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Abstract. We prove that a backward orbit with bounded Kobayashi step for a
hyperbolic, parabolic or strongly elliptic holomorphic self-map of a bounded strongly
convex C2 domain in C

d necessarily converges to a repelling or parabolic boundary fixed
point, generalizing previous results obtained by Poggi-Corradini in the unit disk and by
Ostapyuk in the unit ball of Cd.

0. Introduction

The theory of non-invertible discrete dynamical systems (that is, the iteration theory of a non-
invertible self-map f :X → X of a set X) is usually devoted to the study of the behavior of forward
orbits of the system (that is, of sequences of the form {fn(x)}n∈N, where x ∈ X and fn denotes
the composition of f with itself n times). In this paper we shall instead study the behavior of
backward orbits, that is of sequences {xn}n∈N such that f(xn+1) = xn for all n ∈ N, in the context
of holomorphic self-maps of bounded strongly convex domains.

Backward orbits (also called backward iteration sequences) for holomorphic self-maps of the
unit disk ∆ ⊂ C have been studied by Poggi-Corradini in [PC2]. He proved that (unless f is a
non-Euclidean rotation of ∆) a backward orbit must converge to a point in the boundary of ∆,
which is (in the sense of non-tangential limits) a repelling or parabolic fixed point of the map f .
Ostapyuk [O] generalized Poggi-Corradini’s results to backward orbits in the unit ball Bd ⊂ C

d.
The aim of this paper is to extend Poggi-Corradini’s results to backward orbits in general bounded
strongly convex C2 domains in C

n. To do so, we shall systematically use the geometric properties
of the Kobayashi distance of strongly convex domains; and it is interesting to notice that the better
geometric understanding given by this tool (and the impossibility of using the kind of explicit
computations done in [O] for the ball) yields proofs that are both simpler and clearer than the
previous ones, even for the ball and the unit disk.

To state precisely, and put in the right context, our results, let us first describe what is known
about holomorphic discrete dynamical systems in strongly convex domain. As proved several years
ago by one of us (see [A1, 2, 3]), the fundamental dychotomy for holomorphic dynamics in complex
taut manifolds is between self-maps whose sequence of iterates is compactly divergent and self-
maps whose sequence of iterates is relatively compact in the space of all holomorphic self-maps
of the manifold (endowed with the compact-open topology, which is equivalent to the topology
of pointwise convergence). In a convex domain D, it turns out that the sequence of iterates of a
holomorphic self-map f ∈ Hol(D,D) is compactly divergent if and only if f has no fixed points
inside D; so the dychotomy is between self-maps without fixed points and maps with fixed points.
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Following the usual one-variable terminology, we shall call elliptic a holomorphic self-map of
a bounded convex domain D ⊂ C

n with a not empty fixed point set. If f ∈ Hol(D,D) is elliptic,
then the dynamics of f is concentrated along a, possibly lower-dimensional, convex domain D0,
the limit manifold of f , in the sense that all limits of subsequences of iterates of f are given by
the composition of a holomorphic retraction of D onto D0 with an automorphism of D0. Clearly,
D0 contains the fixed point set of f , but in general can be strictly larger; furthermore, f |D0

is an
automorphism of D0, generating a group whose closure is the product of a torus with a finite cyclic
group (see [A3]). In particular, backward orbits in D0 are just forward orbits for the inverse of
f |D0

, and so their behavior is known; for this reason here we shall instead study backward orbits
for maps, called strongly elliptic, whose limit manifold reduces to a point, necessarily fixed. In
particular, f is strongly elliptic if and only if the sequence of iterates of any x ∈ D converges to a
point p ∈ D, which is thus an attracting fixed point.

