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Abstract. We study the algebraic structure of the n-dimensional Cremona
group and show that it is not an algebraic group of infinite dimension (ind-
group) if n ≥ 2. We describe the obstruction to this, which is of a topological
nature.

By contrast, we show the existence of a Euclidean topology on the Cremona
group which extends that of its classical subgroups and makes it a topological
group.

1. Introduction

In [Sha66, §3], I.R. Shafarevich asked: "Can one introduce a universal structure
of an infinite-dimensional group in the group of all automorphisms (resp. all bira-
tional automorphisms) of arbitrary algebraic variety?"

In an open problem session held at the international congress (see [Mum74]),
D. Mumford suggested: "Let G = AutCC(x0, x1) be the Cremona group [. . . ]. The
problem is to topologize G and associate to it a Lie algebra consisting, roughly,
of those meromorphic vector fields D on P2(C) which "integrate" into an analytic
family of Cremona transformations".

In 2010, in the question session of the workshop "Subgroups of the Cremona
group" in Edinburgh, J.-P. Serre asked the following question (see also the intro-
duction of [Fav10]) "Is it possible to introduce such topology on Cr2(C) that is
compatible with PGL(3,C) and PGL(2,C)× PGL(2,C)?"

Let k be a fixed field, and n a positive integer. The n-dimensional Cremona
group over k, written Crn(k), is the group of all birational transformations of the
space of dimension n over k (affine or projective). Algebraically, it corresponds to
the group of k-automorphisms of the field k(x1, . . . , xn). We are interested in the
possible structures one can put on it. For instance, is Crn(k) an algebraic group
(of infinite dimension) or a topological group?

In the algebraic geometric setting, we would like to see Crn(k) as an algebraic
group of infinite dimension. We will show that this is not possible when n ≥ 2, and
shall describe the obstructions to this. For any algebraic variety A defined over k,
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there is a natural notion of families of elements of Crn(k) parametrised by A, or
equivalently of elements of Crn(A), which we will recall (Definition 2.1). These are
maps A(k)→ Crn(k) compatible with the structures of algebraic varieties.

When n = 1, Crn(k) is isomorphic to the algebraic group PGL(2, k), and families
A→ Cr1(k) correspond to morphisms of algebraic varieties.

For n ≥ 2, the situation is different. Denoting by Crn(k)d ⊆ Crn(k) the set of
birational maps of degree d (i.e. maps f : Pnk 99K Pnk of degree d), one can verify that
Crn(k)d has the structure of an algebraic variety defined over k, such that families
A → Crn(k)d correspond to morphisms of algebraic varieties (Proposition 2.15).
One can thus decompose Crn(k) into a disjoint (infinite) union of algebraic va-
rieties, having unbounded dimension. However, the structure of Crn(k) is more
complicated; putting on Crn(k) the topology induced by all families, the group is
connected [Bla10].

What we could expect, is to have a structure of algebraic variety of infinite
dimension (ind-algebraic variety) on Crn(k), so that families A → Crn(k) would
correspond to morphisms of algebraic varieties. We will show that this is not the
case:

Theorem 1. For any n ≥ 2, there is no structure of algebraic variety of infinite
dimension on Crn(k), such that families A → Crn(k) correspond to morphisms of
algebraic varieties.

The same result holds if we replace varieties by schemes, algebraic spaces or
stacks. In fact, the problem does not arise because of high dimension; we will see
that the set Crn(k)≤d of maps of degree ≤ d is not an algebraic variety (neither an
algebraic space nor a stack), when d, n ≥ 2 (Proposition 3.4), even if the Crn(k)i are
algebraic varieties for i = 1, . . . , d. The bad structure comes from the degeneration
of maps of degree d into maps of smaller degree.

We can even show that the obstruction comes only from the topology:

Theorem 2. If k is algebraically closed, there is no k-algebraic variety of infinite
dimension which is homeomorphic to Crn(k).

The problem is, roughly speaking, that any point ϕ ∈ Crn(k) is contained in
a closed subset F of dimension 2, such that all curves of F pass through ϕ. See
Section 4 for more details on the topological obstruction.

The question of J.-P. Serre, is whether Cr2(C) is a topological group, with a
"natural topology", i.e. with a topology which induces on Aut(P2) = PGL(3,C)
and Aut(P1 × P1)0 = PGL(2,C) × PGL(2,C) the Euclidean topology.1 We will
give a positive answer to this question, after constructing in Section 5 a "Euclidean
topology" on Crn(k), for any local field k:

Theorem 3. For any n ≥ 1, and any (locally compact) local field k, there is a
natural topology on Crn(k), called the Euclidean topology, which makes it a Haus-
dorff topological group, and whose restriction to algebraic subgroups (in particular to
Aut(Pn) = PGL(n+1, k) and Aut((P1)n)0 = PGL(2, k)n) is the classical Euclidean
topology.

1Of course, here it cannot be the Zariski topology, since PGL(3,C) and PGL(2,C) are not
topological groups when endowed with it.



TOPOLOGIES AND STRUCTURES OF THE CREMONA GROUPS 3

The authors thank Michel Brion, Hanspeter Kraft and Immanuel Stampfli for
interesting discussions during the preparation of this article.

2. The algebraic structure and Zariski topology of Crn(k)

2.1. Definition of the topology via families and morphisms. In this section,
all our varieties will be algebraic varieties defined over some fixed algebraically
closed field k. In fact, all constructions made here are field-independent, and the
generalisation to arbitrary fields can be carried out in the usual way. The topology
on the varieties will only be the Zariski topology.

We recall the notion of families of birational maps, introduced by M. Demazure
in [Dem70] (see also [Ser10], [Bla10]).

Definition 2.1. Let A,X be irreducible algebraic varieties, and let f be a A-
birational map of the A-variety A × X, inducing an isomorphism U → V , where
U, V are open subsets of A×X, whose projections on A are surjective.

The rational map f is given by (a, x) 99K (a, p2(f(a, x))), where p2 is the second
projection, and for each k-point a ∈ A, the birational map x 99K p2(f(a, x)) cor-
responds to an element fa ∈ Bir(X). The map a 7→ fa represents a map from A
(more precisely from the A(k)-points of A) to Bir(X), and will be called a morphism
from A to Bir(X).

These notions yield the natural Zariski topology on Bir(X), introduced by M. De-
mazure [Dem70] and J.-P. Serre [Ser10]:

Definition 2.2. A subset F ⊆ Bir(X) is closed in the Zariski topology if for any
algebraic variety A and any morphism A→ Bir(X) the preimage of F is closed.

Moreover, any birational map X 99K Y yields a homeomorphism between Bir(X)
and Bir(Y ), and we can make the following observations:

(1) For any ϕ ∈ Bir(X) the maps Bir(X) → Bir(X) given by ψ 7→ ψ ◦ ϕ,
ψ 7→ ϕ ◦ ψ and ψ 7→ ψ−1 are homeomorphisms.

(2) It is equivalent to work with Bir(Ank) or Bir(Pnk); we obtain thus the Zariski
topology on the Cremona group Crn(k) = Bir(Ank).

The remainder of this section consists of a description of the topology of Crn(k)
and its algebraic structure.

2.2. Bounded degree subsets. Recall that a birational transformation f of Pn =
Pnk is given by

h : (x0 : · · · : xn) 99K (h0(x0, . . . , xn) : · · · : hn(x0, . . . , xn)),

where the hi are homogeneous polynomials of the same degree. Choosing the hi
without common component, the degree of h is the degree of the hi.

We denote by Bir(Pn)≤d (respectively Bir(Pn)d) the set of elements of Bir(Pn)
of degree ≤ d (respectively of degree d), and have an increasing sequence

Aut(Pn) = Bir(Pn)≤1 ⊆ Bir(Pn)≤2 ⊆ Bir(Pn)≤3 ⊆ . . .
whose union gives the group Bir(Pn). As we will see, each Bir(Pn)≤d is closed
in Bir(Pn) and the topology of Bir(Pn) is the inductive topology induced by the
above sequence. It then suffices to describe the topology of Bir(Pn)≤d in order to
understand the topology of Bir(Pn).
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Definition 2.3. Let d be a positive integer.
(1) We define Wd to be the set of equivalence classes of non-zero (n+ 1)-uples

(h0, . . . , hn) of homogeneous polynomials hi ∈ k[x0, . . . , xn] of degree d,
where (h0, . . . , hn) is equivalent to (λh0, . . . , λhn) for any λ ∈ k∗. The
equivalence class of (h0, . . . , hn) will be denoted by (h0 : · · · : hn).

