THE TAME AUTOMORPHISM GROUP OF AN AFFINE QUADRIC
THREEFOLD ACTING ON A SQUARE COMPLEX
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AsstracT. We study the group Tame(gLof tame automorphisms of a smooth
affine 3-dimensional quadric, which we can view as the undeglyariety of
SL,(C). We construct a square complex on which the group admitdw&ala
cocompact action, and we prove that the complex is CAT(0)hsperbolic. We
propose two applications of this construction: We show émgtfinite subgroup
in Tame(SL,) is linearizable, and that Tame(gLsatisfies the Tits alternative.
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INTRODUCTION

The structure of transformation groups of rational suaisequite well under-
stood. By contrast, the higher dimensional case is stirgally aterra incognita
This paper is an attempt to explore some aspects of tranafammgroups of ratio-
nal 3-folds.

The ultimate goal would be to understand the structure ofathele Cremona
group Bir(P3). Since this seems quite a formidable task, it is naturalreak
down the study by looking at some natural subgroups offBjr(with the hope
that this gives an idea of the properties to expect in genaft& now list a few
of these subgroups, in order to give a feeling about wherenmdest subgroup
Tame(Slp) fits into the bigger picture. A first natural subgroup is thenomial
group Gls(Z), where a matrixg;) is identified to a birational map at® by tak-
ing (X,y,2) --» (xtuyP12z213 y1y@27823 yas1\@327853) - Another natural subgroup is
the group of polynomial automorphisms @f. These two examples seem at first
glance quite dierent in nature, nevertheless it turns out that both areagued in
the subgroup Bi(P2) of birational transformations of genus 0, which are charac
terized by the fact that they admit a resolution by blowipgpoints and rational
curves (seeHru73 Lam13). On the other hand, it is known (seBdn99) that
given a smooth curv€ of arbitrary genus, there exists an eleménaf Bir(P3)
with the property that any resolution éfmust involve the blow-up of a curve iso-
morphic toC. So we must be aware that even if a full understanding of thaggr
Aut(C3) still seems far out of reach, this group ATg) might be such a small sub-
group of Bir3) that it might turn out not to be a good representative of tealtt
of properties of the whole group BR).

, GL3(2)

Bir(P®) > Birg(P3) > Aut(C3® > Tame(d)

© Aut(SLy) > Tame(Sk)

Ficure 1. A few subgroups of Biif®)

The group AutC?) is just a special instance of the following constructionive®
V a rational &ine 3-fold, Aut{/) can be identified with a subgroup of Bif).
Apart fromV = C2, another interesting example is whehc C* is an dfine
quadric 3-fold, sayV is the underlying variety of SL In this case the group
Aut(V) still seems quite redoubtably fiicult to study. We are lead to make a
further restriction and to consider only the smaller grofipaaneautomorphisms,
either in the context o¥ = C2 or SLy.

The definition of the tame subgroup for AGH|) is classical. Let us recall it in
dimension 3. The tame subgroup Tam¥(is the subgroup of Auf®) generated
by the dfine groupAs = GL3=<C? and by elementary automorphisms of the form



THE TAME AUTOMORPHISM GROUP OF AN AFFINE QUADRIC THREEFOLD 3

(xY,2 — (X+ P(y,2),y,2. A natural analogue in the case of affiree quadric
3-fold was given recently inL\V13]. This is the group Tame(Sl, which will be
the main group under study in this paper.

When we consider the 2-dimensional analogues of the groupgurel, we
obtain in particular the Cremona group Bif}, the monomial group GA(Z) and
the group of polynomial automorphisms AG). A remarkable feature of these
groups is that they all admit natural actions on some hypierspaces of some
sort. For instance the group SIZ) acts on the hyperbolic half-plarié?, since
PSLy(Z) < PSLy(R) =~ Isom,(H?). But SLy(Z) also acts on the Bass-Serre tree
associated with the structure of amalgamated produg{ZSl~ Z/4 x7,» Z/6. A
tree, or the hyperbolic plang?, are both archetypal examples of spaces which
are hyperbolic in the sense of Gromov. The group &8@lso admits a structure
of amalgamated product. This is the classical theorem of dumal van der Kulk,
which states that Aut?) = A, *ponE, E2, WhereAy and E; are respectively the
subgroups of fiine and triangular automorphisms. So ALf){ also admits an ac-
tion on a Bass-Serre tree. Finally, it was recently realitted the whole group
Bir(P?) also acts on a hyperbolic space, via a completeffedint construction:
By simultaneously considering all possible blow-ups d¥&rit is possible to pro-
duce an infinite dimensional analoguelt on which the Cremona group acts by
isometries (seeanll CL13)).

With these facts in mind, given a 3-dimensional transforomagiroup it is natu-
ral to look for an action of this group on some spaces with positive curvature,
in a sense to be made precise. Considering the case of mdnuoaps, we have
a natural action of SZ) on the symmetric space gR)/ SO3(R), see BH99,
11.10]. The later space is a basic example of a CAT(0) symimejpace. Re-
call that a CAT(0) space is a geodesic metric space whergaibtes are thinner
than their comparison triangles in the Euclidean plane. &Ke this as a hint that
Bir(P%) or some of its subgroups should act on spaces of non-pesitiwature.
At the moment it is not clear how to imitate the constructignitductive limits
of blow-up to obtain a space say with the CAT(0) property, samy to generalize
instead the more combinatorial approach of the action onssBarre tree. The
group Tame(:3) does not possess an obvious structure of amalgamatedopredu
it is not immediate to answer the following:

Question A. Is there a natural action of Tan@Y{) on some hyperbolic aror
CAT(0) space?

Accordingly this question is rather vague. In our mind atcgcon some hyper-
bolic space would qualify as a “good answer” to Questoifi it allows to answer
the following questions, which we consider to be basic tabtsut our understand-
ing of the group:

Question B. Is any finite subgroup in Tam&g) linearizable?
Question C. Does Tame(°) satisfy the Tits alternative?

To put this into context, let us review briefly the similar gtiens in dimension
2. The fact that any finite subgroup in AGH) is linearizable is classical (see
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for instance Fur83). The Tits alternative for Aut{?) and Bir(P?) were proved
respectively in [am0]] and [Canl], and the proofs involve the actions on the
hyperbolic spaces previously mentioned.

Now we come to the group Tame(9L We define it as the restriction to L
of the subgroup TaméC*) of Aut(C*) generated by @andE2, where Q is the
complex orthogonal group associated with the quadratin fgiven by the deter-
minantq = Xixq — XoXs, andE2 = { XY e (2 gjgﬁgig) P e C[x4, x3]}.
One possible generalization of simplicial trees are CAT@e complexes (see
[Wis1Z]). We briefly explain how we construct a square complex oncWwhhis
group acts cocompactly (but certainly not properly!). Eatdment of Tame(Sh)
can be writtenf = (% Ij) Modulo some identifications that we will make precise
in Section2, we associate vertices to each componignto each row or column
(f1, 2), (fs, f4), (f1, f3), (f2, f4) and to the whole automorphisfn On the other
hand edges correspond to inclusion of a component insides @raolumn, or of
a row or column inside an automorphism. This yields a graphybich we glue
squares to fill each loop of four edges (see FigBeto finally obtain a square
complexC.

In this paper we answer analogues of Questidn® C in the context of the
group Tame(Sk). The main ingredient in our proofs is a natural action byrise
tries on the complex, which admits good geometric properties:

Theorem A. The square comple3 is CAT(0) and hyperbolic.
As a sample of possible applications of such a constructiemtain:

Theorem B. Any finite subgroup ifame(SLk) is linearizable, that is conjugate to
a subgroup of the orthogonal groupy.

Theorem C. The groupTame(SLk) satisfies the Tits alternative, that is for any
subgroup GC Tame(SLk) we have:

(1) either G contains a solvable subgroup of finite index;
(2) or G contains a free subgroup of rank 2.

The paper is organized as follows. In Sectibwe gather some definitions and
facts about the groups Tame(Sland Q.. The square complex is constructed in
Section2, and some of its basics properties are established. Therdtio8 3
we study its geometry: links of vertices, non-positive @atwe, simple connect-
edness, hyperbolicity. In particular, we obtain a proof bedremA. The group
Tame(Sl) and some of its subgroups admit some amalgamated productises
reminiscent of Russian nesting dolls (see Figlde In Section4 we study in de-
tails some of these products. Then in Sectiome give the proofs of Theoren®
andC. Finally in Sectioné we give some examples of elliptic, parabolic and loxo-
dromic subgroups, which appear in the proof of the Tits aitdve. We also briefly
discuss the case of Tani&}), and propose some open questions. Finally we gather
in an annex some reworked results frohv13] about the theory of elementary
reductions on the groups Tame($land Tamg(C*).
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1. PRELIMINARIES

We identify C* with the space of X 2 complex matrices. So a polynomial
automorphismf of C* is denoted by

. X1 X2 fj_ f2
f: (e H(fs f4)’
f1 f2

where fi € C[Xq, X2, X3, X4] for 1L < i < 4, or simply byf = (f3 fA). We choose
to work with the smooth ffine quadric given by the equatian= 1, whereq =
X1X4 — X2 X3 IS the determinant:

Sl ={(3¢ ) XaXq — Xoxg = 1}.
We insist that we use this point of view for notational corieace, but we are
interested only in the underlying variety of SLin particular Aut(Sl) is the group
of automorphism of Si.as an &ine variety, and not as an algebraic group.

We denote by AL.J;(C“) the subgroup of Auft*) of automorphisms preserving
the quadratic forny:

Autg(C* = {f € Aut(C?; go f = q}.

We will often denote an elemerft € Auty(C?% in an abbreviated form such as
f = (% fz) Here the dots should be replaced by the unique polynofjialich
that f1fs — fofs = XX — Xox3. We call Tamg(C*) the subgroup of Ay(C*
generated by @andE?, where Q = Autq((C“) N GLg4 is the complex orthogonal
group associated with, and Eﬁ is the group defined as

EZ = {( X X2+X1P(X1’X3)); P e C[xy, x3]}.

X3 Xq+X3P(x1,X3)

We denote by: Autq(C4) — Aut(SLy) the natural restriction map, and we define
the tame group of SL,, denoted by Tame(S), to be the image of TargéC?)

by p. We also define STamgéC*) as the subgroup of index 2 in Tagi€*) of
automorphisms with linear part in 9(and thespecial tame groupSTame(Sk) =
p(STamg(C*).

Remark 1.1. The morphisnp is clearly injective in restriction to ©and to Eﬁ:
This justifies that we will consider £and Eﬁ as subgroups of Tame(gL On
the other hand it is less clear jf induces an isomorphism between Ta(¥)
and Tame(Sh): It turns out to be true, but we shall need quite a lot of maetyi
before being in position to prove it (see Propositibi6). Nevertheless by abuse
of notation iff = ({ ) is an element of TamyéC*) we will also considerf as an
element of Tame(S1), the morphisnp being implicit. See also Sectidh2.2for
other questions around the restriction morphism

The Klein four-group \{ will be considered as the following subgroup of:O
Va={id, (55 %8). (& %), (6 )}

In particular V4 contains the transpose automorphisem (3 ).
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1.1. Tame(SLy). We now review some results which are essentially contained i
[LV13]. However, we adopt some slightlyftBrent notations and definitions. For
the convenience of the reader, we give self-contained probéll needed results
in an annex.

We define a degree function @f{xy, Xo, X3, X4] with value in N* U {—co} by
taking

de%t X1 = (2, 1,1, O) de@ Xo = (1, 2,0, l)
dega x3=(1,0,2,1) deguxs =(0,1,1,2)
and by convention deg0 = —c. We use the graded lexicographic order on

N* to compare degrees. We obtain a degree function on the al@§Bt,] =
Clx1, X2, X3, 4] /(q — 1) by setting

degp = min{deg-ar; r=p mod Q- 1)}.

We define two notions of degree for an automorphisea ( % Ij) € Tame(Sly):

degsumf = Z degf;.
1<i<4

degmaxf = max degf;.
1<i<4

Lemma 1.2. Let f be an element ilame(SL).

(1) For any ue O4, we havedegmaxf = degmaxuo f.
(2) We have € Qg4 if and only ifdegmaxf = (2,1, 1, 0).

Proof. (1) Clearly degmaxo f < degmaxf, and similarly we get degmalx=
degmaxut o (uo f) < degmawio f.

(2) This follows from the fact that iP € C[Xx1, X2, X3, Xa] with deg-s P =

@, j, k1), then the ordinary degree Bfis the averagé(i +j+k+I0). o

The degree degsum was the one usedLW1pB], with a different choice of
weights with value inN®. Because of the nice properties in Lemma we pre-
fer to use degmax, together with the above choice of weidHts.choice to use a
degree function with value iN* is mainly for aesthetic reasons, on the other hand
the property that the ordinary degree is recovered by takiegn was the main
impulse to change the initial choice. From now on we will rrevge degsum, and
we simply denote deg degmax.

An elementary automorphism (resp. ageneralized elementary automor-
phism) is an elemené € Tame(Sk) of the form

_ X1 Xz+X1P(X1,X3)) -1
€= u(Xs Xa+xsP(xg.xa) ) U

whereP € C[xq,x3], U € V4 (respu € Og4). Note that any elementary auto-
morphisms belongs to (at least) one of the four subgrdeiss Eas, E3, EZ of
Tame(Sl) respectively defined as the set of elements of the form

X1 +%2Q(X2,Xa) Xz) (X1 X2+X1Q(X1»X3))

X1 +X3Q(X3,X4a) Xo+XaQ(X3,Xa) ( Xt X2 )
X3 X4 > Uxa+X1Q(X1.%2) Xa+X2Q(X1.X2) /2 \ Xa+34Q(X2,Xa) X4 X3 Xa+X3Q(X1,X3)

whereQ is any polynomial in two indeterminates.
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We say thatf € Tame(Sly) admits arelementary reductionif there exists an
elementary automorphismsuch that dego f < degf. In [LV13], the definition
of an elementary automorphism is slightlyffdrent. However all these changes —
new weights, new degree, new elementary reduction — doffemttdhe formulation
of the main theorem; in fact it simplifies the proof:

Theorem 1.3(see TheorerA.1). Any non-linear element dame(Sl) admits an
elementary reduction.

Since the graded lexicographic ordern#f is a well-ordering, Theorerh.3im-
plies that any elemenit of Tame(Slz) admits a finite sequence of elementary re-
ductions

foeof 5oeogof—---—>e,0--r0ogof
such that the last automorphism is an element of O

An important technical ingredient of the proof is the foliogy lemma, which
tells that under an elementary reduction, the degree of &fftlcted components
decreases strictly.

Lemma 1.4 (see LemmaA.8). Let f = (% ]fj) € Tame(Sk). If e € E% and
f/ f

eo f :(f/ f ),then
3 14
degeo f<«degF < degf<degf; & degf;<degfs
for any relation< amongx, >, <, > and=.

A useful immediate corollary is:

Corollary 1.5. Let f = (g Ij) € STame(Sk) be an automorphism such that
fi = x¢. Then f is a composition of elementary automorphisms pvesgeng. In
particular, f, and § do not depend ongxand we can viewf,, f3) as defining an
element of the subgroup @futcyy,] C[xq][ X, X3] generated by(xz, X2) and auto-
morphisms of the forrtax, + x;P(x1, X3), @ 1x3). In particular, if f3 = xs, there
exists some polynomial P such that=f X, + x1P(X1, X3).

Remark 1.6. We obtain the following justification for the definition ofalgroup
E2: Any automorphismf = (g ]fj) in Tame(Sk) such thatf; = x; and f3 = X3

belongs toE?.

Lemma 1.7 (see LemmaA.12). Let f € Tame(Slp), and assume there exist two
elementary automorphisms

— s s 12 _ [ X1+ xP(X2,Xa) X; 1
o= (oo xeongond) B and = (IR ) < €}

such thadegeo f < degf anddege o f < degf.
Then we are in one of the following cases:

(1) Q= Q(x4) € C[xa];
(2) P=P(x4) € C[xd];
(3) There exists &) € C[x4] such thatdeg(f, + f4R(f4)) < degfy;
(4) There exists &) € C[x4] such thatdeg(fs + f4R(f4)) < degfs.
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1.2. Orthogonal group.

