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Abstract

In the first part of this paper, we briefly present a conjecture dealing with polynomial
composition and we prove it in some particular cases. In the second and longest part,
we prove our main result, which consists of an application of the conjecture to plane
polynomial automorphisms. More precisely, we describe the closure of the set of plane
polynomial automorphisms having a prescribed multidegree of length two.
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0 INTRODUCTION

The theory of polynomials in one indeterminate and the theory of plane polynomial auto-
morphisms are intimately connected. The most striking illustration of this phenomenon
is probably the easy way to deduce the theorem of Jung from the theorem of Abhyankar,
Moh, Suzuki (for this deduction, see e.g. [Ess00, Proof of Cor. 5.3.6, p. 100]). Let us
recall these famous statements (see [AMT75, Suz74| and [Jun42]).

Theorem (Abhyankar, Moh, Suzuki). Let K be a field of characteristic 0. If a,b € K[X]
are two polynomials which generate the whole algebra K[X], i.e. such that Kla,b] =
K[X], then dega divides degb or degb divides deg a.

Theorem (Jung). Let K be a field of characteristic 0. Any polynomial automorphism
of the affine plane Aﬁ( 15 a composition of affine and triangular automorphisms, where
by definition an affine automorphism is of the form

(x,y) = (ax+ By +7,0x +ey+ (), witha,...,( € K and ac — 35 #0
and a triangular automorphism is of the form

(z,y) = (az +p(y), By +v) with a, B,y € K, p€ K[y] and aff # 0.



In the same vein, the main result of this paper consists in proving that the following
rigidity conjecture R(m,n) dealing with polynomials in one indeterminate has some ap-
plications to the theory of plane polynomial automorphisms (see Th. B below). Using
Grobner basis, we have checked R(m,n) when m < 8 and n <5.

Conjecture R(m,n). Leta = X(1+a1 X+ - -+anX™), b= X1+ X+ -+b,X") €
C[X], where the a;,b; € C. Let us write a o b = X(1 4+ 1 X + --- + enXY), where
N=(m+1)(n+1)—1and thecy, €C. Ifcy =+ = Cpyn =0, thena=b=X.

Remark. This conjecture being obvious for m or n = 0, we generally assume that m
and n are > 1.

Let us begin to explain why this conjecture may be interpreted as a rigidity statement.
Considering a;, b; as indeterminates of degree 7 allows us to see each ¢; as a homogeneous
polynomial of degree i in Clay,...,am,b1,...,b,]. The conjecture R(m,n) means that
Cly- -y Cmtn 18 @ hsop (homogeneous system of parameters) of Clay, ..., am,b1,...,by].
For the definition of a hsop and several characterizations, we refer to subsection 2.2 below
and in particular to Lemma 11. This terminology (hsop) is for example used in [Sta96,
Chap. I, Def. 5.1, p. 33]. By Lemma 11, the conjecture R(m,n) is still equivalent to
asserting that the polynomial endomorphism of the complex affine space A" sending
(a1, vy Qm,b1,. .., by) to (€1, ..., Cmyn) 1S quasi-finite, i.e. admits finite fibers. In some
sense, this means that polynomial composition is rigid.

In this connection, let us recall the famous result of Ritt on polynomial composition
(see |[Rit22]). A polynomial a € C[X] of degree > 2 is prime if the relation a = bo ¢
implies that b or ¢ has degree 1. If deg f > 2, it is clear that f admits a decomposition
f = fio-- o f, into prime polynomials. Let us note that a o b = c o d in the three
following cases:

i) a,b are any polynomials and ¢ = aol, d ="' o b, where [ has degree 1 and [~! is
its inverse for the composition;

it) a =d =ty and b = ¢ = t,, where t,,(X) = cos(marccos X) is the m-th Chebyshev
polynomial;

i) a=d=X" b= X"p(X™) and ¢ = X"p(X)™, where p is any polynomial, and
the converse situation, i.e. b=c= X", d = X"p(X™) and a = X"p(X)™

If f=fio---0f.is a prime decomposition, then, by replacing an adjacent pair
(fi, fi+1) = (a,b) by (c,d) where a, b, c,d are as in i) - iii) above, we obtain a new prime
decomposition. This process is called an elementary transformation.

Theorem (Ritt). The prime decomposition is unique modulo elementary transforma-
tions, i.e. if we have two prime decompositions of some polynomial, we can pass from
one to the other by applying a finite number of elementary transformations.

Many problems related to polynomial composition (and iteration!) are intricate. For
example, the famous Mandelbrot set is defined as the set of complex c-values for which
the orbit of 0 under iteration of p(X) = X2 + ¢ remains bounded. In fact, the conjecture
R(m,n) is related to the following one which perhaps looks more attractive.



Conjecture R(m). Leta = X(1+ a1 X + - +anX™) € C[X] and let a=* € C[[X]] be
its formal inverse for the composition. If m consecutive coefficients of a~' vanish, then
a=X.

fal=X|1+ Z arX"* |, the vanishing conditions means that there exists an
E>1

integer n > 0 such that @, = 0 for 1 < k < m. With words, the conjecture R(m) means
that the inverse for the composition of a non trivial polynomial is badly approximated
by polynomials. Let us remark the analogy with Heisenberg’s uncertainty principle in
quantum mechanics asserting that one cannot reduce arbitrarily the uncertainty as to
the position and the momentum of a free particle. Here is a mathematical statement:

Let f be a nonzero element of L2(R) describing a particle: the probability density that
this particle is located at t is W|f2(t)| Let f € L2(R) be the Fourier transform of f.

The probability density that the momentum of this particle is equal to w is W | f2 (w)].
If o, (resp. o,,) denotes the variance of the location (resp. momentum), then Heisenberg
uncertainty is expressed by the following inequality:

1
Ot 0y > >

For more details, we refer to [Wey31, p. 77|, [Mal99, Th. 2.5] or [KL98, Th. 1, p. 311].
Many mathematical results contain a close idea. For example, rationals are badly
approximated by rationals: if « is any real number, Hurwitz has proved that « is ir-
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(see [Hur1891]). Algebraic numbers are also badly approximated by rationals. Roth has
proved that for any algebraic number « and any real € > 0, there exist only finitely many

p
a_i
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rational if and only if there are infinitely many rationals P Such that
q

1
< —-- (see [Rot55]). On the converse, this idea was first
q &

used by Liouville to construct transcendental numbers (see [Liol844a, Liol1844b]). We
show below (see Lemma 2) that the conjecture R(m) holds if and only if the conjecture
R(m, n) holds for any n. Coming back to our initial conjecture R(m,n), our first result
is the following:

rationals P such that
q

Theorem A. If m orn <2, then the conjecture R(m,n) holds.

Before giving an application to plane polynomial automorphisms, we need some nota-
tions. A polynomial endomorphism of A% will be identified with its sequence f = (f1, fa)
of coordinate functions f; € K[X,Y]. We define its degree by deg f = max; deg f;.

The space £ := C[X,Y]? of polynomial endomorphisms of the complex affine plane
A? is naturally an infinite dimensional algebraic variety (see [Sha66, Sha82] for the def-
inition). This roughly means that €<, := {f € £, deg f < m} is a (finite dimensional)
algebraic variety for any m > 1, which comes out from the fact that it is an affine space.
If Z C &, weset Z<yy := Z N E<sy. The space £ is endowed with the topology of the
inductive limit, in which Z is closed (resp. open) if and only if Z<,, is closed (resp.
open) in €<, for any m.



