Quasi-locally Finite Polynomial Endomorphisms.

Jean-Philippe FURTER, Dpt. of Math., Univ. of La Rochelle, av. M. Crépeau, 17 000 La Rochelle, FRANCE email: jpfurter@univ-lr.fr

Abstract.

If F is a polynomial endomorphism of \mathbb{C}^N , let $\mathbb{C}(X)^F$ denote the field of rational functions $r \in \mathbb{C}(x_1, \ldots, x_N)$ such that $r \circ F = r$. We will say that F is quasi-locally finite if there exists a nonzero $p \in \mathbb{C}(X)^F[T]$ such that p(F) = 0. This terminology comes out from the fact that this definition is less restrictive than the one of locally finite endomorphisms made in [7]. Indeed, F is called locally finite if there exists a nonzero $p \in \mathbb{C}[T]$ such that p(F) = 0. In the present paper, we show that F is quasi-locally finite if and only if for each $a \in \mathbb{C}^N$ the sequence $n \mapsto F^n(a)$ is a linear recurrent sequence. Therefore, this notion is in some sense natural. We also give a few basic results on such endomorphisms. For example: they satisfy the Jacobian conjecture.

Keywords.

Polynomial automorphisms, linear recurrent sequences.

INTRODUCTION.

Let us denote by $\mathbb{A}^N = \mathbb{C}^N$ the complex affine space of dimension N and by Endthe set of polynomial endomorphisms of \mathbb{A}^N . As usual, we identify an element F of End to the N-uple of its coordinate functions $F = (F_1, \ldots, F_N)$ where each F_L belongs to the ring $\mathbb{C}[X] := \mathbb{C}[x_1, \ldots, x_N]$ of regular functions on \mathbb{A}^N . We will therefore write $End = \mathbb{C}[X]^N$. Let us set $\mathbb{C}(X) := \mathbb{C}(x_1, \ldots, x_N)$, $\mathbb{C}(X)^F := \{r \in \mathbb{C}(X), r \circ F = r\}$ and $\mathbb{C}[X]^F := \mathbb{C}(X)^F \cap \mathbb{C}[X]$. We recall that F is called dynamically trivial if its dynamical degree $dd(F) := \lim_{n \to \infty} (\deg F^n)^{\frac{1}{n}}$ is equal to one (see [5]). In the case where F is an automorphism, this is equivalent to saying that its topological entropy h(F) is zero (see [13]). A first subclass of dynamically trivial polynomial endomorphisms was introduced in [7]. It is the set of polynomial endomorphisms F which are locally finite (LF for short) in the following sense: the complex vector space generated by the $r \circ F^n$, $n \ge 0$, is finite dimensional for each $r \in \mathbb{C}[X]$. In the last quoted paper, it is shown that this is equivalent to saying that the sequence $n \mapsto \deg F^n$ is upper bounded or to saying that there exists a nonzero $p \in \mathbb{C}[T]$ such that p(F) = 0. Using a deep result from number theory known as the theorem of Skolem-Mahler-Lech (see [9, 12]), one can show that this amounts to saying that the sequence $n \mapsto \deg F^n$ is periodic for large n (in [6], the proof is given for N = 2, but it is easy to give a general proof).

Here, we are interested by the wider class of polynomial endomorphisms F which are quasi-locally finite (QLF for short) in the following sense: there exists a nonzero $p \in \mathbb{C}(X)^F[T]$ such that p(F) = 0.

Section I is devoted to generalites. We introduce the minimal polynomial $\nu_F \in \mathbb{C}(X)^F[T]$ of a QLF polynomial endomorphism F and show in prop. 1.3 that in fact $\nu_F \in \mathbb{C}[X]^F[T]$. In prop. 1.5 we show that for any QLF polynomial endomorphism F the sequence $n \mapsto \deg F^n$ has at most linear growth. Therefore, as announced, any QLF polynomial endomorphism is dynamically trivial. In section II, we prove our main theorem asserting that F is QLF if and only if the sequence $n \mapsto F^n(a)$ is a linear recurrent sequence for any $a \in \mathbb{A}^N$. In section III, we give two criteria for invertibility of QLF polynomial endomorphisms.

