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of length 1 with surprisingly high degree.
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1. Introduction.

The group G of polynomial automorphisms of the complex plane can be
endowed with the structure of an infinite-dimensional algebraic variety (see
[10]). Furthermore, using the structure of amalgamated product of G, one
can define the multidegree of an element σ of G (see below). It is a finite
sequence d = (d1, . . . , dl) of integers ≥ 2. We then say that l is the length
of σ. A natural question is: What are the relations between the (Zariski)
topology of G and the multidegree? A first answer is given in [6]. It is shown
that the length is a lower semicontinuous function on the group G (a family
of automorphisms of length l can only degenerate in an automorphism of
length l′ ≤ l).

Let us denote by Gd the set of automorphisms of G whose multidegree is
d = (d1, . . . , dl). We obtain a partition of G by the Gd when d describes the
set D of finite sequences of integers ≥ 2. It was conjectured in [6] that Gd
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(the Zariski closure of Gd) is satured for the equivalence relation “to have the
same multidegree”, i.e. there should exist a subset E(d) ⊂ D of multidegrees
e = (e1, . . . , em) such that Gd =

⋃
e∈E(d)

Ge. This is equivalent to saying that

if Ge ∩Gd 6= ∅, then Ge ⊂ Gd.
In this paper, we show that this conjecture is false. We make explicit

a result of [2] to obtain a family of automorphisms belonging generically
to G(11,3,3) and degenerating in an automorphism of G(19). Therefore, we
have G(19) ∩ G(11,3,3) 6= ∅. However, for grounds of dimension, one cannot
have G(19) ⊂ G(11,3,3). Indeed, G(d1,...,dl) is a constructible subset of G of
dimension d1 + · · ·+ dl + 6 (see [4] and [5]).

2. The multidegree of an automorphism.

This notion is introduced by Friedland and Milnor (see [4]).
We denote by G the group of polynomial automorphisms of the complex

plane A2
C = Spec(C[X,Y ]). An element σ of G is identified with its sequence

(f, g) of coordinate functions, where f, g ∈ C[X,Y ]. We define the degree of
σ by deg σ = max{deg(f),deg(g)}. Let σ = (f, g) ∈ G and σ′ = (f ′, g′) ∈ G.
We denote by σσ′ the composition, i.e. σσ′ = (f(f ′, g′), g(f ′, g′)).

Let

A := {(aX + bY + c, a′X + b′Y + c′); a, b, c, a′, b′, c′ ∈ C, ab′ − a′b 6= 0}

be the subgroup of affine automorphisms and let

B := {(aX + P (Y ), bY + c); a, b, c ∈ C, P ∈ C[Y ], ab 6= 0}

be the subgroup of triangular automorphisms (B may be viewed as a Borel
subgroup of G).

If σ ∈ G, by the Jung-van der Kulk theorem (see [7] and [8]), one can
write σ = α1β1 . . . αkβkαk+1 where the αj (resp. βj) belong to A (resp.
B). By contracting such an expression, one might as well suppose that it is
reduced, i.e. ∀ j, βj /∈ A and ∀ j, 2 ≤ j ≤ k, αj /∈ B. It follows from the
amalgamated structure of G that if σ = α′1β

′
1 . . . α

′
lβ
′
lα
′
l+1 is another reduced

expression of f , then k = l and there exist (γj)1≤j≤k, (δj)1≤j≤k in A ∩ B
such that α′1 = α1γ

−1
1 , α′j = δj−1αjγ

−1
j (for 2 ≤ j ≤ k), α′k+1 = δkαk+1 and

β′j = γjβjδ
−1
j (for 1 ≤ j ≤ k). Following [4], we define the multidegree of σ

by d(σ) := (deg β1, . . . , deg βk) which does not depend on the choice of the
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reduced expression. Therefore, we have a multidegree function d : G→ D,
where D denotes the set of finite sequences of integers ≥ 2 (including the
empty sequence).

3. The structure of infinite-dimensional variety of G.

This notion is introduced by Shafarevich (see [10]).
When n ≥ 1 is an integer, we set G≤n := {σ ∈ G, deg σ ≤ n}. The

subset G≤n is naturally endowed with the structure of an algebraic variety
(see [BCW]). The equality G =

⋃
n

G≤n endows G with the structure of an

infinite-dimensional algebraic variety.
Let us recall that a set V with a fixed sequence of subsets Vn, each of which
has a structure of finite-dimensional algebraic variety, is called an infinite-
dimensional algebraic variety if the following conditions are satisfied:

1) V =
⋃
n

Vn ;

2) Vn is a closed algebraic subvariety of Vn+1.