(2) We define Hd ⊆ Wd to be the set of elements h = (h0 : · · · : hn) ∈ Wd

such that the rational map ψh : Pn 99K Pn given by (x0 : · · · : xn) 99K
(h0(x0, . . . , xn) : · · · : hn(x0, . . . , xn)) is birational. We denote by πd the
map Hd → Bir(Pnk) which sends h onto ψh.

Lemma 2.4. Let Wd, Hd be as in Definition 2.3. Then, the following holds:

(1) The set Wd is isomorphic to Pr, where r = (n+ 1) ·
(
d+ n
d

)
− 1.

(2) The set Hd is locally closed in Wd, and thus inherits from Wd the structure
of an algebraic variety.

(3) The map πd : Hd → Bir(Pn) is a morphism (in the sense of Definition 2.1).
Its image is the set Bir(Pn)≤d of birational transformations of degree ≤ d.

(4) For any ϕ ∈ Bir(Pn)≤d, the set (πd)
−1(ϕ) is closed in Wd (hence in Hd).

(5) If F ⊆ Hm (m ≥ 1) is closed, then (πd)
−1(πm(F )) is closed in Hd.

Proof. Assertion (1) follows from the fact that the set of homogeneous polynomials

of degree d in n+ 1 variables is equal to a k-vector space of dimension
(
d+ n
d

)
.

(2) We denote by Y ⊆Wdn−1×Wd the set consisting of elements (g, f), such that
h := (g0(f0, . . . , fn), . . . , gn(f0, . . . , fn)) is a multiple (maybe 0) of the identity, i.e.
hixj = hjxi for all i, j. This set of equalities yields the existence of a homogeneous
polynomial a of degree dn − 1 such that hi = axi for each i. If a is non-zero, then
ψf and ψg are birational, and inverses of each other. If a is zero, then ψf contracts
the entire set Pn onto a strict subvariety, which is included in the set where gi = 0
for each i. In particular, for any (g, f) ∈ Y , the element ψf is birational if and only
if its Jacobian is not zero (the Jacobian is the determinant of the matrix obtained
from the partial derivatives of the components of f).

Since the inverse of every birational map of Pn of degree d has degree ≤ dn−1

([BCW82, Theorem 1.5, page 292]), any element f ∈ Hd corresponds to (at least)
one pair (g, f) in Y .

The description of Y shows that it is closed in Wdn−1 ×Wd. Since Wdn−1 is a
complete variety, the projection p2 : Wdn−1×Wd →Wd is a Zariski-closed morphism,
so p2(Y ) is closed in Wd. Denote by U ⊆ Wd the open set of elements having a
non-zero Jacobian. By construction, we have Hd = U ∩ p2(Y ). This implies that
Hd is locally closed in Wd (and that it is closed in U).

(3) Let f : Hd × Pn 99K Hd × Pn be the Hd-rational map given by

(h, x) 99K (h, h(x)).

Denote by J the polynomial which is the determinant of the matrix (∂hi/∂xj)
n
i,j=0,

and let V ⊆ Hd × Pn be the open set where J is not zero. We claim that the
restriction of f to V is an open immersion, which will show that πd : Hd → Bir(Pn)
is a morphism. To prove this claim, we need to see that f is radicial (i.e. universally
injective) and étale [Gro67, Théorème 17.9.1, page 79]. For any extension K of k,
and any point h ∈ Hd(K), there exists h′ ∈ Hm(K) without common factors such
that the composition h′ ◦ h is (x0R : · · · : xnR) for some non-zero polynomial R.
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The hypersurface R = 0 is contracted by h onto the set of base-points of h′, with
codimension ≥ 2, so R can be expressed as a product of some factors of the Jacobian
of h. This shows that the extension of f to K restricts to an open immersion on
V (K) ∩ ({h} × Pn). In particular, f is radicial. The fact that the projection
Hd × Pn → Hd is smooth and that the derivative with respect to x is injective at
any point of V implies that f is étale on V [Gro67, Corollaire 17.11.2, page 84].
This completes the proof of the claim. It then follows from the construction of Hd

that the image of πd is the set of birational transformations of degree ≤ d.
(4) Let ϕ be an element of Bir(Pn)≤d. It corresponds to a birational map

ψh : Pn 99K Pn given by (x0 : · · · : xn) 99K (h0(x0, . . . , xn) : · · · : hn(x0, . . . , xn)),
for some homogeneous polynomials of degree k ≤ d, having no common divisor.

We observe that (πd)
−1(ϕ) ⊆ Hd is the set of elements (g0 : · · · : gn) of Wd

satisfying gihj = higj for all i, j. This set is therefore closed in Wd, and hence in
Hd.

(5) For any positive integer m and any closed subset F ⊆ Hm, we denote by
YF the subset of Y × F (where Y ⊆ Wdn−1 ×Wd is as above and F is the closure
of F in Wm) consisting of elements ((g, f), h) where f = (f0 : · · · : fn) and h =
(h0 : · · · : hn) yield the same map Pn 99K Pn. This corresponds to saying that
fihj = fjhi for all i, j, hence YF is closed in Y ×F , and also in Wdn−1 ×Wd×Wm.
Let p2 : Wdn−1 ×Wd ×Wm → Wd be the second projection. The subset p2(YF ) of
Wd is closed in Wd and also in p2(Y ). Intersecting with U , we see that p2(YF )∩U
is closed in p2(Y )∩U = Hd. By construction, p2(YF )∩U = (πd)

−1(πm(F )), which
is thus closed in Hd. �

Remark 2.5. Lemma 2.4 shows that Wd, Hd are naturally algebraic varieties. We
will show that the same holds for the set Bir(Pn)d of birational transformations
of degree d, but not for Bir(Pn)≤d which cannot be viewed as an algebraic variety
for d, n ≥ 2. However, the topology of Bir(Pn)≤d is given by the map πd : Hd →
Bir(Pn)≤d, in the sense that πd is a topological quotient map.

2.3. Liftings of morphisms from Bir(Pn) to the Hd and description of the
Zariski topology. The following technical lemma will be used to deduce three
corollaries that describe the topology of Bir(Pn).

Lemma 2.6. Let A be an irreducible algebraic variety and ρ : A → Bir(Pn) be a
morphism. There exists an open affine covering (Ai)i∈I of A such that for each i,
there exists an integer di and a morphism ρi : Ai → Hdi such that the restriction
of ρ to Ai is equal to πdi ◦ ρi.

Proof. Let τ : A → Bir(Pn) be a morphism given by a A-birational map f : A ×
Pn 99K A×Pn, which restricts to an open immersion on an open set U . Let a0 ∈ A
be some given point and let A0 ⊆ A be an open affine set containing a0. We also
fix an element w0 = (a0, y) ∈ U , and fix homogeneous coordinates (x0 : · · · : xn)
on Pn such that y = (1 : 0 : · · · : 0) and that f(w0) does not belong to the plane
x0 = 0. We then denote by An ⊆ Pn the affine set where x0 = 1, which has
natural affine coordinates z1 = x1

x0
, . . . , zn = xn

x0
. In these coordinates, f restricts

to a rational map A0 × An 99K An which is defined at w0. Its composition with
the projection on the i-th coordinate is a rational function on A0 × An, which is
defined at w0. We obtain that f |A0×An can be written, in a neighbourhood of w0,
as (a, (z1, . . . , zn)) 7→

(
P1

Q1
, . . . , Pn

Qn

)
for some Pi, Qi ∈ k[A0][z1, . . . , zn] such that
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none of the Qi vanish at w0. Homogenising the description, we see that f is given,
in a neighbourhood of w0, by

(a, (x0 : · · · : xn)) 7→ (h0 : · · · : hn)

where the hi ∈ k[A0][x0, . . . , xn] are homogeneous polynomials in x0, . . . , xn of the
same degree d0, such that not all vanish at w0. Let U0 be the set of points of
(A0 × Pn) ∩ U where at least one of the hi does not vanish. It is an open subset
of A × Pn. Its projection p1(U0) on A is an open subset of A0 containing a0.
Therefore, there exists an affine open subset Ã0 ⊆ p1(U0) containing a0. The n-
uple (h0, . . . , hn) gives rise to a morphism ρ0 : Ã0 → Hd. By construction, the
restriction of ρ to Ã0 is equal to πd ◦ ρ0. Repeating the process for each point of A,
we obtain an open affine covering. �

Corollary 2.7. A set F ⊆ Bir(Pn) is closed if and only if (πd)
−1(F ) is closed in

Hd for any d ≥ 1.