I. GENERALITIES.

Let $F \in End$. In [7], we noticed that $\mathcal{I}_F := \{p \in \mathbb{C}[T], p(F) = 0\}$ is an ideal of $\mathbb{C}[T]$. Indeed, it is a complex vector subspace of $\mathbb{C}[T]$ which is stable by multiplication by T. In the case where F is LF, i.e. when $\mathcal{I}_F \neq \{0\}$, we denote by μ_F the (unique) monic polynomial generating this ideal. By the same way, $\mathcal{I}'_F := \{p \in \mathbb{C}(X)^F[T], p(F) = 0\}$ is an ideal of $\mathbb{C}(X)^F[T]$. In the case where F is QLF, i.e. when $\mathcal{I}'_F \neq \{0\}$, we denote by ν_F the (unique) monic polynomial generating this ideal.

Proposition 1.1. If $F \in End$ is QLF, the following assertions are equivalent:

(i) F is LF; (ii) $\nu_F \in \mathbb{C}[T]$.

Furthermore, if these assertions are satisfied, we have $\mu_F = \nu_F$.

Proof. If F is LF, it is clear that ν_F divides μ_F in $\mathbb{C}(X)^F[T]$. Since $\mu_F \in \mathbb{C}[T]$, we clearly have $\nu_F \in \mathbb{C}[T]$. Conversely, if $\nu_F \in \mathbb{C}[T]$, then F is obviously LF.

We introduce the language of linear recurrent sequences (LRS for short) and we refer to [3] for a nice overview of this subject. Let K be any field and let V be any vector space over K. The set of sequences $u : \mathbb{N} \to V$ will be denoted by $V^{\mathbb{N}}$. If $p = \sum_{k} p_k T^k \in K[T]$, we define $p(u) \in V^{\mathbb{N}}$ by the formula $\forall n \in \mathbb{N}$, $(p(u))(n) = \sum_{k} p_k u(n+k)$ and we set $\mathcal{I}_u := \{p \in K[T], p(u) = 0\}$. It is easy to show that \mathcal{I}_u is an ideal of K[T]. We say that $u \in V^{\mathbb{N}}$ is a LRS if $\mathcal{I}_u \neq \{0\}$. In this case, the minimal polynomial of u is defined as the (unique) monic polynomial μ_u generating the ideal \mathcal{I}_u . If a LRS of (the vector space) K takes values in a subfield K', it is well known that its minimal polynomial belongs to K'[T]. More generally, we have the following result.

Lemma. If u is a LRS of a field K taking values in a subring A which is noetherian and

factorial, then $\mu_u \in A[T]$.

Proof. We may assume that K is the field of fractions of A. Since A is factorial, it is sufficient to prove that $\mathcal{I}_u = \{p \in K[T], p(u) = 0\}$ contains a monic polynomial in A[T]. If $v = (v_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}}$, let us denote by E(v) the sequence $(v_{n+1})_{n \in \mathbb{N}}$. Let M be the A-module generated by the $E^k(u), k \in \mathbb{N}$. If p is a nonzero element of \mathcal{I}_u , it is clear that $\forall v \in M, p(v) = 0$. Therefore, if $d := \deg p$, the map $M \to A^d, v \mapsto (v_k)_{0 \leq k \leq d-1}$ is injective. Since A is noetherian, this shows that M is a finite A-module. Let $m \geq 0$ be such that the $E^k(u), 0 \leq k \leq m$, generate M. There exist $\lambda_k \in A, 0 \leq k \leq m$, such that $E^{m+1}(u) = \sum_{0 \leq k \leq m} \lambda_k E^k(u)$. In other words, $T^{m+1} - \sum_{0 \leq k \leq m} \lambda_k T^k \in \mathcal{I}_u$.

Example. Any LRS with values in \mathbb{Z} admits a minimal polynomial in $\mathbb{Z}[T]$.

