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Introduction

0.1. What is this book about? This book deals with “products
of random matrices”. Let us describe in concrete terms the questions we
will be studying all over this book. Let d > 1 be a positive integer. We
choose a sequence ¢, ..., gp, ... of dx d of invertible matrices with real
coefficients. These matrices are chosen independently and according to
an identical law p. We want to study the sequence of product matrices
Pn = Gn -+ g1. In particular, we want to know :

(0.1) Can one describe the asymptotic behavior of the matrices p, ?

A naive way to ask this question is to fix a Euclidean norm on the
vector space V = RY, to fix a nonzero vector v on V and a nonzero
linear functional f on V' and to ask

(0.2) What is the asymptotic behavior of the norms ||px|| ¢

(0.3)  What is the asymptotic behavior of the coefficients f(pnv)?

The first aim of this book is to explain the answer to these questions,
which was guessed at the very early stage of the theory : under suit-
able irreducibility and moment assumptions, the real random variables
log ||p.|| and log | f(p,v)| behave very much like a “sum of independent
identically distributed (iid) real random variables”.

Indeed we will see that, under suitable assumptions, these variables
satisfy many properties that are classical for “sums of iid random real
numbers” like the Law of Large Numbers (LLN), the Central Limit
Theorem (CLT), the Law of Iterated Logarithm (LIL), the Large De-
viations Principle (LDP), and the Local Limit Theorem (LLT).

The answer to Questions (0.2) and (0.3) will be obtained by focusing
first on the following two related questions :

(0.4) What is the asymptotic distribution of the vectors 222

lpnoll *
(0.5) What is the asymptotic behavior of the norms ||p,v| ¢

0.2. When did this topic emerge? The theory of “products of
random matrices” or more precisely “products of iid random matrices”
is sometimes also called “random walks on linear groups”. It began in
the middle of the 20" century. It finds its roots in the speculative work
of Bellman in [8] who guessed that an analog of classical Probability
Theory for “sums of random numbers” might be true for the coefficients
of products of random matrices. The pioneers of this topic are Kesten,
Furstenberg, Guivarc’h,...
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At that time, in 1960, Probability Theory was already based on
very strong mathematical foundations, and the language of o-algebras,
measure theory and Fourier transform was widely adopted among the
specialists interested in probabilistic phenomena. A few textbooks on
“sum of random numbers” were already available (like the ones by
Kolmogorov [80] in USSR, by Lévy [85] in France and by Cramér [36]
in UK,...), and many more were about to appear like the ones by Loeve
[86], Spitzer [118], Breiman [28], Feller [44],...

It took about half a century for the theory of “products of random
matrices” to achieve its maturity. The reason may be the following.
Even though some of the new characters who happen to play an im-
portant role in this new realm, like the “martingales and the Markov
chains” and the “ergodic theory of cocycles” were very popular among
specialists of this topic, others like the “semisimple algebraic groups”
and the “highest weight representations” were less popular, and others
like the “spectral theory of transfer operators” and the “asymptotic
properties of discrete linear groups” were still waiting to be developed.

This book is also an introduction to all these tools.

The main contributors of the theorems we are going to explain in
this book are not only Kesten, Furstenberg, Guivarc’h, but also Kifer,
Le Page, Raugi, Margulis, Goldsheid,...

The topic of this book is the same as the nice and very influential
book written by Bougerol-Lacroix 30 years ago. We also recommend
the surveys by Ledrappier [83] and Furman [48] on related topics. This
theory has had recently nice applications to the study of subgroups of
Lie groups (as in [58], [26] or [27, Section 12]). Beyond these appli-
cations, we were urged to write this book so that it could serve as a
background reference for our joint work in [14], [15], and [16].

Even though our topic is very much related to the almost homony-
mous topic “random walks on countable groups”, we will not discuss
here this aspect of the theory and its ties with the “geometric group
theory” and the “growth of groups”.

0.3. Is this topic related to sums of random numbers? Yes.
The classical theory of “sums of random numbers” or more precisely
“sums of iid random numbers” is sometimes also called ”"random walks
on R%. Let us describe in concrete terms the question studied in this
classical theory.

We choose a sequence tq,...,t,,... of real numbers. These real
numbers are chosen independently and according to an identical law
. This law p is a Borel probability measure on the real line R. We
denote by A the support of p. For instance, when p = (6o + 61), the
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set A is {0, 1}, and we are choosing the t; to be either 0 or 1 with equal
probability and independently of the previous choices of ¢; for j < k.
We want to study the sequence of partial sums s, :=t; +---+1,. In
particular, we want to know :

(0.6) What is the asymptotic behavior of s, ?

We will explain in Section 0.4 various classical answers to this question.

On the one hand, some of these classical answers describe the be-
havior in law of this sequence. They tell us what we can expect at time
n when n is large. These statements only involve the law of the random
variable s, which is nothing else than the n'"-convolution power " of
Wie.

/,I/*n:/,l/*"'*//[/.

For instance, the Central Limit Theorem (CLT), the Large Deviations
Principle (LDP) and the Local Limit Theorem (LLT) are statements
in law. An important tool in this point of view is Fourier analysis.

On the other hand, some classical answers describe the behavior of
the individual trajectories si, ss, ..., S,,... These statements are true
for almost every trajectory. The trajectories are determined by ele-
ments of the Bernoulli space

B:=AY ={b=(t;,...,tn,...) | t, € A}

of all possible sequences of random choices. Here “almost every” refer
to the Bernoulli probability measure

B = p"

on this space B. This space B is also called the space of forward
tragectories. For instance, the Law of Large Numbers (LLN) and the
Law of the Iterated Logarithm (LIL) are statements about almost every
trajectory. An important tool in this point of view is the conditional
expectation.

The interplay between these two aspects is an important feature of
Probability Theory. The Borel-Cantelli lemma sometimes allows one
to transfer results in law into almost-sure results. Conversely, the point
of view of trajectories gives us a much deeper level of analysis on the
probabilistic phenomena that cannot be reached by the sole study of
the laws p*".

0.4. What classical results should I know? This short book
is as self-contained as possible. We will reprove many classical facts
from Probability Theory. However we will take for granted basic facts
from Linear Agebra, Integration Theory and Functional Analysis. A
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few results on real reductive algebraic groups, their representations and
their discrete subgroups will be quoted without proof.

The reader will more easily appreciate the streamlining of this book
if he or she knows classical Probability Theory. Indeed the main objec-
tive of this book is to present for “products of iid random matrices” the
analogs of the following five classical theorems for ”sums of iid random
numbers”.

In these five classical theorems, we fix a probability measure p on
R and set b = (t1,...,t,,...) € B and s, =t; +--- +t, for the partial
sums. The sequence b is chosen according to the law 3, which means
that the coordinates ¢ are iid random real numbers of law p.

The first theorem is the Law of Large Numbers due to many authors
from Bernoulli up to Kolmogorov. It tells us that, when p has a finite
first moment i.e. when [, [t|dju(t) < oo, almost every trajectory has a
drift which is equal to the average of the law :

(0.7) )\::/td,u(t).

THEOREM 0.1. (LLN) Let 1 be a Borel probability measure on R
with a finite first moment. Then, for B-almost all b in B, one has

(0.8) lim 1s, =\

n—oo

The second theorem is the Central Limit Theorem which is also due
to many authors from Laplace up to Lindeberg and Lévy. It tells us
that, when p is non-degenerate i.e. is not a Dirac mass, and when p
has a finite second moment i.e. when [, t*dpu(t) < oo, the recentered
law of u*™ spreads at speed y/n, more precisely, it tells us that the
renormalized variables 22522 converge in law to a Gaussian variable
which has the same variance ® as p :

. /R(t— N2 du(t).

THEOREM 0.2. (CLT) Let i be a non-degenerate Borel probability
measure on R with a finite second moment. Then, for any bounded
continuous function ¢ on R, one has

32
e 23
0.9 lim (5_"’\> dp*™ (s :/ S ds.
09 g [e() e = [ e
The third theorem is the Law of the Iterated Logarithm discovered

by Khinchin. It tells us that almost all recentered trajectories spread
at a slightly higher speed than y/n. More precisely it tells us that the
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precise scale at which almost all recentered trajectories fill a bounded

interval is y/n loglog n.

THEOREM 0.3. (LIL) Let pu be a non-degenerate Borel probability
measure on R with a finite second moment. Then, for B-almost all b
in B, the set of cluster points of the sequence

Sy — NA
V2® nloglogn

is equal to the interval [—1,1].

The fourth theorem is the Large Deviations Principle due to Cramér.
It tells us that when g has a finite exponential moment i.e. when
Jr e du(t) < oo, for some a > 0, the probability of an excursion
away from the average decays exponentially. We will just state below
the upper bound in the large deviations principle.

THEOREM 0.4. (LDP) Let o be a Borel probability measure on R
with a finite exponential moment. Then, for any ty > 0, one has

(0.10) limsup p™({t e R | [t —n\| > nto})% <L

The fifth theorem is the Local Limit Theorem due to many authors
from de Moivre up to Stone. It tells us that the rate of decay for
the probability that the recentered sum s, —nA belongs to a fixed
interval is 1/4/n. For sake of simplicity, we will assume below that p is
aperiodic i.e. p is not supported by an arithmetic progression mg + tZ
with mp € R and ¢t > 0. Indeed the statement is just slightly different
when g is supported by an arithmetic progression.

THEOREM 0.5. (LLT) Let pu be an aperiodic Borel probability mea-
sure on R with a finite second moment. Then, for all a1 < as, one
has

. n a2 — ay
nlggo\/ﬁ K (n/\ + [ala aQ]) \/ﬁ :

0.5. Can you show me nice sample results from this topic?
The five main results that we will explain in this book are the analogs of
the five classical theorems that we just quoted in the previous section.
We will state below special cases of these five results. We will explain in
Section 0.8 what kind of generalizations of these special cases is needed
for a better answer to Question 0.1.

In these five results, we fix a Borel probability measure p on the
special linear group G := SL(d,R), we set V = R? and we fix a
Euclidean norm ||.|| on V. We denote by A the support of u, and by
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I',, the closed subsemigroup of G spanned by A. For n > 1, we denote
by p*" the n'"-convolution power

W=k k.

The forward trajectories are determined by elements of the Bernoulli
space

(0.11) B:=A" ={b=(g1,- - Gn,--) | gn € A}

endowed with the Bernoulli probability measure

B =
As in Section 0.4, the sequence b is chosen according to the law 8 which
means that b is a sequence of iid random matrices g chosen with law
1, and we want to understand the asymptotic behavior of the products
Pn = gn -+ g1. We assume, to simplify this introduction, that

- i has a finite exponential moment,

(0.12) - 'y s unbounded and acts strongly irreducibly on V.

In these assumptions, finite exponential moment means that one has
Jo llgll* dp(g) < oo for some o > 0. Notice that the word ezponential is

natural in this context if one keeps in mind the equality ||g||* = e*'°&ll9l.
In these assumptions, strongly irreducible means that no proper finite
union of vector subspaces of V' is I',-invariant.

These conditions are satisfied for instance when
2 1 0 -1
W= %(c?a0 + 0,,) where ag = (1 1> and a; = <1 0> ,

or, more generally, where

2 1 0 0 0 -1 O 0
1 1 0 0o 0 -1 0
ap= |0 0 1 0| and ag= [0 0 0 0
e . -1
00 0 . 1 1 0 0 0

In this example, one has A = {ag, a;} and we are choosing the gy
to be either ag or a; with equal probability and independently of the
previous choices of g; for j < k. The partial products p, = g, --- ¢
can take 2" values with equal probability. This concrete example is
very interesting to keep in mind. Indeed, the whole machinery we are
going to explain in this book is necessary to understand the asymptotic
behavior of p,, in this case.
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We denote by A; = Ay, the first Lyapunov exponent of p, i.e.

1 “n
(0.13) A= lim — [ log|lg[| du™(g).
G

n—oo N,

The first result tells us that the variables log ||p,v|| satisfy the Law
of Large Numbers. It is due to Furstenberg.

THEOREM 0.6. (LLN) For all v in V . {0}, for B-almost all b in
B, one has

(0.14) lim Llog|lg,---g1v]| = A1, and one has A; > 0.

The second result tells us that the variables log ||p,v|| satisfy the

Central Limit Theorem i.e. that the renormalized variables M

converge in law to a nondegenerate Gaussian variable.

THEOREM 0.7. (CLT) The limit

1 “n
®:= lim [ (log lg] - n ) du™ (o)
n—oo 1, G

exists and is positive ® > 0. For all v in V ~ {0}, for any bounded
continuous function v on R, one has

0.15 lim (—IOg”g””‘”Al) dpm :/ §)~—— ds.
019 g [ () g — [ o
The third result tells us that the variables log ||p,v|| satisfy a law

of the iterated logarithm.

THEOREM 0.8. (LIL) For all v in V ~ {0}, for B-almost all b in
B, the set of cluster points of the sequence

log [|gn - - - g1v|| — nAs
V2P nloglogn

is equal to the interval [—1,1].

The fourth result tells us that the variables log ||p,v|| satisfy a Large
Deviations Principle.

THEOREM 0.9. (LDP) For all v in V ~. {0}, for any ty > 0, one
has

(0.16) limsup 1" ({g € G | |log|lgv|| — nhi| > nto})n < 1.

n—oo

The fifth result tells us that the variables log ||p,v|| satisfy a Local
Limit Theorem.
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THEOREM 0.10. (LLT) For all a1 < ag, for all v in V ~. {0}, one
has
2 —a

2P

Theorems 0.7 up to 0.10 are in Le Page’s thesis under technical
assumptions. Since then, the statements have been extended and sim-
plified by Guivarc’h, Raugi, Goldsheid, Margulis, and the authors.

Jlrﬂlo\/ﬁ“m({g € G |log|lgv||—nAi € [a1,a0] }) =

0.6. How does one prove these nice results? Thanks for your
enthusiasm. As for sums of random numbers, we will use tools coming
from Probability Theory like the Doob Martingale Theorem, tools com-
ing from Ergodic Theory like the Birkhoff Ergodic Theorem and tools
coming from Harmonic Analysis like the Fourier Inversion Theorem.

New tools will be needed. We will be able to understand the as-
ymptotic behavior of the product p, of iid random matrices, only by
first studying the associated Markov chain on the projective space P(V')
whose trajectories, starting from z = Rv, are n — x,, := p,x. We will
also study the ergodic properties along these trajectories of the cocycle
oy on P(V') given by

oi(g,r) = HHQ:HH .

Indeed, for a vector v of norm ||v|| = 1, the quantity s, := log ||p,v||
that we want to study is nothing else than the sum

log [|pv|| = Zgl(glm Tp-1)-
k=1
These random real variables ty, := 01(gx, Tx—1) whose sum is s,, are not
always independent because the point x;_; depends on what happened
before. This is why we will need tools from Markov chains.

First we have to understand the statistics of the trajectories zy, i.e.
we have to answer to Question (0.4). That is why we will study the
invariant probability measures v of this Markov chain, i.e. the proba-
bility measures v on P(V') which satisfy p* v = v. Those probability
measures v are also called p-stationary. This will allow us to prove the
LLN and to give a formula for the drift analog to (0.7) :

(0.17) /\1:/G ) o1(g, ) du(g) dv(zx).

This formula is due to Furstenberg.

We will see that, when the action of I', on V' is prozimal the invari-
ant probability measure v on P(V') is unique. The assumption prozimal
means that there exists a rank-one matrix which is a limit of matrices
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AnYn With A, > 0 and v, in I'y,. In this case Furstenberg’s formula
(0.17) reflects the fact that, for all starting point x in P(V'), the se-
quence (Z,),>1 becomes equidistributed according to the law v, for
B-almost all b. When I',, is not proximal, the asymptotic behavior of
the sequence (x,,),>1 is described in [13].

Second we have to understand the transfer operator P and its gen-
eralisation the complex transfer operator Py with # € R. This oper-
ator Py is the bounded operator on C°(P(V)), given by, for any ¢ in
Co(P(V)) and any z in P(V),

(0.18) Pigp(x) = /G e 719 o(gx) dp(g).

The CLT 0.7 describes the asymptotic behavior of the probability mea-
sures on R

Hnz = image of ,u*” by the map g + log M

[lofl -
The Fourier transform of these measures is given by the classical and
elegant formula with 6 in R,

(0.19) finz(0) = Pgl(x),

where 1 is the constant function on P(V') equal to 1. The behavior of
the righthand side of this formula will be controlled by the “largest”
eigenvalue of Pyy. This formula (0.19) explains how spectral data from
the complex transfer operator Pjy can be used in combination with the
Fourier Inversion Theorem to prove not only the CLT but also the LIL,
the LDP and the LLT. We will be able to reduce our analysis to the
case where the action of I', on V' is proximal. We will see then that
this operator P has a unique “largest” eigenvalue \;y when 6 is small,
and that this eigenvalue \;y varies analytically with 6.

0.7. Can you answer your own questions now? You are right,
what took us so long to explain are nothing but answers to Questions
(0.4) and (0.5). We will deduce answers to Questions (0.2) and (0.3)
from these.

Indeed, we will first check that, under assumption (0.12), the ran-
dom variables log ||p,|| satisfy the same LLN, CLT, LIL and LDP as
log ||pnv||. Technically, this will not be too difficult since these four limit
laws involve a renormalization which will erase the difference between
log [[px|| and log [[p,v]]

We will also check that, when moreover I',, is proximal, the random
variables log |f(pnv)| satisfy the same LLN, CLT, LIL and LDP as
log ||p,v||. This will be more delicate since we will have to control the
excursions of the sequence p,x near the kernel of f. The key point
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will be to prove a Holder regularity result for the stationary measure
v which is due to Guivarc’h.

0.8. Why is this book less simple than these samples? The
quantity
k1(g) = log ||y
gives us information on the size of a matrix ¢g only “in one direction”. It
is much more useful in the applications to deal with all the logarithms of

singular values x;(g) := log ”l/j\i(fz)glgn and to introduce the “multinorm”
(0.20) kv (9) = (k1(9), - - -, Ka(g))-

A less naive way to ask our question (0.1) is :
(0.21) Can one describe the asymptotic behavior of Ky (py)?

The answer to this question is Yes! These random variables kv (p;,)
satisfy a LLN with average A\. However they do not exactly satisfy a
CLT: the renormalized variable M converges in law but the limit
law is only a “folded Gaussian law” i.e. the “image of a Gaussian law
by a homogeneous continuous locally linear map”!

The support of this limit law depends only on A and the “Zariski
closure” G, of the semigroup I',. This Zariski closure G, is always
a reductive algebraic group with compact center. The “folding” phe-
nomenon occurs already when d = 4 and G, = SO(2, 2)!

The whole picture becomes much clearer when one adopts the fol-
lowing more intrinsic point of view.

We start with a connected real semisimple algebraic group, call it
again (G, and a Borel probability measure p on GG. We consider iid
random variables g, € G of law p and want, again, to describe the as-
ymptotic behavior of the products p, := g, - - - g1. In this point of view,
we forget about the embedding p of G in GL(V') which was responsible
for the folding of the Gaussian law. We replace the conditions (0.12)
by
- i has a finite exponential moment,

(0.22) - the semigroup I',, spanned by A is Zariski dense in G,

where A is the support of p.

The projective space P(V') is replaced by the flag variety P of G,
and the norm is replaced by the Cartan projection k of G. Exactly
as in Section 0.6, we will use a cocycle o(g,n) on the flag variety P,
called the Iwasawa or Busemann cocycle. The Iwasawa cocycle o takes
its values in a real vector space a called the Cartan subspace whose
dimension is the real rank r of G. The Cartan projection x and takes
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its values in a simplicial cone at of a called the Weyl chamber. The
precise definitions will be given later. For every 7 in P, the asymptotic
behavior of x(p,) will be related to the asymptotic behavior of o (p,,, ).
Our questions now become

(0.23) What is the asymptotic behavior of k(p,) and o(pn,n)?

We will see that the random variables o(p,,n) and k(p,) satisfy a
LLN, CLT, LIL and LDP. We will also check the LLT for the random
variables o (py, n).

0.9. Can you state these more general limit theorems?
Here are the statements for the Iwasawa cocycle 0. The assumptions
on y are given in (0.22).

THEOREM 0.11. (LLN) There exists a unique p-stationary proba-
bility measure v on P. The average

0, = /G ola.)duls) dv(o)

belongs to the interior of the Weyl chamber a™.
For n in P, for B-almost all b in B, one has

lim L0(g, - g1,m) = 0,

n—oo

This multidimensional version of Theorem 0.6 is due to Guivarc’h-
Raugi and Goldsheid-Margulis. An important new output there is the
fact that the Lyapunov vector o, belongs to the interior of the Weyl
chamber a™.

THEOREM 0.12. (CLT) There ezists a Euclidean norm ||.||,, on a
such that, for all n in P, for any bounded continuous function 1 on a,

: g =194\ 1 (4) — (97)~"/2
i [ () () = ) [ w(ege

n—oo

o2
2 dmy,(v),

where dm,(v) = dv;--- dv, in an orthonormal basis for ||.||,..

This multidimensional version of Theorem 0.7 is due to Guivarc’h
and Goldsheid. An important new output there is the fact that the
support of the limit Gaussian law is the whole Cartan subspace a.

Here are the multidimensional versions of Theorems 0.8, 0.9 and
0.10.

THEOREM 0.13. (LIL) For all n in P, for $-almost all b in B, the

set of cluster points of the sequence

o(gn - g1,m) — noy,

V2nloglogn




INTRODUCTION 19

is equal to the unit ball K, of ||.||,.
THEOREM 0.14. (LDP) For any ty > 0, one has

: *1 1
limsup sup ™" ({g € G | [lo(g,n) — nopll = nto})» < 1.

n—oo neP

THEOREM 0.15. (LLT) For all bounded open convezr set C' of a,

for all n in P belonging to the support of v, one has
lim (2w )72 p*"({g € G | o(g,n) —nou € C}) = mu(C).

It is remarkable that, in Theorem 0.15, no further “aperiodicity”
assumptions have to be made as in Theorem 0.5. This will follow from
a general fact for “Zariski dense subgroups of semisimple Lie groups”
in [11].

We will also prove a version of this local limit theorem where we
allow moderate deviation i.e. where we allow the “window” C to be
translated by a vector v, € a as soon as ||v,|| do not grow faster than
v/nlogn. Indeed this version, which adapts Breuillard’s LLT for sums
of iid real numbers in [30], is the one which is needed in [15].

0.10. Are the proofs as simple as for the simple samples?
Well, ... at least the proofs of these five theorems follow the same lines
as in Section 0.6.

First we study the associated Markov chain on the flag variety P.
Since this flag variety is equivariantly embedded in product of projec-
tive spaces on which the action of I';, is “proximal”, we will be able to
use results previously proven for these proximal actions.

Second, we study the spectral properties of the complex transfer
operator. This operator Py is defined for any 6 € a*. It is the bounded
operator on C°(P), given, for any ¢ in C°(P) and 7 in P, by the fol-
lowing formula similar to (0.18),

Piop(n) = /G @@y (gn) dulg).

Another consequence of the contraction property of the action on P,
will be again the existence of a unique “largest” eigenvalue \; for the
operator Py when 6 is small, and the fact that this eigenvalue \; varies
analytically with 6.

The CLT 0.12 for the Iwasawa cocycle o describes the asymptotic
behavior of the probability measures on a

[in,y := image of p*™ by the map g — o(g,n).



20 CONTENTS

The Fourier transform of these measures is given by the classical and
elegant formula similar to (0.19), with 6 in a*,

(0.24) finn(0) = Pig1(n).

Thanks to this formula, we can use, as in Section 0.6, the uniqueness
of the “largest” eigenvalue of the complex transfer operator P, in
combination with the Fourier Inversion Theorem, to prove the CLT for
the Iwasawa cocycle o.

This intrinsic approach allows us to answer Question (0.5) not only
when the action of the semigroup I', on R? is irreducible but also when
this action is semisimple, i.e. when every I',-invariant vector subspace
of R? admits a I',-invariant complementary subspace.

0.11. Why is the Iwasawa cocycle so important to you?
Both the Cartan projection and the Iwasawa cocycle are important to
us. We recall that they are constructed thanks to the Cartan decom-
position and the Iwasawa decomposition of a connected real reductive
algebraic group

G=Kexpa"K and G = K expalN.

Here K is a maximal compact subgroup of GG, exp is the exponential
map of G, a is a Cartan subspace of the Lie algebra g of G that is
orthogonal to the Lie algebra € of K with respect to the Killing form, a™
is a Weyl chamber in a, and NV is the corresponding unipotent subgroup
of G. Let M be the centralizer of a in K. With these notations, the
flag variety is the quotient space

P =G/P where P=M expaN

is the normalizer of N. This group P is called the minimal parabolic
subgroup associated to a™.
The precise formulas defining x and o are, for g in G and 7 in P,

g€ Ke"9WEK and gk € Ke?9IN

where %k in K is chosen so that k~'n is N-invariant.

For instance, when G = GL(d,R), one can take a to be the space
of diagonal matrices, a™ the subset of diagonal matrices with non-
increasing coefficients, K = SO(d,R), and N the group of upper trian-
gular unipotent matrices. In this case the Cartan decomposition is the
“polar decomposition”, the Cartan projection x is the multinorm ky
given by Formula (0.20), and the Iwasawa decomposition is obtained
by the “Gram-Schmidt orthonormalisation process”.
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For g in G, the Cartan projection k(g) is important because it
simultaneously controls for all representations p of G the norms of the
matrices p(g). Similarly, for g in G and 7 in P, the Iwasawa cocycle
o(g,n) is important because it controls simultaneously the norms of
all vectors mp(g)v when Ruv is a line invariant by the stabilizer of 7.
More precisely, one has the following fact:

When (V, p) is an irreducible algebraic representation of G, one has,
for a suitable K-invariant norm on V', the equalities, for all g in G, n
in P, and every line Rv in V' which is invariant by the stabilizer of n,

lotg)vll

log [|p(g)]] = x(k(g)) and log *57= = x(o(g,n))

where the linear functional x € a* is the “highest weight” of V.
Because of this fact, the five theorems of Section 0.9 are multidi-
mensional extensions of the five theorems of Section 0.5.

0.12. I am allergic to local fields. Is it safe to open this
book? In this text we will not only study the asymptotic behavior of
product of iid random real matrices, but we will allow the coefficients
of these matrices to be in any local field K. We recall that a local field
K is a finite extension of either the field of p-adic numbers Q,, the field
of Laurent series IF,((7')) with coefficients in the finite field I, where
p is prime number, or the field Q. = R.

For a first reading, you can assume that K = R. Except in very few
places that we will point out, the proofs are not simpler over R than
they are over any local field K. A reader more familiar with local fields
may assume that K = R or Q, since all the difficulties already occurs
in these cases.

So you may wonder in the first place why we want to state these
results over local fields. The reason is that those extended results
give new information of an arithmetic flavor. For instance when the
support of the law u consists of finitely many matrices in SL(d, Q),
the coefficients of the random products p,, are rational numbers. The
results over K = R give information on the size of these coefficients
while the extended results over K = Q,, give information on the size
of the denominators of these coefficients, and more precisely on the
powers of the prime number p which occur in these denominators.

As a by-product of this point of view, we will be see that the five
limit theorems we quoted in Section 0.5 can be adapted over any local
field K, even in positive characteristic, except that the variance ® might
be equal to 0 (see Section 13.7).

0.13. Why are there so many chapters in this book? Some-
times chapters are related two by two, the first one dealing with general
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cocycles over semigroup actions, the second one applying these general
results to products of random matrices.

In Chapter 1, we recall basic facts on Markov chains.

In Chapter 2, we prove the LLN for cocycles over a semigroup
action.

In Chapter 3, we prove the LLN for products of random matrices.

In Chapter 4, we explain how to induce a random walk to a finite
index subsemigroup.

In Chapter 5, we check that Zariski dense semigroups in semisimple
real Lie groups always contain loxodromic elements.

In Chapter 6, we focus on the Jordan projection of Zariski dense
semigroups in semisimple real Lie groups.

In Chapter 7, we recall a few basic facts on reductive algebraic
groups over local fields, their algebraic representations, their flag vari-
eties, their Iwasawa cocycle and their Cartan projection.

In Chapter 8, we study the Zariski dense semigroups in algebraic
reductive S-adic Lie groups.

In Chapter 9, we reformulate the LLN for products of random ma-
trices in the intrinsic language of Chapter 7.

In Chapter 10, we study the spectral properties of the complex
transfer operator for a cocycle over a contracting semigroup action.

In Chapter 11, we prove the CLT, LIL and LDP for a cocycle over
a contracting semigroup action.

In Chapter 12, we deduce the CLT, LIL and LDP for the Iwasawa
cocycle and the Cartan projection.

In Chapter 13, we give a short proof of the Holder regularity of the
stationary measure on the flag variety. We apply it to prove the LLN,
CLT, LIL and LDP for the coefficients and for the spectral radius.

In Chapter 14, we study more deeply the spectral properties of the
complex transfer operator.

In Chapter 15, we prove the LLT for a cocycle over a contracting
semigroup action.

In Chapter 16, we deduce the LLT for the Iwasawa cocycle. We
apply it to prove the LLT for the Cartan projection, and for the norm
of vectors.

In Appendix 1, we recall basic facts on Martingales and their ap-
plications to the LLN for “sums of random numbers”.

In appendix 2, we recall basic facts on bounded operators in Banach
spaces, their spectrum and their essential spectrum. These facts are
used in the proof of the Local Limit Theorem.

In Appendix 3, we quote our sources.
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0.14. Whom do you thank? Institutions, referees, colleagues,
students, friends, and families who financed us, teased us, helped us,
read us, encouraged us, and supported us.






Part 1

Law of Large Numbers



1. Stationary measures

In this preliminary chapter, we first state general properties of a
Markov operator P on a Borel space X. We study the P-invariant
probability measures v on X, and we prove the ergodicity of the asso-
ciated forward dynamical system when v is ergodic.

We focus then on the Markov-Feller operators, and in particular on
the Markov-Feller operator P, associated to a random walk. For this
operator P, and for the P,-invariant probability measures v, which are
also called p-stationary, we explain the construction of the backward
dynamical system and prove its ergodicity, when v is ergodic.

In the next chapters, this space X will be a projective space or a
flag variety and the Markov-Feller operator P will be the operator P,
associated to a probability measure p on the group G of automorphisms
of X.

1.1. Markov operators.

We begin by general facts about Markov operators P
and the probability measures v they preserve (Lemma
1.3). We will give various equivalent definitions for the
ergodicity of v (Proposition 1.8). A key tool in order to
prove the equivalence of these definitions is the adjoint
Markov operator P* (Lemma 1.4).

1.1.1. Markov chains on standard Borel spaces. Let (X,X) be a
standard Borel space. By a Markov chain on X, we mean a Borel map
x +— P, from X to the space of Borel probability measures on X. This
space X will be sometimes called the state space of the Markov chain.
For any bounded Borel function ¢ on X and any x in X, we set

Po(z) = [ pdP,
and we say P is the Markov operator associated to the Markov chain.
A function ¢ is said to be P-invariant if Py = .

Let us recall the construction of the Markov probability measures P,
associated to P on the space Q of forward trajectories. We set Q = XN
and we equip it with the product o-algebra B = X*N. An element w
in ©Q will be written as a sequence w = (wp,w7,ws,...). For any x in
X, there exists a unique Borel probability measure P, on §2 such that,
for any bounded Borel functions ¢y, ..., ¢, on X, one has

Jopo(wo) -+ pn(wn) dPx(w) = (poP(. .. (en1P(pn)) . ) ().

In other words, P, is implicitely defined by P, = 8, ® ([, P, dP,(y)).
We say P, is the Markov measure associated to P and z (see Neveu’s
book [91, Chap. 3] for more details).
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A probability measure v on (X, X) is said to be P-invariant if for
every bounded Borel function ¢ on X, one has v(Py) = v(y).

1.1.2. Measure preserving Markov operators. Let now (X, X,v) be
a probability space and P an operator on the Banach space L>°(X, X', v)
of (equivalence classes of) bounded measurable complex-valued func-
tions on X. The operator P is called a contraction if ||P|| < 1. The
operator P is called non-negative, if for every non-negative function
¢ € L>®(X,v), the image Py is also non-negative. The operator P
is called a measure preserving Markov operator on L (X, X v) if it is
a non-negative contraction such that P1 = 1 and, for every function
¢ € L®(X,v), one has [, Podv = [, ¢dv.

If (X,X) is a standard Borel space, P a Markov chain on (X, X)
and v is a P-invariant probability measure, then P defines a measure
preserving Markov operator on (X, X, v). Conversely if, (X, X,v) is
a Lebesgue probability space, then every measure preserving Markov
operator on L>°(X, X, v) comes from a Markov chain on a set of full
measure in X.

Let us again assume (X, X, v) is any probability space and P is a
general measure preserving Markov operator on L*(X, X', v). We shall
prove that P may be extended, for any 1 < p < o0, as a continuous
contraction on the space LP(X, X, v) of functions ¢ for which |p|P is
integrable. This will follow from an elementary extension of Jensen’s
inequality:

LEMMA 1.1. Let P be a measure preserving Markov operator on
L*(X,X,v) and 0 : C — R be a convex function. Then, for any ¢ in
L>(X,X,v), one has

O(Pyp) < P(0(y)).

PRrOOF. Pick ¢ in L*(X, X, v). By standard arguments about con-
vex functions, there exists a sequence 7, of affine functions C — R such
that, for every z in C, one has 6(z) = sup,, 7,(z). Now, using succes-
sively the fact that P is non-negative and the equality P1 = 1, we get,
for v-almost every x in X, for any n in N,

PO(p)(z) =2 Pra(p)(x) = Tu(Pip()).
Thus PO(p)(z) > 0(Pyp(x)) and we are done. O

COROLLARY 1.2. Let P be a measure preserving Markov operator
on L>®(X,X,v). Then, for every 1 < p < oo, the operator P extends
as a continuous contraction on LP(X, X, v).
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PRrROOF. By Lemma 1.1, for any ¢ in L®(X, X, v), one has |Py|" <
P¢|?, hence, since P is measure preserving,

1Poll, = ([x [Pl d)'? < ([ Plel” dv)/? = [lg]],,

which completes the proof. O

A X-measurable subset F C X is called v-almost P-invariant if its
characteristic functions 1 is P-invariant as an element of L (X, X, v).

The following lemma tells us that every P-invariant function is a
limit of linear combinations of P-invariant subsets.

LEMMA 1.3. Let P be a measure preserving Markov operator on
L*(X,X,v). Then, for any 1 < p < oo, the vector subspace gener-
ated by the characteristic functions of v-almost everywhere P-invariant
subsets is dense in the space LP(X, X, v)F of P-invariant functions.

PRrROOF OoF LEMMA 1.3. It suffices to prove the result for functions
with real values. Let ¢ be a real function in L}(X, X, v)?. First note
that the function ¢, := max(p,0) is also P-invariant. Indeed, since P
is non-negative, we have

Py, > max(Py,0) = ¢

Combining this inequality with the equality [, Py, dv = [, ¢4 dv, we
get Po, = ¢, in LY(X,X,v). Now, we claim that the characteristic
function 1y,-0y is also P-invariant. Indeed, this function is the limit
in LY(X, X, v) of the functions min(1,n¢,) and, by Corollary 1.2, P
is continuous in L'(X, X, v). As a consequence, for a < b, the charac-
teristic function 1g,<,<p) is also P-invariant. The result follows, since
every real ¢ in LP(X, X, v) is the limit in LP(X, X, v)

P =lmn oo D5 2cpcnz & Lik/n<p<(kii)/m}- O

In the following lemma, we define the adjoint operator P* of P and
we check that P and P* have the same invariant functions:

LEMMA 1.4. Let P be a measure preserving Markov operator on
L>e(X, X, v).
a) Then there exists a unique measure preserving Markov operator P*
on L>(X, X,v), called the adjoint operator of P, such that, for every
o, ¢ € L®(X, X, v), one has

(1.1) Jx Pe@'dv = [, ¢ P* dv.

b) A function ¢ in LNX,X,v) is P-invariant if and only if it is P*-
mvariant.
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PROOF. a) By Lemma 1.1.2, P extends as a continuous operator
of L}(X,X,v). Let P* be the adjoint operator to P on L>®(X, X, v),
viewed as the dual space of L'(X, X, v), so that (1.1) holds and let us
check that P* is a measure preserving Markov operator.

Since P is a contraction, so is P*. Since P is non-negative, for any
©, ¢ >0in L>®(X, X, v), one has

Jxe P dv= [ Poy dv >0,

so that P*¢’ > 0 and P* is non-negative.
Finally, since P is measure preserving, for any ¢ in L*(X, X, v),
one has

[xedv = [ Podv = [, p(P*1)dv,
that is, P*1 = 1. In the same way,

[x Prodv = [, o(P1)dv = [, ¢dv,

that is, P* is measure preserving, which was to be shown.

b) We first check the direct implication when ¢ is a characteristic
function ¢ = 1 where E be a v-almost surely P-invariant measur-
able subset of X. According to (1.1) with ¢ = ¢/ = 1g and to the
bounds 0 < P*1g < 1 the function P*1g is equal to 1 on E. Since
Jx P*1lgdv = v(E), we get P*15 = 1. Now, by Corollary 1.2, P*
acts continuously on L'(X, X, v) and, by Lemma 1.3, the characteris-
tic functions of v-almost surely P-invariant measurable subsets span a
dense subset of L}(X, X, )P, so that if ¢ is P-invariant in L*(X, X, v),
one has P*¢ = . This proves the direct implication. The converse
implication follows since P** = P. U

REMARK 1.5. The definition of the adjoint operator of a Markov
operator depends on the measure. For example, let X = {0, 1} be the
set of sequences of 0’s and 1’s, equipped with the natural o-algebra,
and P be the Markov operator associated to the shift map, that is,
for every x in X, P, is the Dirac mass at Tz, where (Tx), = xj41.
Fix 0 < p < 1 and let v be the Bernoulli measure with parameter
p, that is v = (pdy + (1 — p)d;)®N. Then, one checks that v is P-
invariant and, for any ¢ in L>°(X, X, v), for v-almost any = in X, one
has P*¢(z) = pp(0x) + (1 — p)¢(lx), which depends on p.

1.1.3. Ergodicity of Markov operators. We now let again (X, X') be
a standard Borel space, P be a Markov chain on (X, X) and v be a
P-invariant probability measure. We shall give equivalent definitions
for ergodicity. First let us describe the functions which are v-almost
surely P-invariant.
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LEMMA 1.6. Let (X, X) be a standard Borel space, P be a Markov
operator on X and v be a P-invariant probability measure. Then, every
v-almost surely P-invariant bounded Borel function ¢ is equal v-almost
everywhere to a P-invariant bounded Borel function 1.

PROOF. Let ¢ be a bounded Borel function such that one has Py =
@ in L>®°(X, X, v). For z in X, we set

Yoo(x) = liminf P"p(x).
By Fatou’s lemma, we have Py, < ¢o. We set, for any z in X,
(@) = lim P gu(a)

By the monotone convergence theorem, we have Py = 1.

Now, since ¢ is P-invariant in L*°(X, X', v), there exists a Borel
subset F of X with v(E) = 1 such that, for any x in E, for any n > 0,
one has P"p(x) = ¢(x), hence p(z) = ¢(x). In particular, ¢, is
P-invariant in L>®°(X, X', v) and there exists a Borel subset F' of X
with v(F) = 1 such that, for any x in F, for any n > 0, one has
P"ooo(z) = voo(x), hence 1(x) = p(x). We are done, since ¢ = ¢
on ENF. U

REMARK 1.7. Here is a subtle point in the definition of v-almost
P-invariant subsets : there may exist v-almost P-invariant subsets E
of X which are not r-almost everywhere equal to an invariant subset.
For example, let X be a triple {a,b, ¢} and P be the Markov operator
such that

Pa:%(5b+50)7 Pb:5band Pc:(sc.

The measure v := (0, + d.) is P-invariant and the set E := {b} is
v-almost P-invariant. Indeed, the characteristic function ¢ = 1p is
v-almost everywhere equal to the v-almost P-invariant function 1 :=
%1{(1} + 1. One cannot choose 1 to be a characteristic function since
the only P-invariant subsets of X are () and X.

We can now give five equivalent definitions for ergodicity:

PROPOSITION 1.8. Let (X, X) be a standard Borel space, P be a
Markov operator on X and v be a P-invariant Borel probability mea-
sure. The following are equivalent:

(i) every P-invariant bounded Borel function is constant v-almost ev-
erywhere.

(ii) every P-invariant element in L*(X, X, v) is constant.

(11i) every P-invariant element in L°(X, X, v) is constant.

(iv) every v-almost P-invariant Borel subset of X has measure 0 or 1.
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(v) v is extremal in the convex set of P-invariant Borel probability mea-
sures.
In this case v 1s said to be P-ergodic.

PRrROOF. The implications (ii)=-(iii)=-(iv) are immediate and their
converse (iv)=-(ii) follows from Lemma 1.3. The implication (i)=>(iii)
is a consequence of Lemma 1.6 and its converse (iii)=-(i) is immediate.

Let us prove (ii)=(v). Let P* be the adjoint of P with respect to v
as in Lemma 1.4. If v is equal to a convex combination tvy 4 (1 — t)1,
where v and vy are P-invariant Borel probability measures and 0 < ¢t <
1, for i = 1,2, y; is absolutely continuous with respect to v and hence
can be written as p;v, where ; belongs to L'(X, X, v) and has integral
1. Since v; is P-invariant, one has P*p; = ¢;. Again by Lemma 1.4.5),
one has Py; = ;, hence by assumption, ¢; = 1 v-almost everywhere,
that is v; = v, which was to be shown.

Finally, let us prove (v)=(iv). If £ € X' is a v-almost P-invariant
subset of X, by Lemma 1.4.b), one has P*1rp = 1g, hence the Borel
measures Vg and vge are P-invariant. Since v is extremal, we get
v(E) =0 or v(E°) = 0 as required. O

1.2. Ergodicity and the forward dynamical system.

In this section we introduce the dynamical system on the
space of forward trajectories of a Markov chain, and we
interpret the P-ergodicity of a measure as an ergodicity
property of this dynamical system.

Let P be a Markov chain on a standard Borel space (X, X). The
forward dynamical system (2,B,T) is the dynamical system on the
space of forward trajectories given by

TQ—>Q, (wo,wl,...) — ((,()1,(.4)2,...)

For any Borel probability measure v on X we set P, for the probability
measure on (2, 5)

P, = [, P, dv(z)

and [E, for the corresponding expectation operator.

The following proposition interprets the P-invariance and the P-
ergodicity of v as an invariance property and an ergodicity property of
the measured forward dynamical system (Q, B,T,P,) .

PROPOSITION 1.9. Let v be a Borel probability measure on X.
a) Then v is P-invariant if and only if P, is T-invariant.
b) In this case, v is P-ergodic if and only if P, is T-ergodic.
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PROOF OF PROPOSITION 1.9. We denote by Xy C B the sub-o-
algebra generated by wy. More generally, we denote by X,, C B the sub-
o-algebra generated by wy, . .., w,. By construction of the measures P,,,
x € X, and P, for any bounded Borel function % on 2, the conditional
expectation of v is given by the formula, for P,-almost all w in €2,

(1.2) E, (¢ | &) (w) = [q¥(wo, ..., wn-1,wp, i, ...)dP,, (W)
Hence, in partlcular,

a) If 1 is a bounded Borel function on €, we let ¢ denote the
bounded Borel function on X given by, for every z in X,

) = Jo¥(w) dPs(w).

In other words, p(z) is the expected value of the function ¢ for the
trajectories of the Markov chain starting at . The map ¥ — ¢ is onto
and, we have, for v-almost any w in €2,

E, (¢ | X)(w) = ¢(wo) and E, (¢ o T' | Xp)(w) = Pp(wo).
Thus, we get

E, (1)) = v(p) and E, (¢ o T) = v(Py),

whence the result.

b) We assume first that v is P-ergodic and we want to prove that
any 7T-invariant bounded Borel function 77/1 on €2 is constant. We still
set, for any z in X, p(z fQ (w). We get

(z) = [ [ ¥(w)dPy( fQ Y(Tw) dP,(w) = p(x).

Thus, ¢ is constant r-almost everywhere and we may assume that
¢ = 0. Now, since the o-algebra B is spanned by the increasing union
of the o-algebras X,, n > 0, v is the limit in L'(2,P,) of the functions
E,(¢ | &,). One computes

E (4| &) =Ey(p o T" [ X)) = By (¢ | &) o T" = 0.

Hence ¢ = 0 as required.

Conversely, we assume that P, is T-ergodic and we want to prove
that any P-invariant bounded Borel function ¢ on X is constant v-
almost everywhere. Indeed, let us set, for any n > 0 and w in €2,

Un(w) = @(wn).

By construction, for any n > 1, for P,-almost any w, one has

E,(tn | Xno1)(w) = Pop(wn-1) = p(wn-1) = n-1(w),
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that is, the sequence 1, is a uniformly bounded martingale. By Doob’s
martingale convergence theorem 1.3, it converges almost everywhere
to a function ¢ in L>*(Q,P,). By construction, one has, for P,-almost
every w,

(Tw) = lim p(wni1) = P(w)
and 1) is constant P,-almost everywhere. Since, for P,-almost every w,
one has

p(wo) = to(w) = E, ([ X0)(w),

the function ¢ is constant v-almost everywhere, as required. U

1.3. Markov-Feller operators.

We define Markov-Feller operators: they are the ana-
logues, in the theory of Markov operators, of continuous
transformations in the theory of classical dynamical sys-
tems.

When X is a compact space, a Markov-Feller operator on X is a
nonnegative operator P on the space of continuous functions on X such
that P1 = 1. In other terms, a Markov-Feller operator is a Markov
chain on X such that the map x — P, is continuous, when the space
P(X) of Borel probability measures of X is equipped with the weak-x
topology.

The following lemma reduces the study of P-invariant measures to
the study of those that are ergodic.

LEMMA 1.10. Let P be a Markov-Feller chain on a compact metric
space X. Then there exists P-invariant Borel probability measures on
X. In the dual space of C°(X), equipped with the weak-+ topology, the
set of P-invariant Borel probability measures is the closed convex hull
of the set of ergodic ones.

PROOF. Since X is a compact space, the space M(X) of complex
Borel measures on X is the dual space of the space C°(X) of continuous
functions on X. We endow it with the weak-* topology. The subset
P(X) of Borel probability measures on X is then a compact subset of
X.

We use Markov-Kakutani’s argument: we start from any point z in
X and consider the sequence of probability measures on X

Vi 0 = (0(@) + Po(a) + -+ + PP ().

Since the set P(X) is compact, v, admits a cluster point v in the
weak-* topology. Passing to the limit in the equalities, with ¢ in C°(X),

n(Pp) — vn(p) = = (Po(x) — o(z)),
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one gets
Voo (PP) = Voo (i)
Hence the probability measure v, is P-invariant.
Finally, by Proposition 1.8, a P-invariant Borel probability measure
is P-ergodic if and only if it is extremal. The last part of the lemma
now follows from Krein-Millman Theorem. 0

A Markov-Feller operator P is said to be uniquely ergodic if it ad-
mits a unique P-invariant Borel probability measure. As a corollary of
the proof of the previous lemma, we get a nice interpretation of unique
ergodicity.

COROLLARY 1.11. Let P be a Markov-Feller operator on the com-
pact metric space X. The following are equivalent:
(i) P is uniquely ergodic.
(ii) there exists a Borel probability measure v on X such that, for any
continuous function @, one has

n—1
w 2o P oo Jx e dv
uniformly.

PROOF. (ii)= (i) Let v/ be a P-invariant Borel probability mea-
sure on X. By the dominated convergence theorem, we have, for any
continuous function ¢,

fXgpdl/’:fX(% Z;éPkgp)dV’ megodu.

(i)=(ii) Let x, be a sequence in X. Reasoning as in the proof of
Lemma 1.10, we get that any limit point of the sequence of measures
Uy = 2 ZZ;&(P*)’%SM is P-invariant. Hence this sequence v,, converges

to v ! U

1.4. Stationary measures and the forward dynamical sys-
tem.

In this section, we give an alternative construction of the
forward dynamical system associated to the action of a
probability measure p on a compact space X.

We recall that a semigroup is a set G endowed with an associative
multiplication law G x G — G and containing a neutral element. For
instance, for any set X, the set (X, X) of maps from X to X is a semi-
group for the composition of applications. A morphism of semigroups
p: G — H is a map sending the neutral element of G to the neutral
element of H and such that, for any ¢, ¢’ in G, p(99’) = p(9)p(¢’). An
action of G on a space X is a morphism from G to F(X, X).
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A topological semigroup is a semigroup GG endowed with a topology
such that the multiplication is continuous. For instance when X is a
compact space, the semigroup c? (X, X)) of continuous transformations
of X endowed with the topology of uniform convergence is a topological
semigroup. A continuous action of G on X is a continuous morphism
of semigroups G — C°(X, X).

Let G be a second countable locally compact semigroup and X be
a compact metrizable topological space on which G acts continuously.
We denote by G the Borel o-algebra of G and by X the Borel o-algebra
of X.

Let 1 be a Borel probability measure on G, we denote by I, the
smallest closed subsemigroup of G such that p(I',) = 1. For any Borel
probability measure v on X, let p * v denote the probability measure
on X which is the image of the product measure p® v on G x X under
the action map, that is

pxv= [ g.vdu(g).

The Borel probability measure v is said to be p-stationary if
x v =U.

If it is the case, it is said to be p-ergodic if it cannot be written as a
proper convex combination of two different p-stationary Borel proba-
bility measures.

For instance any I',-invariant probability measure is p-stationary.
The converse is not true in general but Lemma 1.12 tells us that it is
true when X is finite.

LEMMA 1.12. When X is a finite set, any p-stationary probability
measure v on X is I',-invariant.

Proor. We can assume that G is finite, equal to I', and that v is
ergodic. Let S, C G be the support of p and S, C X be the support
of v. Stationarity of v means that

(1.4) v({r}) = Xges, n{ghv(g™{z})

for every x in X. In particular one has the equality 5,5, = S,. Hence
by replacing X with S, we can also assume, with no loss of generality,
that X =S, and that S, X = X. Let X; be the set of points z in X
such that v({z}) is minimal.

Equality (1.4) implies that, for all z in X, and ¢ in S,,, one has

v({z}) = v(g {z}).

This means that v is I',-invariant. O
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We now introduce the one-sided Bernoulli shift (B,B,,T) with
alphabet (G, G, 1), that is B = G where N* is the set of positive
integers, B is the product o-algebra G®V', 3 is the product measure
p®N" and T is the shift map given, by

Tb= (ba, ... ,bps1,...) for b=(by,...,b,,...) € B.

We now construct the forward dynamical system on B x X. We
equip B x X with the o-algebra B&X of Borel subsets and we introduce
the skew-product transformation

TX: (b,z) — (T, byx).

We identify the o-algebra X of Borel subsets of X with the sub-o-
algebra of Borel subsets of B x X which do not depend on the first
coordinate.
For any x in X, set
P, .= 0,

One easily check that this defines a Markov-Feller operator P, on X.

We explain now how the forward dynamical system on B x X is
related to the forward dynamical system (€2, T') of the Markov operator
P = P, that we introduced in Section 1.2. For any = in X, the associ-
ated Markov measure P, , on (2 is the image of the measure § =
on B = GV under the map

(1.5) (bk)k=1 = (bg -+ biw)io.

If v is a Borel probability measure on X, then v is p-stationary if
and only if it is P,-invariant and, in this case, the measure P, on €2 is
the image of # ® v under the map

(b,z) — (bg - - - b1z)k>0,

which intertwines the maps 7% and 7. By Proposition 1.8, v is u-
ergodic if and only if it is P,-ergodic.

REMARK 1.13. In general, the map (b,x) +— (b ---b12)g>0 is not
a Borel isomorphism between B x X and {2 since non-trivial elements
of G may have fixed points in X. Nevertheless, we have the following
analogue of Proposition 1.9.

PROPOSITION 1.14. Let v be a Borel probability measure on X.
a) Then v is u-stationary if and only if 8 @ v is T -invariant.
b) In this case, v is p-ergodic if and only if 3 @ v is T -ergodic.

ProoF. It follows the same lines as for the proof of Proposition
1.9. 0
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REMARK 1.15. There may exist a TX-invariant Borel probability
measure on B x X whose image by the projection on the first factor
is equal to 3 but which is not of the form # ® v for some p-stationary
Borel probability measure v on X. For example, let G be the free
group on two generators g and h, X be the Gromov boundary of G,
i.e. the set of reduced one-sided infinite words in ¢g* and A* and u be
the probability measure i = $(d, + 05). For S-almost every b in B, b
is a reduced word, that is, b may be seen as an element x; of X. By
construction, one has z, = byx,. Hence, the image of § by the graph
map b — (b, x,) on B x X is TX-invariant. It is clearly not a product
measure. In fact, this image measure is an example of the measures
invariant by the backward dynamical system that we will construct
below.

LEMMA 1.16. Given u, there exists a p-stationary Borel probability
measure on the compact space X.

Proor. This is a special case of Lemma 1.10. 0

1.5. The limit measures and the backward dynamical sys-
tem.

For every p-stationary probability measure on X, we con-
struct in this section an equivariant measurable family of
probability measures v, on X indexed by the Bernoulli
shift and called the limit measures. We will use this fam-
ily in order to construct the dynamical system of back-
ward trajectories.

We keep the notations of section 1.4. In particular, G is a second
countable locally compact semigroup, p is a Borel probability measure
on G, (B, B, 3,T) is the associated one-sided Bernoulli shift, the semi-
group G acts continuously on the compact metrizable topological space
X and v is a p-stationary Borel probability measure on X.

Here is the construction of the limit measures.

LEMMA 1.17. There exists a Borel map b — v, from B to P(X)
such that, for 3-almost any b in B, one has (by -« by)sv —— 1.

REMARK 1.18. In this lemma, the compactness assumption on X
can be removed (see [14, Lemma 3.2]).

PROOF. The main tool is Doob martingale theorem. Let, for any n
in N, B,, be the sub-o-algebra of B spanned by the coordinate functions
with indices p, 1 < p < n. If v is a p-stationary Borel probability
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measure on X, one checks that, for any bounded Borel function ¢ on
X, the sequence of functions

fa b= [y o(by - bya) dv(z)

on B is a uniformly bounded martingale with respect to the filtration
(By)nen @ for f-almost all bin B and all n > 0, one has

E(fn+1 | Bn)(b) = fn(b)

By applying Doob martingale convergence theorem (Theorem 1.3) to
a countable dense subset D of functions ¢ € C°(X), we deduce that,
for b in a subset B' C B with 3(B’) = 1, for all ¢ in D, the limit

vy(p) := lm (by -+ bn).v ()

exists. Hence, by approximation, this limit exists for all ¢ in C°(X),
i.e. the limit v, = lim (by - - - b, ).V exists for all b in B'. O

The following lemma tells us that the stationary measure v can be
recovered from its limit measures v, by a simple averaging, and that
these limit measures satisfy a nice equivariant property.

LEMMA 1.19. One has v = [,1,dB(b) and, for 3-almost any b in
B, one has v, = (by).vre.

PROOF. Let ¢ belong to C°(X). As v is u-stationary, for any n in
N, one has

fX (pdV = fB fn(b) dﬁ(b)

Passing to the limit, the first equality follows by the dominated con-
vergence theorem.
The second assertion follows directly from the definition of v,. [

REMARK 1.20. Conversely, according to [14, Lemma 3.2], if b — v,
is a Borel map from B to P(X) such that for S-almost any b in B, one
has v, = (b1)+v7e, then the Borel probability measure v := [, 1, d3(b)
on X is p-stationary and, for f-almost any b in B, v, is equal to the
limit probability measure lim,, .. (by -+ - by,)V.

We will also need an enhanced version of Lemma 1.17.

LEMMA 1.21. For any m in N, for § ® p*"-almost any (b, g) in
B x G, one has (by -+ - b,g)sV —— 1.

PROOF. Let ¢ be in C°(X) and set ® to be the function on G
D :h— [ p(hx)dv(z).
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Since v is p-stationary, one has the equality, for n in N and h in G,
(1.6) Jo ®(hg) A (g) = ®(h).
For g in G, we set f¢ to be the function on B

f2:b O(by - byg).

By Lemma 1.17, since C°(X) is separable, it suffices to check that, for
w™-almost any ¢ in G, the sequence of functions f?(b) — f,(b) on B
converges for [-almost all b towards 0. For any n in N, using (1.6), we
compute the integral

= J [ 1£2(0) = 2 (0)? AB(b) A (g)
= fG fG |(I) hg (I)( )|2 d:u*m(g) d:u*n(h) = Jn-i—m - Jna
where J,, := [, ®( (h). Since J,, is bounded by ||¢||-0, one gets

> In < 00, and for [3 ® p*™-almost any (b, g) in B x G,

D 1F20) = fa®)P < oo,

hence f9(b) — f.(b) goes to zero as n — oo, whence the result. O

In order to appreciate the strength of the previous lemmas, we
deduce the following corollary which is a reformulation of the classical
Choquet-Deny Theorem in [33]. We recall that I',, is the smallest closed
subsemigroup of G such that p(I',) = 1.

COROLLARY 1.22. When G 1is abelian, every p-stationary probabil-
ity measure v on X s I';-invariant.

PROOF. Since G is abelian, by Lemmas 1.17 and 1.21, for pu-almost
every ¢ in G and (3-almost every b in B, one has the equality v, = g,1%.
Hence, averaging this equality over B and using Lemma 1.19, one gets
the equality v = g, for p-almost every g in G. Now, the result follows,
since the stabilizer of v in G is a closed subsemigroup containing the
support of . O

We now construct, when G is a group, the backward dynamical
system on B x X, or dynamical system of backward trajectories. We
recall that (B, B,3,T) is the one-sided Bernoulli shift with alphabet
(G, G, ). We equip the product space BX := B x X with the o-algebra
BY* := B® X of Borel subsets and we introduce the skew-product
transformation

TV (b, x) — (Th, b 'x)
and the Borel probability measure % on B¥ given by

= fB 0p ® Vbdﬂ(b).
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The following proposition is an analog of Proposition 1.9. It inter-
prets the P-ergodicity of v as the ergodicity of the backward dynamical
system (BX, BX, T, 3%).

PROPOSITION 1.23. Let G be a second countable locally compact
group acting continuously on a compact metrizable topological space X,
and v be a p-stationary Borel probability measure on X.

a) Then the probability measure 3% on B is TV -invariant.
b) The measure 3% is TV= -ergodic if and only if v is p-ergodic.

PROOF. a) This follows from the following calculation which uses
Lemma 1.19

Jpx o(TV7(b,2)) dBX (b,2) = [ [ o(Th, by ') duy(a) dB(b)
= [ Jx ¢(Tb, z) dvry(x) dB(b)
= [ Jx #(b,2) dvy(x) dB(b)
= J[px (b, 2) dB* (b, @),

where ¢ : BX — R, is a (B ® X')-measurable function.

b) First, assume 3% is TV*-ergodic and let v be equal to a convex
combination tvy + (1 — t)v, of p-stationary probability measures with
0 <t < 1. We get, for §-almost any b in B,

vy = tVl,b + (1 — t)l/g,b,

hence
Y =t + (1 —1)55,

where, for i = 1,2, ¥ is constructed from ;. Since 3¥ is TV -ergodic,
we have 3;* = 8% = 3% and therefore, by projectingon X, v = vy = vy.
By Proposition 1.8, v is p-ergodic.

Conversely, assume now v is p-ergodic and let us prove that 5% is
TVX—ergodic. This can be seen as an immediate consequence of the
ergodicity of the forward dynamical system thanks to the ideas that
will be introduced in Section 1.6 below. But we can also give a direct,
more computational proof.

Let 6 be a TV~ -invariant bounded Borel function on BX. We want
to prove that this function @ is 3X-almost surely constant. Let ¢ be
any bounded Borel function on X and set

o) = [ el@)bl.0) a5 b.),
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We first claim that the complex measure p on X is p-stationary. This
follow from the following calculation, with ¢ as above,

Jo [ elgz)dp(z) du(g) =[5 [5 [x w(gz)0(V, x) dvy (x) dB(V) du(g)
=[5 [x ebix)0(Th, x) dvry(z) dG(b)
=[5 JxeW)0(b,y) dvy(y) dB(b) = [y ¢ dp.

We prove now that the measure p is absolutely continuous with respet
to v. Indeed, if ¢ is a non-negative Borel function on X such that
fXgpdV = 0, we have, for f-almost any b in B, fX(,OdVb = 0 hence
@ = 0 on a set of y-full measure and fX@dp = 0. That is, p is
absolutely continuous with respect to v.

By Proposition 1.8, as v is u-ergodic, p is a multiple of v. It remains
to prove the implication

p=0=0=0.

Assume that p = 0. Let n > 0 and ¢, ¥ be bounded Borel functions
on X and on G" respectively. We calculate

Jax by, ... b)p(byt - b7 2)0(b, 2) ABX (b, z)

= [ox (b, ..., by)e (bt bt )O(Tb, bt - - - by ) dBX (b, 7)

= [ [ w(br, - 0a)()O(T7,y) A((0;" - by )un) (y) AB(D)

- fGn Jo Jx 0, ba)o(m)0(V y) dvy (y) dB() du®™ (b, - -+, by)
= u=" (W) p(e) = 0.

Since the map

G"x X = G"x X, (91,9, 2) = (g1, s G G0 - g7 ')
is a homeomorphism, we get, for any bounded Borel function ) on
G" x X,
Jpx (g1, - gn, x)0(b, ) dF* (b, ) = 0.
This proves that § = 0, 3%-almost everywhere. U

1.6. The two-sided fibered dynamical system.

We explain in this section how the forward and the back-
ward dynamical systems are related. Indeed, both oc-
cur as factors of the space of biinfinite trajectories either
equipped with the shift transformation or its inverse.

We keep the notations of Proposition 1.23. We denote by (E, B, B, T)
the two-sided Bernoulli shift with alphabet (G, G, ), that is, B is the
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product space GZ,~Z§ is the product o-algebra G®Z, 3 is the product
measure ©®%, and T is the shift map given, by

Tb=(...,bys1,...) for b=(...,b,,...) € B

This dynamical system is invertible and the probability measure B is
T-invariant. _

For (-almost every b in B, we denote b, := (by,by,...) € B and
b_ := (bo,b_1,b_9,...) € B. The map b — b, realizes the two-sided
Bernoulli shift (E , B , f) as the natural invertible extension of the one-
sided Bernoulli shift (B,,7T). Similarly, the map b +— b_ realizes
the inverse (E, B, f‘l) of the two-sided Bernoulli shift as the natural
invertible extension of the one-sided Bernoulli shift (B, 3, T).

We now construct the two-sided fibered dynamical system on the
space B x X that we heuristically consider as the space of biinfinite
trajectories. We endow this space with the o-algebra B ® X of Borel
subsets and we introduce the skew-product transformation

TX : (b,x) — (Tb,byx)
and the Borel probability measure BX on B x X defined by
BX = fg 0y @ vp_ dg(b)

This dynamical system is invertible and the probability measure BX is
T-invariant.

The map (b, z) — (b4, ) realizes the two-sided dynamical system
(BX, 3%, TX) as the natural invertible extension of the forward dynam-
ical system (BY, B®@wv, TX). Similarly, the map (b, z) — (b_, z) realizes
the inverse (BX, 3%, (TX)~1) of the two-sided dynamical system as the
backward dynamical system (B, 3%, TVX). Since the natural invert-
ible extension of an ergodic probability preserving dynamical system is
also ergodic, and since the inverse of an ergodic transformation is also
ergodic, this discussion gives a direct proof of the equivalences

B@vis TX-ergodic < BX is TX-ergodic < BX is TVX-ergodic.

and explains how Propositions 1.9 and 1.23 are related.

1.7. Proximal stationary measures.

In this section, we introduce the property of p-proxima-
lity for stationary measures. This proximality property
will be satisfied by the stationary measures on projective
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spaces in Section 3.2 and by the stationary measures on
the flag varieties in Section 9.1.

Let G be a second countable locally compact semigroup acting con-
tinuously on a compact metrizable topological space X, Say that a
pu-stationary Borel probability measure v on X is p-proximal if, for (-
almost any b in B, the Borel probability measure v, is a Dirac mass.
An important example of a proximal stationary probability measure
will be given in Proposition 9.1.

More generally, given a morphism s : G — F' onto a finite group F,
we define a fibration over F' of X as a G-equivariant continuous map
X — F. We say that X is fibered over F' if it is equipped with such
a fibration. In this case, we say that v is u-prozimal over F' if, for -
almost any b in B, the Borel probability measure v is a uniform average
of |F| Dirac masses and its image in F is the normalized counting
measure on F. This definition will be used in Section 4.3, and an
important example of such a situation will be given in Proposition 9.2.

We will apply the following lemma to the embedding of a flag variety
in a product of projective spaces in order to prove Proposition 9.1.

LEMMA 1.24. Let X, X4,..., Xy be compact metrizable topological
spaces, all of them equipped with a continuous action of a second count-
able locally compact semigroup G and, let m: X — X1 X ... X X be a
continuous injective G-equivariant map. Suppose, for any 1 < i < k,
there exists a unique p-stationary Borel probability measure v; on X;
and v; 1s p-prozimal. Then, there exists a unique p-stationary Borel
probability measure on X and it is p-proximal.

ProoF. For any 1 < ¢ < k, since the probability measures v; is
p-proximal, there exists a Borel map & : B — X, such that, for -
almost any b in B, one has (v;)y = 0¢,). Set m; : X — X, to be the
projection map on the factor X; and set £ = (&,...,&). Let v be a
p-stationary Borel probability measure on X. Since, for any 1 <14 < k,
the Borel probability measure (m;),v is p-stationary, by uniqueness,
one has (m;).v = v; and, for B-almost any b in B, (m;).vp = ¢,), SO
that 7,1, = d¢p). Hence v is p-proximal, and, for S-almost any b in B,
one has £(b) € 7(X) and 7. = {3, whence the result. O

2. Law of Large Numbers

The main goal of this Chapter is to prove a Law of Large Numbers
for a general real valued cocycle with a unique average (Theorem 2.9).
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In order to do this, we first reduce this statement to a Law of Large
Numbers for a function with a unique average using Proposition 2.2.
Then we prove the Law of Large Numbers for a function with a unique
average (Corollary 2.8).

We will apply this Law of Large Numbers to the norm cocycle in
Section 3.6 and to the Iwasawa cocycle in Section 9.4.

2.1. Birkhoff averages for functions on G x X.

The aim of this section is Proposition 2.2 which reduces
the proof of a Law of Large Numbers for a function o on
G x X to a Law of Large Numbers for a function ¢ on X
called the drift function. This function ¢ is the expected
value of o.

Asin Chapter 1, GG is a second countable locally compact semigroup,
w is a Borel probability measure on G, (B, B, 3, T) is the associated one-
sided Bernoulli shift and the group G acts continuously on the compact
metrizable topological space X.

The following Lemma is an application of Birkhoff Ergodic Theo-
rem. Its conclusion will be our guideline towards more precise results.

LEMMA 2.1. Let v be a p-stationary p-ergodic Borel probability
measure on X and o : G x X — R be a measurable function. As-
sume that

Jarx lold(p®@v) < oo, andset o,:= [, ,odpev).
Then, one has
(2.1) % > (b b1 - bi) —— o
B ® v-almost anywhere and in LY (B x X, 3@ v).

Proor. We will use the forward dynamical system. For b in B and
xin X, set p(b,x) = o(by,x). Then ¢ is f ® v-integrable and, for b in
B, zin X and n > 1, the left-hand side of (2.1) is equal to the Birkhoff
average

S(p(b,2) + o+ ((TF)" 7 (b, 2))).
According to Proposition 1.9, 8 ® v is T*-ergodic, hence by Birkhoff
theorem, this Birkhoff average converges ( ® v)-almost anywhere and
in LY(B x X,3 ® v) towards the spatial average (8 ®@ v)(p) = (4 ®
v)(o). O

We want to describe conditions under which the convergence of
the Birkhoff averages (2.1) is uniform in x. The following proposition
reduces this question to the Birkhoff averages of a function on X. Its
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proof relies on the classical Law of Large Numbers proven in Appendix
1.

PROPOSITION 2.2. Let 0 : G x X — R be a continuous function
and
Osup 1 G = R 5 g = 0qp(9) = sup,ey |o(g, )]

Assume that [, ogup(g) dpu(g) < 0o and introduce the drift function
p: X =Rz p(z) = [,0(g,2)du(g).
Then, for every x in X, for B-almost every b in B, one has

LS (b, by -+ b1) — (bg—y - - - b)) —— 0.

Moreover this sequence converges also in LY(B, 8) uniformly forx € X.

Proor. This is a direct application of the Law of Large Numbers,
Theorem 1.6. Let ¢, : B — R be the integrable function given by

on(b) = a(bp,by_1 - bix)
and B,, be the sub-o-algebra of B generated by by, ...,b,. One has the
equality, for S-almost every b in B,
E(pn [ Bu1) = @(bp-1---biz).

Hence we only have to check that Condition (1.1) is satisfied. Since
the coordinates b,, are independent and identically distributed, one has
the bound, for ¢t > 0,

B{lenl = t} [ Buo1) < B({osup(bn) = 1} | By-1)
= B{{ap(bn) 2 1}) < B{osup(b1) > 1}).
This proves (1.1) with domination by the function ¢ : B — R;b —

Usup(bl)-
We note that this function ¢ does not depend on z and that the
L!-convergence is therefore uniform in z. 0

2.2. Breiman Law of Large Numbers.

In this section we prove the Law of Large Numbers for
functions over a Markov chain.

Let (X, X) be a standard Borel space, P be a Markov chain on X
and, for x in X, set P, for the Markov probability measure on the space
Q of trajectories.

The following technical lemma compares the Birkhoff averages of a
function ¢ along the trajectories of a Markov chain with the Birkhoff
averages of Pop.
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LEMMA 2.3. (Breiman [29]) Let ¢ be a bounded Borel function on
X. For every x in X, for P,-almost every w in ), one has

IS elwr) — 237070 Po(wr) —0

PROOF. The main ingredient of the proof is Corollary 1.8. For any
integer n > 1, we introduce the functions

On Q2 —=>R; wr @(wn) - ng(wnfl)’

and the sub-c-algebras B, generated by wy,...,w,. This sequence of
functions on Q is bounded by 2supy |¢| and, by construction, one has

Em(@n|8n—1) = 0

Therefore, by Corollary 1.8, the sequence %22:1 Y goes to 0 P,-
almost everywhere. O

When P is a Markov-Feller chain, one can reformulate Lemma 2.3
using the so-called empirical measures :

COROLLARY 2.4. Let X be a compact metrizable topological space
and P be a Markov-Feller operator on X. Then, for any x in X, for
P,-almost any w in ), any weak limit of % Zz;é 0w, 15 P-invariant.

In particular, using the weak compactness of the space of probabil-
ity measures on X, we retrieve the Law of Large Numbers for functions
over a Markov chain which is due to Breiman in [29]:

We say that a function ¢ € C°(X) has a unique average if

there exists a constant £, such that, for any P-invariant

(2.2) probability measure v on X, one has v(p) = /.