1.2.1. Definitions. Recall that we denote by Qhe orthogonal group of* asso-
ciated with the quadratic forrg = X3 x4 — Xox3. We have Q = (SOy, 1), where
7 = (& &) denotes the involution given by the transposition. The 2 atphism

of groups
SLZ X SLZ — SO4
(AB) —A (g2 B

is the universal cover of SOHere the produch - (i %) - B! actually denotes the
usual product of matrices. Howeverfit= ({* £)andg = (& &) are elements of
Og, their composition is

_ ( fiog f2og
fog=(ig rog) €Os

which must not be confused with the product of the 2 matrices( g ;j) and
(& &)! (see also Remark.8below).

1.2.2. Dual quadratic form.We now study the totally isotropic spaces of a qua-
dratic form on the dual of®* in order to understand the geometry of the group
O4.

In this section we se¥ = C* and we denote by* the dual ofV. We denote
respectively byei, e, €3, &4 and Xy, Xo, X3, X4 the canonical basis &f and the dual
basis ofV*. Sinceq(X) = X1X4 — X2X3 iS @ non degenerate quadratic form\én
there corresponds tQ a non degenerate quadratic fogh on V* such that for
any endomorphisni of V, the endomorphisni belongs to the orthogonal group
O(V, q) if and only if its transpose! belongs to the orthogonal group \O( q*).

In other words, we havgo f = qif and only if g* o f' = g*. Since the matrix

00 01

of g in the canonical basis i& = %(8 s 8), then, the matrix ofy* in the dual
0o o1 1000

basis isA™! = 2(§ _gl ‘81 %). We denote by-, -) the bilinear pairingy* x V* — C

associated Witl’%q* (so that its matrix in the dual basisisﬁ\‘l =A).

Remark 1.8. In this paper, each element of,@& denoted in a rather unusual way
f1 f

as a 2< 2 matrix of the formf = ({ ), where eacH; = ¥ fix;, fij € C, is an
]

element olV*. The corresponding more familiax4 matrix isM := (i j)1<ij<4 €

M,4(C) and it satisfies the usual equalty*AM = A,

Lemma 1.9. Consider f=({ ), where the elementg fielong to V. Then, the

following assertions are equivalent:
(1) f €Oy
(2) (fi, fj) = (%, xy for all'i, j € {1,2,3,4}.

Proof. Observe first thaf'(x) = fi(x,...,X%s) fori = 1,...,4. Then, we have
seen thatf € Oy if and only if f' belongs to the orthogonal group D¢ %q*), ie.
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if and only if for anyx,y € V*, we have(f'(x), f'(y)) = (x,y). This last equality is
satisfied for allk,y € V* if and only if it is satisfied for any, y € {X1, X2, X3, X4}. O

Recall that a subspad¥ C V* is totally isotropic (with respect tay") if for all
X,yeW,(xy)=0

Lemma 1.10. Let f;, fo be linearly independent elements of.VThe following
assertions are equivalent:

(1) Vect(fq, f) is totally isotropic ;

(2) There existssf f4 € V* such tha fl fz) € O4.

Proof. If (fl fz) € Oy, then by Lemma..9for anyi, j € {1,2} we have(f;, f;) =
(X, Xj) =

Conversely, i fi, f;) = (X, xj) = 0 for anyi, j € {1, 2}, by Witt's Theorem (see
e.g. BSer77h p. 58]) we can extend the ma@ — f1, X > f, as an isometry
V* — V*. Then denoting byfs, f4 the images oks, x4, we have(f;, f;) = (x;, Xj)
foralli, j € {1, 2, 3,4}. We conclude by Lemma.9. O

If (£ ) € O4, the planes Vectq, f2), Vect(fs, f4), Vect(fy. f5) and Vectf. )
are totally isotropic. Moreover the following decompasits hold:

F = Vect(f1, f2) @ Vect(fs, f;) and F = Vect(f, f3) & Vect(fy, fs).
We have the following reciprocal result.

Lemma 1.11. Let W and W be two totally isotropic planes of\such that V =
W W'. Then for any basiéf, f;) of W, there exists a unique basis, f;) of W

such that( ! f fz) € Oy

Proof. Existence By Witt's Theorem, we may assume thit= x; and f, = xo.
Let f3, f4 be a basis ofV'. If we express them in the basks, X, X3, X4, We get
f3 = a1X1 + aXe + agxz + auXq and f4 = byxg + boxo + baxz + bsxs. Since
X1, X, f3, T4 is a basis ofv*, we get deff? §:) # 0. Therefore, up to replacing

f and f, by some linear combinations, we may assume (fa; ) = (3 9), i.e.
fa = agxg + axXo + Xz and fg = byxg + boxo + Xa.

Since(fs, f3) = —ap and(fy, f4) = by, we getay = by = 0. Finally, (fs, f4) =
Z(a]_ - b2) so thata; = b2, f3 = X3+ ayxg and s = x4 + a1 X%o.

Now it is clear tha{ x3+a1xl X4+alX2) € Og.
Unicity. Let (fs, fz) and (f3, fa) be two basis oW’ such that( {* ) and( L fz)

fs fa
belong to Q. From f; f4 — fofs = 14 — fofs, we getfa(fs — f3) = f1(fa— f4) and
sincef; and f, are coprime, we get the existence of a complex numiserch that
fs — f3 = Af; and f4 — f4 = Af,. This proves thaf; — f; and f, — f, are elements
in WN W = {0}, and we obtain g, f4) = (f3, fa). o

Lemma 1.12. For any nonzero isotropic vecton bf V*, there exists exactly two
totally isotropic planes of ¥ containing §f. Furthermore, they are of the form
Vect(fy, f,) and Vect(fy, f5), where( { f fz) is an element 0D;.
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Proof. By Witt's theorem, we may assume that = x;. Any totally isotropic
subspacéV in V* containingx; is included intox; = Vect(x, Xz, x3). Therefore,
there exist®y, ag € C such thatV = Vect(xy, axxo +agxs). Finally, sinceq*(ax X +
agx3z) = —4dazag = 0 (recall thatg*(u) = 4&u,u) for anyu € V*), W is equal to
Vect(x1, X2) or Vect(x, X3). m|

Lemma 1.13. Let W and W be two totally isotropic planes of V¥ Then there
exists fe O4 such that W) = Vect(xs, X4) and f(W’) is one of the following three
possibilities:

(1) f(W) = Vect(xs, x4);

(2) f(W') = Vect(xq, X2);

(3) f(W) = Vect(xz, x4);

Proof. By Witt's theorem there exist§ € O4 such thatf(W) = Vect(xs, x4). If
W = Wwe are in Case (1), andWnW’ = {0} then we can apply Lemmallto
get Case (2). Assume now thatn W’ is a line. Again by Witt's theorem we can
assume thatv N W’ = Vect(xs), and then we conclude by Lemridl2that we are
in Case (3). O

We can reinterpret the last two lemmas in geometric terms.

Remark 1.14. The isotropic cone off* is given byajas — aaz = 0, wheref =
ai1xy + -+ - + agXqe € V*. In particular this is a cone over a smooth quadric surface
S in P(V*) ~ P3. Totally isotropic planes correspond to cones over a lin8,in
but S is isomorphic tdP* x P!, and lines inS correspond to horizontal or vertical
ruling. From this point of view Lemma.12is just the obvious geometric fact that
any point inS belongs to exactly two lines, one vertical and the otherZonitial.
Similarly Lemmal.13is the fact that @ acts transitively on pairs of disjoint lines,
and on pairs of secant lines.

Corollary 1.15. Let e € be two generalized elementary automorphisms. Then, up
to conjugation by an element 6f,, we may assume that e E% and that e belongs
to either B, EZ or E*2.

Proof. Each generalized elementary automorphisifixes pointwise (at least) a
totally isotropic plane of/* (note thak acts naturally OI€[ X1, X2, X3, X4]). Observe
furthermore that the plane Veg( x4) is fixed if and only ife belongs toE*?.
Therefore, the result follows from Lemnial3 O

In the next definition, the quadr® is identified toP! x P! via the isomorphism
P! x P! — Ssending (& : B), (y : 6)) to C (ayXy + ByXo + 6%z + BoXa).

Definition 1.16. A totally isotropic plane oV* is said to be horizontal (resp. ver-
tical), if it corresponds to a horizontal (resp. verticafel of P x P

The map sendinga(: b) € P! to Vect@x, + bxs, ax + bxs) (resp. Vectéx, +
bx, axs+bxy)) is a parametrization of the horizontal (resp. verticalally isotropic
planes ofv*. Let f be any element of ©and let Vectq, v) be any totally isotropic
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plane ofV*. The group Q acts on the set of totally isotropic planes via the follow-
ing formula
f. Vect(u, V) = Vectluo f™1,vo f71).

Lemma 1.17. Any element 080, sends a horizontal totally isotropic plane to a
horizontal totally isotropic plane, and a vertical totaligotropic plane to a vertical
totally isotropic plane. Any element 6f, \ SO, exchanges the horizontal and the
vertical totally isotropic planes.

Proof. The set of totally isotropic planes 9f is parametrized by the disjoint union
of two copies ofP. The group S@being connected, it must preserve e&thThe
elementr of O4 \ SO, exchanges the horizontal totally isotropic plane Viect(y)
and the vertical totally isotropic plane Vexi(x3). The result follows. O

Remark 1.18. Let A := {(x,X), x € P1} denote the diagonal & x PL. Identify
the set of horizontal totally isotropic planeskb. Remark that the map SO-
PIXPY\A, f = (£ ) (Vect(fy, f2), Vect(fs, f4)) is a fiber bundle, whose fiber

is isomorphic to Gk. Indeed, by Lemma.11, any elemeng = (& &) of SO,
satisfying Vect@i, g») = Vect(f1, f) and Vectfs, g4) = Vect(fs, f4) is uniquely
determined by the basigs( g») of Vect(fi, f,).

In the same way, we obtain a fiber bundlg 050, — (P x P1)\ A, ( % ]‘:j) -
(Vect(fl, f3),Vect(f2, f4))

2. Suare COMPLEX

We now define a square complé&xwhich will be our main tool in the study of
Tame(SLk), and we state some of its basic properties.

2.1. Definitions. A function f; € C[SL,] = C[X1, X2, X3, X4]/(q — 1) is said to be
acomponentif it can be completed to an elemeht= (% ;i) of Tame(Sl). The
vertices of our 2-dimensional complex are defined in termsrbits of tuples of

components, as we explain now. For any elemiest ( % ;j) of Tame(Sk), we

define the three verticedq], [ f1, f2] and[ ]:; ;j] as the following sets:

° [f]_] =C*- f; ={af; ae C*};

o [f1. f] := Glo(f1. f2) = {(@f + b, cfy + dfy); (2 ) € GLoJ;

o[£ =04t
Each bracketfy] (resp. [f1, f2], resp.[ % Ij ]) denotes an orbit under the left action
of the groupC* (resp. Glp, resp. Q). Vertices of the form {1] (resp. [f1, f2],
resp. [ % Ij]) are said to be ofype 1 (resp. 2, resp.3). Remark that our notation
distinguishes between:

o (£ ) which denotes an element of TamegBL

° % Ij] which denotes a vertex of type 3.

The set of thevertices of the complexC is the disjoint union of the three types of
vertices that we have just defined.



THE TAME AUTOMORPHISM GROUP OF AN AFFINE QUADRIC THREEFOLD 2

We now define the edges 6f which reflect the inclusion of a component inside
a row or column, or of a row or column inside an automorphisnecBely the set
of theedgesis the disjoint union of the following two types of edges:

e Edges that link a vertexf{] of type 1 with a vertex fi, f,] of type 2;

e Edges that link a vertexf{, fo] of type 2 with a verte>{ % ;j of type 3.

The set of thesquaresof C consists in filling the loop of four edges associated
with the classesff], [ 1. f2], [f1. fs] and| £ |forany f = ({ £) e Tame(Sk)
(see Figure2). The square associated with the classe$ [ X1, Xo], [X1, X3] and

[ % %] will be called thestandard square
Observe that to an automorphisim= ( g ;j) we can associate (by applying the

above definitions to- o f with o in the Klein group \):

Four vertices of type 1:ff], [ f2], [ f3] and [f4];

Four vertices of type 2:f, fo], [ f1, f3], [ f2, f4] and [fs, f4];
One vertex of type 3:1].

Twelve edges and four squares (see Fi@)re

We call such a figure thkig square associated withf. For any integersn,n > 1,
we callm x n grid any subcomplex o€ isometric to a rectangle @ of size
mx n. So a big square is a particular type ak 2 grid.

We adopt the following convention for the pictures (see fmtance Figureg,
3 and4): Vertices of type 1 are depicted withoa vertices of type 2 are depicted
with ae, vertices of type 3 are depicted witma

[f1] [ 1, f2] [x] [x1.%2]
e o

fq, fi f X1, X X1 X2
[f1,f3] [f; fi] [x1.%3] [Xs X4]

Ficure 2. Generic square & standard square.

The group Tame(SY) acts naturally on the compleéX For instance the action
on the vertices of type 1 is given by the following formula.

g-[fi] :=[frog™]
It is an action by isometries, whe¢gis endowed with the natural metric obtained
by identifying each square to an euclidean square with edigiesgth 1.

2.2. Transitivity and stabilizers. We show that the action of Tame(gLis tran-
sitive on many natural subsets@f and we also compute some related stabilizers.

Lemma 2.1. The action ofTame(Sl) is transitive on vertices of type 1, 2 and 3
respectively. The action @Tame(Sk) is transitive on vertices of type 1 and 3
respectively, but admits two distinct orbits of verticesypk 2.
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[f1] [ f1.f2] [f2] [x] [x1,%2] [x2]
o rd 5 o o)
[f1.f3] 5 [f2.fal  [xy.xq] 't [%2.%4]
USERd
o . ) e 5
[f3] [f3.14] [fa] [x3] [x3.x4] [x4]

Ficure 3. Generic big square & standard big square.

[xL—X3] [ X1—X3,%2—X4] [X2—X4]
o A o

[x2]

"""""""

[X1—%] § O xa+%e]

[X1—%2, Xa—Xa] # N ® [+ %0,Xa 4]

Ficure 4. A few other squares...

Proof. Let vy (resp. v, v3) be a vertex of type 1 (resp. 2, 3). There exifts
(1 7) e Tame(Sk) such thatv; = [f1] (resp. vz = [f1. f2], v3 = [f]). Then
[x] = [fro 71 = f-[fy] (resp. Ky, xo] = f-[f1, fo], [id] = f-[f]). If fisnotin
STame(Sk) theng = 7o f = (g ;j) is in STame(Sk). We also havexi] = g-[ f1]
and [id] = [r] = g- [f], butg- [fa, fo] = [Xq, X3].

It remains to prove thatq, x3] and [x;, Xo] are not in the same orbit under the
action of STame(Sy). Assume thayy € Tame(Sk) sends X, X3] on [X1, 2], and
leth € O4 be the linear part af. We still haveh-[x, x3] = [X1, X2], and by Lemma
1.17we deduce that € O4\ SOy, henceg € Tame(Sk) \ STame(Sk). O

Definition 2.2. (1) We say that a vertex of type 2l@rizontal (resp.vertical) if

it lies in the same orbit ax{, xo] (resp. [X1, X3]) under the action of STame(SL.
(2) We say that an edge lorizontal (resp.vertical) if it lies in the same orbit

as the edgexi] — [X1, X2] (resp. i] — [X1, X3]) under the action of STame($).
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We will study in§4.1the structure of the stabilizer Stak(]), in particular we
will show that it admits a structure of amalgamated product.
Of course by definition the stabilizer of the vertex [id] opg/3 is the group @

Lemma 2.3. The stabilizer inTame(Sk) of the vertexx;, X3] of type 2 is the
semi-direct producStab(xi, x3]) = Ef1 = GLy, where
b / o4 . o .

