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Abstract.

If F is a polynomial endomorphism of CN , let C(X)F denote the field of rational
functions r ∈ C(x1, . . . , xN ) such that r ◦ F = r. We will say that F is quasi-locally
finite if there exists a nonzero p ∈ C(X)F [T ] such that p(F ) = 0. This terminology
comes out from the fact that this definition is less restrictive than the one of locally finite
endomorphisms made in [7]. Indeed, F is called locally finite if there exists a nonzero
p ∈ C[T ] such that p(F ) = 0. In the present paper, we show that F is quasi-locally finite
if and only if for each a ∈ CN the sequence n 7→ Fn(a) is a linear recurrent sequence.
Therefore, this notion is in some sense natural. We also give a few basic results on such
endomorphisms. For example: they satisfy the Jacobian conjecture.
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INTRODUCTION.

Let us denote by AN = CN the complex affine space of dimension N and by End
the set of polynomial endomorphisms of AN . As usual, we identify an element F of
End to the N -uple of its coordinate functions F = (F1, . . . , FN ) where each FL belongs
to the ring C[X] := C[x1, . . . , xN ] of regular functions on AN . We will therefore write
End = C[X]N . Let us set C(X) := C(x1, . . . , xN ), C(X)F := {r ∈ C(X), r ◦F = r} and
C[X]F := C(X)F ∩C[X]. We recall that F is called dynamically trivial if its dynamical
degree dd(F ) := lim

n→∞
(deg Fn)

1
n is equal to one (see [5]). In the case where F is an

automorphism, this is equivalent to saying that its topological entropy h(F ) is zero (see
[13]). A first subclass of dynamically trivial polynomial endomorphisms was introduced
in [7]. It is the set of polynomial endomorphisms F which are locally finite (LF for short)
in the following sense: the complex vector space generated by the r ◦ Fn, n ≥ 0, is
finite dimensional for each r ∈ C[X]. In the last quoted paper, it is shown that this is
equivalent to saying that the sequence n 7→ degFn is upper bounded or to saying that
there exists a nonzero p ∈ C[T ] such that p(F ) = 0. Using a deep result from number
theory known as the theorem of Skolem-Mahler-Lech (see [9, 12]), one can show that this
amounts to saying that the sequence n 7→ degFn is periodic for large n (in [6], the proof
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is given for N = 2, but it is easy to give a general proof).
Here, we are interested by the wider class of polynomial endomorphisms F which

are quasi-locally finite (QLF for short) in the following sense: there exists a nonzero
p ∈ C(X)F [T ] such that p(F ) = 0.

Section I is devoted to generalites. We introduce the minimal polynomial νF ∈
C(X)F [T ] of a QLF polynomial endomorphism F and show in prop. 1.3 that in fact
νF ∈ C[X]F [T ]. In prop. 1.5 we show that for any QLF polynomial endomorphism F
the sequence n 7→ degFn has at most linear growth. Therefore, as announced, any
QLF polynomial endomorphism is dynamically trivial. In section II, we prove our main
theorem asserting that F is QLF if and only if the sequence n 7→ Fn(a) is a linear
recurrent sequence for any a ∈ AN . In section III, we give two criteria for invertibility of
QLF polynomial endomorphisms.

I. GENERALITIES.

Let F ∈ End. In [7], we noticed that IF := {p ∈ C[T ], p(F ) = 0} is an ideal of C[T ].
Indeed, it is a complex vector subspace of C[T ] which is stable by multiplication by T .
In the case where F is LF, i.e. when IF 6= {0}, we denote by µF the (unique) monic
polynomial generating this ideal. By the same way, I ′F := {p ∈ C(X)F [T ], p(F ) = 0} is
an ideal of C(X)F [T ]. In the case where F is QLF, i.e. when I ′F 6= {0}, we denote by
νF the (unique) monic polynomial generating this ideal.

Proposition 1.1. If F ∈ End is QLF, the following assertions are equivalent:
(i) F is LF; (ii) νF ∈ C[T ].