REMARK 2.5. A function ¢ has a unique average /,, if and only
if one can write ¢ — /¢, as a uniform limit of a sequence P, — 1,
with 1, in C°(X). This follows from Hahn-Banach Theorem and Riesz
representation Theorem.

In Chapter 10, we will find out conditions on a Markov operator P
which ensure that the image of the operator P—1 is closed so that every

function ¢ with a unique average £, can be written as ¢ = Py —1 +{,,
with ¢ in C°(X).

COROLLARY 2.6. Let X be a compact metrizable topological space
and P be a Markov-Feller operator on X. Let ¢ be a continuous func-
tion on X with a unique average £,. Then for any x in X, for P,-almost
any w in ), one has

n—1
% > ko Plwr) —— L.

n—oo
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This sequence converges also in LY(Q,P,), uniformly for x € X, i.e.

lim [ |2 S s wlwr) — £y| dP,(w) = 0 uniformly for z € X.
Q

n—oo

PROOF. For x € X and ¢ € C°(X), we introduce for n,¢ > 1 the
bounded functions ¥,, and ¥,,, on € given by, for w € €2,

Uy (w) = ¢(wn) and Ven(w) = (Pip)(wn)-

We will again use the sub-o-algebras B,, generated by wy, . ..,w,. These
functions satisfy the equality, for P, -almost every w in €2, and ¢ < k,

Eo(Uk|Bi—o) () = (Prp) (wi—r) = W pe(w).

On the one hand, by Theorem 1.6 (using the fact that ¢ is uniformly
bounded to kill the boundary terms), for every ¢ > 1, one has the
convergence, for P -almost all w in €2,

L3 (Ug(w) — Uy (w)) — 0.

n—oo

This sequence converges also in L'(2, P,) uniformly for x € X. Hence
one has also the convergence, for P,-almost all w in €2,

(2.3) i () = § 225 Yia(w)) —— 0.

o0

This sequence converges also in L'(2, P,) uniformly for x € X.
On the other hand, since the function ¢ has a unique average £,
one has the uniform convergence

Z .
% Zj:l P;JL‘P ‘Z:: ly
in C°(X). Hence one has also the convergence
¢
(2.4) % Zj:l Ujk(w) R ly

in L*(§2, P,) uniformly in £ > 1 and in z € X.
Combining (2.3) and (2.4) one gets the convergence, for P,-almost
all w in 2,

25) LS B) T
This sequence converges also in L'(€, P,) uniformly for z € X. O

Note that Condition (2.2) is automatically satisfied when P is uni-
quely ergodic . Hence one has the following :

COROLLARY 2.7. Let X be a compact metrizable topological space,
P be a uniquely ergodic Markov-Feller operator on X and v be the
unique P-invariant probability measure on X. Let © be a continuous
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function on X. Then for any x in X, for P,-almost any w in 2, one
has

n—1
% > ko P(wr) IR v(p).
This sequence converges also in L*(Q,P,), uniformly for x € X.

2.3. Law of Large Numbers for cocycles.

In this section we deduce from Breiman Law of Large
Numbers a Law of Large Numbers for a cocycle.

2.3.1. Random walks on X. We come back to the notations of sec-
tion 1.4. In particular, GG is a second countable locally compact semi-
group, 4 is a Borel probability measure on G, (B,B,3,T) is the as-
sociated one-sided Bernoulli shift, the group G acts continuously on a
compact metrizable topological space X and v is a u-stationary Borel
probability measure on X. We will apply the results of Section 2.2 to
the Markov chain on X given by z — P, = u * d,.

This will give the following Law of Large Numbers for a function
over a random walk

COROLLARY 2.8. Let G be a locally compact semigroup, X be a
compact metrizable G-space, and p be a Borel probability measure on
G. Then, for any x in X, for B-almost every b in B, for any continuous
function ¢ € C°(X) with a unique average L., one has

7 2kmt Pk b1w) —— L.
This sequence converges also in LY(B, 3), uniformly for x € X.

Proor. We use the forward dynamical system on B x X. This
corollary is almost a special case of Corollary 2.7, if we take into account
the formula for P, , given in (1.5). O

2.3.2. Cocycles. The Law of Large Numbers will be proved for a
class of cocycles called cocycles with a unique average that we define
now.

Let E be a finite dimensional real vector space. A continuous func-
tion 0 : G x X — F is said to be a cocycle if one has

(2.6) o(gq',x) =0(g9,9'v) +0(¢',x) foranyg,g € G, xeX.

In particular, one has o(e,z) = 0, for any x in X. Two cocycles o and
o' are said to be cohomologous if there exists a continuous function
¢ : X — F with

o(g,7) +¢(z) = 0'(g,7) + ¢lgr) (g€ G xeX).

A cocycle that is cohomologous to 0 is called a coboundary.
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For a cocyle o we introduce the functions sup-norm og,,. It is given
by, for g in G,
(27) USUP(g) = SUDgcx HO—(Q,-ﬁE)H )

The cocycle is said to be (1 ® v)-integrable if one has

foX lo(g, )|l du(g) dv(z) < oo.

For instance, a cocycle with oy, € L'(G, ) is (u ® v)-integrable for
any p-stationary probability measure v.
When o is (u ® v)-integrable, the vector

ou(V) = [oex 0lg,7)dp(g) dv(z) € E

is then called the average of the cocycle.
The cocycle o is said to have a unique average if

(2.8) the average 0, = 0,(v) does not depend on the choice of v.

A cocycle o with a unique average is said to be centered if o, = 0.

Let us introduce a trick which reduces the study of cocycles with
a unique average to the study of those which are centered. Replace G
by G' := G x Z where 7Z acts trivially on X, replace p by ' := p ® 0,
so that any u-stationary probability measure is also p/-stationary, and
replace o by the cocycle

(29) o' :G'xX — E givenby o'((g,n),z) =o0(g,z) — noy.

2.3.3. Law of Large Cocycles. Here is the Law of Large Numbers
for cocycles.

THEOREM 2.9. Let G be a locally compact semigroup, X a compact
metrizable G-space, E a finite dimensional real vector space and p a
Borel probability measure on G. Let 0 : G x X — E be a continuous
cocycle with [, ogup(g) dp(g) < oo and with a unique average o,. Then,
for any x in X, for B-almost every b in B, one has

(2.10) Lo(by -+ b1, x) — 0.

This sequence converges also in LY(B, 3, E) uniformly for x € X.
In particular, uniformly for x € X, one has

L [, o(g,2)du™(g) — 2 Ou

Note that the assumption (2.8) is automatically satisfied when there
exists a unique p-stationary Borel probability measure v on X.
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PROOF. Just combine Proposition 2.2 and Corollary 2. 8 applied to
the drift function ¢ € C°(X) which is given by ¢(z f Yy w(g),
for all x in X. This function has a unique average E = U# U

2.3.4. Invariance property. When working on linear groups that are
not connected, we will encounter cocycles which enjoy equivariance
properties under the action of a finite group. The following lemma
tells us that such equivariance properties imply invariance properties
of the associated average.

LEMMA 2.10. We keep the notations and assumptions of Theorem
2.9. Besides, we let F' be a finite group which acts linearly on E and
which acts continuously on the right on X. We assume that the F'-
action and the G-action on X commute and that

(2.11) the cocycles (g,x) — o(g,xf) and (g,2) — f~to(g, )
' are cohomologous for all f in F.

Then the vector o, € E is F-invariant.

REMARK 2.11. Assumption (2.11) is satisfied when those two co-
cycles are equal, i.e. when

fo(g,xf)=0(g,z) forall fin F, gin G and z in X.

Proor or LEMMA 2.10. Let v be a stationary probability mea-
sure on X, f be an element of F' and ¢y : X — E be a continuous
function such that

folg,.)=0(g,.f) —erog+ey

for any g in GG. Since the F-action commutes with the G-action, the
probability measure f,v is also u-stationary, hence as ¢ has a unique
average, we have

= Joxx olg,2f)du(g) dv(z)
= Jaux(Fo(g,2) + ¢(gz) — ¢r(x)) dp(g) dv(z)
= fﬁl(au) + fx<PM90f — ) dv = fil(au%

that is, 0, is F-invariant. O

2.4. Convergence of the covariance 2-tensors.

In this section we deduce from Breiman Law of Large
Numbers a convergence result for the covariance 2-ten-
sors which will be useful for the Central Limit Theorem.
This convergence is true for a particular class of cocycles
that we call special cocycles.
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2.4.1. Special cocycles. Let o : Gx X — E be a continuous cocycle.
When the function oy, is p-integrable, we define the drift of o as the
continuous function X — E;x — [, 0(g,2)du(g). One says that o
has constant drift if the drift is a constant function:

(2.12) Jao(g,x)dulg) = o,
One says that o has zero drift if the drift is a null function.

A continuous cocycle o : G x X — FE is said to be special if it is
the sum

(2.13) o(g,%) = oo(g,x) + ¥(z) — ¢(gx)

of a cocycle oo(g, ) with constant drift and of a coboundary ¥ (z) —
¥ (gx) given by a continuous function ¢ : X — E. A special cocycle
always has a unique average: for any p-stationary probability measure
v on X, one has

(2.14) Jarx 0(g,2) du(g) dv(z) = oy,
As we will see in Remark 2.15, there exist non special cocycles.
However, one has the following easy lemma

LEMMA 2.12. Let G be a locally compact semigroup, X be a compact
metrizable G-space, E be a finite dimensional real vector space, and p
be a Borel probability measure on G such that there exists a unique
p-stationary Borel probability measure v on X. Let o : G x X — FE
be a special cocycle. Then the decomposition (2.13) is unique provided

v(1) = 0.

PROOF. Let ¢ be as in (2.13) with v(¢)) = 0. Since v is the unique
p-stationary probability measure on X, by Corollary 1.11, one has the
uniform convergence on X, = Zz;é Pl]fi/} —— v(10). One gets

U(z) = nh—>nc}o% Zz;é Jo(o(g, ) — ko) dp*(g)
forall z € X. O

2.4.2. Covariance tensor. We will now study the covariance 2-tensors
of a cocycle. Let us introduce some terminology. We let S2E denote
the symmetric square of E, that is, the subspace of ®2 E spanned by
the elements v? =: v ® v, v € E. We identify S?E with the space of
symmetric bilinear functionals on the dual space E* of E, through the
linear map which, for any v in E, sends v? to the bilinear functional
(0, ¥) = @(v)i(v) on E.

Given ® in S2E, we define the linear span of ® as being the smallest
vector supspace Fo C E such that ® belongs to S?Eg: in other words,
the space E3 C E* is the kernel of ® as a bilinear functional on E*.
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We say ® is non-negative, which we write ® > 0, if it is non-negative
as a bilinear functional on E*. In this case, ® induces a Fuclidean
scalar product on Fg and we call the unit ball K¢ C Eg of this scalar
product the unit ball of ®. One has

(2.15) Ky ={veEE|v? <P}

THEOREM 2.13. Let G be a locally compact semigroup, X be a com-
pact metrizable G-space, E be a finite dimensional real vector space and
i be a Borel probability measure on G such that there exists a unique
p-stationary Borel probability measure v on X. Let 0 : G x X — FE be
a special cocycle, i.e. o satisfies (2.13). Assume [, osup(g)® du(g) < oo
and introduce the covariance 2-tensor

(2.16) D, = [, x(00(g,2) —0,)*du(g) dv(z) € S°E.
Then one has the convergence in S*E
(2.17) %fG(J(g, z) —no,)*dp(g) — D,

This convergence is uniform for x in X.

REMARK 2.14. Choose an identification of E with R, Then the
covariance 2-tensor on the left-hand side of (2.17) is nothing but the
covariance matriz of the random variable 2= on (G x X, 11" ® ).
Similarly the limit ®, of these covariance 2-tensors is nothing but the
covariance matriz of the random variable og on (G x X,y ® v). This
2-tensor @, is non-negative. The linear span Eg, of ®, is the smallest

vector subspace E,, of E such that
oo(g,2) € 0, + E, for all g in Supp p and x in Supp v

REMARK 2.15. The conclusion of Theorem 2.13 is not correct if
one does not assume the cocycle o to be special. Here is an example
where the random walk is deterministic. We choose X = R/Z, G = Z,
1 = 61 and the action of u on X is a translation by an irrational number
a. The unique p-stationary probability measure on X is the Lebesgue
probability measure dz. We let o(1, ) be a continuous function ¢ with
0 integral and = = 0, so that for n > 0, o(n, x) is the Birkhoff sum

Supl0) 1= 3 pla).

We claim that one can choose ¢ in such a way that the left-hand side
LS,p(x)? of (2.17) is not bounded, so that the theorem does not hold.
Indeed assume that, for any ¢ with [, ¢(z)dz = 0, one has

sup,, \/Lﬁ]Sngo(O)\ < 00.
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Then, by Banach-Steinhaus Theorem, there would exist C' > 0 such
that, for any such ¢, one has

sup,, 7=|Sup(0)] < C'lloll

Choose a sequence k; — oo such that exp(2imksa) —— 1 and write

{—00
exp(2imk,a) = exp(2ime,) with &, p— 0. Set ny = [2—;} We have

then exp(2imkynec) — —1. Let ¢, be the function x — exp(2irk,x).
We have

1 exp(2imkenga)—1

1 _ V2
N ‘S’MQOZ(O)' T Ve | exp(Zimkea)—1 ~

T\ /Ep

— 0OQ,

hence a contradiction. Thus, one can find a function ¢ such that the
conclusion of the Theorem 2.13 does not hold for the associated cocycle
0.

REMARK 2.16. The 2-tensor ®, will play a crucial role in the Cen-
tral Limit Theorem and its unit ball K, := Kg, will play a crucial role
in the law of the iterated logarithm in Theorem 11.1.

PrROOF OF THEOREM 2.13. Using the trick (2.9), we may assume
that the average o, is O

The integral M, (z) := [, 0 1 (g) is the sum of three terms
M, (z) = My, (z) + M1,n( )+ MM( ) Where
MO n g)a

(z) = [ o0(g, 2)* dp(

My (@) fGZUO g, 2)((x) = P(gx)) dp(g),
Moy (z) = [, (4 P(gz))? dp(g),

where 0y and v are as in (2.13).

We compute the first term. Since o, = 0, the “zero drift” condition
(2.12) implies that, for every m,n > 1, one has

MO,m—l—n = P;ZLMO,n + MO,m~
Hence M, ,, is the Birkhoff sum

_ N1 pk
Moy =) j—o PiMo,-

Since v is the unique p-stationary probability on the compact space
X, by Corollary 1.11, one has the convergence in S?E, uniformly for
r e X,

(2.18) Mo (2) —— v(Mos) = Dy

n—o0
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We now compute the second term. According to Theorem 2.9, one
has the convergence
2o(by by, ) —— 0, =0

in LY(B, B, E) uniformly for x € X. Hence one has the convergence,
uniformly for z € X,

(219) LM < 2 [l Sy loo(g. o)l du(g) —— 0.
The last term is the easiest one to control:
(2.20) LMan(@)] < 2012 — 0.

The convergence (2.17) follows from (2.18), (2.19) and (2.20). O

Again, in the study of non-connected groups, we will need the fol-
lowing invariance property analogous to Lemma 2.10.

LEMMA 2.17. We keep the notations and assumptions of Theorem
2.13. Let F be a finite group which acts linearly on E and which acts
continuously on the right on X. We assume that the F'-action and the
G-action on X commute and that the cocycles (g,z) — o(g,xf) and
(g9,2) — f~to(g,z) are cohomologous for all f in F. Then the 2-tensor
®, € S°E is F-invariant.

PROOF. By Lemma 2.12, we have f~loy(g,.) = ao(g,.f) for any g
in G and f in F. The proof is then analogue to the one of Lemma 2.10,
by using (2.16). O

2.5. Divergence of Birkhoff sums.

The aim of this section is to prove Lemma 2.18 which tells
us that when Birkhoff sums of a real function diverge,
they diverge with linear speed.

This lemma 2.18 will be a key ingredient in the proof of the posi-
tivity of the first Lyapunov exponent in Theorem 3.31, in the proof of
the regularity of the Lyapunov vector in Theorem 9.9, and hence in the
proof of the simplicity of the Lyapunov exponents in Corollary 9.15.

LEMMA 2.18 (Divergence of Birkhoff sums). Let (X, X,x) be a
probability space, equipped with an ergodic measure-preserving map T,
let o be in LN X, X, x) and, for anyn in N, let @, = o+...+poT™ !
be the n-th Birkhoff sum of ¢. Then, one has the equivalences

lim @, () = 400 for x-almost all x in X <= [, ¢dx >0,
lim |, (x)] = 400 for x-almost all x in X <= [, pdx #0.
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Here is the interpretation of this last equivalence: one introduces
the fibered dynamical system on X xR given by (z,t) — (Tz,t+¢(z))
which preserves the infinite volume measure y ® dt; this dynamical
system is conservative if and only if the function ¢ has zero average.

PROOF. Suppose first [ v wdx > 0. Then, by Birkhoff theorem,
one has, y-almost everywhere, ,, —— +00.

n—oo

Similarly, when [, ¢ dy < 0, one has ¢, —— —o0.

n—oo

Suppose now [ +#dx = 0 and let us prove that, for x-almost any
x in X, there exists arbitrarily large n such that |p,(z)| < 1. Suppose
this is not the case, that is, for some p > 1, the set

A={aeX|¥n2p loua) > 1}

has positive measure.
Let us first explain roughly the idea of the proof. By definition of
A, the intervals of length 1 centered at ¢,,(x), for m integer such that
T™x sits in A, are disjoints. We will see that by Birkhoff Theorem this
gives too many intervals since the sequence ¢,,(z) grows sublinearly.
Here is the precise proof. By Birkhoff theorem, for y-almost any x
in X, one has

Lop(x) —— 0 and L|{me[0,n—-1]|T"z € A} — x(A4).
Pick such an x and fix ¢ > p such that, for any n > ¢, one has

on(2)] < 5 x(A) and [{m € [0,n—1] [Tz € A}| > °F x(A).
Then, for n > q, the set

E,={meg,n-1]| Tz € A}

admits at least 22y (A) — ¢ elements. For each m in E,,, we consider

4
the intervals

Ly, = [Som(x) - %’ (,Om(l‘) + %]

On the one hand, for m, m' in E,, with m’ > m + p, as T™x belongs to
A, one has

[ (2) = ()| = [Pmr—m(T"2)| > 1,
hence the intervals I,,, and I, are disjoint, so that one has
where A denotes Lebesgue measure. On the other hand, for ¢ < m <
n — 1, the interval I, is included in [~ £ x(A) — 3, {5 x(A) + 3], so that

A (Unep, Im) < ﬁx(A)n + 1.
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Thus, for any n > ¢, one has
SCEX(A) — ) < $x(A) +1,

which is absurd, whence the result. 0

3. Linear random walks

The aim of this chapter is to prove the Law of Large Numbers
for the norm a product of random matrices when the representation
is irreducible (Theorem 3.28) and to prove the positivity of the first
Lyapunov exponent when moreover this representation is unimodular,
unbounded and strongly irreducible (Theorem 3.31). To do this, we
have to understand the stationary measures on the projective space
for such irreducible actions. We will begin by the simplest case: when
the representation is strongly irreducible and proximal. In this case, we
check that there exists a unique p-stationary measure on the projective
space. It is called the Furstenberg measure.

3.1. Linear groups.

In this section, we study semigroups I' of matrices over a
local field. When T is irreducible, we define its proximal
dimension. When moreover I' is proximal, i.e. when the
proximal dimension is 1, we define its limit set.

Let K be a local field. We recall that this means that K is either R
or C, or a finite extension of the field of p-adic numbers Q, for p a prime
number, or the field of Laurent series IF,((7)) with coefficients in the
finite field F,, where ¢ is a prime power. Let V' be a finite dimensional
K-vector space and d = dimg V.

If Kis R or C, let |.| be the usual modulus on K and ¢ be the
number e. Fix a scalar product on V' and let ||.|| denote the associated
norm.

If K is non-archimedean, let O be its valuation ring, @ be a uni-
formizing element of K, that is, a generator of the maximal ideal of O,
and let ¢ be the cardinal of the finite field O/wO. Equip K with the
absolute value |.| such that |w| = %. Fix a ultrametric norm ||.|| on V.

We denote by P(V') := {lines in V'} the projective space of V' and
G, (V) := {r-planes in V'} the Grassmann variety of V when 0 < r < d.

We endow the ring of endomorphisms End(V') with the norm given

1/ ()l

by ||f| := m;%( W, for every endomorphism f of V.
v (%
Recall that a nonzero endomorphism f of V' is said to be proximal
if f admits a unique eigenvalue with maximal absolute value and if

the multiplicity of this eigenvalue in the characteristic polynomial of
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f is 1. In this case, this eigenvalue and this eigenspace are defined
over K. Note that this amounts to saying that the action of f on
P(V)\P (Ker fd) admits attracting fized point, i.e. a point admitting
a compact neighborhood b+ such that, uniformly for z in b*, the powers
f™(z) converge to this point. This point is sometimes denoted VfJr €
P (V) and sometimes x}r This line Vf+ is the eigenspace of f whose
eigenvalue has maximal absolute value. We let Vf< C V denote the

unique f-stable hyperplane with VfJr 7 Vf<. The action of the adjoint
map f* of f on the dual space V* to V is also proximal and one has

(V9)E = (Vo)*h and (V95 = (Vi)™

Let ' be a subsemigroup of GL(V'). Say that the action of I on
V' is irreducible, or that I is wrreducible, if every I'-stable subspace of
V either equals V or {0}. Say it is strongly irreducible, or that T" is
strongly irreducible, if, for any finite set Vi, ...,V of subspaces of V, if
the set V1 U... UV, is I'-stable, then either there exists 1 < i <[ with
Vi=VorVi=...=V,={0}.

Let r := rp be the prozimal dimension of I', i.e. the smallest integer
r > 1 for which there exists an endomorphism 7 in End(V') of rank r
such that

= lim A\, g, with A\, in K and g, in I.

Say I' is proximal if rp = 1. For instance, when I' contains a proximal
element, the semigroup I' is proximal.

The following lemma tells us that, when I' is irreducible, the con-
verse is also true.

LEMMA 3.1. Let T be an irreducible prozimal subsemigroup of GL(V).
Then I' contains a proximal element.

Moreover, for any proper subspace W of V', there exists a proximal
element g of I' with V," ¢ W.

PROOF. Let 7 in End(V) be a rank one endomorphism such that
7= lim, s A\p gp with A, in K and g, in G. As I is irreducible, there
exists h, A’ in I with A(Im7) ¢ W and h'h(Imm) ¢ Kerm. Then hrh’
is a multiple of a rank one projector whose image is not included in W'.
Note that

hoh/ = lim M\, hg,h'.

We claim that the element hg,h’ is proximal, for n large, and VhJ;n w L
W. Indeed, if b is a compact neighborhood of P(h(Im)) in P(V') which
intersects neither P(W) nor P(h'~*(Kern)), then, for n large, hg,h'(b)
is contained in the interior of b and the restriction of hg,h’ to b is a
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%—contraction, thus, hg,h' admits an attracting fixed point in P (V),
which belongs to b. U

The following lemma 3.2 introduces the limit set in P(V) of an
irreducible proximal subsemigroup. This lemma is also useful when
the representation is not proximal. Indeed, it introduces the limit set
in the Grassmann variety of V' on which one controls the norms of the
image vectors. This limit set will be used in the proof of the Law of
Large Numbers for the norm.

LEMMA 3.2. Let I' be an irreducible subsemigroup of GL(V) and
let r = rp be its prozimal dimension. Let Af. C G,(V) be the set of
r-dimensional subspaces W of V' which are images of elements m €
End(V) which belong to the closure KT .

a) Then A} is a minimal T'-invariant subset of G, (V). It is called the
limit set of ' in G, (V).
b) There ezists C > 0 such that, for every g in I', W in A}, and v, v
nonzero in W, one has

(3.1) lovll < ¢+ llgvll

[[o"l [[oll

c) When r =1, AL is the unique minimal T-invariant subset of P(V),
and is called the limit set of T' in P(V).

We recall that a I'-invariant subset is said to be minimal if it is
closed and all its I'-orbits are dense.

Point b) means that, on the limit r-subspaces W € A[., the elements
of I almost act by similarities. In case K = R, the constant C' can be
chosen to be C' =1 for a suitable choice of norms.

REMARK 3.3. In case K = R, the constant C' can be chosen to be
C' =1 for a suitable choice of norm (see Lemmas 5.23 and 5.33).

REMARK 3.4. When r > 1, the I'-invariant subset A} C G, (V)
may not be the only one which is minimal. Indeed, there may exist
uncountably many minimal subsets in G, (V). For example, let I' =
SO(d — 1,1) act on V = A?R? with d > 6. One has then r = d — 2.
We denote by e;; := e; Ae;, with 1 <4 < j < d, the standard basis
of V. For instance when d = 7, r = 5 and the quadratic form is
T1x7 + 13 + - - - + 22, the subspace

W= (e12,€13, €14, €15, €16)
belongs to A} while, for ¢ > 1, the subspaces
Wi = (e12,€13, €14, €15, €23 + tess)

are in distinct compact orbits of I' in G,.(V').
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PrROOF OF LEMMA 3.2. a) Fix W = Im7 and W’ = Im 7’ in A}.
We want to prove that W is in the closure of the I'-orbit of WW’. Since I'
is irreducible, one can find ¢ in I" such that the product gz’ is nonzero.
By definition of r, the product wgn’ has rank r. Write 7 = lim \,g,

n—oo

with A, € K, g, € I'. Then one has, as required,
W = lim g,gW".

b) First, note that, fo_rany e > 0, there exists a > 0 such that, for
any € P(V) and 7 in KI' with rank r, if d(z,P (Ker7)) > ¢, one has

[rwll = el fJw]]

Indeed, if this were not the case, one could find a sequence of elements
of KT with rank 7 but with a nonzero cluster point of rank < 7.

Using the compactness of the Grassmann varieties, we pick € > 0
such that, for any U in G,_,(V) and U’ in G,,_,+1(V'), there exists x
in P(U’) with d(z,P(U)) > ¢, and we let o be as above. For g in T,
W =Immin Af and v # 0 in W, we can find w in V' such that 7w = v
and d(Kw,P (Kerm)) > . We get

allrlH lwll < floll < flwfl{lwl]
allgr| w] < llgoll < gz |wl]

hence
gl

ol llgvll
- Ll

[l vl

and (3.1) follows immediately.
c¢) Same proof as in a). Assume r = 1. Fix W = Im in A} and
x in P(V). We want to prove that W is in the closure of the I™-orbit
of z. Since I' is irreducible, one can find g in I' such that gx is not
in Kerw. Write 7 = lim \,g, with A, € K, g, € I'. Then one has,

n—oo

W = lim g,gz as required. U

IN
Q I~

3.2. Stationary measures on P(V') for V strongly irreducible.

We study now the stationary measures v on the projec-
tive space for strongly irreducible actions. We construct
the Furstenberg boundary map. In particular, when the
action is proximal, v is unique and its limit measures v,
are Dirac masses.

We keep the notations of Section 3.1. For a Borel probability mea-
sure u on GL(V), we let I'), denote the smallest closed subsemigroup
of GL(V) such that p(I',) = 1. We also keep the notations of Chapter
1 with G = GL(V). In particular, (B, B, 3) is the one-sided Bernoulli
space with alphabet (G, G, ).
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The following lemma tells us that the proximal dimension is reached
by almost every trajectory and it constructs the so-called Furstenberg
boundary map.

LEMMA 3.5. Let p be a Borel probability measure on GL(V') such
that T, is strongly irreducible. Let r = rr,. Then
a) There exists a Borel map & : B — G,(V') such that for 3-almost any
b in B, every nonzero limit point f in End(V') of a sequence A\, by - - - by,
with A\, in K has rank r and admits £(b) as its image.
b) Let v be a p-stationary Borel probability measure on P (V). Then,
for B-almost any b in B, £(b) is the smallest vector subspace V, C 'V
such that the limit measure vy, is supported by P(V}).

We shall use the strong irreducibility assumption under the follow-
ing form:

LEMMA 3.6. Let pu be a Borel probability measure on GL(V'), 1o > 0,
v be a p-stationary Borel probability measure on G, (V') and W be a
proper nontrivial subspace of V.
a) If U, is irreducible, then one has v(G, (W)) # 1.
b) If '), is strongly irreducible, then one has v(G,, (W)) = 0.

PROOF. a) Let Wy be the intersection of all the subspaces W' of
V such that v(G,,(W)) = 1, that is, such that G,, (W) contains the
support of v. We still have V(GTO(W())) = 1. The equality

V(G (Wo)) = [ v(Gr (97 Wa)) du(g)
tells us that, for p-almost any ¢ in GL(V), one has

v(Gy, (97 W0)) =

and hence Wy = g~'W,. We get ' Wy = Wy. Now, since W) is nonzero
and V is irreducible, we get W, = V' as required.

b) Let r > ry be the smallest positive integer such that there exists a
nontrivial subspace W of V' with dimension r such that v(G, (W)) # 0.
As, for any Wy # Wy in G,(V), one has v(G, (Wi N Ws)) = 0, for any
countable family (W;);en of elements of G,(V'), one has

ZieN V(Gro (W3)) = I/(UieN Gro (W) < 1.
Hence, for any m > 0, the set of W in G, (V') with v(G, (W)) > m is
finite. Let

m:= sup v(G, (W))
WeG,(V)

and let M be the non-empty finite set
M :={W € G.(V) | v(G,,(W)) =m}.
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Again, for any W in M, the equality

v(G, (W) = [, (G, (g7'W))du(g),

tells us that, for g-almost any g in G, g~'W belongs to M. Hence, the
finite union (Jy; o, W is I'-stable and, since I',, is strongly irreducible,
r is the dimension of V', which completes the proof. O

Note that every endomorphism f of V' induces a continuous map

P (V) <P (Ker f) — P (V).

PrROOF OF LEMMA 3.5. A crucial feature of the proof consists in
dealing simultaneously with the statements a) and b). Let v be a pu-
stationary Borel probability measure on P (V). Such a measure does
exist by Lemma 1.10. By Lemma 1.21, for f-almost any b in B, for
any integer m > 0, for p*™-almost any ¢ in GG, one has

(by -+ bug)s —— 1y
We set £(b) to be the smallest vector subspace of V' such that
w(P(£(0))) = 1.

Let f be a nonzero limit point in the space of endomorphisms of
V' of a sequence \,b;---b, with A\, in K. By Lemma 3.6, one has
v(P(Ker fg)) = 0 for any ¢g in GL(V'). Hence, for any m in N, for
™ -almost any g in GL(V'), one has (fg).v = 1. Thus, by continuity,
one gets

(3.2) (fg)sv = v, for any g in T',.

In particular, one has
f V= Vp.

On the one hand, this gives £(b) C Im f. On the other hand, one gets
v(f~1€(b)) = 1, hence, by Lemma 3.6, f~1£(b) = V and £(b) D Im f.
This proves the equality £(b) = Im f. This proves simultaneously that
the image Im f does not depend on the choice of the limit point f and
that the space £(b) does not depend on the choice of the stationary
measure v.

It only remains to check that dim&(b) = r. Let m be a rank r
endomorphism of V' which is a limit 7 = lim A,g, with )\, in K and

gn in I',. Since I',, is irreducible, we can choose 7 in such a way that
fm #0. By Lemma 3.6, v(Kerm) = 0. Hence, applying Equation (3.2)
to g = g, and passing to the limit, one gets

(fm)ev = 1.
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This proves that £(b) = Im (f7) and dim&(b) < r. By definition of r,
this inequality has to be an equality. U

The following Proposition 3.7 is just a restatement of Lemma 3.5
when I', is proximal. In this case the Furstenberg boundary map ¢
takes its values in the projective space.

PROPOSITION 3.7. Let pu be a Borel probability measure on GL(V)
such that I'y, is prozimal and strongly irreducible. Then there exists a
unique p-stationary Borel probability measure v on P (V).

This probability v is p-proximal, i.e. there exists a Borel map

¢:B—P(V)

such that, for B-almost any b in B, vy is the Dirac mass at £(b) € P (V).
In particular, one has v = £,.[3.

For B-almost any b in B, every nonzero limit point f in End(V') of
a sequence A\p,by---b, with A\, in K has rank one and admits the line
£(b) as its image.

PROOF OF PROPOSITION 3.7. Thanks to Lemma 3.5, it only re-
mains to check the uniqueness of the u-stationary probability measure
von P(V). Since rr, = 1, according to Lemma 3.5, for $-almost any b
in B, the corresponding limit measure v, is a Dirac mass at the point
&(b). Hence by Lemma 1.19, one has v = [, d¢) dB3(D). O

Applying Lemma 3.5 to the dual representation, one gets :

COROLLARY 3.8. Let pu be a Borel probability measure on GL(V)
such that T, is strongly irreducible. Let r =,
a) For B-almost any b in B, there exists Vi, € G4—.(V') such that every
nonzero limit point f in End(V') of a sequence A\,b,, - - - by with A\, in K
has rank r and admits Vi, as its kernel.

b) For every x in P(V'), one has B({b € B |x C V3}) =0.

PRrOOF. a) For g € GL(V) we denote by ¢* € GL(V*) the adjoint
operator of g. The adjoint subsemigroup I}, C GL(V*) is also strongly
irreducible and one has

e Pl T Ffb .
Hence we can apply Lemma 3.5 to the image measure p* of u by the
adjoint map. This tells us that, for -almost any b in B and any A, in
K, any nonzero limit value of \,,b7 - - - b} is a rank r operator in End(V*)
whose image £*(b) € G,(V*) does not depend on the limit value. Let
Vi, C V' be the vector subspace

Vi = (€ (b)-.
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Any limit value of A\,b,---b; is a rank r operator in End(V') whose
kernel is V},.
b) Note that, by construction, for S-almost any b in B, one has

£ (Tb) = (by) '€ (D),
so that, by Remark 1.20, the Borel probability measure v* on G, (V*),

image of § by the map £*, is u*-stationary. The result now follows from
Lemma 3.6 applied to v*. 0

REMARK 3.9. The assumption that I', is proximal is crucial in
Proposition 3.7. For instance, if one chooses y in such a way such that
I', is a connected compact subgroup of GL(V') which acts irreducibly on
V' but which does not act transitively on P(V'), then there are infinitely
many stationary measures on P(V'), since every I',-orbit carries one.
One can give similar examples with a non-compact I', by using the
group constructed in Remark 3.4.

REMARK 3.10. The assumption that I', is strongly irreducible is
also crucial in Proposition 3.7. One cannot weaken it by just assuming
', to be irreducible. For example, if G is the group of matrices of the
form (8 agl) or (a91 3) with a # 0 in R, which acts on R?, we let
1t be a compactly supported Borel probability measure on G such that
I'y = G. In this case, one checks that, since a centered random walk
on R is recurrent, for -almost every b in B, the set of cluster points of
the sequence Rb; - - - b, € P(End(R?)) contains both rank 1 and rank 2
matrices.

An analogue example can be constructed with a semisimple group
G (see Section 12.9 for details).

We will see in Section 3.3 how to take into account Remark 3.10
and how to adapt the main results of Section 3.2 to general irreducible
actions.

3.3. Virtually invariant subspaces.

In this section, we introduce purely algebraic tools to re-
duce the study of irreducible representations to the study
of strongly irreducible representations.

Let I' be a subsemigroup of GL(V'). We say that a subspace W of
V' is wirtually invariant by I' if the set T'W = {gW|g € T'} is finite.
We say that a nonzero virtually invariant subspace W is strongly irre-
ducible if it does not contain any proper nontrivial virtually invariant
subspace. Note that, since V' is finite dimensional, there always exists
a strongly irreducible virtually invariant subspace W in V. Note that
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this definition of strong irreducibility extends the one given in Section
3.1.

LEMMA 3.11. Let I' be a subsemigroup of GL(V).
a) If W is a virtually invariant subspace, so is gW for any g in I.
b) If moreover W is strongly irreducible, so is gW for any g in T.
c) If Wy and Wy are virtually invariant subspaces, so are W1+ Wy and
Wiy N Ws.

PROOF. a) follows from the fact that I'¢WW C I'W (and even I'¢W =
['W since the latter set is finite).

b) is immediate if " is a group. In general, this follows from the
fact that any finite subsemigroup of a group is a group. More precisely,
there exists m > n such that ¢™W = ¢"W. Hence, setting h = g™ "1,
one gets hgW = W. Now, if U C gW is virtually invariant, then, by
a), hU C W is also virtually invariant and we get hU = W, hence
U = gW, which was to be shown.

c) follows from the identites g(W; + W) = (¢W1) + (gW2) and
g(W1NWsy) = (gWy) N (gWs), for g in T. O

The following lemma decomposes any irreducible representation as
a sum of strongly irreducible subspaces:

LEMMA 3.12. Let I' be an irreducible subsemigroup of GL(V') and
let Wy, ..., Wy be a minimal family of virtually invariant and strongly
wrreducible subspaces of V' such that V' is spanned by Wy, ..., Wy. Then
one hasV.=W1; & --- & W,.

PROOF. By minimality, we have Wi N (Wy 4 -+ + W,) # W;. By
Lemma 3.11, Wy N (Wy + - -+ + W,) is a virtually invariant subspace.
Thus, we get Wy N (Wy + -+ + W,) = {0} and the result follows. [

Note that such a family W; always exists. Note also that one cannot
always expect such a family W; to be invariant under the action of T'.
This is why we introduce the following definition.

If T is an irreducible subsemigroup of GL(V'), we shall say that a
family (V;);er of subspaces of V' is a transitive strongly irreducible T'-
famuly if, for any ¢, V; is virtually invariant and strongly irreducible
and if the family is I'-invariant and transitively permuted by I'. In
other words, it is of the form I'W, where W is a virtually invariant and
strongly irreducible subspace of V. Such a family necessarily spans V'
since J ger 9W spans a I'-invariant subspace of V and I" acts irreducibly
on V. Since V' admits virtually invariant and strongly irreducible sub-
spaces, it also admits transitive strongly irreducible I'-families.



3. LINEAR RANDOM WALKS 65

ExaMPLE 3.13. If I is a finite group, the V; have dimension 1. If
' is strongly irreducible, one has V; = V.

LEMMA 3.14. Let T' be an irreducible subsemigroup of GL(V), W
be a nonzero virtually invariant and strongly irreducible subspace of V'
and Ty = {g € T' | gW = W}. Then, the dimension of W and the
proximal dimension of I'yy in W do not depend on W.

We call this proximal dimension r the wvirtual prorimal dimension
of I' and we say I' is virtually proximal if r = 1.

PROOF. Let (V;);e; be a transitive strongly irreducible I'-family in
V. We claim that the semigroups I'; := I'y; all have the same proximal
dimension in the spaces V;. Indeed, let 7,7 be in I and g,h be in I’
with gV; = V; and hV; = V;. We get gI';h C I';, hence the proximal
dimension of I'; is bounded above by the proximal dimension of I';. By
reversing the roles of ¢ and j, we get equality.

Now, by Lemma 3.12, one can find a subset J of I such that one
has V = @,., Vi. We let p; denote the projection on V; in this decom-
position.

Let W be a virtually invariant and strongly irreducible nonzero
subspace of V. As W is nonzero, there exists ¢ € J with p;(W) # {0}.
We claim that p; induces an isomorphism between W and V;. Indeed,
since the set 'W <[], I'Vj is finite, if A = I'yy N[, Iy, there exists
a finite subset F' of I' such that I' = FA. Hence, since the spaces
pi(W) and W N Kerp; are A-invariant, they are virtually invariant.
Since p;(W) is a nonzero subspace of V;, we get p;(W) = V. Since
W N Kerp; is a proper subspace of W, we get W N Ker p; = {0}, which
was to be shown. In particular, W and V; have the same dimension.

Let now g, be a sequence in I'yy and A, be a sequence in K such
that \,g, converges in the space of endomorphisms of W towards a
map 7 with rank the proximal dimension r of I'yyy in W. Since the
set I'yy (V) ey is finite, one can find a finite subset F’ C I'yy such that
'y = F'A. Thus, for any n in N, there exists f,, in F’ with f,g,V; =V;
for any 7 in J. In other words, after having replaced g, by f,g, and
taken a subsequence, one can assume g,, € I'y; for any n, for any j in
J. In particular p;g, = g,p;. Since p; induces an isomorphism between
W and V;, the sequence \, g, converges in the space of endomorphisms
of V; towards a rank r map and the proximal dimension of I'; in V;
is bounded by r. The result follows by exchanging the roles of the
[-families (V;);e; and T'W. O

3.4. Stationary measures on P(V).
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We will now use the language of Section 3.3 to extend
the study of stationary measures on projective spaces to
irreducible actions which are not strongly irreducible. An
alternative approach will be explained in Chapter 4.

Here is the extension of Lemma 3.5 which constructs the Fursten-
berg boundary map.

LEMMA 3.15. Let pu be a Borel probability measure on GL(V') such
that the semigroup I, is irreducible. Let r be the virtual provimal di-
mension of I',,. Let (V;);er be a transitive strongly irreducible I, -family.
Then
a) There exist Borel maps &y, : B — G,(V;), for i € I, such that, for
any i, j in I, for B-almost any b in B, every nonzero limit point f in
Hom(V;, Vi) of a sequence \pby---by |y, with A, in K has rank r and
admits &y, (b) as its image.

b) Let v be a p-stationary Borel probability measure on U;eP (V).
Then, for B-almost any b in B, &y.(b) is the smallest vector subspace
Vip C Vi such that the limit measure vy, is supported by U;crP(Vip).

REMARK 3.16. By construction these maps &y, satisfy the following
equivariance property. For all ¢, 7 in [ and (3-almost all b in B such

that b;V; =V, one has
v, (b) = b1 &y, (TD).
Here is the extension of Lemma 3.6.

LEMMA 3.17. Let p1 be a Borel probability measure on GL(V') such
that T'), is irreducible. Let W be a wvirtually invariant and strongly
irreducible subspace of V' for I',,. Let ro > 0 and v be a p-stationary
Borel probability measure on G, (V). Then, for any proper nontrivial

subspace U of W, one has v(G, (U)) = 0.

To
PrROOF OF LEMMA 3.17 . Same proof as for Lemma 3.6. 0

Proor or LEMMA 3.15. We copy the proof of Lemma 3.5 taking
into account the subspaces V; which are permuted by I'. We simul-
taneously prove the two statements. Let v be a pu-stationary Borel
probability measure on X. We set v; for the restriction of v to P(V;)
and, for f-almost all b in B, we set v, for the restriction of v, to P(V;).
By Lemma 1.21, for S-almost any b in B, for any integer m > 0, for
p™-almost any ¢ in G , one has (by - - - b,g).v —— 13,. We set &y, (b)

to be the smallest vector subspace of V; such that v,(P(&y, (D)) = 1.
Let ¢, j, k in I and ¢ in GL(V) be such that gV, = V,. Let
f € Hom(V},V;) be a nonzero limit point of a sequence \,b; - - - by|v,
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with A, in K. By lemma 3.17, one has v(P (Kery, fg)) = 0. Hence, for
any m in N, for p*"-almost any g in GL(V') such that gV} = Vj, one
has (fg)«vx = v;p. Thus, by continuity, one gets

(3.3) (fg)svk = vy, for any g in ', such that gV, = V;.

In particular, one has
f*yj = Vip-

Hence, using again Lemma 3.17, one has the equality

&vi(b) = f(V).
This simultaneously proves that the image f(V;) does not depend on
the limit point f and that the space & (b) does not depend on the
choice of the stationary measure v.
It remains only to check that dim &y, (b) = r. Let 7 € End(V}) be
a rank r element which is a limit 7 = lim )\ngn|vj with A, in K and

gn in I'y, ¢,V; = V;. Since the stabilizer of V; in I', is irreducible
in V;, we can choose 7 in such a way that fr # 0. By Lemma 3.6,
v(Kery,m) = 0. Hence, applying Equation (3.3) to g = g, and passing
to the limit, one gets

(f)vj = Vi
This proves that &, (b) = fr(V;) and dim &y, (b) < r. By definition of
r, this inequality has to be an equality. O

Focusing on virtually proximal representations, one obtains the fol-
lowing extension of Proposition 3.7.

PROPOSITION 3.18. Let u be a Borel probability measure on GL(V)
such that the semigroup T, is irreducible and virtually prozimal. Let
(Vi)ier be a transitive strongly irreducible T'-family. Then there exists
a unique p-stationary Borel probability measure v on U;c/PV;.

This probability v is p-proximal over I 1i.e. for each i in I, there
exists a Borel map

& B—P(Vi)

such that, for B-almost any b in B, v, is the average ﬁ Y oicr Oey- In
particular, one has vip,) = (&).0-

For 1,5 € I, for B-almost any b in B, every nonzero limit point f
of a sequence A\p(by -+ by), € Hom(V;, Vi) with A, in K has rank one

and admits the line &(b) as its image.

REMARK 3.19. In case K = R, one can prove that every ergodic
stationary measure on PP (V') is of the form described in Lemma 3.15,
i.e. is supported by U;c;P(V;) for some transitive strongly irreducible
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I',-family (this is explained in [13]). In case K is non-archimedean, a
counter-example is constructed in Section 12.9.

PrRoOOF. Thanks to Lemma 3.15, it only remains to check the unique-
ness of the p-stationary measure v on U;c/P(V). Note first that the
semigroup I' acts on the finite set [ and hence, by the mazimum prin-
ciple the image of v on [ is I'-invariant.

Since rp, = 1, according to Lemma 3.15, for S-almost any b in B,
the corresponding limit measure v, is given by the formula

(3.4) Vo = 177 Dier Oi(b)-
Hence v is unique since by Lemma 1.19, one has v = [, 1, d3(b). O

Applying Lemma 3.15 to the dual representation, one obtains the
following extension of Corollary 3.8.

COROLLARY 3.20. Let p be a Borel probability measure on GL(V)
such that the semigroup I',, is irreducible. Let v be the virtual prozimal
dimension of I',,, and W be a virtually invariant and strongly irreducible
subspace of V. Then
a) For B-almost any b in B, there exists Wy, € G4_,.(W') such that every
nonzero limit point f in Hom(W, V) of a sequence A\,by, - - - by|w with
A n K has rank v and admits Wy, as its kernel.

b) For every x in P(V'), one has f({b € B |z C W,}) = 0.

PROOF. a) For ¢ € GL(V) we denote by ¢g* € GL(V*) the ad-
joint operator of g. The adjoint subsemigroup I'; C GL(V*) is also
irreducible with virtual proximal dimension r. Let U be a virtually
invariant and strongly irreducible subspace of V* such that the restric-
tion to U of the natural map ¢* : V* — W™ is nonzero. Since the image
of U in W* is virtually invariant, * maps U onto W* isomorphically.
Let & : B — G, (U) be the map constructed in Lemma 3.15. For b in
B, we set

Wy = (i*€o (b))
which is a codimension r subspace of W and we claim that the Corollary
holds for this choice of the map b +— W,.

Indeed, let b be in B such that the conclusion of Lemma 3.15 holds
for b and the transitive strongly irreducible I',-family I',U. Let Ay
be a sequence in K and n; be a sequence of positive integers such
that the sequence A (by, - - - b1)|W admits a nonzero limit point 7 in
Hom(W,V'). After maybe extracting a subsequence, one can assume
there exists subspaces W’ of V' and U’ of V* such that, for any k, one
has

bpy -0y W =W’ and bi---bflkU' =U.
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In particular, 7* induces an isomorphism between U’ and (W')*. Now,
by construction and by Lemma 3.15, the restriction of Aibj --- b}, to U’
converges towards a rank r element w of Hom(U’, U) with image &y (b)
and we get Ty = 170, SO that 7 has rank r and kernel W, which was
to be shown.

b) First note that, by definition, if x ¢ W, one has

B{be Bz CW}) =0,

so that we can assume x C W. We keep the notations of a) and we set
X = 2zt N U, which is a proper subspace of U. For $-almost any b in
B, one has the equivalence

rC W, <= £(b) C X.

Let (V;")ier be the transitive strongly irreducible I';-family I';U and,
for B-almost any b in B, for i in I, let V7, be the subspace constructed in
Lemma 3.15. We set v*(b) = ﬁ Y il dvy, which is a Borel probability
measure on G, (V*). By construction, for -almost any b in B, one has
Vi = (b3) 7'y} so that, by Remark 1.20, the Borel probability measure
v* = [pupdp(b) is p*-stationary. The conclusion now follows from
Lemma 3.6 since one has

B{be Bz CWy}) = 1] v'(Go(X)). O

3.5. Norms of vectors and norms of matrices.

In this section we prove that for almost every trajectory
b, the size of all the columns of the matrix b, ---b; are
comparable.

PROPOSITION 3.21. Let u be a Borel probability measure on GL(V)
such that I',, is strongly irreducible. For any nonzero vector v in'V, for
B-almost any b in B, there exists € > 0 such that, for any n € N, one
has

(3.5) 1bn - - brv]| = & [|bn - - by || o] -

REMARK 3.22. In Proposition 3.21, one cannot replace the assump-
tion “I',, us strongly irreducible” by “I', is irreducible”. Indeed it may
exist two virtually invariant and strongly irreducible subspaces V; and
V; of V such that, for $-almost every b in B, one has

an"'blw B

sup =
n=1 [[bn e brfv |

An example of such a situation will be constructed in Section 12.9.
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If we only assume that “I', is irreducible”, we have to replace In-
equality (3.5) by Inequality (3.6). This is the content of the following
proposition.

PROPOSITION 3.23. Let u be a Borel probability measure on GL(V)
such that ', is irreducible. Let (V;)ier be a transitive strongly irre-
ducible I',-family. For any i in I, v nonzero in V;, for B-almost any b
in B, there exists € > 0 such that, for any n € N, one has

(3.6) 1 - -+ byl = f|bp - - byl [ [[w]]
To estimate norms of random products, we shall use the following
LEMMA 3.24. Let (gn)nen be a sequence of elements of GL(V') and
f € End(V) be a nonzero limit of a sequence \,g, with A, in K.
a) Then, for any compact subset M of P (V) \ P (Ker f), there exists

a real number € > 0 such that, for any n € N and any v in V with
Rv € M, one has ||gav|| > € ||gnll ||v]]-

. - - d
b) If f is non invertible, one has lonll™ o,
) |det gnl| 400
‘ . r4+1
¢) More precisely if f has rank r < d, one has HHAgﬂlgnH n—oo
—

ProoOF OF LEMMA 3.24. These statements are proved by contra-
diction. After a renormalization, we may assume that the sequence g,
converges towards f. In particular, one has ||g,|| —— || f]| # 0.

n—oo

a) If there exists a sequence of nonzero vectors v, with Kv, in M

such that the ratio L2zl goes to 0, then one can assume that v,

llgnllllonll
converges to a nonzero vector v,,. The line Kv,, is also in M and the
limit ratio %=l is nonzero.
IR
b) If 4220= is hounded, then f is invertible.
|det gn | )
r+1 . .
c) If H”/\g’?l'lg 7 is bounded, then A™*!f is nonzero. O

PROOF OF PROPOSITION 3.23 . For any z in P (V;), one has, by
Corollary 3.20, 8({b € B | « C Vip}) = 0, so that our statement follows
from Lemma 3.24.a. U

The following corollary tells us that the random walk on V'~ {0}
1s transient.

COROLLARY 3.25. Let pu be a Borel probability measure on GL(V)
such that I',, is irreducible. If, for some virtually invariant and strongly
irreducible subspace W of V', the image in PGL(W) of the stabilizer
L'yw of W in T, is not bounded, then, for any nonzero vector v in V,
for B-almost any b in B, one has

(3.7) lim ||by, - - - byv|| = 0.
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Note that, if I is an irreducible subsemigroup of GL(V'), then the
virtual proximal dimension of I' equals the dimension of some (equiv-
alently any) virtually invariant and strongly irreducible subspace W if

and only if, for some (equivalently any) such subspace W, the image
in PGL(W) of the stabilizer I'y, of W' is bounded.

PROOF. Let r be the virtual proximal dimension of I',. Let (V});cr
be a transitive strongly irreducible I',-family. All these spaces V; have
the same dimension, call it dy. Since the image of I', in PGL(V) is
unbounded, one has r < dj.

It is enough to prove (3.7) for v in one V;. According to (3.6), for
[-almost all b in B, the sequence

b ---ba v,
Ton—b1vl]

is bounded above. Since r < dj, according to Lemma 3.15 and Lemma
3.24.b, for f-almost all b in B, one has

Tl -+ iy, || = oo
This proves (3.7). O

REMARK 3.26. Here is a slight improvement of Proposition 3.21,
which we will not use in this book, in which the convergence in v is
uniform. This statement has a similar proof (See [14, Cor. 5.5]) :

Let v be a Borel probability measure on GL(V') such that T, is
strongly irreducible. For any a < 1 there exists € > 0 such that for any
nonzero vector v in V', one has

(3.8) B({be B ||bp---brv| > ¢€llby--- byl ||v|| for all n >1}) > a.
3.6. Law of Large Numbers on P(V).

We now introduce the norm cocycle on the projective
space which, roughly speaking, controls the growth of
the norm of a matrix and we prove the Law of Large
Numbers for this cocycle.

We want to describe the behavior of the norm of the product of
random elements of the group G := GL(V') that are independent and
identically distributed with law . For any g in G, we set

(3.9) N(g) = max ([lgll, lg~"1),
and for x in the space X :=P (V),

(3.10) o(g,z) = log 122l
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where v is a nonzero element of the line x. The map o : G x X — R is
a continuous cocycle which we will call the norm cocycle. The function
Osup : G — R introduced in (2.7) is given here by

Tsup(g) = log N(g).

We will say that a Borel probability measure g on GL(V') has a
finite first moment if one has [, log N(g)du(g) < co (which does not
depend on the choice of the norm). In this case the sequence of real
numbers ( [, log ||| di**(g)) is subadditive. We set

Ay = lim — log [|gll du™(g)
oo I JGL(V)
and we call it the first Lyapunov exponent of u. ;From Kingman’s

subadditive ergodic theorem we get the following very general fact:

LEMMA 3.27. Let u be a Borel probability measure on GL(V') with
a finite first moment. Then, for B-almost any b in B, one has

1
— IOg ||bn s b1|| E— )‘LN and
n n—o00

1
ﬁlogﬂbl“'bn” — Ay

and these sequences also converge in L*(B, [3).
ProOOF. For any n > 1 set, for b in B,
fu(b) =log [[br - - - by |

Then f, is integrable. Besides, for any m,n, one has f, 1., < fn+ fim o
T™ (where as usual T is the shift map on B). By results Kingman’s
subadditive ergodic theorem (see for example [119]), < f, converges
almost everywhere and in L'(B, 8) towards lim,, .. + [, f, dS.
Besides, since, for every g in EndV, one has ||g|| = ||*g|| (where g
denotes the adjoint map of g, acting on the dual space V*), we get

.1 *n
Ay = lim — log [|*g|| dp*™ (g)
n—o N JGL(V)

and hence, for f-almost any b in B,
1 1
—log [br -+ ball = —log [0y - "bil| —— Aiy
n n n— 00

and the sequence also converges in L!(B, 3). O

We will show that, when T',, is irreducible, the first Lyapunov expo-
nent \; , may be given an alternate definition. The following Theorem
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3.28.b is the Law of Large Numbers for the norm cocycle. The L!-
convergence in this Law of Large Numbers is useful in order to check
that all the definitions of the Lyapunov exponent are equivalent.

THEOREM 3.28 (Law of Large Numbers for ||gv||). Let pu be a Borel
probability measure on G = GL(V) with I, irreducible and with a
finite first moment i.e. such that [,log N(g)du(g) < oo. Let v be a
p-stationary Borel probability measure on X =P (V).

a) Then the cocycle o is (1 @ v)-integrable i.e. [,  |o| d(p®v) < oo
and its average is equal to the first Lyapunov exponent of i

My = / od(p®v).
GxX

In particular, it does not depend on v. Indeed, for (B-almost any b in
B, one has

%log ||bn cee b1|| m )\1#.

Moreover this sequence converges also in L'(B, 3).

b) For any x in P(V), for B-almost any b in B, one has
%U(bn tee bl, QZ') E) )\LM'

This sequence converges also in LY(B, 3) uniformly for v € P(V).
c¢) One has,

¥ Jologllgl dum(9) —— v
d) Uniformly for x in P (V'), one has,
L Jaolg.w) durm(g) —— A

In Theorem 3.28, one does not assume I', to be proximal, hence
the p-stationary measure v on X may not be unique.

PROOF OF THEOREM 3.28. a) For any g in GL(V') and z in P (V),
one has

(3.11) |o(g, )| < log N(g),

thus o is p ® v integrable and its average 0, (v) := [,y od(u®v) is
well-defined. We want to prove that this average does not depend on
v. We may assume that v is ergodic.

We will use the forward dynamical system on Bx X. By Proposition
1.9, the Borel probability measure § ® v is invariant and ergodic under
the transformation 7% : B x X — B x X, (b,z) — (Tb,bix). The
function (b, ) — (b, z) := o(by,x) on B x X is f ® v-integrable. By
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definition, for any (b,z) in B x X, any v # 0 in = and any n in N, the
n-th Birkhoff sum of ¢ is given by
on(b,x) = 0a(by by, x) =log||b, - - byv|| — log||v]|.
By Birkhoff theorem, for f® v-almost any (b, x) in B x P (V'), one has,
Lo (b.x) — 0, (v).
In particular,
liminf £ log [|b, - - - b1 > 0, (v).

Since, by Lemma 3.6, for any proper subspace W of V', one has
v(P(W)) < 1, one can find a basis (v;)1<i<q of V such that, for -
almost all b in B, for all i, one has

%10g an e blvi|| m JM(I/).

Since all the norms of the finite dimensional vector space End(V') are
comparable, there exists ¢ > 0 such that, for any g in GL(V'), one has

Al > .
max f|gui|| > e lg]

As a consequence, for -almost all b in B, one has

limsup = log [|b, - - - by || < 0, (v)

n—oo

and hence

(3.12) 7 log by - bl —— 0, (v).

In particular, o,(r) does not depend on v and is equal to Ay , by Lemma
3.27.

Still by Lemma 3.27, the sequence (3.12) of integrable functions
converges also in L'(B, 3). Let us also prove it directly in this case.
It is enough to check that this sequence is uniformly integrable. This
follows from the fact that these functions are bounded by the functions

Uy (b) = 5 3o log N (b)),
and that the sequence VU, is uniformly integrable since, by the Law of
Large Numbers (Theorem 1.5), it converges in L*(B, 3)

W (b) —— [ log N(g) du(g).

b) This follows from a) and Theorem 2.9.
¢) Again, this follows from Lemma 3.27, but can be established
directly, since, from the convergence in L'(B, 3) proven in a), one gets

7 Jelogllgl dp(g) = 3 [log 1bn -+ bu[| AB(D) —— A
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d) By b), one gets
% Joolg. ) dp™(g) = % Jpo(n - b1, 2) dB() —— Ay,

n—od

uniformly for z in P (V'), which was to be shown. O

REMARK 3.29. In the general context of Theorem 2.9, for every g,
¢’ in G one still has

Jsup(gg/) < USUp(g) + Usup(g/)-

Hence, as in the proof of Lemma 3.27, by Kingman’s subadditive er-
godic Theorem [119], one knows that there exists a real constant s,
such that, for S-almost every b in B,

%Usup(bn ceoby) Tt

By construction one has the inequality
Oy < Ky

We have just shown that, in the context of Theorem 3.28, this inequal-
ity is indeed an equality. However, in the general context of Theorem
2.9 this inequality is not always an equality. To get an example, one
can choose G to be SL(V), u to be a Borel probability measure on G
such that I',, is strongly irreducible and X = P(V), as in Theorem 3.28,
but one replaces the cocycle o by its opposite. Then, by Theorem 3.31
below, o, is negative whereas r, is non-negative.

3.7. Positivity of the first Lyapunov exponent.
In this section we use the method of Guivarc’h and Raugi
to prove the positivity of the first Lyapunov exponent,
which is originally due to Furstenberg. This method re-
lies on the linear speed of divergence of Birkhoff sums
(Lemma 2.18).

We keep the notations of Section 3.6. For any g in G, set

(3.13) d(g) := 3log|det g|,

where d is the dimension of V.
We will need the following elementary lemma.
LEMMA 3.30. For any g in GL(V'), one has
| det g| < [lg]|* and |5(g)| < log N(g).

ProoOF. Equip V with a Haar measure A\. For any r» > 0, let
B(r) € V be the closed ball with radius r and center 0. If K is
archimedean, we have A\(B(r)) = r\(B(1)). If K is non-archimedean,
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we have \(B(qr)) = ¢?\(B(r)), where ¢ is the cardinality of the residual
field of K. In both cases, one has
0 < R:=supr ?\(B(r)) < oo.

r>0

For any g in GL(V') and r > 0, we have gB(r) C B(||g|| ) hence
[det gl A(B(r)) = MgB(r)) € A(B(llgll ) < r*|lg]* B,

whence the first inequality. The second follows by applying the first
one to g and g~ L. O

Note that, as the determinant is a morphism G — K*, the random
sequence d (b, - - - by) is a sum of independent and identically distributed
elements of R. When the function log N is p-integrable, the function
0 is also p-integrable, and, by the classical Law of Large Numbers, for
(B-almost all b in B, one has
(3.14) L5(by -+ br) — 0, where 0, := [,0dp.

In the following theorem, we keep the notations of Theorem 3.28.

THEOREM 3.31 (Positivity of the first Lyapunov exponent). Let
i be a Borel probability measure on G = GL(V) with a finite first
moment, i.e. [,log N(g)du(g) < co. Assume that T, is strongly irre-
ducible and that the image of ', in PGL(V') is not bounded.

Then the first Lyapunov exponent Ay, satisfies

)\1# > 5#’
When p is supported by SL(V'), one can restate Theorem 3.31 as :

COROLLARY 3.32. Let o be a Borel probability measure on SL(V)
with a finite first moment. If T, is strongly irreducible and unbounded,
then the first Lyapunov exponent is positive : Ay, > 0.

REMARK 3.33. There are various proofs for the positivity of the first
Lyapunov exponent relying on the spectral gap of an operator acting on
a Hilbert space. For instance the original proof of Furstenberg is based
on Kesten’s amenability criterion in [76]. See also [123] or [115]. Here
we will follow an argument due to Guivarc’h and Raugi which does not
rely on a spectral gap.

REMARK 3.34. In Theorem 3.31, one cannot replace the assumption
“I",, 1s strongly irreducible” by “I', is irreducible”. This can be seen on
the example of Remark 3.10. In this example, the group G consists

of matrices of the form (8 a01> or <a01 8) with a # 0 in R, the

Borel probability measure i on G is compactly supported and satisfies
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[, = G. In this case, the first Lyapunov exponent of on R? is Ay , =0
(See Proposition 4.9).

We will prove the following slightly more general theorem, without
the strong irreducibility assumption. In this theorem, the assumptions
are similar to the assumptions in Corollary 3.25.

THEOREM 3.35. Let p be a Borel probability measure on G =
GL(V) such that T, is irreducible and [, log N(g)dpu(g) < oo. If, for
some virtually invariant and strongly irreducible subspace W of V', the
image of I'yw in PGL(W) is not bounded, then one has Ay, > 0,.

One could first prove Theorem 3.31 and deduce the more general
Theorem 3.35 by using the measure induced by g on a finite index
subgroup as in Section 4.3 below. Instead, we will give a direct proof:

ProoOF OoF THEOREM 3.35. The key step is Lemma 2.18.

Let (V;)ier be a transitive strongly irreducible I',-family in V' and
let d; be the dimension of these subspaces. For i in I, equip V; with
an alternate d;-form w;.

First, let us give a formula for the computation of determinants.
Let A C GL(V) be the subgroup spanned by I', and A C A be the
finite index normal subgroup of those g in A such that gV; C V; for any
iin I. We set ' = A/A and we let A (and F') act on [ in the natural
way, that is, for any ¢ in A and 7 in I, we set gi = j, where j is such
that gV; = V. For g in A and 7 in I, let D;(g) be the determinant of
g, viewed as a linear map from (V;,w;) to (Vg;, wy), and

1
0i(9) = -~ log | Di(g)l-
1
We claim that, for any ¢g in A, one has the equality
(3.15) (g) = |Tl\ Zie] 6i(9)-

In order to prove this equality, we fix a minimal subset J C I such that
V' is spanned by (V;)ies. Then, by Lemma 3.12, one has V' = @, V.
In particular, |J| = % and, for any ¢ in A and f in F, one has

detv(g9) = [1;c;; Di(9),
hence
detv(g)‘F‘ = erF Hief] Di(g) = (Hie[ Di(9))?,

where p = ]J|% = d%%' Now, the map A — K*,

9~ (ILics Dig))? dety(g) "
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is a group morphism. Since it is trivial on the finite index subgroup A,
it takes values in the group of roots of 1 in K*. In particular, taking
absolute values, we get Equality (3.15).

For B-almost any b in B, for any 7 in I, we let V;;, C V; be as in
Corollary 3.20 so that any nonzero cluster point in Hom(V;, V) of a
sequence A,by, - --by|y; with A, in K has kernel V;;. Since the virtual
proximal dimension of I',, is < dj, one has V;; # {0}, hence, by Lemma
3.24.b),

(3.16) tog([bn - - b

) — 9i(by -+ - by) —— 0.

n—oo

Vi

Let us fix an ergodic p-stationary Borel probability measure v on
Uier P (Vi). Such a measure does exist by Lemma 1.10. By Proposition
3.23, for B-almost any b in B, for v-almost any z in P (V), there exists
€ > 0 such that, for v # 0 in x, one has

(3.17) by -+ byv]| = € ||bn -+ bilvigo || Jo]] - for all n > 1,

where i(z) € I is such that z € P (Vj(;)). From (3.16) and (3.17), we
get

(3.18) 0 (by -+ by, ) — Bi(ay (b -+ - by) —— o0.

n—oo

We use again the forward dynamical system on B x X. By Propo-
sition 1.9, the Borel probability measure § ® v is invariant and ergodic
under the transformation

TX :Bx X — BxX,(bz)— (Thbz).
Set, for b in B and z in | J,., P (V7),
(b, x) = (b1, x) — Si(a)(b1).
Then, (3.18) reads as

n—1
1
=Y o (T —— oo,
=0 e
£ ® v-almost everywhere. By Lemma 2.18, we get

Jopan pd(B@v) > 0.

We claim we have fo]P(V) ed(B®v) = A1, — 6,, which finishes the
proof. Indeed, on one hand, by Theorem 3.28, we have

foP(V) o(br,z)d(B@v) = Ay
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On the other hand, since, by Proposition 3.18, for any i in I, v(P (V})) =

\I\ we get
foU 1 P(V3) l(fﬂ (bl) <ﬁ® ) I Zzej fG ) (5#7
where the last equality follows from (3.14) and (3.15). O

3.8. Proximal and non-proximal representations.
In this section we explain a method which allows to con-
trol norms of matrices thanks to norms in proximal irre-
ducible representations.

This purely algebraic method will not be used before Section 13.5.

LEMMA 3.36. Let K be a local field and V = K?. Let T be a strongly
irreducible sub-semigroup of GL(V'). Let r > 1 be the proximal dimen-
sion of I'in 'V, and let V. C A"V be the subspace spanned by the lines
A" (V), where 7 is a rank r element of KL'. Then,

a) V,. admits a largest proper T'-invariant subspace U,..

b) The action of I' on the quotient V! := V,./U, is prozimal and strongly
wrreducible.

¢) Moreover, there exists C' > 1 such that, for any g in T, one has

(3.19) CHigll" < I A" gllve < llgll"

REMARK 3.37. In case K has characteristic 0, the action of I" on
ATV is semisimple and V! = V.

In case K = R, the constant C' can be chosen to be C' = 1 for a
suitable choice of norms.

PROOF OF LEMMA 3.36. a) We will prove that V,. contains a largest
proper I'-invariant subspace and that this space is equal to

U, := N;Kery, (\"r), where 7 runs among all rank r elements of KT

This space U, is clearly I'-invariant. We have to check that the only
[-invariant subspace U of&which is not included in U, is U = V,.. Let
7 be a rank r element of KI" such that U is not included in Ker(A"r).
The endomorphism A"7 is proximal and one has

Nrm(U)cCU.
As A"m has rank one, one has

Im(A"r) C U.

Let 7' be any rank r element of KI'. Since T is irreducible in V', there
exists f in I" such that 7' fr # 0. As 7/ fr also belongs to KI', we get
rk(7’ fmr) = r and, since A"(7’f) preserves U, one has

Im(A"7") = Im(A"(x' f)) C U .
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Since this holds for any 7/, by definition of V., we get U = V,., which
was to be shown.

b) The above argument proves also that, for any rank r element =
of KT', one has

(3.20) Im(A"7) = A"m(V,) and Im(A"7w) & U, .

In particular, the action of I' on the quotient space V! := V. /U, is
proximal.

Let us prove now that the action of I' on V! is strongly irreducible.
Let Upy, ..., Uy be subspaces of V., all of them containing U,., such
that I' preserves Uny U --- U Uyy). Since V; is I-irreducible, the spaces
Uay, .-, Uy span V.. Let A C I' be the sub-semigroup

A:={gel|gUs =Upy foralll <i< [/}
There exists a finite subset /' C I' such that
I'=AF = FA.

In particular, since I" is strongly irreducible in V| so is A. Besides,
A also has proximal dimension r and, since KI' = KAF, V, is also
spanned by the lines Im (A" ) for rank 7 elements 7 of KA. By applying
the first part of the proof to A, since the A-invariant subspaces Uy,
span V., one of them is equal to V,.. Therefore, V! is strongly irreducible.

¢) We want to prove the bounds (3.19). First, for g in GL(V),
one has || A" g|| < |lg||". As for g in I', we have (A"g)V, = V, and
(AN"g)U, = U,, we get

| A" gllvz < llgll™
Assume now there exists a sequence (g,) in I' with

gl ™"l A" gnllvy — 0

and let us reach a contradiction. If Kis R, set A\, = [|g,||~*. In general,
pick A, in K such that sup,, |log(|A\s]]|gnl|)| < oco. After extracting a
subsequence, we may assume \,g, — 7, where 7 is a nonzero element
of KT'. In particular, 7 has rank > r and we have A" A" g, — A’T.
Thus, since ||[A], A" gnllv: — 0, we get || A" ]|y, = 0, that is,

N'nm(V,) C U,.

We argue now as in a). Let 7’ be a rank r element of KT'. Since I is
irreducible in V', there exists f in ' such that 7’ fm # 0. Since 7’ fw
has rank at least r, it has rank exactly r and, since A"(7’f) preserves
U,, one has

Im(A"7") = Im(A" (7' fr)) C U,.
This contradicts (3.20). O
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Here is an application of Lemma 3.36. We use the notations of
Lemma 3.2.

LEMMA 3.38. Let K be a local field and V = K. Let u be a
Borel probability measure on GL(V') such that the semigroup I :== T,
1s strongly irreducible. Let r > 1 be the proximal dimension of I' in V
and A} be the limit set of ' in the Grassmann variety G,(V'). Then
there exists a unique p-stationary Borel probability measure v, on A}.

