i) are homogeneous \mathbb{C} -endomorphisms of $\mathbb{A}^2_{\mathbb{C}}$ of degree i and set $(P, Q) = (\sum_{i=2}^{\infty} P_i, \sum_{i=2}^{\infty} Q_i)$. Then, the six following assertions are equivalent : i) P and Q are linearly dependent polynomials. ii) $l(f) \leq 1$ iii) $\forall i, j \geq 2, Jac(P_i, Q_j) = 0$ iv) Jac(P, Q) = 0v) P and Q are algebraically dependent over \mathbb{C} . vi) $\exists (u, v) \in \mathbb{C}[t], \exists R \in \mathbb{C}[X, Y]$ such that (P, Q) = (u(R), v(R)).

We use the following lemma :

Lemma 6. Let $(u, v) \in \mathbb{C}[t]^2 \setminus \{(0, 0)\}$ and $R \in \mathbb{C}[X, Y]$ such that $u(R)\frac{\partial R}{\partial X} + v(R)\frac{\partial R}{\partial Y} = 0$, then there exist $(a, b) \in \mathbb{C}^2$ and $w \in \mathbb{C}[t]$ such that R = w(aX + bY).

Proof. We can suppose that u and v are relatively prime, so that $u(0) \neq 0$ or $v(0) \neq 0$. The relation $R \mid u(0) \frac{\partial R}{\partial X} + v(0) \frac{\partial R}{\partial Y}$ shows us that $u(0) \frac{\partial R}{\partial X} + v(0) \frac{\partial R}{\partial Y} = 0$. By making a linear change of coordinates in this last equality, we obtain the existence of $w \in \mathbb{C}[t]$ such that R = w(v(0)X - u(0)Y).

Proof of Proposition 8. The implications $i) \Rightarrow ii) \Rightarrow iii) \Rightarrow iv)$ are clear. The equivalence of iv), v) and vi) comes from the equivalence of the following three assertions (see [No]), where g_1 and g_2 are any elements of $\mathbb{C}[X, Y]$:

- 1) $\operatorname{Jac}(g_1, g_2) = 0$
- 2) g_1 et g_2 are algebraically dependent over \mathbb{C} .
- 3) $\exists (u,v) \in \mathbb{C}[t], \exists R \in \mathbb{C}[X,Y]$ such that $(g_1,g_2) = (u(R),v(R)).$

Let us now prove that $vi \Rightarrow i$). We can suppose that f = (X + u(R), Y + v(R)) where u(0) = v(0) = R(0, 0) = 0, $val(u(R)) \ge 2$ and $val(v(R)) \ge 2$. Since f is an automorphism, we necessarily have Jac(f) = 1, which implies that $u'(R)\frac{\partial R}{\partial X} + v'(R)\frac{\partial R}{\partial Y} = 0$. By Lemma 6, if $(u', v') \ne (0, 0)$, there exist $(a, b) \in \mathbb{C}^2$ and $w \in \mathbb{C}[t]$ such that R = w(aX + bY). So, we can suppose that R = aX + bY. The condition $u'(R)\frac{\partial R}{\partial X} + v'(R)\frac{\partial R}{\partial Y} = 0$ implies that u'(R) and v'(R) are linearly dependent. It follows easily that u(R) and v(R) are also linearly dependent. \Box

6. On the irreducible components of $GA_{2,n}$.

If n is a positive integer, let $E_{2,n}$ be the vector space of \mathbb{C} -endomorphisms f of $\mathbb{A}^2_{\mathbb{C}}$ satisfying $\deg(f) \leq n$. Let us set $\operatorname{GA}_{2,n} = \operatorname{GA}_2 \cap E_{2,n}$, $\operatorname{T}_{2,n} = \operatorname{T}_2 \cap E_{2,n}$ and $\operatorname{UA}_{2,n} = \operatorname{UA}_2 \cap E_{2,n}$.

We set $J_{2,n} = \{f \in E_{2,n}, \text{ such that Jac } f = 1\}$ and $G_{2,n} = GA_{2,n} \cap J_{2,n}$.