Proof. By definition, F is closed in Bir(Pn) if and only if its preimage by any
morphism is closed. Because each πd is a morphism, we see that (πd)

−1(F ) is
closed in Hd if F is closed in Bir(Pn).

Suppose now that (πd)
−1(F ) is closed in Hd for each d, and let us prove that

F ⊆ Bir(Pn) is closed. We let ρ : A→ Bir(Pn) be a morphism. We apply Lemma 2.6
and obtain an open affine covering (Ai)i∈I of A such that for each i, there exist an
integer di and a morphism ρi : Ai → Hdi such that the restriction of ρ to Ai is equal
to πdi ◦ ρi. Since π−1di (F ) is closed and ρ−1(F ) ∩Ai is equal to (ρi)

−1(π−1di (F )), we
obtain that ρ−1(F ) ∩ Ai is closed in Ai for each i. Consequently, ρ−1(F ) is closed
in A, as required. �

Corollary 2.8. For any d, the set Bir(Pn)≤d of birational transformations of degree
≤ d is closed in Bir(Pn).

Proof. By Corollary 2.7, it suffices to see that (πm)−1(Bir(Pn)≤d) = (πm)−1(πd(Hd))
is closed in Hm for any m. This follows from Lemma 2.4. �

Corollary 2.9. For any d, the map πd : Hd → Bir(Pn)≤d is surjective, continuous
and closed. In particular, it is a topological quotient map.

Proof. The surjectivity follows from the construction ofHd and πd (see Lemma 2.4).
The continuity of πd follows from the fact that it is a morphism in the sense of
Definition 2.1 (Lemma 2.4). Let F ⊆ Hd be closed. By Lemma 2.4, (πm)−1(πd(F ))
is closed in Hm for any m, so πd(F ) is closed in Bir(Pn) (Corollary 2.7). �

Proposition 2.10. The topology of Bir(Pn) is the inductive limit topology given
by the Zariski topologies of Bir(Pn)≤d, d ∈ N, which are the quotient topology of
πd : Hd → Bir(Pn)≤d, where Hd is endowed with its Zariski topology.

Proof. This follows from Corollaries 2.7 and 2.9. �

2.4. More about the liftings. Let us show that the liftings to Hd do not behave
as simply as they might seem to.

Example 2.11. Let C ⊆ P2 be the nodal cubic given by abc = a3 + b3, where
(a : b : c) are homogeneous coordinates on P2 and let ρ3 : C → H3 be given by

(a : b : c) 7→ (x0R : x1S : x2R : · · · : xnR),
R = ax22 + cx0x2 + bx20, S = ax22 + (b+ c)x0x2 + (a+ b)x20.
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Lemma 2.12. The morphism ρ3 of Example 2.11 has the following properties:
(1) The morphism ρ = π3 ◦ ρ3 : C → Bir(Pn) satisfies ρ(C) ⊆ Bir(Pn)≤2.
(2) There is no morphism ρ2 : C → H2 such that π2 ◦ ρ2 = ρ.

Proof. The image of (0 : 0 : 1) ∈ C under ρ3 is equal to (x0(x0x2) : x1(x0x2) : · · · :
xn(x0x2)) ∈W3, which corresponds to the identity.

On the open subset C\{(0 : 0 : 1)} of C, neither a nor b is zero, so the restriction
of ρ3 to C\{(0 : 0 : 1)} corresponds to

(a : b : c) 7→ (x0R
′ : x1S

′ : x2R
′ : · · · : xnR′),

R′ = abR = a2bx22 + abcx0x2 + ab2x20,
S′ = abS = a2bx22 + (ab2 + abc)x0x2 + ab(a+ b)x20.

We now observe that R′ = a2bx22 +(a3 +b3)x0x2 +ab2x20 = (a2x2 +b2x0)(bx2 +ax0)
and S′ = a2bx22 +(a3 +b3 +ab2)x0x2 +ab(a+b)x20 = (a2x2 +b(a+b)x0)(bx2 +ax0).

This shows that π3(ρ3(a : b : c)) has degree 2 for any (a : b : c) ∈ C\{(0 : 0 : 1)}.
We have thus proved (1). To prove (2), assume the existence of a morphism

ρ2 : C → H2 such that π2 ◦ ρ2 = ρ. Since π2 is bijective on (π2)−1(Bir(Pn)2) and
ρ(C\{(0 : 0 : 1)}) ⊆ Bir(Pn)2, the restriction of ρ2 to C\{(0 : 0 : 1)} is given by

(a : b : c) 7→ (x0R
′′ : x1S

′′ : x2R
′′ : · · · : xnR′′),

R′′ = a2x2 + b2x0, S′′ = a2x2 + b(a+ b)x0.

It remains to see that this morphism does not extend to C. Let ϕ : P1 → C be the
birational morphism which sends (u : v) onto (u2v : uv2 : u3 + v3). The hypothetic
morphism ρ2 ◦ ϕ : P1 → H2 sends (u : v) onto

(x0(u2x2 + v2x0) : x1(u2x2 + v(u+ v)x0) : x2(u2x2 + v2x0) : · · · : xn(u2x2 + v2x0)).

In particular, the points ρ2ϕ((1 : 0)) and ρ2ϕ((0 : 1)) are distinct, which is impos-
sible, since ϕ((1 : 0)) = ϕ((0 : 1)). �

2.5. Universal property with fixed degree. Example 2.11 provides a morphism
from an algebraic variety to Bir(Pn)≤2 which does not lift to H2. This phenomenon
occurs because of the degeneration of elements of Bir(P2)2 to elements of Bir(P2)1.
The situation is better if the degree is fixed.

Lemma 2.13. Let d1, d2 be integers with 1 ≤ d1 ≤ d2. The set

Hd1,d2 = (πd2)−1(Bir(Pn)d1)

is locally closed in Hd2 , and isomorphic to Hd1,d1 × P(k[x0, . . . , xn]d2−d1), where
k[x0, . . . , xn]d2−d1 denotes the k-vector space of homogeneous polynomials of degree
d2 − d1 in x0, . . . , xn. Moreover, the projection

ρd1,d2 : Hd1,d2 → Hd1,d1 ⊆ Hd1

is such that πd1 ◦ ρd1,d2 and πd2 coincide on Hd1,d2 .

Proof. By Corollary 2.8, (πd2)−1(Bir(Pn)≤d1) and (πd2)−1(Bir(Pn)≤d1−1) are closed
in Hd2 . This implies that Hd1,d2 is locally closed in Hd2 and thus inherits from Hd2

a structure of algebraic variety. We have a natural bijective morphism

τ : Hd1,d1 × P(k[x0, . . . , xn]d2−d1) → Hd1,d2

((f0 : · · · : fn), h) → (f0h : · · · : fnh),

which is the restriction of a morphism
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τ̂ : Wd1 × P(k[x0, . . . , xn]d2−d1) → Wd2

((f0 : · · · : fn), h) → (f0h : · · · : fnh).

Denoting by Ud1 ⊆ Wd1 the open subset given by the elements (f0 : · · · : fn)
such that the fi have no common factor, it suffices to see that τ̂ restricts to an
isomorphism of V = Ud1 × P(k[x0, . . . , xn]d2−d1) with its image in order to prove
the result.

The morphism τ̂ is proper, since it is projective. Since V = τ̂−1(τ̂(V )), the
restrictions of τ̂ gives a proper morphism V → τ̂(V ). It can be checked with
differentials that it is unramified; it is moreover clearly universally bijective. Hence,
it is an isomorphism. �

Corollary 2.14. Let A be an irreducible algebraic variety and ρ : A→ Bir(Pn) be a
morphism, whose image is contained in Bir(Pn)d for some d. There exists a unique
morphism ρ̃ : A→ Hd such that ρ = πd ◦ ρ̃.