When f ∈ Hol(D,D) has no fixed points, and D ⊂ C
d is a bounded strongly convex C2

domain, the main dynamical fact is the generalization [A1] of the classical Wolff-Denjoy theorem,
saying that the sequence of iterates converges to a point τ ∈ ∂D, the Wolff point of f . The Wolff
point is a boundary fixed point, in the sense that f has K-limit τ at τ (see Section 1 for the precise
definition of K-limit, also known as admissible limit; here it just suffices to say that the existence
of the K-limit implies the existence of the non-tangential limit, and thus our f has non-tangential
limit τ at τ). Furthermore, it is possible to define the boundary dilation βτ at τ , which, roughly
speaking, is the derivative of the normal component of f along the normal direction to ∂D at τ
(and is the natural generalization of the one-variable angular derivative); and the fact that forward
orbits converge to τ implies that 0 < βτ ≤ 1. Again following the classical one-variable terminology,
we shall say that f is hyperbolic and τ is attracting if 0 < βτ < 1; and that f and τ are parabolic
if βτ = 1.

Before turning our attention to backward orbits, a final remark is needed. Forward orbits
always have bounded Kobayashi step, that is the Kobayashi distance kD

(
fn+1(z), fn(z)

)
between

two consecutive elements of the orbit is bounded by a constant independent of n (but depending
on the orbit): indeed, kD

(
fn+1(z), fn(z)

)
≤ kD

(
f(z), z

)
, because the Kobayashi distance kD is

weakly contracted by holomorphic maps.
Summing up, if f ∈ Hol(D,D) is strongly elliptic, hyperbolic or parabolic, then all forward

orbits (have bounded Kobayashi step and) converge to the Wolff point τ ∈ D (for the sake of
uniformity, we are calling Wolff point the unique fixed point of a strongly elliptic map too), which is
an attracting or parabolic (possibly boundary) fixed point. Our main result states that, analogously,
backward orbits with bounded Kobayashi step for a strongly elliptic, hyperbolic or parabolic map
always converge to a repelling or parabolic boundary fixed point, where a boundary fixed point is
a point σ ∈ ∂D such that f has K-limit σ at σ, and σ is repellng if the boundary dilation βσ of f
at σ is larger than 1.

More precisely, in Section 2 we shall prove the following

Theorem 0.1: Let D ⊂⊂ C
d be a bounded strongly convex C2 domain. Let f ∈ Hol(D,D) be

either hyperbolic, parabolic, or strongly elliptic, with Wolff point τ ∈ D. Let {zn} ⊂ D be a
backward orbit for f with bounded Kobayashi step. Then:

(i) the sequence {zn} converges to a repelling or parabolic boundary fixed point σ ∈ ∂D;
(ii) if f is strongly elliptic or hyperbolic then σ is repelling;
(iii) if σ = τ , then f is parabolic;
(iv) {zn} goes to σ inside a K-region, that is, there exists M > 0 so that zn ∈ Kp(σ,M) eventually,

where p is any point in D.

See Section 1 for (preliminaries and in particular) the definition of K-region; going to the
boundary inside a K-region is the natural several variables generalization of the one-variable notion
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of non-tangential approach.
To show that our theorem is not empty we must prove the existence of backward orbits with

bounded Kobayashi step. This is done in Section 3 where, slightly adapting an argument due to
Poggi-Corradini ([PC1]; see also [O]), we shall prove that if σ ∈ ∂D \ {τ} is an isolated repelling
boundary point for f ∈ Hol(D,D) strongly elliptic, hyperbolic or parabolic, then there always exist
a backward orbit with bounded Kobayashi step converging to σ.

Finally, we would like to thank Pietro Poggi-Corradini and Olena Ostapyuk for bringing
this problem to our attention, and Núria Fagella and the Institut de Matemàtica, Universitat
de Barcelona, for their warm hospitality during the completion of this work.

1. Preliminaries

In this section we shall collect a few facts about the geometry of the Kobayashi distance and the
dynamics of holomorphic self-maps of bounded strongly convex domains needed in the rest of the
paper.