Glz = {(Serde Stane)s (L %) (28) =id).
Proof. Let g = (§ &) € Stab(ku. xs]. We have f1,9s] = g% - [x1,xs] =
[x1, X3]. Hencegy, g3 are linear polynomials i, x3 that define an automorphism
of Vect(xs, X3), in other words we can views, gz as an element of GL By com-
posingg by a linear automorphism of the forif75% 22755 ) we can assume

x1+dxzg €' Xo+d'Xq
01 = X1, g3 = X3. Then, the result follows from Remaik®é. O

We now turn to the action of Tame(gLand STame(S4) on edges.

Lemma 2.4. The action ofTame(SLk) is transitive respectively on edges between
vertices of type 1 and 2, and on edges between vertices o2tgpée 3. The action
of STame(Sk) on edges admits four orbits, corresponding to the four edddise
standard square.

Proof. If there is an edge betweesn a vertex of type 1 and, a vertex of type 2,
then there exist$ = ({* ) € Tame(Sk) such tha, = [f;] andvz = [f1, f2].
Thenf -vy =[x ]and f - v = [Xg, X2].

Similarly if there is an edge betweeg a vertex of type 3 and, a vertex of type
2, then there exist$ = ({* 2) € Tame(Sl,) such thav = [f] andv, = [f1, fo].
Thenf -vs =[id] and f - vo = [Xq, X2].

In both case, iff ¢ STame(Sk), we changef by g = 7 o f and we obtain
g-v1=[x], g V2 =[x, %], g-v3 = [id]. o

Lemma 2.5. (1) The stabilizer of the edge betweea] and [y, X3] is the semi-
direct product

Eﬁx{( ax d™x ); ad # 0,ceC}.

dxs+cxy a lxa+caldix

(2) The stabilizer of the edge betwde, X»] and[id] is the following subgroup of
SOy
{A- (& %)-B, ABeSL, Ais Iowertriangulal}.
Proof. (1) This follows trivially from Lemma2.3.
(2) Recall that Stab([id])= O4. By LemmaZ2.1, we have Stabff, x2]) <

STame(Sk). Therefore, the stabilize$ of the edge betweerx{, xo] and [id] is
included into SQ. By 1.2.1, any element of S@is of the form

f=A-(32%) B, whereA BeSL,.

An obvious computation would show th&tbelongs taS if and only if A is lower
triangular. O
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Lemma 2.6. Let w = [fy, fo] be a vertex of type 2, arn#l be the path of length 2
through the vertice§f], [ f1, f2], [f2]. Then:
(1) The groupStabp is isomorphic to E {( 22 212) cab# 0}.
(2) The groupStalb acts transitively on the set of vertices of type 3 at distance
1 from .
(3) If[f], [g] are two vertices of type 3 at distance 1 from then there exists
a generalized elementary automorphism h such fijlat [h o f].

Proof. Without loss in generality we can assunfe = X1, f» = X3. Then (1)

follows from Lemma2.5. By definition of the complex, if/; is at distance 1 from
Vo = [X1, %3], thenvs = [€] with e = (3¢ &) € Tame(Sk). By Remark1.6 we

obtain thateis an elementary automorphisms: (2) follows. Nowfif,[[g] are two

vertices of type 3 at distance 1 from = (Xg, X3), we can assumef] = [id] and

[g] = [€] for some elementary automorphisen Thus there exisa, b € O4 such

thatg=aeandf = b. Then

[g] = [ad] = [be] = [beb*f]
andh = beb! is a generalized elementary automorphism. O

Lemma 2.7. The groupTame(Sk) acts transitively on squares. The (point by
point) stabilizer of the standard square is the followingpgoup ofSOy:

S={(2 %) %) (3 ). aadeC, bbec]

0 a/—l

= {(brgetany &), abcdec, ab#0).

Proof. By definition, a square corresponds to vertiegs= [f1], vo = [f1, f2],
vs = [flandv, = [fy. fs] where f = ({ ) e Tame(Sk). Thenf -vi = [xy],
f-vo =[x1, %], f-v3=[id]and f -V, =[xy, X3]. The computation of the stabilizer
of the standard square is left to the reader. O

Remark 2.8. The squares containing [id] are parametrizedPByx P!, i.e. by
points of the quadri§ in Remarkl.14). The parametrization is the following. The
square corresponding tay(( B), (v : 6)) € Pt x P! is shown on Figuré.

lid] [a X1 +B X2, @ X3 +BX4]

[y X1 +6 X3, ¥ X2 + 6 X4] [ay X1+ By X2 + ad X3+ 86 X4]

Ficure 5. The square corresponding ta (), (y : 6)) € Pt x P*

We have seen that any elemdnof Tame(SL) defines a big square centered at
[f] (see Figure3). We have the following converse result:
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Lemma 2.9. Any2 x 2 grid centered at a vertex of type 3 is the big square associ-
ated with some element ®&me(Sl).

Proof. By Lemmaz2.7, we may reduce to the case where the 2 grid contains
the standard square. By Rema8, there exist elementsi( b) and @ : b’) in P!
such that the grid is as depicted on Fig6re

[x] [x1,%2] [axi+bx]
o o

[X1,X3] ] " [axi+bX%e, axs+bx4]
i

o O
[&' x1+b"x3] [a X +b' X3, & X+ Xq]  [U]

Ficure 6. A 2 x 2 grid containing the standard square

Note thatu = &' (ax; + bx) + b/ (axs + bxg) = a(@’ %1 + b’'x3) + b(a’xo + b’ X4).
Since the verticesajx + bx] and [@x; + b'x3] are distinct from k;], we have
by # 0. We may therefore assume tht = 1. If we setf; = xq, fo = axg + bx,
f3 = ax; + b'xz, f4 = u, we havef,f4 — fofz = bU(X1X4 - X2X3) = X1X4 — X2X3,
so thatf = (% ;j) € O4. Finally, our 2x 2 grid is the big square associated with

f. m|

Corollary 2.10. The action ofTame(Sk) on the set oR x 2 grid centered at a
vertex of type 3 is transitive.

Proof. By Lemma2.9, any 2x 2 grid centered at a vertex of type 3 is associated
with an elementf of Tame(Sk). Therefore, by applying to this big square, we
obtain the standard big square. O

The following lemma is obvious.

Lemma 2.11. The (point by point) stabilizer of the standard big squariegroup
(65 a5)i @becC).

2.3. Isometries. If f is an isometry of a CAT(0) space, we define Minf) to be

the set of points realizing the infimum idgx, f(x)). The set Minf) is a closed

convex subset oKX (see BH99, p. 229]). If X is a CAT(0) cube complex of finite

dimension, then for any € Isom(X), the set Minf) is non empty (BH99, I1.6,

6.6.(2), p. 231)).

We say thatf is elliptic if inf d(x, (X)) = O (there exists a fixed point faf),
and thatf is hyperbolic otherwise. The numbéi(f) = inf d(x, f(x)) is called the
translation length of f. Note that in the elliptic case, Miffif is the fixed locus of
f.
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In a CAT(0) space, an isometry is elliptic if and only if one it§ orbits is
bounded, or equivalently if any of its orbits is bounded (E8E99, Proposition
1.6.7]). Recall also that for any isometry £(f) = |k| x £(f) for each integek.

For subgroups, we introduce a similar terminology. Xebe a CAT(0) cube
complex, and” ¢ Isom(X) be a subgroup of isometries acting without inversion:

e I'is elliptic if there exists a vertex € X that is fixed by all elements i;

e I'isparabolic if all elements of" are elliptic, there is no global fixed vertex
in X and there is a fixed point ifC;

e I'isloxodromic if I" contains at least one hyperbolic isometry and there is
a fixed pair of points idX.

We we will also use the following less standard terminologie say that an isom-
etry f is hyperelliptic if f is elliptic with Min(f) unbounded. Here is a simple
criterion to produce hyperelliptic elements.

Lemma 2.12. Any elliptic isometry of &CAT(0) space commuting with a hyper-
bolic isometry is hyperelliptic.

Proof. Assume thatf is such an elliptic isometry commuting with an hyperbolic
isometryg. By [BH99, 11.6.2], the set Min€) is globally invariant byg. Sinceg is
hyperbolic, this set is unbounded. ]

The following criterion is useful in identifying hyperbolisometries.

Lemma 2.13. Let X be aCAT(0) space, xe X a point, and ge Isom(X). Then
x € Min(g) if and only if gx) is the middle point of x and®@x).

Proof. If x € Min(g), it is clear thatg(x) is the middle point ofk andg?(x). Con-
versely, let us assume thg(x) is the middle point ok andg?(x). We may assume
furthermore thak is different fromg(x). The orbit of the segmenk[g(x)] forms

a geodesic invariant undegr on whichg acts by translation. Then, one can apply
[BH99, 11.6.2(4)]. O

2.4. First properties. Sectionl.2on the orthogonal group yields some basic facts
on the square complex:

Lemma 2.14. Assume ¥, V» are two vertices at distanca/2 in C, that is y and
Vo are opposite vertices of a same square. Then the squareioga, and v is
unique.

Proof. There are two cases to consider (up to exchangirendv,):

(1) vy is of type 1 ands, is of type 3;
(2) v1 andv, are both of type 2.

In Case (1), we can assunag= [ X2 ]. Thenv, = [f] with f € F an isotropic

vector, and by Witt's Theorem we can assuine- x;. We conclude by Lemma
1.11that the unique square containimgandv; is the standard square.

in Case (2), letiz a vertex of type 3 that is at distance 1 framandv,. We
can assume thag = [ % %2]. Thenv; andv; correspond to classe$,[g] with f,g

linear, in particularnvs is the unique vertex of type 3 that is at distance 1 fram
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andv,. Thenv; andv, correspond to two totally isotropic planeskn with a 1-
dimensional intersection. Ldte F be a generator for this line, by Witt's Theorem
we can assumé = xi, and the standard square is the unique square containing
bothvy andvs. O

Corollary 2.15. The standard square (hence any square) is embeddéx amd
the intersection of two distinct squares is either:

(1) empty;

(2) asingle vertex;

(3) asingle edge (with its two vertices).

Proof. The first assertion is just the obvious remark that ko] # [x1, X3], hence
the corresponding vertices are distinctln

Assume that two squares have an intersectidferdint from the three stated
cases. Then the intersection contains two opposite vertita square, hence the
two squares are the same by Lemeni4 O

2.5. Tame(AR ) acting on a simplicial complex. LetK be a field. In this section
we construct a simplicial complex on which the group of tam&mmorphisms
of AR acts. Our motivation here is twofold. On the one hand we stesld the
definition forn = 2, K = C(x) in the study of link of vertices of type 1 i@. On
the other hand the construction for= 3, K = C is very similar in nature to the
construction ofC, and gives rise to interesting questions about the tamepgubu
C? (see Sectios.2.1).

2.5.1. A general constructionFor any 1< r < n, we callr-tuple of components
amap
K" — K"
X=(Xg,..., %) = (fu(X),. .., f(X)

that can be extended as a tame automorpHise(fy, ..., f,) of A}. One defines
n distinct types of vertices, by consideringuple of components modulo compo-
sition by an &ine automorphism on the ranges 1,...,n:

[f1ees Bl = A(f ..oy fo) = (@0 (fr,..., fr);a € A

whereA; = GL,(K) < K" is ther-dimensional fline group.

Now for any tame automorphisnfy(. .., f,) we glue a (i — 1)-simplex on the
vertices [f1], [ f1, f2], ..., [f1,..., fa]. This definition is independent of a choice of
representative and producesia-(1)-dimensional simplicial complex on which the
tame group acts by isometries.

2.5.2. Dimension 2.Let K be a field. The previous construction yields a graph
Tk. In this section we show th&tk is isomorphic to the classical Bass-Serre tree
of Aut(AZ). We use the fline groups:

Ai={t—at+b; ae K" beK};

Ao = {(tl,tz) = (at]_ + bty + C, a’tl + b/tz + C/); (;} bt;) € GLo,c, c e K}
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The vertices of our grapfik are of two types: classes; f; where f;: K2 —
K is a component of an automorphism, and clasagd1, f2) where (1, f2) €
Aut(AZK). For each automorphisnty( f,) € Aut(AZK), we attach an edge between
A;f1 and Ax(fy, f2). Note thatAyx(fy, fo) = Ao(fp, f1), so there is also an edge
between the vertice,(f1, f,) andA; fo.

Recall that Aut&zK) is the amalgamated product Af andE;, along their inter-
section, wheré; is the elementary group defined as:

Ex = {(x,y) — (ax+ P(y),by+c; a,be K*,ce K}.

The Bass-Serre tree associated with this structure censistking cosetsy( f1, f2),
Ex(fy, f2) as vertices, and coset8y N E»)(f1, f2) as edges (we use right cosets for
consistency with the convention f@rk, the classical construction with left cosets
is similar).

Proposition 2.16. The graph7k is isomorphic to the Bass-Serre tree associated
with the structure of amalgamated productAlft(AzK).

Proof. We define a mag from the set of vertices of the Bass-Serre tree to the
graph7x by taking

Ao(f1, F2) = Ax(f1, f2),
Ea(f1, f2) = Acfa.

Clearlyg is a local isometry. Moreoveris bijective, since we can defigel(A; f,)

to beEy(fy, f2) where (f1, f2) is an automorphism. Indeed any other way to extend
f, is of the form @f; + P(fy), f2), and so the clask,(f;, f,) does not depend on
the extension we choose. O

Remark 2.17. If two verticesA; f1 andA; f, are at distance 2 i@, then (f1, f) €
Aut(AZ). Indeed, by transitivity of the action we may assume thatemtral vertex
is Az(x,y). Then fori = 1,2 we can writef; = gjx + bjy + ¢;. Observe thatfg, f,)
is invertible if and only if def 2 P) # 0. This is equivalent téy f, # Aq fo.

3. GEOMETRY OF THE COMPLEX

In this section we establish Theoréimthat is that the compleg is CAT(0) and
hyperbolic. First we study the local curvature of the comile studying the links
of its vertices.

3.1. Links of vertices. Letv be a vertex (of any type) i@. The link aroundv is
denoted by/(v). By definition this is the graph whose vertices are the gestin
C at distance exactly 1 from and endowed with the standard angular metvic:
andv, are joined by an edge of lengity2 if they are opposite vertices of a same
square, which necessarily admitbas a vertex.

A path #in £(v) is a simplicial map [Onz/2] — £L(v) which is locally injective
(“no backtrack™). We calh the length of £, and we denot® = vy, ..., Vv, where
Vk is the vertex image dfr/2. We say tha® is aloop if vo = v,. By a slight abuse
of notation we will often identify? with its image inL(v).
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Remark 3.1. Note that a loop of length £, v1, Vo in £(v) would correspond to
two distinct squares sharingvg andv; as vertices, in contradiction with Corollary
2.15 Similarly there is no self-loop i (v). In consequence any loop V) has
length at least 3.

3.1.1. Vertex of type 1We study the link of a vertex of type 1, and show that its
geometry is closely related to the geometry of a simplicieé t

Recall that in§2.5.2we constructed a tregx on which Aut@zK) acts. We use
this construction in the cad€ = C(f;), wheref; is a component. Without loss in
generality we can assunfe = x;. We note£(x;) instead of£([x1]).

Lemma 3.2. The graph/(x;) is a connected graph.

Proof. Any vertex of £(x;) is of the formv = [x, f,], where f = (! Ij) €

Tame(Sle). Note that the verticesx{, f;] and [x;, f3] are joined by one edge in
L(x1). By Corollary 1.5, f can be written as a composition of elements which are

either equal ta or which are of the fornf e ax2+xlf’(xl’)‘3)). Since we have

X1 axe+X1 P(X1,X3) _ -1
(a*llm e )T - (aX3+X1XF1’(X1,Xz) ° )’
it follows that f or 7f as a composition of automorphisms of the form
X1 axp+XiP(x.xa) -1
(a*% ) or (amxlXFl’(xl,Xz) ° )
This gives a path inC(x;) from v to either i, Xo] or [X1, X3]. O

We define a simplicial map
m L(X1) = Tey)
by sending each vertex{, fo] € £L(x) to the vertexA;f, € 7¢(x). This defi-
nition makes sense because of Corollary f, is a component of a polynomial
automorphism irxz, x3 with codficients inC(xy).