Proof. Lemma 2.6 yields an open affine covering (Ai)i∈I of A with the property that
for each i, there exist an integer di and a morphism ρi : Ai → Hdi such that the
restriction of ρ to Ai is equal to πdi◦ρi. Since ρ(A) is contained in Bir(Pn)d, we have
di ≥ d for each i and the image of ρi is contained in Hd,di = (πdi)

−1(Bir(Pn)d). We
can thus replace ρi by ρd,di ◦ ρi, where ρd,di : Hd,di → Hd,d is given in Lemma 2.13.

After this replacement, each di is equal to d. Because πd restricts to a bijection
Hd,d → Bir(Pn)d, the maps ρi and ρj coincide on Ai ∩Aj . In particular, they yield
a morphism ρ̃ : A→ Hd such that ρ = πd ◦ ρ̃. Its uniqueness also follows from the
fact that πd restricts to a bijection Hd,d → Bir(Pn)d. �

This yields the following result, also proved in [Ngu09, §3.4] (by other methods).

Proposition 2.15. Let d ≥ 1 be an integer. The following hold:
(1) The map πd : Hd → Bir(Pn)≤d restricts to a bijection

Hd,d = (πd)
−1(Bir(Pn)d)→ Bir(Pn)d,

where Hd,d is open in Hd, and is thus an algebraic variety.
(2) Let A be an irreducible algebraic variety. The morphisms A → Bir(Pn)

whose image is in Bir(Pn)d correspond, via πd, to the morphisms of alge-
braic varieties A → Hd,d. (This again shows that πd restricts to a homeo-
morphism Hd,d → Bir(Pn)d.)

Proof. (1) Since (πd)
−1(Bir(Pn)≤d−1) is closed in Hd, (πd)

−1(Bir(Pn)d) is open in
Hd and is thus an algebraic variety.

(2) If ρ : A→ Hd,d is a morphism of algebraic varieties, then πd ◦ρ is a morphism
A→ Bir(Pn) in the sense of Definition 2.1, having its image in Bir(Pn)d.

Conversely, let ρ : A→ Bir(Pn) be a morphism having its image in Bir(Pn)d. It
corresponds to a unique map ρ̃ : A → Hd,d such that ρ = πd ◦ ρ̃. Corollary 2.14
implies that ρ̃ is a morphism of algebraic varieties. �

Remark 2.16. One can see that Bir(P2
C)d is irreducible if and only if d ≤ 3 and

is connected when d ≤ 6 ([CD08], [Ngu09], [BCM12]); the connectedness is open
for large d ≥ 7. The variety Bir(P3

C)2 has three irreducible components [PRV01,
Proposition 2.4.1], but is connected. The structure of Bir(PnC)d for d, n ≥ 3 is far
from being understood.
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Note that the identity is in the closure of Bir(Pn)d for any d [Bla10, Lemma 3.3],
so Bir(Pn)2 = Bir(Pn)≤2. For large d, Bir(Pn)d ( Bir(Pn)≤d seems more plausible.

2.6. Algebraic subgroups.

Proposition 2.17. Let G ⊆ Bir(Pn) be a subgroup, which is closed and connected
for the Zariski topology, and with G ⊆ Bir(Pn)≤d for some finite degree d.

Choosing d minimal, the set (πd)
−1(G ∩ Bir(Pn)d) is non empty. Let K denote

its closure in Hd. It has the following properties:

(1) πd induces a homeomorphism K → G (for the Zariski topology);
(2) Let A be an irreducible algebraic variety. The morphisms A→ Bir(Pn) (in

the sense of Definition 2.1) having image in G correspond, via πd, to the
morphisms of algebraic varieties A→ K;

(3) The liftings to K of the product map G×G→ G, (f, g) 7→ f ◦ g and of the
inverse map G→ G, f 7→ f−1 give rise to morphisms of algebraic varieties
K ×K → K and K → K.

This gives G a unique structure of algebraic group.

Proof. Since G is closed in Bir(Pn)≤d, its pull-back (πd)
−1(G) is closed in Hd and

thus has a finite number of irreducible components I1, . . . , Ir. By Corollary 2.9, the
sets πd(I1), . . . , πd(Ir) are closed and irreducible and they cover G. Keeping only
the maximal ones, we obtain the irreducible components of G, which we now call
Z1, . . . , Zm.

For i = 1, . . . ,m, we set Ai = {g ∈ G | gZ1 = Zi}, which is equal to {g ∈
G | gZ1 ⊆ Zi} =

⋂
h∈Z1

Zih
−1 and is thus closed in G. Since G is the disjoint

union of all Ai, each Ai is also open. There is thus an i with Ai = G, which implies
that GZ1 = Zi. Since GZ1 = G, we get m = 1 and see that G is irreducible.

Since G is irreducible, the open subset Gd = Bir(Pn)d ∩ G is irreducible, and
dense in G. Writing Kd = (πd)

−1(G) ∩Hd,d = (πd)
−1(Gd), the map πd induces a

homeomorphism Kd → Hd (Proposition 2.15), hence Kd is irreducible. Its closure
K = Kd is contained in the closed set (πd)

−1(G), hence satisfies πd(K) ⊆ G.
Furthermore, on the one hand, πd(K) is closed (by Corollary 2.9) and on the other
hand πd(K) contains the dense open set Gd of G. Therefore, πd(K) = G.

Let us fix some element f ∈ K and consider the map K → Hd2 , g 7→ g ◦ f . We
claim that there exists p ∈ k[x0, . . . , xn]d2−d, a homogeneous polynomial of degree
d2−d which divides each component of each g◦f , g ∈ K. Indeed, for any g ∈ K, the
transformation πd2(g ◦ f) belongs to G, so has degree ≤ d. If this degree is exactly
d, there exist pg ∈ k[x0, . . . , xn]d2−d, hg ∈ Hd such that g ◦ f = pghg. Supposing
that πd(g) has degree d, the hypersurface pg = 0 is contracted by f onto the base-
points of g, so pg is a product of some factors of Jac f (the Jacobian determinant of
f). This gives, up to multiplicative constants, finitely many polynomials of degree
d2−d, which we denote by p1, . . . , ps. For i = 1, . . . , s, letWi be the set of elements
g ∈ K such that pi divides each component of g ◦ f . Each Wi is closed in K, and
W1∪ . . .∪Ws contains the open subset of elements g such that πd(g) and πd2(g ◦f)
have degree d. Since K = Kd is irreducible, we get K = Wi for some i and our
claim is proved.

Consequently, there exists a morphism µf : K → (πd)
−1(G) ⊆ Hd such that for

each g ∈ K, g ◦f = p µf (g). Since U = (µf )−1(Kd) = (µf )−1(Hd,d) is a dense open
subset of K, we obtain µf (K) = µf (U) ⊆ µf (U) ⊆ K.
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Since πd(K) = G, there exists g ∈ K such that πd2(f ◦ g) = πd2(g ◦ f) = idPn .
As a consequence, the morphisms mg ◦mf and mf ◦mg : K → K coincide with the
identity morphism on Kd, which is dense in K, so they are equal to the identity on
K. This shows that mf : K → K is an isomorphism.

We are now ready to prove (1). Let us prove that if πd(g) = πd(h) for some
g, h ∈ K, then g = h. Choose f ∈ K such πd(g) ◦ πd(f) ∈ Gd. Since πd(mf (g)) =
πd(mf (h)) ∈ Gd, this implies that mf (g) = mf (h), whence g = h. We know that
πd induces a bijective morphism K → G. By Corollary 2.9 this map is closed, so it
is a homeomorphism.

(2) If ρ : A→ K is a morphism of algebraic varieties, then πd ◦ ρ is a morphism
A→ Bir(Pn) having its image in G. Conversely, let ϕ : A→ Bir(Pn) be a morphism
having its image in G. It corresponds to a unique map ρ : A → K such that
ϕ = πd ◦ ρ. By Proposition 2.15, ρ is a morphism of algebraic varieties on the
open set ϕ−1(Gd). For any f ∈ K, we compose ρ and ϕ with mf and the right-
multiplication by πd(f), and use Proposition 2.15 to see that ρ is a morphism on
ρ−1((mf )−1(Kd)). Since the open sets (mf )−1(Kd) cover K, ρ is a morphism from
A to K.