Let G be the group of polynomial automorphisms of A%. Since G is locally closed in
€ (see [FM10] and also [BCW82, Sha66, Sha82|), it is naturally an infinite dimensional
algebraic variety. Let

A:={(aX +bY +c,dX +eY + f), a,b,c,d,e, f € C, ae — bd # 0}
be the subgroup of affine automorphisms and
Bi= {(aX +p(Y),bY +0), a,b,c € C,p e ClY], ab+ 0}

be the subgroup of (upper) triangular automorphisms (B may be viewed as a Borel
subgroup of G). By [Jun42, Kul53, Nag72|, any element f of G admits an expression:

f=aioBio o000 P oaky,

where the a;’s (resp. f;’s) belong to A (resp. B). By contracting such an expression,
one might as well suppose that it is reduced, i.e. Vj, 5; ¢ Aand Vj, 2 < j <k, o; ¢ B.
It follows from the amalgamated structure of G that if

f:o/loﬁio--'oagoﬁl/oag_i_l

is another reduced expression of f, then k = [ and there exist (vj)1<j<#, (§;)1<j<k in
AN B such that o) = oy 077, ol =651 oajoyj_l (for 2 < j < k), aj = 0 0 apq1
and 3 = ;o fj o 5;1 (for 1 < j < k). Following [FM89| and [Fur02|, we define the
multidegree and the length of f by:

mdeg(f) = (deg f51,...,deg k) and I(f) = k.

These notions of multidegree and length could be defined in the same way for a polynomial
automorphism of A% where K is any field. We recall (see [Wri79, FM89]) that degree
and multidegree are related by

deg f = deg By X --- X deg Bp.

Let D be the set of multidegrees, i.e. of finite sequences of integers > 2 (including the
empty sequence). If d = (dy,...,d;) € D, G4 will denote the set of automorphisms whose
multidegree is equal to d. By [FM89, Fur09|, G, is an irreducible smooth, locally closed
subset of G of dimension dy + --- + dj + 6. Let us note that G; C G<, as soon as
n > dj...d and that we have a partition of G as a disjoint union G = H Gg. What

deD
can be said on the closure of G;47

By [Fur02], the length of an automorphism is lower semicontinuous. Therefore, any
element of G4 has length < k. The simplest non trivial related example is induced by
the Nagata automorphism (see [Nag72]):

N:=(X-2YW - ZW?2Y + ZW, Z), where W = XZ +Y?.



This automorphism of the complex affine space A% can be seen as an automorphism of
A(%:[Z] inducing as well a morphism from the complex affine line A' to G sending z to

N.= (X -2Y(Xz+4+Y?) —2(Xz24+Y?2 Y 4+ 2(X24+Y?)) eq.
If z # 0, the factorization
N, = (X —2'Y2Y)o (X, Y +22X) o (X +27'Y2Y)
shows us that IV, has multidegree (2,2). If z = 0, we have Ny = (X —2Y?3,Y) so that Ny

has multidegree (3). This yields us Gz) N 6(272) # (). Inspired by the analysis of similar
examples, we hoped (erroneously) that the equality G4 = U G. might always be true,
e<d

where < is defined in the following way:
Definition. The partial order < on D is induced by the following relations:

i) 0 =d (for any d);

i) (di,...,dy) = (e1,...,ex) when d; < ej for any j;

111) (dl,...,djfl,dj +dj+1 — 1,dj+2,...,dk) = (dl,...,dk) when 1 < j <k-—1.

However, by [EF04], there cannot exist any partial order C such that G, = U Ge
elCd
when d = (11, 3, 3) | Actually, it is proved there that G gy N 5(1173,3) # () and for
grounds of dimension we cannot have G19) C 3(117373). As a matter of fact reality is
often complex. We now think that the equality G4 = U Ge is actually true in length 0, 1
e=<d
and 2. In length 0 it is obvious. In length 1, it is proved in [Fur97]. This paper settles
the length 2 case modulo the conjecture R(m,n). Indeed, here is the main result of our

paper:
Theorem B. If the conjecture R(m,n) holds and if we set d = (m + 1,n+ 1), then we

have:
Gd = U ge-

e=<d

Remark. If the equality G4 = U Ge holds when d is of length 2, then, a straightforward

e=<d
induction on the length on d would establish that for any d the following inclusion holds:
U ge - ?d-
e=<d

Theorems A and B directly imply:

Theorem C. If d = (dy,d2) is a multidegree with dy or dy < 3, then G4 = U Ge.

e=<d



Remark. We would like to stress that even if the conjecture R(m,n) is obvious when
m orn = 1 (c¢f. the proof of conjecture R(1) in subsection 1.4), its consequence for
polynomial automorphisms (given via Theorem B) is not obvious at all. Indeed, it asserts
that if d = (d1,ds) is a multidegree such that di or do < 2, then Gq = U Ge. The

e=<d
simplest case where di = do = 2 means that

G220 =% U Y2) U Gz U Ga,9)-

In particular, this equality implies the two following points:

e Gz N ?(2,2) # (. As explained above, this point can be established using the family
of plane automorphisms induced by the Nagata automorphism;

® G2y N Guy = 0. This equality follows from [Fur09, Th. A] asserting that for
any multidegree d = (dy, . ..,d;), the set Gy is closed in the set of all automorphisms of
degree dy ...d;. The weaker fact that G4y is not included into 6(272) was a consequence
of [Fur97, Th. 2] and was also the object of [Fur97, Prop. 12].

As a funny consequence of Th. C, we will show:

Theorem D. Any closed subgroup of G containing the affine group and an automorphism
of length 1 is equal to G.

Remark. 1. Let us note that any subgroup of G strictly containing the affine group is
dense in G for the Krull topology (see [Fur07, Th. A]). This means that any element of
G can be approximated at the origin and at any order by an element of this subgroup.

2. We recall that any closed subgroup of G which is a finite dimensional algebraic
variety is conjugate to either a subgroup of A or B (see [Sha66, Th. 8/, [Kam79, Th.
4.8] or [GD75, Th. 7]).

We finish this introduction by the following natural question.
Question. Does there exist a non trivial closed subgroup of G containing the affine group?

This paper is divided into two parts. The first part is the shortest one and is only
composed of section 1, where we study the rigidity conjecture R(m,n) and prove Th. A.
The second part is composed of the three sections 2, 3, 4. In section 2, we give some
preliminary results. In sections 3 and 4, we respectively prove Th. B and Th. D.

1 THE RIGIDITY CONJECTURE

In subsection 1.1 we prove that the conjectures R(m,n) and R(n, m) are equivalent. In
subsection 1.2, we relate the conjectures R(m,n) and R(m). In subsection 1.3, we give
some generalities on the conjecture R(m). In subsection 1.4, we prove the conjectures
R(1) and R(2). In subsection 1.5, we give some information on the conjecture R(3). We
explain why we were not able to solve it and hope that the given information might help
or motivate some reader for further investigations.



1.1 The conjecture R(m,n) and R(n, m) are equivalent
Lemma 1. The conjectures R(m,n) and R(n,m) are equivalent.

Proof. Let val: C((X)) — Z U {+0o0} be the valuation associated to the discrete valuation
ring C[[X]]. The conjecture R(m,n) means that if a = X(1 + a1 X + -+ + a,, X™) and
b=X(14+0X+---+b,X"™) are such that val(a o b— X) >m+n+2, thena =b = X.
Therefore, it is enough to check that val(a o b — X) = val(b o a — X). Indeed, if
k =val(a o b— X), we have aob(X) = X mod X*. Let a=*(X) € C[[X]] be the formal
inverse of a for the composition. We get a=! o (aob)oa(X)=a"'oa(X) mod X*, i.e.
boa(X) =X mod X*, so that val(b o a — X) > val(a o b — X). We would show the
other inequality in the same way, so that finally val(a o b — X) = val(b o a — X). O

1.2 Relations between the conjectures R(m,n) and R(m)

Lemma 2. If m > 1, the two following assertions are equivalent:
i) The conjecture R(m,n) holds for any n > 0;
ii) The conjecture R(m) holds.