Let us briefly recall the definition and the main properties of the Kobayashi distance; we refer
to [A2], [JP] and [K] for details and much more. Let k∆ denote the Poincaré distance on the unit
disk ∆ ⊂ C. If X is a complex manifold, the Lempert function δX :X×X → R

+ of X is defined by

δX(z, w) = inf{k∆(ζ, η) | ∃φ:∆ → X holomorphic, with φ(ζ) = z and φ(η) = w}

for all z, w ∈ X. TheKobayashi pseudodistance kX :X×X → R
+ ofX is the largest pseudodistance

on X bounded above by δX . We say that X is (Kobayashi) hyperbolic if kX is a true distance —
and in that case it is known that the metric topology induced by kX coincides with the manifold
topology of X (see, e.g., [A2, Proposition 2.3.10]). For instance, all bounded domains are hyperbolic
(see, e.g., [A2, Theorem 2.3.14]).

The main property of the Kobayashi (pseudo)distance is that it is contracted by holomorphic
maps: if f :X → Y is a holomorphic map then

∀z, w ∈ X kY
(
f(z), f(w)

)
≤ kX(z, w) .

In particular, the Kobayashi distance is invariant under biholomorphisms.
It is easy to see that the Kobayashi distance of the unit disk coincides with the Poincaré

distance. Furthermore, the Kobayashi distance of the unit ball Bd ⊂ C
d coincides with the Bergman

distance (see, e.g., [A2, Corollary 2.3.6]); and the Kobayashi distance of a bounded convex domain
coincides with the Lempert function (see, e.g., [A2, Proposition 2.3.44]). Moreover, the Kobayashi
distance of a bounded convex domain D is complete ([A2, Proposition 2.3.45]), and thus for each
p ∈ D we have that kD(p, z) → +∞ if and only if z → ∂D.

A complex geodesic in a hyperbolic manifold X is a holomorphic map ϕ:∆ → X which is an
isometry with respect to the Kobayashi distance of ∆ and the Kobayashi distance of X. Lempert’s
theory (see [L] and [A2, Chapter 2.6]) of complex geodesics in strongly convex domains is one of the
main tools for the study of the geometric function theory of strongly convex domains. In particular,
we shall need the following facts, summirizing Lempert’s and Royden-Wong’s theory, valid for any
bounded convex domain D ⊂⊂ C

d:

(a) [A2, Theorem 2.6.19 and Corollary 2.6.30] for every pair of distinct points z, w ∈ D there
exists a complex geodesic ϕ:∆ → D such that ϕ(0) = z and ϕ(r) = w, where 0 < r < 1 is
such that k∆(0, r) = kD(z, w); furthermore, if D is strongly convex then ϕ is unique;

(b) [A2, Theorem 2.6.19] a holomorphic map ϕ ∈ Hol(∆,D) is a complex geodesic if and only if
kD

(
ϕ(ζ1), ϕ(ζ2)

)
= k∆(ζ1, ζ2) for a pair of distinct points ζ1, ζ2 ∈ ∆;
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(c) [A2, Proposition 2.6.22] every complex geodesic ϕ ∈ Hol(∆,D) admits a left inverse, that is a
holomorphic map p̃ϕ:D → ∆ such that p̃ϕ◦ϕ = id∆; the map pϕ = ϕ◦p̃ϕ is then a holomorphic
retraction of D onto the image of ϕ;

(d) [A2, Theorem 2.6.29] if D is strongly convex of class C2, then every complex geodesics extend
continuously (actually, 1

2
-Hölder) to the boundary of ∆, and the image of ϕ is transversal

to ∂D;

(e) [A2, Theorem 2.6.45] if D is strongly convex and of class C2, then for every z ∈ D and τ ∈ ∂D
there is a complex geodesic ϕ ∈ Hol(∆,D) with ϕ(0) = z and ϕ(1) = τ ; and for every pair of
distinct points σ, τ ∈ ∂D there is a complex geodesic ϕ ∈ Hol(∆,D) such that ϕ(−1) = σ and
ϕ(1) = τ . (The statement of [A2, Theorem 2.6.45] requires D of class C3, but the proof of the
existence works assuming just C2 smoothness.)