The next trivial result relates QLF polynomial endomorphisms and LRS.

Proposition 1.2. If $F \in End$, the following assertions are equivalent:

(i) F is QLF;

(ii) the sequence $n \mapsto F^n$ is a LRS of $\mathbb{C}(X)^N$ considered as a vector space over $\mathbb{C}(X)^F$. Furthermore, if these assertions are satisfied, the associated minimal polynomials are equal.

Proof. If
$$p = \sum_{k} p_k T^k \in \mathbb{C}(X)^F[T], \quad \sum_{k} p_k F^k = 0 \iff \forall n \in \mathbb{N}, \sum_{k} p_k F^{k+n} = 0.$$

Remark. If $F \in End$, it is clear that the set of polynomials $p \in \mathbb{C}(X)[T]$ satisfying p(F) = 0 is a nonzero ideal of $\mathbb{C}(X)[T]$. However, it seems that there is in general no connection with LRS. Indeed, if $p = \sum_{k} p_k T^k \in \mathbb{C}(X)[T]$ satisfies $\sum_{k} p_k F^k = 0$, it is not necessarily true that $\forall n \in \mathbb{N}$, $\sum_{k} p_k F^{k+n} = 0$.

Proposition 1.3. If $F \in End$ is QLF, then $\nu_F \in \mathbb{C}[X]^F[T]$.

Proof. It follows from prop. 1.2 that the sequence $n \mapsto F^n$ is a LRS of the vector space $\mathbb{C}(X)^N$ over $\mathbb{C}(X)$. If $1 \leq L \leq N$, let us denote by $\Pi_L : \mathbb{C}(X)^N \to \mathbb{C}(X)$ the *L*-th projection. Each sequence $n \mapsto \Pi_L(F^n)$ being a LRS of the field $\mathbb{C}(X)$ with values in $\mathbb{C}[X]$, its minimal polynomial $\mu_{L,F}$ has coefficients in $\mathbb{C}[X]$. Since $\nu_F = \lim_{1 \leq L \leq N} \mu_{L,F}$, we are done.

Proposition 1.4. If $F \in End$, the following assertions are equivalent: (i) F is QLF;

(ii) the sequence $n \mapsto F^n$ is a LRS of $\mathbb{C}(X)^N$ considered as a vector space over $\mathbb{C}(X)$. Furthermore, if these assertions are satisfied, the associated minimal polynomials are equal.

Proof. (i) \implies (ii) is a direct consequence of prop. 1.2. Let us show (ii) \implies (i). Let $p \in \mathbb{C}(X)[T]$ be the minimal polynomial of the sequence $n \mapsto F^n$ considered as a LRS of the vector space $\mathbb{C}(X)^N$ over $\mathbb{C}(X)$. The proof of prop. 1.3 shows that $p \in \mathbb{C}[X][T]$. It is sufficient to show that $p \in \mathbb{C}[X]^F[T]$. If $q = \sum_k q_k T^k \in \mathbb{C}[X][T]$, where the $q_k \in \mathbb{C}[X]$, let us set $\tilde{q} := \sum_{k} \tilde{q}_{k} T^{k}$, where $\tilde{q}_{k} := q_{k} \circ F$. Since p is a vanishing polynomial of the sequence $n \mapsto F^{n}$, we have $\forall n \in \mathbb{N}$, $\sum_{k} p_{k}(X)F^{k+n}(X) = 0$. By substituting F(X) to X, we get $\forall n \in \mathbb{N}$, $\sum_{k} \tilde{p}_{k}F^{k+1+n} = 0$ which shows that $T\tilde{p}(T)$ is a vanishing polynomial of the sequence $n \mapsto F^n$. If $a \mid b$ means that a divides b, we get $p \mid T\widetilde{p}$ in $\mathbb{C}(X)[T]$. Writing $p(T) = T^m q(T)$ with $q(0) \neq 0$, we get $T^m q | T^{m+1} \tilde{q}$, so that $q | T\tilde{q}$ and finally $q \mid \tilde{q}$. Therefore, we have $p \mid \tilde{p}$ and since p and \tilde{p} are monic polynomials of the same degre, we have $p = \widetilde{p}$.