Furthermore, if these assertions are satisfied, we have µF = νF .

Proof. If F is LF, it is clear that νF divides µF in C(X)F [T ]. Since µF ∈ C[T ], we
clearly have νF ∈ C[T ]. Conversely, if νF ∈ C[T ], then F is obviously LF. �

We introduce the language of linear recurrent sequences (LRS for short) and we refer
to [3] for a nice overview of this subject. Let K be any field and let V be any vector space
over K. The set of sequences u : N→ V will be denoted by V N. If p =

∑
k

pkT
k ∈ K[T ],

we define p(u) ∈ V N by the formula ∀n ∈ N,
(
p(u)

)
(n) =

∑
k

pk u(n+ k) and we set

Iu := {p ∈ K[T ], p(u) = 0}. It is easy to show that Iu is an ideal of K[T ]. We say that
u ∈ V N is a LRS if Iu 6= {0}. In this case, the minimal polynomial of u is defined as the
(unique) monic polynomial µu generating the ideal Iu. If a LRS of (the vector space)
K takes values in a subfield K ′, it is well known that its minimal polynomial belongs to
K ′[T ]. More generally, we have the following result.

Lemma. If u is a LRS of a field K taking values in a subring A which is noetherian and
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factorial, then µu ∈ A[T ].

Proof. We may assume that K is the field of fractions of A. Since A is factorial, it
is sufficient to prove that Iu = {p ∈ K[T ], p(u) = 0} contains a monic polynomial in
A[T ]. If v = (vn)n∈N ∈ AN, let us denote by E(v) the sequence (vn+1)n∈N. Let M be
the A-module generated by the Ek(u), k ∈ N. If p is a nonzero element of Iu, it is clear
that ∀ v ∈ M, p(v) = 0. Therefore, if d := deg p, the map M → Ad, v 7→ (vk)0≤k≤d−1 is
injective. Since A is noetherian, this shows that M is a finite A-module. Let m ≥ 0 be
such that the Ek(u), 0 ≤ k ≤ m, generate M . There exist λk ∈ A, 0 ≤ k ≤ m, such that
Em+1(u) =

∑
0≤k≤m

λkE
k(u). In other words, Tm+1 −

∑
0≤k≤m

λkT
k ∈ Iu. �

Example. Any LRS with values in Z admits a minimal polynomial in Z[T ].

The next trivial result relates QLF polynomial endomorphisms and LRS.

Proposition 1.2. If F ∈ End, the following assertions are equivalent:
(i) F is QLF;
(ii) the sequence n 7→ Fn is a LRS of C(X)N considered as a vector space over C(X)F .

Furthermore, if these assertions are satisfied, the associated minimal polynomials are
equal.

Proof. If p =
∑
k

pkT
k ∈ C(X)F [T ],

∑
k

pk F
k = 0 ⇐⇒ ∀n ∈ N,

∑
k

pk F
k+n = 0. �

Remark. If F ∈ End, it is clear that the set of polynomials p ∈ C(X)[T ] satisfying
p(F ) = 0 is a nonzero ideal of C(X)[T ]. However, it seems that there is in general no
connection with LRS. Indeed, if p =

∑
k

pkT
k ∈ C(X)[T ] satisfies

∑
k

pk F
k = 0, it is not

necessarily true that ∀n ∈ N,
∑
k

pk F
k+n = 0.

Proposition 1.3. If F ∈ End is QLF, then νF ∈ C[X]F [T ].

Proof. It follows from prop. 1.2 that the sequence n 7→ Fn is a LRS of the vector space
C(X)N over C(X). If 1 ≤ L ≤ N , let us denote by ΠL : C(X)N → C(X) the L-th
projection. Each sequence n 7→ ΠL(Fn) being a LRS of the field C(X) with values in
C[X], its minimal polynomial µL,F has coefficients in C[X]. Since νF = lcm

1≤L≤N
µL,F , we

are done. �

Proposition 1.4. If F ∈ End, the following assertions are equivalent:
(i) F is QLF;
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(ii) the sequence n 7→ Fn is a LRS of C(X)N considered as a vector space over C(X).
Furthermore, if these assertions are satisfied, the associated minimal polynomials are
equal.