 $E_{2,n}$ is an affine space and $J_{2,n}$ is a (Zariski) closed subset of it. H. Bass, E.H. Connell and D. Wright show in the paper [B-C-W] that $G_{2,n}$ is also a closed subset of $E_{2,n}$. By slightly modifying their proof, we obtain that $GA_{2,n}$ is a locally closed subset of $E_{2,n}$. In particular, it is an algebraic variety. We have $GA_{2,n} \simeq \mathbb{C}^* \times G_{2,n}$ via $f = (f_1, f_2) \mapsto (Jac(f), (\frac{f_1}{Jac(f)}, f_2))$, so that the irreducible components of $GA_{2,n}$ are in one to one correspondence with the irreducible components of $G_{2,n}$. Our interest in the irreducible components of $G_{2,n}$ is motivated by the Jacobian Conjecture in dimension 2 and degree *n* asserting that an element of $E_{2,n}$ is invertible if and only if its Jacobian is a nonzero constant. This conjecture is equivalent to the equality $J_{2,n} = G_{2,n}$.

In Remark (1.7) of the last quoted paper, the authors note that to show this equality, it would suffice to show, if possible, that dim $J_{2,n} = \dim G_{2,n}$ and that the algebraic variety $J_{2,n}$ is irreducible (because we have of course $J_{2,n} \subset G_{2,n}$).

We answer here negatively to this hope. Indeed, on the one hand $J_{2,n} = G_{2,n}$ when $n \leq 100$, by T.T. Moh ([Mo]) and on the other hand, the Proposition 11 asserts that $G_{2,n}$ is reducible when $n \geq 4$. We obtain thus the Corollary of Proposition 11 : the variety $J_{2,n}$ is reducible when $4 \leq n \leq 100$.

The results of section 3 lead us to believe that we can get some insight into the decomposition in irreducible components of $GA_{2,n}$ via purely combinatorial means (see the Conjecture formulated in this section). Before stating this conjecture, we will give a few definitions and apply them to obtain various results which will end by the computation of the dimension of $GA_{2,n}$ (see Proposition 10).

Let us recall that for any $d \in D$, we introduced in section 4 the subsets U_d and V_d of GA₂ which turned out to be

$$\begin{cases} U_d = \{ f \in \mathbf{GA}_2 \text{ such that } d(f) \le d \} \\ V_d = \{ f \in \mathbf{GA}_2 \text{ such that } d(f) = d \} \end{cases}$$

Definition. We note that by the definition of U_d and V_d (see section 4), their Zariski closures in $GA_{2,deq(d)}$ are equal.

We set $W_d = \overline{U_d} = \overline{V_d}$ (Zariski closure in $GA_{2,deq(d)}$).

If n is an integer greater than or equal to two, the element $(n) \in D$ will play an important role in the following lines. We begin with a crucial result :

Proposition 9. If n is an integer greater than or equal to two, then $U_{(n)}$ is a closed subvariety of $GA_{2,n}$.

Proof. $U_{(n)} = \{f \in GA_{2,n} \text{ such that } l(f) \leq 1\}$ and the condition iii) (or iv)) of Proposition 8 shows us that this condition is closed.

Lemma 7. If $d \in D$, then W_d is an irreducible variety of dimension |d| + 6.

Proof. If $d = \emptyset$, the lemma is true. Let us now suppose that $d \in D^*$.

We have :

$$W_d = \psi_d(\operatorname{Af}_2 \times \prod_{i=1}^{l-1} (\operatorname{T}_{2,d_i} \setminus \operatorname{T}_{2,d_i-1}) \times (\operatorname{UA}_{2,d_l} \setminus \operatorname{UA}_{2,d_l-1}) \times \operatorname{GL}_2)$$

where $\operatorname{Af}_2 \times \prod_{i=1}^{l-1} (\operatorname{T}_{2,d_i} \setminus \operatorname{T}_{2,d_i-1}) \times (\operatorname{UA}_{2,d_l} \setminus \operatorname{UA}_{2,d_l-1}) \times \operatorname{GL}_2$ is an irreducible variety (as a product of irreducible varieties) so that W_d is an irreducible variety.

Let us set :
$$\begin{split} \psi_{1,d} &= \psi_{d}|_{\mathbf{A}_{1} \times \prod_{i=1}^{l-1} (\mathbf{T}_{2,d_{i}} \setminus \mathbf{T}_{2,d_{i}-1}) \times (\mathbf{U}\mathbf{A}_{2,d_{l}} \setminus \mathbf{U}\mathbf{A}_{2,d_{l}-1}) \times \mathbf{GL}_{2}} \\ \text{where } \mathbf{A}_{1} \text{ is the group of translations of } \mathbb{A}^{2}_{\mathbb{C}} \text{ ;} \end{split}$$