Now let D ⊂⊂ C
d be a bounded strongly convex C2 domain, and f ∈ Hol(D,D) a holomorphic

self-map of D. As mentioned in the introduction, if the set Fix(f) of fixed points of f in D is not
empty, then (see [A1, 2, 3]) the sequence {fn} of iterates of f is relatively compact in Hol(D,D), and
there exists a submanifoldD0 ⊆ D, the limit manifold of f , such that every limit of a subsequence of
iterates is of the form γ◦ρ, where ρ:D → D0 is a holomorphic retraction, and γ is a biholomorphism
of D0; furthermore, f |D0

is a biholomorphism of D0, and Fix(f) ⊆ D0.

Definition 1.1: Let D ⊂⊂ C
d be a bounded strongly convex C2 domain. A holomorphic

map f ∈ Hol(D,D) is elliptic if Fix(f) 6= ∅; and strongly elliptic if its limit manifold reduces to a
point (called the Wolff point of the strongly elliptic map). We shall say that a point p ∈ Fix(f) is
attracting if all the eigenvalues of dfp have modulus less than 1.

Later on we shall need an equivalent characterization of strongly elliptic maps:

Lemma 1.1: Let D ⊂⊂ C
d be a bounded strongly convex C2 domain, and f ∈ Hol(D,D). Then

the following facts are equivalent:

(i) f is strongly elliptic;

(ii) the sequence of iterates of f converges to a point p ∈ D;

(iii) f has an attracting fixed point p ∈ D;

(iv) there exists p ∈ Fix(f) such that kD
(
p, f(z)

)
< kD(p, z) for all z ∈ D \ {p}.

Proof : The equivalence of (i), (ii) and (iii) is well-known, and more generally valid in taut manifolds
(see, e.g., [A2, Corollary 2.4.2]).

Now, if f is not strongly elliptic, the limit manifold D0 has positive dimension. Being a
holomorphic retract of D, the Kobayashi distance of D0 coincides with the restriction of Kobayashi
distance ofD; hence kD

(
f(z), f(w)

)
= kD(z, w) for all z, w ∈ D0, because f |D0

is a biholomorphism
of D0 (and thus an isometry for the Kobayashi distance). Since Fix(f) ⊆ D0, this shows that (iv)
implies (i).

Finally, assume that (iv) does not hold, and thus there are p ∈ Fix(f) and z0 ∈ D \ {p} with
kD

(
p, f(z0)

)
= kD(p, z0). Let ϕ ∈ Hol(∆,D) be a complex geodesic with ϕ(0) = p and ϕ(r) = z0,

for a suitable 0 < r < 1. Then

kD
(
p, f

(
ϕ(r)

))
= kD(p, z0) = k∆(0, r) ;

since f(p) = p this implies that f ◦ ϕ is still a complex geodesic. Since complex geodesics are
also infinitesimal isometries with respect to the Kobayashi metric (see [A2, Corollary 2.6.20]), the
Kobayashi length of ϕ′(0) must be equal to the Kobayashi length of (f ◦ ϕ)′(0) = dfp

(
ϕ′(0)

)
. In

particular, p cannot be an attracting fixed point, and thus f cannot be strongly elliptic. �
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In the study of the dynamics of self-maps without fixed points, a crucial role is played by the
horospheres, a generalization (introduced in [A1]) of the classical notion of horocycle. Let D ⊂⊂ C

d

be a bounded strongly convex C2 domain. For every τ ∈ ∂D and p ∈ D let hτ,p:D → R
+ be given

by
1
2
log hτ,p(z) = lim

w→τ
[kD(z, w) − kD(p,w)] ;

notice that the existence of the limit is a non-trivial fact (see [A1, Theorem 2.6.47] or [BP]). Then
the horosphere of center τ ∈ ∂D, radius R > 0 and pole p ∈ D is the set

Ep(τ,R) = {z ∈ D | hτ,p(z) < R} .

