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Abstract

In the first part of this paper, we briefly present a conjecture dealing with polynomial
composition and we prove it in some particular cases. In the second and longest part,
we prove our main result, which consists of an application of the conjecture to plane
polynomial automorphisms. More precisely, we describe the closure of the set of plane
polynomial automorphisms having a prescribed multidegree of length two.
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0 INTRODUCTION

The theory of polynomials in one indeterminate and the theory of plane polynomial auto-
morphisms are intimately connected. The most striking illustration of this phenomenon
is probably the easy way to deduce the theorem of Jung from the theorem of Abhyankar,
Moh, Suzuki (for this deduction, see e.g. [Ess00, Proof of Cor. 5.3.6, p. 100]). Let us
recall these famous statements (see [AM75, Suz74] and [Jun42]).

Theorem (Abhyankar, Moh, Suzuki). Let K be a field of characteristic 0. If a, b ∈ K[X]
are two polynomials which generate the whole algebra K[X], i.e. such that K[a, b] =
K[X], then deg a divides deg b or deg b divides deg a.

Theorem (Jung). Let K be a field of characteristic 0. Any polynomial automorphism
of the affine plane A2

K is a composition of affine and triangular automorphisms, where
by definition an affine automorphism is of the form

(x, y) 7→ (αx+ βy + γ, δx+ εy + ζ), with α, . . . , ζ ∈ K and αε− βδ 6= 0

and a triangular automorphism is of the form

(x, y) 7→ (αx+ p(y), βy + γ) with α, β, γ ∈ K, p ∈ K[y] and αβ 6= 0.
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In the same vein, the main result of this paper consists in proving that the following
rigidity conjecture R(m, n) dealing with polynomials in one indeterminate has some ap-
plications to the theory of plane polynomial automorphisms (see Th. B below). Using
Gröbner basis, we have checked R(m, n) when m ≤ 8 and n ≤ 5.

Conjecture R(m, n). Let a = X(1+a1X+· · ·+amXm), b = X(1+b1X+· · ·+bnXn) ∈
C[X], where the ai, bj ∈ C. Let us write a ◦ b = X(1 + c1X + · · · + cNX

N ), where
N = (m+ 1)(n+ 1)− 1 and the ck ∈ C. If c1 = · · · = cm+n = 0, then a = b = X.

Remark. This conjecture being obvious for m or n = 0, we generally assume that m
and n are ≥ 1.

Let us begin to explain why this conjecture may be interpreted as a rigidity statement.
Considering ai, bi as indeterminates of degree i allows us to see each ci as a homogeneous
polynomial of degree i in C[a1, . . . , am, b1, . . . , bn]. The conjecture R(m,n) means that
c1, . . . , cm+n is a hsop (homogeneous system of parameters) of C[a1, . . . , am, b1, . . . , bn].
For the definition of a hsop and several characterizations, we refer to subsection 2.2 below
and in particular to Lemma 11. This terminology (hsop) is for example used in [Sta96,
Chap. I, Def. 5.1, p. 33]. By Lemma 11, the conjecture R(m,n) is still equivalent to
asserting that the polynomial endomorphism of the complex affine space Am+n sending
(a1, . . . , am, b1, . . . , bn) to (c1, . . . , cm+n) is quasi-finite, i.e. admits finite fibers. In some
sense, this means that polynomial composition is rigid.

In this connection, let us recall the famous result of Ritt on polynomial composition
(see [Rit22]). A polynomial a ∈ C[X] of degree ≥ 2 is prime if the relation a = b ◦ c
implies that b or c has degree 1. If deg f ≥ 2, it is clear that f admits a decomposition
f = f1 ◦ · · · ◦ fr into prime polynomials. Let us note that a ◦ b = c ◦ d in the three
following cases:

i) a, b are any polynomials and c = a ◦ l, d = l−1 ◦ b, where l has degree 1 and l−1 is
its inverse for the composition;

ii) a = d = tm and b = c = tn, where tm(X) = cos(m arccosX) is the m-th Chebyshev
polynomial;

iii) a = d = Xm, b = Xnp(Xm) and c = Xnp(X)m, where p is any polynomial, and
the converse situation, i.e. b = c = Xm, d = Xnp(Xm) and a = Xnp(X)m.

If f = f1 ◦ · · · ◦ fr is a prime decomposition, then, by replacing an adjacent pair
(fi, fi+1) = (a, b) by (c, d) where a, b, c, d are as in i) - iii) above, we obtain a new prime
decomposition. This process is called an elementary transformation.

Theorem (Ritt). The prime decomposition is unique modulo elementary transforma-
tions, i.e. if we have two prime decompositions of some polynomial, we can pass from
one to the other by applying a finite number of elementary transformations.

Many problems related to polynomial composition (and iteration!) are intricate. For
example, the famous Mandelbrot set is defined as the set of complex c-values for which
the orbit of 0 under iteration of p(X) = X2 + c remains bounded. In fact, the conjecture
R(m,n) is related to the following one which perhaps looks more attractive.
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Conjecture R(m). Let a = X(1 + a1X + · · ·+ amX
m) ∈ C[X] and let a−1 ∈ C[[X]] be

its formal inverse for the composition. If m consecutive coefficients of a−1 vanish, then
a = X.

If a−1 = X

1 +
∑
k≥ 1

ãkX
k

, the vanishing conditions means that there exists an

integer n ≥ 0 such that ãn+k = 0 for 1 ≤ k ≤ m. With words, the conjecture R(m) means
that the inverse for the composition of a non trivial polynomial is badly approximated
by polynomials. Let us remark the analogy with Heisenberg’s uncertainty principle in
quantum mechanics asserting that one cannot reduce arbitrarily the uncertainty as to
the position and the momentum of a free particle. Here is a mathematical statement:

Let f be a nonzero element of L2(R) describing a particle: the probability density that
this particle is located at t is 1

‖f‖2 |f
2(t)|. Let f̂ ∈ L2(R) be the Fourier transform of f .

The probability density that the momentum of this particle is equal to ω is 1
2π‖f‖2 |f̂

2(ω)|.
If σt (resp. σω) denotes the variance of the location (resp. momentum), then Heisenberg
uncertainty is expressed by the following inequality:

σt σω ≥
1

2
.

For more details, we refer to [Wey31, p. 77], [Mal99, Th. 2.5] or [KL98, Th. 1, p. 311].
Many mathematical results contain a close idea. For example, rationals are badly

approximated by rationals: if α is any real number, Hurwitz has proved that α is ir-

rational if and only if there are infinitely many rationals
p

q
such that

∣∣∣∣α− p

q

∣∣∣∣ < 1√
5q2

(see [Hur1891]). Algebraic numbers are also badly approximated by rationals. Roth has
proved that for any algebraic number α and any real ε > 0, there exist only finitely many

rationals
p

q
such that

∣∣∣∣α− p

q

∣∣∣∣ < 1

q2+ε
(see [Rot55]). On the converse, this idea was first

used by Liouville to construct transcendental numbers (see [Lio1844a, Lio1844b]). We
show below (see Lemma 2) that the conjecture R(m) holds if and only if the conjecture
R(m,n) holds for any n. Coming back to our initial conjecture R(m,n), our first result
is the following:

Theorem A. If m or n ≤ 2, then the conjecture R(m,n) holds.

Before giving an application to plane polynomial automorphisms, we need some nota-
tions. A polynomial endomorphism of A2

K will be identified with its sequence f = (f1, f2)
of coordinate functions fj ∈ K[X,Y ]. We define its degree by deg f = maxj deg fj .

The space E := C[X,Y ]2 of polynomial endomorphisms of the complex affine plane
A2 is naturally an infinite dimensional algebraic variety (see [Sha66, Sha82] for the def-
inition). This roughly means that E≤m := {f ∈ E , deg f ≤ m} is a (finite dimensional)
algebraic variety for any m ≥ 1, which comes out from the fact that it is an affine space.
If Z ⊆ E , we set Z≤m := Z ∩ E≤m. The space E is endowed with the topology of the
inductive limit, in which Z is closed (resp. open) if and only if Z≤m is closed (resp.
open) in E≤m for any m.
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Let G be the group of polynomial automorphisms of A2. Since G is locally closed in
E (see [FM10] and also [BCW82, Sha66, Sha82]), it is naturally an infinite dimensional
algebraic variety. Let

A := {(aX + bY + c, dX + eY + f), a, b, c, d, e, f ∈ C, ae− bd 6= 0}

be the subgroup of affine automorphisms and

B := {(aX + p(Y ), bY + c), a, b, c ∈ C, p ∈ C[Y ], ab 6= 0}

be the subgroup of (upper) triangular automorphisms (B may be viewed as a Borel
subgroup of G). By [Jun42, Kul53, Nag72], any element f of G admits an expression:

f = α1 ◦ β1 ◦ · · · ◦ αk ◦ βk ◦ αk+1,

where the αj ’s (resp. βj ’s) belong to A (resp. B). By contracting such an expression,
one might as well suppose that it is reduced, i.e. ∀j, βj /∈ A and ∀j, 2 ≤ j ≤ k, αj /∈ B.
It follows from the amalgamated structure of G that if

f = α′1 ◦ β′1 ◦ · · · ◦ α′l ◦ β′l ◦ α′l+1

is another reduced expression of f , then k = l and there exist (γj)1≤ j≤ k, (δj)1≤ j≤ k in
A ∩ B such that α′1 = α1 ◦ γ−11 , α′j = δj−1 ◦ αj ◦ γ−1j (for 2 ≤ j ≤ k), α′k+1 = δk ◦ αk+1

and β′j = γj ◦ βj ◦ δ−1j (for 1 ≤ j ≤ k). Following [FM89] and [Fur02], we define the
multidegree and the length of f by:

mdeg(f) = (deg β1, . . . , deg βk) and l(f) = k.