Each of the Vn will be considered with its Zariski topology and we endow
V with the topology of the inductive limit, in which a set W ⊂ V is closed
if and only if W ∩ Vn is closed in Vn for each n.

4. Families of automorphisms of the affine plane.

4.1. The Nagata automorphism.
The first non trivial example of a family of automorphisms of the plane

comes from the Nagata automorphism (see [9]). Let us set R = C[Z]. The
Nagata automorphism is the R-automorphism of A2

R = Spec R[X,Y ] defined
by N = (X − 2Y (XZ + Y 2) − Z(XZ + Y 2)2, Y + Z(XZ + Y 2)). We thus
obtain a family of automorphisms of A2

C parametrized by A1
C = Spec C[Z],

i.e. a morphism from A1
C to G.

4.2. The group G(R).
When R is a ring, let us denote by G(R) the group of polynomial R-

automorphisms of A2
R = Spec R[X,Y ]. We still identify an element σ of

G(R) with the couple (f, g) of its coordinate functions, where f, g ∈ R[X,Y ].
Let us notice that knowing an element of G(R) is equivalent to knowing
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an (algebraic) family of automorphisms parametrized by the affine scheme
V = Spec R. In particular, when R = C[Z], an element σ of G(C[Z]) induces
a morphism from A1

C to G. We denote by σZ→z the image of z ∈ A1
C = C

by this induced morphism.
For example, if N denotes the Nagata automorphism, we have NZ→z =

(X − 2Y (zX + Y 2) − z(zX + Y 2)2, Y + z(zX + Y 2)) for all z ∈ C and in
particular NZ→0 = (X − 2Y 3, Y ).

4.3. Degeneration.
We shall say that a family σ ∈ G(C[Z]) degenerates at a point z0 of

C if the multidegree of σZ→z0 is different from the generic multidegree
of σ, i.e. the multidegree of σ as an element of G(C(Z)). For exam-
ple, one could easily check that the Nagata automorphism splits in N =
(X − Z−1Y 2, Y )(X,Z2X + Y )(X + Z−1Y 2, Y ) in G(C(Z)). This last ex-
pression shows that the generic multidegree of σ (which is also in this example
the multidegree of NZ→z for all z ∈ C∗) is (2, 2). However, the multidegree
of NZ→0 = (X − 2Y 3, Y ) is (3), hence G(3) ∩ G(2,2) 6= ∅.

This family degenerates for z = 0 and we observe that the length has
strictly decreased. This illustrates the main result of [6]:

Theorem 1. The length map l : G→ Z is lower semicontinuous.

However, even if the length behaves well with respect to the topology, it
seems that it is not the case of the multidegree (at least in length 3).

4.4. Constructing the elements of G(C[Z]).
The next result (see Lemma 1.1.8. p. 5 of [3]) is very useful to construct

the elements of G(C[Z]).

Proposition. Let σ = (f, g) ∈ G(C(Z)), then the following assertions are
equivalent:

(i) σ ∈ G(C[Z]);
(ii) f, g ∈ C[Z][X,Y ] and Jac σ ∈ C∗, where Jac σ := ∂f

∂X
∂g
∂Y −

∂f
∂Y

∂g
∂X .

Remark. We reformulate the assertion f, g ∈ C[Z][X,Y ] by saying that the
coefficients of f and g (or even the ones of σ) belong to C[Z] (the coefficients
are of course the ones of XpY q).

Furthermore, since C(Z) is a field, we know (by the Jung-van der Kulk
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theorem) that any element of G(C(Z)) can be expressed as a composition of
affine and triangular automorphisms.

Therefore, to construct any element of G(C[Z]), it is sufficient to compose
affine and/or triangular automorphisms σ1, . . . , σn with coefficients in C(Z),
in such a way that:

1) σ = σ1 · · ·σn has its coefficients in C[Z];

2) Jac σ =

n∏
j=1

Jac σj ∈ C∗.

For example, using the splitting of the Nagata automorphism in G(C(Z))
(see 4.3.), one can verify assumptions 1) and 2) and the proposition shows
that N belongs to G(C[Z]).

5. Some families of automorphisms with generic length 3.

Our main outcome is the following:

Theorem 2. Let a, b ≥ 2 and c ≥ 1 be integers, then

G(a+c(ab−1)) ∩ G(a+(c−1)(ab−1),b,a) 6= ∅.