REMARK 3.39. When r > 1, the measure v, may not be the only
p-stationary measure on the Grassmannian G, (V). Indeed, there may
exist uncountably many ergodic p-stationary probability measures on
G, (V). See Remark 3.4 for an example.

PrROOF. According to Lemma 3.36, there exists a strongly irre-
ducible and proximal representation p’ : I' — GL(V), in a K-vectorspace
V! and a I'-equivariant embedding i/ : A]. — P(V/). Since, by Proposi-
tion 3.7, the u-stationary probability measure on P(V) is unique, then
the u-stationary probability measure on Af. is also unique. U

REMARK 3.40. One can reinterpret this unique p-stationary proba-
bility measure v, on the limit set A} thanks to the Furstenberg bound-
ary map £ : B — G, (V) introduced in Lemma 3.5. Indeed v, is equal
to the image v, = £,.() of the Bernoulli probability measure 5 on B
by the Furstenberg boundary map &.

4. Finite index subsemigroups

This chapter contains general results relating the random walks on
a semigroup and the induced random walks on its finite index subsemi-
groups.

4.1. Expected Birkhoff sum at the first return time.

We begin by a general result from ergodic theory, relating
averages of an ergodic dynamical system with averages
for an induced dynamical system.

Let (X, X, x) be a probability space, equipped with a measure preserv-
ing map 7', and ¢ be a X-measurable function on X. Let A C X be a
X-measurable subset such that,

(4.1) WU (A)) = 1.
For y-almost any x in X, we introduce the first return time

ta(z) = min{n > 1|T"z € A},
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which is almost surely finite, and the corresponding Birkhoff sum
valz) =p(x)+p(Tx)+...+ SD(TtA(m)flx).

LEMMA 4.1. Let (X, X, x) be a probability space, equipped with a
measure preserving transformation T. Let A be an element of X satis-
fying (4.1). Then, for any integrable function @ on X, pa is integrable
on A and one has

(4.2) Japadx = [y pdx.

REMARK 4.2. In case ¢ = 1, this is just Kac formula fA tady =1.
When T is ergodic, the condition (4.1) is equivalent to x(A) > 0.

ProOOF. We first give a short proof of Lemma 4.1 in case T is
invertible. We write A = U,>1 A, where A, := ANt;'(n). Up to
negligeable sets, one can write X as the disjoint union

X = U0§k<nTk (An> :

It suffices to prove Formula (4.2) when ¢ is the characteristic function
of some X-measurable set B C X and we can also suppose that

B C T*A,),

for some integers 0 < k < n. In this case, Formula (4.2) follows from
the T-invariance of x. U

Proor. We give now another proof of Lemma 4.1 in case T is
ergodic. This proof is based on a double application of Birkhoff ergodic
theorem. One for the transformation T of X and one for the first
return map R : z — T'®)z which is a transformation of A. The
transformation R is then ergodic too. We can also assume ¢ > 0. We
write, for y-almost all x in X and n > 1,

tn,A(LL‘) = tA(LL‘) + ..+ tA<Rn711'>.
Hence the following sum is both a Birkhoff sum for T" and R,
Sn(z) == wa(@) + ...+ pa(R"2) = o(z) + ... p(Ttna® 1),

Then by a double application of Birkhoff ergodic theorem, one has, for
x-almost all z in A,

pady lim,, o0 %Sn(m) . tpa(z
Pan (O ) i 22
xPax My — 00 tan(z) N x

In particular, this ratio does not depend on ¢, hence, computed with
the characteristic function ¢ = 14, is equal to 1. This proves (4.2). O
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PrRoOOF. We end with a tricky and elementary proof, with no further
assumptions. It suffices to prove this formula when ¢ is the charac-
teristic function of some X-measurable set B C X and we can also
suppose that

B C t;'(n),
for some integer n > 1. In this case, the function ¢ 414 is the charac-
teristic function of the set C' which is a disjoint union

C =UpsoCr where Cp=ANT*BN t (0 +n)

and we have to prove that x(C') = x(B). By construction, the sets
D! .= T~(m=9(C, are disjoint, when ¢ varies between 0 and m, and one
has

Uit Dy = T B0 (U T74).
Therefore one has

(4.3)  x(UloCr) = >t x (Co) = 225 X (Dﬁm) =X (UZL:() Dfn)

and, using (4.1), one has

(44)  y(T"B~Up,DL) <y <X U, T*qA> — .0

Now, combining (4.3) and (4.4), one gets as required
X(C)= lim x (U2 Ce) = lim x (U2 De) = lim x(T7"B)=x(B). U

4.2. The first return in a finite index subsemigroup.

A probability measure p on a semigroup induces, on each

closed finite index subsemigroup, a new probability mea-

sure: the law of the first return of the random walk in

this finite index subsemigroup. We check that the left

random walk and the right random walk on a semigroup

induce the same law on such a finite index subsemigroup.

We check also that the return time has an exponential

moment, and apply this fact to control the moments of

the induced probability measure in terms of the moments

of p.

We will say that a subsemigroup H in a semigroup G is a finite
index subsemigroup, if H is the stabilizer in G of a point fj in a finite
set F' on which G acts transitively by permutations. We will denote by

s:G—F~G/H;g— gfo

the quotient map. We will say that H is a finite index normal subsemi-
group if H is the kernel of a morphism s : G — F' onto a finite group
F.
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Let G be a second countable locally compact topological semigroup
with Borel o-algebra G. Let H be a closed finite index subsemigroup
of G. Denote by df the normalized counting measure on the finite set
F=G/H.

If i is a Borel probability measure on G, we let, as usual, (B, B, 3,T)
be the one-sided Bernoulli shift with alphabet (G, G, ). We set I';, to
be the smallest closed subsemigroup of G such that u(I',) = 1.

For -almost any b in B, define integers ¢4(b) and us(b) by

ts(b) :=min{n >11|b,---by € H},
us(b) :=min{n >1|by---b, € H}.

The following lemma tells us that the left random walk and the
right random walk on G induce the same law on H.

LEMMA 4.3. Let v be a Borel probability measure on G. Then the
image measure jigr on H of pn by the map B — H, b+ by ) - - - by equals
the image measure iy of j by the map B — H, b+ by -+ by m).

This measure pgy is called the measure induced by p on H.

PROOF. For any n > 1, let S,, be the set of (g1,...,¢,) in G" with
Ggn--+g1 € Hand, forany 1l <m<n-—1,¢,---q1 ¢ H.

Similarly, let U,, be the set of (¢1,...,¢,) in G" with g1 ---g, € H
and, forany 1 <m <n-—1, g1+ gm ¢ H. One has

t;'(n) =S, x B and u;'(n) =U, x B.

S

Since the semigroup G acts by permutation on the finite set F', for
any two elements g, ¢’ in G with ¢’¢g in H, one has the equivalence
g € H< ¢ € H. In particular, the set U, is also the set of (g1, ..., gn)
in G" with g -+-¢, € H and, forany 1 <m <n—1, gps1---9gn ¢ H.
This proves that the map @ : (g1,...,9n) — (gn, .- ., 1) exchanges the
sets S, and U,. As this map ® preserves the restriction of the measure
1@, the result follows. O

The following lemma tells us that the expected value of the return
time in H is given by the index of H.

LEMMA 4.4 (Expected return time). Let G be a second countable
locally compact topological semigroup, H be a closed finite index sub-
semigroup of G and F = G/H. Let u be a Borel probability measure on
G such that ', acts transitively on F. Set (B, 3,T) to be the one-sided
Bernoulli shift with alphabet (G, ).

a) One has [5t,(b)dB(b) = |F]|.
b) Let ¢ : B — R be a [-integrable function. Then the function

(45) ¢ B — R; b— (,D(b) 4+t @(Tts(b)_lb)
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s B-integrable and one has
JpdB =1|F| [;¢dB

PROOF. Since a) is a consequence of b) with ¢ = 1, we only have
to prove b). Let df be the normalized counting probability measure
on F. We use again the forward dynamical system. Indeed, we just
apply Lemma 4.1 to the measure preserving transformation 7 of (B x
F,6® df) given by

T5(b, f) = (Tb,bif), forall (b, f)in B x F,
to the function ® : B x F' — R; (b, f) — ¢(b) and to the subset

A= B x {e}.
Note that, since I', acts transitively on F', this transformation 7
is ergodic by Proposition 1.14. 0

The following lemma tells us that the return time in H has a finite
exponential moment.

LEMMA 4.5 (Exponential moment for the return time). Let G be a
second countable locally compact topological semigroup, H be a closed
finite index subsemigroup of G and F' = G/H. Let ju be a Borel prob-
ability measure on G. Set (B, [3,T) to be the one-sided Bernoulli shift
with alphabet (G, ).

a) There exists to > 0 such that [, e@*®) dB(b) < oco.

b) Assume that a function ¢ : G — R has a finite exponential mo-
ment, i.e. there exists to > 0 such that [, €9 du(g) < co. Then the
function

Vv:B—=R; b= @b)+- -+ obw)

also has a finite exponential moment, i.e. there exists t > 0 such that
[ € ® dB(b) < co.

PROOF. a) The semigroup H is the stabilizer in G of a point on a
finite set on which the semigroup G acts. By replacing H by the kernel
of this action, we can assume that H is normal in G. By replacing G
by I',, we can also assume that I',, acts transitively on F'. In this case,
by Lemma 1.12, the normalized counting measure df is the unique
p-stationary probability measure on F'. In particular (for example by
Corollary 1.11), for any g in G, one has

7 2k W gH) ——
and there exist ng > 1 and py > 0 such that, for any g in G, one has
e ey (g H) > po.
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Now, using the Markov property, one gets, for all £ > 1,

B{be B |tyb) > kng}) < (1—po).

Hence ¢, has a finite exponential moment.
b) The finite integral [, := fB et d can be decomposed as I, =

Zn21 I; ,, where
i = [(y—py € dB(D).

Using Cauchy-Schwartz inequality and the independence of the coor-
dinates b;, one computes

L, < B({ts =n}) (fB e2t(p(b1)++¢(bn)) dﬁ(g,))
< B({ t—n}%(f o2te(9) )n

Since, by a), the sequence f({ts = n}) decays exponentially and since,
by Lebesgue convergence theorem, one has lim; . fG e dy = 1, one
gets that, for ¢ small enough, the sequence I ,, decays also exponentially
and hence the exponential moment I, is finite. U

N
=

As a corollary of these two lemmas we prove that, when a proba-
bility measure x on a linear group G has a finite first moment (resp. a
finite exponential moment), so has the induced measure py on a finite
index subgroup H. We will again use the notation N(.) from (3.9).

COROLLARY 4.6 (Moments and finite index subgroups). Let G be
a closed subgroup of GL(d,K), H be a closed finite index subgroup of
G, F=G/H, and p be a Borel probability measure on G.
a) Assume p has a finite first moment, i.e. [,log N(g)du(g) < ooc.
Then py also has a finite first moment, i.e. [, log N(h)dug(h) < co.
b) Assume p has a finite exponential moment, i.e. there exists tg > 0
such that [, N(g)" du(g) < co. Then puy also has a finite exponential
moment, i.e. there exists t > 0 such that [, N(h)"' dug(h) < co.

PROOF. a) After replacing G by I',, the proof is an application
of Lemma 4.4 with the function ¢(b) = log N(b;) on the one-sided
Bernoulli shift (B, 3,T) whith alphabet (G, ). Indeed, one has
Sy log N(R) dun(h) = [, log N(b, ,, -+ br) dB(b)

< Jplog N(by) +--- + log N(b,_,,) dB(b)
= |F| [glog N(b1) dB(b) = |F| [ log N(g) du(g).

This proves that py has a finite first moment.
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b) The proof is similar, applying Lemma 4.5 with the function
©(g) =log N(g). One gets for ¢ small enough,

Ju N dus(h) < [, N1~ N(b, ) dB(b) < oo.

This proves that py has a finite exponential moment. U

4.3. Stationary measures for finite extensions.

In this section we prove that the p-stationary measures
are also pp-stationary for the probability measure in-
duced by p on a finite index subsemigroup H. We give
then a few applications of this fact.

Let GG be a second countable locally compact topological semigroup,
H be a closed finite index subsemigroup of G and F' = G/H. Let p be a
Borel probability measure on G, I, be the smallest closed subsemigroup
of G such that ;(I',) = 1 and py be the induced measure on H.

Let Y be a metrizable compact G-space. We let G act on F' = G/H
by the natural left action and on X := F' x Y by the product action.

The following lemma will be used in Section 9.1.

LEMMA 4.7. Let v be a p-stationary Borel probability measure on
Y.
a) This probability measure v is also py-stationary. The probability
measure df @ v on X := F XY 1is also u-stationary, and, for 3-almost
any b in B, one has (df @ v), = df @ 1.
b) The probability measure v is p-prozimal if and only if it is py-
proximal. In this case, df @ v is p-prozimal over F.
¢) If v is the unique pg-stationary Borel probability measure on Y,
then v is also the unique p-stationary Borel probability measure on Y .
d) If moreover I'), acts transitively on F, the Borel probability measure
df ® v is the unique p-stationary Borel probability measure on X.

PROOF. a) Pick a non-negative continuous function ¢ on Y and let
us prove that the integral I := [, [, ¢(hy)dv(y)dum(h) is equal to
[y ¢ dv. Indeed, using lemma 4.3 and the fact that v is p-stationary,
one computes:

I'= [gyy b1 bu,myy) dv(y) dB(D)
= lim Y7 [5.y @b bay) dv(y)Lu,e)=n} dB(D)

m—00

= Tim Y% [y @by bny) AV (Y) g, )=ny AB(D)

m—00

= lim [y (b bmny) dv(y) L ju, ) <my AB().
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Now, again, as v is p-stationary, one has, for any m > 1,

Sy 2(br - by) dv(y) dB(b) = [ wdv

while

Sy @01+ b)) L,y >my dv(y) dB(0) < [lll o B({us(b) > m})

goes to 0 when m goes to co. This proves that I = fY ¢ dv as required.
The last statement is easy.

b) If v is py-proximal, set, for S-almost any b in B, ug(b) = 0 and,
for any p > 1,

up(b) = u(b) + wW(TOp) + ...+ w(T1®Op),

so that the u,(b), p € N, are the successive times when the right ran-
dom walk e,by,b1bg, ..., bibs... by, ... visits H. Then, by definition,
(by -+ bup(b))*u converges to a Dirac mass, so that v, is a Dirac mass.
The proof of the converse is similar.

¢) In particular, if there exists a unique ppy-stationary Borel prob-
ability measure v on Y, then v is a fortiori the unique pu-stationary
Borel probability measure on Y. The last statement follows from a)

d) If ', acts transitively on F', df is the unique p-stationary prob-
ability measure on F. Hence, the image in F' of any u-stationary Borel
probability measure v on F' X Y necessarily equals df. Let fo be a
point in F' whose stabilizer in G is H, the restriction of such a measure
to {fo} x Y is py-stationary, hence equals ﬁé o @ V.

When H is normal in G, this argument applies to every point of F
and hence one has 7 = df Q v.

In general, the proof is slightly longer. We will use the forward
dynamical system. By Proposition 1.9, the product measure x := f®v
on B x X is invariant under the map

7% : (b, X) — (Th,byz).

Let ¢ be a continuous function on X. By Lemma 4.1 applied to the
transformation 7%, the function ¢ and the subset A := B x {fo} x Y,
we get the equality

ta(b)—1

. S (e balfo, ) dBO) du(y).

B |F’ BxY k=0

/X () di(x)

Therefore the p-stationary Borel probability measure 7 on F' x X is
unique. Hence it is equal to df ® v. O
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REMARK 4.8. A bounded Borel function ® on G is said to be u-
harmonic if, for any ¢g in G,

2(9) = [ @om)dp(h).

By using the same argument, one proves that the restriction to H of a
p-harmonic function on G is pg-harmonic.

4.4. Cocycles and finite extensions.

We compare the averages of a cocycle o for the p-action
and for the py-action.

PROPOSITION 4.9. Let G be a second countable locally compact
topological semigroup, H be a closed normal finite index subsemigroup
of H and F = G/H. Let u be a Borel probability measure on G such
that '), maps onto F', pg be the induced probability measure on H, X
be a compact second-countable G-space and v be a p-stationary Borel
probability measure on X. Let 0 : G x X — E be a p ® v-integrable
Borel cocycle Then o is also pg ® v-integrable and the averages

Oy =[x o d(up @v) and o, := [, od(pev)
satisfy the equality o, = |F|o,.
Proor. We will again use the forward dynamical system. By

Proposition 1.9, the product measure y := f® df v onon Bx F x X
is invariant under the map

THX (b, f,x) — (Th,s(b)) f, bi).

The function

¢:BXFxX— FE, (bzx)— o)
is f ® df ® v-integrable, and, by definition, one has the equality

0u = [ pux 0(br, ) dB(b) df dv(z).
By Lemma 4.3, one has the equality

O = Jpux by -+ - b1, ) dB(b) dv(z).

By Lemma 4.1 applied to the transformation 75X, the function ¢ and
the subset A := B x {e} x X, we know that these two right-hand sides
are equal up to a factor |F'|. Note that the condition (4.1) is satisfied

since I', maps onto F' (same argument as for Lemma 4.5). Hence, one
has the equality o, = |F|o,. O
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5. Loxodromic elements

The aim of this chapter is to prove the existence of so-called “lox-
odromic” elements in Zariski dense semigroups of semisimple real Lie
groups (Theorem 5.36). This result will be used in Chapter 9 to prove
the regularity of the Lyapunov vector in the Law of Large Numbers.

We will focus mainly in this chapter on real Lie groups since this
result does not extend to other local fields.

5.1. Basics on Zariski topology.

We begin by recalling the very basic facts about Zariski
topology that will be used in this book.

We will define Zariski topology on algebraic varieties and recall
some of its elementary properties. The reader may find more about
this topic in any introductory book on algebraic geometry, such as
[114].

Let k£ be a field an V' be a finite dimensional k-vector space. By a
polynomial function on V', we mean a function from V' to k£ which may
be expressed as a polynomial function in the coordinates of a basis of
V. We let k[V] denote the algebra of polynomial functions on V.

DEFINITION 5.1. Let k be a field. An algebraic subvariety Z in a
finite dimensional k-vector space V' is the set of zeroes of a family of
polynomial functions. The Zariski topology on V' is the topology whose
closed subsets are the algebraic subvarieties.

In other words, a subset Z of V' is an algebraic subvariety, or equiv-
alently is Zariski closed, if there exists a set F of polynomial functions
such that

Z={veV|NfeF fv)=0}.

PRrROOF. We need to check that this definition makes sense, that
is, that the algebraic subvarieties are indeed the closed subsets of a
topology. This is straightforward.

First, note that () and V' are algebraic varieties since they are re-
spectively the zero sets of the constant functions 1 and 0.

Now, let Z,...,Z,. be algebraic subvarieties of V' and F,...,F,
be sets of polynomial functions such that, for 1 <1 <r,

Zi={veVNfeF fv) =0}

We let F be the set of functions which may be written as f; - - - f,. with
fi € F;, for 1 <i <r. We immediately get

ZZU---UZ. ={veVNfeF flv)=0}
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that is, Z; U---U Z, is an algebraic subvariety.
Finally, let (Z;)icr be a family of algebraic subvarieties and, for any
1, let still F; be a set of polynomial functions such that

Z = {v e VIVf € Fi f(v) = 0}.

We now set F = J,.; Fi and we get

el
(2 ={veVIVfeF fv) =0},
iel
that is, ();c; Z; is an algebraic subvariety. 0

We can now speak of a Zariski open subset, a Zariski closed subset,
a Zariski connected subset or a Zariski dense subset.

For instance the group SL(V') is a Zariski closed subset of the vector
space End(V). The group GL(V) is a Zariski open subset of End(V).
By definition, an algebraic subgroup of GL(V') is a subgroup of GL(V)
which is Zariski closed in GL(V).

If Z is a subset of V', we let I(Z) denote the set of polynomial
functions of V' which vanish identically on V. This is an ideal of the
k-algebra k[V].

LEMMA 5.2. Let Z be a subset of V.. Then the Zariski closure of Z
15 the set
{veVIVfel(Z) f(v) =0}
In particular, if Z is an algebraic subvariety, this set is equal to Z.

PRroor. This is immediate. O

REMARK 5.3. It follows from Hilbert’s basis Theorem that the al-
gebra k[V] is noetherian. In particular, the ideal I(Z) is always finitely
generated, which means that any algebraic subvariety may be defined
by a finite set of polynomial equations.

We shall soon see other consequences of the Noetherian property of
k[V] for the Zariski topology.

One easily checks that the points of V' are closed subsets for the
Zariski topology. But this topology is not Hausdorff as soon as k is
infinite. More precisely, in this case it satisfies a property which can
be considered as a strong converse of the Hausdorff property.

Let us say that a topological space X is irreducible if any two non
empty open subsets of X have non empty intersection or equivalently
if X may not be written as the union of two proper closed subsets.

LEMMA 5.4. Assume k is infinite. Then the Zariski topology on V'
15 irreducible.
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In other words, any non empty Zariski open subset of V' is Zariski
dense.

PRrROOF. Let Z; and Z5 be proper Zariski closed subsets of V. As
7, is proper, I(Z;) contains a non-zero function f;. In the same way,
I(Z,) contains a non zero function f,. Now, since k is infinite, the
choice of a basis of V' induces an isomorphism from the algebra k[V]
onto the abstract algebra kl[ty, ..., t4], where d is the dimension of V/
(this can easily be shown by induction on d). In particular, the algebra

k[V] is an integral domain and the function f = f f5 is non zero. Since
f belongs to I(Z; U Zy), we have Z; U Zy # V and we are done. O

EXAMPLE 5.5. Let W; and W5 be two distinct proper hyperplanes
of V. Then the space Z = W; U W; is not irreducible for the Zariski
topology.

REMARK 5.6. If X is an irreducible topological space, so is every
open subset of X. In particular, the algebraic group GL(V) is irre-
ducible for the Zariski topology.

As we saw in the proof of Lemma 5.4 above, irreducibility follows
from the integrity of the ring of functions. Let us see how the Noether-
ian property translates.

We say that a topological space X is Noetherian if any non-increasing
sequence of closed subsets of X is eventually stationary.

LEMMA 5.7. The Zariski topology on V' is Noetherian.

ProOF. This is straightforward: assume (Z,,) is a a non-increasing
sequence of algebraic subvarieties of V. Since k[V] is Noetherian, there
exists my such that, for any n > ng, one has I(Z,) = I(Z,,). By
Lemma 5.2, we get Z,, = Z,, for n > ny. O

REMARK 5.8. If X is a Noetherian topological space, so is every
subset of X for the induced topology.

We can now state the main result of this section. Its proof diretly
follows from the Noetherian property.

LEMMA 5.9. Let k be a field, V = k% and X be a subset of V. There

exists a decomposition
X=XjU...UX,

where the X; are Zariski closed in F, are Zariski irreducible and are
not included in one another. This decomposition is unique up to per-
mutations.
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These closed irreducible subsets are called the irreducible compo-
nents of X.

ProoF. This is a general feature of Noetherian topological spaces.

Let X be such a space and let us prove that X may be written
as a finite union of irreducible closed subspaces. We proceed by con-
tradiction and we assume that such a decomposition does not exist.
Since in particular, X is not irreducible, we may write X as a union
X' U X" where X’ and X" are proper closed subsets. Since X may
not be written as the union of finitely many closed irreducible subsets,
so is the case for at least one among X’ and X”. Call X; this proper
closed subset of X. By iterating the process, we construct a decrasing
sequence (X,,) of closed subsets of X. This is a contradiction.

Now that the existence of such a decomposition is proved, write
X as Xj U---U X, where the X, are closed irreducible subsets and ¢
is minimal. In particular, for any 1 < ¢ # j < /, we have X; ¢ X;.
Besides, if Y is a closed irreducible subset of X, we have

¢

Y= JvnXx,
i=1
hence, by irreducibility, ¥ C X; for some 1 < ¢ < ¢. The result
follows. U

5.2. Zariski dense semigroups in SL(d,R).

We now start the study of Zariski dense subgroups of
semisimple real Lie groups. To be very concrete, we will
first state and prove our main result for the group G =
SL(d,R).

Let V =R? and ey, ..., e4 be its standard basis. Let G = SL(d, R)
and g := {y € End(R?) | tr(y) = 0} be its Lie algebra. We introduce
the Cartan subspace of g,

a:={x=diag(xy,...,2q) /x; ER, 21+ ---+ 124 =0},
i.e. the Lie subalgebra of diagonal matrices, and the Weyl chamber
a+={x€a/x12---2xd}.

The Jordan projection A : G — a™ is defined by, for every ¢ in G,

Ag) = diag(log Ai(g), . . .,log Xa(g)),

where the d-tuple (A(g),...,A4(g)) is the sequence of moduli of the
eigenvalues of ¢ in C in non-increasing order and repeated according
to their multiplicities. The largest one A;(g) is the spectral radius of g.
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DEFINITION 5.10. An element g of SL(d, R) is said to be lozodromic
if A(g) belongs to the interior of a't, or, equivalently, if the moduli of
the eigenvalues of g are distinct:

Ai(g) > - > Aa(g).

Equivalently this means that the eigenvalues of g? are distinct and
positive.

PROPOSITION 5.11. Let T be a Zariski dense subsemigroup of SL(d, R).
Then the set Iy, of loxodromic elements of ' is also Zariski dense.

REMARK 5.12. In particular, I' contains at least one loxodromic
element. It is easy to see that I' contains elements g whose eigenvalues
are distinct. Indeed the discriminant D of the characteristic polynomial
of g is a nonzero polynomial function on G = SL(d,R), hence it is
nonzero on I'. What proposition 5.11 tells us is that [' contains many
elements whose eigenvalues are distinct and positive.

REMARK 5.13. One cannot replace in this proposition the field R
by C. For example, the unitary group I' = U(d) C G = SL(d,C) is
Zariski dense but all the eigenvalues of the elements of I' have modulus
1.

One can neither replace R by the field Q,. For example, the com-
pact open subgroup of matrices whose coefficients are p-adic integers
I' =SL(d,Z,) C SL(d,Q,) is also Zariski dense and all the eigenvalues
of the elements of I' have also modulus 1.

REMARK 5.14. One may wonder why, in Proposition 5.11, we are
dealing with subsemigroups I' instead of subgroups I'. There are two
reasons. First, what occurs naturally when dealing with a random walk
on G is the semigroup spanned by the support of the law. Second, even
if we want to deal only with subgroups I', the key point of the proof
will still involve semigroups.

5.3. Zariski closure of semigroups.

We begin by very general lemmas on the Zariski closure
of subsemigroups.

LEMMA 5.15. Let k be a field and T be a subsemigroup of GL(d, k).
Then the Zariski closure G of ' in GL(d, k) is a group.

REMARK 5.16. We will often use this lemma under the equivalent
formulation :

Let k be a field, g € GL(d,k) and ny > 0. Then the sequence
(9™)n>n, is Zariski dense in the group <g> spanned by g.
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PROOF. Let V = k% let k[EndV] be the algebra of k-valued poly-
nomial functions on End(V), let

I:=IT)={P € k[EndV] /VgeTl, P(g)=0}
so that, by Lemma 5.2, G is the set of zeroes of the ideal I, that is
G={ge€End(V)|VPel, P(g)=0}.

Form >0, let I"™ = {P € I / d°P < m} where d°P is the total degree
of the polynomial P in d? variables.

We first prove the easy implication: g,h € G = gh € G. Fix P in
I. For g in T', the polynomial function h — P(gh) is null on T" an hence
also on G. Hence, for h in G, the polynomial function ¢ — P(gh) is
null on I and hence also on G. This proves that for any g, h in G, one
has P(gh) = 0 and the product gh also belongs to G.

It remains to prove the implication: ¢ € G = ¢! € G. Fix g in
G and denote by T}, the automorphism of k[End(V')] defined by

T,(P)(h) = P(gh) for all P in k[End(V)] and h in End(V).
One has the inclusion
T,(I™) cI1m
since g belongs to GG. Since I™ is finite dimensional, this inclusion is
an equality:
T,(I™)=1".
Hence one has T,'(I) = I. One writes then, for all P in I,

P(g™) = (T,*(P))(g) = 0.
This proves that g~! belongs to G. U

The second lemma focuses on real linear groups.

LEMMA 5.17. Every compact subsemigroup H of GL(d,R) is a sub-
group.

Proor. This fact is a general property of compact subsemigroups
in topological groups. Indeed let h be an element of H. We want to
prove that its inverse h~! also belongs to H. Since H is compact, the
sequence (h"),>; has a cluster point k in H. Let U be a neighborhood
of ein H. One can find another neighborhood V of e such that V V=1 C
U. Let m < n be positive integers such that both A™ and h"™ belong to
Vk. The element A"~ ! belongs to Uh™! Hence h™! is also a cluster
point of the sequence (h™),>; and hence belongs to H. O

LEMMA 5.18. Every compact subgroup H of GL(d,R) preserves a
positive definite quadratic form gy on RY.
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The proof uses the Haar measure. We recall that every locally com-
pact group H supports a left H-invariant Radon measure dh called the
Haar measure (see [90]). This measure is unique up to normalization.
When H is compact, this measure is finite and is also left H-invariant.
In this case, one can normalize dh so that it is a probability measure.

PROOF. Let ¢ be a positive definite quadratic form on R?, let dh
be the Haar probability measure on H and let ¢y the average of the
translates of ¢: this quadratic form ¢ is defined by

qQo(v) = / q(hv)dh for all v in R4
H

By construction qq is positive definite and H-invariant as required. [

With similar arguments, one can prove the following fact that we
will not use in the sequel but that clarifies our approach.

LEMMA 5.19. Every compact subgroup H of GL(d,R) is Zariski
closed.

REMARK 5.20. The field of real numbers k£ = R cannot be replaced
here by the field of p-adic numbers £k = Q, or the field of complex
numbers £ = C. For instance the compact group SL(d,Z,) is Zariski
dense in SL(d,Q,). Similarly the unitary group U(d) is compact and
Zariski dense in the complex group GL(d,C). However, this group
U(d) is Zariski closed in the group GL(d,C) seen as an algebraic real
Lie group.

PROOF. Fix an element g of End(R?) which does not belong to H.
We need to find a polynomial function P null on H such that P(g) # 0.

Let ¢ be a real valued continuous fonction on End(R?) that is equal
to 0 on H and equal to 1 on the class Hg = {hg / h € H}. Stone-
Weierstrass Theorem ensures that there exists a polynomial function
Q on End(R?) that is near ¢ on the compact set HU Hg. For instance
we may require

Q(h) <% and Q(hg) > 2 forall hin H.
Let Q) be the average of the translates of (): it is defined by

Qo(g) = /HQ(hg) dh for all g in End(RY).

This polynomial function @) is equal to a constant C' < % on H and

is larger than % on Hg. Hence the difference P = Qo — C fulfills our
requirements. O
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To finish this section, let us prove that, for algebraic groups, the
irreducible components from Lemma 5.9 are Zariski connected compo-
nents.

LEMMA 5.21. Let k be a field and V = k°.
a) The Zariski connected component H, of a subgroup H of GL(V') is
a finite index normal subgroup of H which is Zariski irreducible.
b) A Zariski connected subsemigroup I' of GL(V') is Zariski irreducible.

PROOF. a) The group H acts by conjugation on its irreducible com-
ponents (H;)i<i<¢. The set

Hy:={h € H|hH; = H; for alli < (}

is a Zariski closed, finite index normal subgroup of H whose translates
Hyh are included in the irreducible components H;. Since they are
Zariski irreducible the H;’s are equal to translates Hoh; of Hy. The
Zariski connected component H, of H is then equal to Hj.

b) By Lemma 5.15 the Zariski closure H of ' is a group. This
group H is still Zariski connected. By point a) this group H is Zariski
irreducible, and I' is also Zariski irreducible. [l

COROLLARY 5.22. If k is infinite, the group SL(V') is irreducible.

PrROOF. We assume d > 2 since otherwise the result is trivial. Fix
a basis of V' and let U be the group of matrices of the form

0
0

OO =

t
1
0 14

with ¢ in k. This is an algebraic subgroup of GL(V') and the algebra of
functions on U which are restrictions of polynomial functions on EndV
is isomorphic to k[t]. In particular, since this algebra is an integral
domain, by arguing as in the proof of Lemma 5.4, one proves that U
is Zariski connected. Let H be the Zariski connected component of e
in SL(V). We have U C H. Since H is normal in GL(V'), we have
gUg™! C H for any g in GL(V). As these subgroups span SL(V),
SL(V) is connected, hence irreducible by Lemma 5.21. O

The reader should not mistake the Zariski irreducible subsemigroups
of GL(V') we just discussed for the irreducible semigroups of GL(V') that
we introduced in Chapter 3, that is the semigroups in GL(V') whose
action on V is irreducible.
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5.4. Proximality and Zariski closure.

In this section, we check that two irreducible real lin-
ear semigroups with the same Zariski closure have equal
proximal dimensions.

The following Lemma 5.23 gives also an easily checkable criterion to
detect the existence of proximal elements in an irreducible real linear
semigroup.

LEMMA 5.23. Let V. = R%, let I be an irreducible subsemigroup
of GL(V) and let G be the Zariski closure of I' in GL(V'). Then the

proximal dimensions are equal
't ="Tqg.
In particular if G is proximal in V', then I" contains a proximal element.

We recall that, according to Lemma 3.1, an irreducible semigroup
[' € GL(V) contains a proximal element if and only if I' is proximal,
i.e. if and only if its proximal dimension 7 is equal to 1.

PROOF. By definition of the proximal dimension, one has the in-
equality r¢ < rp. Assume by contradiction that one has the strict
inequality rg < rp. By definition of the proximal dimension rr, there
exists an element 7 € End(V') of rank rp that belongs to the closure
RT. Let W =1Imm C V be its image and W’ = Kerm C V be its ker-
nel. Using the fact that I' is irreducible and replacing if necessary 7 by
a product gr with ¢ in I', we can assume that 72 # 0. By minimality,
the rank of m and 72 are equal, hence one has the decomposition

V=wWaoWw.

(From now on, using this decomposition, we will consider End(WV) as
a subalgebra of End(V'). One has then the equality

End(W) = 7End(V)7.
Let H' and H be the subsemigroups of End(WV) :
H' :=7RT7 and H :={h € H'|det, h = +1}.

Note that, by minimality of rr, every nonzero element of H' belongs
to GL(WW), and hence is a scalar multiple of an element of H.

We claim that the semigroup H is bounded. Indeed, if this were not
the case, there would exist a sequence (hy,),>1 in H' with ||h,|| = 1 and
with dety (hy,) e 0. But then, every cluster point 7 of the sequence

h,, would be a nonzero element of H’ which is not invertible on W. A
contradiction.
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Hence H is a compact subsemigroup of GL(W). According to
Lemma 5.18, there exists a H-invariant positive definite quadratic form
qo on W. In particular, H' is included in the set Sim(qy) of similarities
of qo. Since this set is Zariski closed and since I' is Zariski dense in G,
one has the inclusion

7Gm C Sim(q).

As a consequence one gets the inclusion
(5.1) TRGT C Sim(qp).

Let 7 € End(V) be an element of rank r¢ that belongs to RG. Since
[' is irreducible in V', there exists g1, go in I' such that, the following
element of RG is nonzero :

Tg17gom # 0.
Since r¢ < rr, it does not belong to GL(WW). This contradicts (5.1). O

REMARK 5.24. In the last argument, instead of using the existence
of qo given by Lemma 5.18, we could have applied directly the more
powerful Lemma 5.19.

Now we could end the proof of Proposition 5.11, by applying Lemma
5.23 to a suitable irreducible representation of SL(d,R) as in [97], but
we will instead use a technic involving simultaneously finitely many
irreducible representations. This technic will be useful throughout this
book.

5.5. Simultaneous proximality.

According to Lemma 3.1, every irreducible proximal sub-
semigroup I' of GL(V') contains at least one proximal ele-
ment. We will need a version of this lemma that involves
simultaneously finitely many representations.

LEMMA 5.25. Let K be a local field, let T be a semigroup and, for
all positive integers i < s, let p; : I' — GL(V;) be representations of
I' in finite dimensional K-vector spaces V; that are strongly irreducible
and proximal. Then there exists g in I' such that, for all i < s, the
element p;(g) is prorimal.

Moreover, for any nonzero endomorphism q; € End(V;), one can
choose such a g in T such that ¢;(V,)) V5.

Here the notations VZ; and V5 are shorthands for the attracting
line of p;(g) and for its invariant complementary hyperplane. They
were defined in Section 3.1.
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PRrROOF. Let V := @;<,V;. We can assume that I' is included in
GL(V) and that the representations p; are the restrictions to V;. Re-
placing if necessary I' by a finite index subgroup, we can also assume,
thanks to Lemma 5.21 and to the strong irreducibility of V', that T"
is Zariski connected. For i = 1,...,s, let (7;,)p>1 be a sequence of
elements of I" and (\;,),>1 be a sequence of scalars such that the limit
in End(V;)

= 1}1_{{}0 Xip Pi(Vip)
exists and is a rank one operator. Set, for p > 1,

gp = hoviphivephy - Ysphs €T
where the elements hg,...,hs € I' will be chosen later. We will find
our element g among these g,. Indeed, there exists a sequence S C N
and sequences (\;;,)pes of scalars, for 7,7 < s, such that the limit in
End(V})
i = W0 A i (Vi)

exists and is nonzero and such that A;; , = \;,. By assumption, for
t < s, the limits m;; are rank one operators. Hence, for any ¢ < s, the
following operators

T = pz‘(ho) i1 Pi(hl) T2 Pi(h2) c o Tys pi(hs) .

have rank at most one.
Since the representations V; are irreducible, for any ¢ < s, one can

choose elements hyg, ..., hs in I' in such a way that,

(5.2) Im7; ¢ Kerr; and ¢;(Im7;) ¢ Kerr;.

Since the semigroup I' is Zariski connected, by Lemma 5.21, this group
is also Zariski irreducible, and one can choose the elements hy, ..., h

in I such that (5.2) is valid simultaneously for all ¢ < s. Now setting
Aip = [Lj<s Aijp for any i < s and p in S one gets

Xippilgy) —— 7 in End(V;).
Reasoning as in the proof of Lemma 3.1, for p € S large enough, we

deduce that, for any ¢ < s, the element 7 := g, acts proximally in V;
and satisfies ¢;(V;1) ¢ V5. O
The following corollary tells us that many elements of I' are simul-

taneously proximal in all the V;’s.

COROLLARY 5.26. Let K be a local field and for i < s, let V; be a
finite dimensional K-vector space and q; € End(V;) be a nonzero endo-
morphism. Let I' C [],., GL(Vi) be a Zariski connected subsemigroup
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such that, for all i < s, I' is irreducible and proximal in V;. Then the
set

I":={g inT| foralli<s, g is prozimal in V; and ¢;(V}) ¢ Vi5
18 Zariski dense in I

PROOF. Denote by p; : G — GL(V;) the restriction map. Accord-
ing to Lemma 5.25, there exists at least one element -y, in I'V. For any
i < s, there exists a sequence, (\;,),>1 of scalars such that the limit in
End(V;)

i = plggo Nip Pi(70)
exists and is a rank-one endomorhism of V;. Since the representations
V; are irreducible, for all i < s the set

Loy =A{y eI [ mipi(y)m # 0}
is a non empty Zariski open subset of I'. Since the semigroup I' is
Zariski connected, by Lemma 5.21, this group is also Zariski irreducible
and the intersection I'" := M;<,I';;) is also a non empty Zariski open
subset of I'. Reasoning as in the proof of Lemma 3.1, we deduce that,
for any element ~ in I, for n large, the element ~jy7{ belongs to I".
Since, by Lemma 5.15, the Zariski closure of a semigroup is always a
group, for every integer n € Z the element ~jvy~§ belongs to the Zariski
closure of I'V. In particular the element v belongs to the Zariski closure
of I'". This proves that I is Zariski dense in I'. O

5.6. Loxodromic and proximal elements.

We explain now that being loxodromic can be interpreted
as being proximal in suitable representations.

LEMMA 5.27. Let G = SL(d,R). An element g of G is loxodromic
if and only if, for all 1 < i < d, the element N'g is prozimal in N'RY.

We recall that a basis of the exterior product A'R? is given by
the elements ep = ej, A -+ Aej, where E = {ji,...,J;} runs among
the subsets of {1,...,s} with cardinality i. We recall also that the
endomorphism A‘g is given by,

/\ig(vl/\---/\'ui) = (gv1) A -+ A (gvi)
for all vectors v; in R?.

PROOF. Indeed, for 1 < ¢ < d, the moduli of the eigenvalues of
Atg are the product pup = HjeE A;j(g) where E runs among the subsets
of {1,...,s} with cardinality i. This product is maximal when E =
{1,...,i}. The element Alg is proximal in A’R? if and only if no other
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subset E’ achieves this maximum. This is the case if and only if one
has the strict inequality A;(g) > Aiv1(9). O

We can now prove the existence of loxodromic elements in Zariski
dense subsemigroups I' of SL(d, R)

PROOF OF PROPOSITION 5.11. For 1 < 7 < d, the action of the
group G = SL(d,R) on A'R? is proximal. By Lemma 5.23, since I is
Zariski dense in G, the action of I on A’R? is also proximal. By Lemma
5.25, there exists an element ¢ in I' such that, for all i < d, the element
Alg is proximal. By Lemma 5.27, such an element g is loxodromic in
G. By Corollary 5.26, these loxodromic elements are Zariski dense in

G. O

Our aim now is to extend Proposition 5.11 to semisimple real Lie
groups.

5.7. Semisimple real Lie groups.

We recall without proof basic definitions and basic facts
on semisimple real Lie groups (see [64]). We use the
language of algebraic groups and root systems which is
very convenient to deal with semisimple Lie groups.

We gather here more notations than what is needed to prove the
existence of loxodromic elements. In particular, we will discuss the
Cartan projection, the Iwasawa cocycle, the Jordan projection and the
parabolic subgroups. We expect that this section will help the reader
to feel more confortable when we will need to introduce similar notions
in the context of S-adic Lie groups in Chapter 7.

5.7.1. Algebraic groups and mazimal compact subgroups. Let G be
an algebraic real Lie group. Pedantically, this means that G is the
group of real points G = G(R) of an algebraic group G defined over
R. In this chapter and the next one, we will abusively think of G as
a Zariski closed subgroup of a group SL(d,R) for some d > 1. For
instance GL(d, R) is an algebraic real Lie group since it can be seen as
the stabilizer in SL(d+1,R) of the decomposition R = R? ¢ R. An
algebraic morphism ¢ : G — H between two algebraic real Lie groups
is a map which is both a group morphism and a polynomial map.

We say that G is a semisimple algebraic Lie group, if it does not
contain an infinite abelian normal subgroup. We say that G is a con-
nected algebraic Lie group if it is Zariski connected.

We will assume in this chapter that G is a semisimple connected
algebraic Lie group. Important examples are G = SL(d,R), SL(d, C),
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SL(d,H), SO(p,q), Sp(d,R), SU(p,q),.... The full list, up to finite
covers and finite products, can be seen in Helgason’s book [64].

The group G contains a maximal compact subgroup K and all such
subgroups are conjugate. Let g be the Lie algebra of G and € be the
Lie algebra of K. We introduce the Killing form on g given by

Killing(z, y) = tr(adz ady).

Let s be the orthogonal subspace of £ for the Killing form. This Killing
form is negative definite on &, is positive definite on s and one has the
decomposition

(5.3) g=tds.

5.7.2. Cartan subspaces and restricted roots. For x in g, we denote
by adz the endomorphism of g given by adz(y) = [z,y] for all y in
g. An element x of g is said to be hyperbolic if ad x) is diagonalizable
over R. A Cartan subspace of g is a commutative subalgebra a whose
elements are hyperbolic and which is maximal for these properties. All
Cartan subspaces are conjugate under G and a maximal commutative
algebra in s is a Cartan subspace. Let us choose such a Cartan subspace
a C 5. We denote by A the connected algebraic subgroup of G with
Lie algebra a. It does exist (see [22]). By definition, the real rank of G
is the dimension of a. Endowed with the Killing form, the space a and
its dual space a* are Euclidean.

For every algebraic character a of the algebraic group A, we still
denote by « its differential (in the following chapters, this differential
will also be denoted by a*, see Section 7.2). It belongs to the dual
space a*. Let us diagonalize g under the adjoint action of A or a. One
denotes by 3 the set of restricted roots, i.e. the set of nontrivial weights
for this action:

Y={aeca" ~{0}|g*+#{0}} where

g ={y€g/Vz€a, adz(y) = a(r)y}

is the root space associated to a. This finite set X is a root system
in the Euclidean space a*. Note that it is not always a reduced root
system. One has the decomposition

g=73® (Dacx g”),

where 3 is the centralizer of a in g.
The group G is said to be split if one has 3 = a. This happens if
and only if all the root spaces g* are 1-dimensional.



106

5.7.3. Simple restricted roots and Weyl chambers. Let 3T C X be
a choice of positive roots and II C X* be the subset of simple roots.
This subset II is a basis of a*. Let

U= Ppex+g” andlet p=3du

be the minimal parabolic subalgebra associated to X T. Its normalizer
is the minimal parabolic subgroup P := Ng(p) associated to 1. The
Lie algebra of P is equal to p. Let

at ={rea/VaeX, alx)>0}

be the corresponding Weyl chamber in a.
5.7.4. Cartan projection. One has the Cartan decomposition

G = Kexp(a™)K.

For ¢g in G one denote by k(g) € at the Cartan projection of g, that is
the unique element of a™ such that

g € Kexp(r(g))K.

REMARK 5.28. Here is the geometric interpretation of the Cartan
projection. The quotient G/ K endowed with the G-invariant Riemann-
ian metric given by the restriction of the Killing form to s is the so-
called Riemannian symmetric space associated to G. Let mgy be the
point of G/K whose stabilizer is K. In this space G/K the maximal
flat totally geodesic subspaces are exactly the translates gexp(a)mg
with ¢ in G. They are called apartments. The subsets gexp(a™)mq
are called chambers with vertex gmgy. The Cartan decomposition tells
us that any two points of G/K belong simultaneously to at least one
apartment. More precisely, it tells us that, when k varies in K, the
chambers kexp(at)mg form a covering of G/K. When G has real
rank 1, it just tells us that any two points of G/K can be joined by a
geodesic. The distance on G/ K is also given by the formula

d(gmo, hmo) = [|5(h~"g)]| -

The fact that the right-hand side defines a distance follows from the
definitions and the following inequality which will be proved in Corol-
lary 5.34

(5-4)  mlgrg2)l < l[wlg)ll + l[w(g2)ll  for all g1, go in G.

5.7.5. Twasawa cocycle. Let Z be the centralizer of a in G and M :=
Z N K. We denote by U the connected algebraic subgroup of G with
Lie algebra u. It does exist and is a maximal unipotent subgroup of G
One has the [wasawa decomposition

G = Kexp(a)U .
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More precisely, the product map K x (expa) x U — G is a homeomor-
phism. Note that exp(a) is equal to the analytical connected component
A, of A. One also has the equality P = Mexp(a)U. Let

P=G/P

be the flag variety of G and, for any ¢ in G and n in P, if n = kP for
some k in K, let o(g,n) be the unique element of a such that

gk € Kexp(a(g,n)) U.
LEMMA 5.29. The continuous map o : G X P — a is a cocycle.

This cocycle is called the Iwasawa cocycle by group theoretists and
the Busemann cocycle by geometers.

PrROOF. For ¢g,¢' in G and n = kP in P with k in K, let k' € K
and z, 2’ € a be such that

gk € K exp(2)U and gk' € K exp(x)U.
We have o(¢’,n) = 2’ and o(g, ¢'n) = x and
gg'k € gk’ exp(2')U C K exp(x)U exp(2')U = K exp(x + 2')U,
hence o(gg’,n) = = + 2’ and o satisfies the cocycle property (2.6). O

REMARK 5.30. Here is the geometric interpretation of the Iwasawa
cocycle. Let G/K be the associated Riemannian symmetric space and
mg the point of G/K whose stabilizer is K. We fix z in a® of norm
1. For n = kP € P, we introduce the geodesic ray on G/K given
by m; := kexp(tx)mgy. The geometric interpretation of the Iwasawa
cocycle comes from the equality

(5.5) <z,0(g,n)>= tlim d(g~ mg, my) — d(mg, my).

The right hand side of this equality is the Buseman cocycle (see for
instance [6, Sect. I1.2] or [19, Sect. 2.4] in the context of hyperbolic
groups). When z belongs to the interior of a't, this equality (5.5)
follows from the definitions and the following stronger equality which
will be proved in Corollary 5.34

(5.6) o(g,n) = tlim Kk(gke'™) — tx.

5.7.6. Jordan projection. An element g of GG is said to be semisimple
if it is diagonalizable over C. It is said to be elliptic if it is semisimple
with eigenvalues of modulus one. It is said to be hyperbolic if it is
semisimple with positive real eigenvalues. It is said to be unipotent if
all its eigenvalues are equal to 1. These notions do not depend on the
algebraic embedding of GG as a linear group.
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For every g in G, one has a unique decomposition, called the Jordan
decomposition of g, as a product ¢ = ¢.gng, of commuting elements,
where g, is elliptic g, is hyperbolic and g, is unipotent. A striking
property, valid more generally for any algebraic real Lie group, is that
those three components g., g g, still belong to G. Another useful
property is the following fact. Let ¢ : G — H be an algebraic mor-
phism between two algebraic real Lie groups. Then the image ¢(g) of
a semisimple (resp. elliptic, hyperbolic, or unipotent) element g of G
is also a semisimple (resp. elliptic, hyperbolic, or unipotent) element
of H. In particular, the Jordan decomposition does not depend on the
representation of G as a group of matrices.

We recall that G is assumed here to be a connected semisimple
real algebraic Lie group. The hyperbolic component g of g is then
conjugated under G to an element exp(A(g)) with A(g) € a®. This
element \(g) is uniquely determined and the map A : G — a™ is called
the Jordan projection.

REMARK 5.31. The geometric interpretation of the Jordan projec-
tion comes from the equality, for all g in G, m in G/K

(5.7) IA@)]l = lim Ld(g"m, m)

The right hand side of this equality does not depend on m and is called
the stable length of g. This equality (5.7) follows from the definitions
and the following equality which will be proved in Corollary 5.34

(5.8) AMg) = lim 2x(g").
Another useful formula, that we will not use, is

IAg)ll = min_d(gm,m),

Moreover, when ¢ is hyperbolic, there exists at least one g-invariant
chamber in GG/K and the action of g on such a chamber is nothing but
a translation by the element A(g).

In order to illustrate all these notions, we describe now their mean-
ing for the two examples G = SL(d,R) and G = SO(p, q).

5.7.7. Example: G = SL(d,R). Let V = RY, let e;,...,eq be its
standard basis, and let G = SL(d,R). The Lie algebra g of G is the
space of matrices with zero trace

g ={f € End(R?) | t(f) = 0}.

One can choose the maximal compact subgroup K to be the subgroup
of orthogonal matrices K = SO(d). As in Section 5.2, one can choose
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the Cartan subspace a of g to be the subspace of diagonal matrices
a={z =diag(zy,...,zq) /1 + 24 = 0}.

Hence the real rank of G is d—1. One can choose the Weyl chamber
at of g to be the set of elements of a with decreasing coefficients

a+:{x€a/x12--~2xd}.
The group A is then

A ={a=diag(ay,...,aq) /a; Z0, a;---aq = 1}.
The set X of restricted root is
EZ{Ei—ﬁj, Z?éj, 1§l,]§d}

where ¢; € a* is given by g;(x) = ;. For i # j, the root spaces
9., are 1-dimensional and are spanned by the elementary matrices
E;;j = €; ®e;. The centralizer of a is 3 = a. Hence the group G is split.
The set of positive roots of g may be chosen to be

Yh={e;—¢;, 1<i<j<d}
and the set of simple roots is then

H:{gi_€i+17 1§Z<d}

The minimal parabolic subgroup P and its unipotent radical U are

S (N E NS (N

The group P is the stabilizer in G of the maximal flag
Vic...CcVy

where V; is the vector subspace of R? spanned by e, ..., e;. Hence the
flag variety P of GG is the set of all maximal flags of V.

For g in G, the Cartan decomposition of g is nothing but the polar
decomposition of g. It expresses g as a product g = k1" 9k, with ki,
ks in K and k(g) in a™. This element

k(g) = diag(log k1(g), - - -, log Ka(g))

is the Cartan projection of g. Here one has ki(g) = ||g||, where |g]|
is the norm of g as an endomorphism of the Euclidean space R? (see
Section 3.1). For i > 1, k;(g) is the i*"-singular value of g, i.e.

Al
wil9) = A g

Here, again, || A’ g|| is the norm of A’g as an endomorphism of the
Euclidean space A‘R%. The Euclidean norm on A‘R? is the standard
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one, i.e. it is the one for which the vectors e, A---Aey,, for {1 < ... < ¥,
form an orthonormal basis of A‘R<.

5.7.8. Example: G = SO(p,q). Let 1 <p < gwithd=p+¢ >3
and let S, , be the symmetric matrix of size d,

0 0 Jp 0o 0 1
Spq = {( 0 I—p O >} where J, = {( 0o . 0 )}
is the antidiagonal matrix of size p and I,_, is the identity matrix of
size g—p. The group G = SO(p, q) is the group
G={9€SL(d,R) | gSy,'9=5p4}
Its Lie algebra g is
g={f¢€ End(Rd) | f Spq+ Sp,qtf = 0}.

One can choose the maximal compact subgroup K to be the subgroup of
orthogonal matrices K = SO(d)NG ~ S(O(p) x O(q)). One can choose
the Cartan subspace a of g to be the subspace of diagonal matrices

a = {z =diag(xy,...,2,,0,...,0,—xp, ..., —x1)}.

Hence the real rank of G is p. One can choose the Weyl chamber a™ of
g to be the set of elements of a with decreasing coefficients

at={zre€ea/z;, > >x,>0}
The group A is then
A= {a:diag(al,...,ap,l,...,l,agl,...,afl) / a; # 0}.

The set X of restricted root is
Y={te,1<i<pU{ste; £¢;,1 <i<j<p} when p>gq,
Y={te; +¢;,1 <i<j<p} when p=gq,
where &; € a* is given by ¢;(x) = x;. For i # j, the root spaces g, ...
are 1-dimensional but the root spaces g, have dimension ¢—p. The
centralizer of a is 3 = a ® m where m = so(q — p) is the Lie algebra of
antisymmetric matrices of size ¢g—p. Hence the group G is split if an

only if ¢ = p or p+1. The set of positive roots of g may be chosen to
be

Yh={e;,1<i<ptuU{e; te;,1<i<j<p}, when p>gq,
St ={eite;,1<i<j<p}, when p=gq,
and the set of simple roots is then
H={e —¢€i1, 1 <i<p}U{e,}, when p>gq,
={e;—eci1,1 <i<ptU{ep_1+¢,}, when p=gq,
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The minimal parabolic subgroup P is the stabilizer in G of the maximal
isotropic flag

ic...cV,
where V; is still the vector subspace of R? spanned by ey, ..., e;. Hence
the flag variety P of G is the set of all maximal isotropic flags of V.

5.8. Representations of G.

For G = SL(d, R), the representations A’V in Section 5.6

played a crucial role in the proof of Proposition 5.11. For

a semisimple real Lie group G, they will be replaced by

the representations V,, that we will introduce below.
Let G be a connected algebraic semisimple real Lie group. We keep
the notations of Section 5.7.

Let (V, p) be an algebraic representation of G in a finite dimensional

real vector space V. This means that p : G — GL(V) is an algebraic
morphism. For every character y of a, we set

VXi={veV /Vxea, p(v)v=x(z)v}
to be the corresponding eigenspace. Let

S(p) ={x/V*#0}
be the set of restricted weights of V. Most of the time, we will just say

weights of V. Since the group p(A) is commutative and its elements
are diagonalizable over R, one has

V'=Oyexn V"
We endow X(p) with the partial order:
(5.9) X1 < X2 <= X2 — X1 is a sum of positive roots.

We assume p to be irreducible. The set X(p) has then a largest
element x called the highest restricted weight of V. The corresponding
eigenspace is the space

VUi={veV|Uv=u}

The representation p is proximal if and only if dimV¥ = 1 . This is
always the case when G is split.

The dimension r, , = dim VY is the proximal dimension of G in
V. The map g + ¢gVV factors as a map from the flag variety to the
Grassmann variety

(5.10) P = G (V)
n=gP — Vn::gVU.
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LEMMA 5.32. Let G be a connected algebraic semisimple real Lie
group. For every o in 11, there exists a prorimal irreducible algebraic
representation (pa,Va) of G whose highest weight x. is a multiple of
the fundamental weight w, associated to o.

These weights (Xa)acn form a basis of the dual space a*.

Moreover, the product of the maps given by (5.10)

7) - HaEHP(Va)

is an embedding of the flag variety in this product of projective spaces.

This condition on Y, means that y, is orthogonal to ( for every
simple root 3 # «. It implies that the restricted weights of p, are x4,
Yo —« and weights of the form Xa_a—ZﬁeH ng 3 with ng non-negative
integers.

PROOF. See [121]. O

5.9. Interpretation with representations of G.

In this section, we give an interpretation of the Cartan
projection, the Iwasawa cocycle and the Jordan projec-
tion in terms of representations of G.

We keep the notations of Sections 5.7 and 5.8, and we relate now
k, o and A to the representations of G. The Cartan projection controls
the norm of the image matrices in all representations, the Jordan pro-
jection controls their spectral radii and the Iwasawa cocycle controls
the growth of the highest weight vectors.

The following Lemma should be seen as a dictionary wich translates
the language of the geometry of GG into the language of the representa-
tions of GG and vice-versa.

LEMMA 5.33. Let G be a connected algebraic semisimple real Lie
group and (V,p) be an irreducible representation of G with highest
weight .

a) There ezists a good norm on 'V i.e. a K-invariant Euclidean norm
such that, for all a in A, p(a) is a symmetric endomorphism.
b) For such a good norm, one has, for all g in G, n in P and v in V,,

i) x(x(g)) =log(llp(9)ll),
i) x(Ag)) = log(Ai(p(g))),

iii)  x(o(g,n)) = log Hpﬁzﬂvﬂ_

PROOF. a) The group G is the group Gg of real point of an alge-
braic group. We let G¢ be the corresponding group of complex points
so that we get a representation G¢ — GL(V¢) where Ve = C ®g V.
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Using the decomposition (5.3), one introduces the Lie subalgebra g’ :=
t +is C gc. Since the Killing form is negative definite on g’, this Lie
algebra g’ is the Lie algebra of a compact subgroup G’ of G¢ (see [64,
Chap.V §2] for more details). As in Lemma 5.18, we choose a her-
mitian scalar product on V¢ that is G’-invariant. Then, the Euclidean
norm that it induces on V' is good. Indeed this norm is clearly K-
invariant, and the element p(x) for x in a C s are symmetric since, by
construction, they are both real and hermitian.

b) For x in a™, the eigenvalues of p(e*) are exactly the real numbers
eX'(®) where ' runs among the weights of V. Since y is the largest
weight for the order (5.9), one always has x(z) > x/(x). Hence one has

log Ai(p(e”)) = log |[|p(e”) || = x(x).
This proves that, for any ¢ in G, one has

log(llp(g)]1) = log [l p(e")|| = x(x(g)) and

log(M(p(9))) = log M (p(e9)) = x(A(g)) -

In the same way, for z in a and vy in VY, one has

lofe)uoll _

log
[l

Hence, when n = kP with k in K, one writes v = p(k)vy and gk €
Ke®U with = = o(g,n), and one computes

log lp(g)oll 1ng = x(o(g, 7))
ol ol o

as required. O

As a corollary, we get a proof of Formulas (5.4), (5.6) and (5.8)
relating Cartan projection, Iwasawa cocycle and Jordan projection,
that we used in Section 5.7 to understand the geometric interpretation
of these notions.

COROLLARY 5.34. Let G be a connected algebraic semisimple real
Lie group.
a) One has the inequality, for all g1, go in G,
l5(grg2) |l < lslgn)ll + [[£(g2)]l-
b) One has the equality, for all g in G, n = kP € P with k in K, and
x in the interior of a* of norm 1

a(g,n) = lim w(gk exp(tr)) — tz.
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¢) One has the equality, for all g in G,
Ag) = lim %f{(g”).
We fix once for all a family of representations (pq, Va)aen of G as

in Lemma 5.32, and we equip each of them with a good norm.

Proor. We recall from Lemma 5.32 that the family of highest
weights (Xa)aer is a basis of the dual space a*.
a) For all « in TI, one has the inequality
1pa(9192)[] < [lpalgn)]l | pa(g2)]]-

Hence using Lemma 5.33, one has the inequality

Xa(K(9192)) < Xa(k(g1) + K(g2))-
Since the vectors y, are multiples of the fundamental weights, for any
x in at, the dual linear form on a, y — (x,y) belongs to the convex
cone of a* spanned by the vectors y,. One deduces
16(g192)I” < (#(9192), £(g1) + £(g2))

and hence

15(g192) || < [l%5(g1) + £(g2)ll < (gl + [[£(g2)]l -

b) We can assume that k = e. According to Lemma 5.32, we only
have to check that the image by x, of this equality is true, i.e., using
Lemma 5.33, we only have to check the equality

lgvall _ . - llpalge™)]
[od [l t=ee flpalet)]]

where v € VU is a highest weight vector of V,,. Let 7, be the orthog-
onal projection on the line V.V. Since V is endowed with a good norm,
arguing as in a), one obtains the equality

tx
ro = lim )
t= || pa(e)]]
Formula (5.11) follows then from the simple equality

(5.11)

lgva |
Il 1l

¢) As in b), using Lemmas 5.32 and 5.33, we only have to check the
equality

1pa(g)mall =

log A1 (pa(g)) = lim 7log|lpa(g)"l

which is nothing but the spectral radius formula. U
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5.10. Zariski dense semigroups in semisimple Lie groups.

We can now extend Proposition 5.11 to any semisimple
real Lie group G, i.e. we can prove the existence of lox-
odromic elements in any Zariski dense subsemigroup of

G.

DEFINITION 5.35. An element g of G is said to be loxodromic if
A(g) belongs to the interior of a™.

THEOREM 5.36. Let G be a connected algebraic semisimple real Lie
group and 1" be a Zariski dense subsemigroup of G. Then the set I'j,,
of lozodromic elements of I s still Zariski dense.

The proof uses the following Lemma which generalizes Lemma 5.27.

LEMMA 5.37. Let G be a connected algebraic semisimple real Lie
group. An element g of G is loxodromic if and only if, for all a in 11,
the element p,(g) is prozimal in V.

PRrOOF. Recall from Section 5.8 that the weights of a in V,, are x4,
Xa — « and other weights of the form y, — a — Zﬁen ng3, where, for
B in II, ng belongs to N.

In particular, for any x in a*, one has the equivalence : the en-

domorphism p,(€e”) is a proximal endomorphism of V,, if and only if
a(x) > 0. ]

PROOF OF THEOREM 5.36. For « in II, the action of the group G
on the representation (V,,, p,) is proximal. By Lemma 5.23, since T is
Zariski dense in G, the action of I' on V,, is also proximal. By Lemma
5.25, there exists an element ¢ in " such that, for all « in I, the element
pa(g) is proximal. By Lemma 5.37, such an element g is loxodromic in

G. By Corollary 5.26, these loxodromic elements are Zariski dense in
G. O

We finish this section by the following two lemmas on loxodromic
elements.
The first lemma will be useful in Section 6.7.

LEMMA 5.38. In a connected algebraic semisimple real Lie group
G, every loxodromic element g is semisimple.

PRrROOF. Recall that the Jordan decomposition of g is the decompo-
sition of g as a product of commuting elements g = g.gng., where g
is elliptic, g, is hyperbolic and g, is unipotent. After conjugation, we
can assume that the component g, is equal to exp(A(g)). The compo-
nent g, can be written as g, = exp(y) where y is a nilpotent element
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of g which commutes with A(g). Since the Jordan projection A(g) be-
longs to the interior of the Weyl chamber a™, its centralizer is equal to
3 = m@a. Since 3 does not contain nonzero nilpotent element, one has
y = 0 and the element ¢ is semisimple. O

The second lemma characterizes the loxodromic elements in terms
of their action on the flag variety.

LEMMA 5.39. Let G be a connected algebraic semisimple real Lie
group. An element g of G is loxodromic if and only if it has an attract-
ing fized point f;r on the flag variety P of G.

Attracting fized point means that this point { admits a compact
neighborhood b* such that, uniformly for £ in b*, the powers g™ (§)
converge to &

PRroOF. If the element ¢ is loxodromic, after conjugation one can
assume that g = me® where x = \(g) belongs to the interior of a™ and
where m belongs to the centralizer M of a in K. The adjoint action
of g on g/p is contracting, hence the base point of P is an attracting
fixed point of g.

Conversely, assume that ¢ has an attracting fixed point in P. After
conjugation, one can assume that this point is the base point of P so
that g belongs to the minimal parabolic subgroup P of GG, and that the
adjoint action of g on g/p is contracting. The three components g, gy
and g, of the Jordan decomposition of g belong also to P. For each «
in II, the adjoint action of g on the space (g_, @ p)/p is contracting
hence one has a(A(g)) > 0. This proves that g is loxodromic. O

6. The Jordan projection of semigroups

We gather in this chapter two key results on Zariski dense subsemi-
groups of semisimple real Lie groups: the convexity and non-degeneracy
of the limit cone (Theorem 6.2) and the density of the group spanned
by the Jordan projections (Theorem 6.4). These results will be used
to prove the non-degeneracy of the Gaussian law (Proposition 12.19)
in the Central Limit Theorem 12.17 and the aperiodicity condition
(Proposition 16.1) in the Local Limit Theorem 16.6.

We will focus mainly in this chapter on real Lie groups since these
results do not extend to other local fields.

6.1. Convexity and density.

We first state the two main results of this chapter.
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We recall a few notations from Section 5.7. We fix a connected
algebraic semisimple real Lie group G, a Cartan subspace a of its Lie
algebra g and a Weyl chamber a®. We denote by A\ : G — a* the
Jordan projection and we recall from Definition 5.35 that an element
g of G is loxodromic if A(g) belongs to the interior of a*.

We recall that, when G = SL(d,R), the Cartan subspace a can
be chosen to be the space of diagonal matrices with zero trace, the
Weyl chamber at to be the cone of matrices in a with nonincreasing
coefficients. For g in GG, the coefficients of the Jordan projection A(g)
are then the logarithms of the moduli of the eigenvalues of g.

Let T" be a Zariski dense subsemigroup of G. We saw in Chapter
5 that the set I';,, of loxodromic elements of I' is still Zariski dense in
G. The following two theorems give useful informations on the image
of I'j,; by the Jordan projection.

DEFINITION 6.1. The limit cone of I is the smallest closed cone Lr
in a* containing A\(T'},,).

In other words, Lr is the closure of the union of the half-lines
spanned by the Jordan projections of the loxodromic elements of I

Ly = Uer, BTA(9).

In this definition, the word cone does not presuppose that L is con-
vex. The fact that this cone is indeed convex is part of our first main
theorem.

THEOREM 6.2. Let G be a connected algebraic semisimple real Lie
group and I" be a Zariski dense subsemigroup of G. Then the limit cone
Lr is convex with non-empty interior.

REMARK 6.3. let us quote without proof a few more properties of
Lr.
(¢) The limit cone Ly contains also A(T").
(#4) The limit cone Lr is the asymptotic cone of the image of I by the
Cartan projection, i.e.

Lr={xea®|3g, €T, 3, \,0 lim t,k(g,) = x}.

(i74) For any closed convex cone with non empty interior L of a*, there

exists a Zariski dense subsemigroup I' of G such that Lr = L.

(iv) The convexity of Lr is also true over non-archimedean fields.
These properties will not be used in this book. See [10] for more

details.
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The fact that Lr is convex will be proved in Section 6.4. The fact
that Ly has non-empty interior will then be a consequence of our second
main theorem.

THEOREM 6.4. Let G be a connected algebraic semisimple real Lie
group and I' be a Zariski dense subsemigroup of G. Then the subgroup
of a spanned by the elements A(gh) — X(g) — \(h), for g, h and gh in
[z, is dense in a.

The proof of Theorem 6.4 will be given in Section 6.8.

6.2. Products of proximal elements.

In this section we relate the spectral radius of the product
of two transversally proximal matrices with the product
of their spectral radii. This will be the key ingredient
in the proof of the convexity of the limit cone in Section
6.4.

We first recall some notations from Section 3.1. Let K be a local
field and V = K% For any proximal element g in End(V), we recall
that V;r is the attracting g-invariant line and that VS is the unique
g-invariant complementary hyperplane. We choose a nonzero vector
vy € VF and a linear functional o5 € V* whose kernel is V< and such
that @5 (v;) = 1. We introduce the rank-one projection 7, := ¢y @v;.
It is given by 7,(v) = p5 (v)v,, for all v in V. Its image is V" and its
kernel is V,=. This rank-one projection 7, can be obtained as the limit

(6.1) Ty = lim

Indeed, since ¢ is proximal, when n goes to infinity the norm of ¢",
the spectral radius of ¢" and the absolute value of the trace of g™ are
equivalent:

lg" [l ~ A(g)"™ ~ [tr(g")| -
Here the symbol a,, ~ b, means that the ratio a, /b, converges to 1.
Note then that the limit operator in the right-hand side of (6.1) has
image V;F, kernel Vg< and trace equal to 1. Hence this operator is equal
to my.

These projections 7, are very useful to approximate the spectral
radius of a product. Indeed, one has the following lemma. We write
m A n for the minimum of m and n.

LEMMA 6.5. Let K be a local field and V = K. Let g, h be two
proximal elements of End(V') and let f1, fo be two elements of End(V).
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Then one has the limit

: M(g™ ik fa)
lim M) [tr(mg fimnf2)] -

In particular, when tr(m, fi7, f2) # 0, this limit is nonzero.

PROOF. An easy but crucial point in the proof is the equality
Ai(o) = [tr(o)|

which is valid as soon as ¢ is a rank-one endomorphism of V.

Using Formula (6.1) for both g and h and the fact that the spectral
radius of a matrix depends continuously on the matrix, one computes
the limits for m A n — oo,

e L0 N O
MAT— 00 >\1(g)m)\1(h)” m/{n—wo A1 tr(gm) fltr(h") f2
= M(mgfimnfe) = [tr(mg fimnfo)l,

as required. O

DEFINITION 6.6. Two proximal elements g, h of End(V) are called
transversally prozimal if tr(m,m,) # 0.

Geometrically this transversality condition means that
VQJr ¢ V.S and V' ¢ Vg< ,
and the quantity
By (‘/;_7 va<> Vh+7 Vh<) = tr(ﬂ—gﬂh)
is the cross-ratio of this quadruple. Indeed, one has the formula

g (i) i (vy)
(6.2) BV VS,V VE) = 28 .
90T s () g ()
This equation (6.2) follows from the formula m,m, = @5 (v;7) o5 ®

+
’Ug.