Proof. Ifa=X(1+a X+ 4+ a, X™) € C[X], let us set

a =X |14 ax"| ecClx].

By definition, the conjecture R(m) holds if and only if for any integer n > 0 the following
assertion R(m,n) holds:

Assertion R(m,n).  (Gpg1 =+ = Gnem =0) = a(X)=X.

However, if b= X (1 4+ b1 X 4 --- + b, X") € C[X], we have:
aob(X)=X mod X2  «— ¢7}(X)=b(X)mod X2,

Using this equivalence, let us show that the assertions R(m,n) and R(m,n) are equiva-
lent. This will be enough for showing the lemma.
Assume that the conjecture R(m,n) holds and that we have a,+1 = -+ = @pym = 0.

Set b(X)=X |1+ > aX"|=X{1+ >  ax*
1<k<n 1<k<m+n

We get a=1(X) = b(X) mod X™+"+2 50 that a o b(X) = X mod X™"*2 and finally

a(X) =X.

Assume that the assertion R (m, n) holds and that we have aob(X) = X mod X™"+2,
Then, we have a=}(X) = b(X) mod X™ 2 5o that Gpy1 = -+ = Gpim = 0 and we
get a(X) = X. The equality b(X) = X follows at once. O



1.3 Generalities on the conjecture R(m)
Let m > 1 be a fixed integer. Set a(X) =X(1— M\ X)...(1 — A\, X) € C[X], where the

A, are complex numbers, and express the formal inverse for the composition of a as

Un
n+1

a (X)=X(1+)

n>1

X" | e X,

where the u,, n > 1, are complex numbers.
Lemma 3. ]ff denotes integration over a little circle around the origin, we have
1 dX n+ J1 n+Jim\ \j ;
Uy = — P ———c = DA Vi
"omi Joanti(X) Z < n n ! m
J1t+-+Iim=n

Proof. By Lagrange formula, we have:

n+1 [a1(X) n+1 Y , ,
Un = 5 2 dX = 57 7{ Y a(Y)dY by setting X = a(Y);
1 7{ ad by int ting b t
=— ¢ —— integratin arts.
2mi | ant1(Y) Y & &PV P

1
Therefore, u,, is the X"-coefficient of the formal series 1 <1,:I< . (T — A X)nt

1 j ,
We conclude thanks to the Taylor expansion m = Z <n ;: j)X 7, O
Jj=0

e ClIx]]-

Note that w, is a homogeneous polynomial of degree n in the A1,..., A\, (where each
Ak has weight 1). The conjecture R(m) means that if m consecutive w, vanish, then

the A; also. In other words, m consecutive polynomials u, always constitute a hsop of
ClA,- s Al

Remark 4. In order to prove R(m), it is sufficient to prove that if m consecutive uy,
vanish, then uy, = 0 when k is large enough. Indeed, in this case a™' is a polynomial and
the relation X = aoa~' shows that a = X (by taking the degree).

The proof of the following lemma is due to Laurent Manivel.

Lemma 5. The sequence n — u, satisfies a linear recurrence relation with polynomial
coefficients of length m. More precisely, there exist polynomials po(n),. .., pum(n) in
C[A1, ..., Amlln], not all zero, such that

Vn>1, Z k() upyp = 0.
0<k<m



Proof. By Lemma 3, it is enough to show an analogous linear recurrence relation for the

S ooy

Set vnk—de and V, =

sequence

Un,0

Unm—1

Claim. There exists a square matrix M,, whose entries belong to the field C(A1, ..., A\p,)(n)
such that

Vn:MnVn+1~
Xk n
Set ¥(X) = X la(X) = (1 — M X)...(1 — ApX). We have vy, :7{ ax. If
Xk n+1./
k#mn—1, we get v, = k—Z—Flf ’YHH’Y dX, i.e.

k— 1 Xk—n-i-l /
’”vnsz”dx.

,ynJrl

Note that this last equality still holds for £k = n — 1. By Euclidean division, there exist
polynomials Ay, By, such that

Xk‘—i—l I _ Ak’y_ Bk:

and we have deg Ay = k and deg By, < degy = m. We have:

k—n+1 X Ak’y Bk XBk
— Unk = At dX = ?{ dX - %n—&-l

This gives us a relation of the following form:

k

m
n—Fk—1
Ttk ) akiUng = ) brjtasi (%)
j=0 j

/

m
a
But we have jéandX =0 and a(X)=X Z(—l)kaka, where

11 <o <ip
denotes the k-th elementary symmetric polynomial in the variables A1, ..., A, (with the
usual convention oy = 1), so that:
m
Z k:—i—l JOkUnt1k = 0 (%),
k=0



This relation allows us to express v,11,, in terms of the v,11;’s, 0 < j < m — 1. By
making such a substitution in the right hand side of (*), we obtain a relation of the form

k

m—1

n—kF—1

o Unk T Y GkjUng = Y Chjtni1y (x5 %).
j=0 7=0

However, the relations (***) for 0 < k < m — 1 can be expressed with matrices as
K, V, = CVpqa,

where the matrix C' does not depend on n, i.e. has entries in C(A1,...,\y), and the
matrix K, is lower triangular with diagonal entries the numbers

—k-1 —k—-1
n7+ak7k:7n +m, 0<k<m-1.
n

In particular, the matrix K, is invertible. By setting M,, := K, 1C, we have proved the
claim.
By using several times the claim, we get:

Vn+m = Vn+m
Vn+mfl = Mnerfaner

Vo = (MnMn+1 s Mn+m—1)vn+m-

Therefore, the m + 1 elements v, . .., Un+m can be expressed as linear combination, with
coefficients in C(Aq,...,Ap)(n), of the m elements vyp4m 0, - .., Untmm—1. As a conse-
quence, the elements vy, . . ., Un4m are linearly dependent over the field C(Ay,. .., \p)(n)
and hence also over the ring C[A, ..., Ay][n]. O

1.4 Proof of theorem A

According to Lemmas 1 and 2, it is sufficient to prove the conjectures R(1) and R(2).

a) Proof of R(1)

We use the notations of subsection 1.3 with m = 1. Note that u,, = (2:) AL Ifuy, =0,
we want to prove that A\; = 0. This is obvious. O

b) Proof of R(2)
We use the notations of subsection 1.3 with m = 2. Note that:

e 3 (1t

i+j=n

We rely on the following linear recurrence relation.

10



Lemma 6. For any n > 3, we have:
n(n — 1)(/\1 — )\2)2un + (TL - 1)(2n — 1)()\1 + )\2)()\1 - 2)\2)()\2 — 2)\1)un_1
—3(3n — 4)(3n — 2)A3\3u,_2 = 0.

Proof. We follow the beginning of the proof of Lemma 5 in the case where m = 2 and
we compute the relations (*), (**) and (***). We get

2 2
Ay=2, Bo=2-X, A =2119X and B =L 422" %y
09 g2 02
so that the relations (*) for k = 0,1 are the following:
3n—1
Un,0 = 2Up411 — 01 Unt1,2
n _ (%)
3n —2 9
o1Uno + O2Un1 = O1Uny11 + (202 —07) Unyi2.