Proof. (i) =⇒ (ii) is a direct consequence of prop. 1.2. Let us show (ii) =⇒ (i). Let
p ∈ C(X)[T ] be the minimal polynomial of the sequence n 7→ Fn considered as a LRS of
the vector space C(X)N over C(X). The proof of prop. 1.3 shows that p ∈ C[X][T ]. It is
sufficient to show that p ∈ C[X]F [T ]. If q =

∑
k

qkT
k ∈ C[X][T ], where the qk ∈ C[X],

let us set q̃ :=
∑
k

q̃k T
k, where q̃k := qk ◦ F . Since p is a vanishing polynomial of the

sequence n 7→ Fn, we have ∀n ∈ N,
∑
k

pk(X)F k+n(X) = 0. By substituting F (X) to

X, we get ∀n ∈ N,
∑
k

p̃kF
k+1+n = 0 which shows that T p̃(T ) is a vanishing polynomial

of the sequence n 7→ Fn. If a | b means that a divides b, we get p |T p̃ in C(X)[T ].
Writing p(T ) = Tmq(T ) with q(0) 6= 0, we get Tmq |Tm+1q̃, so that q |T q̃ and finally
q | q̃. Therefore, we have p | p̃ and since p and p̃ are monic polynomials of the same degre,
we have p = p̃. �

Remark. In the last proof, we need to show that each coefficient pk of p belongs to
C[X] in order to justify the fact that the composition pk ◦ F is well defined.

Proposition 1.5. If F ∈ End is QLF, there exist A,B ≥ 0 such that:
∀n ∈ N, degFn ≤ An+B.

Proof. Let a0, . . . , ad−1 ∈ C[X]F be such that F d = ad−1F
d−1 + · · · + a0F

0. Since
Fn+d = ad−1F

n+d−1 + · · ·+ a0F
n, we have degFn+d ≤ max

0≤k≤d−1
deg akFn+k. If we set

dn := max
0≤k≤d−1

degFn+k, A := max
0≤k≤d−1

deg ak and B := d0, we get degFn+d ≤ A+ dn,

so that dn+1 ≤ A+ dn and degFn ≤ dn ≤ A n+B. �

Question. Is the converse true?

Example. Let C[Y ] := C[y1, . . . , ym] and C[Z] := C[z1, . . . , zn] for m,n ≥ 1.
Let P := Tm −

∑
0≤k≤m−1

akT
k ∈ C[Z][T ], where the ak ∈ C[Z]. We now give a QLF

endomorphism F whose minimal polynomial νF is equal to the least common multiple
Q of P and T − 1.

Let CP :=


0 . . . 0 a0
1 0 a1

. . .
...

0 1 am−1

 ∈Mm(C[Z]) be the Companion matrix to P .

4



It is well known that the minimal polynomial of CP is equal to P . Therefore, if
F1, . . . , Fm ∈ C[Y, Z] are defined by t[F1, . . . , Fm] = CP .

t[y1, . . . , ym], it is easy to check
that F : (Y, Z) 7→ (F1(Y, Z), . . . , Fm(Y, Z), Z) is a QLF polynomial endomorphism of
Am+n satisfying νF = Q.

Remark. Let us recall that a polynomial endomorphism F = (F1, . . . , FN ) of AN is
triangular if each FL is of the form axL + b where a ∈ C and b ∈ C[xL+1, . . . , xN ].
Furthermore, F is triangularisable if it is conjugate (by a polynomial automorphism) to
a triangular endomorphism.

It is clear that (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) in the following assertions (see [7] for (i)
=⇒ (ii) and prop. 1.5 for (iii) =⇒ (iv)):

(i) F is triangularisable; (ii) F is LF; (iii) F is QLF; (iv) F is dynamically
trivial.

