Quasi-locally Finite Polynomial Endomorphisms.

Jean-Philippe FURTER,
Dpt. of Math., Univ. of La Rochelle,
av. M. Crépeau, 17 000 La Rochelle, FRANCE
email: jpfurter@univ-Ir.fr

Abstract.

If F is a polynomial endomorphism of CV, let C(X)¥ denote the field of rational
functions r € C(z1,...,2y) such that r o F = r. We will say that F' is quasi-locally
finite if there exists a nonzero p € C(X)¥[T] such that p(F) = 0. This terminology
comes out from the fact that this definition is less restrictive than the one of locally finite
endomorphisms made in [7]. Indeed, F' is called locally finite if there exists a nonzero
p € C[T] such that p(F') = 0. In the present paper, we show that F' is quasi-locally finite
if and only if for each a € CV the sequence n ~— F™(a) is a linear recurrent sequence.
Therefore, this notion is in some sense natural. We also give a few basic results on such
endomorphisms. For example: they satisfy the Jacobian conjecture.
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INTRODUCTION.

Let us denote by AV = CV the complex affine space of dimension N and by End
the set of polynomial endomorphisms of AY. As usual, we identify an element F of
End to the N-uple of its coordinate functions F' = (F1,..., Fy) where each F, belongs
to the ring C[X] := C[x1,...,2x] of regular functions on AN. We will therefore write
End = C[X]N. Let us set C(X) := C(z1,...,2n), C(X)F :=={r € C(X), roF =r} and
C[X]F := C(X)¥ N C[X]. We recall that F is called dynamically trivial if its dynamical
degree dd(F) := nan;O(deg F")% is equal to one (see [5]). In the case where F' is an
automorphism, this is equivalent to saying that its topological entropy h(F') is zero (see
[13]). A first subclass of dynamically trivial polynomial endomorphisms was introduced
in [7]. Tt is the set of polynomial endomorphisms F which are locally finite (LF for short)
in the following sense: the complex vector space generated by the r o F™, n > 0, is
finite dimensional for each r» € C[X]. In the last quoted paper, it is shown that this is
equivalent to saying that the sequence n — deg F™ is upper bounded or to saying that
there exists a nonzero p € C[T] such that p(F) = 0. Using a deep result from number
theory known as the theorem of Skolem-Mahler-Lech (see [9, 12]), one can show that this
amounts to saying that the sequence n +— deg F" is periodic for large n (in [6], the proof



is given for N = 2, but it is easy to give a general proof).

Here, we are interested by the wider class of polynomial endomorphisms F' which
are quasi-locally finite (QLF for short) in the following sense: there exists a nonzero
p € C(X)¥[T] such that p(F) = 0.

Section I is devoted to generalites. We introduce the minimal polynomial vp €
C(X)¥[T] of a QLF polynomial endomorphism F and show in prop.1.3 that in fact
vp € C[X]¥[T]. In prop.1.5 we show that for any QLF polynomial endomorphism F
the sequence n — deg F™ has at most linear growth. Therefore, as announced, any
QLF polynomial endomorphism is dynamically trivial. In section II, we prove our main
theorem asserting that F' is QLF if and only if the sequence n — F"(a) is a linear
recurrent sequence for any a € AV. In section III, we give two criteria for invertibility of
QLF polynomial endomorphisms.

I. GENERALITIES.

Let F' € End. In |7], we noticed that Zp := {p € C[T], p(F) = 0} is an ideal of C[T].
Indeed, it is a complex vector subspace of C[T] which is stable by multiplication by 7.
In the case where F' is LF, i.e. when Zp # {0}, we denote by pp the (unique) monic
polynomial generating this ideal. By the same way, Zr. := {p € C(X)I'[T], p(F) = 0} is
an ideal of C(X)¥[T]. In the case where F is QLF, i.e. when T} # {0}, we denote by
vr the (unique) monic polynomial generating this ideal.

Proposition 1.1. If F € End is QLF, the following assertions are equivalent:
(i) F is LF; (ii) vp € C[T].

Furthermore, if these assertions are satisfied, we have urp = vp.