Example. Fixing some values for (a, b, c), we obtain:
G(5) ∩ G(2,2,2) 6= ∅, G(7) ∩ G(2,3,2) 6= ∅ and G(19) ∩ G(11,3,3) 6= ∅.

From Theorem 2, we can deduce the

Corollary. Let a, b ≥ 2 and c ≥ 1 be integers with (a, b) 6= (2, 2), then
the closure of G(a+(c−1)(ab−1),b,a) in G is not saturated for the equivalence
relation “to have the same multidegree”.

Proof. Let us recall that G(d1,...,dl) is a constructible subset of G of di-
mension d1 + · · · + dl + 6. Let us set d =

(
a+ (c− 1)(ab− 1), b, a

)
and

e =
(
a+ c(ab− 1)

)
. We argue by contradiction. If Gd was saturated for

the equivalence relation “to have the same multidegree”, then we would have
Ge ⊂ Gd \ Gd by Theorem 2. Hence the dimension of Ge would be strictly
less than that of Gd, whence a+c(ab−1)+6 < a+(c−1)(ab−1)+b+a+6,
i.e. (a− 1)(b− 1) < 2, which is absurd. �
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Example. We have thus shown that G(2,3,2) and G(11,3,3) are not saturated
for the equivalence relation “to have the same multidegree”.

Theorem 2 is a direct consequence of the following one:

Theorem 3. Let a, b ≥ 2 and c ≥ 1 be integers.
Let us define triangular automorphisms β, β′, β′′ ∈ G(C[Z]) by

β := (X + Y a, Y ),
β′ := (X + ZY b, Y ) and

β′′ := (X − Y a
c−1∑
n=0

1

bn+ 1

(
a(bn+ 1)

n

)
(−ZY ab−1)n, Y )

and affine automorphisms α, α′ ∈ G(C(Z)) by
α := (ZcX,Y ) and
α′ := (Y,X).

If σ ∈ G(C(Z)) is defined by
σ := α−1β′′α′β′α′βα,

then σ ∈ G(C[Z]) and σZ→0 = (X +
(−1)c

bc+ 1

(
a(bc+ 1)

c

)
Y a+c(ab−1), Y ).

To obtain Theorem 2 it is enough to remark that the multidegree of σ is
generically equal to (deg β′′,deg β′,deg β) =

(
a+ (c− 1)(ab− 1), b, a

)
and

that σZ→0 is a triangular automorphism of degree a + c(ab − 1), so that
d(σZ→0) =

(
a+ c(ab− 1)

)
.

The proof of Theorem 3 is based on the following result:

Lemma 1. Let a ≥ 1, b ≥ 0 be integers. Let S(T ) =
∑
n≥0

snT
n ∈ C[[T ]] be

the power series defined by the functional equation

S(T ) = (1 + TSb(T ))a,

then
(i) S(T ) =

∑
n≥0

1

bn+ 1

(
a(bn+ 1)

n

)
Tn and

(ii) S
(
−T (1 + T )ab−1

)
=

1

(1 + T )a
.

Proof. (i) Let us set u(T ) := TSb(T ), then u(T )
(1+u(T ))ab

= T , hence u is a
local analytic diffeomorphism around 0 with inverse v, where v is defined by
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v(W ) :=
W

(1 +W )ab
.

It is clear that s0 = 1.
If
∮

denotes integration around a little circle around the origin and if
n > 0 is an integer, it comes out (by the Lagrange formula):

sn =
1

2πi

∮
S(T )

Tn+1
dT =

1

2πi

∮
(1 + u(T ))a

Tn+1
dT

=
1

2πi

∮
(1 +W )a

vn+1(W )
v′(W )dW (setting T = v(W ))

=
a

n

1

2πi

∮
(1 +W )a−1

vn(W )
dW (integrating by parts)

=
a

n

1

2πi

∮
(1 +W )abn+a−1

Wn
dW =

a

n

(
abn+ a− 1

n− 1

)

=
a

a(bn+ 1)

(
a(bn+ 1)

n

)
=

1

bn+ 1

(
a(bn+ 1)

n

)
.

(ii) Let us set h(T ) := −T (1 + T )ab−1. Then h is a local analytic diffeo-
morphism around 0. Let us denote by k its inverse. It is sufficient to show

that S(T ) =
1

(1 + k(T ))a
.

For this, let us set S̃(T ) :=
1

(1 + k(T ))a
and let us show that S̃ satisfies

the same functional equation than S, that it is to say S̃(T ) = (1+T S̃b(T ))a.