These notions of multidegree and length could be defined in the same way for a polynomial
automorphism of A2

K , where K is any field. We recall (see [Wri79, FM89]) that degree
and multidegree are related by

deg f = deg β1 × · · · × deg βk.

Let D be the set of multidegrees, i.e. of finite sequences of integers ≥ 2 (including the
empty sequence). If d = (d1, . . . , dk) ∈ D, Gd will denote the set of automorphisms whose
multidegree is equal to d. By [FM89, Fur09], Gd is an irreducible smooth, locally closed
subset of G of dimension d1 + · · · + dk + 6. Let us note that Gd ⊆ G≤n as soon as
n ≥ d1 . . . dk and that we have a partition of G as a disjoint union G =

∐
d∈D
Gd. What

can be said on the closure of Gd?
By [Fur02], the length of an automorphism is lower semicontinuous. Therefore, any

element of Gd has length ≤ k. The simplest non trivial related example is induced by
the Nagata automorphism (see [Nag72]):

N := (X − 2YW − ZW 2, Y + ZW,Z), where W = XZ + Y 2.
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This automorphism of the complex affine space A3 can be seen as an automorphism of
A2
C[Z] inducing as well a morphism from the complex affine line A1 to G sending z to

Nz = (X − 2Y (Xz + Y 2)− z(Xz + Y 2)2, Y + z(Xz + Y 2)) ∈ G.

If z 6= 0, the factorization

Nz = (X − z−1Y 2, Y ) ◦ (X,Y + z2X) ◦ (X + z−1Y 2, Y )

shows us that Nz has multidegree (2, 2). If z = 0, we have N0 = (X−2Y 3, Y ) so that N0

has multidegree (3). This yields us G(3) ∩ G(2,2) 6= ∅. Inspired by the analysis of similar
examples, we hoped (erroneously) that the equality Gd =

⋃
e� d
Ge might always be true,

where � is defined in the following way:

Definition. The partial order � on D is induced by the following relations:
i) ∅ � d (for any d);

ii) (d1, . . . , dk) � (e1, . . . , ek) when dj ≤ ej for any j;

iii) (d1, . . . , dj−1, dj + dj+1 − 1, dj+2, . . . , dk) � (d1, . . . , dk) when 1 ≤ j ≤ k − 1.

However, by [EF04], there cannot exist any partial order v such that Gd =
⋃
ev d
Ge

when d = (11, 3, 3) ! Actually, it is proved there that G(19) ∩ G(11, 3, 3) 6= ∅ and for
grounds of dimension we cannot have G(19) ⊆ G(11, 3, 3). As a matter of fact reality is
often complex. We now think that the equality Gd =

⋃
e� d
Ge is actually true in length 0, 1

and 2. In length 0 it is obvious. In length 1, it is proved in [Fur97]. This paper settles
the length 2 case modulo the conjecture R(m,n). Indeed, here is the main result of our
paper:

Theorem B. If the conjecture R(m,n) holds and if we set d = (m+ 1, n+ 1), then we
have:

Gd =
⋃
e� d
Ge.

Remark. If the equality Gd =
⋃
e� d
Ge holds when d is of length 2, then, a straightforward

induction on the length on d would establish that for any d the following inclusion holds:⋃
e� d
Ge ⊆ Gd.

Theorems A and B directly imply:

Theorem C. If d = (d1, d2) is a multidegree with d1 or d2 ≤ 3, then Gd =
⋃
e� d
Ge.
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Remark. We would like to stress that even if the conjecture R(m,n) is obvious when
m or n = 1 (cf. the proof of conjecture R(1) in subsection 1.4), its consequence for
polynomial automorphisms (given via Theorem B) is not obvious at all. Indeed, it asserts
that if d = (d1, d2) is a multidegree such that d1 or d2 ≤ 2, then Gd =

⋃
e� d
Ge. The

simplest case where d1 = d2 = 2 means that

G(2,2) = G∅ ∪ G(2) ∪ G(3) ∪ G(2,2).

In particular, this equality implies the two following points:
• G(3) ∩ G(2,2) 6= ∅. As explained above, this point can be established using the family

of plane automorphisms induced by the Nagata automorphism;
• G(2,2) ∩ G(4) = ∅. This equality follows from [Fur09, Th. A] asserting that for

any multidegree d = (d1, . . . , dl), the set Gd is closed in the set of all automorphisms of
degree d1 . . . dl. The weaker fact that G(4) is not included into G(2,2) was a consequence
of [Fur97, Th. 2] and was also the object of [Fur97, Prop. 12].

As a funny consequence of Th. C, we will show:

Theorem D. Any closed subgroup of G containing the affine group and an automorphism
of length 1 is equal to G.

Remark. 1. Let us note that any subgroup of G strictly containing the affine group is
dense in G for the Krull topology (see [Fur07, Th. A]). This means that any element of
G can be approximated at the origin and at any order by an element of this subgroup.

2. We recall that any closed subgroup of G which is a finite dimensional algebraic
variety is conjugate to either a subgroup of A or B (see [Sha66, Th. 8], [Kam79, Th.
4.3] or [GD75, Th. 7]).

We finish this introduction by the following natural question.

Question. Does there exist a non trivial closed subgroup of G containing the affine group?

This paper is divided into two parts. The first part is the shortest one and is only
composed of section 1, where we study the rigidity conjecture R(m,n) and prove Th. A.
The second part is composed of the three sections 2, 3, 4. In section 2, we give some
preliminary results. In sections 3 and 4, we respectively prove Th. B and Th. D.

1 THE RIGIDITY CONJECTURE

In subsection 1.1 we prove that the conjectures R(m, n) and R(n,m) are equivalent. In
subsection 1.2, we relate the conjectures R(m, n) and R(m). In subsection 1.3, we give
some generalities on the conjecture R(m). In subsection 1.4, we prove the conjectures
R(1) and R(2). In subsection 1.5, we give some information on the conjecture R(3). We
explain why we were not able to solve it and hope that the given information might help
or motivate some reader for further investigations.
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1.1 The conjecture R(m, n) and R(n,m) are equivalent

Lemma 1. The conjectures R(m,n) and R(n,m) are equivalent.

Proof. Let val : C((X))→ Z∪ {+∞} be the valuation associated to the discrete valuation
ring C[[X]]. The conjecture R(m,n) means that if a = X(1 + a1X + · · · + amX

m) and
b = X(1 + b1X + · · ·+ bnX

n) are such that val(a ◦ b−X) ≥ m+n+ 2, then a = b = X.
Therefore, it is enough to check that val(a ◦ b − X) = val(b ◦ a − X). Indeed, if
k = val(a ◦ b−X), we have a ◦ b(X) ≡ X mod Xk. Let a−1(X) ∈ C[[X]] be the formal
inverse of a for the composition. We get a−1 ◦ (a ◦ b) ◦ a(X) ≡ a−1 ◦ a(X) mod Xk, i.e.
b ◦ a(X) ≡ X mod Xk, so that val(b ◦ a −X) ≥ val(a ◦ b −X). We would show the
other inequality in the same way, so that finally val(a ◦ b−X) = val(b ◦ a−X).

1.2 Relations between the conjectures R(m,n) and R(m)

Lemma 2. If m ≥ 1, the two following assertions are equivalent:
i) The conjecture R(m,n) holds for any n ≥ 0;

ii) The conjecture R(m) holds.

Proof. If a = X(1 + a1X + · · ·+ amX
m) ∈ C[X], let us set

a−1 = X

1 +
∑
k≥ 1

ãkX
k

 ∈ C[[X]].

By definition, the conjecture R(m) holds if and only if for any integer n ≥ 0 the following
assertion R̃(m,n) holds:

Assertion R̃(m,n). (ãn+1 = · · · = ãn+m = 0) =⇒ a(X) = X.