Proof. If I is LF, it is clear that vp divides up in C(X)¥[T]. Since up € C[T], we
clearly have vy € C[T]. Conversely, if vp € C[T], then F is obviously LF. O

We introduce the language of linear recurrent sequences (LRS for short) and we refer
to [3] for a nice overview of this subject. Let K be any field and let V' be any vector space
over K. The set of sequences u : N — V will be denoted by VN, If p = Zkak € KT,

k
we define p(u) € VN by the formula Vn € N, (p(u)) (n) = Zpk u(n + k) and we set
k

Z, :={p € K[T], p(u) = 0}. It is easy to show that Z, is an ideal of K[T]. We say that
u € VNis a LRS if Z, # {0}. In this case, the minimal polynomial of u is defined as the
(unique) monic polynomial yu, generating the ideal Z,. If a LRS of (the vector space)
K takes values in a subfield K’, it is well known that its minimal polynomial belongs to
K'[T]. More generally, we have the following result.

Lemma. If u is a LRS of a field K taking values in a subring A which is noetherian and



factorial, then pu, € A[T).

Proof. We may assume that K is the field of fractions of A. Since A is factorial, it
is sufficient to prove that Z, = {p € K|[T], p(u) = 0} contains a monic polynomial in
A[T). If v = (vp)nen € AN, let us denote by E(v) the sequence (v,11)nen. Let M be
the A-module generated by the E¥(u), k € N. If p is a nonzero element of Z,,, it is clear
that Yo € M, p(v) = 0. Therefore, if d := degp, the map M — A%, v (Vk)o<k<d—1 1s
injective. Since A is noetherian, this shows that M is a finite A-module. Let m > 0 be
such that the E¥(u), 0 < k < m, generate M. There exist A, € A, 0 < k < m, such that
Em () = Z Ao E¥(u). In other words, 7™+ — Z MTF € T, O
0<k<m 0<k<m

Example. Any LRS with values in Z admits a minimal polynomial in Z[T].
The next trivial result relates QLF polynomial endomorphisms and LRS.

Proposition 1.2. If F' € End, the following assertions are equivalent:
(i) F is QLF;
(ii) the sequence n — F™ is a LRS of C(X ) considered as a vector space over C(X)F".

Furthermore, if these assertions are satisfied, the associated minimal polynomials are
equal.

Proof. If p=>Y pT" € C(X)FIT), D pF*=04=VneN, Y pFF" =00
k k k

Remark. If F € End, it is clear that the set of polynomials p € C(X)[T] satisfying
p(F) = 0 is a nonzero ideal of C(X)[T]. However, it seems that there is in general no
connection with LRS. Indeed, if p = Zkak € C(X)[T] satisfies Zpk F* =0, it is not
k k
necessarily true that Vn € N, Zpk Fktn — .
k

Proposition 1.3. If F' € End is QLF, then vy € C[X][T].

Proof. It follows from prop. 1.2 that the sequence n — F™ is a LRS of the vector space
C(X)N over C(X). If 1 < L < N, let us denote by II;, : C(X)Y¥ — C(X) the L-th
projection. Each sequence n +— IIL(F"™) being a LRS of the field C(X) with values in

C[X], its minimal polynomial pj, r has coefficients in C[X]. Since vy = 1£CLZLN WL, F, We

are done. O

Proposition 1.4. If F € End, the following assertions are equivalent:
(i) F'is QLF;



(ii) the sequence n +— F™ is a LRS of C(X )" considered as a vector space over C(X).

Furthermore, if these assertions are satisfied, the associated minimal polynomials are
equal.

Proof. (i) = (ii) is a direct consequence of prop.1.2. Let us show (ii) = (i). Let
p € C(X)[T] be the minimal polynomial of the sequence n +— F™ considered as a LRS of
the vector space C(X)" over C(X). The proof of prop. 1.3 shows that p € C[X][T]. It is
sufficient to show that p € C[X]F[T]. If ¢ = quTk € C[X][T], where the g, € C[X],
k
let us set ¢ := Zq}Tk, where q; := g o F. Since p is a vanishing polynomial of the
k
sequence n — F™ we have Vn € N, Zpk(X)Fk+”(X) = 0. By substituting F'(X) to
k

X, we get Vn eN, Zp}Fk“‘H" = 0 which shows that T'p(T") is a vanishing polynomial

k
of the sequence n — F™. If a|b means that a divides b, we get p|Tp in C(X)[T].

Writing p(T') = T™q(T) with ¢(0) # 0, we get T™q|T™*'q, so that q|Tq and finally
q|q. Therefore, we have p|p and since p and p are monic polynomials of the same degre,
we have p = p. O

Remark. In the last proof, we need to show that each coefficient p; of p belongs to
C[X] in order to justify the fact that the composition py o F' is well defined.

Proposition 1.5. If F € End is QLF, there exist A, B > 0 such that:
VneN, degF" < An+ B.