This comes from the equality
1

1 + k(T )
= 1 +

T

(1 + k(T ))ab
, which comes

itself from the equality h(k(T )) = T . �

Remarks. 1. Let us set λ = ab. One could show that the radius of conver-

gence of the power series S(T ) is equal to +∞ (resp. 1, resp.
(λ− 1)λ−1

λλ
),

if λ = 0 (resp. λ = 1, resp. λ ≥ 2).
2. It is pleasant to explain the Lagrange formula by complex analysis;

nevertheless, it would have been possible to use a purely algebraic version of
this formula (see Corollary 5.4.3. p. 42 in [11]), which would have allow us
to replace the field C by any field of characteristic 0.
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3.Using the functional equation satisfied by S(T ), one could show that
S(T ) ∈ Z[[T ]]. Hence, there exists a version of Theorem 3 where the field C
is replaced by any field (possibly of positive characteristic).

Proof of Theorem 3.

Let us set P (Y ) := Y aS<c(−ZY ab−1) ∈ C[Z][Y ],

where S<c(T ) denotes the series S(T ) truncated at the order c,

that is to say S<c(T ) =
c−1∑
n=0

snT
n.

We have β′′ = (X − P (Y ), Y ) by (i) of Lemma 1.

and if we set
{
g := Y + Z(ZcX + Y a)b

f := X + Z−c(Y a − P (g)) (1),
then σ = (f, g).

We prove that σ ∈ G(C[Z]) using the proposition of § 4.4. It is clear that
Jac σ = 1 and that g ∈ C[Z][X,Y ], hence to show that σ is an automorphism
of C[Z][X,Y ], it is sufficient to show that Y a−P (g) is divisible by Zc (in the
ring C[Z][X,Y ]), which can be written using congruences Y a−P (g) ≡ 0 [Zc].

But, to compute σZ→0, we need to compute Y a − P (g) modulo Zc+1.
Therefore, let us carry out directly this computation.

We have g ≡ Y (1 + ZY ab−1) [Zc+1], hence

Y a − P (g) = Y a − gaS<c(−Zgab−1)
≡ Y aQ(ZY ab−1) [Zc+1] (2)

where Q(T ) := 1− (1 + T )aS<c

(
−T (1 + T )ab−1

)
.

But, by (ii) of Lemma 1, we have:

(1 + T )aS
(
−T (1 + T )ab−1

)
= 1, hence

Q(T ) = (1 + T )aS≥c
(
−T (1 + T )ab−1

)
, with S≥c(T ) =

∑
n≥c

snT
n

≡ (−1)cscT c [T c+1],

≡ (−1)c

bc+ 1

(
a(bc+ 1)

c

)
T c [T c+1], by (i) of Lemma 1.
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whence Y a − P (g) ≡ (−1)c

bc+ 1

(
a(bc+ 1)

c

)
ZcY a+c(ab−1) [Zc+1] by (2). By (1)

this shows that f ∈ C[Z][X,Y ] and σ ∈ G(C[Z]) by the proposition of § 4.4.

Furthermore we have: f ≡ X +
(−1)c

bc+ 1

(
a(bc+ 1)

c

)
Y a+c(ab−1) [Z] by (1) and

g ≡ Y [Z] which shows that σZ→0 = (X +
(−1)c

bc+ 1

(
a(bc+ 1)

c

)
Y a+c(ab−1), Y ).

�

6. The collapse power of a multidegree.

Definition. If d = (d1, . . . , dl) is a multidegree with l ≥ 1, let us define the
collapse power of d by cp(d) := max{k ∈ Z, k ≥ 2 and G(k) ∩ Gd 6= ∅}.

Using the well known fact that if the multidegree of σ is (d1, . . . , dl), then
the multidegree of σ−1 is (dl, . . . , d1), it is easy to show the next result

Lemma 2. If (d1, . . . , dl) is a multidegree, then
cp(d1, . . . , dl) = cp(dl, . . . , d1).

Theorem 2 yields a lower bound for cp(d1, d2, d3).

Theorem 4. If (d1, d2, d3) ∈ D is a multidegree such that d1−d3 is a multiple
of d2min(d1, d3)− 1, then cp(d1, d2, d3) ≥ max(d1, d3) + d2min(d1, d3)− 1.

Proof. By Lemma 2 and since the assumption in Theorem 4 is invariant by
exchanging d1 and d3, we can assume that d1 ≥ d3. We set a = d3, b = d2 and
c = 1+(d1−d3)/(d2d3−1) thenmax(d1, d3)+d2min(d1, d3)−1 = a+c(ab−1)
and Theorem 4 follows from Theorem 2. �
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