It is well-known (see, again, [A1], [A2] and [BP]) that the horospheres with pole at the origin in the
unit disk ∆ ⊂ C coincide with the classical horocycles, that the horospheres with pole at the origin
in the unit ball Bn ⊂ C

n again coincide with the usual horospheres, and that the horospheres
in strongly convex domains are convex. Furthermore, the closure of a horosphere intersects the
boundary of D exactly in the center of the horosphere; and the shape of a horosphere near the
boundary is comparable to the shape of the horospheres in the ball, that is, they are close to
be ellipsoids. An easy observation we shall need later on is that changing the pole amounts to
multiplying the radius by a fixed constant:

Lemma 1.2: Let D ⊂⊂ C
d be a bounded strongly convex C2 domain, and τ ∈ ∂D. Then

hτ,q =
1

hτ,p(q)
hτ,p

for all p, q ∈ D. In particular,

∀R > 0 Eq(τ,R) = Ep

(
τ, hτ,p(q)R

)
.

Proof : It suffices to write

kD(z, w) − kD(q, w) = [kD(z, w) − kD(p,w)] − [kD(q, w) − kD(p,w)] ,

and let w → τ . �

In a similar way we can introduce K-regions. Let D ⊂⊂ C
d be a bounded strongly convex C2

domain. The K-region Kp(τ,M) of of center τ ∈ ∂D, amplitude M > 0 and pole p ∈ D is the set

Kp(τ,M) = {z ∈ D | 1
2 log hτ,p(z) + kD(p, z) < logM} .

It is well-known (see [A2] or [A3]) that the K-regions with pole at the origin in the unit disk
coincide with the classical Stolz regions, and that the K-regions with pole at the origin in the unit
ball Bn ⊂ C

n coincide with the usual Korányi approach regions. Furthermore, in strongly convex
domains K-regions are comparable to Stein admissible regions; and changing the pole does not
change much the K-regions, because ([A2, Lemma 2.7.2]) for each p, q ∈ D there is L > 0 such
that

Kp(τ,M/L) ⊆ Kq(τ,M) ⊆ Kp(τ,ML) (1.1)

for every M > 0. Given τ ∈ ∂D, we shall say that a function F :D → C
n has K-limit ℓ ∈ C

n

at τ if F (z) → ℓ as z → τ inside any K-region centered at τ ; notice that the choice of the pole
is immaterial because of (1.1). Since K-regions in strongly convex domains are comparable to
Stein admissible regions, the notion of K-limit is equivalent to Stein admissible limit, and thus it
is the right generalization to several variables of the one-dimensional notion of non-tangential limit
(in particular, the existence of a K-limit always implies the existence of a non-tangential limit).
Finally, the intersection of a horosphere (or K-region) of center τ ∈ ∂D and pole p ∈ D with the
image of a complex geodesic ϕ with ϕ(0) = p and ϕ(1) = τ is the image via ϕ of the horosphere
(or K-region) of center 1 and pole 0 in the unit disk ([A2, Proposition 2.7.8 and Lemma 2.7.16]).

The correct generalization of the one-variable notion of angular derivative is given by the
dilation coefficient (see [A2, Section 1.2.1 and Theorem 2.7.14]):
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Definition 1.2: Take f ∈ Hol(D,D), where again D ⊂⊂ C
d is a bounded strongly convex C2

domain, and let σ ∈ ∂D. The dilation coefficient βσ,p ∈ (0,+∞] of f at σ ∈ ∂D with pole p ∈ D is
given by

1
2
log βσ,p = lim inf

z→σ

[
kD(p, z)− kD

(
p, f(z)

)]
.

Furthermore, σ ∈ ∂D is a boundary fixed point of f if f has K-limit σ at σ.