(3) Since the map πd : K → Bir(Pn) is a morphism in the sense of Definition 2.1,
so also is I ◦πd : K → Bir(Pn), where I : Bir(Pn)→ Bir(Pn) is the map which sends
an element on its inverse. By (2), the morphism I ◦ πd : K → G corresponds to
a morphism of algebraic varieties K → K, which is the inverse map of the group
structure. In the same way, the composition of the morphism (of algebraic varieties)
K ×K → Hd2 , (f, g) 7→ f ◦ g and of the morphism (in the sense of Definition 2.1)
πd2 : Hd2 → Bir(Pn) (see Lemma 2.4) gives a morphism K ×K → Bir(Pn) having
image in G. By (2), we obtain a morphism K ×K → K which is the product map
of the group structure. �

Corollary 2.18. Let G ⊆ Bir(Pn) be a subgroup, closed for the Zariski topology and
of bounded degree. There exist an algebraic group K, together with a morphism K →
Bir(Pn) inducing a homeomorphism π : K → G, which is a group homomorphism,
and such that for any irreducible algebraic variety A, the morphisms A→ Bir(Pn)
(in the sense of Definition 2.1) having their image in G correspond, via π, to the
morphisms of algebraic varieties A→ K.

Proof. The fact thatG has a finite number of irreducible components can be checked
in the same way as at the beginning of the proof of Proposition 2.17. As for
algebraic groups, one can successively establish the following points: (1) exactly
one irreducible component of G passes through id; (2) this irreducible component
is a (closed) normal subgroup of finite index in G, whose cosets are the connected
as well as irreducible components of G (see [Hum81, §7.3]). The result then follows
from the connected case, treated in Proposition 2.17. �

Lemma 2.19. Let A be an algebraic group, and let ρ : A→ Bir(Pn) be a morphism
(in the sense of Definition 2.1), which is also a group homomorphism. Then, the
image G of A is a closed subgroup of Bir(Pn), which has bounded degree. Denoting
by π : K → G the homeomorphism constructed in Corollary 2.18, there is a unique
morphism of algebraic groups ρ̃ : A→ K such that ρ = π ◦ ρ̃.
Proof. By Lemma 2.6, the image G = ρ(A) is of bounded degree. Denote by G
its closure, and observe that it is a subgroup of Bir(Pn) (see the proof of [Hum81,
Proposition A, page 54]).
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By Corollary 2.18, we obtain a canonical homeomorphism K → G, where K is
an algebraic group, and a lift ρ̃ : A → K of the morphism ρ : A → Bir(Pn) having
image in G. Since ρ is a group homomorphism, ρ̃ is a morphism of algebraic groups,
hence its image is closed, so it is K itself. This shows that G = G and completes
the proof. �

Remark 2.20. In the literature, an algebraic subgroup G of Bir(X) corresponds
to taking an algebraic group G and a morphism G → Bir(X) (in the sense of
Definition 2.1) which is a group homomorphism, and whose schematic kernel is
trivial (which is not the case of the action of the additive group on A1 (a, x) 7→
(x+ ap) in characteristic p).

Corollary 2.18 allows one to give a more intrinsic definition in the case ofX = Pn,
which corresponds to taking closed subgroups of Bir(Pn) of bounded degree, and
Lemma 2.19 shows that the two definitions agree.

Remark 2.21. One can show that any algebraic subgroup G of Bir(Pn) is linear,
and this reduces to the connected case. By a classical result of Weil, G acts by
automorphisms on some (smooth) rational variety X. Denote by αX : X → A(X)
the Albanese morphism, that is the universal morphism to an abelian variety. Then,
the Nishi-Matsumura theorem asserts that the induced action of G on A(X) factors
through a morphism A(G)→ A(X) with finite kernel (see [Bri10]). However, since
X is rational, A(X), and then A(G) are trivial. Hence, G is affine by the structure
theorem of Chevalley.

3. A crucial example, and the proof of Theorem 1

The following example will be essential in the proofs of Theorems 1 and 2.

Example 3.1. Let V̂ be P2\{(0 : 1 : 0), (0 : 0 : 1)} and let ρ̃ : V̂ → H2 be the
morphism which sends (a : b : c) onto

(x0(ax2 + cx0) : x1(ax2 + bx0) : x2(ax2 + cx0) : · · · : xn(ax2 + cx0)),

and define V ⊆ Bir(Pn)≤2 to be the image of the morphism ρ = π2◦ρ̃ : V̂ → Bir(Pn).
The map ρ : V̂ → V sends the line L ⊆ V̂ corresponding to b = c to the identity,
and induces a bijection V̂ \L→ V \{id}.

Remark 3.2. The above map corresponds in affine coordinates to

V̂ × An 99K An,
((a : b : c), (x1, . . . , xn)) 99K (x1 · ax2+b

ax2+c
, x2, . . . , xn).

Lemma 3.3. The algebraic varieties and maps of Example 3.1 satisfy:
(1) The set V ⊆ Bir(Pn) is closed.
(2) The map ρ : V̂ → V is a topological quotient map.

Proof. For (1), we show that ρ̃(V̂ ) is closed in H2 (recall that π2 is closed by
Corollary 2.9). Let A ⊆ H2 be the closed set of elements (h0 : · · · : hn) ∈ H2

satisfying h0xj = hjx0 for j = 2, . . . , n. Each element of A is of the form (x0l1 :
l2 : x2l1 : · · · : xnl1), where li is a form of degree i. Imposing the conditions that l1
depends only on x0 and x2 and that l2 is a linear combination of x1x2 and x0x1,
we get

(x0(ax2 + cx0) : x1(dx2 + bx0) : x2(ax2 + cx0) : · · · : xn(ax2 + cx0))
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for some a, b, c, d ∈ k satisfying (b, d) 6= (0, 0) and (a, c) 6= (0, 0). Adding the
condition that a = d yields the closed set ρ̃(V̂ ).

(2) The description of ρ̃(V̂ ) shows that ρ̃ is a closed embedding. Since π2 is
closed and continous (Corollary 2.9), so is ρ. �

The following result implies Theorem 1.

Proposition 3.4. For n, d ≥ 2, the following hold:
(1) There is no structure of algebraic variety (or ind-algebraic variety) on

Bir(Pn)≤d, such that algebraic A-families A → Bir(Pn) having image in
Bir(Pn)≤d correspond to morphisms of (ind)-algebraic varieties A→ Bir(Pn)≤d.

(2) There is no structure of ind-algebraic variety (or algebraic variety) on
Bir(Pn), such that algebraic A-families A → Bir(Pn) correspond to the
morphisms of (ind)-algebraic varieties A→ Bir(Pn).

Proof. Suppose, for contradiction, the existence of the ind-algebraic variety struc-
ture on Bir(Pn)≤d or Bir(Pn). Let ρ : V̂ → Bir(Pn) be the morphism given by
Example 3.1. Its image is V ⊆ Bir(Pn)≤2 ⊆ Bir(Pn)≤d, which is closed in Bir(Pn),
hence in Bir(Pn)≤d (Lemma 3.3). The map ρ thus corresponds to a morphism of
ind-algebraic varieties from V̂ to Bir(Pn)≤d or Bir(Pn). Since V̂ is an algebraic
variety, the morphism factors through a morphism from V̂ to a closed algebraic
variety (of finite dimension). Since the image V of V̂ is closed, the map V̂ → V is
then a morphism of algebraic varieties, so V is an irreducible variety of dimension 2.
Lemma 3.3 asserts that this map is a topological quotient map. Hence, all closed
sets of V correspond either to points, to V itself or to images of curves of V̂ . In
particular, all curves of V pass through the same point, which is impossible for an
algebraic variety of dimension ≥ 2. �

Remark 3.5. In the above proof, the fact that ρ : V̂ → V cannot be a morphism
of algebraic varieties can be seen in another way. Extending to P2, we would
obtain a birational map P2 99K V , defined on the dense open subset V̂ , which
contracts the line L ⊆ V̂ onto a point. This is impossible, since the line has positive
self-intersection and does not contain any base-point. It can also be verified that
ρ : V̂ → V is not a morphism of algebraic spaces or of algebraic stacks.

4. Topological obstructions to being an ind-algebraic group

To distinguish the topology on Crn(k) from those of algebraic varieties, we define
the following notion (note that the fact that k is algebraically closed is important
here).

Definition 4.1. Let S be a topological space. We say that a closed point p ∈ S
is an attractive point of S if S contains an infinite proper closed subset, and if p is
contained in every infinite closed set F ⊆ S.