$$\begin{split} \psi_{2,d} &= \psi_{d}_{|\mathcal{A}_{2}\times\prod_{i=1}^{l-1}(\mathcal{T}_{2,d_{i}}\backslash\mathcal{T}_{2,d_{i}-1})\times(\mathcal{U}\mathcal{A}_{2,d_{l}}\backslash\mathcal{U}\mathcal{A}_{2,d_{l}-1})\times\mathcal{GL}_{2}} \\ \text{where } \mathcal{A}_{2} \text{ is the set of automorphisms of } \mathbb{A}^{2}_{\mathbb{C}} \text{ of the shape } (Y+a, X+cY+b) \\ \text{where } a, b, c \text{ are elements of } \mathbb{C} \text{ ;} \end{split}$$

 $V_{1,d} = \operatorname{Im}(\psi_{1,d});$ $V_{2,d} = \operatorname{Im}(\psi_{2,d}).$

We have $V_d = V_{1,d} \sqcup V_{2,d}$ (by Theorem 1). $\psi_{1,d}$ and $\psi_{2,d}$ being injective morphisms (always by Theorem 1), it comes out : dim $(\overline{V_{1,d}}) = |d| + 5$ and

 $\dim(\overline{V_{2,d}}) = |d| + 6$. Finally,

$$\dim W_d = \dim \overline{V_d} \\ = \dim(\overline{V_{1,d}} \cup \overline{V_{2,d}}) \\ = \max\{\dim \overline{V_{1,d}}, \dim \overline{V_{2,d}}\} \\ = |d| + 6$$

Definition. For $n \in \mathbb{N}^*$, we set $D_n = \{d \in D, deg(d) \leq n\}$ and C_n denotes the set of maximal elements of D_n .

For example :

 $\begin{array}{l} C_1 = \{ \emptyset \} \ ; \\ C_2 = \{ (2) \} \ ; \\ C_3 = \{ (3) \} \ ; \\ C_4 = \{ (4), (2,2) \} \ ; \\ C_5 = \{ (5), (2,2) \} \ ; \\ C_6 = \{ (6), (2,3), (3,2) \} \ ; \\ C_7 = \{ (7), (2,3), (3,2) \} \ ; \\ C_8 = \{ (8), (2,4), (4,2), (2,2,2) \} \ ; \\ C_9 = \{ (9), (2,4), (3,3), (4,2), (2,2,2) \} . \end{array}$

The next lemma is obvious :

Lemma 8. If n is a nonzero positive integer, then we have :

$$GA_{2,n} = \bigcup_{d \in C_n} U_d = \coprod_{d \in D_n} V_d = \bigcup_{d \in C_n} W_d.$$

Proposition 10. If n is a nonzero positive integer, then $GA_{2,n}$ is an algebraic variety of dimension 6 if n = 1 and of dimension n + 6 otherwise.

Proof. By lemma 7 and 8, we have :

 $\dim \operatorname{GA}_{2,n} = \max_{d \in D_n} |d| + 6$

If n = 1, $D_1 = \{\emptyset\}$ and the proposition is clear. If n > 1, $\forall d = (d_1, ..., d_l) \in D_n$, we have :

$$|d| = \sum_{i=1}^{l} d_i \le \prod_{i=1}^{l} d_i \le n$$

hence, $\max_{d \in D_n} |d|$ is obtained for d = (n) where it is equal to n.

Being now familiarized with the definitions, we give the announced conjecture :

Conjecture. If n is a nonzero positive integer, then $GA_{2,n} = \bigcup_{d \in C_n} W_d$ is the decomposition in irreducible components of $GA_{2,n}$.

This conjecture is equivalently formulated as :

$$\forall (d, e) \in (C_n)^2, d \neq e \Rightarrow W_d \not\subset W_e.$$

We will prove this conjecture in case $n \leq 9$ by using the next lemma :

Lemma 9. If n is an integer greater than or equal to two and if $d \in C_n$ with $d \neq (n)$, then we have :

$$W_d \not\subset W_{(n)}$$
 and $W_{(n)} \not\subset W_d$.

Proof. U_d contains an automorphism f such that $l(f) \ge 2$ and so : $U_d \not\subset U_{(n)}$.

 $U_{(n)}$ being closed, this implies $W_d \not\subset W_{(n)}$. We deduce at once from this that $W_{(n)} \not\subset W_d$, because, if we had $W_{(n)} \subset W_d$, the inequality dim $W_d \leq \dim W_{(n)}$ together with the irreducibility of W_d , would imply $W_{(n)} = W_d$, which is not the case.