A special case of Lemma 6.5 is the following corollary.
COROLLARY 6.7. Let K be a local field and V = K. Let g, h be

two proximal elements of End(V'). Then one has the limit

: A(g™h")
lim ———2— = |tr(7,m)| .
m/An—oo Al(g)m/\l(h)n | ( g h)|

In particular, when g, h are transversally proximal this limit is nonzero.

Proor. This follows from Lemma 6.5 with f; = fo = 1. U
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6.3. Products of loxodromic elements.

Using the dictionary introduced in Section 5.9, we trans-
late now the results of Section 6.2: we relate the Jordan
projection of the product of two transversally loxodromic
elements with the sum of their Jordan projections.

We first recall some notations from Section 5.8. We fix a connected
algebraic semisimple real Lie group G, a Cartan subspace a of its Lie
algebra g, a Weyl chamber at and the corresponding set IT of simple
restricted roots. For every a in II, we denote by (V,, po) the irreducible
proximal representation of G introduced in Lemma 5.32, whose highest
weight x, is a multiple of the corresponding fundamental weight.

For g loxodromic in G, we will write V.t | V.= . and 7, , as short-

a,g)’ a,g?
hands for (Va)_p:(g)’ (VO‘);&(Q)’ a‘nd ﬂ-pa(g)'

DEFINITION 6.8. Two elements g, h of G are called transversally
loxodromic if | for every ain II, the elements p,(g), po(h) are transver-
sally proximal.

For instance, when ¢ is loxodromic, the duplicate elements g, g are
transversally loxodromic.

REMARK 6.9. This definition does not depend on the choice of
the family p,. Indeed, using Lemma 5.39, one can check that two
loxodromic elements g, h are transversally loxodromic if and only if
the G-orbit of the pair (f;,f,j) of attracting points is the open orbit
in P xP.

It is in general not true that the Jordan projection A(gh) of the
product of two elements g and h is equal to the sum A(g) + A(h) of
their Jordan projections. The following Lemma 6.10 and its Corollary
6.11 tell us that under suitable transversality assumptions this fact is
asymptotically true up to a converging error term.

LEMMA 6.10. Let G be a connected algebraic semisimple real Lie
group. Let g, h be two loxodromic elements of G. Then there exists
a non-empty Zariski open subset G, of G* such that, for every f =
(f1, f2) in G, the following limit

(6.3) lim (g™ [ih" f>) = mA(g) — nA(h)
exrists in a.

PRrROOF. We define G, to be
(6.4)
Gon:={f=(f1, f2) € G* | tr(Tag pa(f1) Tan pa(f2)) # 0, for a € I}
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The transversality condition means exactly that the pair (1, 1) belongs
to the Zariski open set G 5.

Since the linear functionals (X4 )aenr form a basis of the dual space
a*, we can define, for f in G, ), an element v;(g, h) in a by the equalities

(6:5)  Xa(vs(g,h)) = log [tr(Tag palfi) Tan pa(f2))] for a1

We will check that the limit (6.3) is equal to this vector v¢(g, h).
Equivalently, we will prove, for every « in II, the convergence

Xa(Mg™fih" f2) = A(g™) = A(h")) ——— Xa(v4(9, 1))

mAn—oo

But, by Lemma 5.33, the left-hand side is equal to
AM(pa(g™ LR f2)
A (palg))™ A1 (pa(h))"
By Lemma 6.5, it converges to 1og |tr(ma,g pa(f1) Tan pa(f2))]- O

log

COROLLARY 6.11. Let G be a connected algebraic semisimple real
Lie group, let g, h be two transversally lozodromic elements of G and
let v(g, h) be the element of a defined by

(6.6) Xa(v(g,h)) =log |tr(ma,gTan)| for all o in II.
Then one has the equality
(6.7) v(g,h) = Alim Ag™h"™) —mA(g) — nA(h).

REMARK 6.12. Conversely, if for two loxodromic elements g, h in
G, the limit (6.7) exists then the pair (g, h) is transversally loxodromic.
This fact follows from the proof. This fact tells us also that Definition
6.8 does not depend on the choices of p,.

PRrROOF. This follows from Lemma 6.10 and its proof with f; =
Ja=1 O

The element v(g, h) will be called the multicross-ratio of g and h.

6.4. Convexity of the limit cone.

Using the results of Section 6.3, we prove now the con-
vexity of the limit cone of a Zariski dense semigroup I'.

ProoOF oF THEOREM 6.2. We first prove the convexity of the cone
Lr. Since this cone Lt is closed, it is enough to prove the following:

For any g, h in T',y, the sum X(g) + A(h) belongs to L.

Since the set G, introduced in (6.4) is a non-empty Zariski open set,
the intersection
Lyn:=T?NGyn
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is non-empty. Let f = (fi, f2) be an element of I'y ;. According to
Lemma 6.10, the Jordan projection A(g"fih™f2) remains at bounded
distance from nA(g) + nA(h). In particular, for n large enough, the
product g" fih" f5 is loxodromic and the sum

Mg) + A(h) = lim ZA(g"f1h" fz)

belongs to Lt as required.
The fact that Lr has non-empty interior will follow from Theorem
6.4. O

6.5. The group Ar.

We explain in this Section how to prove the density The-
orem 6.4 thanks to the group Ar of multicross-ratios.

DEFINITION 6.13. The group Ar of multicross-ratios of T is the
subgroup of a spanned by the multicross-ratios v(g, h) where the pair
(g, h) runs among the pairs of transversally loxodromic elements of T'.

Here is the main result of this chapter.

PROPOSITION 6.14. Let G be a connected algebraic semisimple real
Lie group and I" be a Zariski dense subsemigroup of G. The group Ar
s dense in a.

This proposition will be proved in Section 6.8.

PROOF OF PROPOSITION 6.14 = THEOREM 6.4. Let AL be the
subgroup of a spanned by the differences A(gh) — A(g) — A(h) for g, h
and gh loxodromic elements of I'. We will prove the inclusion between
the closures

Ar C AL

Let go, ho be two transversally loxodromic elements of I'. According
to Corollary 6.11, the multi crossratio v(go, ho) is given by the limit

V(g0 ho) = Tim A(ghE) — A(g§) — AR},

and, for n large, the element gghg is also loxodromic. Hence v(go, ho)
belongs to Al and Ar is included in Af. O

Our aim now is to prove Proposition 6.14.



6. THE JORDAN PROJECTION OF SEMIGROUPS 123

6.6. Asymptotic expansion of cross-ratios.

The proof of Proposition 6.14 will rely on an estimation
of suitable cross-ratios associated to transversally prox-
imal elements. This estimation will be valid only under
a stronger transversality condition involving the second
leading eigenspaces.

For a sequence S C N and sequences (@, )men and (bp,)men of

nonzero real numbers, we write a,, xs b,, if there exist real num-
me

bers ¢,d > 0 such that, for m large enough in S, ¢ |a,,| < |bm| < dlam],
and we write a,, = o(b,,) if the ratio a,,/b,, converges to 0

Let K be a local field and g be a proximal element of End(K%).
We denote by Vg<Jr C V.~ the subspace of V; that is the sum of the
generalized eigenspaces with eigenvalues of modulus \y(g). We denote
by 7, the projection on V9<Jr whose kernel is g-invariant.

The following lemma will allow us to construct, in a given proximal
and strongly irreducible semigroup I', pairs of transversally proximal
elements (g, h) such that the cross-ratio tr(m,m,) is close to 1 but not
1.

LEMMA 6.15. Let K be a local field and V = K?. Let g, h be two
transversally proximal elements of End(V).
a) Then, for m, n large enough the product g™h" is prozimal and one
has the convergence

: tr(mgg™mn)
hm tr(m,m mpn ) = Cm\ (g, h = g—
n—oo ( 9”g ) ( ) tI‘(gmﬂ'h)
b) If moreover g is semisimple and 7,(V,7) ¢ V,=, there exists a se-
quence Sy in N such that one has

Aa(g)™
6.8 log ¢, (g, h)| = )
(6.8) lealo W] = TG

REMARK 6.16. The real number ¢,,(g, h) is also a cross-ratio. In-
deed one has the equality

Cm(97 h’) = Bl(‘/:_a ‘/g<7 ngth’ Vh<)'

DEFINITION 6.17. A transversally proximal pair (g,h) satisfying
the extra condition 7,(V;t) ¢ V,= will be called strongly transversally
proximal.
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PROOF. a) Choose m large enough so that tr(¢™ny,) # 0. One has
the equality

im = :
n—oo tr(g™h™)  tr(g™m)
Hence since the map f +— m; is continuous on the set of proximal
endomorphisms, one also has the equality

1 g,
1m mwompn — ————.
n—00 gmh tr(gmﬂ'h)

Our claim follows by applying the map f +— tr(m, f) to both sides.
b) Using this formula, one has the asymptotic

tr((mg — 1)g™mn)
tr(gmmy) '

log |em(g, h)| o~ cm(g,h) —1=
We have already computed the denominator. One has
tr(g™m) = oi(g"vy) -
We compute now the numerator. We set wg := 7,(v;"), so that one has

(L =mg)g™mn) = @5 (1= mg)g™v,) = 5 (9"750y) + 0(Aal9)™) -

Since ¢ is semisimple, there exist a sequence S, C N depending only
on g, and elements t,, in K with |¢,,| = A2(g)™ such that

-1 _m
t Ty — Tg.
m 9 ngSgg

Since neither v} nor 7,v; belong to V<, one has

e (g™ o)l = Aalg)™ and [y (9" Tgu)l X dalg)™

meog

Putting all this together, one gets (6.8). O

6.7. Strongly transversally loxodromic elements.

Using the dictionary introduced in Section 5.9, we trans-
late now the results of Sections 5.5 and 6.6 into the lan-
guage of the geometry of G.

Let G be a connected algebraic semisimple real Lie group.

DEFINITION 6.18. Two elements g, h of G are called strongly transver-
sally loxodromic if, for every « in II, the elements p,(g), pa(h) are
strongly transversally proximal.

We recall that S; C N is the sequence introduced in Lemma 6.15.
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COROLLARY 6.19. Let G be a connected algebraic semisimple real
Lie group and g, h be two transversally lozodromic elements of G.
a) For m large enough, the following limit exists

Tm(g, h) = lim v(g,g™h") € a.

b) Moreover, if g, h are strongly transversally lozodromic, one has, for
all o in 11,

(69) |Xa<7-m(g,h>>| = e—ma(/\(g))

meSy

PROOF. a) According to Corollary 6.11, for all « in II, one has

Xa(v(g,g™h™)) = log [tr(Ta,gTa,gman)|-

Hence by Lemma 6.15, one has, for m large enough,

Tim xa(v(g,9™h")) = log|cm(pa(g), pal(h))]-
This proves that the limit 7,,(g, h) exists and satisfies, for all « in II,
(6.10) Xa(Tm(g, h)) = log|cm(pa(9), pa(h))].

b) According to Lemma 5.38, the loxodromic element ¢ is semisim-
ple. This tells us that all the proximal endomorphisms p,(g) are
semisimple. Using Equation (6.10) and Lemma 6.15, one gets the
asymptotics:

_ A2(palg)”
[Xa(Tm (g, )] NI
Now, using the description of the restricted weights of the repre-
sentations V,, from Lemma 5.32 and using Lemma 5.33, one gets the
equalities

M (palg)) = 2P and Ay(palg)) = eXa@RID,
This proves (6.9). -

The following lemma tells us that, in a Zariski dense semigroup,
there are many pairs (g,h) of strongly transversally loxodromic ele-
ments.

LEMMA 6.20. Let G be a connected algebraic semisimple real Lie
group, I' be a Zariski dense subsemigroup of G, and g be a loxodromic
element of I'. Then the set

Iy:={h €T | g and h are strongly transversally loxodromic}

1s Zariski dense in (.
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PROOF. This set I'y is the set of elements h such that, for all v in II,
pa(h) is proximal in V,, with WQVQ(Voi_h) ¢ V5, and Tpa(g)(VOj’Lh) Vi
According to Corollary 5.26, this set is Zariski dense. U

6.8. Density of the group of multicross-ratios.
We are now ready to prove Proposition 6.14

At the very beginning of this proof, we will need a loxodromic
element in I" with extra properties. This element will be given by the
following lemma.

LEMMA 6.21. Let G be a connected algebraic semisimple real Lie
group and 1" be a Zariski dense subsemigroup of G. Then there exists
a lozodromic element g of I' such that the real numbers a(\(g)) for
a € 11 are distinct.

REMARK 6.22. Note that Lemma 6.21 is a special case of Theorem
6.2 which tells us that the limit cone Lr is convex and is not included
in a proper subspace of a. However we need to give a proof of Lemma
6.21 since we have not finished yet the proof of Theorem 6.2. What
we will check in the proof of Lemma 6.21 is that the cone Lr is not
included in a proper “rational” subspace of a, by noticing that such an
inclusion will contradicts the Zariski density of I';,,.

Proor oF LEMMA 6.21. By Theorem 5.36, I',, is Zariski dense
in G. By Lemma 5.21, GG is Zariski irreducible. Hence it is enough
to prove that, for every two restricted roots a; and as, there exists a
non-empty Zariski open set Uy, o, of G such that,

a1(A(g)) # az2(A(g)) , for all loxodromic element g in Uy, q,.

Since both a; and ay belong to the Q-span of the linear functionals y,,
there exists even integers (pa)aer not all zero, such that ) pa Xa
is a multiple of a; — as. Now, for any ¢ in G let us introduce the
multiplicity m;(g) of the eigenvalue 1 in the characteristic polynomial
of the matrix @,y pa(g)®P*, with the convention that, for a matrix
A, a negative tensor power like A% means (A71)®*. Let my min be
the minimal value of those integers m;(g) when g runs in G. The set

Uayar = {g€G|mi(g) = ml,min}

is the Zariski open subset of G we were looking for.
Indeed, let g be a loxodromic element satisfying a; (A(g)) = aa(A(g)).
We want to see that g does not belong to Uy, «,. One has the equality

> acr Pa Xa(A(g)) = 0.
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According to Lemma 5.33, this means that

[Toen A (palg)™) = 1.

Since the local field is R and since the p,, are even integers, the leading
eigenvalues of p,(g) are real numbers and this relation between their
moduli is a relation between the leading eigenvalues themselves. This
proves that g does not belong to U,, o, as required. ([l

PROOF OF PROPOSITION 6.14. Assume by contradiction, that there
exists a nonzero linear functional ¢ in a* such that p(Ar) C Z. Write

© = per PaXa With o, € R

Choose, using Lemma 6.21 a loxodromic element g of I" such that the
positive real numbers «(A(g)), for a € II, are distinct. Choose then «
in IT with ¢, # 0 for which a(A(g)) is minimal. Choose, using Lemma
6.20, an element h in I'j,, such that g, h are strongly transversally
loxodromic. According to Corollary 6.19, for m large, the element
Tm(g, h) belongs to Ar, and one has

(Tl 1)) = e,

meSy

This contradicts the fact that p(Ar) C Z. O

This finishes also the proof of Theorems 6.2 and 6.4.

7. Reductive groups and their representations

In order to study random walks on reductive groups over local fields,
we collect in this chapter a few notations and facts about these groups:
the definition of the flag variety, the Cartan projection and the Iwasawa
cocycle. Those extend the notations and facts for semisimple real Lie
groups that we collected in Section 5.7. Even though these notations
and facts look at a first glance rather heavy, they will allow us to express
the asymptotic behavior of random walks on GG in an intrinsic way i.e.
in a way which does not depend on an embedding of GG into a linear
group. To prove these intrinsic results, we will only use a special kind of
irreducible representations of GG, the so-called prozimal representations.
We will later be able to deduce from the intrinsic results the asymptotic
behavior of the random walk in any linear representation of G.

7.1. Reductive groups.

We first introduce the main definitions and notations for
reductive groups over local fields.
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Let still K be a local field and keep the notations from chapter 3.
Let G be a reductive K-group i.e. a reductive algebraic group defined
over K and set G = G(K). Equip G with its natural locally compact
topology.

Choose a maximal K-split torus A of G, a maximal unipotent K-
subgroup U of G that is normalized by A and let P = Ng(U) be the
normalizer of U in G. Let X be the root system of the pair (G, A),
that is, the set of non-trivial weights of the adjoint representation of A
in the Lie algebra of G, ¥ C X be the set of positive roots associated
to the choice of P and II be the set of simple roots of X*. Let Z be the
centralizer of A in G. Let A, Z, U and P be the groups of K-points
of A, Z, U and P (see [22] for more details).

Let a be the dual vector space to the real vector space of continuous
homomorphisms A — R. Since any continuous morphism A — R
extends in a unique way to a morphism Z — R, there exists a unique
morphism w : Z — a whose restriction to A is the natural morphism
A — a (see [122, Lemma 4.11.4]).

Let X(A) be the character group of A. For any character x of
X(A), we let x¥ be the unique linear functional on a, such that, for
any a in A,

Ix(a)] = X (w(a)
The set X“ is a root system in a* and II“ is a basis of this root system.
We set a™ for the closed Weyl chamber of T1¢,

at :={rea|VaeX a’(x) >0},
and
ot i={r€a|VaeXt a¥(x) >0}
for the open Weyl chamber.
We set W for the Weyl group of ¥ and ¢+ : a* — a* for the
associated opposition involution, that is —¢ is the unique element of W
that sends a™ to —a™.

REMARK 7.1. When K = R, these notations have been introduced
in a simpler way in Section 5.7 : the vector space a is the Lie algebra
of A, and for every algebraic character y of A, the linear functional x*
on a is the differential of .

7.2. Iwasawa cocycle for reductive groups.

The two main outputs of this section are the Cartan pro-
jection xk which is a multidimensional avatar of the norm
and the Iwasawa cocycle o which is a multidimensional
avatar of the norm cocycle. The main asymptotic laws
in this book will describe the behavior of k and o.
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7.2.1. Twasawa cocycle for connected reductive groups. We define
first the Iwasawa cocycle and the Cartan projection for connected
groups since it is slightly easier in this case.

Let G, be the connected component of G, Z. := ZN G, and P, :=
P N G,, which is a minimal parabolic K-subgroup of G.. Let G, Z.
and P. = Z.U be their groups of K-points and

Zr={z€Z. |w(z) eat}.

Let K. be a good mazimal compact subgroup of GG, with respect to the
torus A.

When K is archimedean this means the Lie algebras of A and K
are orthogonal for the Killing form as is explained in Section 5.7.

When K is non-archimedean this notion is introduced in [32], where
the existence of such a group is also established.

In both cases, for such a group K., one has the Cartan decomposi-
tion

G.=K.Z K,

(see [32] in the non-archimedean case). For any ¢ in G, let x(g) be
the unique element of a™ such that

g9 € K.w™'(k(g)) Ke.
The map
k:G.— at
is called the Cartan projection. For all g in G, one has
k(g™") = u(r(g))-
Besides, one has the Iwasawa decomposition
G.=K.Z.U.
Let
P.=G./P.

be the flag variety of G, and, for any g in G, and n in P., if n = kP,
for some k in K, let o(g,n) be the unique element of a such that

gk € K.w™'(a(g,m) U.
The following lemma is a straightforward generalization of Lemma 5.29.

LEMMA 7.2. Let G be the group of K-points of a reductive K-group
G. The map o : G. X P, — a is a continuous cocycle.

This cocycle is still called the [wasawa cocycle or the Busemann
cocycle.



130

PROOF. The proof is the same as for Lemma 5.29. Indeed, for ¢, ¢’
in G and 7 in P, if n = kP, with k in K, let ¥ in K. and z,2" in Z
be such that

gk ek'Z’U and gk’ € K. 2U.
We have o(¢',n) = w(?') and o(g, ¢'n) = w(z) and
gg'k € gk'2’U € K.2UZ'U = K.(22")U,

hence o(gg’,n) = w(z22’) and o satisfies the cocycle property (2.6).

This cocycle ¢ is continuous. Indeed, in case K is non-archimedean,

since K. is open, the cocycle o is locally constant. In case K is
archimedean, the continuity has been checked in Lemma 5.29. U

7.2.2. Twasawa cocycle over an archimedean field. We now extend
the definition of the Iwasawa cocycle to non-connected groups. For
technical reasons, the definition is easier in the archimedean case, that
is when K is R or C, which we temporarily assume. We set F' = G/G..

Let K be the normalizer of K. in G. As the maximal compact
subgroups of G. are all conjugated, we have

G=G.K and KNG, =K,
(see [64, Sections 6.1 and 6.2]). Hence the natural map
K/K.— F
is an isomorphism and we get the non-connected Cartan decomposition
G=KZ'K,.
For g in G, we let again k(g) be the unique element of a* such that
g€ Kw'(r(g)) K. = K exp(k(g)) K.

We still say x is the Cartan projection of G.
In the same way, we have G = KP. = KZ.U. We let

P =G/P,

be the flag variety of G and, for any ¢g in G and n in P, if n = kP, with
kin K, we let o(g,n) be the unique element of a such that

gk € Kw™(o(g,n) U = K exp(a(g,n)) U.

As in Lemma 7.2, one checks that the map ¢ is a continuous cocycle,
which we still call the [wasawa cocycle.

Let us now study the equivariance properties of this Iwasawa co-
cycle under the group F' = G/G,.. First note that, since the minimal
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parabolic K-subgroups of G, are all conjugated (see [22]) by an element
of GG, we have G = GG.P and the natural map

P/P.— F

is an isomorphism. Now, since the connected component P, is normal
in P, the group P/P. acts on the right on G/P,. and this action may
be read as an action of F'. This action is right equivariant with respect
to the natural map G/P. — G/G. = F. Besides, since P. = Z.U and
U is equal to the commutator group [A, U], the morphism w : Z, — a
extends in a unique way as a morphism P, — a, which we still denote by
w. By definition of w, there exists a unique linear action of F' = P/P,
on a which makes w an F-equivariant morphism. Since P normalizes
U, the action of F' on a preserves a*.

The following lemma tells us that the Iwasawa cocycle is F-equiva-
riant.

LEMMA 7.3. Let G be the group of K-points of a reductive K-group
G. Assume K=R or C. For any g in G, n inP and f in F, one has

(7.1) olg,nf) = f"olg.n).

PROOF. Indeed, assume nn = kP, with k in K. Since K is archimedean,
we have

P=(KnNP)P,

and we can find a representant for f which belongs to K N P; we still
denote it by f. We get nf = kfP.. By definition, we have

gk € Kw ' (o(g,m)) U,

hence

gkf € Ko™ (o(g,m)Uf =K [ w  (o(g,m)) fU,
which completes the proof. O

7.2.3. ITwasawa cocycle over a local field. We now drop the assump-
tion that K is archimedean. We will extend the previous construction.
The only new difficulty is that the maximal compact subgroups of G.
are in general not all conjugated in G. but may be conjugated in G.
When this happens, this prevents the existence of a maximal compact
subgroup G that would map onto G/G.. We will overcome it by using
a suitable section 7 of the quotient map s : G — F = G/G. ~ P/P..
We choose a map

T:F—=P; f—r1y
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which is a section for the natural projection, that is, for any f in F,
one has 7y € PN s~ !(f). We also assume that 7(e) = e. We introduce
the subset of G
K :=71(F)K..

This set K may not be a subgroup, but it is still suitable for construct-
ing the Cartan projection and the Iwasawa cocycle.

We define again the Cartan decomposition of G in an analogue way:
for any ¢g in G, we let k(g) be the unique element of a* such that

(7.2) g9 € Kw'(k(9)) Ke.
For n in P, we can write
n=kP., with kin K.

For g in G and 7 in P, we let o(g,n) be the unique element of a such
that

(7.3) gk € Kwo(g,n))U.

This function o is well defined since £ is unique up to the right multi-
plication by an element of K.N P..

LEMMA 7.4. Let G be the group of K-points of a reductive K-group
G. This map 0 : G X P — a is a continuous cocycle.

The proof is the same as for Lemma 7.2. We still call o the Twasawa
cocycle

REMARK 7.5. In case K is archimedean, we can choose K to be
a maximal subgroup of G, we have P = (K N P)P., so that we can
assume 7 to take values in K N P. We retrieve the construction from
the previous paragraph.

The finite group F' = P/P, is still acting on the right on the flag
variety P = G/ P, of G. With this definition of o, we lost the property
of equivariance (7.1) under the action of the group F. However, we
still get

LEMMA 7.6. Let G be the group of K-points of a reductive K-group
G. For any f in F, the cocycles

(g:m) — flo(g,n) and (g,n) — o(g,nf)

are cohomologous.

PRrROOF. For n in P, write n = kP, with k in K and let ¢s(n) be
the unique element of a such that

(7.4) ke € Kw ' (ps(n)U.
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Now, if g belongs to G, let &’ and k” be in K such that

(7.5) gk € K w(o(g,m) U and

(7.6) krp € k" w (os(n)U.

On the one hand, since gn = k' P., we have, using (7.4),
K 1pe Kw ' (pr(gn) U,

hence, using (7.5) and the fact that 7; normalizes P,

gkt e Kw (op(gn) + f'o(g.n) U.

On the other hand, by (7.6), nf = k" P., hence, by the definition (7.3)
of o, we have

gk" € Kw(a(g,nf))U.
Therefore, using again (7.6),

gkt e Kw ' (o(g,nf) +es(n) U
Thus, we get

pr(gn) + falg.m) = alg,nf) + s (),
which completes the proof. 0

7.3. Jordan decomposition.

We introduce now the Jordan projection A which is a
multidimensional avatar of the spectral radius.

Let G be the group of K-points of a reductive K-group G.

We already discussed the case when K = R or C in Section 5.7. Let
us recall it. In this case, every element g of G has a unique decom-
position, called the Jordan decomposition, as a product of commuting
elements ¢ = g.gng., where g, is semisimple with eigenvalues of modu-
lus one, g, is semisimple with positive eigenvalues and g, is unipotent.
The component g, is conjugated to an element z, of Z and we let

Ag) == w(z,) €a’.

When K is a non-archimedean local field, we fix a uniformizing el-
ement w € K. Every element g of G has a power g"° with ny > 1,
which admits a Jordan decomposition, i.e. a decompositon as a prod-
uct of commuting elements ¢™ = g.gng., Where g. is semisimple with
eigenvalues of modulus one, g;, is semisimple with eigenvalues in w?”
and g, is unipotent. The component g, is conjugated to an element z

of AT := AN ZF and we let
Ag) = niow(zg) cat.
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REMARK 7.7. This map does not depend on the choices that we
made, and one still have the following formula:

(7.7) AMg) = lim Lk(g).
Proor. This will follow from Lemmas 7.8, 7.15, and 7.17, and from
the spectral radius formula. For more details, see [10]. O

The following lemma tells us that A(g) encodes the moduli of all
the eigenvalues of g in all the representations of G

LEMMA 7.8. Let G be the group of K-points of a reductive K-group
G. Let (p,V) be an algebraic representation of G. Then, for g in G,
the moduli of the eigenvalues of p(g) are the numbers eX”*9)  where
X runs among the weights of A in V.

In particular, if (p,V') is an irreducible representation of G. with
highest weight x, the spectral radius of p(g) is equal to ex“(M9)),

PRrROOF. By definition of the Jordan projection, it is enough to
prove this assertion when g admits a Jordan decomposition g = g.grgu.
Then, since all the eigenvalues of p(g,) are equal to one, and since all
the eigenvalues of p(g.) have modulus one, one can assume g = g. In
this case, g is conjugated to an element of A" and one can also assume
g € AT. Now, the eigenvalues of p(g) in V are the numbers x(g) and
the result follows. ]

7.4. Representations of reductive groups.

In the next section, we will explain how to analyze the
behavior of the Iwasawa cocycle of G thanks to suitable
representations of G endowed with good norms.

We construct these representations and their norms
in this section, extending the construction of Section 5.8.

Let (p, V) be an algebraic representation of G. This means that V'
is a finite dimensional K-vector space and p is the restriction to G of
a K-rational representation (p, V) of G. For any character y of A, we
let VX be the associated weight space in V', that is,

VX={veV|Vae Apla)w=x(a)w}

and, for v in V', we set vX for its A-equivariant projection on VX,
7.4.1. Good norms for connected groups. Assume G is connected
ie. G =G,
In case K is R or C, a norm ||.|| on V' is said to be good or (p, A, K.)
good, if it is Euclidean and if the elements of p(K.) are ||.||-unitary and
those of p(A) are ||.||-symmetric.



7. REDUCTIVE GROUPS AND THEIR REPRESENTATIONS 135

In case K is non-archimedean, a norm ||.|| on V is said to be
(p, A, K.) good, if it is ultrametric, p(K,)-invariant, if, for any v in
V', one has ||v]| = max, |[vX|| and if, for any character x of A, any v in
VX and z in Z, one has

lo(z)oll = X" o]

The following lemma tells us that, for connected groups, good norms
always exist.

LEMMA 7.9. Let G be the group of K-points of a connected reductive
K-group G. For any algebraic representation (p, V') of G, such a good
norm on V always exists.

PROOF. In the archimedean case, we gave the proof in Lemma 5.33.

In the non-archimedean case, this is proved in [99, §6].
U

REMARK 7.10. In case K is archimedean and G non-connected
Lemma 7.9 is still true. However, when K is non-archimedean and G
non-connected Lemma 7.9 is not always true.

7.4.2. Good norms in induced representations. Our aim now is to
state a lemma which will play the role of Lemma 7.9 for non-connected
groups G. This will be Lemma 7.13 below.

First, let us recall some general facts from representation theory.

Let I' be a group and A be a subgroup of I'. Given a representation
pof Ain V, the induced representation Ind} (p) is the space W of maps
¢ : ' = V such that, for any ¢ in I', A in A, one has

p(gh) = p(h) " (9),
equipped with the natural action of I, that is,

9¢(g') = (g~ 'g") for any g,¢' in I' and ¢ in W.
For any fin I'/A, define V; C W as the space of ¢ in W with ¢pa = 0
for f'# fin I'/A. Then V} is fAf™'-invariant and one has

W= EBfer/A Vi.

For v in W, we let vy be its component in V} for this decomposition.

In all the sequel, we identify V' and V, through the map that sends
some v in V to the function ¢ such that ¢(h) = p(h=")v for h in A
and ¢(g) =0 for g in I' VAL

Even if V is irreducible, the induced representation is not neces-
sarily irreducible. For instance, when V is trivial, the induced repre-
sentation W is the regular representation of I' on I'/A. However, we
have the following Lemma 7.11 which will allow us to project induced
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representations in irreducible quotients. This technical lemma will be
used in the proof of Theorem 9.9.

LEMMA 7.11. Let T’ be a group and A be a finite index subgroup of
. IfV is a vector space and p an irreducible representation of A in
V', for any proper T-invariant subspace U of W = IndX\(p), for any f
in /A, one has V; NU = {0}.

REMARK 7.12. Assume W/U is T'-irreducible and V' is A-strongly
irreducible. Then the image of (V) ser/a in W/U is a transitive strongly
irreducible I'-family.

PrOOF. As W is spanned by the V;, there exists f in I'/A with
Vi ¢ U. Since V; is fAf~!-irreducible, we have V; N U = {0}. Since
U is I'-invariant, we have Vy N U = {0} for any f" in I'/A, which was
to be shown. O

Let us come back to the context of reductive groups. Given an alge-
braic representation p of G. in V, the induced representation Indgc (p)
in W is an algebraic representation of G. We will only define the good
norms for these induced representations.

In case Kis R or C, a norm on W is (p, A, K.)-good if it is Euclidean
and K-invariant, if the sum W = @, V; is orthogonal and if the
elements of A act as symmetric endomorphisms on W.

In case K is non-archimedean, a norm on W is (p, A, K., 7)-good
if it is ultrametric, if, for any v in W, ||[v|| = maxyep ||vf|| and if the
restriction of the norm to V is (p, A, K..)-good and if , for any f in F,
the element 74 induces an isometry V' — V7.

The following lemma tells us that such good norms do exist.

LEMMA 7.13. Let G be the group of K-points of a reductive K-
group G. For any algebraic representation (p, V) of G, the induced
representation Indgc (p) always admits such a good norm.

PROOF. In case K is archimedean, the proof mimics the connected
case. In case K is non-archimedean, we fix a (p, A, K.)-good norm on
V', which exists by Lemma 7.9. Now, for f in F', we equip V; with the
image of this norm by 7, and we set |jv|| = max llvgl]. O

7.4.3. Highest weight. Let (p, V) be an algebraic representation of
G..
Let x be a parabolic weight of A in V i.e. x is a weight of A in the
space

VVi={veV|Uv=uv}
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We write VUX for the corresponding weight space
VO .=vUnyx

One has
PVUx c VUx,

If (p, V') is an irreducible representation of G, it admits a unique para-
bolic weight which is also the largest weight and is traditionally called
the highest weight . If (p, V') extends as a representation of G, the set
of parabolic weights is stable under the natural action of F'. Moreover,
if (p, V') is an irreducible representation of G, all the parabolic weights
of V' belong to the same F-orbit and the parabolic weights are exactly
the maximal weights for the order (5.9).

Set W = Ind% (p). Let x be a parabolic weight of (p,V) and
r=r, =dim VYX. The map g — gV factors as a map

(7.8) P — UfeF G, (Vy)
n=gP.—V,, = gVU’X.

If V' is G -irreducible, we write V,, for V, ,.

7.4.4. Proximal representations. Let (p,V') be an irreducible alge-
braic representation of G. The representation (p, V') is said to be proz-
imal if there exists a parabolic weight y of A in V' whose corresponding
weight space is a line: dim V'YX = 1. In this case, the other parabolic
weight spaces V/X also are one-dimensional.

REMARK 7.14. A strongly irreducible algebraic representation (p, V')
of G is proximal if and only if there exists g in G such that p(g) is a
proximal endomorphism of V.

7.4.5. Construction of representations. We quote now a lemma which
constructs a few proximal representations of GG.. Recall that we already
quoted this construction for real Lie groups in Lemma 5.32.

LEMMA 7.15. Let G be the group of K-points of a reductive K-
group G. For every a in 11, there exists a proximal irreducible algebraic
representation (pea, Veo) of G with a highest weight x. such that x%
s a multiple of the fundamental weight w? associated to .

Moreover any product x = [],cn Xae with ng > 0 is also the highest
weight of a proximal irreducible representation of G.

PROOF. As for Lemma 5.32, we refer to [121]. O

This condition on x, means that x¥ is orthogonal to 3 for every
simple root § # « and also for every character of G..



138

The others weights of A in V., are x, — a and weights of the form
Xa — Q — Zﬂen ng3, where, for 3 in II, ng belongs to N. In particular,
for any z in ZF, the endomorphism p. ,(z) is a proximal endomorphism
of V., if and only if a*(w(z)) > 0.

DEFINITION 7.16. We fix once for all such a family of representa-
tions (pe.a, Vea) of Ge, for a in II, and we let (pa, Vi) be the induced
representation Indgc(pm), which we equip with a (p,, A, K., 7)-good
norm.

7.5. Representations and Iwasawa cocycle.

We relate now k, o and A to norm behavior in represen-
tations: the Cartan projection controls the norm of the
image matrices in all representations, the [wasawa cocy-
cle controls the growth of highest weight vectors, and the
Jordan projection controls the spectral radius.

We first state these properties as a lemma when G is connected.
This lemma explains why the Cartan projection, the Iwasawa cocycle
and the Jordan projection, can be seen as mutidimensional avatars of
the norm, the norm cocycle and the spectral radius.

LEMMA 7.17. Let G be the group of K-points of a connected reduc-
tive K-group G. Let (p, V) be an irreducible algebraic representation
of G equipped with a (p, A, K.)-good norm and x be the highest weight
of A in'V. Then, one has, for any g in G,

(7.9) ()] = X",
for any n in P and v in V,,

(7.10) lp(g)v]| = @) o],
and

(7.11) Ai(plg)) = e .

As we will see, this lemma is an application of the definitions of the
Cartan projection, the Iwasawa cocycle, the Jordan projection and the
good norms.

Here is the extension of Lemma 7.17 to non-connected groups G.
We let s : G — G. be the natural morphism.

LEMMA 7.18. Let G be the group of K-points of a reductive K-
group G. Let (p,V') be an algebraic irreducible representation of G,
X be the highest weight of A in' V and W = Indgc(V). Equip W with
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a (p, A, K., 7)-good norm. For any g in G, one has p(g)V = Vi) and
the norm of g as a linear operator between these G.-submodules is

(7.12) p(g)v || = eX“ @),
For n in P and v in the space V;,, one has
(7.13) lgoll = @ o],

and, introducing the sum V' of the images g"V forn > 0,
(7.14) M (p(g)|yr) = eX A9,

REMARK 7.19. These formulae are the main reason, and also the
main tool, for us to study the behavior of the Iwasawa cocycle and the
Cartan projection of a large product of random elements.

PROOF. First, we prove (7.12). Write
g € KzK,. with z in Z.
By Definition (7.2), one has

By construction, we have

o)l = llp(z) |

and the result follows since x is the highest weight of A in V.
Now, we prove (7.13). Write

n=kP. with k in K and
gk =FKzu withuin U, ¥ in K, z in Z,.
By definition (7.3), one has
w(z) = a(g,n)-
Setting w = k~'v, so that w is in VX and ||w|| = ||v||, one has

guv = gkw = k' zuw = k' 2w

and
lgvll = [lzw]] = @O Jluw]] = "o o]
The proof of (7.14) is similar. O
Equip once for all a with a Euclidean norm ||.|| which is invariant

by the Weyl group W and by F'. In order to control the size of elements
in a, we just have to control the image of these elements by sufficiently
many linear functionals on a. The following corollary gives examples
of application of this technique similar to those in Corollary 5.34.
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COROLLARY 7.20. Let G be the group of K-points of a reductive
K-group.
a) For every g in G and n in P., one has

(7.15) o(g,n) € Conv(Wr(g)),

i particular, one has

(7.16) lo(g. Il < [Ik(9)]]-

b) For every g1, g2 in G, one has

(7.17) [k(g192)[| < [|£(9172) + K(g2) I,

where Ty = Ty(q,) € F'. In particular, one has

(7.18) [£(g192)[| < [l5(g1m2)l| + [[£(g2)]-

¢) Moreover, there exists C' > 0 such that, for every g, g1, g2 in G,
(7.19) 15(91992) — K(9)[| < C([l£(go)ll + [l£(g2)]])

and, for every g, g1, g2 in G,

(7.20) I1#(91992) — f5 ' w(g)Il < CllK(gr)ll + ll(ga) | + 1),
where fo = s(g2). Moreover, for any g in G and f in F,

(7.21) [6(g7s) — fR(g)]| < C.

PROOF OF COROLLARY 7.20. a) See [81] for a more precise state-
ment when G is a real Lie group. Here is a short proof. We may assume
that G is semisimple. Besides, since we have, by construction, for any
g in G and n in P,, R(Tié)g) = k(g) and J(Ts_(é)g, n) = o(g,n), we may
assume that G is connected.

For p in a™, we introduce the set

Cp:={q€a|x(wqg) <x&(p) forall win W, « in IT}.
First step: We check that
(7.22) Conv(Wp) = C,.

Since C), is convex and W-invariant, in order to prove the inclusion
Conv(Wp) C C,, we only have to check that p belongs to C,. Since p
is dominant i.e. belongs to a™, for every w in W, p — wp is a positive
linear combination of simple roots and hence x¥(wp) < x¥(p) for all «
in II.

In order to prove the inclusion Conv(Wp) D C,, by Krein-Milman
Theorem, it suffices to prove that any extremal point ¢ of C}, belongs to
Wp. Since C), is W-invariant, we may assume that ¢ is dominant and
we want to prove that ¢ = p. If this is not the case, there exists a € 11
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such that x“(q) < x¥(p), but then, for € small enough, the interval
q + [—¢,¢]a” is included in C,, whence a contradiction.
Second step: We have the equivalence, for ¢, ¢’ in G,

(7.23)  &(g) € Conv(Wk(g)) <= [p(g")]l < llp(g)]l for all p.

In the right-hand side of this equivalence, “for all p” means for all ire-
ducible algebraic representation (p, V') of G endowed with a (p, A, K,)
good norm. This equivalence follows from the first step and Equality
(7.9) applied to all the representations (p,, V4,) introduced in 7.4.5.

Third step: Let (p, V) be an irreducible algebraic representation
of G endowed with a (p, A, K.) good norm. For all z in Z and u in U,
one has

(7.24) ()]l < llp(zu)]l-

Indeed, let x be a weight of A in V such that x“(w(z)) is maximal.
Since the norm is (p, A, K.)-good, we have ||p(z)|| = X" @) Now, if
v # 0 is a vector in V), we have

pu)v € v+ B, VX,
Again, since the norm is (p, A, K.)-good, we get

lp(zw)oll > [Ip(z)v]| = & “ o] = ||p(2)] [0l
and we are done.
Fourth step: We prove (7.15). Write n = koP. with k¢ in K,
g = kiztky with kq, ky in K. and 27 in Z7, so that k(g) = w(z").
Write gk = kzu with kin K, zin Z and v in U, so that o(g,n) = w(2).
According to Inequality (7.24), one has, for any p,

(7.25) o)1 < llp(z7)II-

Now (7.15) follows from (7.23) and (7.25).

b) Let (p,V) be an irreducible representation of G. with highest
weight x and equip the induced representation Indgc (p) = Der Vr
with a (p, A, K., 7)-good norm. We have, setting fo = s(g2),

e 02— |p(gugalv | < lo(glvs (gl ll = llp(gnlg e o).

Now, since 7, induces an isometry between V' and V4,

Hp(g1)|Vf2|| - Hp(ngz)‘VH = exu(”(gﬂﬁ)).

Applying this property to the representations (pa,V.), a € II, and
using (7.22) one gets

k(9192) € Conv(W (k(g172) + £(g2)))-
This implies (7.17) and (7.18).
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¢) Again, if (p, V) is an irreducible representation of G. with highest
weight v, equipped with a (p, A, K.)-good norm, for g, g; and g, in G,
we have

(g DI g I < lleCgrgg2) 1/ 1l < lolg)|l 1o(g2)]l,

hence

—X“(e(k(g1) + K(92))) < x“(K(91992) — K(9)) < x*(k(g1) + K(g2)),

which gives (7.19), since the dual space of a is spanned by finitely many
highest weights of representations. Now, (7.19) and (7.20) are proved
in the same way by using the good norms in W = Indgc(p) and the
fact that the finite set 7(F') has bounded image in GL(W). The bound
(7.21) follows immediately. O

7.6. Partial flag varieties.

When K # R, we need to introduce also the partial flag
varieties associated to subsets © C II. When K is R, the
subset © = II is the only one which will be useful in this
text.

For © C 1II, let Ag be the intersection of the kernels of the elements
of I N\ © in A and Zg . be the centralizer of Ag in G.. Set Pg . =
Ze U. For instance, one has

Ap = A, Ay = K-split center of G, Pr. = P, Py = G..
The K-groups Pg ., © C 11, are exactly the K-subgroups of G, which
contain P.. Set Pg . = Pg(K), and introduce the partial flag variety
of G and G,
7)@ = G/P@,C and P@7c == GC/P@,C.
Those partial flag varieties will be better understood tanks to the

representations (pa, Vo) in Definition 7.16. For any o € ©, one has
Pa(Poc) (Vo)X C (Vo)X and the map

Po — UfeF P (Var)
n=gPe.— Va,n = pa(9>(vc,a)xa
is well defined. The product map

(7.26) Po — [lacoUrer P (Var))

is a G-equivariant embedding. Set, ©°¢ := 11 \ O,
e = {re€a|VaeO° ao“(x)=0},
al, = aeNa’ and

ayt = {real|VaeO, a’(x) >0}
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We let W C GL(a) be the subgroup of the Weyl group of 3 spanned
by the reflections associated to the elements of II . ©. Then, ag is the
space of fixed points of Wg in a. For instance, Pp = P, ag = a and
Wn =W, while Py = F, ay is the subspace of a spanned by the image
of the center of G, by w and Wy = {1}. One let pg : @ — ag denote
the unique Wg-equivariant projection.

LEMMA 7.21. The image po oo : G X P — ag of the Iwasawa
cocycle o by pe factors as a cocycle

(727) g - G x 73@ — Og.
We call this cocycle the partial Iwasawa cocycle.

PROOF. In case G is connected, this is proved for example in [100,
lemme 6.1]. In general, from the connected case, we get, for any g in
G and z in Zg,

pe(0(g:&n)) = pe(o(7yy9:én)) = pe(o(yy 9, %6n)) = pe(o(g, 2En))
and, by the cocycle property, the same holds for any n in P. O

Assume that the subset © C II is stable by F. On the one hand
the right action of F' on P factors as an action on Pg. On the other
hand, the subspace ag is F-invariant and the projection pg commutes
with F'. One has the following generalisation of Lemma 7.6.

LEMMA 7.22. Assume © is F-invariant. For any f in F, the cocy-
cles (g,n) — f~'oe(g,n) and (g,1) = oe(g,nf) are cohomologous.

Proor. This follows from the proof of Lemma 7.6. Keeping the
notations of this proof, we just have to notice that the function pg o ¢
descends to Peg and hence gives the required coboundary. U

Still assume that the set © is F-stable. Let Po C G be the nor-
malizer of Pg . and Pg be its group of K-points. Since Po NG, = Po .
and P C Pg, the natural map

P@/P@7C — F

is an isomorphism. Since © is F-stable, for every g in G, gPg g™ ' is

conjugated in G. to Pg, that is, we have G = G.Pg and the natural
map

Po.=G./Po.— G/Po
is an isomorphism. To summarize, G acts in a natural way on Pg . and
we have a GG-equivariant identification

(728) Po =~ ’P@’c x F.



144

Under this identification, the action of F' o Pg reads as its right action
on the second factor.

For G = SL(d,K), one can describe concretely the parabolic sub-
groups Pg and their unipotent radical Ug. Choosing for instance ©°¢
with only one simple root, that is, with the notations of Section 5.7.7,
choosing ©°¢ = {g;,41 — &;} for some 1 < i < d, one has, in terms of
block matrices with blocks of size i and d—1,

we{(i ) - e ((31)

Note that another value for © would give different numbers and sizes
of block matrices.

7.7. Algebraic reductive S-adic Lie groups.

In this section we introduce the class of locally compact
groups that we will work with. This class contains both
the reductive algebraic real Lie groups and the reductive
algebraic p-adic Lie groups.
We now let § be a finite set of local fields. For any s in S, we will
sometimes denote by K, the local field s. These local fields are two by
two non isomorphic.

DEFINITION 7.23. An algebraic S-adic Lie group G is a subgroup
of a product G' C ], ¢ G5 such that,
- for s in S, the group G is the group of K -points of a K-group Gy,
- G contains the finite index subgroup G. := [[ .5 Gs.c, and,
- for s in S, the projection map G — G is onto.

We denote by F' the finite group F' = G/G.. We say that G is
connected if G = G.. We say that G is reductive if the K;-groups Gg
are reductive.

The real factor Gg of G will mean the group Gy for Ky = R.

We keep the notations of Sections 7.4 and 7.6, adding a subscript s
to each of them: thus, Py is the flag manifold of G, as a Cartan space
for G, 1l a set of simple restricted roots, etc. We set P, = HSES P,
a = [[,cq @ We define the flag variety of G as P := G/F,. It is an
open and compact G-orbit in the product of the flag varieties [ ], g Ps.

We define the Cartan projection of G

k:G—a

as the map obtained by taking the product of the Cartan projections
ke : Gy — as of G, s € S.
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We define the fwasawa cocycle of G
c:GXP—a

as the cocycle obtained by taking he product of the Iwasawa cocycles
os: Gy x Py — a, of Gy, s € S.
We define the Jordan projection of G

AM:G—a

as the map obtained by taking the product of the Jordan projections
At Gy — ag of Gy, s €8S.

When © is an F-invariant subset of the set II := | |, _¢II,, we set
Po. = [lies Pouses Po = G/Posc, Po. = G/Po, ag = [[,cs %0,
where, for any s in S, ©, = [I, N O©. We set po : a — ag to be the
projection and the partial Iwasawa cocycle

(729) Jgg - G x 'P@ — Qg.

to be the cocycle which is the product of the cocycles og, : Gs X Po, —
do,, S € S.

As a shorthand, we will say that a representation (p, V') of G in a
K,-vector space is algebraic if it factors as an algebraic representation of
the quotient group G,. We will say that this representation is proximal
if it is proximal as a representation of G, and so on...

8. Zariski dense subsemigroups

This is the third chapter which is devoted to Zariski dense subsemi-
groups. While Chapters 5 and 6 were dealing with algebraic reductive
real Lie groups, the present chapter is dealing with algebraic reductive
S-adic Lie groups. We freely use the language of Section 7.

8.1. Zariski dense subsemigroups.

In this section we introduce the set Or of simple roots
associated to a Zariski dense subsemigroup I' of G.

Let G be a reductive algebraic S-adic Lie group. As a shorthand,
we will say that a subsemigroup I' of G is Zariski dense in G if T’
is not included in a proper algebraic S-adic Lie subgroup H of G.
Equivalently, I' is Zariski dense in G if, for each s in §, the projection
['s of I' on the reductive algebraic K,-algebraic group Gy is Zariski
dense, and if one has the equality G = I'G... In this case, we set

(8.1) Or :={a eIl | a®(k(T')) is not bounded}.

By Theorem 5.36, this set Or always contains the set IIg of simple
roots of the real Lie group Gy In particular, one has



146

When G is a reductive algebraic real Lie group, this
(8.2) set Or is equal to I1 and the partial flag variety Pe,.
15 equal to the full flag variety P.

LEMMA 8.1. Let ' be a Zariski dense subsemigroup of G. Then one
has the equality

(83) Or = @FQGC.
Moreover the set Or is F'-stable.

ProoF. The first assertion follows from Corollary 7.20.c).

Pick f in F' and ¢ in I" such that s(g) = f. Again using Corollary
7.20.c), one has sup. cr [|£(vg) — f~'&(7)]| < oo. The second assertion
follows. O

Note that, by the spectral radius formula (7.7), for g in I', one has
>‘<g) € aor-

8.2. Loxodromic elements in semigroups.
In this section, we give a few properties of the set Or.

Let G be an algebraic reductive S-adic Lie group. For © C II, we
say that an element g of G. is ©-proxzimal if, for every o in ©, p,(g) is
a proximal endomorphism of V,, (where the p, are as in section 7.4.5).
This amounts to say that the action of g on Pg . admits an attracting
fixed point £ . For any o in ©, the line Va,&gg C V, is then the

eigenspace associated to the dominant eigenvalue of p,(g).
According to Lemma 7.8, an element

g is ©-proximal if and only if «*(X(g)) > 0 for any « in ©

and one then has

76(9,€6.,) = Pe(A(9)).
Let I be a Zariski dense subsemigroup of G. Note that the set Or
is also the set of simple roots a for which p,(I') is proximal.
The following lemma proves the existence of elements in I which are
simultaneously proximal in these representations p,. It is an extension

of Lemma 5.25 where we allow simultaneously representations of I" over
different local fields.

LEMMA 8.2. Let G be a connected algebraic reductive S-adic Lie
group and I be a Zariski dense subsemigroup of G.
a) Then, the semigroup I contains Or-proximal elements.
b) More precisely, the set of ©Op-prozimal elements of I' is Zariski dense

mn G.
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The proof uses the following

LEMMA 8.3. Let G be a connected algebraic reductive S-adic Lie
group and I' be a Zariski dense subsemigroup of G. Fori=1,...,s, let
(pi, Vi) be an algebraic irreducible representation of G, v; be a nonzero
vector of V; and W; be a proper subspace of V;. Then there exists g in
[ such that gv; ¢ W; for all 1 <i <s.

ProoOF oF LEMMA 8.3. In case G is an algebraic group over a
fixed local field, this follows from Zariski connectedness of G. In gen-
eral, the main new difficulty is that the representations may be defined
over different fields.

We may assume that I' is closed. Then, we can choose a Zariski
dense probability measure p on G such that I' =T',.

By Lemma 3.6, for 1 < i < s, if v is a u-stationary Borel probability
measure on P(V;), we have

v(P(W;)) = 0.

Let x; be the image of v; in P(V;). Since every limit point of the
sequence of probability measures

5 Dy L % 0,
is p-stationary, we get
LS ™ {g e G| gv; e Wi} —0
Pick n large enough so that each of these terms is < % We get
IS W geGIVI<i<s gv; ¢ Wi} >0

and we are done. U

Proor oF LEMMA 8.2. This is Lemma 5.25 when G is an alge-
braic Lie group over a local field. The proof in general is very similar.

a) We denote by aj, ..., as the elements of Op. Fori=1,...s, let
7ip be a sequence of elements of I" with o (k(v;,)) —— o0, and set,
p—oo

for p > 1,
9p = Yiphivapho Vs phs

where the elements hq,...,hs € I' will be chosen later. There exists
a sequence S C N such that, for any o in O and i = 1,..., s, there
exists a sequence, (\;p.a)pes Of scalars such that the limit in End(V,)

Toi = UM A apa(Yip)
peS
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exists and is nonzero. By assumption, for ¢ = 1,...,s, the limits 7, ;
are rank one operators. Hence, for any o in Or, the following operators

To i= Ta1 Pa(P1) Ta2 pa(h2) - Tas pa(hs) .

have rank at most one.

By Lemma 8.3, one can choose the elements hq,...,hs in I' in such
a way that, for any a € Or, Im 7, ¢ Ker 7, and hence 7, has rank one.
Now, for any a € Or, there exists a sequence (A, 4)pes of scalars with

ApaPalgp) —— 7o in End(V,).
p—o0

Reasoning as in the proof of Lemma 3.1, for p € S large enough, we
deduce that the element 7 := g, acts proximally in V,, for any o in
Or.

b) We want to prove now that the set

Lpros == {7y € I' | 7 is Op-proximal}

is Zariski dense in GG. Let 79 € I" be a ©p-proximal element. For any «
in Or, there exists a sequence, (A, q)pen Of scalars such that the limit
in End(V,)

o := lim Ap,apa(fyg)
p—00

exists and is a rank-one endomorhism of V. Since V,, is irreducible
and G is Zariski connected, the set

I'":={y €T | mapa(y)ma # 0 for all @ in Or}

is Zariski dense in I'. For any element + in I, for n large, the element
Yoo belongs to I'yop. Since the Zariski closure of a semigroup is
always a group, the element v belongs to the Zariski closure of I',4.
This proves that Iy, is Zariski dense in G. ]

By reasoning as in the proof of Lemma 8.3, one gets:

LEMMA 8.4. Let G be an algebraic reductive S-adic Lie group, I' be
a Zariski dense subsemigroup of G and f be an element of F = G/G..
Fori=1,...,s, let (p;,V;) be an algebraic irreducible representations
of G, U; be an irreducible G.-submodule of V;, v; be a nonzero vector of
U; and W; be a proper subspace of fU;. Then there exists g in I' such
that gG. = f and gv; ¢ W, for 1 <i <s.

PROOF. Assume that I' is closed and let u be a Borel probability
measure on G with I' = I',,. Note that, since I' maps onto F', the only
p-stationary Borel probability measure on F'is the normalized counting
measure, so that one has

LS ity € GloG = £} — k.

—00
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Then one argues as in the proof of Lemma 8.3, replacing the use of
Lemma 3.6 by the use of Lemma 3.17. O

8.3. The limit set of I'.

In this section, we define the limit set of a Zariski dense
subsemigroup of a reductive algebraic S-adic Lie group

Let G be an algebraic reductive S-adic Lie group and I" be a Zariski
dense subsemigroup of G.

Define the limit set Ap. of I' in Pg, . as the closure in this flag
variety of the set of attracting fixed points of ©p-proximal elements of
rna..

LEMMA 8.5. Let G be an algebraic reductive S-adic Lie group and
I' be a Zariski dense subsemigroup of G.
a) One has 'Ap . = Ap,.
b) For any n in Pe, ., one has Ap . C .

In other words, Ar . is the unique I'-minimal closed invariant subset
of P@DC.

PROOF. Let g be a ©p-proximal element of I' N G..

a) Let h be an element of I'. Let us prove that hi’gr’g belongs to
Ar.. If T is a group, this is trivial since then the element hgh~! belongs
to I' N G, is Or proximal and its attracting fixed point is

+ _ g et
€orngn—1 = €or.g-

Since I' is only assumed to be a semigroup, the argument will be
longer. Set f = s(h)~'. For any a in O, let W, = Indg V,. Then,
since Or is F-stable, g acts as a proximal endomorphism of fV,. We
denote by Vaf, . C fV, its dominant eigenline and by Vofi > C fVa
the g-invariant complementary subspace of Vo{i ’; . The line Vaf’ ’g+ is the
image of &5 , by the unique G-equivariant map Pe, . — P(fVa). By
Lemma 8.4 applied to G-irreducible quotients of the spaces W, there
exists A’ in I" such that s(h’') = f and, for any « in Or,

'py St [i<

WhV T & Vs
Reasoning again as in the proof of Lemma 3.1, one sees that, for large
n, the element p,(hg"h’) is a proximal endomorphism of V,, and that

its dominant eigenline converges to hVC{’ ’ng . By uniqueness of the G-
equivariant map Pe, . — P(fV,), we get

Wt =v,

+ .
7f£(—)1_‘7g
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Therefore, if n is large enough, the element hg™h' of T' is ©p-proximal
and we have

+ +
ny — h )
5(91“7/19 (A f@ng

In particular, hﬁgr , belongs to Ar . as required.

b) Now, let n be in Pg . and let us prove fgw belongs to I'n. By
Lemma 8.3, there exists h in I' N G, such that, for any « in ©r, one
has po(h)Vay & Vo, () and hence

n + —
Pal9"h) Ve PR Va,pa(g) - Vavﬁgp,g'
We get ¢"hnp —— 5(;’ , and we are done. U

COROLLARY 8.6. Let G be an algebraic reductive S-adic Lie group,
F=G/G. and T" be a Zariski dense subsemigroup of G. Then the set

Ar = Apyc x F C P@F,C x P~ P@F
is the unique I'-minimal closed invariant subset in Pg,..
This set Ar is called the limit set of I' in Peg,,.

PROOF. By definition, one has Apng.. = Ar., hence by Lemma
8.5, the action of I'NG. on Ap . is also minimal. Our claim follows. [

8.4. The Jordan projection of I'.

In this section, we give an extension of the result of Sec-
tion 6.1 which will be used to determine the support of
the covariance 2-tensor for random walks on algebraic
reductive S-adic Lie groups.

Let G be an algebraic reductive S-adic Lie group. For any s in
S, we set by to be the orthogonal in a, of the subspace of a spanned
by the algebraic characters of the center of G,.. We set bg to be this
subspace b, when the local field is K, = R.

Let T" be a Zariski dense subsemigroup of G. We define the limit
cone of T is the smallest closed cone Lr in at containing the elements
A(g) where g runs among the Op-proximal elements of I' (see Lemma
8.2).

The following proposition extends Theorem 6.2. It will be used in
the determination of the support of the Gaussian law in the TCL in
Proposition 12.19

PROPOSITION 8.7. Let G be an algebraic reductive S-adic Lie group
and I be a Zariski dense subsemigroup of G. Then the limit cone Ly
1s a conver cone whose intersection with bg has non-empty interior.

PROOF. The proof is similar to the proof of Theorem 6.2. O
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The following proposition extends Theorem 6.4. It will be used
in the determination of the essential image of the Iwasawa cocycle in
Proposition 16.1.

PROPOSITION 8.8. Let G be an algebraic reductive S-adic Lie group
and I" be a Zariski dense subsemigroup of G. Then the closed subgroup
of a spanned by the elements A(gh) — A(g) — A(h), for g, h and gh
Or-prozimal elements of I' contains bg.

PROOF. The proof is similar to the proof of Theorem 6.4. O

9. Random walks on reductive groups

The main result of this chapter is the Law of Large Numbers for
the Iwasawa cocycle and for the Cartan projection together with the
regularity of the corresponding Lyapunov vector (Theorem 9.9). These
results will be obtained as translations of the results of Chapter 3 in the
intrinsic language of reductive algebraic S-adic Lie groups introduced
in Chapter 7. We keep the notations of this Chapter 7.

9.1. Stationary measures on flag varieties.

We first translate the results of Section 3.2 in the lan-
guage of reductive groups.

When G is a reductive algebraic S-adic Lie group and p is a Borel
probability measure on G, we define I', to be the subsemigroup of G
spanned by the support of y and set ©, = ©r,. We say that p s
Zariski dense in G if the semigroup I',, is Zariski dense in G.

The first proposition deals with connected groups. It tells us that
the partial flag variety Pg, supports a unique p-stationary measure.
This proposition is similar to Lemma 3.6 and Proposition 3.7.

PrROPOSITION 9.1. Let K be a local field and G be the group of K-
points of a connected reductive K-group G. Let u be a Zariski dense
Borel probability measure on G.

a) Then there exists a unique p-stationary Borel probability measure
on the flag variety Pe,. This probability v is p-prozimal.
b) Let M be a homogeneous space of G and v be a p-stationary Borel

probability measure on M(K). For any proper subvariety N of M, one
has v(N(K)) = 0.

PROOF. a) For any a in ©,, p,(I',) is a proximal strongly irre-
ducible subsemigroup of GL(V,). Hence, by Proposition 3.7, there
exists a unique p-stationary Borel probability measure on P (V) and
this measure is p-proximal. Therefore, as Pg, embeds G-equivariantly
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in the product [],cq P (Va), according to lemma 1.24, there exists
a unique p-stationary Borel probability measure v on Pg, and it is
p-proximal.

b) Consider now the set A of irreducible subvarieties N of M such
that ¥(N(K)) > 0 and that the dimension of N is minimal for this
property. Then, for any N; # Ny in NV, one has N; NNy ¢ N, so that,
reasoning as in the proof of Lemma 3.6, one proves that, if , is the
set of elements N of A/ such that v(N(K)) is maximal, then N, is non-
empty, finite and I',-invariant. Thus, the K-points of the subvariety
Unen, N form a Zariski closed I'-invariant subset of M(K), so that,
I', being Zariski dense, one has N, = {M}, whence the result. O

We now extend the study of the stationary probability measures on
flag varieties to the context of algebraic reductive S-adic Lie groups.

Let G be an algebraic reductive S-adic Lie group. When p is a
Borel probability measure on GG, we let, as in Section 4.2, ug, be the
Borel probability measure induced by pon G.. One hasT',, =T',NG.
and we set ©, := Or,. Note that, by (8.3), one has ©, = 6,, . We
still denote by df the normalized counting measure on F' = G/G..

The second proposition extends Proposition 9.1 to non-connected
groups. It tells us that the partial flag variety Pe, still supports a
unique p-stationary measure v.

PROPOSITION 9.2. Let G be an algebraic reductive S-adic Lie group
and p be a Zariski dense Borel probability measure on G.
a) There exists a unique p-stationary Borel probability measure v. on
Pe, .. and v, is pi-prorimal.
b) There exists also a unique p-stationary Borel probability measure
v on Pe, and v is p-proximal over F. More precisely, through the
identification Pe, ~ F x Pe, . as in (7.28), the measure v reads as
df ®v,.

PROOF. a) and b). From Proposition 9.1, we know that there exists
a unique pg, -stationary Borel probability measure v, on Pg, . and v,
is pg-proximal. Hence our claims follow from Lemma 4.7. U

The support of v depends only on I',. Indeed the following lemma
tells us that it is equal to the limit set of 'y in Pg,. This Lemma will
be used in the proof of Proposition 12.19.

LEMMA 9.3. Let G be an algebraic reductive S-adic Lie group, F' =
G/G., i be a Zariski dense Borel probability measure on G and v be
the p-stationary Borel probability measure on Pe,. Then the support
of v is Ap,.



9. RANDOM WALKS ON REDUCTIVE GROUPS 153

ProOOF OoF LEMMA 9.3. On the one hand, by Lemma 1.10, every
closed I'j-invariant subset of Pg, supports a p-stationary probability
measure. On the other hand, by Proposition 9.2, v is the unique u-
stationary probability measure on Pg,. This proves our claim. This
also gives another proof of the uniqueness of the minimal I',-invariant
subset of Pg, (see Corollary 8.6). O

9.2. Stationary measures on Grassmann varieties.

In this section, we draw a link between the stationary
measure on the flag variety Pg, and the boundary map
in Lemma 3.5.

Assume that G is a connected K-group, where K is a local field.
Let p be a Zariski dense Borel probability measure on the group G :=
G(K). According to Proposition 9.2, the unique p-stationary proba-
bility measure v on Pg, is u-proximal. This means that there exists
a Borel map £ : B — Pg, (where, as usual (B, ) = (G, p)""), also
called the Furstenberg boundary map, such that, for G-almost all b in
B, the limit measure v, is the Dirac mass v}, = d¢(y).

Let (p, V') be an irreducible algebraic representation of G with high-
est weight y. We set V* to be the sum of weight spaces V? of A in V
such that x — p is a sum of elements of [l \ ©, and r = dim V*. By
definition, one has P, V#* C V*, so that the map

G =G (V)5 g—gV"
factors as a G-equivariant map
Po, — G.(V),n — VI
Hence the boundary map can be seen as a map £ : B — G,.(V).

REMARK 9.4. We claim that, for S-almost any b in B,

£(b) is the space constructed in Lemma 3.5.

PRrOOF. It suffices to prove that, for (-almost any b in B, any
nonzero limit point in the space of endomorphisms of V' of a sequence
of the form A\, p(b; - - - b,) with A, in K, has image £(b).

By Lemma 8.2, for any « in ©,,, the semigroup p,(I',) is proximal,
so that, by Proposition 3.7, for #-almost any b in B, the nonzero limit
points in End(V,,) of a sequence A\, p,(b; - - - b,) with A, in K have rank
one. Writing, for any n, by ---b, = k,2nl,, with k,,, 1, in K, 2, in Z*
and w(z,) = k(by -+ -by,), this implies that the nonzero limit points of
AnpPa(2zn) as m — oo have rank one. This proves that

lim o“(k(by---b,)) =00, for ain O,,.

n—oo
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Besides, by definition,
a”(k(by -+ by,)) remains bounded for o in IT\ ©,,.

Hence, every nonzero limit point in End(V') of a sequence A, p(z,) with
A, in K has rank r and its image equals V#. Therefore, every nonzero
limit point of a sequence A, p(b; - - - b,) has rank r and its image equals

£(b). O

REMARK 9.5. Recall that there may exist more than one p-stationary
Borel probability measure on G,(V). Indeed, there may exist uncount-
ably many compact G-orbits in G,(V). An example is given in Remark
3.4 where G = SO(n, 1) is acting on V = A?R""! with n > 6. In this
example, one has r = n—1.

However, there exists a unique p-stationary Borel probability mea-
sure on the I',-minimal set A;(rp) introduced in Lemma 3.2. Indeed,
this follows from Proposition 9.1, since, by Remark 9.4, the image of
the map 7 — V! contains AWIRE

9.3. Moments and exponential moments.

We define two integrability conditions which will be use-
ful assumptions to get asymptotic laws for products of
random elements of G.
The first integrability condition will be used in the Law of Large
Numbers (Theorem 9.9)

LEMMA 9.6 (First moment). Let G be an algebraic reductive S-adic
Lie group. Let p be a Borel probability measure on G. The following
statements are equivalent :

1) Jg K@)l dulg) < oo

i) For any algebraic representation (p,V') of G, one has,

(z

(9.1) Jalog N(p(g)) du(g) < oo.

(1ii) There exists a finite family of algebraic representations (p;, Vi) of
G such that (), Ker p; is finite and (9.1) holds for each (p;, Vi).

In this case, we say that u has finite first moment.

PROOF. (i) = (ii) First, assume p to be irreducible. Let V' be a
G-irreducible submodule of V', so that V' is a quotient of the induced
representation W' = Indgc(V’ ). We equip the latter with a good norm
and it now suffices to prove the claim in W’. Let y be the highest
weight of A in V’. By Lemma 7.18 and Corollary 7.20.c), one has

Je Nogllp(9)l [dpulg) < Jg maxser [x“(s(g7s))] dp(g) < oo.
As this also holds for the dual representation, this gives (9.1).
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Now, assume p is any representation and let (p;,V;) be the irre-
ducible subquotients of a Jordan-Holder filtration of (p, V).

In case p is defined over a field K with characteristic 0, we have
V =@, Vi as a representation of G. Hence, there exists C' > 0 such
that, for any ¢ in G,

(9:2) o)l < Cmax [pi(g)]

and (9.1) follows from the irreducible case.

In case p is defined over a field K of positive characteristic, (9.1)
also follows from the irreducible case, since, as we will see, (9.2) still
holds.

It remains to check that (9.2) still holds. Since A is a K-split torus,
as A-modules, we have V' ~ @, V; and (9.2) holds when g belongs to
A. As A is cocompact in Z, it also holds when g belongs to Z, up
to changing the constant C'. Now, as K. is a compact group, we can
assume all the norms to be K -invariant and, as G. = K.ZK,, (9.2)
holds for any g in G.. Finally, since G, has finite index in G, up to
again changing the constant C, (9.2) holds for any ¢ in G and we are
done.

(14i) = (i) One uses again Lemma 7.18 and the fact that the sum
of the highest weights of the G -irreducible subquotients of the V; is in
the interior of the dual cone of a*, which follows from the finiteness of
the kernel. O

Later on, in Theorem 12.17, we will need the following stronger
integrability condition.

LEMMA 9.7 (Exponential moment). Let G' be an algebraic reductive
S-adic Lie group. Let p be a Borel probability measure on G. The
following statements are equivalent:

(1) There exists tg > 0 such that

(93) fG etOHK(Q)H du(g) < 00

(17) For any algebraic representation (p,V') of G, there exists to > 0
such that

(9-4) Ja N(p(9)) du(g) < oc.

(1i1) There exists a finite family of algebraic representations (p;, Vi) of
G such that (), Ker p; is finite and to > 0 such that (9.4) holds for each

In this case, we say that u has a finite exponential moment.
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PROOF. (i) = (ii) By reasoning as in the proof of Lemma 9.6, we
can assume p to be irreducible. Let still V' and W’ be as in this proof
and y be the highest weight of A in V’'. Again by Lemma 7.17 and
Corollary 7.20, one has

/ ()] du(g) < [ max X" =67 dy(g) < oo,
G G fer

for ty small enough. Applying also this bound to the dual representa-
tion of (p, V), one deduces (9.4).
(1i1) = (i) Again, one argues as in the proof of Lemma 9.6. [

The following lemma tells us that these two integrability conditions
(9.1) and (9.4) are automatically transmitted to the induced measure
on (.. Note that this would not be the case for a “compact support
condition”.

LEMMA 9.8. Let G be an algebraic reductive S-adic Lie group, p be
a Zariski dense Borel probability measure on G and pg, be the measure
induced by p on G..

If o has finite first moment then ug, also has finite first moment.

If u has a finite exponential moment then g, also has a finite
exponential moment.

ProOF. This follows from Corollary 4.6, Lemmas 9.6 and 9.7. [

9.4. Law of Large Numbers on G.

We now translate Theorem 3.28 in the language of re-
ductive groups.

We denote by L'(B, 3,a) the space of a-valued (-integrable func-
tions on the one-sided Bernoulli space (B, ) with alphabet (G, p).