If F is an automorphism of A2, it is proved in [5] that (i) and (iv) are equivalent so
that the last four assertions are equivalent. However, for large values of N , these notions
(applied to automorphisms) are different:

The Nagata automorphism (x−2y(xz+y2)−z(xz+y2)2, y+z(xz+y2), z) (see [10])
is LF (see [7]) but not triangularisable (see [2]).

Using the construction explained in the last example and prop. 1.1, it is clear that
the automorphism (y, x+ yz, z) is QLF but not LF.

If F : A5 → A5, (x, y, z, t, u) 7→ (y, x + yz, t, z + tu, u), one would easily check that
degFn = (n2 − n + 4)/2 for n ≥ 1 so that F is dynamically trivial but not QLF by
prop. 1.5.

II. MAIN THEOREM.

Here is our main result.

Theorem. Let F ∈ End. The following assertions are equivalent:
(i) for any a ∈ AN the sequence n 7→ Fn(a) is a LRS (of the complex vector space CN );
(ii) there exists a non empty Zariski open subset U of AN such that for any a ∈ U the
sequence n 7→ Fn(a) is a LRS;
(iii) there exists a non empty open subset U of AN (for the transcendental topology)
such that for any a ∈ U the sequence n 7→ Fn(a) is a LRS;

(iv) F is QLF.

Proof. (i) =⇒ (ii) =⇒ (iii) is obvious and (iv) =⇒ (i) is a direct consequence of prop. 1.3.
Let us show that (iii) =⇒ (iv). If 1 ≤ L ≤ N and α ∈ NN , let ΠL,α(F ) be the coefficient
of xα of the polynomial FL. Let C := {ΠL,α(F ), L ∈ {1, . . . , N}, α ∈ NN} be the set of
coefficients of F and let K := Q(C) be the field extension of Q generated by C.
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First claim. There exists a = (a1, . . . , aN ) ∈ U such that a1, . . . , aN ∈ C are alge-
braically independant over K.

Let R > 0 and u = (u1, . . . , uN ) ∈ U be such that:
D := {(z1, . . . , zN ) ∈ CN , 1 ≤ L ≤ N =⇒ |zL − uL| < R} ⊂ U .
If we set DL := {z ∈ C, |z − uL| < R}, we have D = D1 × . . . × DN . Let us

construct, by finite induction on L, a complex sequence (aL)1≤L≤N such that for each L:
aL ∈ DL and aL is transcendental over K(a1, . . . , aL−1). Let us assume that a1, . . . , aL−1
are already constructed and that they satisfy the wanted hypothesis. Let us note that
the algebraic closure KL of K(a1, . . . , aL−1) in C is countable (since K(a1, . . . , aL−1) is
countable). Since DL is uncountable, there exists aL ∈ DL \KL.

Using prop. 1.4, it is sufficient to show our

Second claim. There exists a positive integer d and rational functions α0, . . . , αd−1 ∈
C(X) such that ∀ n ∈ N, Fn+d = αd−1F

n+d−1 + · · ·+ α0F
n.

We begin to note that for each n the coefficients of Fn belong to the field K. Let
us set K ′ := K(a1, . . . , aN ). The sequence (Fn(a))n∈N is a LRS of (K ′)N considered as
a vector space over K ′. If 1 ≤ L ≤ N , let ΠL : (K ′)N → K ′ be the L-th projection.
The sequence n 7→ ΠL (Fn(a)) being a LRS of K ′, its minimal polynomial µL belongs to
K ′[T ]. Since the minimal polynomial µ of the sequence n 7→ Fn(a) satisfies µ = lcm

L
µL,

we have µ ∈ K ′[T ]. Let us write µ = T d − (βd−1T
d−1 + · · · + β0), where the βk ∈ K ′.