If (%% 2) € Tame(Sk), it is natural to considef%¢ | to be the middle point

in £L(x,) of the edge betweenx{, f;] and [x. fs], and to definer (| % £]) =
Ax(f2, f3) € Texy)-

Lemma 3.3. (1) The action oBtab(j]) on.£(x1) admits the half-edglxs, x2],
[id] as a fundamental domain. In particular, the action is trdive on ver-
tices of type 2 of(x1).

(2) Let vV be two vertices of(x;) and let h be an element &tab(f,]).
Then, the equalityt(v) = 7(V') implies the equalityr(h(v)) = #(h(V')).
Proof. (1) This is again a direct consequence of Corolthry
(2) We can assume= [x1, Xz], and sov’ = [x1, X2 + X1 P(x1)] for some polyno-
mial P € C[x1]. We can writeh™* = (a)él Xffa) ( ta Ij ) where (f2, f3) € Aut(AZ , ).

Thenh(v) = [ax, fo] andh(V) = [ax, fo + axgP(ax()], so

n(h(v)) = Asfo = Ag(f2 + axgP(axy)) = n(h(v)). o
Point (2) of the last lemma means that the natural actiona@®]) on £L(x1)
induces an action om(L(x1)) such thatr: £(x1) — n(L(X1)) is equivariant.
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Lemma 3.4. (1) The setr(L(x1)) is a connected subtree Bt x,).
(2) Letw= A;f, and W = A; f3 be two vertices at distance 2 in the image of
n. Then the preimage byof the segment between w antlisva complete
bipartite graph between1(w) andz~X(w’).

Proof. (1) Together with the fact thaf(x;) is connected (see Lemn3a2), this is
just the remark that is a simplicial map: If{ %* fz) e Stab(k]), then A f, and
A, f3 are at distance 2 in the imagenaf

(2) By transitivity of the action of Tame(S).on squares we can assurize= X,
and f3 = x3. Then any vertex ir™1(w) has the formv = [x1, X2 + X;P(x1)].
Similarly any vertex int~1(w’) has the form/ = [xq, X3 + x;Q(x1)]. But then for
any choices oP, Q we remark that

_ ( X1 Xo+X1 P(x1) )
9= {xgrxaQxa) xa+XaP(xa)+X Q%) +Xa POxa) Q(x4)

is a tame automorphism, henge/ are linked by an edge iff(x;), with midpoint
[g]. o

Recall that vertices of type 2 are called horizontal or eaitdepending if they
lie in the orbit of [x1, X2] or [X1, X3] under the action of STame(S)L

Lemma 3.5. Any loop in£(v1) has even length.

Proof. This follows from the simple remark that the vertices of thed must be
alternatively horizontal and vertical. ]

3.1.2. Vertex of type 2 or 3The link of a vertex of type 1 projects to a tree, in
particular this is an unbounded graph. This is completeffiedint for the link of a
vertex of type 2 or 3: We show that both are complete bipagtigghs.

Proposition 3.6. Let w be a vertex of type 2. Then any vertex of type L(w) is
linked to any vertex of type 3 ifi(v2). In other words£(v») is a complete bipartite
graph.

Proof. Let vy (resp.vs) be a vertex of type 1 (resp. 3) ii(v»). By transitivity on
edges, we can assume that= [x3, Xo] andvs = [ 3¢]. Thenifv; = [f1], we
completef; in a basis {1, f») of Vect(xs, x2). By Lemmal.1], there exists a unique
basis (3, f4) of Vect(xs, xs) such thatf = (E }cj) belongs to Q. It is then clear
thatv, andvs are linked in£(v»2): vi, Vo, v3 belong to a same square, as illustrated

in Figure?. O

Proposition 3.7. Let v3 be a vertex of type 3, and let,w;, € £L(v3) be two distinct
vertices (necessarily of type 2). Thefvdv,) = n/2 or = in £L(v3), and precisely:
e either \, v, belong to a same square (which is unique);
e or for any v in £(v3) such that dvz,v) = 7/2in L(v3), then y,v,V; is a
path in £(v3).
In particular £(v3) is a complete bipartite graph.



THE TAME AUTOMORPHISM GROUP OF AN AFFINE QUADRIC THREEFOLD 2

V1(=)[f1] Vo=[x1,%2]=[ 1, 2]

[f1.f3] (X1 %) [f1 f2
V3_[X3 X4] [fs f4]

Ficure 7. The square containing, Vo, V3

Proof. Without loss in generality we can assume= [ % ¥ |. Thenv, andv, cor-
respond to totally isotropic plan&, W’ in V*, and by RemarR.14they correspond
to lines in a smooth quadric surfaceRa.

There are two possibilities:

() The two lines intersects in one point, meaning that theesponding totally
isotropic planes intersect along a one dimensional sp&ge and then by
Lemmatl.12we can writev, = [f1, 2], v, = [fa, fa] with (! ) € O,.

(i) The two lines belongs to the same ruling, and taking edthine in the other
ruling, which corresponds to a verte¥ € £(x1), we can apply twice the

previous observation: first @, v/, and then tar, vy m]

In the second case of the proposition, the vertiges,, v3 are part of a unique
“big square” (see Figurd): This follows from Lemmal.11

3.1.3. Negative curvature As a consequence of our study of links we obtain:

Proposition 3.8. Let v e C be a vertex. Then any (locally injective) loop in the
link £(v) has length at least 4. In particular the square complExas non positive
local curvature.

Proof. By Remark3.1 we know that any loop has length at least 3; so we only
have to exclude loops of length 3. Clearly such a loop canxist i the link of a
vertex of type 2 or 3, since by PropositioB$ and3.7these are complete bipartite
graphs: Any loop inf(v) has even length for such a vertex. This leaves the case of
a vertex of type 1, and this was covered by Lengra

For the last assertion seBH99, 11.5.20 and 11.5.24]. O

3.1.4. Faithfulness.As a side remark, we can show now that the action of Tamg(SL
on the square complax is faithful. In fact, we have the following more precise
result:

Lemma 3.9. The action offame(SLk) on the set of vertices of type 1 (resp. 2, resp.
3) of C is faithful.

Proof. If g € Tame(Sly) acts trivially on vertices of type 3, then by unicity of the
middle point of a segment in a CAT(0) space, it also actsditivion vertices of
type 2.
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Similarly, if g € Tame(Sly) acts trivially on vertices of type 2, then it also acts
trivially on vertices of type 1 (which are realized as midd@nt of vertices of type
3).

So it is suficient to consider the case gf € Tame(Sk) acting trivially on
vertices of type 1. Sincey, X, andX; + xo are components of Tame(gl.g must
act by homothety on each of these three lines. This impligsThme(Sk) acts by
homothety on the plane Vegt(, x,). Similarly, Tame(Sk) acts by homothety on
Vect(xz, X3) and Vectks, X4). Therefore, there exists a nonzero complex number
such thag = A1 (3¢ 32). Finally, sincex; + X3 is a component of Tame($), g acts
by homothety on the line Veot{ + x%). We geta = 1 andg = id. O

3.2. Simple connectedness.

Proposition 3.10. The complex is simply connected.

. fp f
V@1 ] p@e2sieen
|

[fa]
[f3,a] [ f3+f4P(f2, 1), fa]

y(2i-2)=[eof] [fot+ f4Q('f3, fa), T4

Ficure 8. Initial situation around the maximal verteK][

Proof. Lety be a loop inC, we want to show that it is homotopic to a trivial loop.
Without loss in generality, we can assume that the imageisfcontained in the
1-skeleton of the square complex, thyas locally injective, and thag(0) = [ % 3]

is the vertex of type 3 associated with the identity.

A priori (the image of)y is a sequence of arbitrary edges. By Lemsng3 we
can perform a homotopy to avoid each vertex of type 1. So novasgeme that
vertices iny are alternatively of type 2 and 3: Precisely for eaci(2i) has type 3
andy(2i + 1) has type 2.

For each vertex = [ f] of type 3 ofC, we define deg := degf. This definition
is not ambiguous, since by Lemma2 we know that deg does not depend on
the choice of representative Leti be the greatest integer such that ¢€2j) =
max; degy(2j). In particular, we have

degy(2i + 2) < degy(2i)) and deg(2i — 2) < degy(2).
Let f = ({ ) be such thay(2i) = [f].

By Lemmaz2.6there exist generalized elementary automorphigrassuch that
v(2i — 2) = [eo flandy(2i + 2) = [€ o f]. Observe that for any elemeate O4 we
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have [f] = [ao f],[ec f] =[acecaloao fland[¢ o f] =[ac€ oaloao f].
In consequence, by Corollafy15we can assume that

¢ = (ehartend )
andeis of one of the three forms given in the corollary.
Observe thae = (72802 %) would contradict that the loop is locally injec-
tive, since the vertex of type 2 just after and just befdiewould be [f,, f4]. The
casee = (& 2TE04) is also impossible: Since is not constant, by Lemma

1.4we would get dedi > degf,, degfs > degfs and finally dego f > degf, a
contradiction. So we are left with the third possibility

e= (X1+xe§(23(xe,><4) Xo+XaQ(xa.a) ) .

In particular the vertices of type 2 before and aft€2i) belong to a same square,
as shown on Figur8; and we are in the setting of Lemniay.

fi+f2P(f2,14) T2

f, f
= 2] o €0 Riemin ©
[ | L]

[fa]
[f3,fa] [fa+f4P(f2,14), fa]

o

[T2+14Q f4),f4f [ec€ o f] =[e" oeo f]
_ [ f2+f4Q(f4)
- f3+f4P(f2,f4) f4

[eof]: fl+f?];:?(f4) f2+f?‘?(f4) "

Ficure 9. Local homotopy in Case (1 € C[ f4].

fp f
06 2] (ot geon

[ ¢ L |

[f4]

[f3.f4] [f3+f4P(f4),Ta]

f
S R TR " fertaQ(fa )|

f3+f4P(f4) f4

Ficure 10. Local homotopy in Case (2 € C[ f4].
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fi+f2P(f2,fa) f2

[eof]= fa+faP(f2,f4) fa

[f] [ f2.fa]
. o

fa.f4]  [fal
[fa.fa] o+ 4P(f2, ), fa]

[eof]= f1+f3<]g3(f3,f4) fz+f4%(f3,f4) [f2+{4R(f4?é£@of]:[
[f2+12Q(f3,1a), fa]

f2+f4R(f4)
f3+f4P(f2,14) fa

Ficure 11. Local homotopy in Case (3)

[f] [f2.fa] [€of]
[

dLfs.fa] [fal]
[ fa+faP(f2, fa), fa]
[¢70f]
[eof]

p [ f3+faR(f4), fa]

o+ f4Q(f3, 4)
f3+ f4R( f4) f4

Ficure 12. Local homotopy in Case (4)

In each one of the four cases of Lemtd&, we now explain how to perform a
local homotopy aroundf}] such that the path avoids the vertex of maximal degree
¥(2).

Consider first Case (1), that @ € C[x4] (see Figure9). Theneo € =
(sorxabiong 274209, Remark thao € = €” o e, where

€ = ( xerPlo Q0w e) 2 )
is elementary. Thus we can make a local homotopy ixx& grid around 4] such
that the new path goes througivle’ o f]instead of [f]. Since degf, + f4Q(fs)) <
degf,, we have dego € o f < dege o f. Recall also that degf o f < degf. So
we get
degleo € o f] < degf o f] < deg]f].

Case (2) is analogous to Case (1) (see Fidye
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Consider Case (3): see Figutg There exist®(x4) € C[x4] such that degf +
f4R(fs)) < degfp. Sete'= (4R X24RX) ) We have:

éO f — ( f1+f?3R(f4) f2+f?4R(f4)) .
By LemmaA.8, the inequality dedlt + f4R(f4)) < degf, is equivalent to any of
the following ones: ded{ + f3R(f4)) < degf; and deg™ f < degf. So we get

degfo f] < deg|f].

We conclude by applying Case (1) to the path framf[Jto [€ o f] passing through
[f].

Case (4) is analogous to Case (3) (see Fidje

The result follows by double induction on the maximal degard on the num-
ber of vertices realizing this maximal degree. ]

We obtain the first part of Theoref:
Corollary 3.11. Cis aCAT(0) square complex.

Proof. Using Proposition8.8and3.10 this is a consequence of the Cartan-Hada-
mard Theorem: sedBH99, Theorem 5.4(4), p. 206]. O

3.3. Hyperboalicity. We investigate whether the compléxcontains largen x n
grid, that is large isometrically embedded euclidean ssgialWe start with the
following result, that shows thatX4 4 grids do exist but are rather constrained.

Lemma3.12.1f N, S, E, W are polynomials in one variable, then we can construct
adx4gridin C as depicted on Figur&3. Moreover, up to the action Game(Sk),
any4 x 4 grid in C centered on a vertex of type 3 is of this form.

Proof. Consider a 4« 4 grid centered on a vertex of type 3. By Lem a0 we
may assume that the 22 subgrid with same center is the standard big square
(Figure 3). By Lemma2.6 the upper central vertex of type 3 is of the forfi [
wheref is an elementary automorphism i34, that is there exists a polynomial

N - for North - in C[x1, Xo] such thatf = (y4xNixxe) xesreNxy) )- Similarly
there exist elementary automorphisms of other types agsacwith polynomials

S, E, W, which a priori are polynomials in 2 variables, as depicted on FigiL8e
But now the upper left square in Figut8exists if and onlywW or N is in C[x1]. Up

to exchangingw andxz (that is up to conjugating by the transpose automorphism),
we can assum@/ € C[x1]. Then by using the same argument in the three other
corners we obtails € C[X3], E € C[x4] andN € C[Xx2]. O

Now we show that larger grids do not exist: In particular fliakd embedded in
C are uniformly bounded.

Proposition 3.13. The complexC does not contain ang x 6 grid centered on a
vertex of type 1.
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X1 Xo+X1 W ] _ X1 o ] [ X1 X
Xa+X1N Xa+XoN+X3W+x  NW | 7| x3+x N 4+ 2N X3+X1N(X2) Xg+X2N(%2)
[ | L 2 L N
[x1] [xe]
[x1.%2]
X X+ Wx) ] _[x1 f2 |4 i X1+X%2E(Xq) X2
X3 Xa+xaW(x1) |71 x3 f4 [X1,X3] X1 X2 [X2,Xa] X3+XaE(Xg) X4
[% %]
[x3.x4]
[xs] [xa]
[ . .

X1+X3S(Xa) X2+X43(X3)]
X3 Xq

Ficure 13. 4x 4 grid associated with polynomiald S, W andE.

Proof. Suppose now that we have suchxa@grid. By LemmeB.12we can assume
that the lower right 4 4 subgrid as the form given on Figut8. Then we would

: X1 Xo+X1 W
have an upper leftx44 subgrid centered on the vertex X4 o ioivtanw |- If

we denot & ) = (1 204W04 ), then the center of the upper left«#4 subgrid

can be rewriten aEXsf}(lN fdjizN]. Then again by Lemma&.12we should have
N € C[xq] or N € C[ f,], in contradiction withN € C[x2]. O

We obtain the last part of Theorefn
Corollary 3.14. The complex is hyperbolic.

Proof. Since the embedding of the 1-skeleton®finto C is a quasi-isometry,
it is suficient to prove that the 1-skeleton is hyperbolic (sB&l99, Theorem
I11.H.1.9]). Considerx, y two vertices, and define the intenjiat, y] to be the union
of all edge-path geodesics fromto y. Then[X,y] embeds as a subcomplex of
Z? ([AOS12 Theorem 3.5]). Since there is no large flat grid in the compgleit
follows that the 1-skeleton @f satisfies the “thin bigon criterion” for hyperbolicity
of graphs (seeWis12 page 111],Pap9y). O

4. AMALGAMATED PRODUCT STRUCTURES

There are several trees involved in the geometry of the cexripl We have
already encountered §8.1.1the tree associated with the link of a vertex of type
1. We will see shortly ir§4.2that there are also trees associated with hyperplanes
in the complex, and also with the connected components ofdhglements of
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two families of hyperplanes. At the algebraic level thimsiates into amalga-
mated product structures for several subgroups of Tam@(Ske Figurel4 for a
diagramatic summary of the products studied in this section

4.1. Stabilizer of [x1]. In this section we study in details the structure of Stafj]
First we show that it admits a structure of amalgamated mtodihen we describe
the two factors of the amalgam: the grodp in Propositiond.4andH> in Propo-
sition 4.8. We will show in Lemma4.7 that H is itself the amalgamated product
of two of its subgroup¥; andKj (see Definitiord.6) along their intersection. It
turns out thatH; N H, = K,. Therefore, the amalgamated structure of Stalp)[
given in Propositiort.1 can be “simplified byK,”". This is Lemma4.9.