We get at once:
Unt1,0 — 201 Unt1,1 + 302 Upp12 =0 (%),

so that the relations (***) for k = 0, 1 are the following:

3n—1
3 02 Ung = 01 Vnt1,0 + (602 — 20%) Uny1,1
3n—2
30109 Uno + 3 O'% Up,1 = (O’% — 20‘2) Un+1,0 + (70’10’2 — 20’%) Un+1,15
i.e. 3 .
n —
(60’2 - 20’%) Un+1,1 =3 092 Up — 01 Un+1 (A),
and

3n—2
a% Up,1 = (O‘% —209) vpy1 + (Tor109 — 20’%) Un+11  (B).

30 102 Up + 3
The relation (A) expresses vp411 in terms of vy, v,+1. Replacing n by n — 1 allows

to express vUn,1 in terms of v,_1,vp:

3n—4

(609 — 20%) Up,1 =3 oo Up_1 — o1 v, (A).

By substituting (A) and (A)’ in (B), we get the following relation between v,,_1, Uy, Vpy1:

-2 2[3311—4

3n
3o109(609 — 20%) Up + 3 02 1 02Vn-1—01 vn}

3n—1

= (O’% - 202)(60’2 - 20’%) Un+1 + (7010’2 - 20’%) {3 09 Up — 01 Un+1:| y

ie. pavpy1 + p1vn + povy =0, where

11



pa = (03 — 209)(20% — 602) + 01 (7109 — 207)
= —302(A\1 — )\2)2

3n—2 3n—1

w1 = 3o109(602 — 20%) — 3 o103 —3 (Tor09 — 203) 0y
2n —1
= 30102(909 — 20%) n
2n — 1
= 30102()\1 — 2A2)<)\2 — 2/\1)
3n—2 3n—4
Ho =303 n n-—1
Since vgy1 = 2miug for any k, the result follows. O

Remark 7. Another way to prove Lemma 6 is more elementary, but tedious. The left
hand side being homogeneous of degree m + 2 in A1, A, it is enough to check that for
0 <i<n+2, the coefficient of )\’1)\721+271 vanish.

Let us prove R(2). If up = ugy1 = 0, we want to prove that Ay = Ay = 0. We
begin by showing by contradiction that A\ = Ag. Otherwise, Lemma 6 shows us that the
following implication holds:

Vn>3, (up—2=up—1=0 = wu,=0.
Therefore, u,, = 0 for n > k and by Remark 4, this implies the equality A1 = Ao = 0. A
contradiction. Therefore A\ = Ao, Set A := A1 = Ao. Lemma 6 gives us for any n > 3:
2(n —1)(2n — D)X3up—1 — 3(3n — 4)(3n — 2)A\*uy_o = 0.

Let us show by contradiction that A = 0. Otherwise, the following implication would
hold:
Vn>3, up2=0 — wu,—1=0.

We still get u, = 0 for n > k, so that A = 0. A contradiction. We have indeed A = 0, so
that )\1 = )\2 =0. O
1.5 The conjecture R(3).

The first aim of this subsection is to explain why we were not able to solve conjecture
R(3) in the previous way. The second aim is to give some information (and motivation)
for the reader who might be interested to undertake some investigations on this subject.

We use the notations of subsection 1.3 with m = 3, so that:
_ n4i\ (n+7\[m+k\ i
tn = . Z < n )( n >< n >)\1)\2)\3 S Z[Al, AQ, )\3]
i+j+k=n

Before giving the linear recurrence relation satisfied by the u,,, we need some notations.
If = (p1, po, u3) where p; are integers satisfying pui > po > p3 > 0, we define m,, €

Z[A1, A2, Ag] by my, = Z AN NS where (v, 12, v3) describes all distinct permutations
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of the triple (u1, p2, ps). We identify (p1, pe) and (1, pe, 0) as well as (u1) and (p1, 0, 0).
Hence m() = A1+ s+ Az, m(,1) = A A2+ A1 A3+ Ao s, m1,1) = A1 A2 A3 and m(32,1) =
AIAZA3 + AP AN + A2A3A3 + AIASAZ 4+ A2AA3 + A A3

We set A = (A1 — A2)2(A1 — A3)2(A2 — A3)? and define the M;, N; for 1 <i <5 by:

My = 9my ) — 14mg 1 1) — Ims3) + 3mz21) — 3m(2,2,9);

My = 5myy2) — 8mya,1,1) — Sm33) + 2my32.1) — 3Mm(2,2,2);

M3 = 39m(472) - 6277’1,(47171) - 39m(373) + 15m(37271) - 21m(27272);
M4 = 33m(472) - 52777,(4’171) — 33777/(3’3) + 12m(37271) - 15m(27272);
Ms = 6my2) — 10myy 1 1) — 6my3 3) + 3m321) — 6my2.2.9);

N1 = =2my59) +4ms 11y + 3ma3) — 3ma21) — 8Mmy3 31) + 8Mm(32,2);

Ny = 10m(974) — 36m(9,371) + 52m(9’272) — 25m(875) + 63m(8,471) - 38m(8,372) + 10m(776) +
30m(775’1) — 146m(7,472) + 216m(7’373) — 60m(6’6’1) + 70m(6’5,2) - 32m(6’4,3) - 60m(5’573) +
40m s 4,4);

N3 = —27m(4’4) + 36TYL(473’1) — 2m(4’272) — 52m(3’372);

Ny = —342’m(876) + 1006m(875,1) — 1110m(87472) +972m(87373) +342m(7,7) — 141m(7’671) —
1301777/(7’5,2) + 900m(774?3) + 1178m(6?672) — 15m(6’573) — 724m(674,4) + 238m(575’4);

Ny = 10m(876) — 3Om(87571) + 34m(874,2) — 30m(87373) - 10m(777) + 5m(77671) +37m(77572) —
27m(7,4’3) — 38m(6,6’2) + 5771(675,3) + 20m(674?4) — 10m(575’4).

2
3
|

n(n —1)(n —2)(Min — 3Ms) A,

Bn = (n — 1)(77, — 2)[(2M1n2 — M3n)N1 — 3N2];
(n — 2)[(Mn® — Myn?)N3 + 3nNy + 36N5);

Dy, = 8(2n — 3)(4n — 7)(4n — 9)(Min — Ms)m}, | .

One could show the next result (using a computer!):

Lemma 8. For any n > 4, we have:
Anun + Bnun—l + Cnun—Q + Dnun—S =0.

The difference with the recurrence relations obtained in Lemma 6 is that the factor
Min — 3Ms of A, may suddenly vanish for a large value of n. Therefore, if we assume
that up = ug+1 = ug42 = 0, we do not succeed to show that ui,3 = 0. However, a closer
analysis of the recurrence formula might probably be sufficient for proving R(3).

2 PRELIMINARY RESULTS

In subsection 2.1, we recall a valuative criterion characterizing the elements of f(V') where
f:V — W is a morphism of complex algebraic varieties. The only valuation ring we need
is the ring of complex formal power series. In subsection 2.2, after recalling equivalent
definitions of a hsop, we give two results related with formal power series. In subsection
2.3, we make some technical definitions which will allow us (in the next section) to prove
Th. B. Finally, in subsection 2.4, we prove an easy lemma on the multidegree.
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2.1 Valuative criterion

The valuative criterion given in Lemma 9 below is familiar (e.g. [MFK94, chap. 2, §1,
pp 52-54] or [Gro6la, §7]). We proved it in [Fur09|.