Since

kD(p, z)− kD
(
p, f(z)

)
≥ kD

(
f(p), f(z)

)
− kD

(
p, f(z)

)
≥ −kD

(
p, f(p)

)
,

the dilation coefficient cannot be zero. We also recall the following useful formulas for computing
the dilation coefficient ([A2, Lemma 2.7.22]):

1
2 log βσ,p = lim

t→1

[
kD

(
p, ϕ(t)

)
− kD

(
p, f

(
ϕ(t)

))]
= lim

t→1

[
kD

(
p, ϕ(t)

)
− kD

(
p, pϕ ◦ f

(
ϕ(t)

))]
, (1.2)

where ϕ ∈ Hol(∆,D) is a complex geodesic with ϕ(0) = p and ϕ(1) = σ, and pϕ = ϕ ◦ p̃ϕ is the
holomorphic retraction associated to ϕ.

When σ is a boundary fixed point then the dilation coefficient does not depend on the pole:

Lemma 1.3: Let D ⊂⊂ C
d be a bounded strongly convex C2 domain, f ∈ Hol(D,D) and σ ∈ ∂D

a boundary fixed point of f . Then βσ,p = βσ,q for all p, q ∈ D.

Proof : If the dilation coefficient is infinite for all poles we are done. Assume there is p ∈ D such
that the dilation coefficient βσ,p is finite. Given q ∈ D, write

kD(q, z) − kD
(
q, f(z)

)

= kD(p, z)− kD
(
p, f(z)

)
+

[
kD(q, z)− kD(p, z)

]
+
[
kD

(
p, f(z)

)
− kD

(
q, f(z)

)]
.

(1.3)

The first term inside square brackets converges to 1
2
log hσ,p(q) when z → σ. Now, let ϕ ∈ Hol(∆,D)

be a complex geodesic with ϕ(0) = p and ϕ(1) = σ. Since ϕ(t) → σ non-tangentially as t → 1−, we
have f

(
σ(t)

)
→ σ. Therefore if we put z = ϕ(t) in (1.3), letting t → 1− and recalling (1.2) we get

1
2 log βσ,q ≤ 1

2 log βσ,p +
1
2 log hσ,p(q)− 1

2 log hσ,p(q) =
1
2 log βσ,p .

Thus βσ,q is finite too, and reversing the roles of p and q we get the assertion. �

In particular, we shall simply denote by βσ the dilation coefficient at a boundary fixed point.

Definition 1.3: Let σ ∈ ∂D be a boundary fixed point for a self-map f ∈ Hol(D,D) of a
bounded strongly convex C2 domain D ⊂⊂ C

d. We shall say that σ is attracting if 0 < βσ < 1,
parabolic if βσ = 1 and repelling if βσ > 1.

We can now quote the general versions of Julia’s lemma proved in [A1, 3] (see [A2, Theo-
rem 2.4.16 and Proposition 2.7.15]) that we shall need in this paper:

Proposition 1.4: (Abate, 1988) Let D ⊂⊂ C
n be a bounded strongly convex C2 domain, and

f ∈ Hol(D,D). Let σ ∈ ∂D and p ∈ D be such that the dilation coefficient βσ,p is finite. Then
there exists a unique τ ∈ ∂D such that

∀R > 0 f
(
Ep(σ,R)

)
⊆ Ep

(
τ, βσ,pR

)
,

and f has K-limit τ at σ.

Finally, we recall the several variable version of the Wolff-Denjoy theorem given in [A1] (see
[A2, Theorems 2.4.19 and 2.4.23]):
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Theorem 1.5: (Abate, 1988) Let D ⊂⊂ C
n be a bounded strongly convex C2 domain, and

f ∈ Hol(D,D) without fixed points. Then there exists a unique τ ∈ ∂D such that the sequence of
iterates of f converges to τ .

Definition 1.4: Let D ⊂⊂ C
n be a bounded strongly convex C2 domain, and f ∈ Hol(D,D)

without fixed points. The point τ ∈ ∂D introduced in the previous theorem is the Wolff point of f .