4.1.1. A first product. Recall from §3.1.1 that there is a mag from the link
L([x1]) to a simplicial tree. In this context it is natural to inthace the follow-
ing two subgroups of Stab({]):

e The stabilizeH; of the fiber ofr containing [id].

e The stabilizeH, of the fiber ofr containing ki, X3].

Proposition 4.1. The groupStab(j;]) is the amalgamated product of;tand H
along their intersection:

Stab(f]) = Hi *HynH, Ho.

Proof. Consider the action of Stab{[]) on the image ofr, which is a connected
tree by Lemma.4. By Lemma3.3, a fundamental domain for this action is the
edgeAy(x2, X3), A1X3. By a classical result (e.g.Ser77al.4.1, Th. 6, p. 48])
Stab(fx;]) is the amalgamated product of the stabilizers of thesevievtices along
their intersection: This is precisely our definitiontéf andH,. O

4.1.2. Structure of H. If Ris a commutative ring, we put
BRI =(§:)NGL(R) ={(§§);adeR, beR].

For exampleB(C[x1]) = {(8 5’), adeCbe C[xl]}.
We also introduce the following three subgroups of,&L[x1]):

« The groupM; of matrices(§ % ) and( % §), b e C*;
» The groupM, of matrices({ *7¢¥), be C*, P e C[xy];
e The groupM generated byl; and M.

The following result is classical (se€¢r77aTheorem 6, p. 118]).

Theorem 4.2(Nagao) The groupGL2(C[x1]) is the amalgamated product of the
subgroupsGL,(C) and BC[x4]) along their intersection B&):

GL2(C[x1]) = GL2(C) *g(cy B(C[x4]).

SinceM; N B(C) = {(§ ;% ). be C*} is independent o, the following result is

a consequence o8pr77aProposition 3, p. 14]:
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Corollary 4.3. The group M is the amalgamated product of &hd M, along their
intersection:

M = My #mynm, Ma.

f1 f2

Proposition 4.4. The group H is the set of automorphisms=f ( fo .

there exists & C*, A€ M and P, P, € C[x1] satisfying:

= ()= AGH+ (279)

) such that

In particular Hy is generated by the matrices

b P *
(b?-i(;g Xo+X1 (X1.)“X3+X1Q(X1)) ,abeC*, PQeC[x] and t = (% XX34 )

Proof. By definition, Hy is the set of elements = ({* ) of Stab(fy]) such that

(f2, f3) induces anfiine automorphism o&é(xl). By Corollary1.5, (f,, f3) defines

an automorphism OA(% l” The linear part of this automorphism corresponds to

the matrixA. The form of the translation part comes from the fact thatelaynent

of Tame(Sk) is the restriction of an automorphism @f fixing the origin.
Conversely, we must check that any elemént (g }cj) of the given form

defines an element of Tame(8L This follows from the definition oM. O

The following lemma gives a condition under which the amaigted structure
of a groupG = Gy #a Gy is extendable to a semi-direct prod@s«, H.

Lemma 4.5. Let G = G; *p G, be an amalgamated product, wherg,G, and
A are subgroups of G such that-AG; N G,. Assume thap: H — Aut G is an
action of a group H on G, which globally preserves the subgsoG;, G, and A,
then we have:

G > H = (G1 > H) #asn (G2 > H).

Proof. We may assume that all the groups involved in the statemergudogroups
of the groupK := G x H and thatH acts onG by conjugation, i.,e¥h e H, Vg €
G, ¢(h)(g) = hght. SetK; = GiH, K = GoH andB = AH (sinceG1, G, andA
are normalized by, the set¥1, K, andB are subgroups df).

We want to prove thak = K; =g Ko.

For this, we must first check thit is generated b¥K; andK,. This is obvious.

Secondly, we must check thatwf = uju,...u, is a word such thaty, ..., u
belong alternatively td&; \ K, andK5 \ K1, thenw # 1.

Assume by contradiction that = 1. For each, u; = gih;, whereg; belongs
to G; U G, and h; belongs toH. If we setg; = g1, ¢, = hgph?, .. g0 =
(h1...h_)g(h...h_1)tandh = hy...h, thenw = (9;...9)h. We have
9...9 = hteGnH = {1}, so thatg;...gr = 1. We have obtained a con-
tradiction. IndeedV' := g;...g; is a reduced expression G xa G2 (meaning
that theg' alternatively belong t@; \ G, andG; \ G;), so that we cannot have
w = 1. m]

Definition 4.6. We introduce the following two subgroups f:
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e The groupK; of automorphisms of the form

axy bxo+x1 P(X1) axy bxs+x1 P(x1) % .
(b*1x3+x1Q(x1) ) or (b*lxz+x1Q(x1) )’ abeC, PQeC[x]

e The groupK; of automorphisms of the form

ax bXo+x1 P(X1)X3+x%1 Q(X1) *
(b | ErePbaPenaQia)) a e c, P.Q,ReClxl.

Lemma 4.7. The group H is the amalgamated product of kand K, along their

intersection:
Hy = Kq #k,nk, Ko.

Proof. SinceH; is the semi-direct product @& := {h = (ﬂ; Ei) € Hy, hy = xq}
andH := {(i);l aﬁzm), a € C*}, it is enough, by Lemma.5, to show thaiG is the
amalgamated product &; := K; N G andG; := K, N G along their intersection.

Now consider the normal subgroup®f whose elements are the “translations”:

T:= {(><3+x)1(1Q(X1) X2+X-1--P(Xl))’ PQe C[Xl]}'

Note thatG; andG, both containT. It is enough to show thds/T is the amalga-
mated product o6;/T andG,/T along their intersection.

This follows from Corollary4.3. Indeed, the natural isomorphism fra& T to
M sendsG;/T to M;. O

4.1.3. Structure of H.
Proposition 4.8. The group H is the set of automorphisms of the form
(bixmopy 24707} abeC, PeCh, X, Qe Clxil.

bt xa+x1Q(x1)
Proof. The proof is analogous to the one of Propositthd. The elementf =
(£ £) of Stab(ky]) belongs toH; if and only if (f,, f3) induces a triangular au-
tomorphism ofAé(Xl). This implies the existence @f € C*, a,v,6 € C[x] and
B € C[X1, X3] such that
f]_ = axy, fz = axy +,3, f3 =YX3 + 0.

Since (f2, f3) defines an automorphism Afé[xl], its Jacobian determinanty is a

nonzero complex number. This shows thaindy are nonzero complex numbers.
Replacingx; by 0 in the equatiorf; f4 — fof3 = Xg X4 — XoX3, we get:

(ax2 + B(0, X3))(¥ X3 + 6(0)) = X2X3.
Therefore, there exists € C* such thatr = b, y = b™! and we haves(0, x3) =
6(0) = 0. The proof follows. m]

4.1.4. A simplified product.Finally we get the following alternative amalgamated
structure for Stabé]):

Proposition 4.9. The groupStab(j;]) is the amalgamated product of,iland H
along their intersection:

Stab(xi]) = Ky *KynH, Ha.
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Proof. FirstK; andH, clearly generate Stab{{]).

Consider a wordv = ajby ... a:b, with g € K; \ Hy andb; € Ho \ K;. We
want to prove thatv is not the identity. Observe thht¢ H, \ Hy © by € Ko\ Kj.
Consider the lowest(if any) such thaby; is in K, \ K;. Then consider the biggest
j > i such that all consecutivia,1,...,bj € K. Thenaibiay...ajbjaj.1 isin
Hi \ Ky. By iterating this process we rewrite as a word with letters il \ K>
andH, \ H1, which is non trivial sincéH; andH, are amalgamated ardh \ K, =
Hl AN H2. O

Alternatively, Lemmad.9follows from the following remark. LeA, B;, B, and
C be four groups and assume that we are given three morphisgneugis:C — A,
C — B; andB; — By. Then, we have a natural isomorphism

(Axc By) *g, B2 = Axc Bo.

This isomorphism is a direct consequence of the universglgsty of the amalga-
mated product (e.gJer77al.1.1]).

4.2. Product of trees. Following [B’sgq we construct a product of trees in which
embeds the compleg.

Recall that ehyperplane in a CAT(0) cube complex is an equivalence class of
edges, for the equivalence relation generated by declasiogdges equivalent if
they are opposite edges of a same 2-dimensional cube. Wefydeyperplane
with its geometric realization as a convex subcomplex offitisé barycentric sub-
division of the ambient complex: consider geodesic segmiegitween the middle
points of any two edges in a given equivalence class. B&€LP, §2.4] or [B'S99
§3] (where hyperplanes are named hyperspaces) for altesreduivalent defini-
tions.

In the case of the complex, hyperplanes are 1-dimensio@RAT(0) cube com-
plexes, in other words they are trees. The action of STamg(@k the hyper-
planes ofC has two orbits, whose representatives are the two hypepldmough
the center of the standard square. We call them horizontantical hyperplanes,
in accordance with our convention for edges (see Definiéi@. We define the
vertical tree 7y as follows. We call vertical region a connected componehts o
C minus all vertical hyperplanes. The vertices7af correspond to such vertical
regions, and we put an edge when two regions admit a commarpigpe in their
closures. Théorizontal tree 74 is defined similarly.

We denote byry: C — 7y andry: C — Ty the two natural projections. Any
elementf € STame(Sk) induces an isometry dny and on7y, which we denote
respectively byry(f) andzy(f).

Lemma 4.10. Let f be an element iBTame(Sk). Then f is elliptic orC if and
only if f is elliptic on both factorsy and 7.

Proof. If x € C is fixed, thenmy(X) andry(X) are fixed points for the induced
isometries on trees.
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Conversely, assume thay € 7y andxy € T are fixed points for the action of
f. Thenx = (xv, Xy) € Tv X Ty is a fixed point in the product of tree. Consider
d > 0 the distance fronx to C, and consideB C C the set of points realizing
this distance. This is a bounded set (because the embe@digy x 74 is a
guasi-isometry), hence it admits a circumcenter which rbadtxed byf. O

Lemma 4.11. Let f be an elliptic element i8Tame(Sk). Then f is hyperelliptic
on( if and only if f is hyperelliptic on at least one of the factarg or 7.

Proof. Assumef hyperelliptic, and lety})i~o be a sequence of fixed points bf
such that lim.,., d(yo,Vi;) = . Then one of the sequencdéry (o), v (Y;)) or
d(my (Yo), mu (yi)) must also be unbounded.

Conversely, assume thétis hyperelliptic on one of the factors, say ¥x. Let
(z) € 7v be an unbounded sequence of fixed points. Then for 'eax;ﬁ(z;) ne
is a non-empty convex subset invariant undeiin particular it contains a fixed
point y; of the elliptic isometryf. The sequenceyy) is unbounded, hencé is
hyperelliptic. O

The vertical elementary group Ey is the stabilizer of the vertical region con-
taining [x1]. The vertical linear group Ly is the stabilizer of the vertical region
containing [id]. We can similarly define horizontal groupg andLy, by consid-
ering the stabilizers of horizontal regions containing $heme vertices.

Proposition 4.12. The groupSTame(Sk) is the amalgamated product of,Eand
Ly along their intersection &N Ly. The same result holds for{zand Ly:

STame(Sk) = Ev *gynLy Lv = EH *EynLy LH-

Proof. An edge in7y corresponds to a vertical hyperplane. Since STamg(SL
acts transitively on vertical hyperplanes, we obtain thEdrSe(Slp) acts without
inversion with fundamental domain an edge on the #fge Hence STame(Sl)

is the amalgamated product of the stabilizers of the vestafean edge, which is
exactly our definition oy andLy. O

We denote by SStab(]]) the group Stabff;]) N STame(Sk). Remark that
Stab(jx1, X2]) and Stab(ki, x3]) are already subgroups of STamefsL

Proposition 4.13. The group k is the amalgamated product &Stab(k;]) and
Stab(fxi, x3]) along their intersectiorStab(f], [ X1, X3]).

The group b, is the amalgamated product 8tab(fx;, xo]) and SO, along their
intersection.

Similar structures hold for g and Ly.

Proof. Let R be the vertical region containing]. To prove the assertion for
Ev, it is suficient to show thaEy acts transitively on vertical edges contained
in R (clearly it acts without inversion). But this is clear, sn§Tame(Sk) acts
transitively on vertical edges between vertices of typed 2n

The proofs of the other assertions are similar. O

In turn, the grougey N Ly admits a structure of amalgamated product.
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Proposition 4.14. The group E NLy is the amalgamated product of the stabilizers
of edgesStab(fx], [X1, X2]) and Stab(j, x3], [id]) along their intersection S .

Proof. The groupEy N Ly acts on the vertical hyperplane through the standard
square, which is a tree. Since STamefdcts transitively on squares, the funda-
mental domain of the action is the standard squareEamuly, is the amalgamated
product of the stabilizers of the horizontal edges. O

On Figureld we try to represent all the amalgamated product structhisate
have found in this section. By a diagram of the form

A/G\B
N

with the four edges of the same color we mean @& the amalgamated product
of its subgroupsA and B along their intersectiol© = An B. For example, on
the left hand side of Figur&é4, we see that StabX[]) admits two structures of
amalgamated productsl; sp,nH, H2 andKj «x,nH, H2 (See Propositiond.1and
4.9).

We are now in position to prove that the groups Ta(@i&) and Tame(Sk) are
isomorphic. We use the following general lemma.

Lemma 4.15. Let G= A xa~g B be an amalgamated product apd G’ — G be a
morphism. Assume there exist subgroupBAin G’ such that G = (A", B’y and
such thaty induces isomorphisms’ A~ A, B = Band AN B’ = AN B. Then
@ is an isomorphism.

Proof. By the universal property of the amalgamated product, tharaamor-
phismsya: A — G’ andyg: B — G’ give us a morphisny: G — G’ such that
¢ oy = idg. Itis clear thaty is an isomorphism, so thatalso. O

Recall that we have a natural morphism of restrichonAuty(C*) — Aut(SLy).
We denote byr the induced morphism on Tala(é?“).

Proposition 4.16. The mapr: Tame(C*) — Tame(SL) is an isomorphism.

Proof. Clearly the group Tamﬁ@“) contains subgroups isomorphic (via the re-
striction map) toH,, K, Ky, EA% and . By Lemma4.15 applied to the vari-
ous amalgamated products showed in Figl4dewe obtain the existence of sub-
groups in Tamg(C?) isomorphic to Stabg]), Ev, Ly and finally Tamg(C?) =~
Tame(Sl). O

We recall that an elemeri of C[SL,] is called a component if it can be com-
pleted to an element = (g Ij) of Tame(Sl) (see§2.1). In the same way, an
elementf; of C[xy, X2, X3, X4] Will be called a component if it can be completed
to an element of TaméC?). In the same spirit as Propositien16 we show the
following stronger result
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Proposition 4.17. The canonical surjection

C[x1, X2, X3, X4] — C[SL2] = C[Xq, X2, X3, Xa] /(] — 1)

induces a bijection between the componentS[&f, o, X3, X4] and the components
of C[SLy].

Proof. We can associate a square compiso the group Tam;(@“) in exactly
the same way we associated a completo Tame(Sk) in §2.1 The canonical
surjection, alias the restriction map, defines a continunap p: ¢ — C. One
would easily check thap is a covering (the verification is local), so that the simple
connexity ofC (Proposition3.10) and the obvious connexity of implies thatp is

a homeomorphism. In particulgp,induces a bijection between vertices of type 1
of C andC. Assume now that, v are two components @f[x1, X2, X3, X4] such that
u=v mod @-1). The verticesy mod (- 1)] and v mod @ - 1)] of C being
equal, the vertices)] and [v] of C are also equal. This implies that Au for some
nonzero complex number. Sinceu andv induce the same (nonzero) function on
the quadric, weget = 1,i.e.u=V. O

5. APPLICATIONS

In this section we apply the previous machinery to obtainlasic results about
the group Tame(S)): the linearizability of finite subgroups and the Tits attative.