However, if b = X(1 + b1X + · · ·+ bnX
n) ∈ C[X], we have:

a ◦ b(X) ≡ X mod Xm+n+2 ⇐⇒ a−1(X) ≡ b(X) mod Xm+n+2.

Using this equivalence, let us show that the assertions R̃(m,n) and R(m,n) are equiva-
lent. This will be enough for showing the lemma.

Assume that the conjecture R(m,n) holds and that we have ãn+1 = · · · = ãn+m = 0.

Set b(X) = X

1 +
∑

1≤ k≤n
ãkX

k

 = X

1 +
∑

1≤ k≤m+n

ãkX
k

 .

We get a−1(X) ≡ b(X) mod Xm+n+2, so that a ◦ b(X) ≡ X mod Xm+n+2 and finally
a(X) = X.

Assume that the assertion R̃(m,n) holds and that we have a◦b(X) ≡ X mod Xm+n+2.
Then, we have a−1(X) ≡ b(X) mod Xm+n+2, so that ãn+1 = · · · = ãn+m = 0 and we
get a(X) = X. The equality b(X) = X follows at once.
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1.3 Generalities on the conjecture R(m)

Let m ≥ 1 be a fixed integer. Set a(X) = X(1− λ1X) . . . (1− λmX) ∈ C[X], where the
λk are complex numbers, and express the formal inverse for the composition of a as

a−1(X) = X

1 +
∑
n≥1

un
n+ 1

Xn

 ∈ C[[X]],

where the un, n ≥ 1, are complex numbers.

Lemma 3. If
∮

denotes integration over a little circle around the origin, we have

un =
1

2πi

∮
dX

an+1(X)
=

∑
j1 + ···+ jm=n

(
n+ j1
n

)
. . .

(
n+ jm
n

)
λj11 . . . λjmm .

Proof. By Lagrange formula, we have:

un =
n+ 1

2πi

∮
a−1(X)

Xn+2
dX =

n+ 1

2πi

∮
Y

an+2(Y )
a′(Y )dY by setting X = a(Y );

=
1

2πi

∮
dY

an+1(Y )
by integrating by parts.

Therefore, un is theXn-coefficient of the formal series
∏

1≤ k≤m

1

(1− λkX)n+1
∈ C[[X]].

We conclude thanks to the Taylor expansion
1

(1−X)n+1
=
∑
j≥ 0

(
n+ j

n

)
Xj .

Note that un is a homogeneous polynomial of degree n in the λ1, . . . , λm (where each
λk has weight 1). The conjecture R(m) means that if m consecutive un vanish, then
the λi also. In other words, m consecutive polynomials un always constitute a hsop of
C[λ1, . . . , λm].

Remark 4. In order to prove R(m), it is sufficient to prove that if m consecutive un
vanish, then uk = 0 when k is large enough. Indeed, in this case a−1 is a polynomial and
the relation X = a ◦ a−1 shows that a = X (by taking the degree).

The proof of the following lemma is due to Laurent Manivel.

Lemma 5. The sequence n 7→ un satisfies a linear recurrence relation with polynomial
coefficients of length m. More precisely, there exist polynomials µ0(n), . . . , µm(n) in
C[λ1, . . . , λm][n], not all zero, such that

∀n ≥ 1,
∑

0≤ k≤m
µk(n)un+k = 0.
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Proof. By Lemma 3, it is enough to show an analogous linear recurrence relation for the
sequence

n 7→ vn :=

∮
dX

an(X)
.

Set vn,k =

∮
Xk

an
dX and Vn =

 vn,0
...
vn,m−1

 .

Claim. There exists a square matrixMn whose entries belong to the field C(λ1, . . . , λm)(n)
such that

Vn = MnVn+1.

Set γ(X) = X−1a(X) = (1 − λ1X) . . . (1 − λmX). We have vn,k =

∮
Xk−n

γn
dX. If

k 6= n− 1, we get vn,k =
n

k − n+ 1

∮
Xk−n+1γ′

γn+1
dX, i.e.

k − n+ 1

n
vn,k =

∮
Xk−n+1γ′

γn+1
dX.

Note that this last equality still holds for k = n − 1. By Euclidean division, there exist
polynomials Ak, Bk such that

Xk+1γ′ = Akγ −Bk

and we have degAk = k and degBk < deg γ = m. We have:

k − n+ 1

n
vn,k =

∮
X−n(Akγ −Bk)

γn+1
dX =

∮
Ak
an

dX −
∮
XBk
an+1

dX.

This gives us a relation of the following form:

n− k − 1

n
vn,k +

k∑
j=0

ak,j vn,j =
m∑
j=1

bk,j vn+1,j (∗).

But we have
∮

a′

an+1
dX = 0 and a(X) = X

m∑
k=0

(−1)kσkX
k, where

σk =
∑

i1<···<ik

λi1 . . . λik

denotes the k-th elementary symmetric polynomial in the variables λ1, . . . , λm (with the
usual convention σ0 = 1), so that:

m∑
k=0

(−1)k(k + 1)σk vn+1,k = 0 (∗∗).
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This relation allows us to express vn+1,m in terms of the vn+1,j ’s, 0 ≤ j ≤ m − 1. By
making such a substitution in the right hand side of (*), we obtain a relation of the form

n− k − 1

n
vn,k +

k∑
j=0

ak,j vn,j =
m−1∑
j=0

ck,j vn+1,j (∗ ∗ ∗).

However, the relations (***) for 0 ≤ k ≤ m− 1 can be expressed with matrices as

KnVn = CVn+1,

where the matrix C does not depend on n, i.e. has entries in C(λ1, . . . , λm), and the
matrix Kn is lower triangular with diagonal entries the numbers

n− k − 1

n
+ ak,k =

n− k − 1

n
+m, 0 ≤ k ≤ m− 1.

In particular, the matrix Kn is invertible. By setting Mn := K−1n C, we have proved the
claim.

By using several times the claim, we get:

Vn+m = Vn+m

Vn+m−1 = Mn+m−1Vn+m
...

Vn = (MnMn+1 . . .Mn+m−1)Vn+m.

Therefore, the m+1 elements vn, . . . , vn+m can be expressed as linear combination, with
coefficients in C(λ1, . . . , λm)(n), of the m elements vn+m,0, . . . , vn+m,m−1. As a conse-
quence, the elements vn, . . . , vn+m are linearly dependent over the field C(λ1, . . . , λm)(n)
and hence also over the ring C[λ1, . . . , λm][n].

1.4 Proof of theorem A

According to Lemmas 1 and 2, it is sufficient to prove the conjectures R(1) and R(2).

a) Proof of R(1)

We use the notations of subsection 1.3 withm = 1. Note that un =
(
2n
n

)
λn1 . If un = 0,

we want to prove that λ1 = 0. This is obvious. �

b) Proof of R(2)

We use the notations of subsection 1.3 with m = 2. Note that:

un =
∑

i+ j=n

(
n+ i

n

)(
n+ j

n

)
λi1λ

j
2.

We rely on the following linear recurrence relation.

10



Lemma 6. For any n ≥ 3, we have:
n(n− 1)(λ1 − λ2)2un + (n− 1)(2n− 1)(λ1 + λ2)(λ1 − 2λ2)(λ2 − 2λ1)un−1

−3(3n− 4)(3n− 2)λ21λ
2
2un−2 = 0.

Proof. We follow the beginning of the proof of Lemma 5 in the case where m = 2 and
we compute the relations (*), (**) and (***). We get

A0 = 2, B0 = 2− σ1X, A1 =
σ1
σ2

+ 2X and B1 =
σ1
σ2

+
2σ2 − σ21

σ2
X,

so that the relations (*) for k = 0, 1 are the following:
3n− 1

n
vn,0 = 2 vn+1,1 − σ1 vn+1,2

σ1 vn,0 +
3n− 2

n
σ2 vn,1 = σ1 vn+1,1 + (2σ2 − σ21) vn+1,2.

(∗).

We get at once:
vn+1,0 − 2σ1 vn+1,1 + 3σ2 vn+1,2 = 0 (∗∗),

so that the relations (***) for k = 0, 1 are the following:
3

3n− 1

n
σ2 vn,0 = σ1 vn+1,0 + (6σ2 − 2σ21) vn+1,1

3σ1σ2 vn,0 + 3
3n− 2

n
σ22 vn,1 = (σ21 − 2σ2) vn+1,0 + (7σ1σ2 − 2σ31) vn+1,1,

i.e.
(6σ2 − 2σ21) vn+1,1 = 3

3n− 1

n
σ2 vn − σ1 vn+1 (A),

and

3σ1σ2 vn + 3
3n− 2

n
σ22 vn,1 = (σ21 − 2σ2) vn+1 + (7σ1σ2 − 2σ31) vn+1,1 (B).