THEOREM 9.9 (Law of Large Numbers on G). Let G be an algebraic
reductive S-adic Lie group and p be a Zariski dense Borel probability
measure on G with finite first moment. Let v be a p-stationary Borel
probability measure on the flag variety P.

a) Then the Twasawa cocycle o : G X P — a is integrable i.e. one has
Jowp loll dudr < co. Its average

o, = fGXpUdeV ca.

15 called the Lyapunov wvector of w. It is F-invariant and does not
depend on v. Indeed, for B-almost any b in B, one has

Lk(bn -+ b1) — o,
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Moreover this sequence also converges in L*(B, 3, a).
b) For any n in P, for B-almost any b in B, one has
1

=0 (by -+ b1, ) —— 0.

This sequence converges also in L'(B, 3, a), uniformly for n in P.
c¢) Uniformly for n in P, one has

w Jaolgm) dp(g) —— op.

d) For any n in P,, for B-almost any b in B, there exists M > 0, such
that for any n € N, one has

lo(br -+ b1, m) = by -+~ br)]| < M.
++

e) (Regularity of o,,) The Lyapunov vector o, belongs to ag, -

f) In particular, when G is a real Lie group, the Lyapunov vector be-
longs to the open Weyl chamber : o, € a*t.

REMARK 9.10. When G is a real Lie group, the u-stationary prob-
ability measure v on P is unique since ©,, = II. In general, this is not
always the case, but, as a consequence of b), the Lyapunov vector o,
does not depend on the choice of v.

Proor. We will use the same technique as in the proof of Corollary
7.20: we just have to control the image of these sequences by sufficiently
many linear functionals on a.

By (7.16), the cocycle o is integrable on G x P. We set 0, =
Joxpodp@w).

Let (p, V') be a proximal irreducible algebraic representation of G.
with highest weight y. For instance (p, V) may be one of the repre-
sentations introduced in Lemma 7.15, or (p, V') may be a scalar repre-
sentation associated to an algebraic character of G.. Equip Indgc (p)
with a good norm and let W be an irreducible quotient of this induced
representation. Let 7 : Indgc(p) — W be the quotient map and 6 be
the representation of G in W. By Lemma 7.11, for any f in F, the
map 7 is injective on Vy. Therefore, we have

||P(9)||‘
sup |lo < 00.
geg\ & Jiota)]

By Lemma 7.18 and Corollary 7.20, we get

max x*(fr(g)) —log([[6(9)])

< Q0.

(9.5) sup

geG

Recall from(7.8) that, for any nin P, V,, is a line in V; with f = nG..
We let W, be the image of V,, in W. The image measure of v by the map
P — P(V);n— W, is a u-stationary probability measure on P(W).
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If U is a line in W and g is in GL(W), we set

OW(.gu U) 10g||—”

where u is a nonzero element of U. For any 7 in P, we set

[[7ol|

#(n) = log Tt

where v is a nonzero element of V;,. Then ¢ is a continuous function
P — R. Since the projection 7 is G-equivariant, we get from Lemma
7.18, for any g in G,

(9.6) x“(a(g,m)) + @(gn) = ow(0(g), Wy) + ©(n).

In particular, since v is u—stationary, we have

fG fp UW W )dV( )d,u(g) = Xw(au)-
Therefore, by Theorem 3.28, for f-almost any b in B, we have

Llog (b -+ b)) —— x*(0,).
hence, by (9.5),
smaxpep X (fr(by - b1)) —— x“(o).

n—oo

In particular, since the set of highest weights of proximal representa-
tions of G, spans a*, 0, is F-invariant. Besides, this convergence also
takes place in L*(B, 3).

Now, by Theorem 3.28.b) and (9.6), for any n in P, for S-almost
any b in B, we have

X (0 (bn - b1,m)) —— x*(04)

and this sequence also converges in L!(B, 3), that is we get b). Besides,
again by Lemma 7.18, for n in P., we have

X“(0,) = lim Loy (0(b, - -~ b1), W,) = liminf 2x“(k(by, - by))
< lim sup Ly (5(bn -+ b))

n—oo

< lim & ~max x“(fr(bp---b1))

n—oo ™ feF
= X“(ou).

Therefore, we have

X (B (by - b1)) —— x“(00),

n—~o0

and this convergence also holds in L'(B, 3), that is, a) is proved.
¢) directly follows from b).
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d) By Proposition 3.23, for any 7 in P,, for f-almost any b in B,
the sequence

1og [|0(bn -~ br)yw. || = ow (0(bn - - b1), W)

is bounded. Now, this sequence is equal, up to a uniform constant, to
the sequence

XW(“(bn te bl)) - XW((T(bn -+ by, 77))

and d) follows.

e) We want to prove that o, belongs to ae, and that a(c,) > 0
for any v in ©,,.

According to Lemma 9.8, the induced probability measure pg, on
G. also has finite first moment. By Lemma 4.7, v is also p ¢, stationary.
By Proposition 4.9, one has o, = ﬁancc. Hence, we may assume that
G=0G..

First if o belongs to II \ ©,,, since supru(a“’ oK) < 00, one has, for
(B-almost any b in B,

a?(o,) = lim 2a“(k(b,---b1)) =0,

n—oo n

hence 0, € ag,,.
Now, fix av in ©,. By Proposition 3.7, for S-almost all b in B, any
nonzero limit point in End(V,,) of a sequence

)\npa(bn e b1>7

with A\, € K has rank one. Thus, choosing z, in Z* with b, ---b; €
Kz, K, every nonzero limit point of a sequence A\, p,(z,), has rank one.
As, for any v in the weight space VX«~* and for any n in N, one has

1pa(zn)vll = e “ED YIpa (za)] 0]l

this necessarily implies that o“(w(z,)) —— oo, that is,

n—oo

Hence by ¢), for v-almost any 7 in P,

aw(a(bn by, 77)) — 7 0.
Now, using Lemma 2.18 as in the proof of Theorem 3.31, this implies
a“(o,) > 0, whence the result.
f) This follows from e). Indeed, since G is a real Lie group, the set
0, is equal to II. O
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9.5. Simplicity of the Lyapunov exponents.

We give in this section concrete consequences of the reg-
ularity of the Lyapunov vector. For instance, we prove
the simplicity of the first Lyapunov exponent for proxi-
mal representations.

The following corollary relates the Lyapunov vectors of p and p".

COROLLARY 9.11. Let G be an algebraic reductive S-adic Lie group
and p be a Zariski dense Borel probability measure on G with finite
first moment. Let 11V be the image of v by the map g — ¢g~*. Then the
Lyapunov vector of " is equal to the image of the Lyapunov vector of
p by the opposition involution: o, = t(o,).

PROOF. One computes using twice Theorem 9.9 and using the
equality #(g~") = (r(g))

o =lim 2 [ kbt b7") dB(D)

=lim & [, (s(by b)) dB(5) = 1(0,)
as required. O

Recall that, in Section 3.6, when V' is a finite dimensional K-vector
space, and p is a Borel probability measure on GL(V'), we defined its
first Lyapunov exponent as the limit

A = lim & fop o log llgll ™ (9).

As a consequence of Theorem 9.9 and Lemma 7.17, one gets the
following reformulation of Theorem 3.28 in which we compute the first
Lyapunov exponent by means of the Lyapunov vector.

COROLLARY 9.12. Let G be an algebraic reductive S-adic Lie group
and p be a Zariski dense Borel probability measure on G with a finite
first moment. Let (p, V') be an algebraic representation of G and let
p«ft be the image of p on GL(V') under the map p. We have

(9.7) Alp.p = max x*(0,),

where x runs among the weights of A in V. In particular, if (p,V') is
wrreducible and x 1s a mazimal weight, we have

(98) Al,p*u = Xw(au)‘

REMARK 9.13. In case V is strongly irreducible, it has a unique
highest weight x. In general the maximal (or parabolic) weights of
V form a F-orbit. Since, by Theorem 9.9, the Lyapunov vector o,
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is F-invariant, the limit x“(o,) does not depend on the choice of the
maximal weight.

PRrROOF. The formula follows from an analogue formula for elements
of G.

Fix a norm on V such that the decomposition of V' into weight
spaces for the action of A is good. For any a in A, we have

lp(a)]] = max x(a)l.

Since A is cocompact in Z and the set of weights of A in V is finite,
there exists C' > 0 such that, for any z in Z, we have

[log [|p(2)|] — max x*(w(2))] < C.

As K is compact, up to enlarging C, this gives for any ¢ in G,
| log [|p(g)l| — maxx*((g))| < 2C.

Hence, by Lemma 3.27, for S-almost any b in B,

1
(9.9) —max x“(k(by - b1)) —— M.

n x n—00
Now, by Theorem 9.9, we have, for S-almost any b in B,

1
(9.10) —£K(by - by) —— 0.

n n—oo
JFrom (9.9) and (9.10), we get (9.7). Since o, belongs to a®, Equation
(9.7) still holds when x runs among the set of maximal weights. As
recalled in Remark 9.13, when p is irreducible, this set is an F-orbit

and (9.8) follows since o, is F-invariant. O

Let us relate the Lyapunov vector to the other Lyapunov exponents
of probability measures. Let d be the dimension of V. For 1 < k <d
we define inductively the k-th Lyapunov exponent A, of u by the
formula

Ayt F A= nh—{EO % fGL(V) log || A* g|| dp™(g),

where the existence of the limit follows from subadditivity. Note that
this definition does not depend on the choice of the norms on the ex-
terior powers.

LEMMA 9.14. Let p1 be a Borel probability measure on GL(V'). The
sequence of its Lyapunov exponents is non-increasing, that is, we have

Ay > > A
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To prove this result, we need to introduce in general the singular
values of an element of GL(V') which, in the real case, were defined in
Section 5.7.7. Since the definition of the Lyapunov exponents does not
depend on the choice of the norms, we chose some that are particularly
convenient.

If Kis R or C, we equip V with a Euclidean or Hermitian scalar
product. We equip each of the A*V, 1 < k < d, with the associated
scalar product.

If K is non archimedean, we equip V' with the sup norm given by a
basis and each of the A¥V, 1 < k < d, with the sup norm coming from
the associated basis.

In both cases, let K C GL(V) be the group of isometries of the
norm. The Cartan decomposition of GL(V') allows to write any g in
GL(V) as a product kal where k and [ belong to K and the matrice a
is diagonal, with entries aq, ..., aq such that

lay| > -+ > aql.

The real numbers ri(g) = |ax|, 1 < k < d, only depend on g and on
the norm and are called the singular values of g. By construction, for
1 <k <d, we have

(9.11) | A% gl = kilg) - k().

PrOOF OF LEMMA 9.14. The Lemma relies on an analogue for-
mula for the norms of the AFg, 1 < k < d, for g in GL(V). Indeed, for
such a g, by (9.11), for 1 <k < d — 1, we have

A gl A gl < AR gl
By the definition of the Lyapunov exponents, this gives
O‘l,u +oo )‘kfl,u) + (Al,u +ot )‘kﬂ,u) < 2()‘1,# Tt Ak,u)

which in turn amounts to A, > Mg, ]

The following corollary of Theorem 9.9 explains on a concrete case
the meaning of the regularity of the Lyapunov vector.

COROLLARY 9.15 (Simplicity of the Lyapunov exponents). Let V =
K and p be a Borel probability measure on G = GL(V) with a finite
first moment, i.e. [,log N(g)du(g) < oo, and such that T, is strongly
wrreducible in V.
a) If T'), is proximal in V', the two first Lyapunov exponents satisfy
/\17# > )\2#.
b) More precisely, one always has A\, = -+ = A, > Aj1,, where r is
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the proximal dimension of I',,.
c) If K=R and T, is Zariski dense in SL(V') or GL(V'), then one has

A > Aoy > > A

To rely the proximal dimension of I', with the objects that have
been defined for abstract reductive groups, we will use the

LEMMA 9.16. Let V = K% and T’ be a strongly irreducible sub-
semigroup of GL(V') with prozimal dimension r.
a) There exists co > 0 such that, for any g in I, one has k.(g) > cor1(g)
and one has supycr kr(9)/Kry1(g) = 0.
b) Let G be the Zariski closure of T' in GL(V'), let x be the highest
weight of G in'V and set X to be the set of weights X' of A in'V which
are of the form x' = x — ZQE@% na, where the n, are nonnegative

integers. Then we have
r=> dimVY¥,

x'eX
Recall that the Zariski closure of an irreducible sub-semigroup of
GL(V) is a reductive group.

PROOF. a) Assume that, for some 2 < k < d, we have a sequence
(gn) of elements of I" with sup, £1(gn)/kk(gn) = 00. Let (\,) be a
sequence of elements of K* with |\,| = k1(g,)~!. After extracting a
subsequence, we can assume that \,g, converges to a non zero endo-

morphism 7. By assumption, since A, kx(g,) —— 0, 7 has rank < k,
hence k > r. The existence of ¢y follows.

Conversely, let m be a rank r element of KI". Write 7 = lim,, oo A9,
gn € T, N\, € K. As 7 is non zero, we have liminf, ., A\,x1(g,) > 0.
As 7 has rank r, we have A\,x,11(9,) —— 0. The result follows.

b) By reasoning as in the proof of Corollary 9.12, one sees that there
exists C' < 0 such that, for any g in GG, the sets

{log ki (g)[1 < k < d}

and

{(xX")*(k(g))|x" is a weight of A in V'}
are equal up to C' (that is, more precisely, the Hasudorff distance be-
tween these two finite sets of real numbers is < C). The result follows
from a) and this remark. O

PROOF OF COROLLARY 9.15. a)and b) Let x be the highest weight
of G in V. By Corollary 9.12, for 1 < k < d, one has

Ay + o+ Ay = max x?(0,),
X
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where y runs among the set X}, of weights of A in A*V. In particular, let
k be the largest integer such that A, = A ,. Then £ is the dimension

of the space
®

x€X1
x(op)=xo0(on)

As, by Theorem 9.9, o, belongs to ag;’, for any y in X, one has
X(0,) = xo(o,) if and only if xo— x is a linear combination of elements
of ©F. We get k = by Lemma 9.16.5) and we are done.

c¢) Assume for instance that I'), is Zariski-dense in GL(V'). Since
K =R, by (8.2),0one has

agj:a++:{diag(:p1,...,$d)|x1>x2>...>xd}'

Our claims follow then from Theorem 9.9 and Corollary 9.12 applied
to the representations A*V. 0
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10. Transfer operators over contracting actions

We come back to the abstract framework of Chapter 2, studying
the actions on a compact space X of a locally compact semigroup G
endowed with a probability measure p. and studying the behavior of
the cocycles over this action. When this action is p-contracting (Def-
inition 10.1) and under suitable integrability conditions, we introduce
the corresponding complex transfer operators Py. We study the spec-
tral properties of Py when the parameter # is small enough (Lemmas
10.17 and 10.18). We will use them in Chapter 11 to prove various limit
laws for random walks on groups satisfying some exponential moment
conditions.

10.1. Contracting actions.

We define in this section the p-contracting actions and we
prove that they admit a unique p-stationary probability
measure.

We still let G be a second countable locally compact semigroup,
s : G — F be a continuous morphism onto a finite group F, and u
be a Borel probability measure on G. We shall say that u spans F'if
the image in F' of the support of u spans F. We shall say that u is
aperiodic in F' if it spans F' and if, for any non-trivial morphism from
F' to a cyclic group, the image of 4 is not a Dirac mass.

Let X be a compact metric G-space which is fibered over F' (see
Section 1.7), and let x — f, be the G-equivariant fibration. For any g
in G, we define the Lipschitz constant Lip(g) of g by

d(gz, gz')
Li = sup ———~
p(g) fx:‘:][‘i, d(:lj', x/)
where the supremum is taken over the pairs z, 2’ in X with f, = f.
and z # x'.

DEFINITION 10.1. Let X be a compact metric G-space which is
fibered over F' and v, > 0. We shall say that the action of G on X is
(1, 70)-contracting over F if one has

(10.1) Jo Lip(g) ™ dpu(g) < oo

and, for some n > 1,

d(gz, gz’)"

10.2 su —————du™(g) < 1.
(102) ap [ I g
We will say that the action is pu-contracting over F' or, in short, that the
G-space X is p-contracting over F' if this action is (i, ) contracting
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over F' for some 7o > 0. In this case, the action is also (u, )-contracting
for any 0 < v < .
When F' is trivial, we just say that the action is u-contracting.

In other words, the action is p-contracting over F when the action of
G on fibers of the G-equivariant fibration tends to contract on average.
Note that, if the definition holds, there exist 0 < 6§ < 1 and Cy > 0
such that, for any n in N and z, 2’ in X, with f, = f,» one has

(10.3) Je d(gz, g’y dp(g) < Cod"d(w, a")0.

We will often only use the definition under the form (10.3) but we will
also sometimes need the moment condition (10.1).

ExAMPLE 10.2. The main example we will study in this book is
the action of an algebraic reductive S-adic Lie group G on a projective
space or a flag variety. In this case F' is the group G/G. (see Chapter
12).

ExamMpPLE 10.3. Here is a trivial example. Let X be a compact
metric space, and, for z in X, let ¢, be the constant map on X given
by ¢, : y — x. Let G be the semigroup of transformations of the
compact space X which are either the identity e or a constant map c,,
and p be a probability measure on X, viewed as a subset of G. In this
case, the limit theorems 11.1 and 15.1 that we will prove follow from
the classical limit theorems for random walks on R

EXAMPLE 10.4. Another enlightening example to keep in mind
while reading this text is the following. Let X be the compact space
X = {0,1}" endowed with the distance d(x,y) = 2~ min{k=0ler7u} Tet
si, 1 = 0,1, be the two prefiz maps of X defined, for z = (z1,22,...) €
X, by si(z) = (i,21,29,---). Let G be the discrete free semigroup
spanned by sy and s;, and p = (85, + 0, ). This action of G on X
is p-contracting (here the group F' is trivial). In this case, the spec-
tral properties of the complex perturbations of the Markov operator
P, that we will discuss in this chapter also follow from [93].

The following lemma tells us roughly that, for a p-contracting ac-
tion, the behavior of the random trajectories does not depend on the
starting point except for an exponentially small error term.

LeEmMMA 10.5 (Exponential convergence of orbits). Let G be a second
countable locally compact semigroup and s : G — F be a continuous
morphism onto a finite group F. Let p be a Borel probability measure
on G such that v spans F'. Let X be a compact metric G-space which
1s fibered over F' and p-contracting over F.
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a) There exist v > 0 and C > 0 such that, for every x, x’' in X with
fo = fuw, for everyn > 1, one has

(10.4) pw"({g € G|d(gr,gx') > e ™d(z,2")}) < Ce ™.

b) There exists v > 0 such that, for every x, x' in X with f, = fu, for
B-almost every b in B, for all but finitely many n > 1, one has

(10.5) d(by b1z, by - b12’) < e "d(x,a’).

¢) There exists a unique p-stationary Borel probability measure v on
X. This p-stationary measure v is p-proximal over F.

PROOF. a) Inequality (10.4) is a direct consequence of Equation
(10.3) with C' = Cj and « small enough so that 0 < v < ‘fi—i‘so‘.

b) This follows from Equation (10.4) and Borel Cantelli Lemma.

c) For z,2" in X, set do(z,2') = d(x,2")15,—y,. Let v and v’ be
two p-stationary measures on X. Using Lemma 1.17 and Lebesgue
convergence theorem, one gets from b),

0 = limy o0 [y, do(b1 - by, by - - - bp’) dv(z) dv/ ()
= [ xx do(z, ") dvy(x) diy(a).

Hence for (v, ® vj)-almost all (z,2") in X x X, one has dy(z,z") = 0.
This proves that the restriction of the limit measures v}, and v to each
fiber is a multiple of the same Dirac mass. Since p spans F', the images
of v and v/ in F are F-invariant. The same is true for the images of
the limit measures v, and v;. Hence for f-almost every b in B and f
in F, there exists &, s € X in the fiber over f such that

1
Vp = Vp = WZ]‘GF 5§b,f‘

This proves that v = v/ and that v is p-proximal over F. U

10.2. The transfer operator for finite groups.

We describe in this section a few basic spectral properties
for the transfer operator P of a random walk on a finite
group.
Let p be a probability measure on a finite group F'. Let P = P,
be the averaging operator on CI = C°(F) given, for ¢ : F — C and
feF, by

(10.6) Po(f) = [pe(hf)du(h) =3 ,ep n(h)p(hf).
As for any Markov-Feller operator, the norm of P in C°(F) is at most
1, hence its eigenvalues have modulus at most 1.

The following lemma describe the eigenvalues of modulus 1 of the
averaging operator P.
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LEMMA 10.6. Let p be a probability measure on a finite group F
whose support spans F'.
a) There exists a smallest normal subgroup F, of F' such that the quo-
tient group F'/F), is cyclic and the image of ju in F'/F, is a Dirac mass
at some generator f, of this group.

Let p, :==|F/F,|.
b) The eigenvalues ¢ of modulus 1 of the operator P in C! are the pLh—
roots of 1. These eigenvalues are simple and the associated eigenline is
spanned by the character x¢ of F/F, for which x.(f.F,.) = ¢.
c¢) The probability measure p*P* is aperiodic in F),.

In particular, when p is aperiodic in F', the only eigenvalue of mod-
ulus 1 of the transfer operator P is 1, and the corresponding eigenfunc-
tions are constant.

PROOF. a) We first check the existence of F},. Let = be the set of
characters of F' which are constant on the support of x. This set = is a
subgroup of the group of characters of F'. In particular this group = is
abelian. We define now £}, to be the intersection of the kernels of the
elements of Z. This subgroup F), is normal in F' and the quotient F/F),
is also an abelian group and is the dual group of =. As the elements
of = are constant on the support of p, the image of p in F/F), is a
Dirac mass at some element f, of F'/F),. As the support of p spans F,
f. spans F/F,, which is therefore cyclic. Clearly, this group F), is the
smallest one with those properties.

b) Let ¢ be a nonzero element of C! and ¢ be a complex number
of modulus 1 with Py = (¢. We want to prove that ( is a pzh—root of
unity. We have the inequality

Plo| > [Pyl = [p|.

Let M be the set of f in F' with |¢(f)| = maxp |p|. By the maximum
principle, for any f in F with pu(f) > 0, we have fM C M, hence, as
the support of p spans F', we have M = F'| that is |p| is a constant r.
Therefore, for any f in F', one has

r =2 per k(oS 1))
thus for any f/, f” in F with pu(f’) > 0 and u(f”) > 0, one has
o(f'f) =¢(f"f), hence

(10.7) p(f'f) = Celf).

Let F' be the set of f in F such that the function p(f.) is a multiple
of . Then, F’ is a subgroup of F' and there exists a unique character
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x of F’ such that, for any f in F’, o(f.) = x(f)p. As, by (10.7), the
group F’ contains the support of u, one has F’ = F'| the function ¢ is
a multiple of x and, for any f in the support of p, one has x(f) = ¢,
hence x belongs to =, and ( is a pff‘—root of unity and the corresponding
eigenspace is spanned by the character x.

Conversely every character x is an eigenvector of P with eigenvalue
(. Since moreover ||P,|l.c = 1, this eigenvalue is simple.

c¢) Let us prove that the only eigenvalue of modulus 1 of PP+ in
C*» is 1 and that the associated eigenspace is the space of constant
functions, which implies the result.

Indeed, let ¢ be a function on F), such that PPryp = (¢, for some ¢
with modulus 1. Extend ¢ to a function on F' by setting ¢(f) = 0 for
f ¢ F,,. We still have

PPro = Cop.
Let E be the cyclic space for P spanned by ¢. Since the polynomial
tPr — (¢ has simple roots, P is diagonalizable in E and its eigenvalues
are th—roots of ¢. Since the eigenvalues of P in C are the p,-roots

of 1 and the associated eigenfunctions are constant on F),, our claim
follows. 0

The following corollary explains the probabilistic meaning of the
spectral properties of the transfer operator: the equidistribution of the
walk with exponential speed.

COROLLARY 10.7. Let p be an aperiodic probability measure on a
finite group F'. Then there exists a < 1 such that, for alln > 1 and f
m F, one has

WY = gh| <

10.3. The transfer operator.

In this section we prove that, when the action is u-
contracting, 1 is an isolated eigenvalue of the averaging
operator P = P, in a suitable space of Holder continu-
ous functions. This gives also another way to prove the
uniqueness of the p-stationary measure on X.

Let G be a second countable locally compact semigroup and s :
G — F be a continuous morphism onto a finite group F. Let X be a
compact metric G-space which is fibered over F'.

We let C°(X) be the space of continuous functions on X, equipped
with its natural Banach space norm |||, that is, for any ¢ in C°(X),

lolloo = max ()]
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Let v be in (0,1] and Y be a closed subset of X (for example Y = X).
For ¢ : Y — C, we set

|o(x) = ()]
cy() = S )
where the supremum is taken over the pairs x, 2’ in Y with f, = f,» and
x # x'. We let H'(Y) be the space of y-Holder continuous functions
on Y, that is, the space of functions ¢ on Y such that ¢, (¢) < co. The
norm |.|, induces a Banach space structure on H?(Y). The following
technical lemma will be useful in the proof of Lemma 10.18.d.

LEMMA 10.8. Let 7y be in (0,1] and Y be a closed subset of X. Then
the restriction map HY(X) — HY(Y) is an open surjection.

and ||, = [lell + i (@),

The fact that this map is open follows from the open mapping
theorem, but will also be a corollary of the proof.

PROOF. Let ¢ be in HY(Y) and let us build ¢ in HY(X) with
Yy = ¢. We can assume ¢ has real values. For x in X, we set

Ylz) = inf o(y) + er()dly, z)?
Jy=Fe
if there exists y in Y with f, = f, and ¢¥(x) = 0 otherwise. By
construction, one has 1)y = ¢. Now, let z,2’ be in X with f, = fu.
If, for all y in Y, f, # f., we have ¢(x) = ¢(2") = 0. Else, for any y in
Y with f, = f., we have

Y(@) < @(y) + oy (0)dy, 2)7 < o(y) + oy (9)d(y, )7 + ¢y ()d(', 2)7,
hence,

Y(x) < o) + ¢y (p)d(a’, 2)7,
so that 1 belongs to H(X) as required. O

Fix a Borel probability measure p on G. As usual, we introduce the
following Markov-Feller operator P = P, which is called the transfer
operator or the averaging operator. It is given by, for any ¢ in C%(X)
and x in X,

(10.8) Pop(z) = [, ¢(gz)du(g).

The operator P is bounded on C°(X), with norm 1. We will now study
the eigenvalues of P in C°(X) which have modulus 1.

In the sequel, we shall write F, and f, for F;, , and f,,, and, since
X is fibered over F', we will consider C°(F/F},) and C°(F') as subspaces
of H7(X). Note that the transfer operators (10.6) and (10.8) coincide
on these subspaces.
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The following lemma tells us that the averaging operator P pre-
serves H7(X) and contracts the seminorm c,.

LEMMA 10.9. Let G be a second countable locally compact semi-
group and s : G — F be a continuous morphism onto a finite group F.
Let 11 be a Borel probability measure on G such that p spans F. Let
0 < v < v and let X be a compact metric G-space which is fibered
over F' and which is (i, Yo)-contracting over F.

a) There exist 0 < § < 1 and C > 0 such that, for any ¢ € HY(X),
n € N, one has,

(10.9) & (Pp) < Cd"cy ().
b) One has P(HY(X)) C HY(X) and P is a bounded operator in HY(X)

with spectral radius 1.

PROOF. a) As the action of G on X is (u,y)-contracting over F,
one can suppose ¥ = 7. Fix 0 < § < 1 and C' > 0 such that (10.3)
holds.

Then, for ¢ in C°(X), xz,2" in X with f, = f, and n in N, one has
(10.10) [P"e(x) — Pro(a’)| <[5 lelgx) —p(ga’)| du™(g)
¢y () Jg d(gz, 92')" dp(g)

Co"d(z, ") e, (p).
Hence Py belongs to H7(X) and Inequality (10.9) holds.
b) In particular, for any n in N, one has

INIA TN

(10.11) [P ol < [lello + CO" [l < max(1+C) el
This implies that the spectral radius of P in H7(X) is < 1, hence
exactly equals 1, since P1 = 1. O

The following Proposition tells us that under the contraction hy-
pothesis (10.3), all the plﬂh root of 1 are simple eigenvalues of the av-
eraging operator P in C¥ and that, on an invariant complementary
subspace, the operator P has spectral radius < 1.

ProPOSITION 10.10. Let G be a second countable locally compact

semigroup and s : G — F' be a continuous morphism onto a finite group
F. Let i be a Borel probability measure on G such that p spans F and
pu = |F/F,|. Let 0 < v < and let X be a compact metric G-space
which is fibered over F' and which is (u,~o)-contracting over F.
a) The eigenvalues ¢ of modulus 1 of the operator P in C°(X) are the
pLh—roots of 1. These eigenvalues are simple and the associated eigenline
L is spanned by the character x; of F/F,, for which x¢(f.F,) = (. The
direct sum of these eigenlines L is equal to C*(F/F),).
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b) There is a unique p-stationary Borel probability measure v on X.
¢) The operator N : C%(X) — C°(F/F,) given by, for any ¢ in C°(X)
and f in F,

(1012) NSO(]CF;L> = Ppu f{fzefF#} 90(‘7‘1) d]/(ZE)

is the unique P-equivariant projection onto C°(F/F,).
d) The restriction of P to HY(X) N Ker N has spectral radius < 1.

Note that this spectral radius is computed for the norm |.| -

COROLLARY 10.11. Same notations as in Lemma 10.9. The essen-
tial spectral radius of P in HY(X) is < 1.

We recall that the essential spectral radius is the infimum of the
spectral radii of the restriction of P to a P-invariant finite codimen-
sional subspace. In other words it is the supremum of the |A|, where A
is a complex number such that P — Al is not a Fredholm operator (see
Appendix 11.4).

PROOF OF PROPOSITION 10.10. a) Let ¢ be in C°(X) and ¢ be a
complex number of modulus 1 with Py = (¢. According to Formula
(10.9), for any n in N, one has ¢, (¢) = ¢, (P"p) —— 0. Thus ¢,(p) =

0 and the function ¢ is constant on the fibers of the map x +— f,. By
lemma 10.6, ¢ is a pLh—root of unity and there exists a character x. of
F/F,, such that ¢ is proportional to the function x +— x(f;F),). Since
moreover ||P,|l« < 1, this eigenvalue is simple.

b) We choose a p-stationary Borel probability measure v on X. As
i spans F'| the image of v in F is the normalized counting measure.
We postpone the proof of the uniqueness of v until after the proof of
d).

¢) By construction, the operator N is a projection onto C*(F/F),).
We have to prove that it commutes with P. We compute for ¢ in C°(F)
and f in F

NPo(f) = Pu foX Sp(gx)l{fzefFu} du(g) dv(x)
= D Joex (92 L puep,p70y dpelg) dv(z)
= pu [y (@) g eprry dv(z) = No(fufFL).

where we used the equality s(g) = f, mod F),, for y-almost all g in
G, to get the second line and the p-stationarity of v to get the third
one. This proves that NP = PN as required. We postpone the proof
of uniqueness of N after the proof of d).

d) By Lemma 10.9, the Banach space E := HY(X)NKer N is stable
by the action of P, and the spectral radius of P in E for the norm |[.|,
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is at most 1. We want to prove that this spectral radius of P in F is
< 1. Let E’ be the finite dimensional subspace of E,

E' :=C’(F)NnKerN.

According to Lemma 10.6, the spectral radius of P in £’ is < 1. Hence,
by Lemma 10.12 below, it is enough to show that the spectral radius of
P in E/E" is < 1. This quotient Banach space is equal to the space
HY(X)/C°(F). Since

CU(F) ={p e W' (X) | ¢;(¢) = 0},

the seminorm ¢, defines a norm on this quotient Banach space. This
norm is equivalent to the norm induced by |.|,. Indeed, choosing a
point ¢ in each fiber of the map x — f,, the closed subspace

E"={pe E|¢(xy) =0 forall fin F'}

satisfies HY(X) = C°(F) @ E” and there exists C' > 0, such that, one
has

|¢lloo < C"ey(p) , for all g in E”.

Hence, according to Equation (10.9), the spectral radius of P in E/FE’
is < 1, as required.

e) We prove now the uniqueness of both N and v. By d), for any
¢ in HY(X) N Ker N, we have

(10.13) P"p —— 0 uniformly on X.
Since the subspace H?(X) is dense in C°(X') and since the operator N is
a projection onto a subspace of H?(X), the intersection H(X)NKer N
is dense in Ker N for the uniform topology. Since ||P|l» = 1, the
convergence (10.13) holds for any continuous ¢ in Ker N. This gives
uniqueness of N.

Now, from (10.12), one gets, for every ¢ € C°(X),

vip) = p% ZF/Fu No(fF,)
and uniqueness of v follows from the uniqueness of N. O

In this proof, we used the following lemma.

LEMMA 10.12. Let E be a Banach space, E' be a closed subspace
and T be a bounded operator of E preserving E'. Then, the spectrum
of T is included in the union of the spectra of the two operators Tg
and T g induced by T in E' and in E/E'.
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PROOF. By the open mapping theorem, the spectrum of 7' is the
set of complex numbers A for which 7" — X is not bijective. Hence our
statement follows from the following elementary fact: if Tp and Tx g
are bijective, then T s also bijective. U

REMARK 10.13. The spectral radius of P in Ker N with respect to
the norm ||.||s may be equal to 1. Let, as in Example 10.4, X be the
compact space X = {0,1}, G be the semigroup spanned by the two
prefix maps s; : @ — iz, i = 0,1, and p := (s, + 5, ). In this case, the
action of G on X is u-contracting and the only p-stationary probability
measure v on X is the Bernoulli probability measure v = (1 (d+0;))®",
so that

Ker N ={peC*X) | [¢du=0}

The averaging operator P, is given by, for ¢ in C°(X) and z in X,

Pup(x) = §(@(sox) + @(s1)).

By Proposition 10.10, this operator P, has spectral radius smaller than
1 in H7(X) N Ker N. Nevertheless, it has spectral radius 1 in Ker V.
Indeed, let S : X — X be the shift map, ¢ : X — C be the function
given by o(x) := (—1)®. The continuous functions ¢ := ¢ o S*¥ have
zero average and satisfy PFop = ¢ and [|¢plle = [|¢]loc = 1, hence P}
has norm 1, for all £ > 0. Similar examples can be constructed with
G := SL(2,K) and X := P!(K), for any local field K. See Example
12.21 when K = Q,.

10.4. Cocycles over pu-contracting actions.

In this section, we introduce a suitable moment condi-
tions for cocycles over p-contracting actions. We prove
that under these conditions the random trajectories of
this cocycle do not depend on the starting point except
for a bounded error term.

We also claim that these cocycles are special. The
proof will be given in Sections 10.5 and 10.6.

Let E be a real finite dimensional Euclidean vector space, and o :
G x X — E be a continuous cocycle. We set E* to be the dual vector
space of F, Ec = C®gr F and £} = C Qg E*.

Recall that we defined the sup-norm og,p, of o as

Usup(g) = Sup:ceX ||0'(g,$)||
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We now define the fibered Lipschitz constant of the cocycle or;, on G
by, for g in G,
||U(ga I) _ 0(97 l‘/) ||
i = 8
7 (9) Py d(z, ')

where the supremum is taken over the pairs xz, 2’ in X with f, = f.
and = # x'.

DEFINITION. We shall say that the sup-norm of the cocycle o has
a finite exponential moment if there exists a > 0 such that

(10.14) S 79 dp(g) < oo.

We shall say that the Lipschitz constant of the cocycle o has a finite
moment if there exists a > 0 such that

(1015) fG ULip(g)a du(g) < Q.

We describe now how the behavior of these cocycles depends on the
starting point x.

LEMMA 10.14 (Bounded dependance on the starting point).

Let G be a second countable locally compact semigroup, s : G — F
be a continuous morphism onto a finite group F, and E be a finite
dimensional real vector space. Let p be a Borel probability measure on
G such that p spans F. Let X be a compact metric G-space which is
fibered over F' and which is p-contracting over F', and o : G x X — F
be a continuous cocycle whose Lipschitz constant has a finite moment.
a) There exist v > 0 and I, > 0 such that, for any x, «' in X with
fo = fur, for any n > 1, one has

(10.16) Jollo(g,2) = a(g, 2")||" dp(g) < I,
b) For any x, ' in X with f, = fu, for B-almost any b in B, one has
(1017) sup ||U<bn e bla :L‘) - U(bn U b17 ZE,)H < 0.

n>1

c) For any x, 2’ in X with f, = f., one has

(10.18)  lim inf ™ ({g € G | [lo(g,z) — o(g,2)|| < C}) = 1.

PROOF. a) Using the cocycle relation (2.6), one gets, for any g1, ..., g,
in G,

lo(gn - g1,2) —o(gn---g1,2)|
<S> i ouip(ge)d(gr—1 - 912, gr—1 - - 12).
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This gives the following domination of the left hand-side L of (10.16)

L = [ollolgn--g1,2) —0(gn--- g1, 2" dplgr) - dplgn)
< Yooy Jod(gz, gy dpr* T (g) [, 07, dp

Using now the p-contraction condition (10.3) and the moment condi-
tion (10.15), if v is small enough, one can find Cy > 0 and ¢ < 1 such
that

L <2, Cod*td(z, ') [ o, du < oo

b) Fix a > 0 such that, by the moment condition (10.15), the
function oy, is p-integrable. As a corollary of Birkhoff ergodic theorem
for the Bernoulli dynamical system (B, 3,T), for f-almost every b in
B, the sequence op;,(b;)*/k converges to 0. In particular, for k large,
one has op;,(by) < kY. Hence using the cocycle property as in a) and
the bound (10.5), one can find a constant M (b) > 0 such that the left
hand-side L of (10.17) is bounded by :

£(
L' < > onip(be)d(bg—1 -+ - brz, by - bra’)
< M(b)+ 2@1 ktee=v(b=1) < oo,

The constant M (b) > 0 in this computation takes into account the
finitely many terms we cannot control.
¢) Our statement follows either from the bound

{9 e Glllolg,x) —olg2)| 2 C}) <C7L
based on a) or from the bound

Tim B({b € G | sup o(by-by,2) — o(by by, 2)]| < C}) =1
—00 n>1

that can be deduced from b). O

The following proposition gives a sufficient condition for a cocycle
to be special (as in Section 2.4). This proposition will be applied to
the Iwasawa cocycle.

PrROPOSITION 10.15. Let G be a second countable locally compact
semigroup, s : G — F be a continuous morphism onto a finite group
F, and E be a finite dimensional real vector space. Let i1 be a Borel
probability measure on G such that p spans F. Let X be a compact
metric G-space which is fibered over F and which is p-contracting over
F.

Let 0 : G x X — E be a continuous cocycle whose sup-norm has a
finite exponential moment (10.14) and whose Lipschitz constant has a
finite moment (10.15). Then the cocycle o is special.
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The proof of Proposition 10.15 will last up to the end of Section
10.6. It relies on the study of the leading eigenvalue Ay of a family of
linear operators Py called the complex transfer operators. The tools
that we will develop to prove Proposition 10.15 will be useful to prove
the Central Limit Theorem 11.1.

10.5. The complex transfer operator.

In this section, we introduce the complex transfer oper-
ator Fy. We prove that it depends analytically on the
parameter 6 and deduce that, for # small enough, it has
a leading eigenvalue \g which also depends analytically
on 6.

We keep the notations of section 10.3 and we assume that the action
of G on X is u-contracting.. Let 0 : GX X — F be a continuous cocycle
as in section 10.4.

According to the finite moment conditions (10.14) and (10.15), one
can choose o € (0, 1) such that the function kg on G

(10.19) g — ko(g) := max(osp(9), log owip(9))
has a finite exponential moment:
(10.20) J e 0@ dp(g) < oo.

If one assumes « to be smaller than ~, from Definition in 10.1, using the
cocycle property, one easily checks that xy also has a finite exponential
moment for all the measures p*"* with n > 1:

(10.21) Ji €09 dp(g) < oo.
For 6 in Ef with ||RE|| < «, for ¢ in C°(X) and z in X, we set
(10.22) Pyp(z) = [, 0" p(gz) du(g).

Then, P is a bounded operator of C°(X) called the complex transfer
operator. Since o is a cocycle, for any n > 1, we have

(10.23) Pyo(x) = [0 Dp(gx) du(g).

We shall now fix v with 0 < v < min(~, ) /2.

LEMMA 10.16. Same assumptions as in Proposition 10.15. For any
0 in EX with | RE|| < min(a/2,a—7), one has PyHY(X) C HY(X) and
Py is a continuous operator of HY(X), which depends analytically on

6.

ProoF. We fix 0 in Ef with [|R6] < min(a/2,a — ). We choose
an orthogonal basis e, ..., e, of E/ and decompose any element € € Ef.
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along the dual basis: € = e1+...+¢, with ¢; € E¢ and ¢;(e;) = 6; ;¢(e;)
for all ¢, 7. We will consider elements € € £ with

(10.24) rllel] < a/2 —~ —[|RO].

We will use the standard multiindices notation: for m = (m4,...,m,) €
N", we set

Im|=mi+...4+mp, ml=myl---m,l, " =" .. € S|m|E&“:

and we introduce the operator Py ,, on C°(X) given by, for ¢ € C°(X)
and z € X,

Ppemip(x) = [,e™(0(g,x)) 2@ p(ga) dp(g).

Note that for m = 0 this operator is equal to Fy. Now, since, for any

vin E,

e0+e)(v) — > menr Lem()ef @),
to get analycity of P in the neighborhood of 6, it suffices to check, for
v € HY(X), the absolute convergence:

(10.25) > mene i [Poemly < Mol

for some finite constant M independent of ¢ and €. We first bound the
sup norm: one has

1Poemlloc < [ llell™ ro(g)™ elFOm@) o] dpu(g)
and hence, using (10.20) and (10.24),
D i Poemloe < o eIHIROD) ]| dp(g) < Mool

meN"
Now it remains to bound, for x # 2’ in X with f, = f.

PWSEL;?W“’> = A+ Bt G where

fG ™ (o(g,x))—e™(a(g:x")) ef(o(g,7)) gp(gl‘) du(g)

dx:v”Y

ef(o(g,2)) _o0(c( ')
fG 0 ’ ) gd(xa:)’V : (gx)dﬂ( )

fG (o(g,x )69(0(9,1/)) %dﬂ( )

Since
la™ — o™ < 2 |m| max(||al|, [[bI)™ " |a — b]]”
for all a,b € C", one gets
[Am| <2 [ Imll|e]["1=7 ko(g) =7 e7170(9) R ONol9) ||| o dp(g),
and, using the equality
3 Iml pIml=1 — pere for > 0,

meN” m!
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one gets
Z %IAmI < 2rlle|" (¢l Jos ko(g) el llElHIR@O)I+1)rm0(9) 4y (g).
meN”
This quantity is bounded by a uniform multiple of ||¢]| ..
Since
e — €| < 2" max(|al, |b])' 7Y max(e™®, ™) |a — b|"
for all a,b in C, one gets

|Bm| < 2fG ||5|||m| ,{O(g)\mHl*V el®(O)Iro(9) p7r0(9) ||<P||oo d“(g)7

hence,

Z %IBmI <2|l¢ll. fo ro(g) el lEl+IREO+R0(9) 4y (g).

meN”

Again, this quantity is bounded by a uniform multiple of ||¢|| ..
Finally one also has

m m K d Zz, $, R
Coal < J el wo((g)! eIRO0(@) ¢ () dgzaz)” g g)

hence,

r P d(gz,gx’
Z L|Cnl < ey(e) [, e(rllell+IR@)1) o(g)% du(g)

z,x’)Y
meN”

< ey (9) (J; @ dpu(g)) " (Ji, Lip(g)™ du(g))"”

where we used Cauchy-Schwartz inequality, and we are done. 0

As Py = P, using elementary perturbation theory and the preceding
analysis of P, we can prove the following structure result for P, with
small #. For a pzh—root of unity ¢ in U,,, we still denote by x. the
character of F which is constant with value ¢ on f,F,.

LEMMA 10.17. Same assumptions as in Proposition 10.15.
a) There exist ¢ > 0, a convex bounded open neighborhood U of 0 in
E¢ and analytic maps on U

O—XeC |, 0 ppeH(X) and 0 — Ny € LIH(X)).

such that, for any 6 in U,

(1) o=1, po=1 and Ny = N and |Ng — 1| < ¢,

(17) Pypa = Moo and v(py) = 1,

(1) PyNg = NyPy, the map Ny is a projection onto the p,,-dimensional
subspace &C xcpg C HY(X), where the direct sum is over the th—roots
of unity, and the restriction of Py to Ker Ny has spectral radius < 1—c¢.
b) The fuctions xcpg are eigenvectors of Py with eigenvalues (g.
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PROOF. By construction, the function y. satisfies the following
equivariance property: for every g in the support of p and x € X

xc(g97) = Cxe(z).

Hence for every ¢ in a small neighborhood U C Ef of 0 and any
¢ € HY(X), one has

(10.26) Po(xcp) = CxcPole).

Now we use the functional calculus of operators. Thanks to Propo-
sition 10.10, the projection N has finite rank p, and commutes with
the transfer operator P, the restriction of P to Im /N has simple eigen-
values equal to the pLh—roots of unity, and we can choose € small enough
so that the specral radius of the restriction of the transfer operator P
to KerN N'HY(X) is < 1—2¢. For ain C, r > 0, we denote by C(a,r)
the positively oriented circle with center a and radius r. When U is
small enough, the following expressions, with ( a pzh—root of unity,

Qo = 5= $o01-o(z — Pp) 7' dz and Ny = s $oico(z — Po) 1 dz

define disjoint projections of HY(X), which commute with Py, whose
sum is the identity operator and which depend analytically on 6.

We claim that, if 6 is small enough, each of the N¢y has rank 1.
Indeed, if 8 is small enough, the operator (QyQy is an automorphism
of Ker N. In particular, the image of )y has codimension at most p,,,
whereas, if 6 is small enough, each of the N,y is nonzero, and hence
has rank > 1. Therefore, they all have rank 1.

We set A\g to be the eigenvalue of Py in Im N, o. If 0 is small enough
we can define a generator oy of this line by requiring that v(pg) = 1.
Because of the equivariance property (10.26), for each pfth—root of unity
¢, the function x¢py spans the eigenline Im N¢y and the associated
eigenvalue is (\g. We let Ny be the projection

Ny = ZC N¢yg

and we are done. O

Note that, since, for any ¢ in C°(X), one has P;p = Ppp, where *
denotes complex conjugation, for 6 in E, one has Ay € R.

10.6. Second derivative of the leading eigenvalue.

The proof of Proposition 10.15 now essentially relies on
the local study near = 0 of the leading eigenvalue Ay
and the leading eigenfunction ¢y of the complex transfer
operator Py in H(X).
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We denote by /'\9 € FE¢ the derivative of the function # — Ay and by
Ao € S?(E¢) its second derivative. One has Ay € E and \g € S*(E).
We denote also by ¢y and ¢y the first and second derivatives of the
map 6 — y. These are respectively Holder continuous functions on
X with values in Ec and S?Ec. Similarly we will use the notations Py
and Fy.

In the following lemma, we prove that the cocycle o is special and
we relate the objects that have been introduced in sections 2.3 and 2.4
with the derivatives at § = 0 of the functions 6 — Ay and 0 — py. We
recall that v is the unique p-stationary probability measure on X (see
for instance Lemma 10.5).

LEMMA 10.18. Same assumptions as in Proposition 10.15.
a) The deriwative of g at 0 = 0 is the average of o: \g = 0,. The
cocycle o is special. More precisely, the cocycle og : GXx X — E defined,
for any (g,z) in G x X, by

(10.27) o(g,7) = o0(g,7) + ¢o() — ¢o(g7)

has constant drift. ) .
b) The recentered second derivative \g — A3 € S*E is a non-negative
2-tensor that is equal to the covariance 2-tensor

(10.28) Dy = [y ¢ (00(g,2) — 0,)? dulg) du(x).

c) Let E,, C E be the linear span of ®,, (see Section 2.4). Then, for all
g in Supp p and x in the support S, of v, one has

(10.29) oo(g,x) = 0, mod E,,.
d) For any 6 € U and ¢’ € E; with 0460 € U, one has

Noror = 60/(0“)/\9 .

Conclusion c) roughly means that the 2-tensor ®,, is non-degenerate
except if in some direction the cocycle is the sum of a constant and a
coboundary. Conclusion d) means that the function 6 +— =%\, is
invariant by translations in the direction of the orthogonal E’j of &,
in the dual space E*. Recall that this space EML is also the kernel of
®,, seen as a quadratic form on E*.

ProoF. Using the trick (2.9), we may assume that o, = 0. This
will simplify a little the computations.
a) Differentiating the equation

Moo = Py and v(py) =1 (0 €U),
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one gets

(10.30) oo + Moo = Pyog + Pypg and v(pg) =0 .
Substituting 6 = 0, one gets

(10.31) Mo + ¢o = Pyl + Pygo.

Setting oo(g,z) = o(g,z) — ¢o(x) + ¢o(gz), Equation (10.31) can be
rewritten as, for any x € X,
(10.32) Mo = Ji; o0(g, ) du(g).

Hence the cocycle oy has constant drift and the cocycle o is special.
Applying v to (10.31), one gets, since v is u-stationary, the equality in

E
foG wu(g)dv(z) =0, =0.
b) Differentlatmg Equatlon (10.30), one gets

;\'QQOQ + 2/\9@9 + )\9959 = PQQDQ + QPQ(,bg + ngbg and l/(gbg) =0.
Substituting = 0 and applying v, one gets the equalities in S2E
Ao = v(Bol) + 2V(P0¢?0)
= Jx Jalo(g,2)* + 20(g, 2) ¢o(g7)) du( ) dv(z)

= Jx Jo(ol +900(gx)) du(g) dv(z) — [y ¢o(z)? dv (),

where the first equahty follows from the u—satlonarlty of v applied to the
function ¢y, and where the last equality follows from the p-stationarity
of v applied to the function $3. Now using Equation (10.27), one gets
the equalities in S?F

Mo =[x Jooolg, x)* dulg) dv(z) = P,
Hence this quadratic form on E* is non-negative.
c) By the above formula, since E, is the linear span of ®,, for
p ® v-almost every (g,x) in G x X, oo(g, z) belongs to E,,.
d) By ¢), one has

(10.33) 0'(o(g,2)) = 0'(0,) + ' (¢o(x)) — 0 (2o (g2))
for any ¢ in the support of 1 and z in .S,.
First, assume S, = X. One has

o' (o
Poyor = "M g0 PoM_ 1),

where My denotes the operator of multiplication by a function . In
other words, the operator Py ¢ is conjugated to a multiple of Fy. By
uniqueness of the eigenvalue of Py that is close to one, one gets A\g g =
e’ @)\ if O and @' are small enough.
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In general, let us prove that the operator Py, is conjugated to a
multiple of P in the Banach space H7(S,). Indeed, let F be the closed
subspace of those 1 in H(X) whose restriction to S, is 0. By Lemma
10.8, the restriction map induces a topological isomorphism between
the Banach spaces HY(X)/F and HY(S,). Since PpF C F (or since
I',S, CS,), one may consider Py as a continuous operator on H”(S,).
Besides, one has ¢y ¢ F since v(pg) = 1, and hence )y is also an
eigenvalue of the operator P acting on H7(S,) = H?(X)/F. Now,
still by (10.33), the operator Py g is conjugated to a multiple of Py in
HY(S,). By the uniqueness of the eigenvalue of P that is close to one,
one still gets Agror = e %) \g if @ and €’ are small enough. O

The following corollary tells us that the asymptotic behavior of the
cocycle o is controlled by its average and by its component on the
vector space E,,.

COROLLARY 10.19. Same assumptions as in Proposition 10.15.
There exists C' > 0 such that, for any n in N, for any g in the support
of W™ and for any x in the support S, of v, one has

(10.34) d(o(g,z) —no,, E,) < C.
Proor. This follows from (10.27) and (10.29). O

REMARK 10.20. The upper bound (10.34) cannot be extended be-
yond the support of v i.e. to any x in X. For example, there exists
a cocycle o0 : G x X — R which satisfies the assumptions of Propo-
sition 10.15 and such that ¢ = 0 on I', x S, but o is unbounded on
I', x X. Such an example is obtained by applying the recentering trick
2.9 to the Iwasawa cocycle for the compactly supported probability u
on G = SL(2,Q,) described in Example 12.21 (see Remark 12.22).

11. Limit Laws for cocycles

In this chapter we prove three limit laws (CLT, LIL and LDP) for
cocycles over contracting actions that have suitable moments. The
starting point of the proof is a formula relating the Fourier transform
of the law of the cocycle at time n with the n'"-power of the complex
transfer operator Py (Formula (0.24) or (11.4)). The proof relies then
on the spectral properties of Py proven in Chapter 10.

We will apply these limit laws to the Iwasawa cocycle in Chapter
12.

11.1. Statement of the limit laws.

We now state the three limit laws that we will prove in
this chapter.
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We keep the notations of the preceding chapter. We set IV, for the
Gaussian law on E whose covariance 2-tensor is ®,. This law is sup-
ported by £,. It can also be described by the formula

11.1 N, = (27)" Fe 2% dy
(11.1) w = (2m)

where e, = dim E,, ®}, is the positive quadratic form on E,, that is
dual to ®, and dv is the Lebesgue measure on E, that gives mass 1
to the unit cubes of @7, i.e. the parallelepipeds of FE,, whose sides form
an orthonormal basis of @,,.
For every sequence (v,)p,>1 in E, we denote by C(v,) its set of
cluster points, that is, C(v,) :={v € E | In — o0 khm U, = V}.
—00

THEOREM 11.1. Let G be a second countable locally compact semi-
group, s : G — F be a continuous morphism onto a finite group F', and
E be a finite dimensional real vector space. Let p be a Borel probability
measure on G which is aperiodic in F. Let X be a compact metric
G-space which is fibered over F' and p-contracting over F' and v the
unique p-stationary Borel probability measure on X.

Let 0 : G x X — E be a continuous cocycle whose sup-norm has a
finite exponential moment (10.14) and whose Lipschitz constant has a
finite moment (10.15). Let 0, € E be the average o, := fox ocdu®v,
®,, be the covariance 2-tensor @, 1= nILngO% Jawx(0—0,)? dp @ dv, E,
the linear span of ®, and N, the Gaussian law on E whose covariance
2-tensor s ®,,.

(i) Central limit theorem for ¢ with target. For any bounded
continuous function ¢ on X X E, uniformly for x in X,

(11.2) /Gw (9o, 2o ) 4 (g) —— | 9(y0) dv(y) AN, (),

(¢1) Law of the iterated logarithm. Let K, :={v € E, | v* < ®,}
be the unit ball of ®, (see (2.15)). For any x in X, for $-almost any
b in B, the following set of cluster point is equal to K,

o(by by, x) — nau)
11.3 C
( ) ( v2nloglogn

(i47) Large deviations. For any x in X and ty > 0, one has

— K,

limsup sup £*"({g € G | [|o(g, ) — no,|| > nto})w < 1.
n—oo zxeX
REMARK 11.2. The existence of the limit covariance 2-tensor @,
follows from Theorem 2.13 and Proposition 10.15. This limit ®, can
be computed with Formula (2.16) where oy is the unique cocycle (10.27)
with constant drift which is equivalent to o.
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REMARK 11.3. We only made the assumption that p is aperiodic
in F' to get a simpler formulation of the Central Limit Theorem. The
whole Theorem 11.1 can easily be extended to probability measures p
that are not assumed to be aperiodic in F'. Indeed, one can replace F
by the subgroup spanned by the image of ;1 and use the fact that the
random walk moves in a deterministic and cyclic way in the quotient
cyclic group F/F,. Note that the statement of the law of the iterated
logarithm and the large deviations principle would remain unchanged
for p non-aperiodic.

In Chapter 12 we will apply this abstract theorem to Iwasawa co-
cycles of reductive groups. We will then need the following

COROLLARY 11.4. Same assumptions as in Theorem 11.1. We as-
sume moreover that E is equipped with a linear action of the finite
group F' and that X is equipped with a continuous right action of F
which commutes with the action of G ' and that, for all f in F, the
cocycles (g, ) — o(g,xf) and (g,z) — f~lo(g,x) are cohomologous.
Then
a) The average o, € E is F-invariant.

b) The covariance 2-tensor ®,, on E is F-invariant.
c¢) The vector subspace E,, C E is stable by F.

PROOF OF COROLLARY 11.4. This follows from Lemmas 2.10 and
2.17. O

11.2. The Central Limit Theorem.

We prove in this section the Central Limit Theorem. As
in the case of the sum of independent real random vari-
ables, the proof relies on the convergence of the corre-
sponding characteristic functions thanks to the continu-
ity method.

Let v be a finite Borel measure on E. For 6 in E*, we set

5(0) [E ) 4y (z)

and we call U the characteristic function of v. In particular, for the
Gaussian law N, we have

N.(6) = exp(~32,(0))

IThis amounts to saying that the G-action on X is isomorphic to the diagonal
action on a product F' x X, of F' = G/H with some other G-space X..
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The following classical lemma tells us that the weak convergence can
be detected thanks to the pointwise convergence of the characteristic
functions.

LEMMA 11.5 (Lévy continuity method). Let E = R". Let v, and
Voo be finite Borel measures on E such that the characteristic functions
satisfy Vn(0) —— Uso(0) for all 6 € E*. Then one has v,(v) ——

n—oo

Voo(®) for any bounded continuous function i on E.

PrRoOOF. Equip once for all £ and E* with coherent Lebesgue mea-
sures (that is, if the unit cube of a basis of F has volume 1, so has the
unit cube of the dual basis). If ¢ is a Schwartz function on £ and 6 is
in B, set

2(0) = /E (a)e 0 dz,

so that, by the Fourier inversion formula, we have, for any = in F,

W) = @27 [ D(0)e’™ f.

E*
JFrom this formula we get, for any n,

[E vav, = 20 [ G070,

Since sup || = 1,(0) —— v5(0), we can apply Lebesgue dominated

convergence theorem and we get

/ Vvdy, —— | Y drs.
E E

n—oo

The result follows by classical approximation arguments. 0

PROOF OF THE CENTRAL LIMIT ESTIMATE IN THEOREM 11.1. By
the recentering trick (2.9), we may assume that o, = 0.
We want to understand the limit of the law of the random variables

(gn Cee i, U(Qn\'/%lhx)) cXxE
By standard approximation arguments, it suffices to prove the conver-
gence of (11.2) for functions ¢ of the form (y,v) — ¢(y)p(v), where
@ and p are bounded continuous functions on X and E. We may also
assume that ¢ is y-Holder continuous and non-negative. For any n in
N and x in X, we want to understand the limit for n — oo of the
measures pf . given, for any bounded continuous function p on E, by

pduﬁ’x:/wg:cp 291 ) 4y (g).
[ pi = [ elann (242 @)
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Note that, when ¢ = 1, the measure . is nothing but the law of the

o(gn-g1,7)

. vro :
We will determine the limit of these measures pf . by computing

their charateristic functions. By (10.23), for any 6 in E*, one has the

following expression for the charateristic function 77, of uf ,

5 2(0) = / p(ga) eIV 4 (g).
a
This formula can be rewritten as
(11.4) 1 . (0) = Pl ¢(x).
vn

By Lévy’s continuity Theorem (Lemma 11.5), we have to check
that, for any # € E*, the sequence of characteristic functions evaluated
at # converges uniformly in x:

random variable

(11.5) 2.(0) —— e [y pdv

n—oo

Let U be a small neighborhood of 0 in Ef as in Lemma 10.17. For
every 6 € E*, for large n, the element \Z/—Gﬁ belongs to U. Then, by this

lemma, we can decompose the function ¢ € HY(X) as
(11.6) p=Nap+Qug

(where, as in the proof of Lemma 10.17, Qg = Py — Ny).

On the one hand, since u is aperiodic in F', by Lemma 10.17, for
6 € U, the operator Ny has rank one and )\9_1P9 acts trivially on the
line Im (Ng). Since the function Nop = ([, ¢ dv)1 is Py-invariant, one
gets

Ay "Pj Ny Y (Jx ¢dv)1 in HY(X), uniformly for n > 1.

Hence, for every 6 € E*, one has

(11.7) A Py Nio g — ([ ¢dr)1 in HY(X).
Yn o vn N n—oo
We notice also that, according to the computation of the first two
derivatives of the analytic function § — )y in Lemma 10.18, by the
Taylor-Young formula, one has, since o, = 0,
nlog )\\% +30,(0) — 0,

n—oo

that is,

(11.8) Ay — e

Jn N—00
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On the other hand, by Lemma 10.17,
PjQpp —— 0 in H7(X), uniformly for 6 € U.

Hence for every 0 € E*,
(11.9) P Qo —— 0 in HY(X).
VA

Putting together Equations (11.6), (11.7), (11.8) and (11.9), one gets
(11.5) as required. O

11.3. The upper law of the iterated logarithm.

In this section, we prove the upper bound in the law of
the iterated logarithm, i.e. the fact that the cluster set
is included in K.

We begin by two reductions

(11.10) We can assume that o has constant zero drift.

11.11 We can assume that E =R and oldudy = 1.
GxX

PrOOF OF (11.10). By the recentering trick (2.9), we can assume
that o, = 0. We know by Lemma 10.18 that o is special: we can
write 0 as a sum o(g,x) = 00(g,z) + ¢o(x) — Yo(gz) where oy has
constant zero drift and ¢y is a a-Holder continuous function on X for
some « €]0,1]. In order to apply Theorem 11.1.i7 to oy, it remains to
check that the sup norm of oy — o has a finite exponential moment and
that its Lipschitz constant has a finite moment. The control of the sup
norm follows from the boundedness of the function ¢y. To control the
Lipschitz constant, we replace the distance d by the distance d*. Now,
we get the required bound from the fact that ¢q is a-Holder continuous
and from (10.1). O

PRrROOF OF (11.11). First assume the covariance 2-tensor ®,, is zero.
Since ¢ has constant zero drift, by Formula (2.16), one has ¢ = 0 on
I', x Sy, so that Theorem 11.1.7¢ holds for z in S,. Now, by Lemma
10.14.b), it holds for any =.

Hence we can assume that the covariance 2-tensor ®,, is nonzero.
Then we can find a countable set D of elements 6 in £* with ®,(0) =1
such that the unit ball K, of ®, is equal to

K,={veFE|0v)<lforalde D}
Still by (2.16), the real-valued cocycles gy := 0 o o satisfy
Jax 05 dpdy = 1.
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Thus, if Theorem 11.1.7¢ holds for the cocycles gy, for (G-almost all b,
for any 6 in D, one has

og(by -+ by, x)

C|———=) Cc[-1,1].
< V2nloglogn [ ]

Hence one has C(v,) C K,,. O

We write S,, for the random variable (b, x) — (b, - - by, x), omit-

ting the dependance on (b, z) and we use the notation P, and E, as in

section 2.2. This will allow us to lighten our notations, for instance for
r € X and t > 0, we will have

B.(ISu] < t) = B{b € B | o(ba---bi2)| < 1})
— 1"({g € G | lo(g,2)| < 1}).

Let a,, > 0 be a non-decreasing sequence such that

2
(11.12) lim 22 = lim o= o0
For instance, a, = v/2nloglogn for n > 3. We set S} = sup S;.

1<k<n
We will prove successively the four following lemmas in which we
assume both (11.10) and (11.11) to hold.

LEMMA 11.6. For all € > 0, there exists ng, such that, for n > ng
and x i X,

min P (54 < 2a,) 2 4.
LEMMA 11.7. For all e > 0, ¢ > 0, there exists ng, such that, for
n>ng and x i X,
P,(S, > (c+¢)an) <2P,(S, > cay).
LEMMA 11.8. For all ¢ > 0 and ¢ > 1, one has

sup IED:):(Sn > can) = O(e*CQUL%/(Qc’n)).
zeX

LEMMA 11.9. For all x in X, one has P,(limsup

n—oo

Sn _
Vv2nloglogn < 1) o

We will often use the cocycle relation for these random variables .S,
on the forward dynamical system under the form

Snin = Sy 0 (TX)" + S,,.
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PRrROOF OF LEMMA 11.6. According to the Central Limit Theorem

11.1.4, since “T’“ k—> 00, there exists ny > 1 such that, for every
—00

n1 < k <mn, for all x in X, one has

S a
P, (ISk] < ca) > P(S2 < c 2%

Now, we choose a compact subset K of GG such that, for any 0 < k£ < ny,
one has **(K) > 1. Since a,, —— 00 and supy, x |o| < oo, one can

n—oo

find ng > 1 such that, for all n > ng, for all x in X, one has

P.(|Sk| <ea,) >3 when k < ny.

1
) > 3

This proves our claim. U

PROOF OF LEMMA 11.7. We want to bound P,(A,,) where A, C
B x X is the union A, = Uj<x<n Ay with

A ={S: > (c+¢)a, and S; < (c+¢)a, for 1 <j <k}

We introduce also the sets
Bk = {5 — Sk| <ea,} and C, = {S, > ca,}.
These sets (), contain the disjoint union
Cn DUl Api N By
According to the Markov property and to the cocycle property, one has
Po(Brg | Ang) > ylg)f( Py(|Sn—kl < ean).
Hence, by Lemma 11.6, one can find ng > 1 such that, for all n > ny,
k <n and x in X, one has
Po(Buk | Ang) > 3-

Thus one has

Pr(An) < 3 25m1 Pe(Ank) <235 Pe(Ank N Bog) < 2P(Ch),
as required. O

PrROOF OF LEMMA 11.8. By Theorem 2.13 and (11.11), one can
find ny > 1 such that

= [,o(g,y)?dp™(g) < nmiz(d +1) forall yin X.

Now, by Lebesgue convergence theorem, since o depends continuously
on x and since X is compact, one can find ay > 0 such that,

Joo(g,y)? e@0%sue(9) 4™ (g) < nyc! for all y in X.
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Using the upperbound e <1+t + %e'”, for all ¢ in R, and using the
zero drift condition (11.10), one computes, for 0 < t < ag and y in X,

E,(¢"5) < 14 tE,(S,,) + 5 Ey (57, e5))
nic't? nic't?/2
<1+ meh < emdt/2,

We will denote by I,, the integral I, = [, 7@ du(g). Writing
0

n = qny + r; with r; < ny, using Chebyshev inequality, the Markov

property and the cocycle property, one gets for ¢, < «y,

P.(S, > ca,) < e e Em(etns”)

—tnca tn S, q1 771
<e " sup E,(e™m7m) I%
yeX

—tncan+nc't2 /2 11
<e " I%.

Since “* — 0, for n large one has ¢, := £ < «y, so that

c'n

P.(S, > ca,) < e~ an/(2¢/n) IZ; ,

as required. 0
Proor or LEMMA 11.9. We now set a, = v/2nloglogn. We fix
1 < a < c and set ny to be the integral part ny := [@*]. One has the

inclusion of subsets of B x X, in which 7.0. stands for “infinitely often”,
{S, > c’a, i.0} C{S; >’ay, , io}
c{S;, > ay, i.0.}.

We want to prove that this set has P,-measure zero. By Borel-Cantelli
Lemma, it is enough to check that the series ) py is convergent, where

pre = Pu(S,, > A an,).

By Lemmas 11.7 and 11.8 with ¢ = ¢, for k large enough, one has the
upperbound
Pk < 2P, (S,, > ca,,) = O(k™°).

Hence this series ) py is convergent. U

11.4. The lower law of the iterated logarithm.
In this section, we prove the lower bound in the law of
the iterated logarithm, i.e. the fact that the cluster set
contains K.
We keep the notations of the previous paragraph. Because of the
upperbound, we can replace the cocycle ¢ by any projection of it on
E,,. Hence,

(11.13) we can assume that @, is non-degenerate.
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We still denote by @7, the quadratic form on E* that is dual to ®,,.
We will prove successively the following two lemmas for a sequence a,
which satisfies (11.12).

LEMMA 11.10. For allv win E and R > 0, one has
lim inf 27 in)f( log P, (|Sn/an —v| < R) > =@y (v).
n xre

n—oo

LEMMA 11.11. For all v in E with ®;(v) <1, for all R > 0 and x
m X, one has

P.( —v| <R io0.)=1.

Sn
| v2nloglogn
Lemma 11.10 is a kind of converse to Lemma 11.8.

ProOOF OF LEMMA 11.10. Wesetr = R/2,V, = B(v,r) and B, =
B(0,r). Fix t > 0 and set
2

2,2 a
Pn = [nagf ] and Gn = [m} )

so that p, goes to oo and

2

Pnln <n and n_ann:O(n +%)'

af
Decomposing the interval [1,n] into ¢, intervals of length p, plus a

remaining interval of length at most p,, using the Markov property
and the cocycle property, one gets the lower bound

in)f( P.(S, € a, Vg) > A"\ where
TE

o an ro_
Ap = ;g)f( P.(S,, € o V) and X, = ég)f( Py (Sn—pngn € an Br) .
According to Theorem 2.13, the following constant M, is finite :

My = sup sup 1E,(S7) < oo
n>1 zeX

Hence, since, by Chebyshev inequality, one has
Po(Sn_pran & n Br) < a,°r°E,(S? ),

N—pPndn
one gets
1-)\ < a;2r_2(n — Pnqn) My = 0(272 + %) — 0.

We want a lower bound for the left hand side
L :=liminf Z inf logP,(S,/a, € V).

n—oo 9 geX

We have already proved that
L > liminf 22 ég)f( logP,(S,, € Z_:V’")'

n—oo n



194

Using the Central Limit Theorem 11.1.7, the fact (11.12) that p, goes

to oo and the equivalence ,/p,, ~ %, one gets
n

L Z t% logN#(t‘/;">7

where N, is the limit normal law. According to Jensen inequality, one
has

N,(tV,) > e*éq’i(ku(t B,).
Hence one has, for all ¢ > 0,
L > -7 (v) 4+ Zlog Nu(t B,).
Since lim N, (t B,) = 1, one gets L > —®7 (v). O

t—o00

Proor or LEMMA 11.11. We set a, = +/2nloglogn. We will
prove that the event S,, € a, Vi occurs infinitely often along the se-
quence n = n;, = k*. Because of the upperbound and the choice of this
sequence, one has

limsup S, ,/a,, < limsupa,, ,/a,, limsupS,/a, = 0.

k—o0 k—o0 n— o0

Hence we only have to check that, P,-almost surely, the event
Ak = {Snk — Snk_l € Qy, VR}

occurs infinitely often. According to Borel-Cantelli Lemma it is enough
to check that, for all ky > 1, the following series diverges:

Zkzko P, (A | ﬂﬁ;ioAi) = 0.

By the Markov property and the cocycle property, one has the lower
bound

P, (A | ﬁf;,ioAj) > pr,  where

Pr = ;g)f( Py(snk_nk—l € n, VR).