The Wolff point can be characterized by the dilation coefficient:

Proposition 1.6: Let D ⊂⊂ C
d be a bounded strongly convex C2 domain, and f ∈ Hol(D,D)

without fixed points in D. Then the following assertions are equivalent for a point τ ∈ ∂D:

(i) τ is a boundary fixed point with 0 < βτ ≤ 1;

(ii) f
(
Ep(τ,R)

)
⊆ Ep(τ,R) for all R > 0 and any (and hence all) p ∈ D;

(iii) τ is the Wolff point of f .

Proof : (i) =⇒ (ii): it follows immediately from Proposition 1.4.

(ii) =⇒ (iii): it follows, as in the proof of [A2, Theorem 2.4.23], from the facts that the sequence
of iterates {fn} is compactly divergent and that Ep(τ,R) ∩ ∂D = {τ} for all R > 0 and p ∈ D.

(iii) =⇒ (i): since f has no fixed points, by [A2, Theorem 2.4.19] there is a τ ′ ∈ ∂D such that
f
(
Ep(τ

′, R)
)
⊆ Ep(τ

′, R) for all R > 0 and p ∈ D. Since Ep(τ ′, R) ∩ ∂D = {τ ′} we must have
τ ′ = τ . Now fix p ∈ D and let ϕ ∈ Hol(∆,D) be a complex geodesic with ϕ(0) = p and ϕ(1) = τ .
Let p̃ϕ ∈ Hol(D,∆) be the left inverse of ϕ, and put f̃ = p̃ϕ ◦ f ◦ϕ ∈ Hol(∆,∆). Since, as observed
before, complex geodesics and left-inverses preserve the horospheres (see [A2, Proposition 2.7.8 and
Lemma 2.7.16]), we have f̃

(
E0(1, R)

)
⊆ E0(1, R) for all R > 0. This easily implies that either f̃

has no fixed points or it is the identity. In the latter case (1.2) implies that βτ = 1, and we are
done.

If instead f̃ has no fixed points, by the one-variable Wolff’s lemma, 1 ∈ ∂∆ is its Wolff point,
and ([A2, Corollary 1.2.16]) the dilation coefficient β of f̃ at 1 belongs to (0, 1]. But, again by (1.2),
β = βτ , and we are done. �

Definition 1.5: Let D ⊂⊂ C
n be a bounded strongly convex C2 domain, and f ∈ Hol(D,D)

without fixed points and with Wolff point τ ∈ ∂D. We shall say that f is hyperbolic if 0 < βτ < 1
and parabolic if βτ = 1.

2. Convergence of backward orbits

In this section we shall prove our main Theorem 0.1. This will be accomplished by a sequence of
lemmas, but first we recall a couple of definitions:

Definition 2.1: Let f :X → X be a self-map of a set X. A backward orbit (or backward
iteration sequence) for f is a sequence {xn}n∈N ⊂ X so that f(xn+1) = xn for all n ∈ N.

Definition 2.2: Let X be a (Kobayashi) hyperbolic manifold. We say that a sequence
{zn} ⊂ X has bounded Kobayashi step if

a = sup
n

kX(zn+1, zn) < +∞ .

The number a is the Kobayashi step of the sequence.

We shall first deal with the hyperbolic and parabolic cases.
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Lemma 2.1: Let D ⊂⊂ C
d be a bounded strongly convex C2 domain. Let {zn} ⊂ D be a

backward orbit for a parabolic or hyperbolic self-map f ∈ Hol(D,D). Then zn → ∂D as n → +∞.

Proof : Assume, by contradiction, that the sequence does not converge to ∂D. Then there exists a
subsequence {znk

} converging to w0 ∈ D, that is, such that

kD(w0, znk
) → 0 as k → +∞ .

Therefore

kD
(
fnk(w0), f

nk(znk
)
)
≤ kD(w0, znk

) → 0 as k → +∞ .