5.1. Linearizability. This section is devoted to the proof of Theor&tfrom the
introduction, which states that any finite subgroup of Te®he) is linearizable.
This is a first nice application of the action of Tamegybn the CAT(0) square
complexcC.

The following lemma will be used several times in the prooheTidea comes
from [Fur83 Proposition 4]. In the statement and in the proof, we usengteral
structure of vector space on the semi-group of applicatmrs vector spac#/,
given by @f + g)(v) = Af(v) +g(v) forany f,g: V -V, 1€ C,ve V.

Lemma 5.1. Let G be a group of transformations of a vector space V thatiesdm
a semi-direct product structure & M < L. Assume that M is stable by mean (i.e.
for any finite sequencem .., my in M, the mean} Zrlm isin M) and that L is
linear (i.e. LC GL(V)). Then any finite subgroup in G is conjugate by an element
of M to a subgroup of L.

Proof. Consider the morphism of groups

p:G=MxL—>L
g=molm—¢

For anyg € G we haveyp(g)™! o g € M. Given a finite groud” C G, define
m = ﬁ 2ger ©(9)1 o g. By the mean propertyn € M. Then, for eachf € I', we
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compute:
1

mo f = —
Tl

> e@togot

gell

- = Do) o @ T oge |

gell
=¢(f)om.
HencemI'm 1 is equal top(I'), which is a subgroup df. O

As a first application, we solve the problem of linearizationfinite subgroups
in the triangular group of Auf{"). Recall thatf = (fi,...,f;) € Aut(C") is
triangular if for eachi, fi = gjx + P; whereP; € C[X11, ..., Xn]-

Corollary 5.2. LetI' € Aut(C") be a finite group. Assume thBtlies in the trian-
gular group ofAut(C"). Thenr is diagonalizable inside the triangular group.

Proof. Apply Lemma5.1by takingG the triangular group.,. the group of diagonal
matrices andM the group of unipotent triangular automorphisms, that il
a =1 m]

Proof of TheorenB. LetT be a finite subgroup of Tame(gL The circumcenter
of any orbit is a fixed point under the action Iof thereforel” also fixes a vertex.
Up to conjugation, we may assume tidixes [id], [X1, Xa] or [X1].

If T fixes [id], this means thdf is included into Q: There is nothing more to
prove.

If T fixes [y, x3], recall that Stabf{, x3]) = Ef1 = GL, (Lemma2.3). We con-
clude by Lemma.1, using the natural embedding Stat([xs]) — Aut(C?).

Finally, assume thdt fixes [x;]. The group Stabgf;]) being the amalgamated
product of its two subgroupk; andH, along their intersection (see Lemmid),
we may assume, up to conjugation in Stabjf, thatI is included intoK; or Hy
(e.g. Ber77al.4.3, Th. 8, p. 53]).

By forgetting the fourth coordinate, the groa may be identified to the sub-
groupK; of Aut(A3) whose elements are of the form

(axi, bxo+axaP(x1), b 1xz+axiQ(x1)) or (axy, b ixa+ax Q(x1), bxo+ax P(x1)).

Then we can apply Lemnfal, using the embeddin§; — Aut(C3) and the semi-
direct productk; = M =< L, where

M = {(x1, X2 + X1P(X1), X3 + x1Q(x1)) ; P, Q € C[x1]};
L= {(axl, b, b‘1x3) or (axl, b 1xs, bxz) ‘abe C*}.

Similarly, the grougH, may be identified to the subgroup of triangular automor-
phisms of Aut(C®) whose elements are of the form

(X0, X3, X2) > (ax1, b71xs + x1.Q(x), b + X1 P(x4, Xs)) .

Then we can apply Corollary.2 O
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5.2. Tits alternative. A group satisfies th&its alternative (resp. thewveak Tits
alternative) if each of its subgroups (resp. finitely generated subgpidsatisfies
the following alternative: EitheH is virtually solvable (i.e. contains a solvable
subgroup of finite index), dd contains a free subgroup of rank 2.

It is known that Aut(C?) satisfies the Tits alternativel@mO1]), and that Birp?)
satisfies the weak Tits alternativeCdn1]). One common ingredient to obtain the
Tits alternative for Tame(S) or for Bir(P?) is the following result (seelin12,
Lemma 5.5]) asserting that groups satisfying the Tits iaétive are stable by ex-
tension:

Lemma 5.3. Assume that we have a short exact sequence of groups:
1-A->B—->C-—>1,

where A and C are virtually solvable (resp. satisfy the Titeraative), then B is
also virtually solvable (resp. also satisfies the Tits altgive).

We shall also use the following elementary lemma about bebaef solvability
under taking closure (for the Zariski topology).

Lemma5.4. Let A2 B be subgroups dbL,.
(1) We havdA: B] <[A: BJ;
(2) We have IfA) c D(A);
(3) If Ais solvable, ther also; B
(4) If Alis virtually solvable, ther also.

Proof. (1) If [A : B] = +oo, there is nothing to show. If4 : B] is an integem,
there exist elementa, .. ., a, of A such thatA = | J; aB. By taking the closure,
we obtainA = | J; B and the result follows.

(2) Fix an elemen& of A. For any element of A, the commutatord, b] belongs
to the closureD(A) of the derived subgroup ok. This remains true if we only
assume thab belongs toA. Let us now fix an elemertof A. For any elemert of
A, we have § b] € D(A). This remains true if we only assume tlaetbelongs toA.

(3) There exists a sequence of subgroups of §ich that

A=A)2A12---2A,={1} and D(A) c A,1 foreachi.
By the last point, we immediately obtain
A=Ag2A;2---2A;={1} and D(A)cAy foreachi.
(4) This is a direct consequence of points (1) and (3). O

We apply now the following general theorem by Ballmann é?vdiatkowski
[BS99 Theorem 2].

Theorem 5.5. Let X be an d-dimensional simply connected foldable culsicain-
ber complex of non-positive curvature aid Aut(X) a subgroup. Suppose thiat
does not contain a free nonabelian subgroup acting freel)Xoihen up to pass-
ing to a subgroup of finite index, there is a surjective hommgiism h ' — ZX
for some ke {0,...,d} such that the kerne\ of h consists precisely of the elliptic
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elements of" and, furthermore, precisely one of the following three pnktes
ocCCurs:

(1) T fixes a point in X (then k 0).

(2) k > 1 and there is al-invariant convex subset EE X isometric to k-
dimensional Euclidean space such thafixes E pointwise and such that
I'/A acts on E as a cocompact lattice of translations. In paragurl fixes
each point of Eco) C X(c0).

(3) T fixes a point of Xx), butA does not fix a point in X. There is a sequence
(Xm) in X which converges to a fixed pointidin X(c0) and such that the
groupsAp = A N Stab,) form a strictly increasing filtration of\, i.e.
An € Anpz andJ A = A

In our situation, the result translates as

Corollary 5.6. LetI" ¢ Tame(Sly) be a subgroup which does not contain a free
subgroup of rank 2, and consider the derived grdtip= D(I'). Then one of the
following possibilities occurs:
(1) 17 is elliptic.
(2) There is a morphism:h" — Z such that the kernel of h is elliptic or
parabolic.
(3) I'” is paraboalic.

Proof. By Lemma2.1the complexC admits four orbits of vertices under the action
of STame(Sk), which are represented by the four vertices of the stansigwdre.
This implies thatC is foldable. ThusC satisfies the hypothesis of Theorénd
with d = 2. Furthermore, since by Propositi8r3C does not contain a Euclidean
plane, we must have= 1 in case (2). Now we review the proof of the theorem in
order to see where it was necessary to pass to a group of fidi&.i The argument

is to project the action di” on each factor, and to use the classical fact that a group
that does not contain a free group of rank 2 and that acts oaeaidrelliptic,
parabolic or loxodromicPV9]]. In the loxodromic case, in order to be sure that
the pair of ends is pointwise fixed, in general we need to takabgroup of order

2. But in our casd” is a derived subgroup hence this condition is automatically
satisfied. O

Now we are essentially reduced to the study of elliptic an@lpalic subgroups
in Tame(SL).

Proposition 5.7. Let A € Tame(SLk) be an elliptic subgroup. Theh satisfies the
Tits alternative.
Proof. e If the globally fixed vertex is of type 1, we may assume that [x].

The stabilizer Stabfg]) of v is equal to the set of automorphisnis= (E ;j)
such thatf; = ax; for somea € C*. The natural morphism of groups:

* f
Stab(ka]) —» C*, (3L £)—a

is surjective. By Corollaryl.5, its kernel is a subgroup of Agit,) C(X1)[ X2, X3].
By [LamO01], Autc C[x, x3] satisfies the Tits alternative, but the proof would be
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analogous for Ayt K[xz, X3] for any field K of characteristic zero. Therefore,
Lemma5.3shows us that Stab({]), hence alsa\, satisfies the Tits alternative.

o If the vertexv is of type 2, we may assume that= [x1, x3]. The stabi-
lizer Stab(ky. xa]) of vis equal to the set of automorphisrhis= ( ¢ Ij) such that
Vect(fy, f3) = Vect(xy, X3). By Lemma2.3, the natural morphism

Stab(fa, Xs]) — Aut(Vect(xa, xs)) = GLa, (1 )~ (fu, f3)

is surjective, and its kernel is the groE@. The group Gk s linear, hence satisfies
the Tits alternative and the gronlﬁj is abelian. Therefore, by Lemn&a3the group
Stab(, X3]) satisfies the Tits alternative.

o If the vertexv is of type 3, we may assume that [ Xt %2 ]. The stabilizer of/
is the orthogonal group Hwhich is linear hence satisfies the Tits alternativea

Proposition 5.8. LetA € Tame(SLk) be a parabolic subgroup. Thexis virtually
solvable.

Proof. The case of a parabolic subgrotgorresponds to Case (3) in Theorérb,
from which we keep the notations. We may assume that all pgjptare vertices
of C (replacexqy by one of the vertices of the cell containing,). For eachm,
consider the geodesic segm@&at joining Xy to Xme1. Let Uy, be the union of the
cells of C intersectingSy,. TakeS;, an edge-path geodesic segmentCgbining
Xm 10 Xmy1 included intoUp, such thatSy, ¢ S, for all m. By considering the
sequences of vertices on the succesSiye we obtain a sequence of verticgs

i > 0 such that:

e The sequencgy, is a subsequence gf;
e Foreach > 0,d(y;,V¥i;1) = 1.

For eachm > 0 we set

Ary = AN ) Stabg).
i>m

By construction the\[, form an increasing filtration oh. For 1< j < 3, letX;
be the set of integelissuch thaty; is a vertex of typg. One of the three following
cases is satisfied:
a) X; andXs are infinite;
b) X is infinite andX3 is finite;
c) X; is finite andXs is infinite.

In case a), there exists an infinite sub&aif N such that for ala € A, the ver-
ticesya, Ya:+1, Yar2 are of type 12, 3 respectively. Note thatthe group(\  Stab§;)

a<i<at+2
is conjugate to the group
S = Stab(jx]) N Stab(f1, x2]) N Stab([id])

which is the stabilizer of the standard square. Recall framima2.7 that

S= {( b*l(igxidxl) b(thcxl)), ab,cdeC, ab+ 0}
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and so the second derived subgroupSofs trivial: D»(S) = {1}. Therefore,
D2(A7) = {1} for eacha € Aand sinceA = |J A}, we getD(A) = 1.
acA
In case b), changing the first vertex we may assumexhat 0, that the vertices
yoi of even indices are of type 2 and that the vertiggs of odd indices are of type
1. Note that the group N Stab§/;) is conjugate to the group

2a-1<i<2a+l

EZ = Stab(k]) N Stab(fi, xs]) N Stab(ks]).
By Lemma2.6we have

2 — ax; b ixo+ax P(x1,x3) \ . s
E4 - {( bxg a_1X4+bX3P(X1,)(3) ) ,a b eC , Pe C[Xl, X3]}

=1 and finallyD,(A) = 1.

and thusD, (EE) = {1}. ThereforeA’, |

In case c), we may assume thét = 0, that the vertices,; of even indices are
of type 2 and that the vertices;,; of odd indices are of type 3. Note that the group
(  Stab§;) is conjugate to the group

2a<i<2a+2

Stab(fa, x2]) N Stab([id]) N Stab(fs, xa]) ~ GLo.

Up to passing again to the derived subgroup, we can assurnalltig, are con-
jugate to subgroups of SLwhere Sk is identified to a subgroup of SQria the
natural injection Sk — SOy, (2 5) — (28)- (3% %). Since Sk satisfies the
Tits alternative, allAp,which by hypothesis do not contain free subgroups of rank
2, are virtually solvable. By Lemm&a.4, the Zariski closure\, is again virtually
solvable.

If A, is finite for alln, since there is only a finite list of finite subgroups of,SL
which are not cyclic or binary dihedral, we conclude thatAgllare contained in
binary dihedral groups hence solvable of index at most 3.

Now if dim A, > 1 for n sufficiently large, then up to conjugaay, is contained
in the normalizer in Sk of one of the group

T={(5.%) 2ec)
A={(s4). nec)

B={(5 /). aeC’, pec)

We consider the normalizers of these groups in.SWe haveU = Ngi,(T)
where
U={(3 &) aecjul(2 ). aee].
andB = Ng|,(A) = Nsi,(B). SinceU andB are solvable of index 2, we conclude
that the same is true fa¥,,.
Finally in all cases\ = UA,, is solvable of index at most 3. O

We are now ready to prove Theorginfrom the introduction, that is the Tits
alternative for Tame(S).
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Proof of TheorenC. LetT be a subgroup of Tame($g), and assume thdt does
not contain a free subgroup of rank 2. We want to provelthatvirtually solvable.
By Lemmab.3, without loss in generality we can replakcéy its derived subgroup.
By Corollary 5.6 we have a short exact sequence

15AT 7K1

with k = 0 or 1. By Lemma&b.3, it is enough to prove that is virtually solvable.
WhenA is elliptic the result follows from Propositidb.7, and whem is parabolic
this is Propositiorb.8. O

6. COMPLEMENTS

In this section we first provide examples of hyperbolic ordrglliptic elements
in Tame(Slk), and also an example of parabolic subgroup. Then we dis®ss
eral questions about the usual tame group of theeispace, the relation between
Autq(C4) and Aut(SLy), and finally the property of infinite transitivety.

6.1. Examples.

6.1.1. Hyperbolic elementsThe following lemma allows us to produce some hy-
perbolic elements in Tame($), which are very similar to generalized H&énon map-
ping onC? from an algebraic point of view.

Lemma 6.1. Let Py,...,P; € C[Xg, X4] be polynomials of degree at least 2, and

b~1x i X1+ X2 P(xo,
a;,bi,...,a,b, € C* be nonzero constants. Set g ;1_154 ‘1_;3 a;_;é(jzx)‘(‘:)).
—a —Di X3—0j ,

Then the composition @ - - - o g; is a hyperbolic element dlame(SLk).

Proof. We have

_ (b ax X1 +X2Pi(%2,Xa) X2

[ b aixi+aixeP(X2.Xa) ( )
g = “\-atxu -bixg X3+XaPi(x2,%a) X4/

—a1xs —biXs—bixsP(x2.%s)
Since( _b;j_lf; _‘1:‘;3 ) and(JXhepbe %) preserve respectively the edges o], [id]
and [x2], [X2, X4], we get thatg; preserves the hyperplarté associated with these
two edges (see Figuikb).

Observe thatH is one-dimensional convex subcomplex of (the first barygent
subdivision of)C, in particularH is a tree. By BH99, 11.6.2(4)], since is
invariant unde;, the translation length @i onC is equal to the translation length
of its restrictiong|, which is 2. Indeed Stai#{) is the amalgamated product of
the stabilizers of the edgexzi| xo], [id] and [X,], [ X2, X4], andg; is a word of length
2 in this product. Similarlyg; o---0g; € Stab(H) has length Rin the amalgamated
product, hence is hyperbolic with translation length eqo&k. O

The previous examples induce hyperbolic isometries onéehiical treery,, but
they project as elliptic isometries on the fac@y. Here is an example which is
hyperbolic on both factors:
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1] [x1.%] [x2] [X1+X2Pi.Xo] - [X1+%2Pi]

[x
{(‘ C O

[x1,%3] fic] [X2.%a] (6] [Xa+%Pixs+XaP]]

Ficure 15. Part of the hyperplane associated with the edge[[x2, X4]
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[x—X] N N

N
Ficure 16. Geodesic through{], g- [x1] = [Xa] andg? - [x1] = g [Xa].