Remark. In the last proof, we need to show that each coefficient p_k of p belongs to $\mathbb{C}[X]$ in order to justify the fact that the composition $p_k \circ F$ is well defined.

Proposition 1.5. If $F \in End$ is QLF, there exist $A, B \ge 0$ such that: $\forall n \in \mathbb{N}, \deg F^n < An + B.$

Proof. Let $a_0, \ldots, a_{d-1} \in \mathbb{C}[X]^F$ be such that $F^d = a_{d-1}F^{d-1} + \cdots + a_0F^0$. Since $F^{n+d} = a_{d-1}F^{n+d-1} + \cdots + a_0F^n$, we have deg $F^{n+d} \leq \max_{0 \leq k \leq d-1} \deg a_kF^{n+k}$. If we set $d_n := \max_{0 \leq k \leq d-1} \deg F^{n+k}$, $A := \max_{0 \leq k \leq d-1} \deg a_k$ and $B := d_0$, we get deg $F^{n+d} \leq A + d_n$, so that $d_{n+1} \leq A + d_n$ and deg $F^n \leq d_n \leq A n + B$.

Question. Is the converse true?

Example. Let $\mathbb{C}[Y] := \mathbb{C}[y_1, \ldots, y_m]$ and $\mathbb{C}[Z] := \mathbb{C}[z_1, \ldots, z_n]$ for $m, n \ge 1$. Let $P := T^m - \sum_{0 \le k \le m-1} a_k T^k \in \mathbb{C}[Z][T]$, where the $a_k \in \mathbb{C}[Z]$. We now give a QLF

endomorphism F whose minimal polynomial ν_F is equal to the least common multiple Q of P and T-1.

Let
$$C_P := \begin{bmatrix} 0 & \dots & 0 & a_0 \\ 1 & & 0 & a_1 \\ & \ddots & & \vdots \\ 0 & & 1 & a_{m-1} \end{bmatrix} \in M_m(\mathbb{C}[Z])$$
 be the Companion matrix to P .

It is well known that the minimal polynomial of C_P is equal to P. Therefore, if $F_1, \ldots, F_m \in \mathbb{C}[Y, Z]$ are defined by ${}^t[F_1, \ldots, F_m] = C_P {}^t[y_1, \ldots, y_m]$, it is easy to check that $F : (Y, Z) \mapsto (F_1(Y, Z), \ldots, F_m(Y, Z), Z)$ is a QLF polynomial endomorphism of \mathbb{A}^{m+n} satisfying $\nu_F = Q$.

Remark. Let us recall that a polynomial endomorphism $F = (F_1, \ldots, F_N)$ of \mathbb{A}^N is triangular if each F_L is of the form $ax_L + b$ where $a \in \mathbb{C}$ and $b \in \mathbb{C}[x_{L+1}, \ldots, x_N]$. Furthermore, F is triangularisable if it is conjugate (by a polynomial automorphism) to a triangular endomorphism.

It is clear that (i) \implies (ii) \implies (iii) \implies (iv) in the following assertions (see [7] for (i) \implies (ii) and prop. 1.5 for (iii) \implies (iv)):

(i) F is triangularisable; (ii) F is LF; (iii) F is QLF; (iv) F is dynamically trivial.

If F is an automorphism of \mathbb{A}^2 , it is proved in [5] that (i) and (iv) are equivalent so that the last four assertions are equivalent. However, for large values of N, these notions (applied to automorphisms) are different:

The Nagata automorphism $(x - 2y(xz + y^2) - z(xz + y^2)^2, y + z(xz + y^2), z)$ (see [10]) is LF (see [7]) but not triangularisable (see [2]).

Using the construction explained in the last example and prop. 1.1, it is clear that the automorphism (y, x + yz, z) is QLF but not LF.