The relation (A) expresses vn+1,1 in terms of vn, vn+1. Replacing n by n − 1 allows
to express vn,1 in terms of vn−1, vn:

(6σ2 − 2σ21) vn,1 = 3
3n− 4

n− 1
σ2 vn−1 − σ1 vn (A)′.

By substituting (A) and (A)’ in (B), we get the following relation between vn−1, vn, vn+1:

3σ1σ2(6σ2 − 2σ21) vn + 3
3n− 2

n
σ22

[
3

3n− 4

n− 1
σ2 vn−1 − σ1 vn

]

= (σ21 − 2σ2)(6σ2 − 2σ21) vn+1 + (7σ1σ2 − 2σ31)

[
3

3n− 1

n
σ2 vn − σ1 vn+1

]
,

i.e. µ2 vn+1 + µ1 vn + µ0 vn = 0, where
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µ2 = (σ21 − 2σ2)(2σ
2
1 − 6σ2) + σ1(7σ1σ2 − 2σ31)

= −3σ2(λ1 − λ2)2

µ1 = 3σ1σ2(6σ2 − 2σ21)− 3
3n− 2

n
σ1σ

2
2 − 3

3n− 1

n
(7σ1σ2 − 2σ31)σ2

= 3σ1σ2(9σ2 − 2σ21)
2n− 1

n

= 3σ1σ2(λ1 − 2λ2)(λ2 − 2λ1)
2n− 1

n

µ0 = 32σ32
3n− 2

n

3n− 4

n− 1
.

Since vk+1 = 2πi uk for any k, the result follows.

Remark 7. Another way to prove Lemma 6 is more elementary, but tedious. The left
hand side being homogeneous of degree n + 2 in λ1, λ2, it is enough to check that for
0 ≤ i ≤ n+ 2, the coefficient of λi1λ

n+2−i
2 vanish.

Let us prove R(2). If uk = uk+1 = 0, we want to prove that λ1 = λ2 = 0. We
begin by showing by contradiction that λ1 = λ2. Otherwise, Lemma 6 shows us that the
following implication holds:

∀n ≥ 3, (un−2 = un−1 = 0) =⇒ un = 0.

Therefore, un = 0 for n ≥ k and by Remark 4, this implies the equality λ1 = λ2 = 0. A
contradiction. Therefore λ1 = λ2. Set λ := λ1 = λ2. Lemma 6 gives us for any n ≥ 3:

2(n− 1)(2n− 1)λ3un−1 − 3(3n− 4)(3n− 2)λ4un−2 = 0.

Let us show by contradiction that λ = 0. Otherwise, the following implication would
hold:

∀n ≥ 3, un−2 = 0 =⇒ un−1 = 0.

We still get un = 0 for n ≥ k, so that λ = 0. A contradiction. We have indeed λ = 0, so
that λ1 = λ2 = 0. �

1.5 The conjecture R(3).

The first aim of this subsection is to explain why we were not able to solve conjecture
R(3) in the previous way. The second aim is to give some information (and motivation)
for the reader who might be interested to undertake some investigations on this subject.

We use the notations of subsection 1.3 with m = 3, so that:

un =
∑

i+ j+ k = n

(
n+ i

n

)(
n+ j

n

)(
n+ k

n

)
λi1λ

j
2λ

k
3 ∈ Z[λ1, λ2, λ3].

Before giving the linear recurrence relation satisfied by the un, we need some notations.
If µ = (µ1, µ2, µ3) where µi are integers satisfying µ1 ≥ µ2 ≥ µ3 ≥ 0, we define mµ ∈
Z[λ1, λ2, λ3] by mµ :=

∑
λν11 λ

ν2
2 λ

ν3
3 where (ν1, ν2, ν3) describes all distinct permutations
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of the triple (µ1, µ2, µ3). We identify (µ1, µ2) and (µ1, µ2, 0) as well as (µ1) and (µ1, 0, 0).
Hence m(1) = λ1 +λ2 +λ3, m(1,1) = λ1λ2 +λ1λ3 +λ2λ3, m(1,1,1) = λ1λ2λ3 and m(3,2,1) =
λ31λ

2
2λ3 + λ31λ2λ

2
3 + λ21λ

3
2λ3 + λ1λ

3
2λ

2
3 + λ21λ2λ

3
3 + λ1λ

2
2λ

3
3.

We set ∆ = (λ1 − λ2)2(λ1 − λ3)2(λ2 − λ3)2 and define the Mi, Ni for 1 ≤ i ≤ 5 by:

M1 = 9m(4,2) − 14m(4,1,1) − 9m(3,3) + 3m(3,2,1) − 3m(2,2,2);
M2 = 5m(4,2) − 8m(4,1,1) − 5m(3,3) + 2m(3,2,1) − 3m(2,2,2);
M3 = 39m(4,2) − 62m(4,1,1) − 39m(3,3) + 15m(3,2,1) − 21m(2,2,2);
M4 = 33m(4,2) − 52m(4,1,1) − 33m(3,3) + 12m(3,2,1) − 15m(2,2,2);
M5 = 6m(4,2) − 10m(4,1,1) − 6m(3,3) + 3m(3,2,1) − 6m(2,2,2);

N1 = −2m(5,2) + 4m(5,1,1) + 3m(4,3) − 3m(4,2,1) − 8m(3,3,1) + 8m(3,2,2);
N2 = 10m(9,4)−36m(9,3,1) +52m(9,2,2)−25m(8,5) +63m(8,4,1)−38m(8,3,2) +10m(7,6) +

30m(7,5,1) − 146m(7,4,2) + 216m(7,3,3) − 60m(6,6,1) + 70m(6,5,2) − 32m(6,4,3) − 60m(5,5,3) +
40m(5,4,4);

N3 = −27m(4,4) + 36m(4,3,1) − 2m(4,2,2) − 52m(3,3,2);
N4 = −342m(8,6)+1006m(8,5,1)−1110m(8,4,2)+972m(8,3,3)+342m(7,7)−141m(7,6,1)−

1301m(7,5,2) + 900m(7,4,3) + 1178m(6,6,2) − 15m(6,5,3) − 724m(6,4,4) + 238m(5,5,4);
N5 = 10m(8,6)−30m(8,5,1)+34m(8,4,2)−30m(8,3,3)−10m(7,7)+5m(7,6,1)+37m(7,5,2)−

27m(7,4,3) − 38m(6,6,2) + 5m(6,5,3) + 20m(6,4,4) − 10m(5,5,4).

Set:
An = n(n− 1)(n− 2)(M1n− 3M2)∆;
Bn = (n− 1)(n− 2)[(2M1n

2 −M3n)N1 − 3N2];
Cn = (n− 2)[(M1n

3 −M4n
2)N3 + 3nN4 + 36N5];

Dn = 8(2n− 3)(4n− 7)(4n− 9)(M1n−M5)m
3
(1,1,1).

One could show the next result (using a computer!):

Lemma 8. For any n ≥ 4, we have:

Anun +Bnun−1 + Cnun−2 +Dnun−3 = 0.

The difference with the recurrence relations obtained in Lemma 6 is that the factor
M1n − 3M2 of An may suddenly vanish for a large value of n. Therefore, if we assume
that uk = uk+1 = uk+2 = 0, we do not succeed to show that uk+3 = 0. However, a closer
analysis of the recurrence formula might probably be sufficient for proving R(3).

2 PRELIMINARY RESULTS

In subsection 2.1, we recall a valuative criterion characterizing the elements of f(V ) where
f : V →W is a morphism of complex algebraic varieties. The only valuation ring we need
is the ring of complex formal power series. In subsection 2.2, after recalling equivalent
definitions of a hsop, we give two results related with formal power series. In subsection
2.3, we make some technical definitions which will allow us (in the next section) to prove
Th. B. Finally, in subsection 2.4, we prove an easy lemma on the multidegree.
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2.1 Valuative criterion

The valuative criterion given in Lemma 9 below is familiar (e.g. [MFK94, chap. 2, §1,
pp 52-54] or [Gro61a, §7]). We proved it in [Fur09].

Let C[[T ]] be the algebra of complex formal power series and let C((T )) be its quotient
field. If V is a complex algebraic variety and A a complex algebra, V (A) will denote the
points of V with values in A, i.e. the set of morphisms SpecA → V . If v is a closed
point of V and ϕ ∈ V

(
C((T ))

)
, we will write v = lim

T→0
ϕ(T ) when:

i) the point ϕ : SpecC((T ))→ V is a composition SpecC((T ))→ SpecC[[T ]]→ V ;

ii) v is the point SpecC→ SpecC[[T ]]→ V .

For example, if V = A1 and ϕ ∈ V
(
C((T ))

)
= C((T )), we will write v = lim

T→0
ϕ(T )

when ϕ ∈ C[[T ]] and v = ϕ(0).