Example 6.2. Consider the following automorphisgiof Tame(Sk):
g= (x4+x3x§+xzx§+x§ Xo+x3 )

Xg+)3 X1

Its inverseg™ is:
= (5 i rton i)
97 = L nme-20e-9-0a-302 )

The automorphismg is hyperbolic, as a consequence of Lem&a3 If we
compute the geodesic througlki], g - [x1] and g? - [x1] we find the segment

[x1],[xa], g - [x4] (see Figurel6) on whichg acts as a translation of lengthv2.

6.1.2. Two classes of examples of hyperelliptic elemeRiscall that an elliptic
element of Tame(S)) is said to be hyperelliptic if Min{) is unbounded. In this

section we gives some examples of hyperelliptic elements.

Definition 6.3. We say that two numbers b € C* areresonantif they satisfy a
relationaPb¥ = 1 for somep, q € Z \ {0}. We say that a polynomid® € C[x,y] is

resonantin a andb if Ris not constant andbRax, by) = R(x, y).
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Remark 6.4. (1) A polynomial R is resonant ira andb if and only if it is
resonant ira~t andb™t. On the other hand, the conditidresonant ira
andb is not equivalent taR resonant irb anda.

(2) If R= Y1 jXyl, the conditionabR@ax by) = R(x,y) is equivalent to the
implicationr; j # 0= a*bi*1 = 1.

(3) There exist some polynomials that are not resonara &md b for any
(a,b) € (C*)? < {(1,1)}. ForinstanceP(x,y) = x* + X3 + y> + Y2 is such a
polynomial.

axy b_1X2

Lemma 6.5. If a, b € C* are resonant, then £ (b .
X alxg

) is hyperelliptic.

Proof. By Lemma2.12 to prove thatf is hyperelliptic it is stfficient to show thaf
commutes with some hyperbolic element. By assumption tiestp, g € Z \ {0}
such thataPb¥ = 1. We can assume that g have the same sign, by considering
7fr instead off if necessary, where is the transpose automorphism. Moreover,
up to replacingf by =1, hencea andb by their inverses, we can assumpgy > 1.
We setg = (2 - efle)) whereP e C[xp. x4] is a polynomial of degree at

\ Xa X3+X4P(X2.%a)
least 2 that is resonant manda. Denote

(X % £ _ -1 _ [blx ax o
0'—(_X1X2), f=0f O-_(a_1X3bX4) andg = ogo.

We compute

hely. v _p-1 1y a1
gof:( bix —ax-bxP(b txp.a x4))

_b*J-XZ —axl—asz(Xz,X4) — f o g
alx bxtatxP(bix.atx) -

- ( alxs bxat+bxaP(x2,Xs) )

Conjugating this equality by the involutiom we getgo f~ = 10 §, hence
fod =980 f. Finally f commutes withgo g, which is hyperbolic by Lemma
6.1 O

Lemma 6.6. If a,b are roots of unity of the same order, then for anxPx3) €

C[x1, %3] the elementary automorphism:f(zjz Zﬁ:gzﬁ&g) is hyperelliptic.
Proof. There existn,n > 2 such thag™ = b andb" = a. We will use the observa-
tion that in Aut@2), with A2 = SpecC[x1, X3], the automorphismsxg, x; + X5') o
(X3, x1 + X3) and @ 1x;, b~tx3) commute.

By Lemma6.1, the following automorphisms are hyperbolic, because fiver
jections on7y are hyperbolic:

01 = (xl)fxg“ —xz__x)i4xg1—l), g2 = (xl)fxg —Xg—_xxjxg‘l) andg = g1 o Q.

The projectionri(g) is a hyperbolic isometrygy(f) is elliptic, andry(g) and
my(f) commute. By Lemma&.12 Min ry(f) is unbounded. We conclude by
Lemma4.11 m]

Remark 6.7. We believe that any hyperelliptic automorphisms in Tame}S&
conjugate to an automorphism of the form given in Lemi®&sor 6.6. However
we were not able to get an easy proof of that fact.
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6.1.3. An example of parabolic subgroupVe give an example of parabolic sub-
group in Tame(Sk), where most elements have infinite order. This is in conhtras
with the situation of Aut(?), where a parabolic subgroup is always a torsion group
(see LamO01, Proposition 3.12]). Let

Ho={(2e20¢); abe (@b = 1.

As in the proof of Lemm&.5, we set

_ (X X4 _(—* —xl—xZPn(Xz,X4)) & _ _ (—Xz —X1+Xan(X4,XZ))
o= (—Xl XZ)’ On = ( xe XerxaPaboss) )0 @10 Gn =000 = (] P

wherePn(x,y) = (xy)? 1. Then we observe that fgr < k, any elemenh € H;
commutes withgg o gk. On the other hand for arly> 1 and anyh € (Unso Hn) N
Hi_1, g;lhgk is a non linear elementary automorphism. We set

¢en=0no0nho---081001, Ap = SDHlHnSDn and A = UpsoAn.

ThenA is a parabolic subgroup of Tame(gL Indeed by Lemmd.10it is sufi-
cient to prove that the isometry groug(A) induced byA on the vertical tre€y,
is parabolic. This is the case, since for each 1, ¢! - ny[id] is a fixed vertex for
my(An), but not formy(Ans1), andd(ay[id], g5t - my[id]) = 4n goes to infinity with
n.

6.2. Further comments.

6.2.1. Tame group of thefine space.ln Section2.5.1we defined a simplicial
complex associated with the tame groukdf We now make a few comments on
this construction. We make the convention to ciindard simplexthe simplex
associated with the verticeg|, [x1, X2], ..., [X1, ..., Xn]-

First observe that we could make the same formal construeson§2.5.1us-
ing the whole group Aui"). But then it is not clear anymore that we obtain a
connected complex. More precisely, recall thaXifs a simplicial complex of di-
mensionn, we say thatX is gallery connectedif given any simplexess, S’ of
maximal dimension irX, there exists a sequence of simplexes of maximal dimen-
sionS; =S,...,Sy = S’ suchthatforany=1,...,n—1, the intersectio®;NS;,1
is a face of dimension — 1 (see BS99 p. 55]). Then the gallery connected com-
ponent of the standard simplex of the complex associatddAwit(K") is precisely
the complex associated to TarKé]. It is probable that the whole complex is not
connected, but it seems to be #idult question.

We now focus on the cad€ = C, n = 3. In the same vein as the above discus-
sion, observe that the Nagata automorphism

N = (X1 + 2%(X5 — X1X3) + X3(X5 — X1X3)%, X2 + (X5 — X1X3), X3)

defines a simplex that shares the vertey fvith the standard simplex, but sindé
is not tame these two simplexes are not in the same galleryected component.
The question of the connectedness of the whole complex iassoavith AutC>)
is equivalent to the question whether AT} is generated by theffine group and
automorphisms preserving the variale



THE TAME AUTOMORPHISM GROUP OF AN AFFINE QUADRIC THREEFOLD 7

We denote by’ the 2-dimensional simplicial complex associated with TéiRg
The standard simplex has verticeg][ [ X1, X] and [id], and the stabilizers of these
vertices are respectively

Stabjq] = {(ax + b, . 9); (f.9) € Tamex,)(SpecC[xz, X3])}
Stab@q, Xz] = {(axl +bx +c, a.,X]_ + b’Xz +c, dxs + P(Xl, Xz))}
Stabfxi, X, X3] = Ag.

By construction the group Tam@) acts on the complex’ with fundamental
domain the standard simplex. To say that Tafig(s the amalgamated product
of the three stabilizers above along their pairwise inteige is equivalent to the
simple connectedness of the complex. This is precisely dm¢eat of the main
theorem of Wri13], where the subgroups are denotedrby H, andHs. Observe
that the proof of Wright relies on the understanding of tHatiens in the tame
group and so ultimately on the Shestakov-Umirbaev theohys 16 similar to our
proof of Propositior8.10, which relies on an adapation of the Shestakov-Umirbaev
theory to the case of a quadric 3-fold.

Note that the naive thought according to which Tame[Stkould be the amal-
gamated product of the four types of elementary groupsse fdhdeed, iP, Q are
non-constant polynomials @f{x1], the two following elements belong toftkrent
factors and they commute (this is similar to a remark made Bye¥ a long time
ago about Aut(®), see Ale9s)):

X1 Xo+X1 P(X1) X1 X2
()@ X4+><3P(X1))’ (X3+X1Q(X1) X4+X2Q(X1))'
On the other hand, it follows from our study in Sectib(see also Figuré4) that
STame(Sk) is the amalgamated product of the four stabilizers of eactex of the
standard square along their pairwise intersections: h wiethe result of Wright,
this is another evidence that the groups Taiieand Tame(Sh) are qualitatively
quite similar.

As mentioned at the end of\[ri13], there are basic open questions about the
complexC’: It is not clear ifC’ is contractible, or even if it is unbounded. In
view of what we proved about the compl@&associated with Tame($), a natural
question would be to ask@’ is CAT(0). It turns out that it is trivially not the case.
Indeed any triangular automorphismy (xo + P(X1), X3 + Q(X1, X2)) can be written
in two ways as a product of elementary automorphisms:

(X1, X2 + P(x1), X3 + Q(X1, X2)) = (X1, X2 + P(X1), X3) © (X1, X2, X3 + Q(X1, X2))
= (X1, X2, X3 + Q(X1, X2 — P(X1))) o (X1, X2 + P(X1), X3).

This corresponds to a loop of length 4 in the link ai][ (this is similar to the
situation in Figure9), and a necessary condition for a triangular complex to be
CAT(0) would be that each such loop has length at least 6. @rother hand,

it seems possible that the complé€x is hyperbolic. Of course this question is
relevant only ifC’ is unbounded, but we believe this to be true.
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6.2.2. The restriction morphismRecall that we have natural morphisms of restric-
tion:

n: Tameg(C* — Tame(Sk) and p: Auty(C*) — Aut(SLy).

We have proved in Propositigh16thatr is an isomorphism. On the other hand,

we havep (& 204 )) = idsy,, so thaip is not injective.

If follows from the next remark that the automorphift %2741 ) of Auty(C?)

Xa+X3(0-1)
does not belong to Targe?).
Remark 6.8. Any automorphismf = (2 ]':j) of Tameg(C? is of the formf =
(Xl X2+X1P(X1”‘3)). This follows from TheorenA.1, that is, from the existence of

X3 Xa+X3P(X1,X3)
elementary reduction. Indeed, if a non linear automorphise (2 Ij) belongs

to Tamg(C?), by LemmaA.8 it necessarily admits an elementary reduction of the

form (4 224810459 which in turn admits an elementary reduction of the same
form. We can continue until we obtain a linear automorphism this proves the

result.

Note that any automorphisrh = ( {2) in Autg(C%) such thatf, = x; and

f3 = X3 is necessarily of the fornfi = (g ;;3;;’) whereP € C[xq, X3, q]. Indeed,
sincexy f4 — x3fo = q, there exists some polynomiBlin C[x1, Xo, X3, X4] such that
fo = xo+x1Pandfs = x4+ x3P. The Jacobian condition d«gﬁg)i,j = lis equivalent
to 6P = 0, wheres is the locally nilpotent derivation aE[xy, X2, X3, X4] given by
d = X10x, + X30x,. One could easily check that Kér= C[xy, x3, q]. Conversely,

for any elemenP of C[xy, X3, ], it is clear thatf = (Xl X2+X1P) is an element of

X3 Xq+X3P
Autq(C*) whose inverse i$ 71 = (2 200).

If we take P(x1, X3, ) = g, we obtain the famous Anick’s automorphism. Since
f3 actually depends ory, Corollary 1.5 above directly implies that this automor-
phism does not belong to Tame(SL However in restriction to Si.the Anick’s
automorphism coincides with the linear (hence tame) autphism (! ﬁig).

On the other hand there exist automorphisms inq(@ﬁ) whose restriction to
the quadricg = 1 does not coincide with the restriction of any automorphism
in Tame(Sly): see [V13, §5] where it is proved that the following automorphism
is a concrete example:
X1—Xo(X1+ X
Ge %) = (><3+(X1—X41)(X12J£xz)§<i(xl+><4)2 X4+X2(f<1+><4)) :

Observe that for the Anick’s automorphism the degrees ottimeponents are
not the same when considered as element§[a&f, xo, X3, X4] or as elements of
C[SL>]. On the other hand it seems possible that in the case of amaugphism
f= (% ;j) € Tame(Sk), equalities ded; = deg-.. f; always hold for each compo-
nentf;. This is an interesting question, that we have not been aldelve. Let us
formulate it precisely. For any elemepte O(SLy) := C[x1, X2, X3, X4]/{q — 1), set

degp = min{degr, r € p}.
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Note that ded = degp if and only if p = 0 or q does not divide the leading part
p" of p (see V13, §2.5]).

Question 6.9. If pis the component of an element of Tayt®), do we have
degp = degp?

Note that a positive answer to Questi®®would immediatly imply Proposition
4.16 Indeed, iff = (]‘:; ]‘:j) € Kernr, there exists polynomialg; such thatf; =

X + (g - 1)gi. Butif degf; = degf;, we getg; = 0, so thatf, = x; and f = id.
Another natural but probably fiicult question about the morphismis the fol-
lowing:

Question 6.10.1s the magp: Auty(C* — Aut(SLp) surjective?

6.2.3. Infinite transitivity. As a final remark we check that STamegphcts infin-
itely transitively on the quadric Sl.-as a consequence of the resultsAirK*13].

Consider the locally nilpotent derivati@h= x19y, + X3y, of the coordinate ring
O(SLy) = C[x1, X2, X3, X4]/{q — 1). We have Keb = C[x1, X3] and for any element
P of C[x1, X3], we have

expPd) = (& 2TuF ) € STame(Sk).

Therefore, the seV of locally nilpotent derivations on Slwhich are conjugate in
STame(Sk) to such derivations is saturated in the senseA6{*13, Definition
2.1]. Furthermore, one could easily show that STamg(&.generated by. In-
deed, it is clear that any elementary automorphism is therexqtial of an element
of N. We leave as an exercise for the reader to check thatsSidcluded into the
group generated by. Finally, since STame(Sl. contains the group Sl.it acts
transitively on Sk, and we conclude byNFK*13, Theorem 2.2].

ANNEX

In this annex we prove that on both groups TamejSind Tamg(@“) there
exists a good notion of elementary reduction, in the spfriltestakov-Umirbaev
and Kuroda theories. In the case of TamefSthis was done inllV13]. The
purpose of this annex is twofold: We propose a simplifiedivarsf the argument
in the case of Tame(S), and we establish a similar result for the group Ta(tﬁé).

A.1. Main result. In the sequelG denotes either the group Tag€?®) or the
group Tame(Sk), since most of the statements hold without any change ih bot

settings.
Recall that we define thgegreeof a monomial ofC[x1, X, X3, X4] by
L 2110
degx; X, X5, = i, j,k,I)(}gg}) =+ j+ki+2j+Li+2k+], j+k+2l) e N
0112

Then, by using the graded lexicographic ordeidh we define the degree of any
nonzero element af[xy, Xo, X3, X4]: We first compare the sums of the ¢heients
and, in case of a tie, apply the lexicographic order. For gtaymwe have

degf + Xo + X3 + Xa) = (21,1,0), degfux +x3) = (3,3,1,1),
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degxixq = degxeoXz = degq = (2,2, 2, 2).
By convention, we set deg —co, with —co smaller than any element df*. The
leading part of a polynomial

p= " Pkt XX, € Clxa, %, Xa, Xa]
ikl
is denotedp”. Hence, we have
p" = DL Puiki XK,
degx, x,xkx, = degp
Remark thafp" is not in general a monomial. For instance, we ha¥e= q. We
define thedegree of an automorphismf = ({£ ) to be

degf = maxdegf; € N*.
|

We have similar definitions in the case of Tameflwhere the degree arJSL;],
also noted deg, is defined by considering minimum over allasgntatives.
An elementary automorphismis an element o6 of the form

_ X1 Xz+X1P(X1,x3)) -1
e= u()% xa+xaP(x1.x3) ) U

whereu € Vg4, P € C[x4, X3]. We say thatf € G admits anelementary reduction

if there exists an elementary automorphissuch that dego f < degf. We denote

by A the set of elements @& that admit a sequence of elementary reductions to an
element of Q. The main result of this annex is then:

Theorem A.1. Any non-linear element of G admits an elementary reductiuat,
is we have the equality & A.