We choose o with ®,(v) < a < 1. By Lemma 11.10, for k large, one
has

p > e lorlosTma1) = Jog(ny —ny 1) ~ (klog k)™,
and the series > py, diverges as required. O

This proof of the law of the iterated logarithm gives also the fol-
lowing
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PROPOSITION 11.12. Same assumptions as in Theorem 11.1. Let

. . . 2
a, be a mon-decreasing sequence such that lim - = lim %2 = oo.

n—oo “n n—oo

For every open conver subset C' C E with C N E,, # (), one has the
convergence

(11.14) 2 log P, (22 € C) —— — inf @7 (v),

an n—00 veCNEy, #

uniformly for x in X. For instance, one has the convergence

1 Sn o *
(1115) Toglogn 10ng(m S C) m velCnﬁfEu (I),U»(U)’

uniformly for x in X.

Proor. This follows from Lemmas (11.8) and (11.10). O

11.5. Large deviations estimates.
This last section is devoted to the proof of the large de-
viations principle for cocycles over a contracting action.

PrROOF OF THEOREM 11.1.(4i7). As for random walks on R, the
proof relies on the Laplace-Fourier transform of the law and on the
Chebyshev inequality. The new ingredient is again Formula (0.24) ex-
pressing this Laplace-Fourier transform thanks to the transfer operator.

We may assume o, = 0. Fix ¢y > 0 and introduce the following
sets forx € X, neN, ty >0and 6 € £,

HY, :={9€G|lo(g,z)| > nto},
K!,={9€G|6(c(g,2)) > n}.

We want to prove

lim sup sup + log " (H.2,) < 0.

n—oo xzeX

Notice that there exists a finite set ©, C E* such that the set H., is

included in the union of the sets sz for # in ©, . Hence it is enough
to check, for every 6 in E*,

(11.16) limsup sup £ log u*"(K?,) < 0.

n—oo xeX

Fix 6 in E* and choose t > 0 small enough. Using Chebyshev inequality,
one has the bound

H*n(sz) < e—tn fG 6t9(a(g,x)) d'u*n (g)
This inequality can be rewritten as

P, < eTMPRl(e).
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When ¢ is small enough, the element t6 belongs to U and, by Lemma
10.17, one has
limsup £ log || Pj1{|c < log .

n—oo

Hence one has

lim sup sup = log u*"(an) <log A —t.
n—oo zxeX
Since 0, = 0, according to Lemma 10.18 the derivative of the map
t +— log Ay at t = 0 is zero. Hence, when ¢ is small enough, the right-
hand side is negative. This proves the bound (11.16) and ends the
proof. O

12. Limit laws for products of random matrices

Let G be an algebraic reductive S-adic Lie group. In this chapter,
we continue the study of random walks on G using freely the notations
of Chapter 9. We will apply Theorem 11.1 in order to prove limit laws
both for the Iwasawa cocycle o and for the Cartan projection k.

12.1. Lipschitz constant of the cocycle.

We first check that the partial Iwasawa cocycle og, on
the partial flag variety Pg, satisfies the finite moment
conditions needed in Theorem 11.1 .

To this aim, we need to introduce a distance on the partial flag
varieties Pg, © C II. Let us first deal with distances on projective
spaces. Let K be a local field and V' be a finite dimensional K-vector
space.

If Kis R or C, fix a Euclidean norm ||.|] on V. Then, there exists a
unique Euclidean norm on A%V such that, for any orthogonal decom-
position V = V; @ Vs, the decomposition A2V = A2V BV AV B A2V, is
orthogonal and that, for any v; in V; and vs in V5, one has [[v; A va]| =
[[oa ]| [[va]]-

If K is non-archimedean, fix a ultrametric norm ||.|| on V' and say
a decomposition V = @, .., Vi is good if, for any v = >, v; in V,
one has ||v|| = maxj<;<k ||v;||. Then, there exists a unique ultrametric

norm on A2V such that, for any good decomposition V = V; @ V5, the
decomposition A2V = A%V, @ V; A Vy @ A%V, is good and that, for any

vy in Vi and vy in Vo, one has ||jv; A vg| = ||vr|| ||vz]l-
In all cases, set, for any z = Kv, 2/ = Ko in P (V),
ny — lend|l
(12.1) (@, ') = fof

The function d is a distance which induces the usual compact topology
on P (V).
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For any ¢ in GL(V) and x,2" in P (V'), one has
12 12
(122)  dlgr,g0') < Wl o7 de ) < olP lo~ | dt, ).

Let © C II be an F-invariant subset. We recall, from Sections 7.4
and 7.6, that the G-equivariant map

Po — H U P (Vo) sn = Vay
a€ll feF

is a closed immersion. For any 7,7’ in Pg, set

, maxoco d(Vau, Vo) i fu = for.
12.3 d , = €0 )T 1 B n n
( ) (n,m') {1 if f £ for.

Note that, by Lemma 7.18, Corollary 7.20 and (12.2), there exist con-
stants C1, Cy > 0 such that, for any ¢g in G and 1,7 in Pg, one has

(12.4) d(gn, gn') < C1e@1"@ld(n, 1),
This inequality will be useful in Section 12.2 for checking the condition
(10.1).

The following lemma gives an estimation for the Lipschitz constant
of the Iwasawa cocycle.

LEMMA 12.1. Let G be an algebraic reductive S-adic Lie group. Let
© be an F-invariant subset of 11. There exist p,q > 0 such that, for
any g in G, n,n" in Pe with f, = f,, one has

(12.5) loalg,n) — oelg,n)|| < pet " @la(n, ).

To prove this lemma, we will proceed to an analysis of the norm
cocycle associated to a given representation.

LEMMA 12.2. Let K be a local field and V' be a normed finite di-
mensional K-vector space. There exists a constant C' > 0 such that,
for any g in GL(V) and v,v" in V'~ {0}, one has

(126)  [iog kel —tog k| < gl lg~) (o, K).

In this Lemma 12.2, we do not assume the norm to be Euclidean
or ultrametric.

REMARK 12.3. Note that one cannot bound the left-hand side of
(12.6), uniformly in v and v/, by a linear expression in log(N(g)) d(Kv, Kv').

For instance for V =R? v = (1,¢), v' = (1,0) and g = ( (S) (t) ) with

e,s,t > 0, the left-hand side of (12.6) is \%logp’ﬂ—ga)zl which is not

bounded uniformly in ¢ € [0, 1] by a multiple of (|log s| + |logt|) e.
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Proor. We first note that there exists a constant ¢ > 1 such that,
for any z, 2’ in P(V),

(12.7) ¢ td(z,2") < min ' —v|| < cd(z,2),

where the minimum is taken over all the nonzero vectors v in x and
v in 2’ with [jv|| > 1 and ||v'|| > 1. Hence we can assume that the
vectors v and ¢ in (12.6) satisfy

(12.8) o >1, ||| >1 and |[[v'—v| < cd(Kov,Kv').
Since Inequality (12.6) is symmetric in v and v’, we only have to prove

the upper bound

(12.9) log 1240 + 1og L2 < C g g~ o/ —v]] .

We set L for the left-hand side of (12.9), w := v'—v and compute
L < log(1+4%]) +log(L+ i) < i + i < 2 gl llg™" |l ]l

llgvll = lgoll vl

This proves the wanted inequality (12.9). O

Proor or LEMMA 12.1. This follows from Lemmas 7.15, 7.18 and
12.2. O

This implies that the moment assumptions of Theorem 11.1 are
satisfied. Recall that if ;4 is a Zariski dense probability measure on G,
we defined ©,, as the set of « in II such that the set o*(x(I',)) C Ry
is unbounded.

COROLLARY 12.4. Let G be an algebraic reductive S-adic Lie group,
F =G/G. and u be a Zariski dense Borel probability measure on G with
a finite exponential moment. Then, the corresponding partial Twasawa

cocycle oe, : G x Pg, — ae, satisfies the finite moment conditions
(10.14) and (10.15).

ProoF. Condition (10.14) follows from the bound (7.16) and from
the finite exponential moment assumption (9.3). Condition (10.15)
follows from the bound (12.5) with © = ©,, and from the same finite
exponential moment assumption (9.3). O

12.2. Contraction speed on the flag variety.

In this section, we check the p-contraction property on
the partial flag variety Pg, also needed in Theorem 11.1.

LEMMA 12.5. Let G be an algebraic reductive S-adic Lie group,
F = G/G. and p be a Zariski dense Borel probability measure on G
with a finite exponential moment. Then, there exists vy > 0 such that
the action of G on Pe, is (1, Y0)-contracting over F'.
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The proof uses the following elementary

LEMMA 12.6. Let (X, X, x) be a probability space, ® be a set of real
measurable functions on (X, X), and ty > 0 such that

[y sup,eq €¥ldy < oo and  sup,eq [y @dx < 0.
Then there exists 0 < t < tq with

SUP g [ €9 dx < 1.

PROOF. The key ingredient in this proof is the Law of Large Num-
bers and the regularity of the Lyapunov vector (Theorem 9.9). We set
Y = SUP,cq @] and € = —sup,eq [ dx > 0. For any a € R, one has
e® <14 a—+ a%el, thus, for any t > 0, one has

[ye?dx <1+t [, pdx+t* [ e dyx.
The result follows, by taking ¢ > 0 such that ¢ [, %' dy < e. O

ProOOF OF LEMMA 12.5. First note that the moment assumption
and Inequality (12.4) imply that (10.1) holds for small enough ~y. Let
us check that (10.2) is verified for some n > 1. Recall, for any n # n/
in Pe, with f, = f,, the distance d(n,7’) is given by (12.3).

For g in G and a € ©,, by Lemma 7.18 and Formula (12.1), we
have

d(gVa,m gva,n’) < e’ (9) d(va,m Voc,n’) where

o (9) = (2Xa — ) (k(g7y,)) — Xalo(g,m) +a(g,7)).
Thus,

log (_cén 977)) < ay,,y(g) where a,,(g) = LHE%X Aoy (9)-

We need to prove that there exist 7y > 0 and n > 1 such that one
has
d )70 *n,
Sup fG Ezg(z gn)wo dp™(g) <1,
TI* n'
where the supremum is taken is over the pairs n, 7’ in Peo, with f, = fiy

and 1 # n'. According to Lemma 12.6, it suffices to check that

(12.10) sup [, log dgz Z" dp*(g) < 0 for some integer n.
=ty
We will use once again the one-sided Bernoulli space (B, 3) with alpha-
bet (G, u), and denote by b = (by,...,by,...) its elements. According
to Theorem 9.9, one has
%K(bn o-by) —— 0, in LY(B, S, a),

n—oo
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+

and the limit o, belongs to agu. By Corollary 7.20.c), one also gets

%/@(bn co-by1p) —— 0, in LY(B, 3, a),

for any f in F'. The same theorem 9.9 tells us that, uniformly for 7 in
P, one has the convergence

%g(bn -o+by,n) —— o, in L}(B, 3, a).

As a consequence, for every a in ©,, uniformly for n # 7" € Pe, with
fn = fy, one has,
%aaﬂ?ﬂ?«bn e bl) — _aw(0M> n LI(B7 67 Cl),

n—oo

and hence, one also has

%aml(bnu'bl) — —;Iéi@ﬂ a¥(o,) in LY(B,f,a).

and, using the regularity of the Lyapunov vector (Theorem 9.9.e),

v Jo ana (9) dp™(9) —— —min a*(0,) < 0.

—00 ag®y,

Thus, for n large enough, one has

sup [ty (g9) dp*(g) <0

fn: n’
This proves (12.10) and ends the proof. O

COROLLARY 12.7. Let G be an algebraic reductive S-adic Lie group,
and p be a Zariski dense Borel probability measure on G with a finite
exponential moment. Then, the corresponding partial Twasawa cocycle
oe, : G X Pe, — ag, is special.

Proor. This follows from Proposition 10.15. Indeed, the contrac-

tion assumption has been checked in Lemma 12.5, and the moment as-
sumptions (10.14) and (10.15) have been checked in Corollary 12.4. [

12.3. Comparing the Iwasawa cocycle with its projection.

In this section, we compare the behavior of the Iwasawa
cocycle o with the behavior of its projection on ag, .

The reader who is interested only in real Lie groups G can skip
this section because, by (8.1), when § = {R}, for any Zariski dense
subsemigroup I' of G, one has Op = Il and ag,. = a.

The first lemma is similar to Corollary 10.19.

Recall that the limit set Ar in Pg,. of a Zariski dense subsemigroup
I" of G is the smallest non-empty I'-invariant closed subset of Pg,. (see
Section 12.7).



12. LIMIT LAWS FOR PRODUCTS OF RANDOM MATRICES 201

LEMMA 12.8. Let G be an algebraic reductive S-adic Lie group, T’
be a Zariski dense subsemigroup of G and Syt C P be the pullback of
the limit set Ap C Po,.. There exists C' > 0 such that, for any n in N,
for any g in T and for any n in Sr, one has

(1211) d(a(gan)va@r) < C.

Eventhough this lemma is similar to it Corollary 10.19, it cannot
be seen as a consequence of Corollary 10.19 applied to a probability
measure ;4 on G such that I', = I" because the action of G on the full
flag variety P might not be p-contracting over F' when G is not a real
Lie group.

Proor or LEMMA 12.8. First note that, since ¢ is a continuous
cocycle, for any go in GG, one has

sup |lo(g,n) — o(gog,n)l| < oc.
geGneP
Hence, we can assume that G = G, is connected. Now, fix  in Of and
let us prove that

sup  |a¥(a(g,n))| < oo.
gEFM,r]ESp

We will apply Lemma 3.2 to the representation (p,, V,) of G from
Lemma 7.15. By definition, the proximal dimension r of p,(I') is the
dimension of the space VI that is the sum of weight spaces of V,, that
are associated to weights of the form y, — p, where p is a positive
combination of elements of ©%. The map g — gV factors as a map

Por — G.(Vy);n — Varm.

Now, by definition, the image of Sr in Pg. is the limit set Ap which
is included in the limit set A;a ) from Lemma 3.2. Thus, from this

Lemma, we get the existence of C' > 1 such that, for any ¢ in I', n in
Sp and v,v’ # 0 in V], , one has

(12.12) Lol < lestoull < rlesto)l,

[[o"l l[] [l

To conclude, we will make the same computation as in the proof of
Lemma 7.17.

Let k be in K, such that n = k& and &’ be in K., z in Z and u in
U with gk = K'zu. We have w(z) = o(g,n). Let v and v' be nonzero
vectors in V, . and V, . and set v = p,(u)~'v'. By construction,
we have po(k)v, po(k)V', pa(k)v" € VI and

1pa(gk)vll = llpa(z)oll = o).
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Besides, on the one hand,
1pa(gk)v'|| = llpa(zu)v/|| = DD,
where the latter inequality follows from the fact that
P20 € pal2)0 + Vi
By (12.12), this gives
a“(a(g,m)) > —logC.

On the other hand, since v" € v/ 4+ V,, ., we have [[v"| > ||v/|| and

//H //H _

= [lpa(zu)v [0 (2)0"||
e(x:—a”)(w(z))uvfu < e(xf;’—a‘*’)(w(z))HU//H’

lpa(ghk)v

which, again by (12.12), gives
a“(o(g,m)) < logC.
Together, we get |a¥(c(g,n))| < log C as required. O

The upper bound (12.11) cannot be extended beyond the set Sr i.e.
to any n in P. Here is an Example.

EXAMPLE 12.9. There exists a finitely generated and Zariski dense
subsemigroup I' of a simple algebraic p-adic Lie group G such that
supsupd(c(g,n), de,) = 00.
gel’ neP
PRrROOF. Here is an example with G = SL(3,Q,): choose I' to be

spanned by finitely many elements in a small compact open neighbor-
hood of the matrix

pt 0 0
go=0 pt 0
0 0 p?

so that the simple root « := e — € is not in ©p. Choose 7y to be the
flag (es) C (e2,es) in Q. One computes, for n > 1,
a(a(gg:m0)) = 2108 |95 (ex) | =108 [[g5(eanes) || = nlogp
which is not bounded. U
Despite this remark, one has the following lemma which is similar

to Lemma 10.14. In this lemma, we do not assume the starting point
71 to belong to the set Sr.
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LEMMA 12.10. Let G be an algebraic reductive S-adic Lie group,
and p be a Zariski dense Borel probability measure on G with a finite
exponential moment. Let « € II N O, and n € P.

a) For (B-almost every b in B, the sequence n +— «(o(b,---by,n)) is
bounded.
b) One has lim inf 1™ ({g € G | |a(a(g,n))| < C}) = 1.

PROOF. a) By Lemma 7.6, we may assume that n belongs to P..
By Theorem 9.9, for #-almost any b in B, the sequence

n = Ha(bn o 'b1,77) - /{(bn o bl)H

is bounded and, by the definition (8.1) of ©,, the set a(x(I',)) is also
bounded.
b) This follows from from the bound

Jim B({b € B supla(a(b,.brm)] < C}) =1

based on a). O

12.4. Limit laws for the Iwasawa cocycle.

We can now state and prove the limit laws (CLT, LIL,
LDP) for the Iwasawa cocycle on the full flag variety P.
Remember that, when K = R, the action of G on P is
p-contracting.

JFrom Lemma 12.1 and 12.5, we deduce that, if p is a Zariski dense
Borel probability measure on G with a finite exponential moment, then
the Iwasawa cocycle

0o, : G x P@u — dg,

satisfies the assumptions of Theorem 11.1 (note that, in this case, the
uniqueness of the p-stationary Borel probability measure on Pg, is
already warranted by Lemma 1.24 and Proposition 3.18).

We let 0, € ag# be the average of og,, ®, € S*(ag,) be the covari-
ance 2-tensor (2.16) of the cocycle with constant drift which is coho-
mologous to og,, a, C ag, be the linear span of this 2-tensor and N,
be the Gaussian law on a with covariance 2-tensor ®,. By definition,
the support of the Gaussian law N, is the vector subspace a,.

We now reformulate Theorem 11.1 for the Iwasawa cocycle o on the
full flag variety P.

THEOREM 12.11. Let G be an algebraic reductive S-adic Lie group,
F := G/G. and p be a Zariski dense Borel probability measure on G
with a finite exponential moment which is aperiodic in F. Let v be the
p-stationary measure on the partial flag variety Pe,,.
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Then the average o,, the covariance 2-tensor ®,, the linear span
a, and the Gaussian law N,, are F-invariant and one has the following
asymptotic estimates for the Iwasawa cocycle o on the full flag variety
P.
(i) Central limit theorem for o with target. For any bounded
continuous function v on Pe, X a, uniformly for n in P,

(1213) [ (gn, %) A™(g) — Jp, ¥ dv AN,

(i) Law of the iterated logarithm. Let K, C a, be the unit ball
of ®,. For any n in P, for B-almost any b in B, the following set of
cluster points is equal to K,

o(by-by,m) — naM)
12.14 C =K,.
( ) ( Vv2nloglogn a

(17i) Large deviations. For any ty > 0, one has

(12.15)  limsupsup ™ ({g € G | ||o(g,n) — no,|| > nto})% <1
n—oo neP
In the left-hand side of Equality (12.13), the function v is viewed
as a function on P X a via the natural projection P — Pe,,.

REMARK 12.12. When moreover G is a real Lie group, we have
already seen that the flag variety is the full flag variety Pg, = P, the
Lyapunov vector o, belongs to the open Weyl chamber a™ and we
will see soon that the support a, of the limit Gaussian law NV, is equal
to a.

PrROOF OF THEOREM 12.11. (i) and (¢7) The limit laws follow
from Theorem 11.1 applied to the cocycle og, on the partial flag vari-
ety Pe,. We know that the contraction and the moment assumptions
in Theorem 11.1 are satisfied because of Corollary 12.4 and Lemma
12.5. To deduce the conclusions of Theorem 11.1.z and 11.1.7¢ for the
Iwasawa cocycle o on the full flag variety P, from the same results for
0e,, we use the comparison Lemma 12.10. The F-invariance follows
from Lemma 7.22 and Corollary 11.4.

(i47) Theorem 11.1.77 gives a similar conclusion with og, in place
of o : for any ty > 0, one has

: *n 1
(12.16) hmsupsugu ({9 € G|||oe,(g:n) — nou|| = nto})= < 1.
n—oo T]E
When G is a real Lie group this finishes the proof since ©,, = II. In
general, our conclusion follows from Proposition 12.13 below whose
proof uses both the large deviations inequality (12.16) for og, and the
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large deviations inequality (12.29) for x that we will prove in the next
section. 0

PROPOSITION 12.13 (Large deviations away from ae, ).
Let G be an algebraic reductive S-adic Lie group and p be a Zarisk:
dense Borel probability measure on G with a finite exponential moment.
Let o be the Twasawa cocycle on the full flag variety P. Then, for any
ap € I\ O,, and ty > 0, one has

(12.17) lim sup sug,u*"({g € G| |la(o(g,n)| > nto})% <1
n—oo ne

In the proof of Proposition 12.13, we will also need the following
Lemma 12.14 which gives a property valid for any root system. In
order to lighten notations, we forget in this lemma the superscript w,
identifying > with the root system »“ C a*. For a subset © C II
of the set II of simple roots, we set ©° = II \ ©, Yg to be the root
subsystem generated by ©, ©§ the corresponding set of positive roots
and dg = Zaezg a the sum of these positive roots. For « in I, we set

w, € a* for the corresponding fundamental weight (by definition, x,
is an integer multiple of w,).

LEMMA 12.14. Let a be a Fuclidean real vector space, > C a* a root
system, Il a set of simple roots, and © a subset of 1.
a) Then there exist integers ng o > 0, a € ©, such that

(12.18) doc =2 e (2ma —1)To — Y co MO0 Ta

(where m, = 4(XT NRa) € {1,2}).

b) There exists ¢ > 0 such that, for any ag € O°, any point p € at in
the Weyl chamber and any point ¢ € Conv(Wp) in the convex hull of
the Weyl orbit of p, one has the upper bound

(12.19) lao(q)] < ¢ D geor @P) + ¢ Y nco Talp — q).

PROOF OF LEMMA 12.14. a) If ais in II, B is in ¥ and s,, is the
orthogonal symmetry associated to a, one has s,(8) = 3 — 2%&.
Since s,(3) belongs ¥t U =X, either 8 € {a,2a} or s,(f8) € ¥+, If
moreover (3 is simple and # «, one gets («, 5) < 0.

Therefore, if o belongs to ©¢, s, preserves the set ¥&, \ {a, 2a}
and sends a to —a. This proves that s,(dgc) = doc — 2(2my — 1)av.

(a,00¢)

Hence one has 272785 = 2(2my — 1).

If o belongs to O, one has (a,3) < 0 for any 3 in ., hence
(Oé, 5@c) S 0.

Since (7a)aen is the dual basis of (2%

(a,@)

Jacrr With respect to the
scalar product, this proves (12.18).
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b) According to (7.22) one has the bound 7,(q) < 7, (p) for all « in
II. Applying Equality (12.18) to the point p — ¢, one gets then

(12.20) doc(q) < doc(p) + ¢ peo Talp — ),

as soon as ¢ > maxXqeco Ne,q-
Applying this bound (12.20) to the point ¢ = w™'q with w in the
Weyl group Wee of Yge such that

a(¢) >0, forall a in ©°,

one gets,
(12.21) |a0(q)] < dec(q) < deoe(p) + ¢ Xgeo Talp — q)-
Inequality (12.19) follows. O

PROOF OF PROPOSITION 12.13. ;From Lemma 7.22, we may as-
sume that the n’s which occur in Formula (12.17) belong to P.. By
Corollary 7.20, for such an 7, the point ¢ := o(g,n) is in the convex
hull of the W-orbit of the point p := k(g). Then (12.19) tells us that,
for any ap in ©f, one has

o (a(g. )| < > a®(k(g) +¢ > m2(klg) — olg,m),

a€B] acO,

for some constant ¢ > 0 depending only on G. Now, Equation (12.17)
follows from the following three bounds,

(12.22) sup a”(k(g)) < oo for all a in ©F,
gel’y

and, for all @ in ©, and ¢y > 0,

(12.23) limsupp™({g € G| |12(k(g) —no,)| > nto})% <1 and

n—oo

(12.24) limsupsupp™({g € G| |72(o(g,n) —no,)| > nto})s < 1.
n—oo nepP

The bound (12.22) follows from the Definition (8.1) of ©,,.

The bound (12.23) follows from the large deviations estimate (12.29)
for k from Theorem 12.17 below (note that the proof of (12.29) only
relies on the large deviations estimates for og ).

The bound (12.24) follows from the large deviations estimate (12.16)
for 0, (note that, for a € ©,,, since 7, is sg-invariant for any 3 # «
in II, one has 7, 0 0 = T, 0 0g,,). O

When the point 1 € P belongs to the support of a u-stationary mea-
sure one has a much stronger control than the one given in Proposition
12.13:
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LEMMA 12.15. Same assumptions as in Theorem 12.11. Let v be a
p-stationary measure on P. There exists C > 0 such that, for any n
in N, for any g in the support of W*™ and for any n in the support S,
of v, one has

(12.25) d(o(g,n)—noy,,a,) < C.

Proor. This follows from Corollary 10.19 applied to the cocycle
0, and from Lemma 12.8. OJ

As we have already noted in Remark 10.20 and Example 12.9, one
cannot extend the bound (12.25) to any 7 in P.

12.5. Iwasawa cocycle and Cartan projection.

Now, for g in G, we will define a subset Qg  of Pg,
outside of which we will be able to control the difference
between the Cartan projection and the Iwasawa cocycle.

We need more notations. Recall, from Section 7.7, that, for any
pin S, we fixed a good maximal compact subgroup K. = Hpe s Kpe
of G, and a Cartan decomposition G, = K.ZTK,. We also defined a
section 7 : ' — G of the quotient map s : G — F. which takes values
in P. For any g in G, we fix once for all elements %, and [, of K. and
2y € Z such that g = kyz4l,. We can also suppose ky-1 = lg_l. For ¢

in G, we set k, = kTs-(;)g and I, = ZTS‘(;>9

Fix © C IT and set ©¥ = +(©) to be the image of © by the opposition
involution. We let g be the fixed point of Pg . in Pg . and Qg be the
set of those 1 in Pg . such that, for some « in ©, in the representation
space V, given in section 7.4.5, the line V,,, is contained in the A-
invariant hyperplane € VX that is complementary to V. X=. For g
in G, we set

(12.26) €&y = kylo and QF  =1."Qo.

Note that, when min,ece a(k(g)) > 0, the point £, and the subset
Qg g do not depend on the choice of k; and [,,.

We let Pg. be the parabolic subgroup of type ©" of G. which
is opposite to Pg. with respect to A. One checks that Qg is the
complement of the open Pg -orbit in Pg . and hence that the map from
G into the subsets of Pg, g — gQp factors as a map from Pgv =~ G/P&C
into the subsets of Pg,

(12.27) ¢ Qoy.

These subsets Qg ¢ are called the maximal Schubert cells of Pg. By
construction, for any g in GG, QF ; is equal to a maximal Schubert cell

XFXa
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of Pe,. For instance, if g belongs to G, one has
Q6,= 9o,

LEMMA 12.16. For any € > 0, there exists M > 0 such that, for
any g m G and n in Peo . with d (77, 39) > ¢, one has

loe(g,1m) —pe(k(9))|| < M.

The distance on Pg is defined in (12.3) by using the map (7.26)
constructed with the family of representations V,, with « in ©, where
the V,, were defined in section 7.4.5.

M .
@\/’g—l

PrROOF. The proof relies on the interpretation, in Section 7.5, of
the Iwasawa cocycle and the Cartan projection via representations of
G.

By construction, one can assume that g belongs to G and it suffices
to prove the result for the elements g of Z*. Let a be in © and (pa, Vi)
be the representation introduced in 7.4.5. Equip V,, with a (pa, 4, K.)-
good norm. Let V' := VXe be the dominant eigenline and let V" be
its A-stable complementary subspace. For any v # 0 in V,, writing
v =1 +v" with v/ € V' and v" in V", we have d(Kv,P (V")) = ||||z;/|||‘.

using Lemma

For g in Z* and n in Pe,, picking a vector v in V
7.17, one gets

7,,77

@ (k(g)) ©(a(g,m) — llpalg)vll
eXeltt9) = llpa(g)|| = exatrtom) = 2k

> M — 6xﬁ(ﬁ(g))M - exi.i(ff(g))d(va777 w.
0] V]l ’

Hence one has

Xa(r(g)) +logd(n, Qe4) < Xalo(g,n) < xa(k(g))-

Our lemma follows. O

12.6. Limit laws for the Cartan projection.

We can now extend the three limit laws to the Cartan
projection under the same assumptions as in Theorem
12.11.

THEOREM 12.17. (Limit laws for x(g)) Let G be an algebraic re-
ductive S-adic Lie group, F := G/G. and p be a Zariski dense Borel
probability measure on G with a finite exponential moment which is
aperiodic in F. One has the following asymptotic estimates for the
Cartan projection k : G — a.
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(1) Central limit theorem. For any bounded continuous function
on a,

St (M2 ) () — [q N,
where Ny, is the Gaussian law on a, whose covariance 2-tensor is ®,,.
(i) Law of the iterated logarithm. Let K, be the unit ball of ®,,.
For B-almost any b in B, the following set of cluster points is equal to
Ky

K(bp b)) — nau)
12.28 C =K,.
( ) ( v2nloglogn .

(17i) Large deviations. For any ty > 0, one has

(12.29) limsup " ({g € G | ||(g) — noy|| = nte})= < 1.

n—oo

The same argument below gives also a Central Limit Theorem for
k with target similar to (12.13). We leave the details to the reader.

PROOF. (i) Central limit estimate. By usual aproximation argu-
ments, it suffices to prove the result for compactly supported functions
on a. Let ¥ be such a function and 7 be in P.. According to Theorem
12.11, it is enough to prove that the following integral

(12.30) = [ oz — (= gy ()

converges to 0. Fix ¢ > 0. By uniform continuity of v, there ex-
ists 6 > 0 such that, for any v,w in a with |[v —w| < 0, one has
|Y(v) — Y(w)| < e. Since n belongs to P., by Theorem 9.9, for (-
almost any b in B, the sequence

llo(by -+ b1,m) — k(b - -+ b1)|| is bounded.
Hence, there exist M > 0 and ng > 1 such that, for all n > ny,
1w ({g € Gllo(g,n) — kgl = M}) <e.

Choosing n > max(ny, ]?—22) and cutting the integral I,, as the sum of
the integrals over this set and its complement, one gets

I, < 2¢||9)||eo + €.

This proves that I,, —— 0 as required.

n—oo

(74) The law of the iterated logarithm is proved in the same way.

(7i1) In what concerns the large deviations estimate, it is important
to notice that the following proof relies only on (12.16) and not on
(12.15) whose proof used (12.29).

By compactness, there exist € > 0 and 7y, ..., 7n, in Pg, . such that,
for any ¢ in Pey ., there exists 1 <14 < r with d(n;, Qo) > €. Thus,
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by Lemma 12.16 and as super, d(k(9), ae,) < oo, there exists M > 0
such that, for any g in I',, there exists 1 <1 <r with

(12.31) o6, (g,m) = K(g)]| < M.

Now, by Equation (12.16), for any ¢, > 0, there exist & > 0 and ng in
N such that, for any 1 <7 < r, for any n > ng, one has

pw"({g € G| HUGM(QJ%) - nauH > ntp}) <e .

Thus, for any n > max(nq, %), we get
p"({g € Gl llklg) = noull = 2nto}) < re™*".
The result follows. U

One also has the following control analogous to Lemma 12.15.

LEMMA 12.18. Same assumptions as in Theorem 12.11. There ex-
ists C' > 0 such that, for any n in N, for any g in the support of u*",
one has

(12.32) d(k(g)—noy,,a,) < C.

PROOF. Let v be the p-stationary probability measure on the par-
tial flag variety Peg,. According to Proposition 9.1, one can find points
M, ...,n- in the support S, of v such that Equation (12.31) is satis-
fied. Our statement then follows from Corollary 10.19 applied to the
Iwasawa cocycle og, and the points 7. U

12.7. The support of the covariance 2-tensor.

In order to complete this chapter, we give some precisions
on the linear span a, of the covariance 2-tensor ®,,.

Let G be an algebraic reductive S-adic Lie group. As in Section
8.4, for any s in S, we set bg to be the orthogonal in a4 of the subspace
of a spanned by the algebraic characters of the center of G5. We set
br to be this subspace b, when the local field is K, = R.

PROPOSITION 12.19. Let G be an algebraic reductive S-adic Lie
group and p be a Zariski dense Borel probability measure on G with a
finite exponential moment. Then the vector space a, contains bg.

In particular, when G is an algebraic semisimple real Lie group, one
has a, = a, that is the Gaussian law N, is non-degenerate.

This result is proved in Goldsheid Guivarc’h [55] when G is SL(n, R)
and in [60] when G is real semisimple.
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PROOF OF PROPOSITION 12.19. Recall, from Proposition 9.2, that
there exists a unique p-stationary Borel probability measure v on Pg,
and, from Lemma 9.3, that the support of v is Ar,.

By Lemmas 12.1 and 12.5, we know that the assumptions of Lemma
10.18 are satisfied. Therefore, by this lemma, there exists a Holder
continuous function ¢ : Peg, — a such that, for y ® v-almost any
(g.m) in G x Pg,, one has

ve,(9:1) = ¢o(n) + olgn) € ou + ay.
Since the function ¢ is continuous, by Lemma 9.3, we get, for any
n > 1, any g in Suppu™ NG, and 7 in Ar,,

e, (9,m) — ¢o(n) + Yolgn) € no, + ay.

In particular, when g is © ,-proximal and 7 = fgr, g this gives

(12.33) Ag) = 0e,(9,€6, ,) € noy +a,.

Now, by Proposition 8.8, the closed subgroup of a spanned by the ele-
ments A\(gh) — A(g) — A(h), when g, h and gh are Op-proximal elements
of I' contains bg. Combining this Proposition 8.8 with (12.33), one gets
the inclusion a, O br, which completes the proof. O

REMARK 12.20. From (12.33), one always has
AI') € Noy, + a,,.
By using the Central Limit Theorem 12.17 and elementary properties
of Zariski dense subsemigroups, one can prove that the subspace of a
spanned by (') is
(AMT)) =Roy, + a,.
12.8. A p-adic example.
The aim of this section is to construct an example where

the Gaussian law in the Central Limit Theorem does not
have full support.

EXAMPLE 12.21. Let G = SL(2,Q,) with p < co. There exists a
Zariski dense probability measure p on G with finite support such that
a, = 0 and I, is not bounded.

In other words, in this example, the Gaussian measure which ap-
pears in the Central Limit Theorem is a Dirac mass, whereas the set
A(T',) is not bounded.

PROOF. In this example we choose 1 = (0, + d,,) With

3(
0 1
(12.34) g1 = (]17 p_l) and gy = g p_l) .



212

The semigroup I' of G = SL(2,Q,) generated by ¢; and go is Zariski
dense and unbounded. Now, the flag manifold of SL(2,Q,) is the pro-
jective line P'(Q,). As usual, we identify P*(Q,) with Q, U {co} by
sending any = # oo to the line Q,(z,1) and oo to the line Q,(1,0).
Then, the action of g; and g, read as the homographies

»—>px+1p2x and z — p?z + p,

so that one has
0Z, C p*Z, and goZ, C p + p°Z,.

In particular, I" is the free semigroup with generators g; and gs. For g
in ', we denote by |g| its length as a word in g; and gs.

The limit set of I', which, by Lemma 9.3 is the support of the pu-
stationary probability measure, is contained in the closed I'-invariant
set Z,.

Let K. be the maximal compact subgroup SL(2,Z,) and A be the
group of diagonal matrices. Then the usual norm on @12) is good for the
standard representation. Identify a with R by setting

—1
P 0) _
w ( 0 p) = logp.
Then, by Lemma 7.17, for any ¢ in SL(2,Q,) and v # 0 in Qz, one has

lgvll

o(g, Qpv) = log Y
If g is g1 or g2 and v = (x,1) with = in Z,, this gives
o(g1,7) = 0(g2,7) = logp
and hence by the cocycle property, for g in T',
o(g,z) = |g|log p.
Therefore, for f-almost every b in B, for all x in S, and n > 1, one has
o(by---by,z) =nlogp

Hence this random sequence is deterministic with speed o, = logp and
one has a, = 0. 0

REMARK 12.22. Note that, in this example, one has goo0 = o0
and (g, 00) = —logp, so that, for any n, o(gy,00) = —nlogp =
—no,. This validates Remark 10.20. One could also easily give explicit
formulae for the functions o(gi,.) and o(gs,.) on Q, U {oo}.
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12.9. A non-connected example.

The aim of this section is to construct an enlightening
example of a probability measure p which illustrates the
asymptotic behavior of the random product when the
reductive group G is not connected, and, more precisely,
when one deals with irreducible representations that are
not strongly irreducible.

Over the field R, this example will be similar to the one in Remark
3.10 but with a semisimple group G. Over the field Q,, it will give the
example for Remark 3.19.

12.9.1. Construction of the example. Let G. = SL(3,K) and G be
the group generated by G, and an element s of order two such that,
for every g in G, sgs = tg~t. Let (p,V) be the 6-dimensional repre-
sentation of G' given by

(12.35) p(g) = (g tgo_1> and p(gs) = <tg0_1 g)

We decompose V' as a direct sum V = Vi @ V5 of irreducible represen-
tations of G,.

Let pu be a Zariski dense probability measure on G with a finite
exponential moment and (B, ) be the Bernoulli shift with alphabet
(G, 1)

12.9.2. Comparing various norms in Example (12.35). We claimed
in remarks 3.10 and 3.22 that, when K = R, for $-almost every b in B,

the set of cluster points in P(End(V)) of the sequence

(12.36) Rp(by, - - - b1) contains both rank 1 and rank 2 matrices,
llp(bn---b)lvy Il _ g lp(bnbi) vy ||
(1237)  SW i,z — o and il ity =0

PROOF OF CrLAIMS (12.36) AND (12.37). This statement follows from
the results that we proved in the preceding chapters. We introduced
the induced probability measure . on GG, and proved that it has an ex-
ponential moment (Corollary 4.6). We can only consider subsequences
associated to ., i.e. setting (B., (3.) for the Bernoulli space with alpha-
bet (G., i), we only have to prove that (12.36) and (12.37) are true
for B.-almost every b in B.. According to Proposition 3.7, all nonzero
limit point of sequences A,b, ---b; and X, tb-1---tb;! with A,, X, in
R, have rank one.

We introduce the sequences

Sui=10g by - bil| and S, :=log [b;" b
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We have to prove that, for f.-almost every b in B, the sequence S,, — S/,
does not go to 0o, is not bounded above and is not bounded below.

On the one hand, according to Theorem 9.9 the limits lim %Sn

and lim %S;L exist and are equal. Let v be the unique p-stationary

n—oo

probability measure on the flag variety P. of G.. According to Lemma
2.18, for # ® v-almost every (b,n) in B, X P., denoting by Rv and R f
the corresponding lines in R? and its dual space, the sequence

log ||by, - - - byv|| — log ||t - - - "oy L f|| does not go to oo.

By Theorem 3.28, this sequence remains at bounded distance of the
sequence S, — S, hence S,, — S, cannot go to oc.
On the other hand, according to the Law of the Iterated Logarithm

(Theorem 12.17) the upper limit lim sup % is finite and positive.

This proves that S,, — S, is not bounded above. Similarly the sequence
Sy, — S, is not bounded below. O

12.9.3. Stationary measures for Example (12.35). We note also that
in this example,

(12.38) when K = R there exists only one p-stationary
' probability on P(V).
when K = Q,, for suitable i, there exist infinitely

(12.39) many pi-stationary probability on P(V).

These claims (12.38) and (12.39) are special cases of more general
results in [13]. The second claim (12.39) was annonced in Remark 3.19.

SKETCH OF PROOF OF (12.38) AND (12.39). See [13] for more de-
tails.

Assume K = R. The only p-stationary probability on P(V) is
the one supported by P(V;) U P(V3). Indeed, there are no other pu-
stationary probability since, by the Central Limit Theorem, for every x
in P(V)~ (P(V1)UP(V3)) for every compact K C P(V)~ (P(V1)UP(V3))
one has lim p*" x §,(K) = 0.

Assume K = Q,. Let ey = (1,0,0) € V; and e; = (0,0,1) € Va.
One can construct a probability measure p on G such that, for every
integer ¢ > 1 the compact sets

i, = JT=K,vs) € P(V) | vz = pfluall,
7 d(Roy, Key) < p710) d(Kug, Key) < p 10

are invariant by the semigroup I',. Hence each of these compact sets
supports at least one p-stationary probability. U
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12.9.4. The Central Limit Theorem for Example (12.35). The as-
sumption of “strong irreducibility” in the Central Limit Theorem 0.7
cannot be weakened to an “irreducibility” assumption. Indeed, let o,
be the first Lyapunov exponent of pu. One can check that, the laws
of the above sequence &l (b”'\;gl)”_m“
Gaussian but which is the maximum of two independent Gaussian laws
(see [18, Ex. 4.15] for details).

converge to a law which is not

13. Regularity of the stationary measure

In this chapter, we prove a Holder regularity property for stationary
measures due to Guivarc’h [58]. We use a different method inspired by
[26]. We will use this method all over this chapter.

We will first prove the Law of Large Numbers for the coefficients
and for the spectral radius in Sections 13.4 and 13.5.

We will then give a new formula for the variance of the limit Gauss-
ian Law in Section 13.6.

We will also prove the CLT, LIL and GDP for the norm of matrices,
the norm of vectors, the coefficients and the spectral radius in sections
13.7, 13.8 and 13.9.

13.1. Regularity on the projective space.

We first prove a Holder regularity property for stationary
measures on projective spaces.

We recall quickly the notations from section 3.1. Let K be a local
field and V' be a finite dimensional K-vector space endowed with a good
norm. This means that we fix a basis ey, ..., eq of V and the following
norm on V. For v = Y v;e; € V one has [[v||*> = > |v;]? when K is
archimedean and |[v|| = max(|v;|) when K is non-archimedean. We
denote by €], ..., e} the dual basis of VV* and we use the same symbol
||.|| for the norms induced on V*, End(V), A?V, etc. We equip P (V)
with the distance d given, for x = Kv, 2/ = K¢’ in P(V), by

AV |
d(z, ') = leavll
( ’ ) [lof[lv"]]

For z = Kv in P(V) and y = Kf in P(V*), we set y= = P(Ker f) C
P(V) and

(13.1) 5(x,y) = i

This quantity is also equal to the distance
0(x,y) = d(z,y") = min d(z,2’)

z'eyt

in P(V) and to the distance d(y, zt) in P(V*).



216

THEOREM 13.1. Let pu be a Borel probability measure on G =
GL(V) with a finite exponential moment and such that '), is proxi-
mal and strongly irreducible. Let v be the unique p-stationary Borel
probability measure on X =P (V). Then, there exists t > 0 such that

(13.2) SUp,cp(vey [y 0(2,y) " dv(z) < oco.

In particular, there exists C' > 0 and t > 0 such that, for any z in
P(V) and r > 0, one has

(13.3) v(B(z,r)) < Crt.

A positive measure v satisfying this condition (13.3) is sometimes called
a Frostman measure.

As usual, we introduce the group K of isometries of (V,||.||), and
the semigroup

= {diag(a,...,aq) | |a1| > -+ > |ag|}

(where, by a diagonal endomorphism, we mean an endomorphism that

is diagonal in the basis ey, ..., e4). For every element g in GL(V), we
choose a decomposition
(13.4) g = kgagl,

with kg, ¢, in K and a, in AT. We denote by x € P(V) the density
point of g, that is

= Kkgeq,

and by y;* € P(V*) the density point of g, that is
Yy = K%e;.
We denote by 71.2(g) the gap of g, that is

| A% gl
71,2(9) =T
gll?

The proof of Theorem 13.1 relies on the following Lemma 13.2 and
Proposition 13.3. This Proposition 13.3 will be even more useful in the
applications than Theorem 13.1.

LEMMA 13.2. Let K be a local field and V = K¢. For every g in
GL(V), 2 =Kv in P(V) and y = Kf in P(V*), one has

(i) o(x, Yy 0 < Hgﬁmu o(z, y;n) +71,2(9)
(4) 6(x Ty 79) |||| |ﬁ\f||| o(z Ty 79) + 71,2(9)
(ii1) d(gz,z}") (2, y5") < 1.2(9)-
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PRroOF. For all these inequalities, we can assume that g belongs to
At ie. g = diag(aq,. .., aq) with |ai| > -+ > |ag|. We write v = v1+vq
with v; in Ke; and vy in Kere}. One has then

lgll = lasl . male) = 21, and d(a,yp) = L2l

(2) follows from [|g|[ [|o1]| < llgvll < [|g]l [[v1]] 4 laz] [[va]]-
(11) follows from () by replacing V' by V* and g by 'g.

(i11) follows from d(gx, x)) 6(x,y)") = ””*‘;;2”” ””1;1”” < % O

Let 0, = (A, -+, Ag) € R? be the Lyapunov vector of p given by
the Law of Large Numbers for reductive groups (Theorem 9.9). Since
'), is proximal, according to Corollary 9.15, one has

)\1 > )\2.

PROPOSITION 13.3. Let p be a Borel probability measure on G =
GL(V) with a finite exponential moment and such that I, is prozimal
and strongly irreducible. For any € > 0, there exists ¢ > 0 and ng € N
such that, for n > ng, x in P(V) and y in P(V*), one has

(13.5) p"{g € G|z, y,) >e ) 21—,
(13.6) pm({g € G| d(ga,al) <emPimreman}y > emen,
(13.7) w{g e Glo(x) y) = e} =1 —e ",
(13.8) p"({geG|o(gr,y) >e "} >1—e

PROOF. We can assume ¢ < 3(A; — A2). According to the large
deviations principles for the Iwasawa cocycle (Theorem 12.11) and for
the Cartan projection (Theorem 12.17), there exist ¢ > 0 and ng € N
such that, for n > ng, * = Kv in P(V) and y = Kf in P(V*) with
llvll = |If|l = 1, there exists a subset G,, ., C G with

#*W(Gn7x7y) Z 1 _ e—cn’
such that for g in G, ,,, the four quantities
‘/\1 _ log|lg|l

t
A — M )\1_)\2_logm,2(g)

n

log ||gv]|
[ - vt

9 )

are bounded by ¢. We will check that, provided ng is large enough, for
any g in G, 5, one has

6(x7y;n> > e " ; d(gx, xé\/l) < 67(/\17’\2*5)” ,

5(m§/1,y) >e " and (gz,y) > e .
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We first notice that, according to Lemma 13.2.7, one has
Bz, y) > ein — i
hence, if ng is large enough,
(13.9) o(z,yy") > e 2",

This proves (13.5).
Now, using Lemma 13.2.777 one gets, for ny large enough,

(1310) d(g;p)xg/[) < 6—(>\1—)\2—§)n6§n < 6—()\1_)\2_5)71‘

This proves (13.6).
Applying the same argument as above to ‘g acting on P(V*), In-
equality (13.9) becomes

(13.11) S(x) y) > e 2

This proves (13.7).
Hence, combining (13.11) with (13.10), one gets, for ng large enough,

§(gz,y) > 6(x) y) — d(gz, z)")

> e3" 67(/\17/\276)71 > een.
This proves (13.8). O

ProoOF OoF THEOREM 13.1. We choose ¢, ¢, ng as in Proposition
13.3. We first check that, for n > ng and y in P(V*), one has

(13.12) v{r e X |d(x,y) >e"}) >1—e "
Indeed, since v = p*" * v, by using (13.8) one computes

v({reX[(z,y) = e7"}) = [ ({9 €Glo(gz,y) = e"}) dv(z)

> [((I—e ) dv(z) =1—e"
Then, choosing ¢ < ¢ and cutting the integral (13.2) along the subsets
Ay ={z e X e < §(x,y) < e},
one gets the upperbound
S 0(z,y) T du(x) < efesmo 437 ety (A, )

< eteno + Zn>n0 etse—(c—ts)n < 0.

This proves (13.2). O
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13.2. Regularity on the flag variety.

In this section, we deduce from Theorem 13.1 a Hoélder
regularity property for the stationary measure on the flag
variety.
Let G be an algebraic reductive S-adic Lie group. Let © be a
subset of the set of simple restricted roots II. Recall that we defined

a G equivariant embedding (7.26) using the family of representations
V,, defined in section 7.4.5

P@,c - H P (Va> y = (Va,n)ae@‘

a€c®

In the same way, one has a G .-equivariant embedding

POV,C - H P (V;) 11— (Voin)ae@-

a€c®

For any 7 in Pg . and ¢ in Pev ., we set
(13.13) d(n,¢) = mln (Ve Vare)-

One has then the equivalence, using Notation (12.27),
6(n,¢) =0<+=n¢€ Qo

Let p be a Zariski dense Borel probability measure on G. From Propo-
sition 9.1, we know that there exists a unique p-stationary Borel prob-
ability measure v on Pe,. and that, for any ¢ in P@L/,m one has
v(Qo¢) = 0. We deduce from Theorem 13.1 the following

THEOREM 13.4. Let G be an algebraic reductive S-adic Lie group
and p be a Zariski dense Borel probability measure on G with a finite
exponential moment.

Let v be the unique p-stationary Borel probability measure on Pe, .
There exists t > 0 such that

SUP¢ep,, . fP@M §(n,¢)~tdv(n) < co.

PROOF. Let p. be the measure induced by p on the finite index
subgroup G. of GG defined in section 7.23. From Lemma 4.7, we know
that v is p.-stationary and, from Lemma 9.8, that u. has a finite ex-
ponential moment. Hence, the proof of Theorem 13.4 is reduced to the
case where G = G..

Then, we just notice that, for ¢ > 0, n € Pg and ¢ € Pgv, one has

)Y 6 (Vo Vi)™

ac®



220

Since V, is a strongly irreducible proximal representation of I',, our
claim follows from Theorem 13.1. ]

13.3. Regularity on the Grassmann variety.

In this section, we deduce from Theorem 13.1 a Hoélder
regularity property for the stationary measure on the
limit set A} in the Grassmann variety G, (V) where r
is the proximal dimension of I.

We will use the notations of Lemma 3.38.

THEOREM 13.5. Let K be a local field and V = K®. Let i be a Borel
probability measure on GL(V') such that u has a finite exponential mo-
ment and I' := T', is strongly irreducible. Let r > 1 be the proximal
dimension of I' in' V' and v, be the unique u-stationary probability mea-
sure on the limit set AL in the Grassmann variety G, (V). Then, there
exists t > 0 such that

(13.14) SUp,cp(vey Jx d(z,9) 7" du(2) < oo.
Here, the “distance” d(z,y) is defined as the maximum
(13.15) d(z,y) = max,e. 0(z,y)

where 0(z,y) is as in (13.1).

The bound (13.14) does not depend on the choice of the norm on
V. Hence we may assume that the norm on V' is good i.e. it is an
Euclidean norm when K is archimedean and a sup-norm when K is
non-archimedean. We assume also that V* and A"V are endowed with
compatible good norms. Now there are two others equivalent defini-
tions for the quantity (13.15).

First, let z*+ be the subspace z*+ := {y = Rf’ such that f'|, = 0}
orthogonal to z in P(V*). One has the equality

(13.16) d(z,y) = d(y,z") == minge.. d(y,y)

Second, let i, : G,.(V) — P(A"V) be the natural embedding. For
any hyperplane y € P(V*) we denote by vy, the subspace y, := P(A"y)
of P(A"V'). One has the equality

(13.17) d(z,y) = d(i,(2),yr) == min,¢,, d(i,(2),2")
The proofs of (13.16) and (13.17) are left to the reader. Note that

if the norms are not assumed to be good, the equalities (13.16) and
(13.17) are true only up to a uniformly bounded multiplicative factor.

PROOF OF THEOREM 13.5. According to Lemma 3.36, there ex-
ists a strongly irreducible and proximal representation p’ : I' — GL(V/),
in a K-vector space V! and a I'-equivariant embedding i/ : A}. — P(V)).
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This representation is constructed as a quotient V! = V,. /U, where V,
and U, are I'-invariant subspaces of A"V and the embedding i/ is in-
duced by the natural I'-equivariant embedding i, : A} — P(A"V) whose
image is included in P(V;) and does not meet P(U,.) (see Lemma 3.36).

Since I' acts irreducibly on V, the subspace y, never contains P(V}.)
and is never included in P(U,). Hence it defines a non-trivial proper
subspace y. of P(V/). Using (13.17), for any z in A}, one gets the
bound

(13.18) d(iy(2), 4,) < d(in(2), ) = d(2,9).
The image of v, by i/ is the unique u-stationary probability measure

on P(V). The bound (13.14) follows from (13.18) and from the bound
(13.2) applied to this representation V. O

Using the same method we can also prove the following Proposition
13.6.

PROPOSITION 13.6. Let K be a local field and V = K9. Let ju be a
Borel probability measure on GL(V') with a finite exponential moment
and such that T, is strongly irreducible. For any € > 0, there exist
¢ >0 and ng € N such that, for alln > ng and v in V . {0}, one has

(13.19) w"{g € G| >e ™) >1—e "

lgvll
lglloll

REMARK 13.7. When I',, is proximal, we obtained a formula similar
to (13.19) in the the proof of Proposition 13.3 as a consequence of the
Large Deviation Principle for the Iwasawa cocycle. When I';, is not
assumed to be proximal, we will first prove Formula (13.19) and we
will use it in the proof of the Large Deviation Principle for the norm
cocycle in Theorem 13.19.

Before to start the proof of Proposition 13.6, we need a few no-
tations. Fix 1 < r < d. Let eq,...,eq be the standard basis of
V = K¢ For every element g in GL(V), we fix a Cartan decompo-
sition g = kgagly as in (13.4). We set z)" € G, (V) to be the density
r-dimensional subspace of g

(13.20) 20t =ky(Key @ - - @ Ke,)

ie. zéw is the r-dimensional subspace given by the density point of A"g.
Similarly, we set z* € G4.(V) to be the density (d—r)-dimensional
subspace of tg

(13.21) 2 =0 (Kepyy & - - - & Keg)

i.e. 2 is the (d—r)-dimensional subspace of V orthogonal to the density

r-dimensional subspace z,f‘; of tg in V*. Once r is fixed, these density
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subspaces zé” and z;" are uniquely defined when the r®_singular value
kr(g) is larger than k,.1(g). In general they depend on the choice of
the decomposition (13.4).

PROOF OF PROPOSITION 13.6. This follows from Lemma 13.8.b)

below where 7 is the proximal dimension of I', and from Proposition

x1(g)
kr(g)

13.9.b). Note that, by Lemma 9.16, the ratios of singular values
for g in I',,, are uniformly bounded.

We used the following lemma which is a variation of Lemma 13.2.

LEMMA 13.8. Let K be a local field, V = K? and x = Kv be a point
in P(V). Fiz 1 <r <d and let ¢ > 0 and g be an element of GL(V).
a) Assume that the r first singular values are equal k1(g) = ... = K.(g).
Then one has the inequality
(13.22) lovl > d(, 2m).

lglllll

b) More generally, assuming that k.(g) > co k1(g), one has
(13.23) ool > ¢y d(x, 2).

lglloll

PrRoOOF OoF LEMMA 13.8. Same proof as for Lemma 13.2. 0

We also used the following proposition 13.9 which is a variation of
Proposition 13.3.

PROPOSITION 13.9. Let K be a local field and V = K?. Let ju be a
Borel probability measure on GL(V') with a finite exponential moment
such that T, 1s strongly irreducible. Let r be the proximal dimension
of I'y. For any € > 0, there exist ¢ > 0 and ny € N satisfying the
following.

a) For alln > ng and y in P(V*), one has

(13.24) pr{ge G| d(z)y) > e ™)) > 1 —e
b) For alln > ng and x in P(V'), one has
(13.25) pwr{ge G| dx,z)) > e ™) > 1—e

PROOF OF PROPOSITION 13.9. a) We recall that the distance d(z, y)
has been defined in (13.15). According to (13.18) and its notations, one
has the inequality d(z)",y) > d(i;(z})"), y»). Since the point i;(z)") is
the density point of p'(g) in the proximal representation V., our asser-
tion follows from (13.7).

b) This follows from a) applied to the dual representation and from

(13.16). O
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13.4. Law of Large Numbers for the coefficients.

We use the regularity properties of the Furstenberg mea-
sure from Section 13.1 to prove the Law of Large Num-
bers for the coefficients.

Let K be alocal field, V = K? and i be a Borel probability measure
on GL(V). We recall that T', is the closed subsemigroup of GL(V)
spanned by the support of yu and that B := {b = (by,...,b,,...)} =T
is the Bernoulli space endowed with the Bernoulli probability measure
B := u®N". We fix a norm ||.|| on V. We recall that the limit

.1 “n
(13.26) A=Ay, = lim ﬁ/ log |lg|| dp™" (g)
n—oo G
exists and is called the first Lyapunov exponent of .

THEOREM 13.10. Let K be a local field, V = K<, and j be a Borel
probability measure on GL(V') such that u has a finite exponential mo-
ment and that I',, is proximal and strongly irreducible. For v in V~{0},
[ in V* A0}, for B-almost all b in B, one has

(13.27) Jlrgoilog|f(bn---b1v)y = A,
(13.28) nli_)rgoilog]f(bl---bnv)] = A\
(13.29) T}Lrgoilognbl---bnvn = A

Moreover these sequences converge in L*(B, (3).

It is plausible that the assumption that I', is proximal in Theo-
rem 13.10 can be weakened into the assumption that, I', is absolutely
strongly irreducible i.e. that, for any field extension . D K, the action
of I', in L is still strongly irreducible. It is also plausible that the
finite exponential moment assumption can be weakened into a finite
first moment assumption.

The main new difficulty when one compares statement (13.27) with
the Law of Large Numbers for the norm (0.14) is that one has to control
the relative position of the vector b, - - - byv and of the hyperplane Ker f.
This is done in the following Lemma which will also be useful in Section
13.8. We recall the notation 8(x,y) = LWL as in (13.1), when z =

IR
Kv € P(V) and y = Kf € P(V*).

LEMMA 13.11. Let K be a local field, V = K%, and p be a Borel
probability measure on GL(V') such that u has a finite exponential mo-
ment and that T, is prozimal and strongly irreducible.
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For all e > 0, there exists ¢ > 0, £y > 0 such that for alln > € > {,,
one has, for all x in P(V'), y in P(V*),

(1330)  w"({geCG|d(gr,y) >e™}) > 1—e

PrROOF OF LEMMA 13.11. When n = ¢, this is (13.8) in Proposi-
tion 13.3. Since

1" ({g | 6(gz,y) = e =}) = /G 1w ({g | 6(ghz,y) > e }) dp "9 (h),
the case n > ¢ follows. O

PRrROOF OF THEOREM 13.10. Write z = Kv and y = Kf. Accord-
ing to the Law of Large Numbers in Theorem 3.28.b, for S-almost all b
in B, one has
(13.31) lim 1log lnbiell — y,

n—00 [[ll

According to Lemma 13.11 with n = ¢, there exists ¢ > 0 and ¢, € N
such that, for n > ¢y, one has

BHbe B| (b, -bix,y) <e "} <e .
Hence, by Borel-Cantelli lemma, for S-almost all b in B, one has

liminf Llogd (b, ---biz,y) > —e, ie.

n—oo

] by, - - blv)’
lim 1log Bl =0.
n—oo ™ | f[[[bg - - - byv]]
Combined with (13.31), this proves (13.27).
One deduces (13.28) from (13.27) by exchanging the roles of V' and
V.
Finally, according to Lemma 3.27, for S-almost all b in B, one also

has

Tim Llog [br -+ bl = A

One deduces (13.29) from (13.28), and from the above limit since one
has the lower and upper bounds :

£y ba0)| < (LFIHL - bnoll < (L £IHIB1 - < ball ]l

The convergence in L'(B, 3) follows from the almost sure conver-
gence and from Lemma 1.2, since the three sequences in (13.27), (13.28)
and (13.29) are uniformly integrable. Indeed they are bounded above
by the sequence + >, ;. log||b;|| which converges in L*(B, ) accord-
ing to the classical Law of Large Numbers in Theorem 1.5. O
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13.5. Law of Large Numbers for the spectral radius.

We now prove the Law of Large Numbers for the spectral
radius. As in Section 13.4, this relies on the regularity
properties of the Furstenberg measure from Section 13.1.

We recall that K is a local field, that V = K%, that A\;(g) denotes
the spectral radius of an element ¢ in GL(V') and that A, , denotes the
first Lyapunov exponent of a probability measure p on GL(V).

THEOREM 13.12. Let K be a local field and V = K9. Let p be a
Borel probability measure on GL(V') such that p has a finite exponential
moment and that I, is strongly irreducible. For [3-almost all b in B,
one has

(13.32) lim LlogAi(by---b1) = Aip.
Moreover this sequence converges in L*(B, [3).

When I', is proximal, the main new difficulty when one compares
statement (13.32) with the Law of Large Numbers for the coefficients
(13.27) is that one has to ensure that b, - - - by is proximal and to control
the relative position of the attractive fixed point x,j;_.bl and of the
repulsing hyperplane y,> _, . This is done in the proof of the following
Lemma.

LEMMA 13.13. Let K be a local field and V = K. Let u be a
Borel probability measure on GL(V') such that u has a finite exponential
moment and that I, is strongly irreducible. Then for all € > 0, there
exist ¢ > 0 and by > 1 such that for alln > ¢ > {y, one has

(13.33) w{g € G| (9) >e ) > 1—e

gl
and, when I, is proximal,

(13.34) w"({g € G|g isprozimal }) > 1—e .

In this section we will only need Lemma 13.13 with n = ¢. This
more general formulation with n > ¢ will be needed in Section 13.9.

We will say that a property P,(¢,b) is true except on an expo-
nentially small set if there exist ¢ > 0 and ¢y > 1 such that, for all
n > { >y, one has

(13.35) B({b€ B | P,({,b) is true}) > 1—e .

Proor or LEMMA 13.13. Let r be the proximal dimension of I',,.
According to Lemma 3.36, there exists a proximal and strongly irre-
ducible representation p’ of I, in a vector space V! such that, for all
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g in I';, one has Ai(p(g)) = M(9)" and ||p(9)|| < ||g]|". Hence with no
loss of generality, one can assume I', to be proximal.
We want to prove that, for all € > 0, the property

Mbn---b1) o o

(13.36) by ---by is proximal and > e
(AR

is true except on an exponentially small set.

We keep the notations d(z, z'), 0(z,y), =)', 4", 112(g) from Section
13.1. We fix zp in P(V), yo in P(V*) and a very small € > 0 to be
determined later.

We first notice that, by the Large Deviation Principle in Theorem
12.17, the following property (13.37) is true except on an exponentially
small set :

(1337) 71,2<bn - bl) < @_(AL#_)‘Q,M_S)Z’

where Ay, and Ay, are the two first Lyapunov exponents of u. Since
I',, is proximal, according to Corollary 9.15, one has A\; > X,.

We claim now that the following property (13.38) is true except on
an exponentially small set :

(13.38) 5(55{,\:...1,1,917,2...1,1) > 6—567

Here is a rough sketch of the proof of (13.38): we decompose the
product g = b,---by as g = gog1 With g = by -+ b941 and g1 =
bns2) - - b1, where [n/2] denotes the floor integer of n/2. We want
to check that the density point xé‘ggl is not too close to the density
hyperplane yg' . We will check successively that the density points
)l and ) are very lose (this will be Equations (13.39) and (13.40)),
that the density hyperplanes y;7  and yg! are very close (this will be
Equations (13.41) and (13.42)), and that the density point x}! is not
too close to the density hyperplane y7" (this will be Equations (13.43)).
This last assertion is easier to check than the claim (13.38) since xé‘f
and y,' are independant variables.

Now, here is the precise proof of (13.38). Applying twice Equation
(13.6), the following properties (13.39) and (13.40) are true except on
an exponentially small set :

(1339) d(‘rl];\g---bp bn e bﬂo) < e*(>\1,;47)\2,u76)£7
(13.40) d(ngn_b[n/zm, by bizg) < e Crumaumo2,
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By the same arguments in the dual space V*, the following properties
(13.41) and (13.42) are true except on an exponentially small set :

(13.41) Ay, by br)yy) < e Prumdzu—a)l,
(13.42) d(yg[%m]mbl (b b)ye) < emPrnmrenmot2

According to Equation (13.7), the following property (13.43) is also
true except on an exponentially small set :

(13.43) Sz i ) =€

br-blp 2417

These five equations imply our claim (13.38).
Finally, when e is small enough, the two assertions (13.37) and
(13.38) imply (13.34) and (13.33) because of Lemma 13.14 below. [

When g is a proximal element in GL(V'), we will denote as in Sec-
tion 3.1, by x] the attractive fixed point of g in P(V) and by y; the
attractive fixed point of 'g in P(V*).

LEMMA 13.14. Let K be a local field and V = K®. Let g € GL(V).
Set 0 = y1,2(9) and & = 6(x),y7") /2. Assume that vo < 65. Then g
18 prorimal and one has

(13.44) d(xg,ay') <3, dy;,yy) < 3 and
(13.45) ! 2 %o

PrROOF OF LEMMA 13.14. For r > 0, let
M.\ ._ M
b, (r):={zeP(V)| d(a:,:cg ) <r},
By (r) :=={z e P(V) | 6(z,yg") = 1}.

By definition, one has b} (dy) C Bj*(dy). Moreover, using the decompo-
sition (13.4), one checks that, for any x = Kv and 2’ = Ko’ in By*(do),

the images g= and gz’ belong to b))’ (32), one has
llgvll

(13.46) TallTo = %0 and

(13.47) d(gz, gz') < 40052 d(x,2)

(the distance estimate (13.47) relies on the norm estimate (13.46) and
the definition of the distance (12.1)).

The contraction property (13.47) implies that g has an attractive
fixed point x; in the ball ngw (g—g) Arguing in the same way with the
action on P(V*), this proves (13.44). The norm estimate (13.46) then
implies the lower bound (13.45) for the spectral radius. O
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PROOF OF THEOREM 13.12. According to the Law of Large Num-
bers in Theorem 3.28.a, for -almost all b in B, one has

i Hog b+ bi| = A

Using Lemma 13.13 with n = ¢ and using Borel-Cantelli Lemma, one
also has, for -almost all b in B,

: A1(bn - -+ b1)
lim Llog ——"—=2 = 0.
e TR
The limit (13.32) is a direct consequence of these two equalities.

The convergence of the sequence (13.32) in L'(B, 3) follows from
Lemma 1.2. Indeed this sequence is uniformly integrable since it is
dominated by the sequence £ >, . log ||b;|| which converges in L'(B, 3).

o O

We give now a reformulation of Theorem 13.12 in the language of
reductive groups. We use the notations of Sections 9.4 and 12.4.

THEOREM 13.15. (Law of Large Numbers for the Jordan projec-
tion) Let G be a connected algebraic reductive S-adic Lie group, A :
G — at be the Jordan projection, and j be a Zariski dense Borel prob-
ability measure on G with a finite exponential moment. Let o, be the
Lyapunov vector of u. For B-almost all b in B, one has

(13.48) lim IX(b, b)) = o
Moreover this sequence converges in L'(B, (3, a).

PROOF OF THEOREM 13.15. Let (V, p) be an irreducible represen-
tation of G and x be its highest weight. According to Lemma 7.17, one
has the equality, for all g in G, logA1(p(g9)) = x“(A(g)). Hence, by
Theorem 13.12 and Corollary 9.12, for S-almost all b in B, one has

(13.49) T SO b)) = (),

By Lemma 7.15, the dual space a* is spanned by the highest weights
x“ of the irreducible representations of GG. This proves (13.48). U

13.6. A formula for the variance.

In this section, we give a formula for the variance of the
limit Gaussian law in the Central Limit Theorem.

We give first the formula for the variance in the language of matrices
as it will occur in the Central Limit Theorem 13.18.
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PROPOSITION 13.16. Let K be a local field and V = K®. Let p be
a Borel probability measure on GL(V') such that u has a finite expo-
nential moment and that I, is strongly irreducible. Let A, be its first
Lyapunov exponent. Then the following limit exists

(13.50) Py, = lim - / (log|lgll = nAs.)?du™(g) .
n—oo G

Moreover, when T, is prozimal, the norm cocycle (g, Kv) — log % on
G x P(V) is special and its covariance 2-tensor (2.17) is equal to ®q .

The main difference between Formula (13.50) and Formula (2.17)

applied to the norm cocycle is that the quantity log ””gvv”” has been re-

placed by log ||g||. The key point in the proof of Proposition 13.16 is
to dominate the L?-norm of the difference of these two quantities.

PROOF OF PROPOSITION 13.16. Using Lemma 3.36, one can as-
sume I', to be proximal. The fact that the norm cocycle (3.10) on
G x P(V) is special follows from Proposition 10.15 applied with F' =
{1}. Indeed, the contraction assumption can be checked as in Lemma
12.5, and the moment assumptions (10.14) and (10.15) can be checked
as in Corollary 12.4.

Let dx be a Borel probability measure on P(V') that is invariant
under a maximal compact subgroup of GL(V'). We introduce the fol-
lowing integrals

I, = / (log lgll — 1 M) d™(g)

Iy = / (log % —nA ) dp(g) dz
GxP(V)
where x = Ku sits in P(V). Since I';, is proximal, Proposition 3.7 and
Theorem 2.13 imply that, the limit

®,, = lim %Jn

n—oo

exists. On the other hand, using Lemma 13.2.7 and Minkowski inequal-
ity, one has the bound

(\/I_n — Jn)2 < (log ||Hﬂﬁﬂ”)2 d/[m(g) dx
GxP(V) g

< [ ogblep)dn (o) ds
GxP(V)

< C:= sup / (log 6(z,y))*dz .
yeP(V*) JP(V)
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Since the function ¢ — (log |¢])? is locally integrable on K, this constant
C which does not depend on p is finite. In particular, one has

1, — T, < (VC+2V/J,)VC =0(v/n)
and lim 17, = ;. O

n—oo
We give now the formula for the variance in the language of reduc-
tive groups. We use the notations of Sections 9.4 and 12.4.

PRrROPOSITION 13.17. Let G be a connected algebraic reductive S-
adic Lie group, k : G — a*t be the Cartan projection, and u be a Zariski
dense Borel probability measure on G with a finite exponential moment.
Let o, be the Lyapunov vector of . Then the variance ®, € S*(a) of
the Gaussian law in the Central Limit Theorem 12.11 is given by

.1 *n
(13.51) ¢, := lim - (k(g) —na,)?dp™(g) .
n—oo G
PROOF OF PROPOSITION 13.17. Let (V, p) be an irreducible rep-
resentation of G and x be its highest weight. According to Lemma
7.17, one has the equality, for all g in G, log ||p(g)|| = x*“(k(g)). Hence,
by Corollary 9.12 and Proposition 13.16, the limit

1
Jim =) (¢ (s(9)) - nx“(o,))* dp™ (g)
exists and is the variance of the gaussian law for the central limit
theorem for the variables log ||p(b,, - --b1)||. Hence this limit is equal
to ®,(x*) where the covariance tensor ®,, is seen as a quadratic form
on a*. According to Lemma 7.15, the space S%a* is spanned by the
square (x*)? of the highest weights of the irreducible representations
of G. This proves (13.51). O

13.7. Limit laws for the norms.

We give now corollaries of the limit laws stated in The-
orems 12.11 and 12.17. These corollaries are concrete
formulations of the limit laws as in Introduction 0.5. We
quote them here over any local field, allowing as always
positive characteristic.