Lemma 9. Let f : V → W be a morphism of complex algebraic varieties and let w be
a closed point of W . The two following assertions are equivalent:

i) w ∈ f(V );

ii) w = lim
T→0

f(ϕ(T )) for some ϕ ∈ V
(
C((T ))

)
.

Remark. Note the analogy with the metric case where w ∈ f(V ) if and only if there
exists a sequence (vn)n≥1 of V such that w = lim

n→+∞
f(vn).

The following result is an easy consequence of Lemma 9 (see [Fur09, Cor. 1.1]).

Corollary 10. If d = (d1, . . . , dk) is a multidegree and f ∈ G, the following assertions
are equivalent:

i) f ∈ Gd;

ii) f = lim
T→0

gT for some g ∈ Gd
(
C((T ))

)
.

Proof. For any integerm ≥ 2, let Bm be the set of triangular automorphisms whose degree
is exactly equal to m. Let A′ = A\B be the set of affine non triangular automorphisms.
It is enough to note that Gd is the image of the following morphism of algebraic varieties:

A2 × (A′)k−1 ×
∏

1≤ i≤ k
Bdi −→ G

sending
(

(a1, a2), (a
′
i)i, (bi)i

)
to a1 ◦ b1 ◦ a′1 ◦ b2 ◦ a′2 ◦ · · · ◦ a′k−1 ◦ bk ◦ a2. The details are

left to the reader.

Remark. Since Gd is locally closed in G (see [Fur09]), there is a natural identification
between Gd(K) and the set of automorphisms of A2

K whose multidegree are equal to d, for
any field K containing C.
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2.2 Homogeneous system of parameters and formal power series

Let K be an algebraically closed field and let ArK be the affine r-space over K. Let us
grade the polynomial algebra R = K[z1, . . . , zr] by assigning each zk to be homogeneous
of some strictly positive degree (depending on k). For each m ≥ 0, the set of m-
homogeneous polynomials is denoted by Rm. If p = (p1, . . . , pr) ∈ Rr, let φp : ArK →
ArK be the morphism of algebraic varieties defined by φp(w) = (p1(w), . . . , pr(w)) for
w ∈ ArK . Let also Ip be the ideal of R generated by p1, . . . , pr. Following a usual
terminology (e.g. [Sta96, Chap. I, Def. 5.1, p. 33]), if each pk is homogeneous of
some strictly positive degree (depending on k) and if K[z1, . . . , zr] is a finitely generated
module over K[p1, . . . , pr], the sequence p is said to be a hsop (homogeneous system of
parameters). For the sake of completeness, we give the proof of the following classical
lemma characterizing hsop.

Lemma 11. Let p = (p1, . . . , pr) be a sequence of homogeneous polynomials of R =
K[z1, . . . , zr], each zk being homogeneous of some strictly positive degree (depending on
k). The r-uple p is a hsop of R if and only if the following equivalent assertions are
satisfied:

i) φp is a finite morphism;

ii) φp is a quasi-finite morphism;

iii) (φp)
−1(0) is a finite set;

iv) dimKR/Ip < +∞;

v) (φp)
−1(0) = {0};

vi) φp is a proper morphism;

vii) R is a finitely generated and free module over K[p1, . . . , pr];

viii) φp is a flat morphism;

ix) For any d > maxk deg pk, we have Rdl ⊆ I lp when l is large enough;

x) For some d > maxk deg pk, we have Rdl ⊆ I lp when l is large enough.

Proof. Note that assertion i) is a reformulation of the definition.
i) =⇒ ii) and ii) =⇒ iii) are obvious.
iii) ⇐⇒ iv) follows from the Hilbert’s Nullstellensatz.
iv) =⇒ i). Let h1, . . . , hs be homogeneous elements of R which form a K-basis of

R/Ip. Set S := K[p1, . . . , pr]. It is enough to show that R =
∑

i hiS. Set N =
∑

i hiS
and let S+ = p1S + · · · + prS be the ideal of S generated by the pi. Note that S is a
subgraded ring of R and that R and N are both graded module over S. Finally, since
R = N + S+R, by the graded version of Nakayama’s lemma, we get R = N .

iii) =⇒ v). Let us show by contradiction that (φp)
−1(0) = {0}. Otherwise (φp)

−1(0)
would contain a nonzero element w = (w1, . . . , wr). If di := deg zi and ei := deg pi, we
have:

∀λ ∈ K, pi(λd1z1, . . . , λdrzr) = λeipi(z1, . . . , zr).
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This proves that (λd1w1, . . . , λ
drwr) belongs to (φp)

−1(0) for any λ, contradicting (iii).
v) =⇒ iii) is obvious.
i)⇐⇒ vi) follows from a theorem of Chevalley (see [Gro61b, EGA, III, 4.4.2, p. 136])

asserting that a morphism of algebraic varieties is finite if and only if it is proper and
affine (see also [Mur67, Lemma (3.5.1), p. 52] or [BCW82, p. 296]). Alternatively, it
is well known that a morphism is finite if and only if it is proper and quasi-finite (see
the previous reference of Grothendieck!). Furthermore, it is clear that an affine proper
morphism is quasi-finite. Indeed, each of its fibers being affine and complete, it has to
be finite.

i) ⇐⇒ vii) follows from [Sta96, Chapter I, Th. 5.9, p. 35]. Note that the implication
vii) =⇒ i) is obvious. The implication i) =⇒ vii) also follows from [Bou07, §4, n◦ 4, Cor.
of Prop. 5, p. 58]. This reference claims that R is a projective module over K[p1, . . . , pr].
In this graded situation, any projective module is free.

vii) =⇒ viii). Any free module is flat.
viii) =⇒ ii) is clear, since a flat morphism is equidimensional (e.g. [Har77, (III, Cor.

9.6), p. 257]).
vii) =⇒ ix). Set S = K[p1, . . . , pr] and let h1, . . . , hs be homogeneous elements of

R such that R =
∑

i hiS. Set M = maxi deg hi, m = maxk deg pk and let d > m be
any integer. Let us check that for any l ≥ M

d−m , we have Rdl ⊆ (Ip)
l. Let f be any

element of Rdl. There exists homogeneous elements ui of S such that f =
∑

i hiui.
Furthermore, each ui admits an expression ui =

∑
α ui,αp

α, where the sum is over
α = (α1, . . . , αr) ∈ Nr, pα := pα1

1 . . . pαrr and ui,α belongs to K. Set |α| = α1 + · · ·+ αr.
We have f =

∑
i,α ui,αhip

α. If ui,α 6= 0, we may assume that deg f = deg(hip
α). We get

m |α| ≥ deg pα = deg f − deg hi ≥ dl −M ≥ ml,

from which follows |α| ≥ l and finally f ∈ (Ip)
l.

ix) =⇒ x) is obvious.
x) =⇒ v) is easy and left to the reader.

Corollary 12. If p = (p1, . . . , pr) is a hsop of K[z1, . . . , zr], the map φp : ArK → ArK is
surjective.

Proof. Since φp is proper, it is a closed morphism and in particular its image is closed.
Since φp is flat, it is an open morphism (see [Gro65, EGA, IV2, 2.4.6, p. 20]) and in
particular its image is open.

Remark 13. Let p = (p1, . . . , pr) be a sequence of homogeneous polynomials of R =
K[z1, . . . , zr]. The surjectivity of the morphism φp : ArK → ArK is not sufficient to ensure
that p is a hsop. Consider the algebra C[x, y] with the usual grading. The morphism
A2 → A2, (x, y) 7→ (xy2, x(x+ y)2) is surjective, but not finite.

Let val : C((T )) → Z ∪ {+∞} be the valuation associated to the discrete valuation
ring C[[T ]].
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Lemma 14. If (p1, . . . , pr) is a hsop of R := C[z1, . . . , zr] and q ∈ R is homogeneous
with deg q > max

k
deg pk, then for any b ∈ ArC[[T ]] satisfying b(0) = 0, we have:

val q(b) ≥ min
k

val pk(b) + 1.

Proof. By point ix) of Lemma 11, there exists l ≥ 1 such that ql ∈ (p1, . . . , pr)
l. For

any α = (α1, . . . , αr) ∈ Nr, set pα = pα1
1 . . . pαrr and |α| = α1 + · · · + αr. If A := {α ∈

Nr, |α| = l}, we can write ql =
∑
α∈A

sα p
α (sα ∈ R). Furthermore, we may assume that

sα ∈ Rdα , where dα := deg ql − deg pα ≥ l(deg q −max
k

deg pk) ≥ l ≥ 1. Evaluating at b

and taking the valuation, we get: l val q(b) ≥ min
α∈A

val sα(b)pα(b). But val sα(b) ≥ 1 and

val pα(b) ≥ l min
k

val pk(b), so that l val q(b) ≥ l min
k

val pk(b) + 1.

The following lemma is a nice application of Cor. 12.