Theorem 2. If $1 \le n \le 9$, then the Conjecture is true.

Proof. If n = 1, then $GA_{2,n} = W_{(\emptyset)}$ and if $2 \le n \le 3$, then it is clear that $GA_{2,n} = W_{(n)}$ and the conjecture is then checked.

Let us now suppose that $4 \leq n \leq 9$. By Lemma 9, it is sufficient to prove that if d and e are two elements of C_n different from (n), then $W_d \not\subset W_e$. But the condition $n \leq 9$ implies the equality dim $W_d = \dim W_e$. It is then sufficient to show that $W_d \neq W_e$. Now, V_d is a dense constructible subset of W_d and V_e is a dense constructible subset of W_e . Furthermore, $V_d \cap V_e = \emptyset$. This proves that we cannot have $W_d = W_e$.

Even if we cannot yet compute the number of irreducible components of $GA_{2,n}$, we can however decide whether this variety is irreducible :

Proposition 11. If n is a nonzero positive integer, then the variety $GA_{2,n}$ is irreducible if and only if $n \leq 3$.

Proof. It is sufficient to prove that if $n \ge 4$ is any integer, then $\operatorname{GA}_{2,n}$ is reducible. Now, $W_{(n)}$ is an irreducible component of $\operatorname{GA}_{2,n}$ (because it is an irreducible variety of the same dimension as $\operatorname{GA}_{2,n}$). The element $(X + Y^2, Y + X^2 + 2XY^2 + Y^4)$ is in $W_{(2,2)} \subset \operatorname{GA}_{2,n}$ but not in $W_{(n)}$. \Box

Corollary of Proposition 11. If $4 \le n \le 100$, then the variety $J_{2,n}$ is reducible.

Remark. It is not true that the mapping

$$\begin{array}{rcccc} d: & \mathrm{GA}_2 & \to & D \\ & f & \mapsto & d(f) \end{array}$$

is a lower-continuous function, i.e. if $d \in D$, it is not necessarily true that U_d is a closed subset of $GA_{2,\deg(d)}$.

To point out this fact, we can just consider the family of GA_2 given by the Nagata automorphism :

$$\begin{array}{rccc} \chi : & \mathbb{C} & \to & \mathrm{GA}_{2,4} \\ & Z & \mapsto & \chi(Z), \end{array}$$

where $\chi(Z) = (X - 2Y(XZ + Y^2) - Z(XZ + Y^2)^2, Y + Z(XZ + Y^2))$. Then, if $Z \in \mathbb{C}^*$, we have $\chi(Z) = \gamma_1 \alpha_1 \gamma_2$ where

$$\begin{cases} \gamma_1 = (X - Z^{-1}Y^2, Y) \in \mathbf{BA}_2 \setminus \mathbf{B}_2 \\ \alpha_1 = (X, Y + Z^2X) \in \mathbf{Af}_2 \setminus \mathbf{B}_2 \\ \gamma_2 = (X + Z^{-1}Y^2, Y) \in \mathbf{BA}_2 \setminus \mathbf{B}_2 \end{cases}$$

so that $d(\chi(Z)) = (2,2)$. However $d(\chi(0)) = (3)$ so that $\chi(0) \in \overline{U_{(2,2)}} \setminus U_{(2,2)}$.

7. More details on the irreducible components of $GA_{2,4}$.

It results from Theorem 2 that $W_{(4)} \not\subset W_{(2,2)}$. The next proposition gives us an explicit equation satisfied by all elements of $W_{(2,2)}$ but not necessarily by elements of $W_{(4)}$.

Proposition 12. Let $f = (f_1, f_2) \in W_{(2,2)}$. Write $f = \sum_{i=0}^{4} (P_i, Q_i)$, where (P_i, Q_i) are \mathbb{C} -endomorphisms of $\mathbb{A}^2_{\mathbb{C}}$ which are homogeneous of degree *i*. Then, $P_2P_3 - 2P_1P_4$ and $Q_2Q_3 - 2Q_1Q_4$ are proportional polynomials. This is equivalent to the algebraic condition :

$$Jac(P_2P_3 - 2P_1P_4, Q_2Q_3 - 2Q_1Q_4) = 0.$$

Proof. Let $f = (f_1, f_2) = \sum_{i=0}^{4} (P_i, Q_i) \in \text{Im}(\phi_{(2,2)})$ where (P_i, Q_i) are \mathbb{C} -

endomorphisms of $\mathbb{A}^2_{\mathbb{C}}$ which are homogeneous of degree *i*.