Recall that an ind-algebraic variety Y corresponds to a sequence Y1 ⊆ Y2 ⊆
Y3 ⊆ . . . of algebraic varieties, each closed in the next one. There are two classical
ways of putting a topology on Y . The first, introduced by Shafarevich [Sha82]
corresponds to saying that a set F ⊆ Y is closed if F ∩ Yi is closed in Yi for each i.
The second, introduced by Kambayashi [Kam96, Kam03], is defined by taking zero
sets of functions obtained by projective limits of functions on the Yi, when all the
Yi are affine (if the Yi are not affine we can define the topology on sequences of
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affine subvarieties as is done in the usual way for varieties). Following [Sta11], we
call the first one the ind-topology and the second one the Zariski topology. Note
that the two topologies are obviously the same on algebraic varieties; however they
differ on most ind-algebraic varieties (see [Sta11]).

Lemma 4.2. Let X be an ind-algebraic variety. Putting the Zariski or ind-topology
on X, the set of attractive points of any closed irreducible subset of X is empty.

Proof. We let Y ⊆ X be an irreducible closed subset, and want to prove that the
topological space given by the points of Y does not contain any attractive points.

Assume first that Y is an algebraic variety of dimension ≥ 2. Then, for any
point p ∈ Y , we can find a closed curve Γ ⊆ Y that does not pass through p.
Consequently, Y does not contain any attractive points. The same holds if there
is a closed subset Z ⊆ Y which is an algebraic variety of dimension ≥ 2. If Y is a
point or an irreducible curve, it does not contain any infinite closed proper subset,
so does not contain any attractive points by definition.

There remains to study the case in which Y is an ind-variety, being the union
Y1 ⊆ Y2 ⊆ Y3 ⊆ . . . , where all Yi are algebraic varieties of dimension ≤ 1 and where
Yi 6= Yi+1 for each i. We take a point p ∈ Y , and denote by k an integer such that
p ∈ Yk. To obtain the result, we construct a closed set F ⊆ Y that is infinite and
does not contain p.

If Y is endowed with the ind-topology, we choose qi ∈ Yi\Yi−1 for any i ≥ k+ 1,
and let F be the union of all qi.

If Y is endowed with the Zariski topology, we take a sequence Z1 ⊆ Z2 ⊆ . . . of
affine varieties of dimension ≤ 1, where Zi is open and dense in Yi for each i; this
corresponds to removing a finite number of points from each non-affine curve in Yi.
We can choose p ∈ Zk and Zi 6= Zi+1 for each i. For i = 1, . . . , k let fi ∈ k[Zi] be
the constant function 1. Then, for each i ≥ k + 1 we choose a function fi ∈ k[Zi]
that restricts to fi−1 on Zi−1 and vanishes at some point of Zi\Zi−1. The vanishing
set F ′ of the (fi)i∈N is infinite, closed in the union of the Zi and does not contain
p. The set F which we require can be chosen as the closure of F ′ in Y . �

Remark 4.3. Let us note that the second case considered in the proof of Lemma
4.2 can actually occur, in the sense that Ymight actually be irreducible! Indeed,
consider the ind-variety Y given by the filtration (Yn)n≥1, where Yn is the zero set
of (x − 1)(x − 2) . . . (x − n)(y − 1)(y − 2) . . . (y − n) in the complex affine plane
A2

C = SpecC[x, y]; then Y is irreducible for the ind-topology (and hence for the
Zariski topology, which is weaker).

The following result implies Theorem 2.

Proposition 4.4. If n ≥ 2, any element ϕ ∈ Crn(k) is an attractive point of an
irreducible closed subset Y ⊆ Crn(k).

Proof. We may assume that ϕ is the identity, since the map Crn(k)→ Crn(k) given
by ϕ′ 7→ ϕ◦ϕ′ is a homeomorphism. We use the map ρ : V̂ → V ⊆ Bir(Pn) ∼= Crn(k)
of Example 3.1. By Lemma 3.3, V is closed in Crn(k), and its topology is given
by the quotient V̂ → V . The set V̂ is irreducible, contains infinitely many infinite
closed subsets (the irreducible ones corresponding to itself and curves), and each
intersects L = (ρ)−1(id). This shows that V is irreducible, contains infinitely many
infinite closed subsets, and that each contains the identity. �
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5. Euclidean topology

On the points of a real or complex algebraic variety, we can put the Euclidean
(also called transcendental) topology, which is finer than the Zariski topology. This
gives any algebraic group the structure of a topological group. We imitate this in
this section, working over a local field k. We will assume that k is locally compact
and nondiscrete. Particular cases are C, R, Fq((t)) or a finite extension of Qp.

We fix some integer n, which will be the dimension, and we will prove that
Crn(k) is a topological group, endowed with the Euclidean topology which we will
define. Note that the set of k̃-points, where k̃ is a subfield of k, will also inherit the
structure of a topological group, such as for example Crn(Q).

For n = 1, the group Crn(k) = Aut(P1
k) = PGL(2, k) is obviously a topological

group, so we will deal only with the cases in which n ≥ 2.
In subsection 5.1, we define the Euclidean topology on Bir(Pn)≤d and show that

the natural inclusion Bir(Pn)≤d ↪→ Bir(Pn)≤d+1 is a closed embedding. This allows
us, in subsection 5.2, to define the Euclidean topology on Bir(Pn) as the inductive
limit topology induced by those of Bir(Pn)≤d: a subset F ⊆ Bir(Pn) is closed if and
only if F ∩ Bir(Pn)≤d is closed in Bir(Pn)≤d for each d.

5.1. The Euclidean topology on Bir(Pn)≤d. We use the notation Wd, Hd as
in Definition 2.3; these varieties are defined over any field. By Lemma 2.4, Wd is a
projective space and Hd is locally closed in Wd for the Zariski topology.

We can thus put the Euclidean topology on the projective space Wd. For ex-
ample, we say that the distance between (x0 : · · · : xr) and (y0 : · · · : yr) is equal
to ∑

i<j

|xiyj − yjxi|2
 /

((∑
i

|xi|2
)
·

(∑
i

|yi|2
))

(see [Wey39]). We then put the induced topology on Hd. Because of the behaviour
of the Zariski topology of Bir(Pn), it is natural to give the following definition:

Definition 5.1. The Euclidean topology on Bir(Pn)≤d will be the quotient topol-
ogy induced by the surjective map πd : Hd → Bir(Pn)≤d, where we put the Eu-
clidean topology on Hd.

If f : X → Y is a quotient map between topological spaces and A is a sub-
space of X, note that the induced map A → f(A) is not always a quotient map.
However, this becomes true, if A is open and A = f−1(f(A)) [Bou98, I, §3.6,
Corollary 1]. Since Hd,d = (πd)

−1(Bir(Pn)d) is open in Hd for the Zariski topology
(see Proposition 2.15) and hence also for the Euclidean topology, πd restricts to a
homeomorphism (πd)

−1(Bir(Pn)d)→ Bir(Pn)d, for any d ≥ 1.

Lemma 5.2. Let d ≥ 1 be an integer. Endowed with the Euclidean topology, Wd

and Hd are locally compact metric spaces. In particular, the sets Wd, Hd,Bir(Pn)≤d
are sequential spaces: a subset F is closed if the limit of every convergent sequence
with values in F belongs to F .

Proof. By construction of the topology, Wd and Hd are metric spaces. Since Wd

is compact and Hd is locally closed in Wd (Lemma 2.4), Hd is locally compact.
It remains to recall that metric spaces are sequential spaces and that quotients of
sequential spaces are sequential (see [Fra65]). �
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Remark 5.3. Following [Bou98], we say that a map f : X → Y between two
topological spaces is proper if it is continuous and universally closed (i.e. for each
topological space Z, the map f × idZ : X×Z → Y ×Z is closed). We also say that
a topological space is locally compact if it is Hausdorff and if each of its points has
a compact neighbourhood.

Lemma 5.4. For any d ≥ 1, the following hold:
(1) the topological map πd : Hd → Bir(Pn)≤d is proper (and closed);
(2) the topological space Bir(Pn)≤d is locally compact (and Hausdorff).

Proof. We recall the following result of topology [Bou98, I, §10.4, Proposition 9]:
if f : X → Y is a quotient map between topological spaces such that X is locally
compact, then f is proper if and only if it is closed and the preimages of points are
compact. This implies moreover that Y is locally compact.