Lemma 15. If p = (p1, . . . , pr) is a hsop of C[z1, . . . , zr] and γ ∈ ArC, there exist q ≥ 1
and b ∈ ArC[[T ]] such that b(0) = 0 and p(b) = T q γ.

Proof. Let K :=
⋃
q≥1

C((T
1
q )) be the quotient field of the ring

⋃
q≥1

C[[T
1
q ]] of all formal

Puiseux series. By Newton-Puiseux theorem (see e.g. [Rui93, Prop. 4.4]), K is an
algebraic closure of C((T )). Let us note that p is a hsop of R := K[z1, . . . , zr]. By
Cor. 12, there exists an element a in the affine space ArK such that p(a) = Tγ. Let
q ≥ 1 be such that b := a(T q) ∈ ArC((T )). Replacing T by T q, we get p(b) = T qγ. Using
the valuative criterion of properness (see e.g. [Har77, (II, 4.7), p. 101]) to the proper
morphism φp : Ar → Ar (see Lemma 11), it is clear that b ∈ ArC[[T ]]. Since p(b(0)) = 0,
by point v) of Lemma 11, we get b(0) = 0.

2.3 Technical definitions

Letm,n ≥ 1 be fixed integers and set N := (m+1)(n+1)−1. Let A0, . . . , Am, B1, . . . , Bn
be indeterminates and let C[B], resp. C[A,B], be the polynomial algebra generated by
the Bj , resp. by the Ai, Bj . We grade these polynomial algebras by assigning Ai, Bi to
be homogeneous of degree i.

We now successively define homogeneous polynomials:

• Ci ∈ C[A,B] of degree i for 1 ≤ i ≤ N ;
• Ui,j ∈ C[B] of degree i− j for 1 ≤ i ≤ N , 0 ≤ j ≤ m;
• Wi,j ∈ C[B] of degree i− j for 1 ≤ i, j ≤ m;
• Di ∈ C[B], Ei ∈ C[A,B] of degree i for 1 ≤ i ≤ m;
• Fi ∈ C[B], Gi ∈ C[A,B] of degree i for 1 ≤ i ≤ N ;

satisfying the following points:

17



(0)
∑

1≤ i≤N
CiX

i+1 = A ◦ B (X)−A0X

where A(X) :=
∑

0≤ i≤m
AiX

i+1 and B(X) := X +
∑

1≤ i≤n
BiX

i+1;

(1) Ai = A0Di + Ei for 1 ≤ i ≤ m; (2) Ci = A0Fi +Gi for 1 ≤ i ≤ N ;

(3) Ei =
∑

1≤ j≤m
Wi,j Cj for 1 ≤ i ≤ m; (4) Gi :=

∑
1≤ j≤m

Ui,jEj for 1 ≤ i ≤ N ;

(5) the matrices (Ui,j)1≤ i, j≤m and (Wi,j)1≤ i, j≤m are inverses of one another.

Later on, we will only use the above points (0)-(5) so that the reader in a hurry can
skip the following trivial, but technical, construction.

Construction.

• The Ci ∈ C[A,B] are uniquely defined by (0).

• The Ui,j ∈ C[B] are uniquely defined by Ci =
∑

0≤ j≤m
Ui,jAj (1 ≤ i ≤ N).

Matricially, this may be written C = U.A, where A (resp. C) is the column vector
A = (Ai)0≤ i≤m (resp. C = (Ci)1≤ i≤N ) and U is the matrix U = (Ui,j) 1≤ i≤N

0≤ j≤m
.

We have U =

 V
B
∗

 where B is the column vector B = t(B1, . . . , Bn, 0, . . . , 0)

and V := (Ui,j)1≤ i, j≤m is a lower triangular square matrix with 1’s on the diagonal.

• The matrix W = (Wi,j)1≤ i, j≤m is defined as the inverse of V.

• The column vectors D = (Di)1≤ i≤m and E = (Ei)1≤ i≤m are defined by D :=

−W.B̃ and E := W.C̃, where B̃ (resp. C̃) denotes the column vector obtained from B
(resp. C) by keeping the first m rows. Since the column vector Ã := t(A1, . . . , Am)
satisfies C̃ = A0B̃ + V.Ã, we get Ã = −A0W.B̃ + W.C̃, i.e. Ã = A0D + E, which is (1).

• Fi, Gi are defined by Fi := Ui,0 +
∑

1≤ j≤m
Ui,jDj and Gi :=

∑
1≤ j≤m

Ui,jEj (1 ≤ i ≤ N).

Since Ci =
∑

0≤ j≤m
Ui,jAj for 1 ≤ i ≤ N and Aj = A0Dj + Ej for 1 ≤ j ≤ m, we get

Ci = Ui,0A0 +
∑

1≤ j≤m
Ui,j(A0Dj + Ej) and (2) follows. The assertions (3), (4) and (5) are

obvious.

Remark 16. We have Gi =
∑

1≤ j, k≤m
Ui,jWj,k Ck, so that if i ≤ m, we get Gi = Ci and

Fi = 0.
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We will always use the conjecture R(m,n) through the next statement.

Lemma 17. If the conjecture R(m,n) holds, the family (Fm+i)1≤ i≤n is a hsop of C[B].

Proof. If b = (b1, . . . , bn) ∈ Cn satisfies Fm+i(b) = 0 for 1 ≤ i ≤ n, we want to show
that b = 0. Let us set a0 = 1, ai = Di(b) for 1 ≤ i ≤ m and a = (a0, . . . , am). By (1)
evaluated at (a, b), we get Ei(a, b) = 0 for 1 ≤ i ≤ m. By (3) and (5), we get Ci(a, b) = 0
for 1 ≤ i ≤ m. Moreover, for any m+ 1 ≤ i ≤ m+ n, we get Gi(a, b) = 0 by (4), so that
Ci(a, b) = 0 by (2) and by Remark 16. For the moment, we have proved that Ci(a, b) = 0
for 1 ≤ i ≤ m+ n.

Let us set a := X(1 + a1X + · · · + amX
m), b := X(1 + b1X + · · · + bnX

n) and
c := a ◦ b = X(1 + c1X + · · · cNXN ) ∈ C[X], where the ci ∈ C. Using the relation (0),
we get ci = Ci(a, b) = 0 for 1 ≤ i ≤ m+ n. By R(m,n), we get a = b = X.

We finish this subsection by a technical result to be used in Lemma 20 below. Even if
the proof relies on the above technical definitions, the statement itself is self-contained.

Lemma 18. Set a(X) =
∑

0≤ i≤m
aiX

i+1 and b(X) = X +
∑

1≤ i≤n
biX

i+1, where ai, bi are el-

ements of C((T )). Set c(X) = a ◦ b (X) − a0X. Note that a(X), b(X) and c(X) are
elements of C((T ))[X]. Assume that lim

T→0
b = X and lim

T→0
c = p ∈ C[X]. Then, if the

conjecture R(m,n) holds, we get deg p ≤ m+ n+ 1.

Proof. If a := (a0, . . . , am) and b := (b1, . . . , bn), we have c(X) =
∑

1≤ i≤N
Ci(a, b)Xi+1 by

the relation (0). Since lim
T→0

b = X all the bi belong to TC[[T ]] and since lim
T→0

c exists all

the Ci(a, b) belong to C[[T ]].

Claim. If m+ 1 ≤ i ≤ N , then Gi(a, b) ∈ TC[[T ]].
If 1 ≤ j, k ≤ m, we have:
• Ui,j(b) ∈ TC[[T ]] since Ui,j ∈ C[B] is homogeneous of degree i−j ≥ m+1−m = 1;
• Wj,k(b) ∈ C[[T ]] since Wj,k is a polynomial;
• Ck(a, b) ∈ C[[T ]].
By (5) or Remark 16, we have Gi =

∑
1≤ j, k≤m

Ui,jWj,k Ck and the claim follows.

By (2), we have Ci(a, b) = a0Fi(b) +Gi(a, b).
If i ≥ m + 1, we have valCi(a, b) ≥ 0 and valGi(a, b) ≥ 1, so that val a0Fi(b) ≥ 0.

We want to show that valCi(a, b) ≥ 1, when i > m+ n. For this, it is sufficient to show
that val a0Fi(b) ≥ 1. By Lemmas 14 and 17, if i > m+ n, we have:

valFi(b) ≥ min
1≤ j≤n

valFm+j(b) + 1,

so that val a0Fi(b) ≥ min
1≤ j≤n

val a0Fm+j(b) + 1 ≥ 1.
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2.4 An easy lemma on the multidegree

Lemma 19. Let K be any field containing C and let f = (f1, f2) be an automorphism
of A2

K of multidegree (d1, . . . , dk) with k ≥ 1, then deg f1 = d1 . . . dk or d2 . . . dk (and the
same holds for f2). Furthermore, if deg f1 = d1 . . . dk, then there exists a unique scalar
λ ∈ K such that deg(f2 − λf1) < d1 . . . dk, or equivalently such that deg(f2 − λf1) =
d2 . . . dk

Proof. By definition of the multidegree, f admits a reduced expression

f = α1 ◦ β1 ◦ · · · ◦ αk ◦ βk ◦ αk+1,

where each αj is affine and each βj is triangular of degree dj . Set

g := α−11 ◦ f = β1 ◦ α2 ◦ · · · ◦ αk ◦ βk ◦ αk+1.