Proof. Let ag,...,aq—1 € C[X]F be such that F? = a4 F¥ 1 + ... 4 agF°. Since
Frtd — g (Frtd=1 4o 4 g0 F" we have deg F™? < max  degap F™F. If we set

0<k<d—1
d,:= max degF""* A:= max dega; and B := dy, we get deg F"T? < A+ d,,,
0<k<d—1 0<k<d—1
so that dp+1 < A+d, and degF" < d, < An+ B. O

Question. Is the converse true?

Example. Let C[Y] := Cly,...,yn] and C[Z] := Clz1,..., 2] for m,n > 1.
Let P := T™ — Zaka € C[Z][T], where the a; € C[Z]. We now give a QLF

0<k<m—1
endomorphism F' whose minimal polynomial v is equal to the least common multiple

Qof Pand T — 1.

0O ... 0 aq
1 0 ai

Let Cp := ) . € M,,(C[Z]) be the Companion matrix to P.
0 1 QAm—1



It is well known that the minimal polynomial of Cp is equal to P. Therefore, if
Fi,...,F, € C[Y, Z] are defined by [F},..., F,] = Cp.y1,...,ym], it is easy to check
that F' : (Y, 2) — (FA(Y,Z),...,Fn(Y,Z),Z) is a QLF polynomial endomorphism of
A™T gatisfying vp = Q.

Remark. Let us recall that a polynomial endomorphism F = (Fi,...,Fy) of AV is
triangular if each Fp, is of the form axy + b where a € C and b € Clxpy1,...,2N].
Furthermore, F' is triangularisable if it is conjugate (by a polynomial automorphism) to
a triangular endomorphism.

It is clear that (i) = (ii) = (iii) = (iv) in the following assertions (see [7| for (i)
= (ii) and prop. 1.5 for (iii) = (iv)):

(i) F is triangularisable;  (ii) F'is LF;  (iii) F is QLF;  (iv) F' is dynamically
trivial.

If F is an automorphism of A2, it is proved in [5] that (i) and (iv) are equivalent so
that the last four assertions are equivalent. However, for large values of NV, these notions
(applied to automorphisms) are different:

The Nagata automorphism (z —2y(xz +y?) — z(zz +y*)?, y + 2(z2 + y?), 2) (see [10])
is LF (see [7]) but not triangularisable (see [2]).

Using the construction explained in the last example and prop. 1.1, it is clear that
the automorphism (y,z + yz, z) is QLF but not LF.

If F: A5 — A® (z,y,2,t,u) = (y,x + yz,t,z + tu,u), one would easily check that
deg F" = (n®> —n +4)/2 for n > 1 so that F is dynamically trivial but not QLF by
prop. 1.5.

II. MAIN THEOREM.
Here is our main result.

Theorem. Let F' € End. The following assertions are equivalent:
(i) for any a € AN the sequence n + F™(a) is a LRS (of the complex vector space C);

(ii) there exists a non empty Zariski open subset U of A such that for any a € U the
sequence n — F"(a) is a LRS;

(iii) there exists a non empty open subset U of AN (for the transcendental topology)
such that for any a € U the sequence n — F™(a) is a LRS;

(iv) F is QLF.

Proof. (i) = (ii) = (iii) is obvious and (iv) = (i) is a direct consequence of prop. 1.3.
Let us show that (iii) = (iv). If 1 < L < N and o € NV let 1, o (F) be the coefficient
of z of the polynomial Fy,. Let C := {Il; o(F), L € {1,...,N}, a € NV} be the set of
coefficients of F' and let K := Q(C) be the field extension of Q generated by C.



First claim. There exists a = (a1,...,ay) € U such that aj,...,ay € C are alge-
braically independant over K.

Let R >0 and u = (uq,...,uy) € U be such that:

D .= {(21,...,21\]) E(CN, 1<L<N= |zL—uL\ <R} cU.