If $F : \mathbb{A}^5 \to \mathbb{A}^5$, $(x, y, z, t, u) \mapsto (y, x + yz, t, z + tu, u)$, one would easily check that deg $F^n = (n^2 - n + 4)/2$ for $n \ge 1$ so that F is dynamically trivial but not QLF by prop. 1.5.

II. MAIN THEOREM.

Here is our main result.

Theorem. Let $F \in End$. The following assertions are equivalent:

(i) for any $a \in \mathbb{A}^N$ the sequence $n \mapsto F^n(a)$ is a LRS (of the complex vector space \mathbb{C}^N); (ii) there exists a non empty Zariski open subset U of \mathbb{A}^N such that for any $a \in U$ the sequence $n \mapsto F^n(a)$ is a LRS;

(iii) there exists a non empty open subset U of \mathbb{A}^N (for the transcendental topology) such that for any $a \in U$ the sequence $n \mapsto F^n(a)$ is a LRS;

(iv) F is QLF.

Proof. (i) \Longrightarrow (ii) \Longrightarrow (iii) is obvious and (iv) \Longrightarrow (i) is a direct consequence of prop. 1.3. Let us show that (iii) \Longrightarrow (iv). If $1 \le L \le N$ and $\alpha \in \mathbb{N}^N$, let $\Pi_{L,\alpha}(F)$ be the coefficient of x^{α} of the polynomial F_L . Let $\mathcal{C} := {\Pi_{L,\alpha}(F), L \in {1, ..., N}, \alpha \in \mathbb{N}^N}$ be the set of coefficients of F and let $K := \mathbb{Q}(\mathcal{C})$ be the field extension of \mathbb{Q} generated by \mathcal{C} . <u>First claim</u>. There exists $a = (a_1, \ldots, a_N) \in U$ such that $a_1, \ldots, a_N \in \mathbb{C}$ are algebraically independent over K.

Let R > 0 and $u = (u_1, \ldots, u_N) \in U$ be such that:

 $D := \{ (z_1, \dots, z_N) \in \mathbb{C}^N, 1 \le L \le N \Longrightarrow |z_L - u_L| < R \} \subset U.$

If we set $D_L := \{z \in \mathbb{C}, |z - u_L| < R\}$, we have $D = D_1 \times \ldots \times D_N$. Let us construct, by finite induction on L, a complex sequence $(a_L)_{1 \leq L \leq N}$ such that for each L: $a_L \in D_L$ and a_L is transcendental over $K(a_1, \ldots, a_{L-1})$. Let us assume that a_1, \ldots, a_{L-1} are already constructed and that they satisfy the wanted hypothesis. Let us note that the algebraic closure K_L of $K(a_1, \ldots, a_{L-1})$ in \mathbb{C} is countable (since $K(a_1, \ldots, a_{L-1})$ is countable). Since D_L is uncountable, there exists $a_L \in D_L \setminus K_L$.

Using prop. 1.4, it is sufficient to show our

<u>Second claim.</u> There exists a positive integer d and rational functions $\alpha_0, \ldots, \alpha_{d-1} \in \mathbb{C}(X)$ such that $\forall n \in \mathbb{N}, F^{n+d} = \alpha_{d-1}F^{n+d-1} + \cdots + \alpha_0F^n$.

We begin to note that for each n the coefficients of F^n belong to the field K. Let us set $K' := K(a_1, \ldots, a_N)$. The sequence $(F^n(a))_{n \in \mathbb{N}}$ is a LRS of $(K')^N$ considered as a vector space over K'. If $1 \leq L \leq N$, let $\Pi_L : (K')^N \to K'$ be the L-th projection. The sequence $n \mapsto \Pi_L(F^n(a))$ being a LRS of K', its minimal polynomial μ_L belongs to K'[T]. Since the minimal polynomial μ of the sequence $n \mapsto F^n(a)$ satisfies $\mu = \lim_L \mu_L$, we have $\mu \in K'[T]$. Let us write $\mu = T^d - (\beta_{d-1}T^{d-1} + \cdots + \beta_0)$, where the $\beta_k \in K'$. Let $\alpha_k \in K(x_1, \ldots, x_N)$ be such that $\beta_k = \alpha_k(a_1, \ldots, a_N)$. We have: $\forall n \in \mathbb{N}, \ F^{n+d}(a_1, \ldots, a_N) = \sum_{0 \leq k \leq d-1} \alpha_k(a_1, \ldots, a_N) F^{n+k}(a_1, \ldots, a_N)$