The fact that (πd)
−1(ϕ) is compact for any ϕ ∈ Bir(Pn)≤d follows from Lemma 2.4,

since (πd)
−1(ϕ) is closed in the compact space Wd. Since the topological space Hd

is locally compact (Lemma 5.2), it suffices to see that πd is closed.
We let F ⊆ Hd be a closed subset, and want to prove that πd(F ) is closed in

Bir(Pn)≤d, which amounts to showing that the saturated set F̂ = (πd)
−1(πd(F )) is

closed in Hd. For this, we take a sequence (ϕi)i∈N of elements in F̂ , which converges
to ϕ ∈ Hd, and show that ϕ ∈ F̂ .

Since the map πd is continuous by construction, the sequence (πd(ϕi))i∈N con-
verges to πd(ϕ) in Bir(Pn)≤d. Replacing (ϕi)i∈N by a subsequence, we may assume
that the degree of all (πd(ϕi))i∈N is constant, equal to m ≤ d. If m = d, then
(πd)

−1(πd(ϕi)) = {ϕi} for each i, so each ϕi belongs to F , which implies that
ϕ ∈ F ⊆ F̂ and completes the proof. We may thus assume that m < d (and hence
that d ≥ 2), and denote by k the difference d −m ≥ 1. For each i, there exists a
non-zero homogeneous polynomial ai ∈ k[x0, . . . , xn] of degree k such that

ϕi = (aifi,0 : · · · : aifi,n),

and (fi,0 : · · · : fi,n) ∈Wm corresponds to a birational map of degree m < d. Since
each ai is defined up to a constant, and since P(k[x0, . . . , xn]) is compact, we can
take a subsequence and assume that (ai)i∈N converges to a non-zero homogeneous
polynomial a ∈ k[x0, . . . , xn] of degree k.

We can then again take a subsequence and assume that {(fi,0 : · · · : fi,n)}i∈N
converges to an element (f0 : · · · : fn) of the set Wm, which is also a projective
space. Since (ϕi)i∈N converges to ϕ, we get ϕ = (af0 : · · · : afn) in Hd.

For each i, there exists ϕ′i ∈ F with πd(ϕ
′
i) = πd(ϕi) (because ϕi ∈ F̂ =

(πd)
−1(πd(F ))). We then have ϕ′i = (bifi,0 : · · · : bifi,n), for some non-zero homo-

geneous polynomial bi ∈ k[x0, . . . , xn] of degree k. We may again assume that the
sequence (bi)i∈N converges to a non-zero homogeneous polynomial b ∈ k[x0, . . . , xn]
of degree k. In particular, the sequence (ϕ′i)i∈N converges to (bf0 : · · · : bfn), which
is in F since F is closed. This implies that ϕ = (af0 : · · · : afn) belongs to F̂ . �

Remark 5.5. For any d ≥ 2, the map πd : Hd → Bir(Pn)≤d is not open. To see this,
we define fm = (x0x

d−1
2 : x1(xd−12 + 1

mx
d−1
0 ) : xd2 : x3x

d−1
2 : · · · : xnx

d−1
2 ) ∈ Hd

for m ≥ 1. Since {fm}m∈N converges in Hd to f∞ ∈ π−1d (id), we get a sequence
{πd(fm)}m∈N of elements of degree d converging to the identity. Let g be any
element of π−1d (id) such that g 6= f∞ and let U ⊆ Hd be an open neighbourhood
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of g not containing any of the fm. Then, πd(U) is not open since {πd(fm)}m∈N
converges to id ∈ πd(U) but πd(U) does not contain any of the πd(fm).

Lemma 5.6. For any positive integer d, the natural injection ιd : Bir(Pn)≤d ↪→
Bir(Pn)≤d+1 is a closed embedding, i.e. a homeomorphism onto its image, which is
closed in Bir(Pn)≤d+1.

Proof. We define a map ι̂d : Hd → Hd+1 by ι̂d((f0 : · · · : fn)) = (x0f0 : · · · : x0fn).
It is a morphism of algebraic varieties, which is a closed immersion; it is thus
continuous and closed with respect to the Euclidean topology. We have the following
commutative diagram:

Hd

πd��

ι̂d // Hd+1

πd+1��
Bir(Pn)≤d

ιd // Bir(Pn)≤d+1.

a) The continuity of ι̂d directly implies the continuity of ιd. Indeed, if U is an
open subset of Bir(Pn)≤d+1, the equality (πd)

−1((ιd)
−1(U)) = (πd+1ι̂d)

−1(U) shows
that (πd)

−1((ιd)
−1(U)) is open in Hd, i.e. that (ιd)

−1(U) is open in Bir(Pn)≤d.
b) It is clear that ιd is injective. We only need to prove that it is closed. Since

πd+1 and ι̂d are closed, so is πd+1 ◦ ι̂d = ιd ◦ πd. Because πd is continuous and
surjective, this implies that ιd is closed. �

5.2. The Euclidean topology on the Cremona group. Using Lemma 5.6, one
can put on Bir(Pn) the inductive limit topology given by the Bir(Pn)≤d: a subset
of Bir(Pn) is closed (respectively open) if and only if its intersection with each
Bir(Pn)≤d is closed (respectively open). In particular, the injections Bir(Pn)≤d ↪→
Bir(Pn) are closed embeddings. As explained earlier, the topology defined here is
called the Euclidean topology of Bir(Pn).

In this subsection we show that Bir(Pn), endowed with the Euclidean topology,
is a topological group.

Lemma 5.7. For any d ≥ 1, the map Id : Bir(Pn)≤d → Bir(Pn)≤dn−1 which sends
an element onto its inverse is continuous.

Proof. As in the proof of Lemma 2.4, we define Y ⊆ Wdn−1 ×Wd to be the set of
elements (g, f) such that (g0(f0, . . . , fn), . . . , gn(f0, . . . , fn)) is a multiple (maybe 0)
of the identity and let U ⊆Wd (resp. U ′ ⊆Wdn−1) be the set of elements having a
non-zero Jacobian.

As we have already observed, Y is closed in Wdn−1 ×Wd and U is open in Wd,
so that L := Y ∩ (Wdn−1 × U) = Y ∩ (U ′ × U) is locally closed in Wdn−1 ×Wd (it
is an algebraic variety).

The projection on the second factor induces a surjective morphism η2 : L→ Hd.
The projection on the first factor is a morphism η1 : L → Hdn−1 , which is not
surjective in general. By construction, we have the following commutative diagram:

Hd

πd��

L
η2oo η1 // Hdn−1

πdn−1��
Bir(Pn)≤d

Id // Bir(Pn)≤dn−1 .

We claim that η2 is a closed map, for the Euclidean topology. Since Wdn−1 is
compact, the second projection Wdn−1 ×Wd →Wd is a closed map. Its restriction
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to the closed subset Y ⊆ Wdn−1 ×Wd obviously yields a closed map η′2 : Y → Wd.
Finally, let us recall that if ϕ : A → B is any continuous closed map between
topological spaces and if C is any subset of B, then ϕ induces a continous closed
map ϕ−1(C)→ C. Therefore, since L = (η′2)−1(Hd), the claim is proved.

For any subset F of Bir(Pn)≤dn−1 , we have η2((πdn−1η1)−1(F )) = (Idπd)
−1(F ).

Indeed, both sets correspond to elements (f0 : · · · : fn) ∈Wd such that the rational
map ψf is the inverse of an element of F .

Assume that F is closed in Bir(Pn)≤dn−1 . Since η1 and πdn−1 are continuous
for the Euclidean topology, the set FL = (πdn−1η1)−1(F ) is closed in L. Therefore
π−1d (I−1d (F )) = (Idπd)

−1(F ) = η2(FL) is closed in Hd, which implies that I−1d (F )
is closed in Bir(Pn)≤d. �

Corollary 5.8. The map I : Bir(Pn)→ Bir(Pn) which sends a map onto its inverse
is a homeomorphism.