Let C[[T]] be the algebra of complex formal power series and let C((T")) be its quotient
field. If V' is a complex algebraic variety and A a complex algebra, V(A) will denote the
points of V' with values in A, i.e. the set of morphisms SpecA — V. If v is a closed

point of V and ¢ € V((C((T))), we will write v = }i{n}o ©(T') when:
i) the point ¢ : Spec C((T")) — V is a composition Spec C((T")) — Spec C[[T]] — V;
ii) v is the point Spec C — Spec C[[T]] — V.
For example, if V = Al and ¢ € V(C((T))) = C((T)), we will write v = %iirb o(T)
when ¢ € C[[T]] and v = ¢(0).

Lemma 9. Let f: V — W be a morphism of complex algebraic varieties and let w be
a closed point of W. The two following assertions are equivalent:

i) we f(V);
i) w= %iin() f(o(T)) for some ¢ € V((C((T)))

Remark. Note the analogy with the metric case where w € f(V') if and only if there

exists a sequence (vy)n>1 of V' such that w = lim f(vy,).
- n—+oo

The following result is an easy consequence of Lemma 9 (see [Fur09, Cor. 1.1]).

Corollary 10. If d = (dy,...,dx) is a multidegree and f € G, the following assertions
are equivalent:

1) f S ?d;
ii) f = lim gp for some g € gd((C((T))>.
T—0
Proof. For any integer m > 2, let IB,,, be the set of triangular automorphisms whose degree

is exactly equal to m. Let A" = A\ B be the set of affine non triangular automorphisms.
It is enough to note that G, is the image of the following morphism of algebraic varieties:

A x (A I Be — 6
1<i<k

sending ((al, a2), (al);, (bz)l> toajobjoajobyoayo---0aj_;obgoay. The details are

left to the reader. O

Remark. Since Gy is locally closed in G (see [Fur09]), there is a natural identification
between Ga(K) and the set of automorphisms of A2 whose multidegree are equal to d, for
any field K containing C.
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2.2 Homogeneous system of parameters and formal power series

Let K be an algebraically closed field and let A% be the affine r-space over K. Let us
grade the polynomial algebra R = K|z, ..., 2] by assigning each zj, to be homogeneous
of some strictly positive degree (depending on k). For each m > 0, the set of m-
homogeneous polynomials is denoted by R,,. If p = (p1,...,pr) € R", let ¢,: Al —
A’ be the morphism of algebraic varieties defined by ¢,(w) = (p1(w),...,pr(w)) for
w € Af.. Let also I, be the ideal of R generated by pi,...,p,. Following a usual
terminology (e.g. [Sta96, Chap. I, Def. 5.1, p. 33|), if each pj is homogeneous of
some strictly positive degree (depending on k) and if K|z, ..., 2] is a finitely generated
module over K|pi,...,p;], the sequence p is said to be a hsop (homogeneous system of
parameters). For the sake of completeness, we give the proof of the following classical
lemma characterizing hsop.

Lemma 11. Let p = (p1,...,pr) be a sequence of homogeneous polynomials of R =
Kz1,..., 2], each zj, being homogeneous of some strictly positive degree (depending on
k). The r-uple p is a hsop of R if and only if the following equivalent assertions are
satisfied:

i) ¢p is a finite morphism;
¢p 15 a quasi-finite morphism;
(¢p)71(0) is a finite set;

dimg R/ 1, < 400;
(6p)71(0) = {0};

ii)
iii)
)
)
vi) ¢p is a proper morphism;
i)
i)
)
)

v

A%

vii) R is a finitely generated and free module over K[p1,...,py);
viii) ¢, is a flat morphism;

ix) For any d > maxy deg p, we have Rg C Il when [ s large enough;

x) For some d > maxy, deg p, we have Rg C Il when [ 1s large enough.

Proof. Note that assertion i) is a reformulation of the definition.

i) = ii) and ii) = iii) are obvious.

iii) <= iv) follows from the Hilbert’s Nullstellensatz.

iv) = 1i). Let hq,...,hs be homogeneous elements of R which form a K-basis of
R/I,. Set S := K|p1,...,pr]. It is enough to show that R = >, h;S. Set N = . h;S
and let S; = p1.S + -+ + p.S be the ideal of S generated by the p;. Note that S is a
subgraded ring of R and that R and N are both graded module over S. Finally, since
R = N + SR, by the graded version of Nakayama’s lemma, we get R = N.

iii) = v). Let us show by contradiction that (¢,)~1(0) = {0}. Otherwise (¢,)1(0)
would contain a nonzero element w = (wy,...,w,). If d; := degz; and e; := degp;, we
have:

VAe K, pi(Az, ... A7 2) = Xopi(z1, ..., 2).
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This proves that (A%1wy, ..., A% w,) belongs to (¢,)~1(0) for any A, contradicting (iii).

v) = iii) is obvious.

i) <= vi) follows from a theorem of Chevalley (see [Gro61b, EGA, III, 4.4.2, p. 136|)
asserting that a morphism of algebraic varieties is finite if and only if it is proper and
affine (see also [Mur67, Lemma (3.5.1), p. 52] or [BCW82, p. 296]). Alternatively, it
is well known that a morphism is finite if and only if it is proper and quasi-finite (see
the previous reference of Grothendieck!). Furthermore, it is clear that an affine proper
morphism is quasi-finite. Indeed, each of its fibers being affine and complete, it has to
be finite.

i) <= vii) follows from [Sta96, Chapter I, Th. 5.9, p. 35]. Note that the implication
vil) == 1) is obvious. The implication i) = vii) also follows from [Bou07, §4, n° 4, Cor.
of Prop. 5, p. 58]. This reference claims that R is a projective module over K[p1,...,p;].
In this graded situation, any projective module is free.

vii) == viii). Any free module is flat.

viii) = ii) is clear, since a flat morphism is equidimensional (e.g. |Har77, (III, Cor.
9.6), p. 257]).

vil) = ix). Set S = K|pi,...,pr] and let hq,..., hs be homogeneous elements of
R such that R = Y, h;S. Set M = max;degh;, m = maxdegp, and let d > m be
any integer. Let us check that for any [ > %, we have Ry C (I,). Let f be any
element of Rg. There exists homogeneous elements u; of S such that f = ). hu;.
Furthermore, each w; admits an expression u; = ), u;op®, where the sum is over
a=(ay,...,0p) € N p*:=pi" ... p? and u; o belongs to K. Set |a| = aj + -+ + a,.
We have f =3, , uiahip®. If ujq # 0, we may assume that deg f = deg(h;p®). We get

m|a| > degp® =degf—degh; > dl—M > ml,

from which follows |a| > [ and finally f € (I,).
ix) = x) is obvious.
x) == v) is easy and left to the reader. O

Corollary 12. If p = (p1,...,pr) is a hsop of K|z1,..., 2], the map ¢,: A} — Al is
surjective.

Proof. Since ¢, is proper, it is a closed morphism and in particular its image is closed.
Since ¢, is flat, it is an open morphism (see |Gro65, EGA, IVy, 2.4.6, p. 20]) and in
particular its image is open. ]

Remark 13. Let p = (p1,...,pr) be a sequence of homogeneous polynomials of R =
Klz1,..., 2. The surjectivity of the morphism ¢, : A} — Al is not sufficient to ensure
that p is a hsop. Consider the algebra Clx,y] with the usual grading. The morphism
A? — A2 (z,y) = (2y?, 2(z +y)?) is surjective, but not finite.

Let val: C((T')) — Z U {+o0} be the valuation associated to the discrete valuation
ring C[[T7]].
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Lemma 14. If (p1,...,p;) is a hsop of R := C[z1,...,2] and ¢ € R is homogeneous
with deg q > max deg pi, then for any b € ATC[[T]] satisfying b(0) = 0, we have:

valq(b) > Inkin val pg(b) + 1.