An easy induction would establish that deg g1 = d1 . . . dk and deg g2 = d2 . . . dk (for
details, see [Fur97, Proof of Prop. 1, p. 606]). The result follows.

3 PROOF OF THEOREM B

In this section, m,n ≥ 1 are fixed integers and we assume that the conjecture R(m,n)

holds. We set d = (d1, d2) = (m+ 1, n+ 1) and we want to show that Gd =
⋃
e� d
Ge.

Subsection 3.1 is devoted to the proof of the first inclusion Gd ⊆
⋃
e� d
Ge. It only

relies on the self-contained Lemma 18. Subsection 3.2 is devoted to the proof of the
second inclusion

⋃
e� d
Ge ⊆ Gd. It is a little more involved, since it uses the polynomials

Ci, Di, Ei, Fi, Gi defined in subsection 2.3.

3.1 The first inclusion

If f ∈ Gd, let us show that f ∈
⋃
e� d
Ge. By [Fur02], the length is a lower semicontinuous

function on G so that the length of f satisfies l ≤ 2. We will consider 3 cases:
• l = 0. There is nothing to show;
• l = 1. We conclude by Lemma 20 below;
• l = 2. We conclude by Lemma 21 below.

Lemma 20. If e ≥ 2 and G(e) ∩ G(d1,d2) 6= ∅, then e < d1 + d2.

Proof. If f ∈ G(e) ∩ Gd, let us prove that e < d1 + d2. Since A ◦ f ◦ A ⊆ Gd, we may
assume that f = (X + p(Y ), Y ) with deg p = e. If e ≤ d2, there is nothing to prove. So,
let us assume that e > d2. By Cor. 10, there exists g = (g1, g2) ∈ Gd

(
C((T ))

)
such that

f = lim
T→0

gT . By Lemma 19, we must have deg g1 = d1d2.
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First claim. We may assume that deg g2 = d2.
Indeed, since g is of multidegree (d1, d2), by Lemma 19, there exists a unique λ ∈

C((T )) such that deg(g2 − λg1) = d2. It is enough to show that val(λ) > 0, because
we can then replace g by (u1, u2) := (g1, g2 − λg1). Let µ (resp. ν) ∈ C((T )) be the
Y e-coefficient of g2 (resp. u1). Applying the equality g2 = u2 +λu1 to the Y e-coefficient,
we get µ = λν (since we have assumed that e > d2). However, we have val(ν) = 0 (since
lim
T→0

u1(T ) = X + p(Y ) and deg p = e), so that val(λ) = val(µ) > 0 and the claim is
proved.

Since deg g1 > deg g2, it is well-known (see e.g. [Fur97, Th. 1.i]) that we can write
(in a unique way)

g = τ ◦ t1 ◦ σ ◦ t2 ◦ l,

where τ = (X + a, Y + b) is a translation,

t1 =

X +
∑

0≤ i≤m
aiY

i+1, Y

, t2 =

X +
∑

1≤ i≤n
biY

i+1, Y

 are triangular automorphisms,

σ = (Y,X) and l = (l1, l2) = (αX + βY, γX + δY ) are linear automorphisms, with the
ai’s, bi’s, a, b, α, β, γ, δ belonging to C((T )). By making the composition, we get:

g =

l2 +
∑

0≤ i≤m
ai

l1 +
∑

1≤ j≤n
bj l

j+1
2

i+1

+ a, l1 +
∑

1≤ j≤n
bj l

j+1
2 + b

 .

Since f = lim
T→0

gT , by looking at the constant terms, we get a, b ∈ C[[T ]] and there is no
restriction to assume that a = b = 0.

Second claim. We may assume that l = (l1, l2) = (Y,X + ρY ) for some ρ ∈ C((T )).
Note that lim

T→0
α = 0, lim

T→0
β = 1 and lim

T→0
αδ − βγ = −1. The last relation comes

from the Jacobian equality Jac g = Jacσ × Jac l = −(αδ − βγ). Set ρ :=
δ − α
β

.

Since (l1, l2) = (Y,X + ρY ) ◦ hT , where hT := (−ρ l1 + l2, l1), it is enough to show
that lim

T→0
hT = (X,Y ). For the second component, it is clear. For the first, we have

−ρ l1+l2 = (γ−ρα)X+(δ−ρβ)Y . But γ − ρα =
α2

β
− αδ − βγ

β
, so that lim

T→0
γ − ρα = 1

and δ − ρβ = α, so that lim
T→0

δ − ρβ = 0 and the claim is proved.

So, we can now assume that:

g =

X + ρY +
∑

0≤ i≤m
ai

Y +
∑

1≤ j≤n
bj (X + ρY )j+1

i+1

, Y +
∑

1≤ j≤n
bj (X + ρY )j+1

 .
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Inspecting the Y -powers, the relation lim
T→0

gT = (X + p(Y ), Y ) gives us:

lim
T→0

ρY +
∑

0≤ i≤m
ai

Y +
∑

1≤ j≤n
bj ρ

j+1Y j+1

i+1

= p(Y ) and lim
T→0

∑
1≤ j≤n

bj ρ
j+1Y j+1 = 0.

Setting b̃j := bjρ
j+1, we get:

lim
T→0

ρY +
∑

0≤ i≤m
ai

Y +
∑

1≤ j≤ ñ
bj Y

j+1

i+1

= p(Y ) and lim
T→0

∑
1≤ j≤ ñ

bjY
j+1 = 0.

Looking at the Y -coefficient, the first relation shows us that lim
T→0

ρ+ a0 = p1, where

p1 is the Y -coefficient of p(Y ).

Therefore lim
T→0

∑
0≤ i≤m

ai

Y +
∑

1≤ j≤ ñ
bj Y

j+1

i+1

− a0Y = p(Y )− p1Y and Lemma 18

tells us that deg
(
p(Y )− p1Y

)
≤ m+ n+ 1 = d1 + d2 − 1.

Lemma 21. If G(e1, e2) ∩ G(d1, d2) 6= ∅, then e1 ≤ d1 and e2 ≤ d2.

This lemma is a consequence of the following result, which is [Fur09, Th. C]:

Theorem 22. If u = (u1, . . . , ul), v = (v1, . . . , vl) are two multidegrees with the same
length, then the following assertions are equivalent:

i) Gu ⊆ Gv;
ii) Gu ∩ Gv 6= ∅;
iii) ui ≤ vi for each i (i.e. u � v).

However, here is a simple proof of Lemma 21:

Proof of Lemma 21. Let V be the polynomial algebra C[X,Y ]. Any element v of V admits
a unique expression v =

∑
i≥ 0

vi, where vi is homogeneous of degree i. Let Π>k : V → V be

the projection sending v to
∑
i> k

vi. Two polynomials u, v ∈ V are linearly dependent if and

only if u ∧ v = 0 in
∧2 V . The key point is the fact that for each f = (f1, f2) ∈ G(d1, d2),

we have
d2 = min{k, Π>k(f1) ∧ Π>k(f2) = 0}.

In particular, we have Π>d2(f1) ∧ Π>d2(f2) = 0 and this condition still holds if we
only assume that f belongs to G(d1, d2). Therefore, if f ∈ G(e1, e2) ∩ G(d1, d2), we get
e2 ≤ d2. The map g 7→ g−1 being an automorphism of (the infinite dimensional algebraic
variety) G sending an automorphism of multidegree (u1, . . . , ul) to an automorphism of
multidegree (ul, . . . , u1), we also have f−1 ∈ G(e2, e1) ∩ G(d2, d1) so that e1 ≤ d1. �
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3.2 The second inclusion

Let us show that Ge ⊆ Gd for any e � d.
If e is of length 0 or 2, it is easy. For the sake of completeness, let us prove it

by using [Fur97, section 4] (see also [Fur09, subsection 7.2]). Indeed, we define the
partial order ≤ on the set of multidegrees in the following way. If u = (u1, . . . , uk) and
v = (v1, . . . , vl) are multidegrees, we say that u ≤ v if k ≤ l and if there exists a finite
sequence 1 ≤ i1 < i2 < · · · < ik ≤ l such that uj ≤ vij for 1 ≤ j ≤ k. By [Fur97,
section 4] the inequality u ≤ v implies the inclusion Gu ⊆ Gv. If e is of length 2, the
inclusion Ge ⊆ Gd is also a consequence of Th. 22 above. Therefore, for showing the
second inclusion, it is enough to prove the next result:

Lemma 23. If 2 ≤ e < d1 + d2, then the following inclusion holds: G(e) ⊆ G(d1,d2).