If we set Dy, := {2z € C, |z —ur| < R}, we have D = D; x ... x Dy. Let us
construct, by finite induction on L, a complex sequence (ar,)1<r<n such that for each L:

ar, € Dy and ay, is transcendental over K(aq,...,ar—1). Let us assume that a1,...,ar_1
are already constructed and that they satisfy the wanted hypothesis. Let us note that
the algebraic closure Ky, of K(aj,...,ar—1) in C is countable (since K(aj,...,ar—1) is

countable). Since Dy, is uncountable, there exists ar, € Dy, \ K.
Using prop. 1.4, it is sufficient to show our

Second claim. There exists a positive integer d and rational functions ag,...,aq_1 €
C(X) such that ¥ n € N, F*td = o4 (Frrd=l 4. 4 ogF™,

We begin to note that for each n the coefficients of F™ belong to the field K. Let
us set K’ := K(a1,...,an). The sequence (F"(a)), oy is a LRS of (K’)V considered as
a vector space over K'. If 1 < L < N, let I, : (K')N — K’ be the L-th projection.
The sequence n — I, (F™(a)) being a LRS of K, its minimal polynomial uz, belongs to
K'[T]. Since the minimal polynomial u of the sequence n +— F"(a) satisfies p = chm KL,

we have u € K'[T]. Let us write g = T% — (Bg_1T% ' +--- + By), where the 8, € K'.
Let o, € K(x1,...,2N) be such that 8y = ag(ai,...,an). We have:
VneN, F' " ay,... ay) = Zak(al, cay) F'" R ay, . ay)
0<k<d-1
and since a1,...,ay are algebraically independant over K, we obtain:
VneN, FP(X) =Y ap(X) FHF(X). 0
0<k<d—1

Remarks. 1. Let us recall that the rank of a LRS w is the degree of its minimal
polynomial. If u is a complex sequence, its Hankel matrix is defined by

uo ul . Unp,
(5% (%) cee Up+1

H(u):= | : : : and we have:
Up Unp4+1 - U2,

rku < m <= all the k£ x k minors of H(u) are zero for k > m + 1.

If F € Endis QLF, let or : AV — N be the map associating to a € AN the rank
of the LRS n — F™(a). Using the previous point, is is easy to show that ¢ is lower
semicontinuous. This means that for each m > 0, the set Fy, := {a € AV, pp(a) < m}
is a (Zariski) closed subset of AV,

2. The proof of the last theorem shows us that degvp = n€12§ ¢vr(a). However, let us

a



show that ¢p is upper bounded by using the semicontinuity. The equality AY = L>J0 F,
n>

implies that AN = F, for some n > 0. Otherwise, the U, := AN \ F,, would be dense
open subsets of AV satisfying Qo U, = ) and this would contradict the Baire property.
n_

III. CRITERIA FOR INVERTIBILITY.
Let us denote by I := (z1,...,zy) the identity morphism of AN,

Proposition 3.1. If ' € End is QLF, then F' is an automorphism if and only if
VF(O) e C*.

Proof. Let us write vp = Z apTF, where the a € C[X] and a,, = 1. If F is an
0<k<n

automorphism, we cannot have ag = 0, because otherwise p(T) := vp(T) T~ € C[X]F[T]

and p(F)o F = 0. Since F is onto, this would imply p(F) = 0 contradicting the

definition of vg. One would easily check that vp-1 = agl T vp(T1). By prop. 1.3, each

coefficient of vp-1 belongs to C[X]. In particular, the constant coefficient ag 1 Since

ap and ay' € C[X], ag is an invertible element of C[X] so that ag € C*. Conversely,

if ag € C*, then ¢(7T) := %ﬁ#ﬂ € C[X]¥[T) satisfies ¢(T)T = 1 mod vp(T), so that

q(F)o F =1 and F' is an automorphism. O
The Jacobian determinant of an endomorphism F' will be denoted by Jac F'.

Proposition 3.2. If F € End is QLF, then the Jacobian conjecture holds for F', i.e. F
is an automorphism if and only if Jac F' € C*.

Proof. If F' is an automorphism it is well known and obvious that Jac F' € C*. Con-
versely, if F' € End is QLF and satisfies Jac F' € C*, let us show that F' is an automor-
phism. If we write vp = Z apT*, where the a; € C[X] and a,, = 1, it is sufficient

0<k<n
to show that ag € C*. First and foremost, we cannot have ag = 0. Indeed, otherwise,

we would have p(F) o F = 0, where p := vp(T)T~! € C[X]¥[T]. If r € C[X] denotes
a nonzero coordinate of p(F'), we would get r(F') = 0, showing that Fy,..., Fy are al-
gebraically dependant over C. This is well known to be equivalent to Jac F' = 0 (see

[11]) which is impossible. If we set ¢(T') := %?(T) € C(X)F[T), then ¢(T)T =1 mod
0

vp(T), so that q(F) o F = I. This shows that F' is a birational automorphism. Since

Jac F' € C*, this is well known to imply that F' is an automorphism (see th.2.1 of [1],

cor.1.1.35 of [4] or [8]). O
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