Proof. By point ix) of Lemma 11, there exists [ > 1 such that ¢' € (p1,...,p,)!. For

any o = (ag,...,ap) € N set p* =p"* ...p% and |a| =g + -+ a,. f A:={ac

N, |a| = I}, we can write ¢' = Z sa D" (Sq € R). Furthermore, we may assume that
acA

Sa € Rg,, where d, := deg ¢! — degp® > I(degq — mgxdegpk) > 1> 1. Evaluating at b

and taking the valuation, we get: [ valq(b) > mm val so,(b)p® (D). But vals,(b) > 1 and

val p®(b) > 1 mkin val pg(b), so that I val q(b) Z l mkln val p(b) + 1. O

The following lemma is a nice application of Cor. 12.

Lemma 15. If p = (p1,...,pr) is a hsop of Clz1,..., 2| and v € Ay, there exist ¢ > 1
and b € Agypy such that b(0) =0 and p(b) = T97.

Proof. Let K := U (C((T%)) be the quotient field of the ring U (C[[T%]] of all formal
q=1 q>1
Puiseux series. By Newton-Puiseux theorem (see e.g. [Rui93, Prop. 4.4|), K is an
algebraic closure of C((7")). Let us note that p is a hsop of R := Klz1,...,2,]. By
Cor. 12, there exists an element a in the affine space A} such that p(a) = T7. Let
q > 1 be such that b := a(T7) € AL, C(T))" Replacing T by Tq, we get p(b) = T%y. Using
the valuative criterion of properness (see e.g. [Har77, (II, 4.7), p. 101]) to the proper
morphism ¢,: A" — A" (see Lemma 11), it is clear that b € ALy Since p(b(0)) = 0,
by point v) of Lemma 11, we get b(0) = 0. O

2.3 Technical definitions

Let m,n > 1 be fixed integers and set N := (m+1)(n+1)—1. Let Ao,..., Ap,B1,...,By
be indeterminates and let C[B], resp. C[A, B], be the polynomial algebra generated by
the Bj, resp. by the A;, B;. We grade these polynomial algebras by assigning A;, B; to
be homogeneous of degree 1.

We now successively define homogeneous polynomials:

e C; € C[A, B] of degree i for 1 <i < N;

o U;; € C[B] of degree i — j for 1 <i < N, 0 < j < m;
o W; ; € C[B] of degree i — j for 1 <1i,j < m;

e D; € C[B], E; € C[A, B] of degree i for 1 <1i <m;

e I; € C[B], G; € C[A, B] of degree i for 1 <i < N,

satisfying the following points:
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Y CX™=Ao0 B(X) - AgX

1<i<N
where A Z A; XH—I and B( ) = X + ZBZ'XZ'—H;
(1) Ay = ApD; + E; for 1 <i < m; (2) C; = AgF; + G, for 1 < i < N;
(3) Ei = Z WijCjfor 1 <i<my 4) G; == Z U;;E; for 1 <i < N;
1<j<m I<j<m

(5) the matrices (Uj ;)1 <i,j<m and (Wj;)1<i j<m are inverses of one another.

Later on, we will only use the above points (0)-(5) so that the reader in a hurry can
skip the following trivial, but technical, construction.

Construction.
e The C; € C[A, B] are uniquely defined by (0).
e The U; ; € C[B] are uniquely defined by C; = Z Ui jA; (1 <i<N).
0<j<m

Matricially, this may be written C = U.A, where A (resp. C) is the column vector
A= (Ai)ogz‘gm (resp. C= (Ci)lgigN) and U is the matrix U = (Ui,j) 1<i<N .

0<j<m

V
We have U= | B where B is the column vector B = (B, ..., B,,0,...,0)
*
and V := (U )1<i,j<m is a lower triangular square matrix with 1’s on the diagonal.

e The matrix W = (W ;)1 <, j<m is defined as the inverse of V.

e The column vectors D = (D;)1<i<m and E = (E;)1<i<m are defined by D :=
~W.B and E := W.C, where B (resp. C) denotes the column vector obtained from B

(resp. C) by keeping the first m rows. Since the column vector A LA, ..., Ap)
satisfies C = AOB—l—VA we get A= —AgW. B+ W. C ie. A= A0D+E which is (1).

e I, G, are defined by F; := U, o + Z Ui jD; and G; := Z Ui;E; (1<i<N).

1<j<m 1<j<m

Since C; = Z UijAj for 1 <i < N and A; = AgD; + E; for 1 < j < m, we get

0<j<m
C; = UipAp + Z Ui j(ApD; + E;) and (2) follows. The assertions (3), (4) and (5) are
1<j<m
obvious.
Remark 16. We have G; = Z Ui j Wi Cg, so that if i < m, we get G; = C; and
<jk<m
F,=0.
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We will always use the conjecture R(m,n) through the next statement.
Lemma 17. If the conjecture R(m,n) holds, the family (F4i)1<i<n s a hsop of C[B].

Proof. If b = (by,...,b,) € C" satisfies Fy,14(b) = 0 for 1 < i < n, we want to show
that b = 0. Let us set ap = 1, @; = D;(b) for 1 <i < m and @ = (ap,...,am). By (1)
evaluated at (@, b), we get F;(@,b) = 0 for 1 <i < m. By (3) and (5), we get C (@,b) =0
for 1 <4 < m. Moreover, for any m + 1 <1i < m +n, we get G;(a@,b) = 0 by (4), sothat
Ci(a,b) = 0 by (2) and by Remark 16. For the moment, we have proved that C;(a, b) =
for1 <i<m+n.

Let us set a :== X(1 + @ X + -+ @nX™), b := X(1 + b X + - + b, X") and
ci=aob=X(1+¢ X+ --eyX") e C[X], where the ¢; € C. Using the relation (0),
we get ¢; = Cj(a,b) =0 for 1 <i <m+n. By R(m,n), we get a =b= X. O

We finish this subsection by a technical result to be used in Lemma 20 below. Even if
the proof relies on the above technical definitions, the statement itself is self-contained.

Lemma 18. Set a(X Z a; X and b(X)=X+ ZbZ-XHI, where a;,b; are el-
0<i<m 1<i<n
ements of C((T)). Set ¢(X) = aob(X) — apX. Note that a(X),b(X) and ¢(X) are
elements of C((T'))[X]. Assume that %imob =X and 7lﬂimoc =p € C[X]|. Then, if the
— —

conjecture R(m,n) holds, we get degp < m +n+ 1.

Proof. If a := (ag,...,am) and b := (b1,...,by), we have ¢(X) = > Cy(a,b) X! by
1<i<N
the relation (0). Since %irn()b = X all the b; belong to TC[[T]] and since %irn()c exists all
— —
the Cj(a, b) belong to C[[T]].

Claim. If m 4+ 1 <1 < N, then G;(a,b) € TC|[T]].

If 1 <3, k <m, we have:

e U; j(b) € TC[[T]] since U; ; € C[B] is homogeneous of degree i —j > m+1—m =1,

k(b)) € C[[T]] since Wj, is a polynomial;
« Ci(a,b) € C[[T]].
By (5) or Remark 16, we have G; = Z Ui .j W Cj, and the claim follows.
1<jk<m

By (2), we have Cj(a,b) = aoFi(b) + G;(a, b).