For & > 0, we denote by Ng the centered Gaussian probability
measure on R with variance ®. i.e.

t2
(13.52) Ny = ——=e 22dt when ® >0,

Ng = 0 when & = 0.
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Let K be a local field and V = K% Let u be a Borel probability
measure on GL(V). We fix a norm ||.|| on V. We recall that T, is
the closed subsemigroup of G spanned by the support of u and that
B = FE‘* is the Bernoulli space endowed with the Bernoulli probability
measure 3 := u®V.

We recall that the limit A; , := r}LHOIO% [ log ||g|| du*(g) exists and
is called the first Lyapunov exponent of p. We recall also from (13.50)
that the limit @, := nh_}n(f}o% Jo(og gl = n A1 ,)? dp*(g) exists when

'), is strongly proximal.

THEOREM 13.18. (Limit laws for log||g||) Let K be a local field and
V =K< Let u be a Borel probability measure on GL(V') with a finite
exponential moment such that I',, is strongly irreducible.
(1) Central limit theorem. For any bounded continuous function 1
on R, one has

Jow (BEleldse ) qpen(g) —— [, v NG,

n—oo

(17) Law of the iterated logarithm. For (5-almost all b in B, the
set of cluster points of the sequence

log ||by, - - - b1 || — nA1,

v2nloglogn
is equal to the interval [—+/®1 1, /P14

(17i) Large deviations. For any ty > 0, one has

. *n 1
limsup ™ ({g € G| [log||g| — nAi,l > nto})» < 1.

Moreover, when I, is an unbounded subsemigroup of SL(V') and
when K =R, one has A\, > 0 and &, > 0.

The assumption that I', is strongly irreducible is crucial in Theorem
13.18 as we explained in Example 12.9.4.

PROOF. These statements do not depend on the choice of the norm
on V. Hence we can assume that this norm is good and we can use
Lemma 7.17. The statements follow then from Theorem 12.17, and,
for the last statement, from Corollary 3.32 and Proposition 12.19. [

THEOREM 13.19. (Limit laws for log||gv||) Let K be a local field
and V =K% Let u be a Borel probability measure on GL(K?) with a
finite exponential moment such that I, is strongly irreducible. Let v in

VvV~ {0}.
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(1) Central limit theorem. For any bounded continuous function
on R, one has

Jo o (Bl qpen(g) — [ 4 dNG,,

n—oo

(1) Law of the iterated logarithm. For -almost all b in B, the
set of cluster points of the sequence

log ||y, - - - byv|| — nAq,
v2nloglogn
is equal to the interval [—+/P1 1, /P14

(17i) Large deviations. For any ty > 0, one has

. » 1
limsup ™ ({g € G| |log |lgv|| — nA1,| > nto})» < 1
n—oo
When I',, is proximal this Theorem 13.19 may be seen as a direct
consequence of the general Limit Laws in Theorem 11.1 for a cocycle
over a p-contracting action. The main issue in the proof is to explain
how to get rid of the proximality assumption.

PrROOF OF THEOREM 13.19. These statements can be deduced from
those in Theorem 13.18.

For (i) and (i7), this follows from Proposition 3.21.

For (ii7), this follows from Proposition 13.6. O

13.8. Limit laws for the coefficients.
We explain how to deduce the Central Limit Theorem,
Law of Iterated Logarithms and Large Deviation Prin-
ciple for the coefficients from the analog results for the
norms.

We keep the notations Ay, ®1,, Ng, , from Section 13.7.

THEOREM 13.20. (Limit laws for log | f(gv)|) Let K be a local field,
V = K% and p be a Borel probability measure on GL(V') such that
Iy, is prozimal and strongly irreducible and p has a finite exponential
moment. Let v in V {0} and f in V* \ {0}.
(1) Central limit theorem. For any bounded continuous function 1)
on R, one has

[0 (bg\f(gv—n—mlu) dp™(g) mwaqu’l“
(1) Law of the iterated logarithm. For $-almost all b in B, the
set of cluster points of the sequence
log | (b - byv)| = mhu,
v2nloglogn
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is equal to the interval [—+/P1 1, /P14

(17i) Large deviations. For any ty > 0, one has

(1353)  limsupu™({g € G| ||f(g0)| = nhiul > nto})® < 1

It is plausible that the assumption that I', is proximal in Theo-
rem 13.20 can be weakened into the assumption that I',, is absolutely
strongly irreducible.

PRrROOF OF THEOREM 13.20. We deduce these statements from The-
orem 13.19 and Lemma 13.11.
For (i) we apply Lemma 13.11 with ¢ = [\/n], and we obtain

1" ({g € G |log iy < —ev/n}) —— 0.
Hence the random variables 1°g||b”"'f}%||_"’\l’“ and log‘f(b”"j%v)|_ml"‘ have

the same limit in law.
For (ii), we apply Lemma 13.11 with ¢ = [y/nloglogn], and we

obtain
Zu {gGG\log‘ < —ey/nloglogn}) < oo,

n>1

and we apply Borel Cantelli Lemma.
For (iii) we apply Lemma 13.11 with ¢ = n, and we obtain

u"({g € G | log iy < —en}) < e

This proves (13.53). O

13.9. Limit laws for the spectral radius.

We explain how to deduce the Central Limit Theorem,
Law of Iterated Logarithms and Large Deviation Princi-
ple for the spectral radius from the analog results for the
norms.

We keep the notations Ay, ®1,, Ng, , from Section 13.7.

THEOREM 13.21. (Limit laws for log A\1(g)) Let K be a local field,
V =K¢9, and pu be a Borel probability measure on GL(V) such that T,
is strongly irreducible and p has a finite exponential moment.
(i) Central limit theorem. For any bounded continuous function 1)
on R, one has

St (ARG} qpin(g) — [N,
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(1) Law of the iterated logarithm. For (5-almost all b in B, the
set of cluster points of the sequence

lOg )\1<bn cee b1> — n)\l#
v2nloglogn

is equal to the interval [—+/P1 1, /P14

(17i) Large deviations. For any ty > 0, one has

(13.54) limsup " ({g € G | |Ai(g) — nAi,| > nto})w < 1.
Proor or THEOREM 13.21. Using Lemma 3.36, one can assume
I', to be proximal. We deduce these statements from Theorem 13.18
and Lemma 13.13.
For (i) we apply Lemma 13.13 with ¢ = [/n], and we obtain

p"({g € G |log 2 < —ey/n}) —— 0.

n—oo

Hence the random variables

log [|br---b1]|—nA1 4 and log A1 (bp---b1)—nA1,, have
n NZD
the same limit in law.

For (ii), we apply Lemma 13.13 with ¢ = [\/nloglogn], and we

obtain

Zu*”({g € G |log >‘”1;ﬁ) < —ey/nloglogn}) < oo,

n>1

and we apply Borel Cantelli Lemma.
For (iii) we apply Lemma 13.13 with ¢ = n, and we obtain

p"({g € G |log e < —en}) < e

This proves (13.54). O

When we reformulate Theorem 13.21 in the language of reductive
groups we obtain the following limit laws for the Jordan projection.
We keep the notations o, ®,, N,, K, of Sections 12.6.

THEOREM 13.22. (Limit laws for A(g)) Let G be a connected alge-
braic reductive S-adic Lie group, A : G — a™ be the Jordan projection,
and p be a Zariski dense Borel probability measure on G with a finite
exponential moment.

(i) Central limit theorem. For any bounded continuous function 1)
on a,

n—o0

o (M=) (o) oz Ju AN,
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(i) Law of the iterated logarithm. Let K, be the unit ball of ®,,.
For (B-almost any b in B, the following set of cluster points is equal to

K,
Ay -+ b)) —no
13.55 C 2l =K,.
( ) ( Vv2nloglogn ) a
(17i) Large deviations. For any ty > 0, one has
(13.56) limsup ™ ({g € G | [[M(g) — no,| > ntg})% < 1.

Proor oF THEOREM 13.22. This follows from the limit laws for
the Cartan projection in Theorem 12.17 and the following comparison
Lemma 13.23, in the same way as we deduced Theorem 13.21. from the

limit laws for the norm in Theorem 13.18 and the comparison Lemma
13.13. U

LEMMA 13.23. Let G be a connected algebraic reductive S-adic Lie
group, k and X\ be the Cartan and Jordan projection, and u be a Zariski
dense Borel probability measure on G with a finite exponential moment.
Then for all € > 0, there exist ¢ > 0 and ly > 1 such that for all
n > € >/{y, one has

(13.57) p"({g € Gl lnlg) = Mgl = et}) < e

ProoF oF LEMMA 13.23. This follows from Lemma 13.13 using

sufficiently many irreducible representations of GG as in the proof of
Theorem 13.15. U
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14. Spectrum of the complex transfer operator

We come back in this chapter and the next one to the abstract
framework of Chapters 10 and 11, studying the cocycles over a u-
contrating action. The proofs of the three limit theorems discussed in
Chapter 11, were based on spectral properties of the complex transfer
operator P, for small values of the parameter 6 discussed in Chapter
10.

We study in this chapter the spectral properties of Py for all pure
imaginary values of the parameter #. We will use these properties in
Chapter 15 to prove a local limit theorem for cocycles.

14.1. The essential spectral radius of Pj.

We first show that the spectral radius of the transfer
operator Py is strictly less than 1 except if Py has eigen-
values of modulus 1.

The following lemma is an extension of Corollary 10.11. In this
lemma, the assumptions are the same as in Proposition 10.15.

LEMMA 14.1. Let G be a second countable locally compact semi-
group and s : G — F be a continuous morphism onto a finite group F.
Let 11 be a Borel probability measure on G such that u spans F'. Let
0 < v < v and let X be a compact metric G-space which is fibered
over F' and (p,~o)-contracting over F.

Let 0 : G x X — FE be a continuous cocycle whose sup-norm has a
finite exponential moment (10.14) and whose Lipschitz constant has a
finite moment (10.15).

Then, there exists o in (0, 1] such that, for 0 <y < 7, there exists
d € (0,1) such that, for any 0 in E*, the operator Piy has spectral radius
<1 and essential spectral radius < & in HY(X).

PRrROOF. We fix 0 < v < g where 7 is as in Definition 10.1. Ac-
cording to Ionescu-Tulcea-Marinescu Theorem 2.26 and to Lemma 2.13
in Appendix 2, it is enough to check that there exists § € (0,1), C' > 0
such that for any n > 1, there exists C,, > 0 with, for every ¢ € HY(X),

(14.1) 1P5elly < Co"llelly + Callello-
We recall that the complex transfer operator Py is defined by
(14.2) Pyp(x) = [ e’ p(g) du(g)

and that its powers are given by

Plp(z) = / @) o(gxr) dp " (g).
G
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In particular, one has
1Pl < [0
[t remains to bound, for x # 2’ in X with f, = f.:

% A, + B, where

¢i0(a(9,2)) _i6(a(g,2")) *n
A _IH = (xx/)'y = (gx)d,u ( )

B, = fH i0(o(g,2")) w(gdw(i: xw)gx) du(g).

In order to bound A, we compute, using (10.19), for g in G and
x #£ 2 in X with f, = fur,

(i0(o(9.0)) _ ,ib(a(ga)|”

ei0(o(g:)) _ eie(”(g’m/))’ < o=

<276l llo (g, ) = olg, )"
< 21*7H9H76”’”°(9)d(x,:C’)V.
Hence one gets, using (10.21),
4] < Cllglle with €l = 25017 f, %00 da=n(g) < oc.

In order to bound B,,, we use the contraction property under the form
(10.3), and we get, for some § € (0,1) and C' > 0,

|Bul < ¢(9) Jo "z di™(9) < Co7e, (o).
This proves (14.1) with C,, = C/ + 1 O

As a direct corollary of Lemma 14.1, one gets.

COROLLARY 14.2. Same assumptions as in Lemma 14.1 For any 6
in E*, the complex transfer operator Py has spectral radius 1 in HY(X)
if and only if it has an eigenvalue of modulus 1.

14.2. Eigenvalues of modulus 1 of Pj.

We study now the eigenspaces in H”(X) of the transfer
operator Pjy associated to the eigenvalues of modulus 1.

The following lemma tells us that these eigenspaces are obtained by
solving a cohomological equation on S, and that the measurable and
integrable solutions of this cohomological equation are automatically
Holder regular.

Let S, C X denote the support of the unique p-stationary Borel
probability measure v on X (see Proposition 10.10). Let p, = |F/F,|.
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LEMMA 14.3. Same assumptions as in Lemma 14.1. Let 0 € E*
and u € C with |u| = 1.
a) Let o € HY(X) be an eigenfunction of Py with eigenvalue u, i.e. a
function satisfying Pyp = up. Then the function |p| is constant on S,
with value ||¢|| . and, for any (g,x) in supp(p) x S, one has

(14.3) p(gz) = ue” "N p(z),

Moreover, for any pLh—root of unity ¢, the function xcp is an eigen-
function of Py with eigenvalue Cu.

b) Conversely, if there exists a nonzero function o in L*(X,v) satisfy-
ing (14.3) for u®@v-almost any (g, ) in G X X, then u is an eigenvalue
of Py in H'(X) and ¢ is v-almost surely equal to an eigenfunction of
Pig m HY (X)

c¢) In this case, the eigenvalues of Py of modulus 1 are exactly the Cu,
where ( is a pzh root of 1. For any such (, the corresponding eigenspace
has dimension 1 and is generated by xc¢p.

d) In particular, if v is aperiodic in F', Py has at most one eigenvalue
of modulus 1.

REMARK 14.4. When G is an algebraic semisimple real Lie group,
it a Zariski dense probability measure on GG, X the flag variety and
o the Iwasawa cocycle, we will see in Proposition 16.1 that, for every
nonzero # € a*, the operator Py has no eigenvalue of modulus 1.

When G is an algebraic semisimple p-adic Lie group, X the flag
variety and o the Iwasawa cocycle, there always exists a Zariski dense
probability measure g on G with finite support such that, for every
0 € a*, the operator Py has an eigenvalue \j of modulus 1. For
instance, when G = SL(2,Q,) and p = 3(dy, + d,,) is the probability
given in Example 12.21.

Note that in this example 12.21, when 6(0,,) & 277Z, the eigenfunc-
tion associated to the eigenvalue of modulus 1 of Py in HY(X) does
not have constant modulus and does not satisfy (14.3) on the whole
variety X = P'(Q,). The reason is that the functions x - ¢®(91:2)
and z — ¢?@0922)) are equal on the support S, but not on the whole
variety X.

PROOF OF LEMMA 14.3 . a) By assumption, for any x € X, one
has

(14.4) up(r) = [ €0 p(ga) du(g)
Taking moduli in this equation, we get

(14.5) lo| < Plel,
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thus, for any n in N, one has |p| < P™|p|. By Proposition 10.10, we
have the convergence in H?(X), P™* |p| —— N |¢|, and therefore

lo] < N,

i.e. for any z in X,

lp(@)] < pu f{fz,eszu} |p(z")| dv(2”).

Hence, for any f in F, the function |p| is constant on the set {x €
Sy | [z € fF,}. Denoting by Cyp, the value of this constant, Equation
(14.5) becomes

Crp, < CyyF, , forany fin F.

Therefore this inequality is an equality and the function |p| is equal to
a constant C' on S,. As, everywhere on X, one has |p| < N |p| = C,
this constant value is

C =l -

Moreover, if = belongs to S,, the left-hand side of (14.4) has modulus
ll¢ll., so that, for py-almost any g in G,

wp(z) = 70Ny (ga),

which proves (14.3).
Finally, since one has

Xc(gx) = (xc(z) , for p-almost all g in G and all z in X,

one gets P(xcp) = (Xxcp as required.

b) We first remark that, since v is p-stationary, Formula (14.2)
defines a continuous operator Py of L'(X, ) with norm at most 1. By
Equation (14.3), the function ¢ is an eigenvector in L*(X,v) for this
operator Pjy.

We claim that, then, the operator Pjy has spectral radius 1 in
HY(X). Indeed, if this is not the case, for any ¢ in H?(X), one has

ZHLw —— 0 in H'Y(X)a
therefore, by density, for any + in L'(X, ), one has
" —— 0 in L'(X,v),

which contradicts the existence of the eigenvector ¢. Thus, P has
spectral radius 1 in H7(X) and hence, by Lemma 14.1, it admits an
eigenvector ¢’ associated to an eigenvalue v’ with modulus 1.
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We claim that the ratio ¢ := u/u’ is a pLh root of unity. Indeed,
since ¢’ has constant modulus on S,, the function ¢"” = /¢ is in
LY(X,v) and, by 14.3, for (4 ® v)-almost any (g,z) in G x X, one has

©"(gr) = C ¢"(x).

This means that ¢” is an eigenvector of P in L*(X,v) with eigenvalue
¢. Now, Formula (10.12) defines a continuous operator N of the space
L'(X,v). By Proposition 10.10, for any ¢ in H?(X), one has

PPy —— Ny in HY(X),

therefore, by density, for any v in L'(X,v), one has
PPrehy —— N in LY(X,v).

Since P"¢" = ("¢", we get (P» = 1, ¢" = N¢" and ¢” is v-almost
surely equal to a multiple of x., which was to be shown.
c¢) and d) follow from the previous discussion. O

REMARK 14.5. The operator Pjy is also a bounded operator in the
space L>®(X,v) with norm at most 1. As a consequence of this proof
Py has the same eigenvalues of modulus 1 in each of the Banach spaces

HY(X), C°(X), H'(S,), C°(S,), L>°(X,v) and L}(X,v).

The following corollary tells us that, when 6 is in Ej, the associated
eigenfunctions can easily been described.

COROLLARY 14.6. Same assumptions as in Lemma 14.1. Let o, €
E, E, C E and ¢y € H'(X) be as in Lemma 10.18. For any 0 in
Ej, the operator Py has spectral radius 1 in HY(X). Its eigenvalues of

modulus 1 are the (e®x) | where C is apzh root of 1, and the restriction
of the associated eigenfunctions to S, are multiples of the function x —

PROOF. According to Formula (10.29), for (u®wv)-almost any (g, z)
in G x X, one has

o(g,x) = Op — Yo(gz) + Yo(r) mod E,.

Hence, when 6 € E* is orthogonal to E,, the function ¢ : 2 +— (#0(®)
satisfies, for (14 ® v)-almost any (g,z) in G x X,

which is Equation (14.3) with u = ¢?). Our claim follows from
Lemma 14.3. U
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For technical reasons, when studying the Iwasawa cocycle of re-
ductive S-adic Lie groups that have both real and non-archimedean
components, in the proof of Proposition 16.4, we will need the follow-
ing.

COROLLARY 14.7. Same assumptions as in Lemma 14.1. Assume
moreover that Y is another compact metric G-space, which is fibered
over F' and p-contracting over F, and that m : Y — X s a G-
equivariant continuous map such that fry = f, for any y in'Y. We
also denote by o the lifted cocycle on G x Y. Then, for any 0 in E*,
the operator Py has spectral radius 1 in HY(Y') if and only if it has
spectral radius 1 in HY(X).

PROOF. Assume Pjy has spectral radius 1 in ‘H7(X). By Lemma
14.1, it has an eigenfunction ¢ € H(X) associated to an eigenvalue of
modulus 1. Then the function ¥ = p o1 € C°(Y) is an eigenfunction
of Pjy for the same eigenvalue. Hence by Lemma 14.3, P;y has spectral
radius 1 in HY(Y').

Conversely, assume Pjy has spectral radius 1 in H?(Y’). For any 1
in H'(Y'), set

p() = sup |d(y) =¥l
m(y)=mn(y’)
where the supremum is taken over the pairs y, v in Y with 7(y) = 7(v/).
Since ¢ is constant on the fibers of m, using the contraction property
as in (10.10), for any n, one has

(14.6) p(Pigp) < 0"y (¥)C,

for some fixed C' > 0.
According to Lemma 14.1, P; has an eigenfunction ¢ € HY(Y)
associated to an eigenvalue of modulus 1. Hence, by (14.6), one has

p(¢) = lim p(Pje) = 0.

This means that there exists a function ¢ in C°(X) such that ¢ = por.
This function ¢ is an eigenfunction of Py for the same eigenvalue.
Hence by Lemma 14.3, Pjy has spectral radius 1 in HY(X). U

14.3. The residual image A, of the cocycle.

We introduce in this section a subgroup A, of E called
the p-residual image of the cocycle o. This group is
important since it preserves the limit measure that will
occur in the Local Limit Theorem 15.1.



244

We will give two definitions of A,. The first one in Proposition 14.8
describes A, as the orthogonal of the set of parameters ¢ for which the
complex transfer operator Py has spectral radius 1 in H7(X). The
second one in Corollary 14.10 describes A, as the smallest subgroup
for which one can find a cocycle cohomologous to ¢ with values in a
translate of A,,.

We keep the notations that have been introduced along Chapter
10 and Section 14.1. We keep also the assumptions of Lemma 14.1.
As the cocycle o may be cohomologous to a cocycle taking values in a
coset of a proper subgroup of E,, before stating the main result of this
chapter, we must proceed to some reductions of o.

When A is a closed subgroup of E, we let A+ be the subgroup of
E* consisting of those 6 in E* with 0(v) € 27Z, for any v in A. Here
are a few basic properties of A*.
(i) One has At = A.
(44) A is connected <= Al is connected. In this case both A and A+
are vector spaces and A is the usual orthogonal subspace of A in E*.
(4i1) A is discrete <= A* is compact.
(4v) The map that sends some @ in E* to the character v — ¢?®) of A
identifies £*/A* with the dual group of A.

According to Lemma 14.1, for € in E*, the operator Py has spectral
radius < 1 in H?(X). The next lemma describes the set of § such that
it has spectral radius exactly 1.

PROPOSITION 14.8. Same assumptions as in Lemma 1/.1.
a) The set

A, = {0 € E* | Py has spectral radius 1 in H7(X)}

s a closed subgroup of E* whose connected component is Ej

b) Its dual group A, = Aﬁ is a closed cocompact subgroup of E,,.

c) If moreover p is aperiodic in F i.e. p, = 1, then there exists an
element v, of E,, and a Hélder continuous function @, : S, — E/A,
such that, for any (g,x) in Suppu X S, one has

(14.7) o(g,x) = 0, + vy — Po(gr) + Po(z) mod A,,.

The group A, is called the p-residual image of the cocycle o. This
notion is different from the essential image of a cocycle in [111]. The
cocycle o is said to be non-degenerate it £, = E. It is said to be
aperiodic if

(14.8) A, =E.
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REMARK 14.9. Equation (14.7) gives a reduction of the cocycle o
to a smaller subgroup than Equation (10.29).

PROOF OF PROPOSITION 14.8. a) According to Lemma 14.3, an
element § € E* belongs to A, if and only if there exist a function
wig € H?(S,) of modulus 1 and ;g € C with |A\;»| = 1 such that for
any (g,z) in supp(u) x S, one has

Pin(gr) = Nige @) 4 (1),
Now, take 6,0 in A, and set 8" = § — ¢'. The ratio \igr := Njg/Nier
of the eigenvalues and the ratio p;gr := @9/ of the corresponding
eigenfunctions satisfy

wior (9z) = Nigne ™ @D 0 (),

for any (g, ) in supp(p) x S,. Hence 6 — ¢ belongs also to A, and A,
is a group. According to Corollary 14.6 and Lemma 10.18, the group
A, contains the vector space Ej as an open subgroup. In particular
the quotient group A,/ E/f is discrete in E*/ E’j This proves that the
group A, is closed in E* and that its connected component is Ej

b) By duality, since A,f contains Ej, the group A, is included in
E,,. Moreover since Aj / Ej is discrete, the quotient £, /A, is compact.

c) We assume now that y is aperiodic in F' i.e. p, = 1. By Lemma
14.3, for any 6 in A, the eigenvalue \;p of modulus 1 of Py is uniquely
determined by #. By the above construction, for any 6,60" in A,, one

has
Aio+igr = NioAigr
and 0 — Ay is a character of the group A, whose restriction to Ej is,

according to Corollary 14.6, given by 6 +— ¢?®»). Hence there exists
an element v, of £, such that

Nig = e¥@ntvn) for any 6 in A,,.

Fix zg in §,. By Lemma 14.3, for any 6 in A, there exists a unique
eigenfunction ;g € HY(X) of Pjy such that ¢;9(x¢) = 1. For any (g, z)
in supp(u) x S, one has
(14.9) pig(gr) = Vlontm =¥ @m)p (1) and  |pip(z)] = 1.

By the above construction, for any ¢, #" in A, and z in S,, one has
Piovior () = pio(T) pigr (7).
Hence, for any x in S,, there exists a unique element p,(x) in E/A,

such that
() = 0 Fo@)
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Using (14.9), one gets, for any (g, x) in supp(p) X Sy,

Polgr) = 0y + v, —0(g,2) + Po(x) in E/A,
as required. O
The following corollary explains why this group A, is called the p-
residual image of o: it tells us that A, is the smallest closed subgroup
A of E for which there exists a cocycle cohomologous to ¢ taking

almost surely its values in a translate of A. It tells us also that the
decomposition (14.7) is unique.

COROLLARY 14.10. Same assumptions as in Lemma 14.1. Suppose
i is aperiodic in F'. Let A be a closed subgroup of E, v be an element
of E/A and ¢ : S, — E/A be a continuous function such that, for
uRv every (g,x) in G x X, one has
o(g,x) =0, +v—p(gr) + ¢(x) mod A.
Then, one has A D A,, v € v, + A and the function ¢ is equal to
Do+ A up to a constant.

PROOF. Let 6 be in At. By construction, for u ® v every (g, z) in
G x X, one has

¢0(P(97)) — (i(oy+v) =ib(o(g,)) yiflp(a)).

so that, by Lemma 14.3, 6 belongs to A,. We get A, D A, which
amounts to A, C A.

We combine our assumption with (14.7). To simplify notations, we
still denote by v, v, and @, the images of these quantities in £/A. For
every = in S, for any n > 1, for u*"-every g in G, we get, in E/A,
(14.10) (o — ©)(gz) = vy —v) + (@ — ¢) (),

hence, if y is another point of S,
(14.11) (@ — »)(92) — (@0 — ©)(9y) = (@o — @) (x) — (B0 — ©)(Y)-
Now, by Lemma 10.5, if f, = f,, for S-almost any b in B, one has
d(by bz, by - - - biy) —— 0 and hence, in E/A, by (14.11),

Do) = e(x) = Do(y) — (),
that is, there exists ¢ : F' — E/A such that, for z in S,

Bo(x) — () =¥ (fa).

Now, (14.10) gives, for p-almost any ¢ in G, for all f in F,

Y(s(9)f) = v, —v+o(f).
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Thus, if # belongs to AL, the function f — e?®() is an eigenvector
of P in CF associated to the eigenvalue €*»=%) of modulus 1. Since
we assumed p to be aperiodic, by Lemma 10.6, 6 o ¢ is constant and
6(v—wv,) € 2nZ. As this is true for any 6, we get that ¢ —3, is constant
mod A and v = v, mod A as required. O

REMARK 14.11. By Corollary 14.6, when 6 belongs to E, the
eigenfunction ;g of Py is given by, for any x in .S,
wio(z) = £10(#0(z)—¢o(x0))
Hence, by Corollary 14.10, one has
@o(x) = @o() — o(xo) mod E,.
In the application in Chapter 16 where X is the flag variety of a

reductive group, the following consequence of Corollary 14.10, which is
similar to Corollary 11.4, will be useful.

COROLLARY 14.12. (F-invariance) Same assumptions as in Proposi-
tion 14.8. We assume moreover that E is equipped with a linear action
of the finite group F and that X is equipped with a continuous right
action of F' which commutes with the action of G and that, for all f
in F, the cocycles (g,x) — o(g,xf) and (g,2) — fto(g,x) are coho-
mologous. Then
a) The subgroups A, and A, are stable by F'.

b) The image of v, in E, /A, is F-invariant.

REMARK 14.13. The element v, € E,, cannot always be chosen to
be F-invariant.

For example, let F' be a finite group which acts on a finite-dimensional
real vector space . Weset G = F'x F and X = G/E = F. We define
a function o : G X F' — E by setting, for ¢ = fv in G and z in F,
o(g,z) = 7 v where x is viewed as an element of F' which acts on E.
One easily checks that ¢ is a F-equivariant cocycle. Now assume, for
example, ¥ = R and F' = Z/27Z = {1, e} acts on R by multiplication by
—1. We let p be the probability measure on G given by pu = %(5% +5€%).
Then one checks that 0, =0, A, = Z and v, = % + Z whereas R does
not admit any nonzero F-invariant element.

15. Local limit theorem for cocycles

Using the spectral properties of the complex transfer operator proven
in Chapter 14, we prove now a local limit theorem with moderate de-
viations for cocycles over a p-contracting action. This theorem is an
extension of the local limit theorem of Breuillard in [30, Théoreme 4.2]
for classical random walks on the line.
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15.1. Local limit theorem.

In this section we state the local limit theorem (Theorem
15.1) for the cocycle o. It will be deduced from a local
limit theorem with target (Proposition 15.6) for a cocycle
o taking values in a translate of the p-residual image A,
of o.

We keep the assumptions and notations of Proposition 14.8. Let v
be the unique p-stationary Borel probability measure on X (see Propo-
sition 10.10). Let o, be the average of o given by Formula (2.14). Since
by Proposition 10.15 the cocycle o is special, we can introduce the co-
variance 2-tensor ®,, which is given by Formulas (2.16) and (2.17). Let
E, C E be the linear span of ®,,.

For n > 1 and z € S,, we want to understand the behavior of the
measure i, on E given by, for every ¢ € C.(E),

(15.1) na () = /G (o9, 2)—n,) du™(g)

i.e. we want to compute the rate of decay of the probability that the
recentered variable (g, - - - g1, 2) — no, belongs to a fixed convex set
C. To emphasize its role, this convex set C' is often called a window.

We first define precisely the renormalization factor G, and the limit
measure II,, that occur in the statement of the Local Limit Theorem
15.1.

As in (11.1) we introduce the Lebesgue measure dv on E, that
gives mass one to the unit cubes of ®}. For n > 1, we denote by G,
the density of the Gaussian law N7 on E, with respect to dv,

(15.2) Go(v) = (2mn)~ e 2% for all v in E,,

where e, := dim £, and @}, is the positive definite quadratic form on
E, that is dual to ®,,.

Let A, be the group of elements ¢ in E* such that Py has spectral
radius 1 and A, = A, (see Proposition 14.8). According to Proposition
14.8, there exist v, in £, and a Holder continuous function @, : S, —
E /A, such that Equation (14.7) holds.

We now assume that the cocycle o has the [lifting property : this
means that the function @, admits a continuous lift ¢y : S, — E.
Equivalently, we assume that there exist an element v, of E, and a
Holder continuous function ¢y : S, — E such that, for any (g, ) in
Suppp x S, one has

(15.3) o(g,x) =0, + v, — polg9z) + Po(x) mod A,,.
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The group A, is cocompact in £,. We let m, be the Haar measure
of A, that gives mass one to the intersection of the unit cubes of @},
with the connected component A} of A,. We let II,, be the average
measure on F such that, for any Borel subset C' of F/, one has

(15.4) I,(C) = [ m(C+(a) dvia),
Here is our first version of the local limit theorem for o.

THEOREM 15.1. (Local limit theorem for o) Let G be a second
countable locally compact semigroup and s : G — F be a continuous
morphism onto a finite group F. Let p be a Borel probability measure
on G which is aperiodic in F. Let X be a compact metric G-space
which is fibered over F' and p-contracting over F.

Let 0 : G x X — FE be a continuous cocycle whose sup-norm has
a finite exponential moment (10.14) and whose Lipschitz constant has
a finite moment (10.15). We also assume the existence (15.3) of a lift
vo- We fix a bounded convex subset C' C E and R > 0. Then one has
the limit

(155) r}l—{{.lo mun,x(c“_vn) _HM(C‘FUTL_TLUM_&O(-T)) = 0

This limit is uniform for x € S, and v, € E,, with ||lv,| < /Rnlogn.

REMARK 15.2. In this theorem we allow moderate deviations i.e.
we allow the window C' + v, to jiggle moderately, since our result is
uniform for

(15.6) llvn|| < R+/nlogn.

These moderate deviations are crucial for the concrete applications in
Sections 16.4 and 16.5. They are also used in [15].

REMARK 15.3. When the deviation satisfies the condition (15.6),
we get the following lower bound for the denominator (15.2) of the left
hand side of (15.5)

(15.7) Goln) > Agn 3

where the constant Ay depends only on p and R. This lower bound
will allow us to neglect in the calculation of p, ,(C+wv,) any term that
decays faster than this power of n.

Theorem 15.1 is a special case of the local limit theorem with target
15.15 that we will state and prove in section 15.4.
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REMARK 15.4. We could give a general version of this theorem
without the assumption that p is aperiodic in F', but this would make
the statement heavy, since we would have to restrict our attention to
integers n in arithmetic sequences k + Zp,,.

Theorem 15.1 may be true without the assumption (15.3) that a lift
o exists. This condition is satisfied in our main application in Chapter
16, but this is not always the case, as shown by the following example.

ExXAMPLE 15.5. There exists a cocycle 0 : G x X — FE which
satisfies the assumptions of Proposition 10.15 but for which there does
not exist any function @y : S, — E wich fulfills (15.3).

ProoF. We choose GG to be a free group on two generators ¢g; and
g2, 11 = 1(8g, + g + 041 + §g2_1) and X = P(R?). We let G acts
faithfully on X via a dense subgroup of SL(2,R), so that S, = X. We
identify the universal cover of X with R by setting, for any t € R,
x; = R(cost,sint) € X. For ¢ = 1,2, we choose a continuous lift
gi - R — R of g;: it satisfies x5, = g¢;(z;). For any g € G, we set
g : R — R for the corresponding word in ¢, go.

We let 0 : G x X — E =R to be the cocycle given by, for g € G,

(15.8) o(g,x) =gt—t for all ¢t € R.

For 6 in 27, the function @y on X such that p(x,) = ¥, t € R,
satisfies, for any ¢ in G and z in X,

700 = p(ga)p(z)

so that, by Corollary 14.10, one has 7Z D A,,. However, we claim that
one cannot write o under the form (15.3) with a continuous g : X —
R. Indeed, if this was the case, since the space X is connected, for any
g in G, the function

z— o(g,2) — Golz) + Folgz)

would be constant with a value ¢(g). By the coycle property, the map
¢ would be a morphism G — R. In particular, ¢ would be trivial on the
derived group [G, G| of G. Now, since SL(2,R) is equal to its derived
group, |G, G] has dense image in SL(2,R) and one can find ¢ in [G, G|
that acts on P(R?) as a non-trivial rotation, so that |o(g", z)] ——

uniformly in X. This contradicts the fact that, since ¢(g) = 0, one has
o(g,z) = @o(x) — Po(gz) for all z € X. O
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We now begin the proof of Theorem 15.1 and of its extension :
Theorem 15.15. We introduce the cocycle

(159) o:GxS, — E;
(9,2) — (g, 2):=0(g,2) + olgx) — Po(x).
It satisfies
(15.10) o(g,x) € oy +v,+ A, forall (g,z) in Suppy x S,,.

We first need a notation similar to (15.1) for the cocycle . For
p € H(X),n>1and x E SV, we introduce the measure i . on E,
given by, for every ¢ € C(

(15.11) e / $(F(9,7) — no)p(gx) du™ (g).

The main advantage in first considering this measure ;¥ , is that it is
concentrated on nv, + A, C E,,.

We will first prove an analogous local limit theorem for the cocy-
cle g. For any v in E,, we denote by 7, the image of m, under the
translation by v.

PROPOSITION 15.6 (Local limit theorem for o with target). Same
assumptions as in Theorem 15.1. We fix ¢ € HY(X), a bounded convex
subset C' C E, and R > 0. Then one has the limit,
oty 11 (C+v,) — () mi™ (CHv,) = 0.

n—oo "(

This limit is uniform for x € S, and v, € E, with ||v,|| < +/Rnlogn.

The proof of Proposition 15.6 will occupy the main part of this
chapter. Note that, in the course of the proof, the assumption that x
belongs to .S, is only used in relation to the construction of @, so that
we can drop it when the cocycle o is aperiodic i.e. satisfies (14.8):

COROLLARY 15.7 (Local limit theorem for aperiodic cocycles).
Let G be a second countable locally compact semigroup, p be a Borel
probability measure on G. Let X be a compact metric G-space which
1s p-contracting. Let o : G x X — FE be a continuous cocycle whose
sup-norm has a finite exponential moment (10.14) and whose Lipschitz
constant has a finite moment (10.15). We assume that o is aperiodic.
Let 7, be the Lebesque measure of I which gives mass one to the unit
cubes of Py,

We fix a bounded conver subset C C E and R > 0. Then, the
sequence

Gn%vn_) " ({g e G|o(g,x)—no, € C+uy})
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converges uniformly to m,(C) when n goes to 0o, as soon as x € X and
v, € E with ||v,]| < v/Rnlogn.
15.2. Local limit theorem for smooth functions.

We will first prove a smoothened variation (Lemma 15.11)
of the local limit theorem with target (Proposition 15.6)
for & where we replace the convex set C' by an adequate
smooth function ¢ on £,,.

Let ¢ be a Borel function on E,, such that
(15.12) SUPyep, [ [¥] dm), < oo.

For any v in E,, we introduce the partial Fourier transform @Zv given
by, for ¢ in E*,

0u(0) = [y, P(w)e ™) drt (w).
Note that, for § in E* and ¢’ in A,, we have
g@,(& L) = e_w'(v)@v(g)
Wy

and hence gEU may be seen as a function on £ ~ E*/ Ej and may

be seen as a function on E*/A,,.

DEFINITION 15.8. A Borel function ¥ on F, is called A ,-admissible
if
- For any k in N, one has sup (1 + ||v]))* [¢(v)| < oo.
veE,
- There exist compact subsets K of E, and K* of E* such that
¢ has support in K + A} and, for any v in E,, , has support in

K* + (AZ)L.
See the beginning of Section 15.3 for examples of such functions.

REMARK 15.9. When A, = E ( i.e. when the cocycle is aperiodic,
which is the case for the Iwasawa cocycle of an algebraic semisimple
real Lie group), an admissible function on E is a Schwartz function
whose Fourier transform has compact support.

When A, is a discrete subgroup of E, an admissible function is a
compactly supported bounded Borel function on £),.

The general case is a mixture of those two cases since one has the
following dual sequences of injections

o codiscrete cocompact
0— A, AW

E,— FE,

codiscrete
0 — NS = [ codbade, y

o | cocompact oL *
o p=A, ——— (A))T — B
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REMARK 15.10. When 1 is an admissible function and p is a finite
Borel measure on F, supported by v+A,, for some v in E,,, to compute
p(¥) = [, A, ¥ dp, we will use the following Fourier inversion formula

(15.13) fv+A Ydp = (2m)~ fE*/A 1y (0)5(6) d6.

Note that the right-hand side of (15.13) is well defined. Indeed, the
characteristic function p: 6 — p(e) satisfies, for § in E* and ¢’ in A,

o+ =e”5(0),

hence @v p may be seen as a function on E*/A,,.
We will apply Formula (15.13) to the measure p = zi# , from (15.11).
This is allowed since this measure is concentrated on nv, + A,.

Here is the smoothened variation of the Local Limit Theorem for o
where the convex set C' has been replaced by a smooth function.

LEMMA 15.11. Same assumptions as in Theorem 15.1. Let ¢ be in
HY(X) and r > 2. There exists a sequence €, —— 0 such that, for

n—oQ

any non-negative A, -admissible function ¢ on E,, n > 1 and x in S,,
one has

17 () = v(p) T (¥ Gp)| < enmn™ (¥ Ga) + Oy (5 )

where the Oy is uniform in x and over the translates of the function i
by elements of E,,.

We recall that G, is the Gaussian function given by (15.2).

The proof of this lemma relies on the following asymptotic expan-
sion of the quantities appearing in Lemma 10.17 (compare with [30, p.
48]).

LEMMA 15.12. Same assumptions as in Theorem 15.1. Fix r > 2.
There exist polynomial functions Ay on E*, 0 < k < r —1, with degree
at most 3k and no constant term for k > 0, with values in the space
L(H(X)) of bounded endomorphisms of HY(X) and such that, for any
M > 0, uniformly for 0 in E* with ||0|| < /M logn and ¢ in H7(X),
one has, in H'(X), Ao(0)p = Ny and

r—1 Ai(0)p (logn)3"/2|p|
7,9 ()0 Z le + O ( nT—/Q = .

PrOOF. Using the trick (2.9), we may assume o, = 0.

Now, on one hand, by Lemmas 10.17, 10.18 and Taylor-Young For-
mula, there exists a polynomial function P on E*, with degree < r+1
and whose homogeneous components of degree 0, 1 and 2 are equal to

©(9)
e 2

\/H
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0, and there exists an analytic function p;, defined in a neighborhood
of zero in Ef with

pi(8) = O([16]),
such that, for any 6 close enough to zero, one has
log Ay — 30,,(6) = P(0) + p1 (6).
Thus, when n is large enough and 6 € E* with ||0]] < /M logn, we
get

3 yn, — P e ()
vn
r—1 n 7 ogn)3"/
— 1+ w e ( en) +0 (Lmmt).
On the other hand, by lemma 10.17 and Taylor-Young Formula,
there exist a polynomial function () on E*, with degree < r —1 and no
constant term, with values in £(H”(X)) and an analytic function p,,

defined in a neighborhood U of zero in E¢, with values in L(H7 (X)),
such that, uniformly for ¢ € HY(X), for 6 in U, one has

p2(0) = O([10]")] 0], and
Nigp = No + Q(0)p + p2(0) .
The proof follows by writing, for 1 < k <r—1,

k k
k i0 i0 k if
as the sum of homogeneous terms of degree at least 3k in 6 and only
keeping the ones that have degree < =% in n=!. O

PrROOF OF LEMMA 15.11. We may again assume o, = 0. We may
also assume that E,, has dimension e, > 1. We fix ¢ in H7(X) and «
in X. For any 6 in E*, the characteristic function of 7 , is given by

(15.14) i (0) = [ ¢ p(gr) du™(g) = Pip(x).

Let s < e, be the rank of the free abelian group AM/Ej. Choose a

basis 01, ...,0., of a complementary subspace to Ej in £* such that

0h,...,0s span A, mod Ej The quadratic form @, induces a norm on

this complementary subspace which we denote by |.||. Define
L:={0=>7" 10, € E* such that [t,] <3 when1 < ¢ < s},

so that L is a fundamental domain for the projection E* — E*/A,,.
If ¢ is a A -admissible function on £, we compute, from Formulae
(15.13) and (15.14), the integral

I, == (27)8’ :un:r ) = fL QZMH (9> Pz%@@) de.
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We decompose this integral as the sum of four terms
L=0I+I+ I+ 1.

We now bound individually these four terms. Each time we will use
implicitely the fact that the function 6 — 1y, () is uniformly bounded
by (15.12).

First, we keep the notations from Lemma 10.17 and we choose some
large enough 7" > 0. On the one hand, since ¢ is admissible and since
A, is cocompact in (A;)L, there exists a compact subset K* of E*

such that, for any v in E,, v, has support in K* 4+ A,. On the other
hand, by definition of L and A,, for any neighborhood V' of 0 in L,
there exists 0 < w < 1 such that for any 6 in (K*+A,)NL) NV,
Py has spectral radius < w. Hence, for n large enough, for any 6 in
(K*+A,)NL)\V, P} has norm < w" and

Iy = [y o, (0) Pie(x) df = Oy (w")
(note that this Oy is uniform over the translates of 1) by elements of
E,).
Second, by Lemma 10.18, one can choose V' small enough so that,

for n large enough, for any 6 in V', P,y has spectral radius < e~ 1%u(0),

Hence, for n large enough, for any @ in V', P% has norm < e~ %+ and
one has,

12 = / v Do (0) Plp(x) 46 = Oy(n~ %),
[|6]]2>T 08

Third, by Lemma 10.17, there exists 0 < § < 1 such that, for any 0
in V', P,y — M\igN;p has spectral radius < 0. Hence, for n large enough,
one has,

Bim [y DunO)Ph-NyNu)o(a) 48 = Ou(8").
[|6]]2<T o8
It remains to control the fourth term:
Iﬁ = / eV wnvﬂ (0) )‘?9 Nw(p(l') de.
g2 <Tiean

By Lemma 15.12, since 0, = 0, one has

i r— An n x 3pyTte
B[ e GO X0 S0y a4 0, (),

2 logn
1612 <T=5"
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where the Fourier transform G, of the Gaussian function G, is given,
for 6 € £, by
Go(0) = 220,
Since, for any 0 < k <r — 1, Ay has degree at most 3k, we get
A n0)o(z log n(3k+en)/2
0eE?, Q/Jm;#( ) ) ki}zf )de - O <ng(T+k—+e:)/2) :

2 logn
lof?>T <%=

Thus, since e, > 1, choosing T' large enough, we have established that

:).-

Now, for 0 < k < r — 1, there exists a polynomial function B on
E,,, with values in H7(X), such that By, has degree at most 3k and, for
any r in S, the function on E; given by 6 — e~ 2% A, (A)p(z) is the
Fourier transform of the function v — G;(v) Bx(v)(x). Therefore, we
get, from (15.15) and the Fourier inversion formula (15.13),

(15.15) L= | W, (0) ;genwkg/{@ LA+ 0, (=
Ej,

e r—1 B (Ln)(ff) nuy
(15.16) I, = (2m)* [ $(0)Gn(v) Shot —Frm drp™ () + Oy =4

Ey

2)-

For any 0 < k <r — 1, on the one hand one has

Be(Z5)(@) o oz n(3k+en)/2
vem, O)G(0) T ame(v) = O (SEEREE Y,

[[0]*>T nlogn
and on the other hand, since 1 is nonnegative, one has

Br(J=)(@) 3k/2

veE, Y(0)Gn(v) —fm— dm™ (v) = O(lognfj/2 )T (W G).

|[0][*<T nlogn

In particular, choosing T' large enough, the leading term in (15.16) is
the one with k& = 0. Since one has Ayg(f) = N and Ny = v(y), one
gets By(v)(z) = v(p) and, if T is large enough,

L = 2m) e v(@) mu™ (1 G) + o(mu™ (1 Ga)) + Oy (77) -

Our claim follows. O

15.3. Approximation of convex sets.

We explain in this section how to deduce the local limit
theorem with target (Proposition 15.6) for ¢ from its
smoothened version (Lemma 15.11). The key point is a
regularization procedure for a convex set C' of E.
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We fix a nonnegative Schwartz function a on A}, with / g @ dm, =1

and whose Fourier transform has compact support and, for any € > 0
and v in A5, we set a.(v) = Za(?), where 7 is the dimension of A, If
C' is a bounded Borel subset of E,, the convolution product

Yoo = (qem,) * 1o
is given by the formula, for all v in E,,
Ve o(v) = IAZ a:(w)le(v —w) dmr,(w).

This function 1. ¢ is a A -admissible function on F,.
The following lemma tells us that the functions . ¢ are good ap-
proximations of the function 1.

LEMMA 15.13. Same assumptions as in Theorem 15.1. Let C' be a
bounded Borel subset of £, and let R > 0 be a real number. One has

(15.17) T (WecnGn) — mi(C+v) —— 0

Gn(v n—00

uniformly foru € E,, v € E,, ||v|| < +v/Rnlogn and ¢ € (0,1].

PROOF. Let us compute, forn > 1, u,vin E, with ||v|| < v/Rnlogn
and € € (0, 1], the left-hand side of Formula (15.17)

Jn = ﬁ(wﬂﬁ(ws,cw(;n) - WZ(C—i_U)

As the measure 7 is invariant under the translations by the elements
of A? and as fA;i a.dm, =1, one has

In = Jagwr, e(w)low (W' —w) (G = D d(m, @ 7 (w, w').

We decompose this integral as a sum J,, = J! + J2 with

G (w' u
Ji - f||w||§n1/4 as(w)]-C%(w/ - w) ( Gn((v)) - 1) d(ﬂ-ﬁt & ﬂ-,u)(w7 w’),

Gn(w’ U
T2 = [ s 0 (W) lew (' — w) (G — 1) d(m, ® 72) (w, w').

In order to control J}, we use the fact that

Gn(w) _ L
F = e

/ /
v+w’ v—w') 1

uniformly for v —w' € C+w, ||w|| < ni and ||v|| < Rnlogn. We get

Jr —— 0 uniformly.
n—oQ

In order to control J2, we use the bound

G (w') 2u() R/2
Ca) SETST
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for ||v|| < v/Rnlogn. Setting z = e 'w, we get, uniformly for ¢ € (0, 1],
J? < nf/2 T (C+v) fllean a.(w) dm,(w) — 0

since « is a Schwartz function. O

To approximate open convex sets in measure, we shall also need the
following

LEMMA 15.14. Let E be a Fuclidean space and w be a Lebesgue
measure on E. Then, for any p > 0, the map C — 7w(C) is uniformly
continuous on the set of open convex subsets C' of E with diameter < p,
equipped with the Hausdorff distance.

PROOF. Let d be the dimension of E. By Steiner’s formula (see
(110, I11.13.3]), for any bounded convex subset C' C E and any integer
i € [0,d], there exists w;(C') > 0 such that, for ¢ > 0, the volume of
the e-neighborhood C* of C' is given by

m(C%) = i wi(C)e’
and the w;’s are non-decreasing functions of C'. The result follows. []
We can now conclude the

PROOF OF PROPOSITION 15.6. Roughly speaking, the main idea
is to use the equality

(158) L) = [ o)z (Crw) dny o)
w

where C' is a bounded open convex subset of E, and € > 0 is small.
Using (15.18), we will get upper and lower bounds for the quantity
s (C) by means of 7 (¥ cr), where C” is a convex set that is very
close to C' and then we will apply the estimates of Lemmas 15.11,
15.13 and 15.14. The main technical issue which wheighs the proof is
the fact that the test function a does not have compact support, since
its Fourier transform has compact support. Let us proceed precisely.

We set B(e) for the open ball with radius € and center 0 in A7, and
(15.19) Cc=C+B(e) and C. =) y C—w.
For p > 0 and € > 0, we set
V, = sup{r,(C) | C C E, convex , diam C < 2p}.
6,(¢) = sup{m,(C°)—m,(C.) | C C E, convex , diam C' < 2p},
By Lemma 15.14, for every p > 0, one has
(15.20) 6,(¢) — 0.

wEB(e
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Finally, we assume that ¢ is real and non-negative and |||, < 1.

First step: We will first prove the upperbound: for every R, p,e¢ >
0 there exists ng such that forn > ng, x € S,, v € E, with ||v] <
Vv Rnlogn and C a convex subset included in the ball B(p), one has

(15.21) i Hha(CHuv) < v(p) mp™ (C+o) + eo.

We can choose € € (0, 1] small enough so that fllwIIZﬁ a(w)dr,(w) <e.
We note that, for w in A7, with [lw]|| < /g, we have C' C CVE +w and
we deduce from (15.18) the inequality

(15.22) (1—&) 17 o (CHv) < 17 (Ve oveyo)-

We also keep in mind the bound
Gnv) ™t < (2#)67# na(enth),

Using successively (15.22), Lemma 15.11, Lemma 15.13 and (15.20),
choosing first € small enough and then n large enough, we get

Gn(v)_l ﬁﬁ,x(c—i_q}) S éanJ)_l ﬁﬁ,z(wa,Cﬁ—‘rv)

“elteo G (0) L (9, oveyyG) + €0

Uekteo pnow(OVE 1) + 2¢

v(p) T (C+v) + 3e0 + 2V, g0.

IN

IAIA

Letting £y go to 0, this proves the upper bound (15.21).

Second step: We will now prove the lower bound: for every posi-
tie R, p, gy there exists ng such that forn > ng, v € S,, v € I, with
Ilv]| < v/Rnlogn and C' a convex subset included in the ball B(p), one
has

(15.23) g o (CHv) = v(p) T (Ct+v) — g

Again, we will first choose € € (0, 1] very small and then n very large.

As above, we can assume that fllw\|>i a(w)dm,(w) < e. We notice
= Ve

that, for w in £, with [Jw|| < /g, we have C z4+w C C and we deduce
from (15.18)

(15.24) fiy o (C'+v) = wl|<vE ac(w) i, (C z+v+w) dm, (w)
> ﬁﬁ,x(ws,cﬁ—kv) - Krlz o KZ>



260

where

K- | () (C. e 0+ ) dmy (),
VESllwl<ni/s

K2 — / e (W) i 4 (Cetvtw) dmy (w).
[lw||>nt/4

First, using the upperbound (15.21), we have, reasoning as in the proof
of lemma 15.13, for n large,

K} Gn(v+w nv
Gule) = f\/gg”wugn%r ae(w) G(n(t) L™ (CHvtw) + go) dmy (w)

< (1 +e0)(Vap + €0) < 0.
Second, using the bound |jv|]] < /Rnlogn and the fact that « is a

Schwartz function, one gets, for n large,

e (U) <n2 wa‘P 1 a.(w)dm,(w) < e.

Now, using successively inequality (15.24), Lemma 15.11, Lemma 15.13
and the limit (15.20), we get,

Gu(v) 7 i o (C+v) 2 Gu(0) ™ (1] o (Ve i) — K — K7
> (v() —€0)Gn(v) " T (Ve r0) — Be0
> (v(p) —eo) ;™ (Cz+v) — deo
> v(p) " (C+v) — beg — V) €o.

Letting €y go to 0, this proves the lower bound (15.23) and ends the
proof of Proposition 15.6. 0

15.4. Local limit theorem for ¢ with target.

We will now state and prove a Local Limit Theorem with
target for the cocycle o (Theorem 15.15) which general-
izes the Local Limit Theorem for o (Theorem 15.1).

For ¢ in HY(X), n > 1 and z € S,, we want to describe the
behavior of the measure pf . on E analogous to (15.1), given by, for

every 1) € C.(E),
(15.25) uE () = / b(o(g,) — n0,)p(g7) A (g).
G

We let IT# be the average measure on E analogous to (15.4), given,

for C C E, by

(15.26) 2(C) = /X 7 (C+ Gole)ple) du(a),

where @ is as in (15.3).
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Here is our final version of the local limit theorem with moderate
deviations.

THEOREM 15.15. (Local limit theorem for o with target) Same
assumptions as in Theorem 15.1. We fix ¢ € HY(X), a bounded convex
subset C' C E and R > 0. Then one has the limit

lim o p¢  (C+v,) — E(C+v,—nv,—Go(z)) = 0.

n—oo Gn(v”)
This limit is uniform for x € S, and v, € E,, with ||lv,| < /Rnlogn.

PROOF. Roughly speaking, this follows from (15.9) and from Propo-
sition 15.6. Here are more details.

We can assume ¢ to be real-valued. We fix g5 > 0 and, using
(15.20), choose € > 0 such that 05,(2¢) < 9. We write ¢ = Zle i
where ¢; € HY(X) has support contained in a ball B; C X with center
x; such that sup, .cp, [[©o(y) — po(2)[ <e.

Now, we get, for n large enough, using Proposition 15.6,

Y/ ~p ~ ~
muﬁ@,(C’Jrvn) < Zizl m ﬁfz(05+vn—sﬁo($)+s0o($i))
< S w(p) T (O v, — o () +Po(:)) + €0

< [ MO v, — Bo(2) +@o(y))e(y) dv(y) +eo
< Hﬁ(C’—i—vn—nvM—@o(x))—i—an.

One concludes by replacing ¢ with —p. U

16. Local limit theorem for products of random matrices

We come back to the notations of Chapter 12. The first two sections
deal with S-adic Lie groups. Starting from the third section, we will
deal only with real Lie groups.

The aim of this chapter is to prove, using the results of Chapter 15,
the Local Limit Theorem 16.6 with target and with moderate devia-
tions for products of random matrices, and to give various applications
of this theorem. These applications are the Local Limit Theorems for
the random variables given by the Cartan projection in Section 16.4,
by the norms of matrices and the norms of vectors in Section 16.5.

The moderate deviations in Theorem 16.6, will be crucial in these
applications.

16.1. Lifting the coboundary.

In this section, we give more information on the u-residual
image A,, and we prove the lifting property (15.3) for
the Iwasawa cocycle.
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Let G be an algebraic reductive S-adic Lie group, F' := G/G. and
it be a Zariski dense Borel probability measure on G with a finite
exponential moment and which is aperiodic in F'. In order to apply
Theorem 15.1 to the Iwasawa cocycle og, : G X Pg, — ag,, we will
need the following Proposition 16.1 which refines Proposition 12.19 and
which tells us that, when S = {R}, the complex transfer operator Py,
with 6 # 0, does not have eigenvalues of modulus 1. Equivalently, the
cohomological equation (14.3) has no solutions. We will use the vector
subspace bgr of a introduced in Sections 8.4 and 12.7.

PROPOSITION 16.1. Let G be an algebraic reductive S-adic Lie
group and p be a Zariski dense Borel probability measure on G with
a finite exponential moment. Let A, C a, be the p-residual image of
the Iwasawa cocycle oe,. Then this subgroup A, contains bg.

In particular, when & = {R} and G is semisimple, the Iwasawa
cocycle o on the full flag variety P is aperiodic i.e. A, = a, = a.

PROOF OF PROPOSITION 16.1. We first assume that the finite set
S does not contain the local field C. Keep the notations of sections
15.1. Recall that, by definition, A, is the orthogonal in a of the group

A, = {0 € a* | Py has spectral radius 1}.

We also keep the notations of the proof of Proposition 12.19. We know
from Equation (14.7) that, for any n € N, g € Supp(p*") N G,

(16.1) ANg) = 00,(9,:£8, 4) € n(v+0,) + A,

For any s in S, the image of I, in G is a Zariski dense subsemigroup
of G5. We write

Ag) = (As(9))ses € a =[] cs0s-

Now, by Proposition 8.8, the closed subgroup of a spanned by the ele-
ments A(gh) —A(g) — A(h), when g, h and gh are ©p-proximal elements
of I' contains bg. Combining this Proposition 8.8 with (16.1), one gets
the inclusion A, D bg, as required.

The general case reduces to the case where the finite set S does not
contain the local field C, because every complex algebraic Lie group
G can be seen as a real algebraic Lie group. Indeed one just has to
use Lemmas 16.2 and 16.3, which tell us that the “real Zariski closure”
H of a “complex Zariski dense” subgroup of G is still a real algebraic
reductive group, and that the flag variety of H can be seen as a closed
H-orbit in the flag variety Po_ = Po, of G. O

The following lemma compares the closure of a subgroup for the
real and for the complex Zariski topology.
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LEMMA 16.2. Let G be an algebraic simple complex Lie group, let
I' be a subgroup of G which is dense for the complex Zariski topology,
and let H be the closure of I' for the real Zariski topology. Then H
15 an algebraic simple real Lie group. More precisely, either one has
H = G, or there exists a simple algebraic group H defined over R such
that H = H(R) and G = H(C).

PrROOF OF LEMMA 16.2. By assumption G is the group of com-
plex points G = G(C) of an algebraic group G defined over C. The Lie
algebra h of H is a I'-invariant real Lie subalgebra of the complex Lie
algebra g of GG. Since I is dense in G for the complex Zariski toplogy,
the complex Lie subalgebras h +ih and h N< b are ideals of g. Since g
is simple, one has h +ih = g and one has hNih = g or {0}. In the
first case, one has H = (G. In the second case, § is a real form of g,
and H is the group of real point of an algebraic group H defined over
R which is isomorphic to G over C. O

The following lemma embeds the full flag variety P of an algebraic
simple real Lie group H as a closed orbit in the partial flag variety Pe
of the complexification G of H.

LEMMA 16.3. Let H be a simble algebraic group defined over R, let
H =H(R) and G = H(C), let h C g be their Lie algebras, ap Ca be
Cartan subspaces of b and g. Choose a system of simple roots H[J of
ap in b and a compatible system of simple roots I of a in g, i.e. such
that the restriction to ay of the simple roots a € 11 belong to Iy U {0}.
a) Using the notation (8.1), one has Oy = {a € 11 | a‘“(ab) #0}.
b) Let Po,, be the parabolic subgroup of G as in Section 7.6. Then the

intersection Py := H N Pg,, is a minimal parabolic subgroup of H.
c¢) One has a H-equivariant embedding H/Py — G/Pe .

PROOF OF LEMMA 16.3. a) One can choose a Cartan involution
of G that preserves H. The corresponding Cartan projection x of G
satisfies k(H) = m(exp(ah)) and hence a*(k(H)) is bounded if and
only if oz“’(ab) = 0.

b) Let Po,, be the parabolic Lie subalgebra of h associated to the
subset O of II. According to a), the Lie algebra Po,, is defined over
R and the intersection py = b N Po,, is the minimal parabolic Lie
subalgebra of h associated to Ily. Hence its normalizer Py = HN Pg,,

is the minimal parabolic subgroup of H associated to II.
¢) This follows from point b). O
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Now, we still let S, C Peg, denote the support of the p-stationary
measure v, 0, € a the average of o, ®, the covariance 2-tensor of
0o,, 0, its linear span. Let A,, @, : S, — a,/A,, v, € a, be as in
Proposition 14.8.

PROPOSITION 16.4. Same assumptions as in Proposition 16.1.
a) The subgroup A, is F'-stable and the image of the vector v, ina,/A,
15 F'-invariant.
b) The lifting property (15.3) holds. More precisely, there exists a
Hélder continuous function g : S, — a such that, for all (g,n) in
Suppu x S,

06,(9:1) € ou + v,y — @olgn) + @o(n) + Ay

PROOF. a) The F-invariance follows from Corollaries 11.4 and 14.12.

b) As in the proof of Proposition 16.1, we can assume, using Lemmas
16.2 and 16.3, that the finite set S does not contain the local field C.
Let, for any s in S, ¢, be the subspace of a, spanned by the image
under w of the center of G, so that one has

a, = b, P,

Set ¢ = @, g¢s and by = @b, where the sum is over the non-
archimedean local fields K,. Since the set S does not contain C, one
has

a=brPdb e
By Proposition 14.8, we already know that there exist an element v,
of E,, and a Hélder continuous function @ : S, — E/A,, such that, for
any (g,n) in Suppp x S, one has

(16.2) a(g,m) = o, + v, —Po(gn) + Py(n) mod A,

Let o’ be the projection of og, on by @ ¢ in this direct sum. By
construction, the cocycle ¢’ is invariant under G, that is, o'(g, hn) =
o'(g,n) for any g in G, h in G and 7 in Pg,. Let X’ be the compact
metric G-space

X/ = GR,c\P@H and 7 : P@u — X/

be the natural map. Note that X’ is totally discontinuous. We can
consider ¢’ as a cocycle G x X' — by @ ¢. By Proposition 16.1, the
group A, contains bg. By Corollary 14.7, the p-residual image A, of
the cocycle ¢’ on X' is equal to A, /bg. Now Equation (14.7) reads as

(g9, 7(n)) = 0.+ v, — Polgn) + Po(n) mod A,

for g in G and 7 in S,. By Corollary 14.10, for any 7,7 in S, with
w(n) = m(n'), one has Py(n) = Py(n'). In particular, B, factors as a
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Hélder continuous function from a totally discontinuous space to a/A,,.
Hence, it can be lifted as a Holder continuous function ¢q : S, — a.
This ends the proof when S does not contain the local field C. O

16.2. Local limit theorem for S-adic Lie groups.

We can now state and prove the local limit theorem for
products of random matrices in S-adic Lie groups.

For n > 1 and 7 in the support S, of v, we will describe the behavior
of the measure p,, on a given by, for every ¢ € C.(a),

(16.3) ting (V) = [ ¥(00,(9,1m) — no,) duw™(g)

If S = {R} and G is semisimple, we set A, = b, = a, v, = 0 and
we denote by 7, the Lebesgue measure on a defined above.

In general, because of the non-archimedean factors of G, and the
eventual periodicity phenomena in the center of G., the group A, is
only cocompact in a,. We let m, be the Haar measure of A, which
gives mass one to the unit cubes of ®7 in the connected component of

A

"
Let II,, be the average measure, given, for C' C a, by

M,(C) = [y, mu(Go()+C) dv(r).

THEOREM 16.5 (Local limit theorem for oe,(g)). Let G be an alge-
braic reductive S-adic Lie group, F = G/G. and u be a Zariski dense
Borel probability measure on G with a finite exponential moment and
which is aperiodic in F.

We fix a bounded convex subset C C a and R > 0. Then one has
the limit

lim munm(C—l—vn) — I, (v, —nv,+@o(n)+C) = 0.

This limit is uniform for n € S, and v, € a, with ||v,| < v/Rnlogn.

In an analogous way, we leave to the reader the task to translate
the local limit theorem with target 15.15 in this case.

PrRoOOF. Theorem 16.5 follows from Theorem 15.1 applied to the
cocycle og,. The contraction condition and the moment condition
were checked in Lemmas 12.1 and 12.5. The lifting condition of this
cocycle over the limit set .S, was checked in Proposition 16.4. U
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16.3. Local Limit Theorem for the Iwasawa cocycle.

JFrom now on in this chapter, the base field is K =
R, and we will state various versions of the Local Limit
Theorem. In this section we will state the Local Limit
Theorem for the Iwasawa cocycle. We will allow a target
and a moderate deviation.

In this section and the next one, we keep the following notations
from Sections 5.7 and 7.2. The group G is an algebraic semisimple
real Lie group, G = KexpaN is the Iwasawa decomposition, G =
K expa® K. is the Cartan decomposition, P = G/P is the flag variety,
o: G x P — ais the Iwasawa cocycle, and x : G — at is the Cartan
projection.

We also keep the following notations from Sections 9.4 and 12.4.
We let 1 be a Borel probability measure on GG which is Zariski dense in
G and has a finite exponential moment. We set v for the u-stationary
probability measure on P, o, € a*™ for its Lyapunov vector, N, for
the Gaussian probability measure with full support on a which occurs
in the Central Limit Theorem 12.11, ®, € S%(a) for its covariance
2-tensor.

In the following version of the Local Limit Theorem for the Iwasawa
cocycle, we allow a target ¢ and a moderate deviation v,.

THEOREM 16.6. (Local Limit Theorem for o(g)) Let G be an al-
gebraic semisimple real Lie group, p be a Zariski dense Borel prob-
ability measure on G with a finite exponential moment and v be the
p-stationary probability measure on P. We fiz, a continuous function
© € CO%(P), an open bounded convex subset C C a and R > 0. Then,
one has
(16.4) im Semieron Jiomnoecioy £l9m) A (g) = v(p).

n—oo

This limit is uniform for all n in P and all v, € a with ||v,] <

v Rnlogn.

In particular when v, = o(\/n), one has,
lim \/2n)rdet®, " ({g | o(g,n)—no, € C+uvy}) = |C].

Here, |C| denotes the volume of C' for a Lebesgue measure on a, and
the determinant det ®, is computed with respect to the same Lebesgue
measure.

It will be crucial for the applications in the next three sections to
have allowed a target ¢ and a moderate deviation v,.

The main reason to deal only with the field K = R is that in this
case the statements are much simpler.
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PROOF OF THEOREM 16.6. We begin by assuming that the mea-
sure y is aperiodic in F' := G/G.. In this case these claims follow from
Theorem 16.5 and the following two remarks.

First, the limit measure 7, is a Lebesgue measure on the whole
Cartan subspace a because of the aperiodicity of the Iwasawa cocycle
(Proposition 16.1).

Second, the fact that the convergence is uniform for 7 in the whole
flag variety P and not just the the limit set S, follows from Corollary
15.7. Indeed, since the Iwasawa cocycle is aperiodic, the function
can be defined on the whole flag variety as the zero function i, := 0.

We now deal with a measure p which is not aperiodic. We will
deduce our claims from the first case. We recall that F), is the normal
subgroup of the finite group F' = G/G. introduced in Lemma 10.6
and that p, is the cardinality of the cyclic group F/F),. Let G’ be the
algebraic subgroup of G containing G, whose image in F'is F,. The
probability measure p' := p*P# is Zariski dense in G’ and, by Lemma
10.6, the measure y' is aperiodic in F},. We decompose n = n'p, + r
with 0 < r < p,, we rewrite the integral I, in the left hand side of
(16.4) as

, 0(g200m) dp™ (g2) | i (g1)+ R
/{n(gl)ngaogn)?} /{”(92’91”*””“"“6}

CHon—0o(g1,m)—roy

We claim that, uniformly in n and v,, the error terms R,, satisfies,
R, =o(n=4) for all A > 0.

Indeed, we choose a small t; > 0 and we compute, using Chebyshev
inequality,

| R p({gr € G| lIs(g0)ll = (logn)?}) lolls

e oo [ etl=ol dp (gy).

Since, thanks to the bound (7.17), the measure p* also has a finite
exponential moment (9.3), we deduce that |R,| = o(n~4), for all A > 0.

In view of Remark 15.3, we can neglect the error term R, and
apply the first case to the measure y’ in order to estimate the integral
in between the parenthesis. U

<
<

16.4. Local Limit Theorem for the Cartan projection.

We explain in this section how one can deduce the Local
Limit Theorem for the Cartan projection from the Local
Limit Theorem for the Iwasawa cocycle.

We keep the notations of Section 16.3.
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THEOREM 16.7. (Local Limit Theorem for x(g)) Let G be an al-
gebraic semisimple real Lie group, | be a Zariski dense Borel probabil-
ity measure on G with a finite exponential moment. We fiz an open
bounded convexr subset C' C a and R > 0. Then, one has
i #"(9 € G | Klg)—no, € C+uad)

im
n—oo N (C + vy,)

This limit is uniform for all v, € a with ||v,| < v/Rnlogn.
In particular when v, = o(y/n), one has,

lim /@mn) det®, 1" ({g | k(g)—no, € C+uv,}) = |C].

n—o0

= 1.

(16.5)

The main idea in the proof of Theorem 16.7 is to write the variable
K(by - - - b1) as the sum of three variables o (b, - - - bpy1, x¢) + K(bg - - - by) +
r, where xy = by -+ - byx and £ = [(logn)?] and where the error term 7,
decays to zero outside a set whose probability decays faster than any
power of n. We will deal with the first term thanks to the Local Limit
Theorem for the Iwasawa cocycle. The second term will be seen as a
moderate deviation.

Again, a key ingredient in the proof of Theorem 16.7 will be the
following lower bound for the denominator of the left hand side of (16.5)
(see Remark 15.3)

(16.6) NI(C 4 v,) > Agn 72

where the constant Ag depends only on u, R and C'. This lower bound
will allow us to neglect subsets S,, of G whose measure p**(S,,) decays
faster than any power of n.

The proof will also rely on the following lemma which gives a very
precise estimate of the Cartan projection in terms of the Iwasawa co-
cycle.

LEMMA 16.8. Let G be an algebraic semisimple real Lie group, i be
a Zariski dense Borel probability measure on G with a finite exponential
moment. For all € > 0, there exists ¢ > 0 and €y > 0 such that, for all
n > > Ly, for all n in P, there exists a subset Sy ¢, C G x G with

Iu/*(nff) ® M*E(sn,&n) > 1 — efcf
and for all (g2, 1) in Spe,, one has
(16.7) 1%(9291) = (g2, 91m) — w(gn)|] < ™.