Proof. It is sufficient to show that

X +
∑

1≤ i≤m+n

γiY
i+1, Y

 ∈ Gd for any γi ∈ C.

We take back the notations of subsection 2.3. By Lemmas 15 and 17, there exist
q ≥ 1 and b̃ := (̃b1, . . . , b̃n) ∈ AnC[[T ]] such that b̃(0) = 0 and

T−qFm+i(̃b) = γm+i, 1 ≤ i ≤ n.

Set a0 := T−q, ai := a0Di(̃b) for 1 ≤ i ≤ m, ρ := −T−q and bj := b̃jρ
−j−1 for 1 ≤ j ≤ n.

Set g := t1 ◦ σ ◦ t2 ◦ l, where

t1 =

X +
∑

0≤ i≤m
aiY

i+1, Y

, t2 =

X +
∑

1≤ i≤n
biY

i+1, Y


are triangular automorphisms, σ = (Y,X) and l = (Y,X + ρY ). We have:

g =

X + ρY +
∑

0≤ i≤m
ai

Y +
∑

1≤ j≤n
bj (X + ρY )j+1

i+1

, Y +
∑

1≤ j≤n
bj (X + ρY )j+1

 .

Claim. lim
T→0

gT =

X +
∑

m+1≤ i≤m+n

γiY
i+1, Y

 .

Let us begin to show that lim
T→0

g2 = Y .

For 1 ≤ j ≤ n, we have bj (X + ρY )j+1 = b̃j (ρ−1X + Y )j+1, where lim
T→0

b̃j = lim
T→0

ρ−1 = 0,

so that lim
T→0

bj(X + ρY )j+1 = 0 and the result is clear.

Let us now deal with the first component g1 = X + ρY +
∑

0≤ i≤m
ai g

i+1
2 .
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First step. Let us show that in this last expression of g1, the limit of g1 is unchanged
if we replace g2 by

p := Y +
∑

1≤ j≤n
b̃jY

j+1.

It is sufficient to check that lim
T→0

ai(g
i+1
2 − pi+1) = 0.

As lim
T→0

g2 = lim
T→0

p = Y and gi+1
2 − pi+1 = (g2 − p)(gi2 + · · ·+ pi), we will only check

that lim
T→0

ai (g2 − p) = 0.

Since g2 − p =
∑

1≤ j≤n
bj
[
(X + ρY )j+1 − (ρY )j+1

]
, it is enough to show that:

lim
T→0

aibj
[
(X + ρY )j+1 − (ρY )j+1

]
= 0.

As lim
T→0

(X + ρY )j+1 − (ρY )j+1

(j + 1)XY jρj
= 1, we will only show that lim

T→0
aibjρ

j = 0.

It is clear, because aibjρj = − ai
a0
b̃j where lim

T→0
b̃j = 0 and lim

T→0

ai
a0

= 1 (resp. 0) if

i = 0 (resp. i ≥ 1).

Second step. Let us show that lim
T→0

c =
∑

m+1≤ i≤m+n

γi Y
i+1, where

c := ρY +
∑

0≤ i≤m
ai p

i+1 = −a0Y +
∑

0≤ i≤m
ai p

i+1.

If a := (a0, . . . , am), by the relation (0) we have c =
∑

1≤ i≤N
Ci(a, b̃)Y

i+1.

We get Ej(a, b̃) = 0 for 1 ≤ j ≤ m by (1), so that Gi(a, b̃) = 0 for 1 ≤ i ≤ N by (4)
and Ci(a, b̃) = a0Fi(̃b) = T−qFi(̃b) for 1 ≤ i ≤ N by (2). Therefore:

• Ci(a, b̃) = 0 for 1 ≤ i ≤ m (see Remark 16);
• lim
T→0

Cm+i(a, b̃) = lim
T→0

T−qFm+i(̃b) = γm+i for 1 ≤ i ≤ n;

• lim
T→0

Ci(a, b̃) = 0 for i > m+n, since valFi(̃b) ≥ min
1≤ j≤n

valFm+j (̃b) + 1 ≥ q + 1 (by

Lemma 14).

This proves the second step and the claim follows.

If we now set f := t ◦ g, where t :=

X +
∑

1≤ i≤m
γiY

i+1, Y

 is a triangular automor-

phism, then f ∈ Gd
(
C((T ))

)
and lim

T→0
fT =

X +
∑

1≤ i≤m+n

γiY
i+1, Y

. We conclude

by Cor. 10.
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4 PROOF OF THEOREM D

We begin with the following lemma:

Lemma 24. Let d ≥ 2 be an integer. Then the subset G(d) of the group G is a double
coset modulo the affine subgroup A if and only if d = 2 or 3.

Proof. Let us define the equivalence relation ∼ on G by:
∀ f, g ∈ G, f ∼ g ⇐⇒ f and g have the same double coset modulo A , i.e. A ◦ f ◦ A =
A ◦ g ◦ A.

Let us note that any automorphism in the double coset A◦f ◦A has the same degree
as f . Let p(Y ), q(Y ) ∈ C[Y ] be any polynomials.

Claim. The following assertions are equivalent:
i) (X + p(Y ), Y ) ∼ (X + q(Y ), Y );

ii) There exists α, β, γ ∈ C with αβ 6= 0 such that q′′(Y ) = αp′′(β Y + γ).
Proof of the claim. There is no restriction to assume that deg p = deg q ≥ 2.

i) =⇒ ii). If (X+p(Y ), Y ) ∼ (X+q(Y ), Y ), there exists affine automorphisms u and
v such that (X + q(Y ), Y ) = u ◦ (X + p(Y ), Y ) ◦ v. If u = (aX + bY + c, dX + eY + f)
and v = (ãX + b̃Y + c̃, d̃X + ẽY + f̃), we get:

X + q(Y ) = a p(d̃X + ẽY + f̃) + a (ãX + b̃Y + c̃) + b (d̃X + ẽY + f̃) + c.

SettingX = 0 and derivating two times with respect to Y , we get: q′′(Y ) = αp′′(β Y +γ),
where we have set: α := a(ẽ)2, β := ẽ and γ := f̃ . Since q′′ 6= 0, it is clear that α 6= 0.
If deg p = deg q ≥ 3, we have β 6= 0 for reason of degrees. If deg p = deg q = 2, we can
assume that β 6= 0.

ii) =⇒ i). If q′′(Y ) = αp′′(β Y + γ), then, by integrating two times, we get: aq(Y ) +
bY + c = p(dY + e), where a, b, c, d, e ∈ C and ad 6= 0. It follows that:

(X + p(Y ), Y ) ◦ (aX, dY + e) = (aX + bY + c, dY + e) ◦ (X + q(Y ), Y )

and finally (X + p(Y ), Y ) ∼ (X + q(Y ), Y ). The claim is proved.

If d = 2 or 3 and deg p = deg q = d, the claim implies that (X + p(Y ), Y ) ∼
(X + q(Y ), Y ). Therefore, in this case, G(d) is a double coset modulo A.

If d ≥ 4, let us set p(Y ) = Y d and q(Y ) = Y d + Y d−1. There does not exist any
α, β, γ ∈ C such that q′′(Y ) = αp′′(β Y + γ), because the polynomial p′′(β Y + γ) has
a unique root and this is not the case of the polynomial q′′(Y ). By the claim, it follows
that the automorphisms (X + p(Y ), Y ) and (X + q(Y ), Y ) have distinct double coset
modulo A. In particular, G(d) is not a double coset modulo A.

Let us now prove Th. D.
If H is a subgroup of G as in Th. D, let us show that H = G. By the hypothesis,

H contains a triangular automorphism f = (X + p(Y ), Y ) with deg p ≥ 2. If we set
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gα := (X,Y + α) ∈ H (α ∈ C), then the commutator [f, gα] := f ◦ gα ◦ f−1 ◦ g−1α ∈ H
is equal to (X + q(Y ), Y ) , where q(Y ) := p(Y ) − p(Y − α). If α is well chosen, one
may assume that deg q = deg p− 1. Therefore, by a decreasing induction, we see that H
contains a triangular automorphism of degree 2.

Since G(2) is a double coset modulo A by Lemma 24, we get G(2) ⊆ H. By induc-
tion, we get G(d) ⊆ H for any d ≥ 2. Indeed, if G(d) ⊆ H, we get G(d,2) ⊆ H, so that
G(d,2) ⊆ H = H and G(d+1) ⊆ G(d,2) by Th. C. Since H contains all G(d), d ≥ 2, it is now
clear that H = G. �
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