If i > m + 1, we have val Cj(a,b) > 0 and valG;(a,b) > 1, so that valagF;(b) > 0.
We want to show that val C;(a,b) > 1, when ¢ > m + n. For this, it is sufficient to show
that valagF;(b) > 1. By Lemmas 14 and 17, if ¢ > m + n, we have:

) > i )
val F;(b) > 1g1jnglnvalFmﬂ(b) +1,

so that valapFj(b) > min valagFp,4;(b) +1> 1. O
1<j<n

19



2.4 An easy lemma on the multidegree

Lemma 19. Let K be any field containing C and let f = (f1, f2) be an automorphism
ofA%( of multidegree (dy,...,dy) with k > 1, then deg fi =dy...dy ordy...d; (and the
same holds for fy). Furthermore, if deg fi = di ...dy, then there exists a unique scalar
A € K such that deg(fa — Af1) < di...dg, or equivalently such that deg(fo — Af1) =
do . ..dyg

Proof. By definition of the multidegree, f admits a reduced expression

f=aioBio---o00 0P oaky,

where each «; is affine and each (; is triangular of degree d;. Set
gi=a;lof=p1oazo - -0agoBoa.

An easy induction would establish that degg; = di...d; and deggs = da...dy (for
details, see [Fur97, Proof of Prop. 1, p. 606]). The result follows. O

3 PROOF OF THEOREM B

In this section, m,n > 1 are fixed integers and we assume that the conjecture R(m,n)
holds. We set d = (d1,ds) = (m + 1,n + 1) and we want to show that G4 = U Ge.
e=<d

Subsection 3.1 is devoted to the proof of the first inclusion G4 C U Ge. It only
e=<d
relies on the self-contained Lemma 18. Subsection 3.2 is devoted to the proof of the

second inclusion |J G, C Ggq. It is a little more involved, since it uses the polynomials
e=<d
C;, D;, E;, F;, G; defined in subsection 2.3.

3.1 The first inclusion

If f € Gy, let us show that f € U Ge. By [Fur02], the length is a lower semicontinuous

e=<d
function on G so that the length of f satisfies | < 2. We will consider 3 cases:

e [ = 0. There is nothing to show;
e [ = 1. We conclude by Lemma 20 below;
o [ = 2. We conclude by Lemma 21 below.

Lemma 20. Ife > 2 and G, mé(dhdﬂ # 0, then e < dy + ds.

Proof. If f € Gy N Ga, let us prove that e < dy + dz. Since Ao fo A C G4, we may
assume that f = (X 4+ p(Y),Y) with degp = e. If e < da, there is nothing to prove. So,

let us assume that e > dy. By Cor. 10, there exists ¢ = (g1, g2) € Gg (C((T))) such that
f= }il%gT. By Lemma 19, we must have deg g1 = didas.
—
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First claim. We may assume that deg gs = ds.

Indeed, since g is of multidegree (dy,dz), by Lemma 19, there exists a unique \ €
C((T)) such that deg(ga — Ag1) = da. It is enough to show that val(\) > 0, because
we can then replace g by (uj,u2) := (91,92 — A\g1). Let p (resp. v) € C((T)) be the
Y¢-coefficient of go (resp. wy). Applying the equality go = ua + Auj to the Y¢-coefficient,
we get 1 = Av (since we have assumed that e > da). However, we have val(v) = 0 (since
%iinmul(T) =X +p(Y) and degp = e), so that val(A) = val(u) > 0 and the claim is

proved.

Since deg g1 > deg g9, it is well-known (see e.g. [Fur97, Th. 1.i]) that we can write
(in a unique way)
g=Totioocotyol,

where 7 = (X 4+ a,Y + b) is a translation,

ti1=| X+ Z YL Y | to= [ X+ Z b;Y 1 Y | are triangular automorphisms,
0<i<m 1<i<n
o= (Y,X)and | = (I1,l2) = (aX + BY,7X + 0Y) are linear automorphisms, with the
a;’s, b;’s, a,b,a, 8,7,0 belonging to C((T)). By making the composition, we get:
i+1

g=|t+ D a|u+ D> 08 ta b+ > b +b
0<i<m 1<j<n 1<j<n

Since f = 7lﬂimo gr, by looking at the constant terms, we get a,b € C[[T]] and there is no
s

restriction to assume that a = b = 0.

Second claim. We may assume that [ = (I1,l2) = (Y, X + pY) for some p € C((T)).

Note that lim a =0, lim =1 and lim ad — vy = —1. The last relation comes
T—0 T—0 T—0 5
from the Jacobian equality Jacg = Jaco x Jacl = —(ad — Bv). Set p:= ;a

Since (I1,l3) = (Y, X 4 pY) o hp, where hp := (—ply + l2,11), it is enough to show
that 7lﬂimo hr = (X,Y). For the second component, it is clear. For the first, we have
—
2

—plit+le = (y—pa)X+(0—pp)Y. But v — pa = o _ad— By

and § — p8 = a, so that %in%)é — pB = 0 and the claim is proved.
ﬁ

that li —pa=1
, s0 that lim & — pa

So, we can now assume that:
i+1
g=X+pY+ D a [Y+ D bi(X+pY)TH Y+ > b (X +py) T

0<i<m 1<j<n 1<j<n
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Inspecting the Y-powers, the relation %in% gr = (X +p(Y),Y) gives us:
4>

i+1
lim pY + Z a; |Y + Z b PTYIT = p(Y) and lim Z b; P HYIT = 0.
=0 0<i<m 1<j<n =0 55%n
Setting Ej = b’ L, we get:
i+1
lim pY + > a; |[Y+ > bV =p(Y) and lim Y bYItt =0,
=0 0<i<m 1<j<n =0 S

Looking at the Y-coefficient, the first relation shows us that %imo p + ap = p1, where
—
p1 is the Y-coefficient of p(Y).

i+1
. T oyt
Therefore r}lin)o Z a; |Y + Z b Y7t —apY =p(Y) —p1Y and Lemma 18
0<i1<m 1<j<n
tells us that deg (p(Y) fp1Y) <m+n+1l=d+dy— 1. O

Lemma 21. If g(eheg) N a(dl,dg) # 0, then e; < dy and ey < ds.

This lemma is a consequence of the following result, which is [Fur09, Th. CJ:

Theorem 22. If u = (uy,...,u;), v = (v1,...,v;) are two multidegrees with the same
length, then the following assertions are equivalent:
i) Gu C Gu;

i) G, N Gy #0;
i) u; < for eachi (i.e. u=<w).

However, here is a simple proof of Lemma 21:

Proof of Lemma 21. Let V be the polynomial algebra C[X,Y]. Any element v of V' admits
a unique expression v = E v;, where v; is homogeneous of degree i. Let Il : V — V be
i>0
the projection sending v to Z v;. Two polynomials u, v € V are linearly dependent if and
1>k
only if u Av=0in A>V. The key point is the fact that for each f = (f1, f2) € G(dy, do)s
we have

d2 = min{k, H>k(f1) AN H>k(f2) = O}
In particular, we have II< 4,(f1) A IIs4,(f2) = 0 and this condition still holds if we

only assume that f belongs to G(dl’dQ). Therefore, if f € Gy ey) N E(dhm we get
ea < dy. The map g +— g~! being an automorphism of (the infinite dimensional algebraic
variety) G sending an automorphism of multidegree (uq,...,;) to an automorphism of

multidegree (uy, ..., u;), we also have f~! € Glea,e) r@(dml) so that ey < d;. O
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3.2 The second inclusion

Let us show that G, C G, for any e < d.