A.2. Minorations. The following result is a close analogue &rl0, Lemma
3.3(i)] and is taken fromllV13, §3].

Minoration A.2. Let f;, f, € C[SL,] be algebraically independent and letfr f;)
be an element of][ f;, f]. Assume that @, f2) ¢ C[f] and £V ¢ C[f,"]. Then

deg(f2R(f1, f2)) > degfs.

In this subsection we establish the following analogousamgition in the context
of G = Tamg(C*).

Minoration A.3. Let (f1, ) € C[x1, X2, X3, X4]? be part of an automorphism of
C* and let R fy, fo) be an element of[ f1, f»]. Assume that &, ) ¢ C[f,] and
fV ¢ Cl fzw]. Then

deg(sz( fl, fz)) > deg fl.

We say that {1, f) € C[x1, X2, X3, X4]? is part of an automorphism of C#, if
there exists {3, f4) € C[X1, X2, X3, Xa]? such that {y, f,, f3, f4) is an automorphism
of C4.

We follow the proof of MinoratiorA.2 given in [LV13, §3]. The only non-trivial
modification lies in LemmaA.5 below, but for the convenience of the reader we
give the full detail of the arguments.
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A.2.1. Generic degreeGiven fi, f € C[Xq, X2, X3, X4] \ {0}, consider
R= )" R XX} € C[X1, Xg]

a non-zero polynomial in two variables. Generically (on¢befficientsR, j of R),
degR(fy, f2) coincides with gde® where gdeg (standing fayeneric degree is
the weighted degree df X3, X,] defined by

gdegX; = degfi € N,
again with the graded lexicographic order. Namely we have
R(f1, f2) = Ryer(f1, f2) + LDT(fy, f2)

where

Reerl(f. )= Y. Rifif]
gdegXilxi =gdegR

is the leading part oR with respect to the generic degree drldT represents the
Lower (generic) Degree Terms. One has

degLDT(fy, f2) < degRgen(f1, f2) = gdegR = degR(f1, f2)

unless Ben(f1", f2") = 0, in which case the degree falls: de(f;, f2) < gdegR.
Let us focus on the conditidRyer( 1", f2") = 0. Of course this can happen only
if £, andf," are algebraically dependent. Remark that the ideal

| = {S € C[Xl,XZ]; S(f]_w, f2W) = O}

must then be principal, prime and generated by a gdeg-hameogs polynomial.
The only possibility is that = (X* — AX3?) whered € C*, s, degf; = s, degf,
ands;, s, are coprime. To sum up, in the case whér® and f," are algebraically
dependent one has

degR(f1, f2) < gdegR & Rgen(f1”, 2") =0 © Ryene (H) (1)

whereH = Xfl - AXSQ.

A.2.2. Pseudo-Jacobianslf fy, fo, f3, f4 are polynomials inC[xq, X2, X3, X4], We
denote by Jad(, f,, f3, f4) the Jacobian determinant, i.e. the determinant of the

Jacobian 4 4- matrix ‘9—;'1) Then we define thpseudo-Jacobiarof fi, fo, f3 by
the formula

j(f1, f2, f3) 1= Jac@, 1, fo, f3).
Lemma A.4. Assume 4 fp, f3 € C[X1, X2, X3, X4]. Then
degj(fl, f2, f3) < deg fl + deg f2 + degf3 — (2, 2,2, 2).

Proof. An easy computation shows the following inequality:

deg Jacfy, fp, f3, fg) < Z degfi — Z degx = Z degfi — (4,4,4,4).
i i i
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Recalling the definitions of j and deg we obtain:

degj(fi, fo, f3) = degJadq, f1, fo, f3)
<degq+ ) degfi-(4,4,4,4) = ) degf -(2222). O
i i

We shall essentially use those pseudo-Jacobians fwith X1, Xp, X3 OF Xg.
Therefore we introduce the notatiog(:j-) := j(X,-,-) for allk = 1,2,3,4. The
inequality from LemmaA.4 gives

degj(fi, f2) < degf; + degf, + degx — (2, 2,2, 2)
from which we deduce
deg(fi, f2) < degf; + degfy, Yk=1,23,4. (2
We shall also need the following observation.

LemmaA.5. If (fy, f,) is part of an automorphism @f*, then the elementg( 1, f2),
k=1,...,4, are not simultaneously zero, i.max degj(f1, f2) # —co oOr, equiva-
lently,

maxdeg j(fi, f2) € N4,

Proof. Assume that jx, f1, f2)) = 0 for eachk. This means that the elements
g, f1, f» are algebraically dependent. But, sindg () is part of an automorphism
of C4, the ringCJ[ f,, f,] is algebraically closed if[x1, X2, X3, X4] (indeed, there ex-
ists an automorphism of the algeliEpxy, X2, X3, X4] sendingC[ f1, f2] to C[xg, X2]).
Therefore, there exists a polynomRlsuch thaty = R(fy, f;). Let us prove that
this is impossible. Indeed, we may assume thaand f, do not have constant
terms. Letl; andl, be their linear parts. WritR = ¥, ; R ;X'Y). Itis clear that
Roo = 0 (look at the constant term) and tHafo = Ro1 = O (look at the linear
part and use the fact thht, |, are linearly independent). Therefore, looking at the
guadratic part, we get

2 2
q= R2,0|1 + R1’1|1|2 + Ro,z |2.

We get a contradiction since the rank of the quadratic fqrism4 and the rank of
the quadratic form on the right is at most 2. O

A.2.3. The parachute.n this paragraphfg, f2) € C[x1, X2, X3, x4]2 is part of an
automorphism of24, and we setl, := degf, € N*. We define theparachute of
f1, fo to be

V(fy, f)=dp+do— mlzaxdeg k(f1, f2).

By LemmaA.5, we getV(fy, f2) < di + ds.

Lemma A.6. Assum@eg%ﬂ*(fb f,) coincides with the generic degr@eieg%.
2 2

Then
dy - deg<2 R - nV(fy, f2) < degR(fy, f2).
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Proof. As already remarked Jac, j and ngwas well areC-derivations in each of
their entries. We may then apply the chain rule gy} -) evaluated irR(fy, f2):

OoR . .
——(f1, ©2) i (f1, F2) = Ji(f1, R(f1, f2)).
0Xo

Now taking the degree and applying inequalig) (with R(fy, fo) instead offy),
we obtain

deg(%R(fl, ) + deg(f1, 2) < dy + degR(fy, ).
2
We deduce

deg;TR(fl, f2) + dz - (dl + dz - mkaxdeg j((f]_, fz)) < degR( fl, f2)
2

=V(f1,f2)

By induction, for anyn > 1 we have

n
R
degion(fs, )+ ch ~ V(1 1) < degR(f, 7).
2
Now if the integem is as given in the statement one gets:
J"R "R 0"R
dega—xg(fl, fy) = gdega—xg > dp-degy, 8_X2 = d-(degy, R—n) = dp-deg,, R-dyn
which, together with the previous inequality, gives thautes O

Lemma A.7. Let H be the generating relation betweed' fand £" as in the
equivalence ) and let ne N be such that Rn e (H") \ (H™?). Then n fulfills the
assumption of LemnmA.6, i.e.

O"R O"R
6_X2(f1’ f2) = gdeg—+ .

X0
OR _ 9Rgen n n+1
Proof. It suffices to remark thafa%) = S and thatRgen € (H") \ (H™?)

gen

deg

impliesaaign e (H™1) < (HM). One concludes by induction. o
Remark that, by definition af in LemmaA.7 above, we have:
deg,, R > deg, Rgen > N%.
Together with Lemma\.6 and recalling thas,d; = s,dy, this gives:
dins — nV(fy, f2) < degR(f1, f2). (3)
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A.2.4. Proof of MinorationA.3

Letnbe as in Lemma.7. If n = 0, then dedr(f1, f2) = gdegR > degf; by the
assumptiorR(fy, fo) ¢ C[ fo] and then degpR(f1, f2)) > degf, + degf; > degf;
as wanted.

If n> 1 then, by 8),

dis: — V(f1, f2) < degR(fy, f2)
and, sinceV(fy, fp) < dp + db,
thsy — oy — dy < degR(fy, o).
We obtain
di(sy — 1) < degR(fy, f2) + da = deg(f2R(f1, f2)).

The assumptionf;"V ¢ C[f,"] forbids s; to be equal to one, hence we get the
desired minoration. O

A.3. Proof of the main result. In this subsection, we prove Theorefnl. We
need the two following easy lemmas.

Lemma A.8. Letf:(;1 ;z)eG. lfec Ejandeo f = (Il IZ) then
3 14 3 14

degeo f<«degf — degf/<degf; < degf;<degfs
for any relation< amongx, >, <, > and=.

Proof. We havee = (120024 *¢) whereP is non-constant. We first prove the
equivalence fok equal to<. One hasf; f4 — fof3 = g and the polynomiald; are
not linear hence the leading parts must cancel one anotféef;"V — f," f3V = 0. It
follows: degf;+degf, = degf,+degfs. Similarly degf/+degf, = degf,+degf;.
So we obtain
degf;, — degf] = degfz — degf;.
Assume dego f < degf. Thus degf = max(degfy, degfs), hence
max(degf;, degf;) < degeo f < degf = max(degfy, degfz),

which implies ded| < degf; and dedf] < degfs.

Conversely if one of the inequalities dég< degf, or degf; < degfs is satis-
fied then both are satisfied, and this implies fleg degf,P(f,, f4) = degf; and
similarly degfs < degfs. Hence dego f < degf.

We have proved the equivalence foequal to<. Sincef = e 1o (eo f), we also
obtain the equivalence forequal to>. The equivalences for the three remaining
symbols=, <, > follow. O

Lemma A.9. Any element of G can be written under the form
f=€og_10---0g0a,

where the elements are elementary and a belongs @.
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Proof. Observe that any element of $@& a composition of (linear) elementary
automorphisms. Since both STamegBhnd STamg(C*) are generated by SO
and the elementary automorphisms, it follows that any efemigthese two groups
may be written

f=eoe_10---oe,

where the automorphisnes are elementary. The result follows. O

Since the setA obviously contains @ the following proposition joined to
LemmaA.9 directly implies Theoren\.1.

Proposition A.10. If f € A and e is an elementary automorphism, thenfe= A.

In the rest of this section we prove the proposition by inagucond := degf €
N4,

If d=(21,10), thatis iff € Oy, then either dego f = d and agaireo f €
O4 c A, ordegeo f > dandeo f admits an obvious elementary reduction to an
element of Q, by composing by

Now we assume > (2,1,1,0), we setA.q = {g € A; degg < d} and we
assume the following:

Induction Hypothesis. If g € A. 4 and if e is elementary, thenogy € A.

We pick f € A such that ded = d, an elementary automorphisep and we
must prove thago f € A.

If degeo f > degf, this is clear, so we now assume that degf < degf.

Sincef € A, there exists an elementary automorph&rsuch that deg'of < d
and€ o f e A, i.e.€¢ o f € Ag.

List of Cases A.11.Up to conjugacy by an element of,\\ve may assume that:

g = (X1+X2P(X2,X4) Xz)
X3+XaP(x2,Xa) X4

and that one of the three following assertions is satisfied:
(1) ec B} ie.e= (D2s0e7 )2 ) for some polynomialy;

(2) ec B2 i.e.e= (2 2Des0e9)) for some polynomial;
(3) ec E2ie. e = (+eQ0ex) %+uQ0xx) ) for some polynomial.

Indeed, the fourth case whesevould belong tdEs, is conjugate to the third one.

The first two cases are easy to handle.

Case (1)e € EL.
Since€ o f € A.q andeo &1 € E}, the Induction Hypothesis directly shows
us that o € 1) o (¢ o f) = eo f belongs taA.

Case (2)e € EZ.

(f+ 6P T | (1 frf1Q(fofa)
We havee o f = (& Zpig) 2) andeo f = (1 ZIgig))-
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By Lemmal.2 (1), the polynomialP(f,, f4) is non-constant, since otherwise we
would get deg o f = degf. By LemmaA.8, the inequality deg’ o f < degf

is equivalent to ded( + f,P(fo, f4)) < degfy, so that ded; = deg(foP(f2, f4)) >
degf,. But then, degf, + f1Q(f1, f3)) > degf,, so that Lemma&A.8 gives us
degeo f > degf, a contradiction.

Case (3)ee E2

We are in the setting of the following lemma, where Minoratha2-A.3 makes
reference either to MinoratioA.2 whenG = Tame(Sk) or to MinorationA.3
whenG = Tameg(C*).

Lemma A.12. Let f € G, and assume that

/ _ ( fi+T2P(f2.T4) 12 _ ( f1+13Q(fs.4) fo+14Q(f3.14)
¢of=({iipm 1) and eof=(""F R,

with dege’ o f < degf anddegeo f < degf. Then MinorationA.2-A.3does not
apply to either Rf,, f4) or Q(fs, f4).

Proof. If Minoration A.2-A.3 applies to bothP(f,, f4) and Q(fs, f4), we would
obtain the following contradictory sequence of inequediti

degf, < deg(f4P(f2, f4)))  (MinorationA.2-A.3 applied toP);

deg(f4P(fy, f4)) = degfs (deg€ o f < degf);
degfs < deg(f4Q(fs, f4))  (Minoration A.2-A.3 applied toQ);
deg(f2Q(fs, f4)) < degfs (degeo f < degf). O

We conclude the proof of Propositigni10 with the following lemma.

Lemma A.13. If Minoration A.2-A.3does not apply to either(®,, f4) or Q(fs, f4),
i.e. if one of the four following assertions is satisfied

(i) Q(fs, f4) € C[f4]; (ii) 2V € C[4"]; (iii) P (fo, f4) € C[f4]; (iv) 3V € C[f4"],
then eo f € A.

Proof. (i) AssumeQ(fs, f4) = Q(f4) € C[f4).

Since€ o f € A.q ande is elementary, the Induction Hypothesis gives us
eo€ofeA.

Note thate o &% o e7! belongs toEL. Therefore, it is enough to show that
eo€ o f € A.y. Indeed, a new implication of the induction hypothesis wién
prove that éo € toe ™) o(eo€ o f) = eo f belongs taA.

However, we have degp f < degf, so that by applying two times Lemn4a8,
we successively get defa(+ f4Q(f4)) < degf, and then dego € o f < dege o f.
Since de@ o f < degf, we are done.

(i) Assumef," € C[ f4"].

Then there existQ(fs) € C[f4] such that degl + f2Q(f4)) < degf,. We take
& = (amgQ0) 2400 ), and we haves f € A by case (). Thugs f € Aq.
Sinceeo &1 € E'?, the Induction Hypothesis shows us that &) o (8o f) = eo f
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belongs taA.

(iii) AssumeP(f,, f4) = P(f4) € C[f4].

Note thate’ o e o &1 belongs toE!2. By the Induction Hypothesis, we get
(€oeoe™)o(¢of)=¢€oeofeA. Ifwecanprove deg oeo f < degf then
we can use the Induction Hypothesis again to obtainghas(e/ oeof) = eof € A.

We argue as in case (i). We have @&tg f < degf, so that by applying
two times LemmaA.8, we successively get defy(+ f4P(f4)) < degfs and then
dege oeo f < degeo f. Since dego f < degf, we are done.

(iv) Finally assumefs" e C[f,"]. N

There existdP(f4) € C[f4] such that dedls + f4P(f4)) < degfs. We takee =
(2:22% Z) and we have s f € A by the easy first case of List of Caskd 1.
Thus€o f € A.y. Therefore, we may replac by é and then we conclude by
case (iii). O
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