Using the phrasing of (13.35), Lemma 16.8 tells us that, uniformly
for n in P, the following property is true except on an exponentially
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small set
(16.8)  ||k(bp---by) — o (by -+ by, be--byn) — k(b ---by)| < e .

PRrROOF OF LEMMA 16.8. In this proof we will assume G to be con-
nected. The general case is left to the reader. Using the interpretation
of the Iwasawa cocycle and the Cartan projection in terms of norms in
various representations of G given in Lemmas 5.32 and 5.33, we only
have to check the following claim.

Let V. =R and p be a probability measure on GL(V) with a finite
exponential moment such that I', is proximal and strongly irreducible.
Then, uniformly for nonzero v in V, the following property is true
except on an exponentially small set

(16.9)  [log||bn---bi]| —log Izl —log |be - by || | < e,

Indeed we will prove successively that, uniformly for x = Rv in
P(V'), the following properties (16.10) to (16.15) are true except on an
exponentially small set.

First, according to the simplicity of the first Lyapunov exponent
(Corollary 9.15) and to the Large Deviation Principle (Theorem 12.17),
the property

(16.10) Yro(bg---bp) < e

is true except on an exponentially small set. Hence, using Lemma 13.2
and its notations, the properties

161]_ log bn"'bl _10gM _log(S x7ym S 6—6€ and
flvll b1

(16.12) |log ||bg - - - by || — log W —logd(w, yp,.p,) | < e et
are true except on an exponentially small set.
Second, let A;,, > Ay, be the two first Lyapunov exponents of .

According to (13.5) and (13.6), the properties
(16.13) 5(z,yy ) > e and

(16.14) d(ygz--bl?yg:mbl) < 6—()\1,u—)\2,u—a)£

(with = Ruv) are true except on an exponentially small set. These
two bounds (16.13) and (16.14) imply that the property

(1615) ‘ lOg (5(:1;‘, y;:rlzbl) — IOg (5(1-’ ngblﬂ < e*()\l,H*AQ,H*QE)E

is true except on an exponentially small set.
Now, the bounds (16.11), (16.12), (16.15) imply the claim (16.9).
O
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PROOF OF THEOREM 16.7. Our claims follow from the Local Limit
Theorem 16.6 for the Iwasawa cocycle and from Lemma 16.8.

We write n = m + £ with £ = [(logn)?], and g = gog; with gy =
by -+ by and gy = by - - - by. We first prove the upper bound in (16.5).
We fix € > 0 and introduce the e-neighborhood C* of C.

Let M = 2||o,||. According to the Large Deviation Principle (The-
orem 12.17), the following property is true except on an exponentially
small set

(16.16) (e~ by)]| < M.

Combining (16.8) with (16.16), one gets the following upper bound for
the numerator N, of the left hand side of (16.5)

/ w0 {gz | 092, g12)+r(g1) —noy, € C v, }) dp(g1) + Ry
{

g lI<Mey
where, uniformly in v,, the error term R, decays exponentially in /¢
and hence decays faster than any power of n.
Hence the left-hand side of (16.5) is bounded, uniformly in v, by

, Ny v +w)  |CF
im sup sup — =
n—oo Jul<Mogny?  NpM(C +0) O] =0

[v][?<Rnlogn

1.

This proves the upper bound in (16.5). The lower bound is proved in
the same way using the convex sets C. introduced in (15.19). u

16.5. Local Limit Theorem for the norm.

We explain in this section how one can prove the Local
Limit Theorem both for the norm of the matrices and
for the norm of vectors using the Local Limit Theorem
for the Iwasawa cocycle.

In this section and the next one we come back to the assumptions
and keep the notation A;,, ®;, and Ng, , from Section 13.7. We
assume moreover that K = R, that the Borel probability measure u
is supported by SL(V) and that I', is unbounded. These conditions
ensure that the Zariski closure G of T', is a non-compact reductive
group with compact center, that Ay, > 0 and that ®;, > 0. We
assume also that the Euclidean norm ||.|| in V' is good for G as defined
in Lemma 5.33. Note that the construction given in this Lemma 5.33
proves the existence of such a good norm for any strongly irreducible
representation of a reductive algebraic real Lie group.

THEOREM 16.9. (Local Limit Theorem for log||g||) Let V = R4
and p be a Borel probability measure on SL(V') with a finite exponential
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moment such that I',, is unbounded and strongly irreducible. Let a; < as
and R > 0. Then, one has

i #(9 € G [ loglgll—nAuy € [ar, as] +ta})
n—00 Nqﬁ?u ([al, CLQ] + tn>

This limit is uniform for all t, € R with |t,| < +/Rnlogn.
In particular when t, = o(/n), one has

rzll—>r§o V210, n ' "({g € G | log ||gll—nAi, € (a1, as]+tn}) = as — ay.

PrROOF OF THEOREM 16.9. This is a straightforward application
of the Local Limit Theorem for the Cartan projection (Theorem 16.7)
combined with the interpretation of the Cartan projection in terms of
representations (Lemmas 5.32, 5.33 and Section 7.2). O

=1.

THEOREM 16.10. (Local Limit Theorem for log ||gv||) Let V = R4
and p be a Borel probability measure on SL(V') with a finite exponential
moment such that I',, is unbounded and strongly irreducible. Let a; < as
and R > 0. Then, one has

1617) 1t A9 € Gllogllgvll=niy € [, aa]+a})
e N&“ﬁu([al, as] +t,)

This limit is uniform for all v in V with ||v|| = 1 and all t, € R with
ltn| < /Rnlogn. In particular when t,, = o(y/n), one has

nh_)rglo V21, n " ({g € G | log ||gv||—nA1, € [ar, as]+1,}) = as — a.

When I, is proximal this Theorem 16.10 may be seen as a direct
consequence of the general Local Limit Theorem 15.1 for a cocycle over
a p-contracting action applied to the norm cocycle

=1

o1(g,x) = log HHgvaH where z = Ru.

The main issue in the proof of Theorem 16.10 is to control the norm
cocycle o, without this proximality assumption. Roughly speaking, the
idea is to write the variable o1 (b, - - - b1, x) as the sum of two variables
o1(by -+ o1, we) +o1(be -+ by, ) with mp = by -+ - bz and £ = [(logn)?].
The point z, will be very quickly approximated by another point z
living on a r-dimensional subspace 2, which belongs to the limit set
AT where 7 is the proximal dimension of I',. For this point, the norm
cocycle can be computed thanks to the Iwasawa cocycle. The second
term will be seen as a moderate deviation.

We will need the following Lemma 16.11 in which we keep the no-
tations 27" € Gg_(V) for the density (d—r)-dimensional subspace of
tg introduced in Lemma 13.8.
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LEMMA 16.11. Let V = R, 2 = Ro, 2/ = Rv' in P(V) and g be
an element of GL(V') whose r first singular values are equal. Then one
has the bound

/ 2 d /

||l |l | — min(d(x,z;”),d(x’,z;”))‘

Proor oF LEMMA 16.11. With no loss of generality, we can choose
the vectors such that ||v|| = ||v/|| = 1, such that |jv — /|| < /2 d(z, 2")
and such that ||gv'|| > |lgv||. Using the bound log(1 + ¢) < ¢ for all
t > 0, and using Lemma 13.8, one computes

lg'll _ llgllllv =o'l _ v2 d(z,2")
lgoll = llgell = d(x, z)
This proves (16.18). O

log

We will also need a few facts and notations from the previous chap-
ters. Since K = R, by Lemma 5.23, the proximal dimension r of I,
is also the proximal dimension of G. Since V' is strongly irreducible,
V' has a highest weight x. The corresponding weight space VX C V
has dimension r. For any n = ¢gP. in the flag variety P = G/P., we
denote by V,, the space V,, := gVX as in (5.10). The map n — V,, is
a G-equivariant map from P to G, (V). By construction, the image of
this map is the limit set Ay, defined in Lemma 3.2. We introduce the
closed subset of P(V),

ZG = {l’ c P(V) | 37) eP y T E ]P)(‘/T])} = UZEATG <

Since the norm on V' is good, according to Lemma 5.33, for g in G, n
in P and v nonzero in V,, one has,

(16.19) log sl = x (o9, m))

where o is the Iwasawa cocycle.

Let Ay, > ... > Ay, be the Lyapunov exponents of ;. We recall
that, according to Corollary 9.15, one has A\, = --- = Ay > Aji
where 7 is the proximal dimension of I',. The following Lemma 16.12
tells us that, uniformly in = € P(V'), the property

d(bz - blx, ZG) < 6—(>\1,u—>\r+1,u+a)£

is true except on an exponentially small set.

LEMMA 16.12. Let V = R? and pu be a Borel probability measure
on SL(V) such that T, is unbounded, strongly irreducible and p has
a finite exponential moment. For all ¢ > 0, there exists ¢ > 0 and
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Uy > 0 such that, for all £ > Ly, for all x in P(V), there exists a subset
Sgw C G with
M*Z(SK,Q:) Z 1— e—cé

and for all g1 in Se., there exists a point x . in Zg such that

(1620) d(glx’x/ ) < 6_(>\1,u—)\7~+1,u+€)€.

g1z
PROOF OF THEOREM 16.12. The proof is similar to the one of
(13.6). The point 7 , is (a measurable choice of) a point on Zg whose
distance to g« is minimal. O

PROOF OF THEOREM 16.10. We write n = m~+{ with ¢ = [(logn)?],
and g = gog1 with go = b, ---byy1 and g3 = by - - - by. We first prove the
upper bound in (16.17). We fix ¢ > 0 and introduce the e-neighborhood
I¢ of the interval I := [aq, as).

Let M = 2\, ,. According to the Large Deviation Principle (The-
orem 12.17), the following property is true except on an exponentially
small set

(16.21) b - - ba|| < M.

According to (13.25), uniformly for 2’ in P(V'), the following property
is true except on an exponentially small set

(16.22) d(a', 2 ) = e

Combining (16.18), (16.20), (16.21) and (16.22), one gets the following
upper bound for the numerator N,, of the left hand side of (16.17)

*m 01(92,24, o) +01(g1,)—nA1 pEIF +in W,
/{ nesee 17 ({02 17 iy e }) di (o) + B
log |91 [|<M¢
where, uniformly in ¢,,, the error term R,, decays exponentially in ¢ and
hence decays faster than any power of n.
Hence, using (16.19) and the Local Limit Theorem 16.6 for the
Iwasawa cocycle, one can bound, uniformly in ¢,,, the left-hand side of

(16.17) by
*(n—~) [ 1e c
Ny vt s)|re|

limsup  sup ” =— —1
n—oo s <M(logn)? N‘I)Tf’# (] + t) |I| e—0
t2 < Rnlogn

This proves the upper bound in (16.17). The lower bound is proved in
the same way using smaller intervals I.. O

It is plausible that the assumption that the Euclidean norm is good
in Theorem 16.9 and 16.10 can be removed when I', is absolutely
strongly irreducible.






Part 5

Appendix



1. Convergence of sequences of random variables

In this appendix, we establish more or less classical, purely proba-
bilistic results about convergence of sequences of random variables.

1.1. Uniform integrability.

The concept of uniform integrability is a tool which is
useful for proving convergence of integrals when one can-
not apply directly Lebesgue Convergence Theorem.

We first recall a usual lemma that we used in Section 3.5.

Let (€2, B,P) be a probability space. A subset A € B is some-
times called an event. A measurable function ¢ : & — R on (2, B)
is sometimes called a random wvariable. The law of i is the proba-
bility measure on R which is the image of P by . We will write
Eli] := [, [¢|dP for the L'-norm of ¢ and, when this norm is finite,
we will write E(¢) := fQ 1 dP for the expectation or space average of
this random variable ).

A subset Z of LY(Q2, B,P) is said to be uniformly integrable if it is
bounded and if, for any sequence A,, in B with P(A4,,) — 0, one has

supE(|1]14,) —— 0.
weT n—00

ExaMPLE 1.1. Let p > 1. A sequence v, of functions which is
bounded in L?(£2, B, P) i.e. such that sup,,», E(|¢,[?) < oo is uniformly
integrable. Indeed this follows from Hoélder inequality

1 _1
E(|¢nl1a,) < E([l")? P(A4y)' 7 — 0.

By Dunford-Pettis Theorem, a subset of L'(2, B,P) is uniformly
integrable if and only if it is relatively compact for the weak topology.
See [38, Chap. II, Thm T25]. We will only use the following Lemma
1.2 which is an easy consequence of Dunford-Pettis Theorem.

LEMMA 1.2. (Uniform integrability) Let 1, be a sequence of in-
tegrable functions on ) which converges P-almost surely. Then this
sequence converges in L1(Q, B,P) if and only if it is uniformly inte-
grable.

ProOOF OF LEMMA 1.2. We just sketch the proof of this classical
result. See [91, Chap. II-5].
= Set ¢ for the limit. Since by assumption lim E(|¢,, —v|) =0,

we may assume 1, = v for all n > 1. Since, by Lebesgue’s convergence
theorem, one has A}im E(|¢|1jy=n) = 0, our assertion follows from the
—00

bound E(|¢[14,) < NP(Ay) + E(|[¢|1jy1=n).



1. CONVERGENCE OF SEQUENCES OF RANDOM VARIABLES 277

< By assumption one has sup,,~; E(|¢,|) < co. By Fatou Lemma
the limit ¢ is integrable. Hence using the first implication, we can
assume ¢ = 0. Since 1, converges almost surely to 0, the sets A, :=
{|ton] > 1} satisfy lim IED(A ) = 0. Hence by assumption one has

llm E(|¢n|1 4,) = O and by Lebesgue convergence theorem one has
hm E(\wn\l 4c) = 0. Adding these equations proves that 1), converges
f0 0 in .. O

1.2. Martingale convergence Theorem.

We begin by recalling Doob martingale convergence The-
orem that we use both in Sections 1.5 and 1.3.

Let (€2, B,IP) be a probability space. When B’ is a sub-c-algebra
of B, we write E(¢ | B') for the conditional expectation of a random
variable ¢ with respect to B’ (when it is defined) and P(A | B') :=
E(14 | B') for the conditional probability of an event A.

Let (B,)n>1 be an increasing sequence of sub-o-algebras of B. We
recall that a martingale with respect to B, is a sequence v, of P-
integrable functions on €2 such that, for all n > 1, 1, is the conditional
expection of 1,1 with respect to B, that is,

¢n = E(¢n+1 ‘ Bn)

THEOREM 1.3. (Doob martingale convergence theorem) Let (2, B, P)
be a probability space, B, an increasing sequence of sub-o-algebras of
B and 1, a martingale with respect to B,,.

a) If sup, - 1 El,| < oo, then there exists a P-integrable function s

on ) such that 1, —— 1 P-almost surely.

b) If the 1, are uniformly integrable, then one has E|i, — o] —— 0.

n—oo

The proof of 1.3 will use the following maximal inequality
LEMMA 1.4. Let v, be a martingale and € > 0. Then
P(SUPlgkgnwk‘ >¢) < et E(]1n]).
ProOF. We want to bound P(A) for A = Uy <<, Ax where
A =A{|t1] <e,..., || <e, || > e} € By.
We compute, using Chebyshev inequality and the martingale property,

P(A) = 35 P(A) < a7 i B([enlla,) < 67! 200 E(lnl14,)
< e 'E(|¢l),
which is the required inequality. 0
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PROOF OF THEOREM 1.3 FOR L2-BOUNDED MARTINGALES. Since
we will only use this theorem in this case we will give the proof under
the assumption: sup,~;E(¥?) < cc.

Using the martingale property, one has for m < n,

E((wn - wm)2) = ]E((wn)Z) - E((wm)Q)

Hence the sequence E((1/,,)?) is non decreasing, hence it is convergent,
hence the sequence 1), is a Cauchy sequence in L2, and hence 1),, con-
verges in L2-norm to some function 1o, € L2. Note that 1), converges
also to 1 in L'-norm.

According to Lemma 1.4, for ¢ > 0 and m > 1, one has

P(Suanm‘wn - wm| > 5) < 571 E<|woo — Qljm|> m 0.

This proves that the sequence 1, converges also P-almost surely to-
wards Ys. O

For a general proof, see for example [62].

1.3. Kolmogorov’s Law of Large Numbers.

We now recall briefly Kolmogorov’s law of large num-
bers and we explain how it can be deduced from Doob’s
martingale convergence theorem.

Let (€2, B,P) be a probability space. Two sub-o-algebras B’ and B”
of B are said to be independent if for every B’ € B’ and B” € B” one has
P(B'N B") =P(B")P(B"). A sequence of functions ¢,, on B is said to
be independent if, for every n > 1, the sub-o-algebra generated by ¢, 11
is independent from the sub-o-algebra B,, generated by ¢1,..., ..

We have the classical

THEOREM 1.5. (Kolmogorov’s Law of Large Numbers) Let (¢,,)n>1
be a sequence of integrable random variables which are independent and
have the same law. Then one has P-almost surely

st on) —— E(on).

This sequence converges also in L i.e.

E|%(‘Pl + -+ on) —E(p1)| IR 0.

We will need a stronger version of Theorem 1.5 where the same
conclusion is obtained under much weaker assumptions: the assump-
tion that the variables have the same law is replaced by a domination
by an integrable law and the independence assumption is replaced by
a conditional recentering.
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THEOREM 1.6. (Kolmogorov’s Law of Large Numbers bis) Let (¢5,)n>1
be a sequence of random variables and B,, be an increasing sequence of
sub-o-algebras such that @, is B,-measurable. Assume that there exists
an integrable random variable @ such that, for everyt >0, n > 1, one
has almost surely

(1.1) P({ln| >t} | Bna) <P > 1).

Then one has almost surely

L5 (ox — E(pr | By_1)) —— 0.

n—oo

This sequence converges also in LY with a speed depending only on @,
i.e. there exist a sequence ¢, = c¢,(¢) —— 0 such that

(1.2) |7 > i (or — Elpr | Bio1))| < cn(e)-

We note that Condition (1.1) implies that for every t > 0, n > 1,
one has

(1.3) P(lgal > £) < P(o > ).
We will need the following elementary trick:

LEMMA 1.7. (Kronecker) Let (v,)n>1 be a sequence in a normed vec-
tor space such that the series Y ;- %Uk converges. Then the sequence

1 n
=D b1 Uk converges to 0.

PRQOF. By assumption, the sequence 1, := Zzzl %vk converges.
Hence, its Cesaro average converges to the same limit. Now, we have

% > ket Uk = % > ket Zlgzl %W = % > nigﬂvf = RTH¢” - % > iy Ve

The result follows. O

PrROOF OF THEOREM 1.6. First step: We introduce the trun-
cated random variables

B, = pn min(1, W)'

These functions @, are equal to ¢, when |p,| < n, to n when ¢, >n
and to —n when ¢,, < —n. We check that almost surely ¢, —p,, is equal
to 0 except for finitely many n. We also check that ¢, —©, converges
to 0 in L.

The first statement follows from Borel-Cantelli Lemma since one
computes using (1.3)

anl P(on #9,) = anl P(lon| > n) < anl P(p > n) <E(p)
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which is finite since ¢ is integrable. The second statement follows from
a similar computation using (1.3)

E('SOn - @n‘ = fOO]P) ’@n| > t) dt
< f gO > t dt < E(cpl{¢>n})

which goes to 0 for n — oo by Lebesgue convergence theorem.
Second step: We introduce the random variables

®, :=E(p, | Bo_1) and @, :=E(@, | Bo_1)

and we check that outside a null subset, the sequence ®,, —®,, converges
uniformly to 0. Indeed this follows from a similar computation outside
a null subset using (1.1)

|¢)n _6n| = {|S0n| > t} | B, - 1)dt

Ju
< [TP(e > t)dt <E(plipsn)
which goes to 0 for n — oc.

Third step: We introduce the random variables

% = ZZ:1 %(@k - 5’6)
and we check that this sequence 1, converges almost surely and in L*
towards a function 1. This follows from Doob’s martingale conver-
gence theorem 1.3: by construction 1, is a martingale with respect
to B,. We only have to check that the sequence 1, is bounded in 1>

and hence uniformly integrable. Hence we compute using orthogonality
properties of the conditional expectation

E(y7) = Yhor wB((@ — ®)?) < R:= 3077, mE(@).

It remains to check that this right-hand side R is finite. For t > 0, we
set Fy(t) = P(Jgr| > t) and F(t) := P(p > t). As in the first steps, but
in a more tricky way, using integration by parts and (1.1), we get

R=ZZ°1ki2f0’“2tFk )dt<2f1§fo’“2tﬁ” dt
< Sfo t)dt = 8]E(ga) 0.
Fourth step: We just combine the three first steps:
Set ¢y, = E(gpl{@n}) By taking a Cesaro average in the first

step, the sequence + 1" | (¢r — P;) converges to 0 almost surely and
one has the L'-bound

B[y ko1 (or = Bl < 5 20k cae
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Using the second step in the same way, the sequence %Zzzl((bk —

®;,) converges to 0 almost surely and one also has the L!-bound

El5 3 et (®r = Pu)| < 5 300 e

Using Lemma 1.7, we deduce from the third step that the sequence
L3 i1 (@) — Pi) converges to 0 almost surely. Using the same com-
putation as in the proof of Lemma 1.7, one gets the equality

%Zzzl (@k - 6k’) = Yn— %ZZ; (o2
Lhoo + (thn — Vo) = £ 3021 (Vk — Vo)
and the L'-bound

ElL S0 (@ — k)| < 2E[Woo] + Elthoo — | + L 021 Elthos — Uil.

Now, reasoning as in the third step, one gets

E((Yoo = ¥n)?) < Xl,s1 wE@R)

< dy= N & [T LR At

This sequence d,, = d,(¢) converges to 0 for n — oo, since the following
series is convergent:

X 2 MR dt < X & (M tF(t)dt

m=1m

< 8 [7TF(t)dt < 8E(p) < oo.

Besides, still by the third step and Cauchy-Schwarz inequality, one has
also

Eltoo| < 2E(0)"2.
Now, (1.2) follows with

en= 23" erp+ 2E(0) 2+ P+ 10 a4

T on

O

The following statement is not a direct consequence of Theorem 1.6
but its proof is similar and much simpler since no truncation step is
needed.

COROLLARY 1.8. Let (pn)n>1 be a sequence of random variables
which are bounded in L% and such that,

E(on | @1,y 0n-1) =0 forall n > 1.

Then the sequence %22:1 o converges to 0 almost surely and in L2,



282

PRrOOF. By assumption, the sequence of random variables
wn = ZZ:l %Spk

is a martingale with respect to B,. This martingale is bounded in L2
since

E(2) = icl_Z]E(SO%) < (O k%) SUPg>1 E(¢}) < oco.

Hence by Doob’s martingale convergence theorem, 1,, converges almost
surely and in L2. We conclude thanks to Lemma 1.7 that %22:1 Dk
converges to 0 almost surely and in L? when n — oo. U

2. Essential spectrum of bounded operators

Let E be a (complex) Banach space and T be a bounded endomor-
phism of E. In this chapter, we will introduce a nonempty closed subset
0.(T) of the spectrum o(T') of T, called the essential spectrum of 7.
The essential spectral radius p.(T") of T' will be defined as the largest
modulus of an element of the essential spectrum. If X\ is a spectral
value of T" whose modulus is larger than p.(7"), then A is an eigenvalue
of T'. Now, the essential spectral radius may be computed by using a
formula, due to Nussbaum. We will then apply this formula for dom-
inating the essential spectral radius under certain assumptions which
are natural in a dynamical setting. This result was used in Chapters
14 and 15 for proving the Local Limit Theorem.

In this appendix, we will freely use the basic results of Functional
Analysis as in Rudin books [107] and [108] .

2.1. Compact operators.

In this section, we recall the definition of compact oper-
ators and some elementary properties.

Let £ be a complex Banach space. For any x in £ and r > 0, we
let Bg(x,r) (or B(x,r) when there is no ambiguity) denote the closed
ball with center x and radius r in E.

Let E, F be Banach spaces. We let B(E, F) denote the space of
bounded linear operators from E to F', equipped with its natural Banach
space structure. When E = F, we write B(E) for B(E, E). It carries
a natural srtructure of Banach algebra.

A bounded operator T' : E — F' is said to be compact if the set
TB(0,1) is relatively compact in F' (for the norm topology). This
amounts to say that the image under T of any bounded subset of F
is relatively compact in F. We let K(E, F) (or K(E) when E = F)
denote the set of compact operators from E to F.
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LEMMA 2.1. Let E,F,G be Banach spaces. The set K(E,F) of
compact operators from E to F is a closed subspace of B(E,F). One
has

B(F,G)K(B, F) ¢ K(E,G) and K(F,G)B(E, F) ¢ K(E,G).
In particular, the space K(E) is an ideal in the Banach algebra B(E).

The proof of closedness of the space of compact operators (such as
several other proofs below) uses the following classical characterization
of relatively compact subsets of complete metric spaces: a subset Y of
a complete metric space (X, d) is relatively compact if and only if, for
every € > 0, Y is contained in a finite union of balls of X with radius
€.

PROOF OF LEMMA 2.1. Any scalar multiple of a compact operator
is clearly compact. If S and T" are compact operators from E to F,
S + T is compact since the sum map F' X F' — F is continuous.

Assume 7' is a compact operator from F to F' and S is any operator
in B(F,G). Then, since S is continuous and 7T'B(0,1) is relatively
compact in F', STB(0, 1) is relatively compact, hence ST is compact.
Now, assume 7" is in IC(F,G) and S is in B(E,F). Since SB(0,1)
is bounded and T is compact, T'SB(0,1) is compact. Hence T'S is
compact.

It remains to check that IC(E, F) is closed in B(E, F). Let (T},) be
a sequence in IC(E, F') that converges in the norm topology towards
an operator 1" and let us prove that T is compact. We will use the
characterization above of relatively compact subsets of F. Fix ¢ > 0.
Chose n such that ||T"—T,|| < e. Then, since T,,B(0, 1) is relatively
compact in F', there exist yi,...,y, in F' with

T,B(0,1) C B(yi,e) U---U B(yp, e).
As |[T = T,| < e, we get
TB(0,1) C By, 2) U -~ U Bly,, 2).

Since this holds for any e, TB(0, 1) is compact, which completes the
proof. O

Let E and F' be Banach spaces and E* and F* be their topological
dual spaces. For any T in B(E, F'), we let T* denote its adjoint operator:
this is the bounded operator

F*— E*
ffoT.

We will sometimes use duality arguments which rely on the
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LEMMA 2.2. A bounded operator T : E — F' is compact if and only
if T* 1s compact.

PROOF. Assume T is compact. Fix ¢ > 0 and yi,...,y, in ' with
TBg(0,1) C Bp(y1,€) U ---U Br(yp, €).

Consider the finite-dimensional subspace G of F' spanned by w1, ..., yp.
Since the dual space of G is also finite dimensional, its unit ball is
compact and there exist linear functionals fi, ..., f, in Bg«(0,1) such
that
Bg*(o, 1) C BG*(fl,é/M) U---u Bg*(fq,é/M)7

where M = max;<;<, ||y:||. By Hahn-Banach theorem, fi,..., f, may
be extended as linear functionals on F' which have norm < 1 (which
we still denote by fi,..., f,)-

Now, pick f in Bg«(0,1). By construction, there exists 1 < j < ¢
with

(= Fiul <ellyl

for any y in G. We claim that we have ||T*f —T*f;|| < 3¢ in E*.
Indeed, for any = in Bg(0, 1), there exists 1 < i < pwith ||Tx — ;|| <e.
We then have

<T*f - T*fj7x> = <fa Tx — yz> + <f - fjayi> - <fj,Tle' - yz>a
hence [(T*f —T*f;,z)| < 3e. Thus, we have
TBF* (07 1) C BE* (T*fl, 35) U---u BE* (T*fq7 35)7

and T™ is compact since this holds for any ¢ > 0.

Conversely, assume 7™ is compact. By the result above, the bounded
operator T** between the bidual spaces E** and F** is compact. If E
and F' are reflexive, we are done. In general, F and F embed isomet-
rically as closed subspaces in E** and F** and T'Bg(0, 1) is contained
in the intersection of T**Bp«(0,1) with the image of F' in F**. As
T**Bp+(0,1) is relatively compact in F** so is TBg(0,1) in F, which
completes the proof. O

2.2. Bounded operators and their adjoints.

We recall classical properties of the adjoint operators of
bounded operators.

Let E be a Banach space and E* be the topological dual space of
E. If F is a closed subspace of E, we let F* denote the orthogonal
subspace of F' in E*, that is, the space of linear functionals f on F
such that f is 0 on F. We recall that the weak-x topology on E* is
the topology of locally convex vector space defined by the family of
seminorms on E* given by f +— |f(z)| where x varies in E.
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To be able to describe the spectral structure of compact operators,
we shall need elementary properties of adjoint operators, which are
summarized in the following lemma.

LEmMmA 2.3. Let E,F be Banach spaces and T : E — F be a
bounded linear operator.
a) We have (ImT)t = Ker T* and Im T* is weak-* dense in (Ker T')*.
b) In particular, the operator T has closed image if and only if T* has
closed image. In this case, one has (Ker T)* = Im T*.

The proof of this Lemma uses quotients of Banach spaces. In all
the sequel, if E/ is a Banach space and F' is a closed subspace of E, we
equip the quotient space E/F with the norm defined by, for any x in
E,

2.1 F|| = inf .
(2.1) lz + F|l = inf [lz + y]|

This induces a Banach space structure on £/ F. Since Formula (2.1) de-
fines a norm, there exists a vector z € E with ||z|| =2 and ||z —y|| > 1
for any y in F'. Such a vector x will be useful in the next sections. In-
deed it will play the role of an almost-normal direction to I’ eventhough
E is not assumed to be a Hilbert space. Note that the natural maps
F+ — (E/F)* and E*/F+ — F* are isometries (in the second case,
this follows by the Hahn-Banach Theorem).

PROOF OF LEMMA 2.3. a) For any f in E*, we have
T'f=0oVreE (f.T2)=0% finr =0,
hence one has the equality (ImT')* = Ker T™.
Now, observe that one has Im T* C (Ker T')*: indeed, if f is in F*
and z is in KerT', one has
(T*f,z) = (f,Tx) = 0.
Hence by Hahn-Banach theorem applied in F', one has
KerT ={x € E|Vf € F* (T"f,xz) =0}.

Then by Hahn-Banach theorem applied to the weak-* topology on E*,
the space (Ker T)* is the weak-* closure of Im 7.
b) Assume now 7" has closed image. Then T factors as a composition

E — E/KerT — F,

where, by the open mapping Theorem, the second map is an isomor-
phism with its image. We thus have a factorisation of 7™ as

F*— (E/KerT)" — E*.
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where the first map is an isomorphism. Therefore, the space Im7T™ is
closed in E* and equal to (Ker T')*.

It remains to prove that if Im 7™ is closed in E*, Im T is closed in
F.

Assume first that T has dense image, so that, since Ker T’ = (Im T+,
T™ is injective. Then, since we assumed that T has closed image, by
the open mapping Theorem, there exists € > 0 such that, for every f
in F*, one has [|[T*f|| > ¢/ f||. We claim that one has

(2.2) TBg(0,1) O Bp(0,e).

We will argue as in the proof of the open mapping Theorem. Indeed,
as T'Bg(0,1) is convex, by the Hahn-Banach Theorem, for every y in

F N\ TBg(0,1), there exists f in F* with
[(fol > sup [(f,To)|=[T"f]| =[]

z€BE(0,1)
We get ||y|| > ¢, hence the claim (2.2). This implies that one has
(2.3) TBg(0,2) D Br(0,¢)
For any y = yo in Br(0,¢), one can find xy in Bg(0, 1) such that

Y1 =Yo — Tz

has norm < ¢/2. Iterating this process, one construct a sequence (z,,)
such that, for any n, ||z,|| < 27" and

Ynt1 =Yo — T(xo+ -+ )

has norm < 27" As 37 o llzall £ 2, 7 = 3, [[za]| belongs to
Bg(0,2) and by construction, Tz = y. This proves (2.3). In particular,
T is surjective and we are done with the result under the assumption
that T has dense image.

In general, we set G = Im 7T, so that 7 may be written as a com-
position of maps

E-LG—F
where the first one has dense image. The corresponding decomposition
for T* is of the form
F* -G 5 B
In this decomposition, the first map is surjective and the second one
has closed image. In other words, the adjoint of the operator £ —

G,z — Tz has closed image. Hence, by the first part of the proof, this
operator is surjective, which completes the proof. 0
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2.3. Spectrum of compact operators.

In this section, we describe the structure of the spectrum
of compact operators.

We will now assume E = F. If T' is a bounded operator of E, we
let o(T) (or o(T) when there is no ambiguity) denote its spectrum,
that is, the set of A in C such that 7" — X is not invertible, and we let
p(T) denote the spectral radius of T that is, the radius of the smallest
disc centered at 0 in C which contains o(7"). We assume that E has
infinite dimension (else, every operator is compact and the spectral
result below is trivial).

PROPOSITION 2.4. LetT be a compact bounded operator of E. Then
o(T) is the union of 0 and an at most countable subset of C with 0 as
its unique cluster point. For every A # 0 in o(T'), the space E splits
uniquely as a direct sum E = E\ ® F) where E\ and F are T-stable
closed subspaces of E, Ey has finite dimension, og, (T) = {A} and
orn (T) =0o(T) ~ {\}.

The proof relies on a succession of lemmas where we will prove that
the spaces B\ = |J, Ker (T' — \)" and F) = (), Im (7" — )" have the
required properties.

First, we study eigenspaces of T'.

LEMMA 2.5. Let T be a compact bounded operator of E and X be
a nonzero complex number. For any r > 1, the space Ker (T' — \)" is
finite-dimensional.

PRrOOF. First assume we have r = 1. Set F' = Ker(T'— ). We have
TBr(0,1) = Bp(0,|A]). Therefore, Br(0,|A]) is relatively compact in
F. As |\| # 0, Riesz’s Theorem implies that F' has finite dimension.

Now, in general, set S = (T'— X\)" — (=\)", so that (T'— \)" =
S+ (=A)". By Lemma 2.1, S is compact, hence Ker(T — \)" is finite-
dimensional. O

Now duality allows to recover informations on Im(7" — \).

LEMMA 2.6. Let T be a compact bounded operator of E and X be
a nonzero complex number. For any r > 1, the space Im (T — \)" is
closed with finite codimension.

PRrROOF. Again, as in the proof of Lemma 2.5, it suffices to deal
with the case r = 1.

First, let us prove that Im(7"— ) is closed. Set F' = E/Ker(T — \)
and let S : FF — FE be the bounded injective operator induced by
(T'— X). We claim that there exists ¢ > 0 with ||[Sy|| > ¢]y| for
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any y in F' (which implies the result). Indeed, if this is not the case,
there exists a sequence (y,,) of unit vectors in F' with ||Sy,| —— 0.

Let 7 : E — F be the quotient map. For any n, pick z, in E with
m(x,) =y, and 1 < ||z,|| < 2. By the definition of S, we have

Tx, — Xz, —— 0.

As (z,) is bounded in E and T is compact, after having extracted a
subsequence, we can assume that there exists z in F with

Tx, — z.
n—oo

We also get

AL, — Z.

n—oo
1
)

t € Ker(T — \). Applying 7 gives

z, we have x, —— t and Tt = At, that is

n—oo

Hence, if we set t =

= () o (1) =0,
a contradiction. Theferore S has closed image and Im(7" — ) is closed.

Set G = Im(T — )\). By Lemma 2.3, we have G+ = Ker(T* — \).
Since, by Lemma 2.2, the operator 1™ is compact, Lemma 2.5 implies
that G+ is finite-dimensional. As G+ may be seen as the topological
dual space of F/G, the codimension of Im(7" — \) is finite. O

Now, we prove that the non-increasing sequence of subspaces from
Lemma 2.7 eventually becomes stationary.

LEMMA 2.7. Let T be a compact bounded operator of E and X be
a nonzero complex number. There exits v > 0 with Im (T — \)" =
Im (T — \)"1.

PROOF. Assume this is not the case and set, for any r, G, =
Im (7" — \)", which is a closed subspace of ' by Lemma 2.6. By as-
sumption, we have G,;1 € G,. Since Formula (2.1) defines a norm,
there exists z, € G, with ||z,|| = 2 and ||z, — y|| > 1 for any y in G, 1.

For r < s, we have

Tr, —Trs = A, + (Tx, — Av, — Txy),

hence, as Tz, — Az, — Tz, belongs to G,11, ||Tz, — Txs|| > |A\|. In
particular, the sequence (T'z,) has no converging subsequence, which
contradicts the compactness of T'. O

Finally, we prove the dual statement to the one of Lemma 2.7:
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LEMMA 2.8. Let T be a compact bounded operator of E and X be
a nonzero complex number. There exits r > 0 with Ker (T — \)" =

Ker (T — \)"1.

ProOF. We prove this statement by duality. Indeed, let » > 0. By
Lemma 2.6 the operator (T'— \)" has closed image. Hence, by Lemma
2.3, the orthogonal subspace of Ker(T'—\)" in E* is Im(7T* — \)". Now,
by Lemma 2.2, T™ is compact, so that, by Lemma 2.7, there exists
r >0 with Im (7" — X\)" = Im (T* — \)"™! and we are done. O

We now have all the tools in hand to establish the

PROOF OF PROPOSITION 2.4. Let A be a nonzero complex num-
ber. By Lemmas 2.7 and 2.8, we can fix » > 0 so that, for all s > r,

Ker (T — A" =Ker (T —X)° and Im (T —\)" =Im (T — \)*.

We set

Ey=Ker (T —\)" and F\=Im(T —\)".
By Lemma 2.5, E), has finite dimension and, by Lemma 2.6, F) is closed
with finite codimension.

We claim that F\ N F\ = {0}. Indeed, if  belongs to this intersec-
tion, we may write x = (7" — \)"y for some y. As (T'— \)"z = 0, we
get (T'— \)*y = 0, hence, by the choice of r, (T — \)"y = 0, that is
x = 0, which was to be proved.

We claim that E)\ @ F)\ = E. Indeed, let x be in £ and let us prove
that x may be written as a sum of an element of E\, and of one of F).
By definition (7" — \)"x belongs to F\. Since (T' — \)F) = F), there
exists y in Fy with (T'— )"z = (T — A\)"y. We get z —y € F) and we
are done.

By definition the only spectral value of T"on FE) is \. We claim that
A is not a spectral value of T' on F). Indeed by definition this operator
T — X is surjective on F and we have just seen that this operator T'— A
is injective on F\. Hence T'— X is an automorphism of F) as required.

Now, assume A is a nonzero spectral value of 7. To complete the
proof of Proposition 2.4, it only remains to prove that \ is an isolated
point of the spectrum. Indeed if u # A is a complex number that is
close enough to A, since T'— A is invertible on F\, T'— p is invertible on
Fy. As p# X\, T — i is also invertible on E and the result follows. [J

2.4. Fredholm operators and the essential spectrum.

We now introduce Fredholm operators: these are the op-
erators which are invertible modulo the ideal of compact
operators. In the same spirit, we define the essential
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spectral radius of an operator: this is the spectral radius
of the image of the operator in the Calkin algebra.

DEFINITION 2.9. Let E be a Banach space. The quotient of the
Banach algebra of bounded operators on E by the ideal of compact
operators

C(E) = B(E)/K(E)
is a Banach algebra called the Calkin algebra.

Let T' be a bounded linear operator in £. We say that T'is Fredholm
if there exists a bounded operator S such that T'S — 1 and ST — 1 are
compact operators. In other words, T is Fredholm if and only if its
image in the Calkin algebra C(F) is invertible.

LEMMA 2.10. The product T1Ts of two Fredholm operators T and
T, of E is also Fredholm.

PROOF. Asin any ring, the product x;25 of two invertible elements
x1 and x5 of the Calkin algebra is also invertible. O

PRrROPOSITION 2.11. Let T be a bounded linear operator in E. Then
T is Fredholm if and only if KerT' has finite dimension and Im'T s
closed with finite codimension.

PROOF. Assume Ker T is finite-dimensional and Im 7" is closed with
finite codimension. Chose closed subspaces F' and G of E such that

EFE=FaoKerT=G®ImT.

The action of T induces an isomorphism from F' onto Im 7. We define
R as the inverse operator Im7T — F. For any x in E, if z = y + 2
with y in Im 7" and 2z in G, we set Sx = Ry. Let us check that ST — 1
and T'S — 1 are compact; we will even prove that they have finite rank.
Indeed, for any x in F', we have STz = x. Therefore Ker(ST —1) D F
and ST — 1 has finite rank since F' has finite codimension. In the same
way, for any x in Im7T', T'Sx = x and T'S — 1 has finite rank. Thus T
is Fredholm.

Conversely, assume that T is Fredholm and let S be such that
K =ST—1and L =TS — 1 are compact operators. Then we have
KerT' C Ker(K +1), hence, by Lemma 2.5, Ker T" has finite dimension.
In the same way, we have Im7T D Im(L + 1), hence, by Lemma 2.6,
Im T is closed with finite codimension. 0

COROLLARY 2.12. A bounded linear operator T of E is Fredholm
if and only of T 1is.
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PROOF. Assume T is Fredholm and let S be an inverse of 7" modulo
compact operators. By Lemma 2.2, the operators S*T*—1 = (T'S—1)*
and T*S* — 1 = (ST — 1)* are compact. Thus, 7% is Fredholm.

Conversely, assume T™ is Fredholm. By Proposition 2.11, ImT™* is
closed, so that by Lemma 2.3, Im T is closed, (Im7T)+ = Ker T* and
(KerT)* = Im T*. As, again by Proposition 2.11, Ker T* has finite di-
mension and Im 7™ has finite codimension, Im 7" has finite codimension
and Ker T has finite dimension. Now Proposition 2.11 tells us that the
operator T is Fredholm. 0

Let T be a bounded operator of E. We define the essential spectrum
o.(T) of T as the set of complex numbers A such that 7'— X is not
Fredholm. In other words, o.(7T) is the spectrum of the image of T
in the Calkin algebra C(FE). In particular o.(7) is a non-empty closed
subset of o(7T"). By Corollary 2.12, we have o.(T*) = o.(T).

We also define the essential spectral radius p.(T) of T as the radius
of the smallest disc centered at 0 in C which contains o.(7): in other
words p(T') is the spectral radius of the image of 7' in the Calkin
algebra C(E).

LEMMA 2.13. Let T be a bounded operator in E. For alln > 1, the
essential spectral radius of T™ is given by p.(T") = p.(T)".

PROOF. As in any Banach algebra, the spectral radius p(z) of an
element z of the Calkin algebra C(E) is given by p(z) = lim ||z"|*/"

and hence satisfies p(z™) = p(x)", for all positive integer n. O

If T is a compact operator, its essential spectrum is {0}. Thus,
Proposition 2.4 may be seen as a description of the spectral values of
T whose modulus is > p.(7'). This description may be extended in
general:

PROPOSITION 2.14. Let T be a bounded operator of E. Then the
set of spectral values of T with modulus > p.(T') is at most countable
and all its cluster points have modulus p.(T). For every X in o(T) with
Al > pe(T), the space E splits uniquely as a direct sum E = E\ & F)
where Ey and F\ are T-stable closed subspaces of E, E\ has finite
dimension, op, (T) = {\} and op, (T) = o(T) ~ {A\}.

The following example is important to keep in mind while reading
the proof of Proposition 2.14. The reader is strongly encouraged to
check the details of this example.

ExXAMPLE 2.15. Let £ = ¢*(N) be the Hilbert space of square-
integrable complex sequences and T': ' — E be the shift operator: for
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any = (2x)gen in E, Tx = ()41)ren. The spectrum o(T') of T is the
unit disc in C. Its essential spectrum is the unit circle in C.

The proof of Proposition 2.14 is completely analogue to the one of
Proposition 2.4. We easily extend Lemmas 2.5 and 2.6.

LEMMA 2.16. Let T be a compact bounded operator of E and X\ be
a nonzero complex number. For any r > 1, the space Ker (T — \)"
is finite-dimensional and the space Im (T — \)" is closed with finite
codimension.

Proor. This follows from Proposition 2.11 since, by Lemma 2.10,
the operator (T'— \)" is Fredholm. O

The only difficulty is to extend Lemma 2.7. This is done by

LEMMA 2.17. Let T be a bounded operator of EE and X be a complex
number with |\ > pe(T). There exists r > 0 with Im(T — \)" =
Im(T — )"+t

ProoOF. This proof is a refinement of the one of Lemma 2.7, which
uses the spectral radius formula in the Calkin algebra C(E).

We again assume that the conclusion is false, and we set for any
r >0, G, = Im(T — \)". Since A is not an essential spectral value
of T, by Lemma 2.10 and Proposition 2.11, for any r > 0, the space
G, = Im(T — \)" is closed in E. For any r, we fix a vector z, in G,
with [|z,|| =2 and |z, — y|| > 1 for any y in G,41.

We pick 6 with p.(T) < 6 < |A|. By the spectral radius formula in
the Calkin algebra C(E), for any large enough n, there exists a compact
operator .S,, of F such that

|T" — S, < 6.

Let us prove that, if n is sufficiently large, the sequence (S,z;),>0 has
no converging subsequence: the result follows from this contradiction.
Indeed, for any r < s, we have

Spty — Spxs =T"x, — Tws + (S, — T") (2, — )
= A"z, + (T"x, — N'x, — T"xs) + (Sp — TT) (2, — ).
As T — N = (T — X\)(T™ 1 + - + X\"71) | the element
y:=T1"x, — X"z, — T x,
belongs to G,1. Hence, one has ||[\"z, + y|| > [A\|" and
[Snr = Spaal| Z (A" = [[Sn = T"[[ [l — 24| = A" — 46"

Since 0 < ||, for large n, we have |A|" — 46™ > 0 and we are done. [
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As above, the dual result is

LEMMA 2.18. Let T be a bounded operator of & and A be a complex
number with |\ > pe(T). There exists r > 0 with Ker(T' — \)" =
Ker(T — \)"t1.

PROOF. Again, as, by Proposition 2.11, (T'— \)" has closed image,
we have (Ker(T' — \)")t = Im(7T* — \)" by Lemma 2.3. The result
follows since T* — A is Fredholm by Corollary 2.12. U

PrROOF OF PROPOSITION 2.14. This follows from Lemmas 2.16,
2.17, 2.18 as Proposition 2.4 followed from Lemmas 2.5, 2.6, 2.7 and
2.8. O

The following Corollary extends the conclusion of Proposition 2.14
to a larger set of complex numbers .

COROLLARY 2.19. Let T be a bounded operator of E and denote by
Q2 the unbounded connected component of C \ o.(T"). Then the set of
spectral values of T belonging to ) is at most countable and is discrete
in Q. For every A in o(T) NSY, the space E splits uniquely as a direct
sum E = E) ® F\ where E) and F are T-stable closed subspaces of F,
E\ has finite dimension, og, (T') = {\} and o, (T) = o(T) ~ {\}.

Since we will not use this Corollary we just sketch its proof.

PROOF. Let K be the compact set K := C \ Q. Fix a complex
value A in o(7T") N §2. According to Mergelyan Theorem (see [107]),
there exists a polynomial function P with complex coefficients such
that

IPO)] > sup |[P(2).
zeK
The corollary now follows by applying Proposition 2.14 to the operator
P(T) and its spectral value P(\). O

2.5. The measure of non-compactness.

We introduce the seminorm < on operators which mea-
sures how far they are from being compact. This semi-
norm allows to give an analogue of the spectral radius
formula for the essential spectral radius: this is Nuss-
baum’s formula.

Let T' be a bounded operator of the Banach space E. We let v(T)
be the infimum of the set of » > 0 such that T'B(0, 1) is contained in
a finite union of balls with radius r. This infimum ~(7) is called the
measure of non-compactness of T. By definition, one has v(T") < ||T|.
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LEMMA 2.20. The function v is a seminorm on B(E) which cancels
exactly on IC(E). For any S,T in B(E), we have v(ST) < ~(S)y(T).

REMARK 2.21. The seminorm v factors as a norm on the Calkin
algebra C(E), but it is not clear wether this norm is complete, hence
it is not clear wether this norm is equivalent to the quotient norm on

C(E).

PROOF. By definition, if 7" is a bounded operator, v(7T") = 0 if and
only if T is compact. Besides, 7 is clearly homogeneous.
Let S,T be in B(E) and let s > ~(S) and t > (7). We want to
prove that
YIS +T)<s+t and y(ST) < st.

We can find z4,...,2,, and y1,...,y, in E with

SB(0,1) C | J B(xi,s) and TB(0,1) C | ] B(y;, )

i=1 j=1

On one hand, we have

(S+T)B(0,1) CU (w5, 8) + B(y;,t) :UB(xi—i-yj,s—i-t).
1,7
On the other hand, we have
STB(0,1) C | J(Sy; +tSB(0,1)) C | J B(tz; + Sy;, st).

J i,

The result follows. O

Eventhough the seminorm ~ does not factor as the usual norm
on the Calkin algebra C(FE), it may be used to compute the essential
spectral radius:

THEOREM 2.22 (Nussbaum). Let T' be a bounded operator of E.
We have )
pe(T) = lim ~(T").
Note that the limit exists from Lemma 2.20 and a classical subad-
ditivity argument.
The remainder of the section will be devoted to the proof of Theo-
rem 2.22. We temporarily set

: a1
n(T) = lim ~y(T")x.
Since Y(T') < ||T||, we clearly have n(T) < p(T"). The more precise

inequality n(T") < p.(T) will essentially follow from Proposition 2.14.
We will first focus on the reverse inequality.



2. ESSENTIAL SPECTRUM OF BOUNDED OPERATORS 295

We need to prove that, if A is a complex number with || > n(7T),
then T'— X\ is Fredholm. The main step in this proof is

LEMMA 2.23. Let T be a bounded operator of E and X be a complex
number with |\ > n(T). The operator T — X\ is proper on bounded
subsets of E. More precisely, for any compact subset K of E, the set
of x in B(0,1) with (T — \)x € K is compact.

PROOF. By replacing T with A™'7", we can assume \ = 1.
We set L = B(0,1)N (T —1)"'K. For z in L we set y =Tz — x so
that y € K. For any n > 1, we have

T's —x=y+ - +T" 1y,

that is,
t=—y—--—T"y4+ T
We get
LC—-K—- —T"'K+T"B(0,1).
Fix ¢ > 0. As n(T) < 1, we have v(T") —— 0 and we can find
n>1withy(T") <e. As —K—---—T" 1K ig aoZompact subset of F,

it can be covered by a finite number of balls with radius €. Therefore,
L can be covered by a finite number of balls with radius 2e. As this is
true for any ¢ and as L is clearly closed, L is compact. 0

Now, operators which are proper on bounded subsets may be easily
described:

LEMMA 2.24. Let T be a bounded operator of E. Then T is proper
on bounded subsets if and only if Ker T has finite dimension and ImT
1s closed.

PROOF. Assume KerT has finite dimension and Im7 is closed.
Then the projection map E — E/KerT is proper on bounded subsets
and, as T factors as a composition of this map with an isomorphism
from E/KerT onto a closed subspace of E, T is proper on bounded
subsets.

Conversely, assume that T is proper on bounded subsets. As we
have Bie7(0,1) = Bg(0,1) N T-'{0}, Bker7(0,1) is compact and, by
Riesz Theorem, Ker 7" has finite dimension. Let F' be a closed subspace
of E such that £ = F @& KerT. We have ImT = T'F', hence it suffices
to prove that TF is closed in E. We claim that there exists ¢ > 0
such that ||Tz|| > ¢||z|| for any x in F": this implies that T'F' is closed.
Indeed, if this is not the case, there exists a sequence (z,) of unit
vectors in F' with

|Tx,|| —— O.
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Then, the set K = {0} J{zn|n > 0} is compact in E. As (z,) is
bounded and T is proper on bounded subsets, (z,) admits a subse-
quence which converges to some y in F. Since the (x,) are unit vec-

tors, we have ||y|| = 1. Since ||Tx,| —— 0, we have Ty = 0, which
contradicts the fact that F' N KerT = {0}. O

To conclude from Lemmas 2.23 and 2.24, we again need to apply a
duality argument. This relies on

LEMMA 2.25. Let T be a bounded operator of E. Then we have
V(T*) < 29(T).

Proor. This is obtained by taking care of constants in the proof
of Lemma 2.2. Let us write it.
Fix r > (T') and i, ...,y, in £ with

TBg(0,1) C Be(yi,r) U - U Bg(yp, 7).

Consider the finite-dimensional subspace F' of E/ spanned by 41, ..., yp.
Pick € > 0. Since the dual space of F' is also finite dimensional, its unit
ball is compact and there exist linear functionals fi, ..., f, in Bp-(0,1)
such that

Bp+(0,1) C Bpe(f1,e/M)U---U Bp-(f,,e/M),

where M = max;<;<, ||y:||. By Hahn-Banach theorem, fi,..., f, may
be extended as linear functionals on E which have norm < 1 (which
we still denote by f1,..., fy)-

Now, pick f in Bg«(0,1). By construction, there exists 1 < j < ¢
with

(= il <<l

for any y in F. We claim that we have || 7% f —T* f;|| < 2r +¢ in E*.
Indeed, for any = in Bg(0, 1), there exists 1 < i < pwith ||Tx — ;|| < r.
We then have

(T f =T fj,2) = ([, Tx —yi) + (f = finw) — (5. Te — wi),
hence [(T*f —T*f;,x)| < 2r +¢. Thus, we have
Bg-(0,1) C Bg«(T" f1,2r +e)U--- U Bp«(T" f,,2r +¢).
Since this holds for any € > 0 and r > (T'), the result follows. O
We now can conclude the

PROOF OF THEOREM 2.22. We first prove that we have n(7T") <
pe(T). Pick 0 > p.(T). By Proposition 2.14, we may find a splitting
of E as a direct sum F' & G, where F' and G are closed, T-stable
subspaces, F' has finite dimension and all the spectral values of T"in GG
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have modulus < 0. We clearly have ng(T) = max(ng(T),nc(T)). As
F is finite-dimensional, we have ng(T) = 0. As ng(T) < pa(T), we get
n(T) < 6. As this is true for any 6 > p.(T'), we get n(T") < p(T).
Conversely, let us prove that n(T) > p.(T). We fix A in C with
Al > n(T") and we will prove that 7" — X is Fredholm. By Lemma
2.23, T'— )\ is proper on bounded subsets. By Lemma 2.24, T" — X has
finite-dimensional kernel and closed image. Now, by Lemma 2.25, we
have n(T*) < n(T), hence |A| > n(T*). Therefore, again by Lemmas
2.23 and 2.24, T* — X has finite-dimensional kernel. As Ker(7T* — \) =
Im(T — A)*, Im(T — \) has finite codimension. By Proposition 2.11,
T — X is Fredholm and the Theorem follows. U

2.6. The result by Ionescu-Tulcea and Marinescu.

We will now use Nussbaum’s formula to give a proof of
a result due to Ionescu-Tulcea and Marinescu, which we
used in our proof of the local limit theorem. This proof
is due to Hennion in [66] (see also [68]).

Let F and F' be Banach spaces. A compact embedding from F to
F'is an injective bounded operator £ — F' which is compact. Given
such an embedding, we identify E with its image in F'.

THEOREM 2.26 (Ionescu-Tulcea and Marinescu). Let E — F be a
compact embedding of Banach spaces. Let T be a bounded operator in
F. We assume that TE C E and that there exist 6 > 0 and M > 0
such that, for any x in E, one has

1Tzl g < |zl g+ Ml p-

Then T has essential spectral radius < 0 in E. In particular, if T has
spectral radius p > 0, it admits an eigenvalue with modulus p.

Proor. We will apply Nussbaum’s Formula to the operator T in
E. To this aim, we need to control the action of the powers of T'. For
any n > 1, set

n—1
My = M3 65T
k=0
An easy induction argument gives, for any x in F,
[Tz g < 0" ||zl g + M [l -

As the embedding of E in F' is compact, there exists zi,...,z, in
Bg(0,1) such that, for any  in Bg(0,1), one can find 1 < i < r with
|z — ;|| < 60"/M,. One then gets

|T"x — T" x| 5 < 360",
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hence v(T™) < 36™. By Nussbaum’s Formula 2.22, we get p.(T) < 6
in F.
The last statement follows from Proposition 2.14. 0

3. Bibliographical Comments

We want to cite here our sources. This is not an easy task since
we have mixed in this text ideas coming from various old fashioned
books, inaccessible articles, lost preprints, drowsy seminars, endless
discussions and silly reflections. An excellent general reference is the
monograph [25] by Bougerol and Lacroix.

Chapter 1. Markov chains is a very classical topic in Probability
theory (see the book of Dynkin [42], Neveu [91], Meyn and Tweedie
[89] or the survey of Kaimanovich and Vershik [75]). They have been
introduced by Markov for countable state spaces X, and have been
generalized since then to any standard state spaces. The relation be-
tween P-invariant functions and P-invariant subsets in Lemma 1.3 is
proved in Foguel’s book [46]. The construction of the dynamical sys-
tems of forward trajectories is classical (see for instance Neveu’s book
[91]). The various characterizations of P-ergodicity in Proposition 1.8
and their interpretation in terms of ergodicity of the forward dynamical
system in Proposition 1.9, are well-known by specialists. The Markov-
Kakutani argument in the proof of existence of stationary measures in
Lemma 1.10 finds its roots in the theorem of Bogoliubov and Krylov
in [21]. The construction and the properties of the limit measures v,
in Lemmas 1.17, 1.19, 1.21 are due to Furstenberg in [49]. Corollary
1.22 is the famous Choquet-Deny Theorem in [33] or [40]. For an-
other proof using Hewitt-Savage zero-one law, see [17]. The backward
dynamical system is a crucial tool in [14].

Chapter 2. The Law of Large Numbers for functions over a
Markov chain (Corollaries 2.4, 2.6, 2.7) is due to Breiman in [29]. The
Law of Large Numbers for cocycles over a semigroup action (Theorem
2.9) is due to Furstenberg in [49, Lemme 7.3]. The convergence of
the covariance 2-tensor (Theorem 2.13) is due to Raugi in [103]. The
divergence of Birkhoff sums (Lemma 2.18) goes back to Kesten in [77]
and Atkinson in [3] and can also be found in [111].

Chapter 3. The existence of proximal elements (Lemma 3.1) can
be found in [2] and the technical but useful Lemma 3.2 is proved in
[13]. The Law of Large Numbers for the norm (Theorem 3.28) and
the positivity of the first Lyapunov exponent (Theorem 3.31) are due
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to Furstenberg in [49]. The uniqueness of the stationary measure on
the projective space for proximal groups (Proposition 3.7) is also due
to Furstenberg in [50]. When the representation is not irreducible,
related results are proved by Furstenberg and Kifer in [53]. See also
Ledrappier’s course [82].

Chapter 4. The main input of this Chapter is a comparison of
averages in Lemmas 4.1 and 4.4 due to Kac in [73]. The first hitting
times and the induced Markov chains are well known and useful tools
to study Markov chains (see for instance [89]).

Chapter 5. The existence of loxodromic elements in Proposition
5.11 and Theorem 5.36 is due to Benoist and Labourie in [12]. The
original proof relied on the previous works of Goldsheid, Margulis in
[56] and Guivarc’h, Raugi in [61]. Later a much simpler proof was
given by Prasad in [97]. The proof given here is slightly different since
it relies on the simultaneous proximality Lemma 5.25 which is due to
Abels, Margulis and Soifer in [2, Lemma 5.15]. The short proof of
Lemma 5.25 given here is in [10, Lemma 3.1]

The structure theory of semisimple Lie groups over R, is due to
E. Cartan (see for instance [64]). The Iwasawa decomposition was
developed later by Iwasawa in [71]. The classification of the finite
dimensional representations of a real or complex semisimple Lie group
is due to E. Cartan.

Chapter 6. The convexity and non-degeneracy of the limit cone
Ly (Theorem 6.2) are due to Benoist in [10]. The density of the group
spanned by the Jordan projection (Theorem 6.4) is due to Benoist in
[11]. Both original proofs relied on Hardy fields. We give here simpler
proofs due to Quint in [102]. These proofs replace the use of Hardy
fields by suitable asymptotic expansions of the Jordan projection of
well-chosen words.

Chapter 7. The theory of algebraic reductive groups over a gen-
eral field was developped by Borel and Tits in [23]. The Cartan and
Iwasawa decomposition for connected algebraic reductive groups over
a non-archimedean local field is due to Bruhat-Tits in [32]. The clas-
sification of the algebraic representations of G' over an arbitrary base
field is due to Tits in [121]. The use of these representations in order
to control the Cartan projection, the Iwasawa cocycle, and also the
Jordan decomposition, as in Lemma 7.17, was introduced in [10].
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Chapter 9. For a product of random matrices with irreducible I',,,
the “maximal simplicity” of the Lyapunov exponents (as in Corollary
9.15) is due to Guivarc’h in [57] and Guivarc’h-Raugi in [61] under the
assumption that there exists a “contracting sequence” in I',. Goldsheid
and Margulis found out in [56] that this condition depends only on the
Zariski closure of the group I',,.

Chapter 10. The content of this Chapter can be seen as a general
strategy for proving limit theorems (CLT, LIL and LDP) for Holder
continuous observables over Markov-Feller chains with strong contrac-
tion properties. The relevance of the Holder continuity condition and
of the spectral theory of the transfer operator in similar contexts was
already noticed by Fortet for the doubling map on the circle in [47],
and by Sinai for geodesic flows in [116]. The method presented here
follows the lines of the one introduced for hyperbolic dynamical systems
by Ruelle in [105] (see also Parry and Pollicott’s book [93]). The adap-
tation of this method in the context of products of random matrices
is due to Le Page in [84], Guivarc’h, Goldsheid in [55] and Guivarc’h
in [60]. The perturbation theory of quasicompact operators (Lemma
10.17) is a classical result from functional analysis (see [74]).

Chapter 11. Thanks to the tools of Chapter 10, the proof of the
limit theorems for cocycles now follows the lines of the classical proof
for sums of random variables. The classical Central Limit Theorem
has a very long and well documented history (see [45]). The proof of
the Central Limit Theorem in Section 11.2 follows this classical ap-
proach using Fourier analysis and Lévy continuity method. The clas-
sical Law of the Iterated Logarithm goes back to Khinchin in [78] and
Kolmogorov in [79]. It was developed later by Hartman and Wintner
in [63] and many other mathematicians. The proof of the Law of the
Iterated Logarithm given in Sections 11.3 and 11.4 does not follow the
approach via Fourier analysis and Berry-Esseen inequality as in [84].
It follows instead the strategy of Kolmogorov in [79] (see also Wittman
in [124] or de Acosta in [37]). The classical Large Deviations Principle
is due to Cramér in [35] (see [39] for a modern account of the LDP).
The very short proof of the upper bound given in Section 11.5 follows
this classical approach.

Chapter 12. The search for Central Limit Theorems for products
of random matrices (Theorems 12.11 and 12.17) started in the early
fifties. The existence of a “non-commutative CLT” was guessed by
Bellman in [8]. Such a CLT was first proved by Furstenberg and Kesten
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in [52] for the norm of products of random positive matrices. This CLT
was then extended by Le Page in [84] to more general semigroups. The
general central limit theorem for the Iwasawa cocycle was proved by
Goldsheid and Guivarc’h in [55]. The nondegeneracy of the Gaussian
limit law N, is proved in [55] for G = SL(n,R) and in [60] when G
is a real semisimple linear group. One key ingredient is the fact from
[10] that the so-called limit cone of a Zariski dense subsemigroup of
a semisimple real Lie group is convex with non-empty interior. The
new feature in the Central Limit Theorems 12.11 and 12.17 is that
they are valid over any local field even in positive characteristic and
for any Zariski dense probability measure p. In these Central Limit
Theorems 12.11 and 12.17 there remains an unnecessary assumption,
namely, that p has a finite exponential moment (9.3). Recently the
authors have replaced this assumption [18] by the optimal assumption
that p has a finite second moment. The irreducible example 12.9 where
the limit law is not Gaussian is borrowed from [18].

Chapter 13. The Holder regularity of the stationary measure on
projective spaces (Theorem 13.1) is due to Guivarc’h in [58]. The new
proof given here borrows ideas from [26].

Chapter 14. We go on here the general strategy we began in
Chapter 10 in view of the last limit theorem (LLT), and the comments
of Chapter 10 are also valid for this one. Inequality (14.1) already
appears in the context of Markov chains in Doeblin-Fortet [41].

Chapter 15. The classical Local Limit Theorem is due to Gne-
denko in the lattice case (see [54] or [94]) and is due to Stone in the
aperiodic case in [120]. Recently Breuillard in [30] extended this the-
orem by allowing moderate deviations. The first version of the Local
Limit Theorem for the norm cocycle over products of random matrices
is due to Le Page in [84] under an aperiodicity assumption similar to
(14.8). The new features in our local limit theorems 15.1, 15.15 and
Corollary 15.7 for cocycles, are that we deal with multidimensional
cocycles, we allow moderate deviations and the choice of a target in
the base space. All these improvements are crucial for the applica-
tions. The proof is a mixture of the arguments of Le Page based on
spectral gap properties for the complex transfer operator Pjy and the
arguments of Breuillard based on the Edgeworth asymptotic expansion
of the Fourier transform in Lemma 15.12.
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Chapter 16. In order to apply the local limit theorem for the
Iwasawa cocycle, it only remains to describe the essential image of the
cocycle. In particular, for real semisimple groups, one has to check that
this cocycle is aperiodic. This was the aim of Chapter 8.

Appendix 1 The ubiquitous Martingale Theorem 1.3 is due to
Doob. The very general version, Theorem 1.5 of the law of large num-
bers presented here is due to Kolmogorov.

Appendix 2 Fredholm operators first occured in the context of
integral functional equations as a nice class of bounded linear opera-
tors which generalizes both compact operators and contracting opera-
tors. A good reference for the spectral Theory of Fredholm operators
is [109]. The main result of this appendix is Theorem 2.26 which is
due to Ionescu-Tulcea and Marinescu. The proof of Theorem 2.22 is
due to Nussbaum in [92]. The application of Nussbaum’s formula to
the Ionescu-Tulcea and Marinescu Theorem is due to Hennion in [66]
(see also [68]).
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aperiodic cocycle, 244
aperiodic probability, 166
attracting point, 57
average of a cocycle, 49, 73
averaging operator, 171

backward dynamical system, 39
backward trajectory, 39
Bernoulli shift, 36

biinfinite trajectory, 41

Borel measure, 33

boundary map, 60, 153
bounded operator, 282
Busemann cocycle, 107, 129

Calkin algebra, 290

Cartan decomposition, 106, 109, 132
Cartan projection, 109, 129, 130, 144
Cartan subspace, 95, 105

centered cocycle, 49

character group, 128

characteristic function, 186
coboundary, 48

cocycle, 48, 73

cohomologous cocycles, 48

compact operator, 282

complex transfer operator, 178
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conditional expectation, 277
conditional probability, 277
connected algebraic, 104
connected component, 129
constant drift, 51
continuous action, 35
contracting action, 166
contraction, 27

covariance 2-tensor, 52
cross-ratio, 119

degenerate cocycle, 244
density point, 216
density subspace, 221
determinant, 266
distance on Pg, 197, 219
distance on P(V'), 196
drift of a cocycle, 45, 51

elliptic element, 107

empirical measures, 46

ergodic measure, 35

essential spectral radius, 173, 291
essential spectrum, 291

event, 276

exponential moment, 86, 155, 176

fibration over F', 43

finite index subsemigroup, 83
finite moment, 72, 176

first moment, 86, 154

first return time, 81

flag variety, 20, 107, 129, 130, 142
forward dynamical system, 31, 36
forward trajectory, 10, 26
Fredholm operator, 290

Frostman measure, 216
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fundamental weight, 112, 137

gap of g, 216

Gaussian law, 185

good decomposition, 196

good maximal compact, 129

good norm, 112, 134, 136, 215, 270

Haar measure, 98
Harmonic function, 89
highest weight, 111, 137
hyperbolicelement, 107

independent, 278

induced measure pp, 84

induced representation, 135

integrable cocycle, 49

irreducible, 93

irreducible components, 95

irreducible representation, 57

irreducible subsemigroup, 57

Iwasawa cocycle, 107, 129, 130, 132,
145

Iwasawa decomposition, 106

Jordan decomposition, 108, 115, 133
Jordan projection, 95, 108, 145

Killing form, 105

law, 276

Law of Large Numbers, 45, 48, 73
lifting property, 248

limit cone, 117, 150

limit measures v, 37

limit set, 58, 149, 150, 200, 201
linear span of a 2-tensor, 51
Lipschitz constant, 166, 176
local field, 21, 56

loxodromic, 96, 115

Lyapunov exponent, 72, 161
Lyapunov vector, 156

Markov chain, 26

Markov measures, 26

Markov operator, 26, 171
Markov-Feller operator, 33, 46
martingale, 277

maximum principle, 68

measure of non-compactness, 293

measure preserving, 27
minimal parabolic, 20, 109, 129
minimal subset, 58

morphism of semigroups, 34
multicross-ratio, 121, 122

Noetherian topological space, 94
non-negative operator, 27
non-negative 2-tensor, 52

norm cocycle, 72

normal subsemigroup, 83
Nussbaum Formula, 294

orthogonal subspace, 284

parabolic subalgebra, 106

parabolic subgroup, 106

parabolic weight, 136

partial flag variety, 142, 196

partial Iwasawa cocycle, 143, 145,
196

P-ergodic, 31

P-invariant, 26, 27

positive roots, 106, 128

prefix map, 167

proximal dimension, 57

proximal endomorphism, 56, 146

proximal measure, 43, 62, 67

proximal representation, 127, 137,
145

proximal semigroup, 57

quotient Banach space, 285

random variable, 276

real factor, 144

real rank, 17, 105

reductive K-group, 128
residual image of a cocycle, 244
restricted roots, 105

root system, 105, 128

S-adic Lie group, 144

Schubert cell, 207

semigroup, 34

semisimple, 104

semisimple element, 107

simple roots, 106, 109, 110, 128
singular value, 109, 162
skew-product, 39
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special cocycle, 51
spectral radius, 95, 287
spectrum, 287

split center, 142

split group, 105

split torus, 128

stable length, 108
standard Borel space, 26
state space, 26

stationary measure, 15, 35
strongly irreducible, 57, 63
strongly transversally, 123, 124
sup-norm, 49, 175
symmetric space, 106

transfer operator, 171

transient, 70

transitive strongly irreducible, 64
transversally loxodromic, 120
transversally proximal, 119
two-sided Bernoulli, 41

two-sided dynamical system, 42

uniformizing element, 56
uniformly integrable, 276
unipotent element, 107

unipotent subgroup, 106, 109, 128
unique average, 46, 49

uniquely ergodic, 34, 47

unit ball of a 2-tensor, 52

unit cube, 185

virtual proximal dimension, 65
virtually invariant, 63
virtually proximal, 65

weak topology, 284

weight of a representation, 134
weight space, 134

Weyl chamber, 95, 106, 128

Zariski closed, 93

Zariski connected, 93

Zariski dense, 93

Zariski dense measure, 151

Zariski dense subsemigroup, 145, 146
Zariski open, 93

Zariski topology, 92

zero drift, 51
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