Proof. Because I is its own inverse, we only need to prove that I is continuous.
As we mentioned before, the degree of the inverse of a birational transformation of
Pn of degree d has degree at most dn−1. Consequently, I restricts to an injective
map Id : Bir(Pn)≤d → Bir(Pn)≤dn−1 , for any d ≥ 1. Because of the definition of
the topology of Bir(Pn), it suffices to prove that Id is continuous for each d. This
follows from Lemma 5.7. �

Lemma 5.9. For any d, k, the map χd,k : Bir(Pn)≤d × Bir(Pn)≤k → Bir(Pn)≤dk
which sends (ϕ1, ϕ2) onto ϕ1 ◦ ϕ2 is continuous.

Proof. We use the following commutative diagram:

Hd ×Hk

πd×πk

��

χ̂d,k // Hdk

πdk

��
Bir(Pn)≤d × Bir(Pn)≤k

χd,k // Bir(Pn)≤dk,

where χ̂d,k sends ((f0 : · · · : fn), (g0 : · · · : gn)) onto (f0(g0, . . . , gn) : · · · :
fn(g0, . . . , gn)). Since χ̂d,k is a morphism of algebraic varieties, it is continuous
(for the Euclidean topology). For any closed subset F ⊆ Bir(Pn)≤dk, the set
(πdkχ̂d,k)−1(F ) is then closed in Hd × Hk. Since the diagram is commutative,
we have (πdkχ̂d,k)−1(F ) = (πd × πk)−1(K), where K = (χd,k)−1(F ). It remains to
prove that πd × πk is a quotient map, which will imply that K is closed and thus
give the continuity of χd,k.

If f : X → Y is a quotient map between topological spaces and Z is locally
compact, a theorem of Whitehead [Whi48, Lemma 4] asserts that f × id : X×Z →
Y ×Z is a quotient map. More generally, if f : X → Y and g : Z →W are quotient
maps and Y and Z are locally compact, then the product f×g : X×Z → Y ×W is
a quotient map (use the Whitehead theorem twice, since f ×g = (id×g)◦ (f × id)).

Alternatively, one can avoid using Whitehead’s theorem by noting that the prod-
uct of two proper maps is proper ([Bou98, I, §10.1, Proposition 4]), so that πd×πk
is proper and hence closed. This implies that πd × πk is a quotient map. �

Corollary 5.10. The map P : Bir(Pn) × Bir(Pn) → Bir(Pn) which sends (ϕ,ϕ′)
onto ϕ ◦ ϕ′ is continuous (where we endow Bir(Pn) × Bir(Pn) with the product
topology of the Euclidean topology of Bir(Pnk )).
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Proof. Because of the definition of the topology of Bir(Pn), it suffices to prove that
the restriction χd,k : Bir(Pn)≤d × Bir(Pn)≤k → Bir(Pn)≤dk is continuous for each
d, k. This follows from Lemma 5.9. �

Corollaries 5.8 and 5.10 complete the proof that Bir(Pn) is a topological group.

5.3. Restriction of the topology on algebraic subgroups. As we saw in §2.6,
an algebraic subgroup of Bir(Pn) corresponds to a Zariski-closed subgroup G ⊆
Bir(Pn) of bounded degree; moreover there exists an algebraic group K, together
with a morphism K → Bir(Pn) inducing a homeomorphism π : K → G, which is a
group homomorphism (Corollary 2.18).

Proposition 5.11. Let G ⊆ Bir(Pn) be a Zariski-closed subgroup of bounded degree,
and let K be its associated algebraic group (as in Corollary 2.18). Putting on
G the restriction of the Euclidean topology of Bir(Pn), we obtain the Euclidean
topology of the algebraic group K, via the bijection π : K → G, which becomes a
homeomorphism.

Proof. Via the action of G on itself by multiplication, we may restrict ourselves to
the case where G is connected. In this case, we may assume that K is a Zariski-
closed subset of Hd and that π : K → G is induced by πd : Hd → Bir(Pn)≤d (see
Proposition 2.17). Then, K is also closed for the Euclidean topology. The map πd
restricts to a bijection K → G, which is closed and continuous for the Euclidean
topology (Lemma 5.4) and is thus a homeomorphism. �

5.4. Properties of the Euclidean topology of Bir(Pn).

Lemma 5.12. The topological group Bir(Pn) is Hausdorff.

Proof. We recall that a topological group is Hausdorff if and only if the trivial one-
element subgroup is closed (see [Bou98, III, §2.5, Proposition 13]). Since any point
of Bir(Pn) is closed (being closed in some Bir(Pn)≤d, by Lemma 2.4), this implies
that Bir(Pn) is Hausdorff. �

Lemma 5.13. Any compact subset of Bir(Pn) is contained in some Bir(Pn)≤d.

Proof. Assume by contradiction that K is a compact subset of Bir(Pn) containing a
sequence (ϕi)i∈N with deg(ϕi+1) > deg(ϕi) for each i. Since K ′ := {ϕi | i ∈ N} is a
closed subset of the compact setK, it should be compact. However, the intersection
of any subset of K ′ with Bir(Pn)≤d is closed, so K ′ is an infinite set endowed with
the discrete topology, hence it cannot be compact. �

Corollary 5.14. Any convergent sequence of Bir(Pn) has bounded degree.

Proof. Indeed, if the sequence (ϕi)i∈N of Bir(Pn) converges to ϕ, thenK := {ϕi | i ∈
N} ∪ {ϕ} is compact. �

Lemma 5.15. For n ≥ 2, the topological space Bir(Pn) is not locally compact.

Proof. Let U ⊆ Bir(Pn) be an open neighbourhood of the identity. Let us show that
U is not contained in any compact subset of Bir(Pn). By Lemma 5.13, it suffices to
show that U contains elements of arbitrarily large degree. For any integersm, k ≥ 1,
we consider the birational map fm,k of Ank given by

fm,k : (x1, x2, . . . , xn) 99K
(
x1 + 1

kx
m
2 , x2, x3, . . . , xn

)
.
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Fixing m, we observe that the sequence {fm,k}k≥1 converges to the identity. In
particular, fm,k belongs to U when k is large enough. �

Lemma 5.16. For n ≥ 2, the topological space Bir(Pn) is not metrisable.

Proof. We consider the set k[X] of polynomials in one variable and let k[X] ↪→
Aut(An) ⊂ Bir(Pn) be the inclusion sending P to

(x1, x2, . . . , xn) 99K (x1 + P (x2), x2, x3, . . . , xn).

Note that k[X] is closed in Bir(Pn), and that for any d, the induced topology on
k[X]≤d is the topology as a vector space (or as an algebraic group). The induced
topology on k[X] is thus the inductive limit topology given by

k[X]≤1 ⊆ k[X]≤2 ⊆ . . .

For any sequence l = (ln)n∈N of positive integers, the set Ul = {
∑d
i=0 aiX

i | |ai| <
1/li} is open in k[X]. This implies that k[X] is not first countable and thus not
metrisable. The same holds for Bir(Pn). �

Lemma 5.17. The topological group Bir(PnC) is compactly generated if and only if
n ≤ 2.

Proof. The group Bir(P1
C) = PGL(2,C) is a linear algebraic group, hence is com-

pactly generated. By the classical Noether-Castelnuovo theorem, the group Bir(P2
C)

is generated by Aut(P2
C) = PGL(3,C) and by the standard quadratic transfor-

mation σ = (x : y : z) 99K (yz : xz : xy). Since the linear algebraic group
Aut(P2

C) = PGL(3,C) is compactly generated, so is Bir(P2
C).

For n ≥ 3, the group Bir(PnC) is not generated by Bir(PnC)≤d for any integer d.
This can be seen by showing that the birational type of the hypersurfaces which are
contracted by some element of Bir(PnC)≤d is bounded (see [Pan99] for more details).
The fact that Bir(PnC) is not compactly generated follows from Lemma 5.13. �

Remark 5.18. In [Bla10, Théorème 5.1], it is proved that Bir(Pnk ) is connected
for the Zariski topology, when k is algebraically closed. Looking at the proof, we
observe that Bir(PnC) and Bir(PnR) are in fact path connected (and hence connected)
for the Euclidean topology. The same holds for the proof of [Bla10, Proposition 4.1,
Théorème 4.2], which can be adapted to see that Bir(P2

C) is a simple topological
group for the Euclidean topology (although it is not a simple group [CL12]).

Remark 5.19. Having the natural Euclidean topology on the sets Bir(Pn)≤d, there
are many ways of extending it to the union of all Bir(Pn)≤d, which is the Cremona
group Bir(Pn); the one that we have chosen is the finest one.
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