Let αk ∈ K(x1, . . . , xN ) be such that βk = αk(a1, . . . , aN ). We have:
∀n ∈ N, Fn+d(a1, . . . , aN ) =

∑
0≤k≤d−1

αk(a1, . . . , aN )Fn+k(a1, . . . , aN )

and since a1, . . . , aN are algebraically independant over K, we obtain:

∀n ∈ N, Fn+d(X) =
∑

0≤k≤d−1
αk(X)Fn+k(X). �

Remarks. 1. Let us recall that the rank of a LRS u is the degree of its minimal
polynomial. If u is a complex sequence, its Hankel matrix is defined by

H(u) :=


u0 u1 . . . un . . .
u1 u2 . . . un+1 . . .
...

...
...

un un+1 . . . u2n . . .
...

...
...

 and we have:

rku ≤ m ⇐⇒ all the k × k minors of H(u) are zero for k ≥ m+ 1.
If F ∈ End is QLF, let ϕF : AN → N be the map associating to a ∈ AN the rank

of the LRS n 7→ Fn(a). Using the previous point, is is easy to show that ϕF is lower
semicontinuous. This means that for each m ≥ 0, the set Fm := {a ∈ AN , ϕF (a) ≤ m}
is a (Zariski) closed subset of AN .

2. The proof of the last theorem shows us that deg νF = max
a∈AN

ϕF (a). However, let us
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show that ϕF is upper bounded by using the semicontinuity. The equality AN = ∪
n≥0

Fn

implies that AN = Fn for some n ≥ 0. Otherwise, the Un := AN \ Fn would be dense
open subsets of AN satisfying ∩

n≥0
Un = ∅ and this would contradict the Baire property.

III. CRITERIA FOR INVERTIBILITY.

Let us denote by I := (x1, . . . , xN ) the identity morphism of AN .

Proposition 3.1. If F ∈ End is QLF, then F is an automorphism if and only if
νF (0) ∈ C∗.

Proof. Let us write νF =
∑

0≤k≤n
akT

k, where the ak ∈ C[X] and an = 1. If F is an

automorphism, we cannot have a0 = 0, because otherwise p(T ) := νF (T )T−1 ∈ C[X]F [T ]
and p(F ) ◦ F = 0. Since F is onto, this would imply p(F ) = 0 contradicting the
definition of νF . One would easily check that νF−1 = a−10 Tn νF (T−1). By prop. 1.3, each
coefficient of νF−1 belongs to C[X]. In particular, the constant coefficient a−10 . Since
a0 and a−10 ∈ C[X], a0 is an invertible element of C[X] so that a0 ∈ C∗. Conversely,
if a0 ∈ C∗, then q(T ) := a0−νF (T )

a0T
∈ C[X]F [T ] satisfies q(T )T ≡ 1 mod νF (T ), so that

q(F ) ◦ F = I and F is an automorphism. �

The Jacobian determinant of an endomorphism F will be denoted by JacF .

Proposition 3.2. If F ∈ End is QLF, then the Jacobian conjecture holds for F , i.e. F
is an automorphism if and only if JacF ∈ C∗.

Proof. If F is an automorphism it is well known and obvious that JacF ∈ C∗. Con-
versely, if F ∈ End is QLF and satisfies JacF ∈ C∗, let us show that F is an automor-
phism. If we write νF =

∑
0≤k≤n

akT
k, where the ak ∈ C[X] and an = 1, it is sufficient

to show that a0 ∈ C∗. First and foremost, we cannot have a0 = 0. Indeed, otherwise,
we would have p(F ) ◦ F = 0, where p := νF (T )T−1 ∈ C[X]F [T ]. If r ∈ C[X] denotes
a nonzero coordinate of p(F ), we would get r(F ) = 0, showing that F1, . . . , FN are al-
gebraically dependant over C. This is well known to be equivalent to JacF = 0 (see
[11]) which is impossible. If we set q(T ) := a0−νF (T )

a0T
∈ C(X)F [T ], then q(T )T ≡ 1 mod

νF (T ), so that q(F ) ◦ F = I. This shows that F is a birational automorphism. Since
JacF ∈ C∗, this is well known to imply that F is an automorphism (see th. 2.1 of [1],
cor. 1.1.35 of [4] or [8]). �
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