and since a_1, \ldots, a_N are algebraically independent over K, we obtain:

$$\forall n \in \mathbb{N}, \ F^{n+d}(X) = \sum_{0 \le k \le d-1} \alpha_k(X) \ F^{n+k}(X).$$

Remarks. 1. Let us recall that the rank of a LRS u is the degree of its minimal polynomial. If u is a complex sequence, its Hankel matrix is defined by

$$H(u) := \begin{bmatrix} u_0 & u_1 & \dots & u_n & \dots \\ u_1 & u_2 & \dots & u_{n+1} & \dots \\ \vdots & \vdots & & \vdots & \\ u_n & u_{n+1} & \dots & u_{2n} & \dots \\ \vdots & \vdots & & \vdots & \\ \end{bmatrix} \text{ and we have:}$$

 $\operatorname{rk} u \leq m \iff \operatorname{all the} k \times k \operatorname{minors of} H(u) \operatorname{are zero for} k \geq m+1.$

If $F \in End$ is QLF, let $\varphi_F : \mathbb{A}^N \to \mathbb{N}$ be the map associating to $a \in \mathbb{A}^N$ the rank of the LRS $n \mapsto F^n(a)$. Using the previous point, is is easy to show that φ_F is lower semicontinuous. This means that for each $m \ge 0$, the set $F_m := \{a \in \mathbb{A}^N, \varphi_F(a) \le m\}$ is a (Zariski) closed subset of \mathbb{A}^N .

2. The proof of the last theorem shows us that deg $\nu_F = \max_{a \in \mathbb{A}^N} \varphi_F(a)$. However, let us

show that φ_F is upper bounded by using the semicontinuity. The equality $\mathbb{A}^N = \bigcup_{n\geq 0} F_n$ implies that $\mathbb{A}^N = F_n$ for some $n \geq 0$. Otherwise, the $U_n := \mathbb{A}^N \setminus F_n$ would be dense open subsets of \mathbb{A}^N satisfying $\bigcap_{n\geq 0} U_n = \emptyset$ and this would contradict the Baire property.

III. CRITERIA FOR INVERTIBILITY.

Let us denote by $I := (x_1, \ldots, x_N)$ the identity morphism of \mathbb{A}^N .

Proposition 3.1. If $F \in End$ is QLF, then F is an automorphism if and only if $\nu_F(0) \in \mathbb{C}^*$.

Proof. Let us write $\nu_F = \sum_{0 \le k \le n} a_k T^k$, where the $a_k \in \mathbb{C}[X]$ and $a_n = 1$. If F is an

automorphism, we cannot have $a_0 = 0$, because otherwise $p(T) := \nu_F(T) T^{-1} \in \mathbb{C}[X]^F[T]$ and $p(F) \circ F = 0$. Since F is onto, this would imply p(F) = 0 contradicting the definition of ν_F . One would easily check that $\nu_{F^{-1}} = a_0^{-1} T^n \nu_F(T^{-1})$. By prop. 1.3, each coefficient of $\nu_{F^{-1}}$ belongs to $\mathbb{C}[X]$. In particular, the constant coefficient a_0^{-1} . Since a_0 and $a_0^{-1} \in \mathbb{C}[X]$, a_0 is an invertible element of $\mathbb{C}[X]$ so that $a_0 \in \mathbb{C}^*$. Conversely, if $a_0 \in \mathbb{C}^*$, then $q(T) := \frac{a_0 - \nu_F(T)}{a_0 T} \in \mathbb{C}[X]^F[T]$ satisfies $q(T)T \equiv 1 \mod \nu_F(T)$, so that $q(F) \circ F = I$ and F is an automorphism. \Box

The Jacobian determinant of an endomorphism F will be denoted by Jac F.