If e is of length 0 or 2, it is easy. For the sake of completeness, let us prove it
by using [Fur97, section 4| (see also [Fur09, subsection 7.2|). Indeed, we define the
partial order < on the set of multidegrees in the following way. If u = (uq,...,ux) and
v = (v1,...,v;) are multidegrees, we say that v < v if k¥ <[ and if there exists a finite
sequence 1 < 41 < ig < --- < 4 < [ such that u; < Vi, for 1 < j < k. By [Fur97,
section 4| the inequality u < v implies the inclusion G, C G,. If e is of length 2, the
inclusion G, C G4 is also a consequence of Th. 22 above. Therefore, for showing the
second inclusion, it is enough to prove the next result:

Lemma 23. If2 < e < dy +da, then the following inclusion holds: G C g(dl,dz)'

Proof. 1t is sufficient to show that | X + Z Y Y | € Gy for any ~; € C.
1<i<m+n

We take back the notations of subsection 2.3. By Lemmas 15 and 17, there exist
g>1and b:= (by,...,b,) € Ag gy such that b(0) = 0 and

T_qu_H;(b) = Ym+i» 1 S ) S n.

Set ag := T4, a; := agD;(b) for 1 <i < m, p:=—T"7 and b; :Zij_j_1 for 1 <j<n.
Set g :=t1 000ty 0l, where

=X+ ) eV Y|, to= X+ bY"Y

0<i<m 1<i<n

are triangular automorphisms, o = (Y, X) and [ = (Y, X + pY). We have:
i+1

g=X+pY+ D @ [Y+ D b (X+pV)VTH V4 Y b (X 4py )T

0<i<m 1<j<n 1<j<n

. . B itl
Claim. %1g%)gT =X+ Z vY'™ Y

m+1<i<m+n
Let us begin to show that lim go =Y.
T—0

For1 < j <n, wehave b; (X + pY )Itt :gj (p~ X +Y)' ™! where lim Zj = lim p ' =0,
T—0 T—0

so that ’}imobj (X 4+ pY)7T1 = 0 and the result is clear.
—

Let us now deal with the first component g; = X + pY + Z a; gé“.
0<i<m
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First step. Let us show that in this last expression of g1, the limit of g; is unchanged

if we replace go by
p:=Y + Z ijjJrl.
1<j<n
It is sufficient to check that 7lﬂimo ai(gstt —py = 0.
—
As lim go = lim p =Y and gbt* — p™*! = (g2 — p)(gb + - + p*), we will only check
T—0 T—0
that li i (g2 —p) =0.
at lim a; (g2 —p) | |
Since g2 —p = Z b; [(X + pY)?*! — (pY')7*1], it is enough to show that:
1<j<n
: j+1 17 _
lim aiby [(X + pY P+ — (o7 P*1] =0,

(X +pY )/ — (py )/

As %1310 G DXYip = 1, we will only show that %iglo abip’ = 0.
. 1 a;~ .7 . Qa; .
It is clear, because a;bjp’ = —a—;bj where }{nm b; =0 and %linm;; =1 (resp. 0) if
i =0 (resp. i > 1).
Second step. Let us show that lim ¢ = Z 7 Y where

T—0 -
m+1<i<m+n

ci=pY + > apt =—aY + > apth

0<i<m 0<i<m

If a:= (ap,...,an), by the relation (0) we have ¢ = Z Ci(a, b)Y,
1<i<N

We get Ej(a,b) =0 for 1 < j < m by (1), so that G;(a,b) =0 for 1 <i < N by (4)
and Cj(a,b) = aoF;(b) = T~ 1F;(b) for 1 < i < N by (2). Therefore:

e Ci(a,b) =0 for 1 <i<m (see Remark 16);
e lim Cpii(a,b) = im T79F,,4i(b) = ymyi for 1 <i < mn;
T—0 N T—0 - -

. %in%)Ci(a,b) = 0 for ¢ > m+n, since val F;(b) > 1g1jn val Fip4(b) +1> g+ 1 (by
—

i<n
Lemma 14).

This proves the second step and the claim follows.

If we now set f:=tog, wheret:= | X + Z Y1 Y | is a triangular automor-
1<i<m

phism, then f € Gy <(C((T))) and lim fr= | X + Z %Y Y |, We conclude
T—0

1<i<m+n
by Cor. 10.
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4 PROOF OF THEOREM D

We begin with the following lemma:

Lemma 24. Let d > 2 be an integer. Then the subsel Gqy of the group G is a double
coset modulo the affine subgroup A if and only if d =2 or 3.

Proof. Let us define the equivalence relation ~ on G by:
Vfge G, f~g<= f and g have the same double coset modulo A , ie. Ao fod=
Aogo A

Let us note that any automorphism in the double coset Ao f oA has the same degree
as f. Let p(Y),q(Y) € C[Y] be any polynomials.

Claim. The following assertions are equivalent:
i) (X +p(Y),Y) ~ (X +q(Y),Y);
ii) There exists a, 8,7 € C with a8 # 0 such that ¢"(Y) = ap”(BY + 7).
Proof of the claim. There is no restriction to assume that degp = degq > 2.
i) =1ii). If (X +p(Y),Y) ~ (X +¢(Y),Y), there exists affine automorphisms v and
v such that (X +¢q(Y),Y) =uo (X +p(Y),Y)ov. Ifu= (aX +bY + ¢, dX +eY + f)
and v = (X +bY +¢,dX + €Y + f), we get:

X+4qY)=ap(dX +&Y + [)+a@X +0Y +&) +b(dX +&Y + ) +c.

Setting X = 0 and derivating two times with respect to Y, we get: ¢"(Y) = ap”(BY +7),
where we have set: o := a(é)2, 8 := ¢ and  := f. Since ¢’ # 0, it is clear that « # 0.
If degp = degg > 3, we have 8 # 0 for reason of degrees. If degp = degq = 2, we can
assume that 8 # 0.

i) = 1). If ¢"(Y) = ap”(BY +~), then, by integrating two times, we get: aq(Y") +
bY + c = p(dY +e), where a,b,¢,d,e € C and ad # 0. It follows that:

(X 4+pY),Y)o(aX,dY +¢€) = (aX +bDY +¢,dY +e)o (X +¢qY),Y)

and finally (X +p(Y),Y) ~ (X +¢(Y),Y). The claim is proved.

If d =2 or 3 and degp = degq = d, the claim implies that (X + p(Y),Y) ~
(X +¢q(Y),Y). Therefore, in this case, G is a double coset modulo A.

If d > 4, let us set p(Y) = Y% and ¢(Y) = Y¢ + Y91, There does not exist any
a, B,y € C such that ¢"(Y) = ap”(BY + ), because the polynomial p”(8Y + ~) has
a unique root and this is not the case of the polynomial ¢”(Y"). By the claim, it follows
that the automorphisms (X + p(Y),Y) and (X + ¢(Y),Y) have distinct double coset
modulo A. In particular, G4 is not a double coset modulo \A. O

Let us now prove Th. D.
If H is a subgroup of G as in Th. D, let us show that H# = G. By the hypothesis,
‘H contains a triangular automorphism f = (X + p(Y),Y) with degp > 2. If we set
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Jdo = (X, Y +a) € H (a € C), then the commutator [f,gs] := fogao flog,l € H
is equal to (X + ¢(Y),Y) , where ¢(Y) := p(Y) — p(Y — «). If a is well chosen, one
may assume that degq = degp — 1. Therefore, by a decreasing induction, we see that H
contains a triangular automorphism of degree 2.

Since () is a double coset modulo A by Lemma 24, we get G5y C H. By induc-
tion, we get G(g) € H for any d > 2. Indeed, if G4 C H, we get Gq2) C H, so that
?(d,Q) CH =H and Ga+1) S g(m) by Th. C. Since H contains all G4, d > 2, it is now
clear that H = G. O
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