We begin by proving that there exists a complex number λ such that

$$(Q_2Q_3 - 2Q_1Q_4)^2 = \lambda(P_1Q_2 - P_2Q_1)^2Q_4.$$

If $Q_4 = 0$, we see easily that $Q_3 = 0$. In this case, it is sufficient to take $\lambda = 0$.

Otherwise, there exists a complex number α such that $\deg(f_1 - \alpha f_2) = 2$. We set $g = (g_1, g_2) = (f_1 - \alpha f_2, f_2) = (\sum_{i=0}^{2} (P_i - \alpha Q_i), \sum_{i=0}^{4} Q_i) \in GA_2$. There exists $w \in \mathbb{C}[t]$ such that $\deg(g_2 - w(g_1)) \leq 2$. We necessarily have $\deg w = 2$. Let β be the coefficient of t^2 in w. We obtain the relations :

$$\begin{cases} Q_3 = 2\beta(P_1 - \alpha Q_1)(P_2 - \alpha Q_2)\\ Q_4 = \beta(P_2 - \alpha Q_2)^2 \end{cases}$$

which give us successively :

$$\begin{array}{rcl} Q_2Q_3 - 2Q_1Q_4 &=& 2\beta(P_2 - \alpha Q_2)\big((P_1 - \alpha Q_1)Q_2 - (P_2 - \alpha Q_2)Q_1\big)\\ Q_2Q_3 - 2Q_1Q_4 &=& 2\beta(P_2 - \alpha Q_2)(P_1Q_2 - P_2Q_1)\\ (Q_2Q_3 - 2Q_1Q_4)^2 &=& 4\beta^2(P_2 - \alpha Q_2)^2(P_1Q_2 - P_2Q_1)^2\\ (Q_2Q_3 - 2Q_1Q_4)^2 &=& 4\beta(P_1Q_2 - P_2Q_1)^2Q_4 \end{array}$$

Whence the existence of λ . By the same argument, we show the existence of μ such that $(P_2P_3 - 2P_1P_4)^2 = \mu(P_1Q_2 - P_2Q_1)^2P_4$. Since P_4 and Q_4 are proportional polynomials, $(P_2P_3 - 2P_1P_4)^2$ and $(Q_2Q_3 - 2Q_1Q_4)^2$ also and finally $P_2P_3 - 2P_1P_4$ and $Q_2Q_3 - 2Q_1Q_4$ too. We have thus proved the relation :

$$\operatorname{Jac}(P_2P_3 - 2P_1P_4, Q_2Q_3 - 2Q_1Q_4) = 0$$

and this relation remains true if we only suppose that $f \in W_{(2,2)} = \overline{\text{Im}(\phi_{(2,2)})}$.

Proposition 12 is enough to prove that $g = (X + Y^4, X + Y + Y^4) \in W_{(4)} \setminus W_{(2,2)}$. Indeed, the homogeneous components (P_i, Q_i) of degree i of g are $(P_1, Q_1) = (X, X + Y)$, $(P_2, Q_2) = (0, 0)$, $(P_3, Q_3) = (0, 0)$ and $(P_4, Q_4) = (Y^4, Y^4)$ so that $P_2P_3 - 2P_1P_4$ and $Q_2Q_3 - 2Q_1Q_4$ are equal to $-2XY^4$ and $-2(X + Y)Y^4$ which are not proportional polynomials.

Acknowledgments. I would like to thank José Bertin for his advices and Michel Brion for his constant help.

References :

[B-C-W] H. BASS, E.H. CONNELL and D. WRIGHT, The Jacobian Conjecture : reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. (1982) 287-330.

[vdK] W. van der KULK, On polynomial rings in two variables, N. Archief voor Wiskunde (3), vol. 1 (1953), 33-41.

[Mo] T.T. MOH, On the global Jacobian Conjecture and the configuration of roots, J. Reine Angew. Math. 340 (1983), 140-212.

[No] A. NOWICKI, On the Jacobian equation J(f, g) = 0 for polynomials in k[x,y], Nagoya Math. J. 109 (1988), 151-157.

Jean-Philippe FURTER U.M.P.A.,E.N.S.L. 46 Allée d'Italie 69 007 LYON

email : jfurter@umpa.ens-lyon.fr