Proposition 3.2. If $F \in End$ is QLF, then the Jacobian conjecture holds for F, i.e. F is an automorphism if and only if $\operatorname{Jac} F \in \mathbb{C}^*$.

Proof. If F is an automorphism it is well known and obvious that $\operatorname{Jac} F \in \mathbb{C}^*$. Conversely, if $F \in End$ is QLF and satisfies $\operatorname{Jac} F \in \mathbb{C}^*$, let us show that F is an automorphism. If we write $\nu_F = \sum_{0 \leq k \leq n} a_k T^k$, where the $a_k \in \mathbb{C}[X]$ and $a_n = 1$, it is sufficient to show that $a_0 \in \mathbb{C}^*$. First and foremost, we cannot have $a_0 = 0$. Indeed, otherwise, we would have $p(F) \circ F = 0$, where $p := \nu_F(T) T^{-1} \in \mathbb{C}[X]^F[T]$. If $r \in \mathbb{C}[X]$ denotes a nonzero coordinate of p(F), we would get r(F) = 0, showing that F_1, \ldots, F_N are algebraically dependant over \mathbb{C} . This is well known to be equivalent to $\operatorname{Jac} F = 0$ (see [11]) which is impossible. If we set $q(T) := \frac{a_0 - \nu_F(T)}{a_0 T} \in \mathbb{C}(X)^F[T]$, then $q(T)T \equiv 1 \mod \nu_F(T)$, so that $q(F) \circ F = I$. This shows that F is a birational automorphism. Since $\operatorname{Jac} F \in \mathbb{C}^*$, this is well known to imply that F is an automorphism (see th. 2.1 of [1], cor. 1.1.35 of [4] or [8]).

References

- H. Bass, E. Connell and D. Wright, The Jacobian conjecture: reduction of degree and formal expansion of the inverse, Bull. of the A.M.S., 7 (1982), 287-330.
- [2] H. Bass, A nontriangular action of G_a on A^3 , J. of Pure and Applied Algebra 33 (1984), no. 1, 1-5.
- [3] L. Cerlienco, M. Mignotte, F. Piras, Suites récurrentes linéaires, propriétés algébriques et arithmétiques, L'Enseignement Mathématique 33 (1987), 67-108.
- [4] A. van den Essen, Polynomial automorphisms and the Jacobian conjecture, Progress in Math, vol 190, Birkhäuser Verlag, Basel, Boston, Berlin, 2000.
- [5] S. Friedland, J. Milnor, Dynamical properties of plane polynomial automorphisms, Ergod. Th. & Dynam. Syst 9 (1989), 67-99.
- [6] J.-P. Furter, On the degree of iterates of automorphisms of the affine plane, Manuscripta Mathematica, 98 (1999), 183-193.
- [7] J.-P. Furter, S. Maubach, Locally finite polynomial endomorphisms, J. of Pure and Applied Algebra 211 (2007), no. 2, 445-458.
- [8] O. H. Keller, Ganze Cremona Transformationen, Monatsh. Math. Phys. 47 (1939), 299-306.
- [9] C. Lech, A note on recurring series, Arkiv for Matematik 2 (1953), 417-421.
- [10] M. Nagata, On automorphism group of k[x, y], Lecture Notes in Math., Kyoto Univ., 5, (1972).
- [11] O. Perron, Algebra I, Die Grundlagen, Walter de Gruyter & Co., Berlin, 1951.
- [12] T. N. Shorey, R. Tijdeman, Exponential diophantine equations, Cambridge Tracts in Mathematics, 87, Cambridge University Press.
- [13] B.L. van der Waerden, Die Alternative bei nichtlinearen Gleichungen. Nachr. Gesells. Wiss. Göttingen, Math. Phys. Klasse (1928), 77-87.