But, on the other hand, fnk(znk
) = z0 for all k; moreover, fnk(w0) → τ as k → +∞, where τ ∈ ∂D

is the Wolff point of f , and so

lim
k→∞

kD
(
fnk(w0), f

nk(znk
)
)
= +∞ ,

because kD is complete, contradiction. �

Lemma 2.2: Let D ⊂⊂ C
d be a bounded strongly convex C2 domain. Let {zn} ⊂ D be a

sequence with bounded Kobayashi step a > 0 converging toward the boundary of D. Then there
exists σ ∈ ∂D such that zn → σ as n → +∞.

Proof : Since zn → ∂D, we can find a subsequence {znj
} converging to a point σ ∈ ∂D; we claim

that the whole sequence converges to σ.
If for every k ∈ N the subsequence {znj+k} converges to σ, then clearly the whole sequence

converges to σ and we are done. Otherwise, there exists a minimum k > 0 such that the sequence
{znj+k−1} converges to σ but {znj+k} does not. Up to extracting a subsequence in both and
renaming, we may then assume that {znj

} converges to σ while {znj+1} converges to σ̃ ∈ ∂D
different from σ.

Then [A2, Corollary 2.3.55] yields ε > 0 and K > 0 such that, as soon as ‖znj
− σ‖ < ε, and

‖znj+1 − σ̃‖ < ε, we have

K − 1
2
log d(znj

, ∂D)− 1
2
log d(znj+1, ∂D) ≤ kD(znj

, znj+1) ≤ a .

Letting j → +∞ we get a contradiction. �

Lemma 2.3: Let D ⊂⊂ C
d be a bounded strongly convex C2 domain, and fix p ∈ D. Let

f ∈ Hol(D,D), and {zn} ⊂ D be a backward orbit for f with bounded Kobayashi step a = 1
2 log α

converging to σ ∈ ∂D. Then σ is a boundary fixed point of f and βσ ≤ α.

Proof : Fix p ∈ D. First of all we have

1
2
log βσ,p = lim inf

w→σ

[
kD(w, p)− kD

(
f(w), p

)]
≤ lim inf

n→+∞

[kD(zn+1, p)− kD
(
zn, p

)
]

≤ lim inf
n→+∞

kD(zn+1, zn)

≤ a = 1
2 log α .

Since zn → σ and f(zn) = zn−1 → σ as n → +∞, using [A2, Proposition 2.4.15] we get that
f
(
Ep(σ,R)

)
⊆ Ep(σ, αR) for all R > 0. Then Proposition 1.4 implies that f has K-limit σ at σ,

and we are done. �
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Lemma 2.4: Let D ⊂⊂ C
d be a bounded strongly convex C2 domain. Let f ∈ Hol(D,D) be

hyperbolic or parabolic with Wolff point τ ∈ ∂D and dilation coefficient 0 < βτ ≤ 1. Let {zn} ⊂ D
be a backward orbit for f with bounded Kobayashi step converging to σ ∈ ∂D \ {τ}. Then

βσ ≥ 1

βτ
≥ 1 .

Proof : Let ϕ:∆ → D be a complex geodesic such that ϕ(−1) = σ and ϕ(1) = τ , and set p = ϕ(0).
Proposition 1.4 yields

p ∈ Ep(σ, 1) =⇒ f(p) ∈ Ep(σ, βσ)

and
p ∈ Ep(τ, 1) =⇒ f(p) ∈ Ep(τ, βτ ) .

Hence Ep(σ, βσ) ∩ Ep(τ, βτ ) 6= ∅.
Let p̃ϕ:D → ∆ be the left-inverse of ϕ. Then

∅ 6= p̃ϕ

(
Ep(σ, βσ) ∩ Ep(τ, βτ )

)
⊆ p̃ϕ(Ep(σ, βσ)) ∩ p̃ϕ(Ep(τ, βτ ))

= E0(−1, βσ) ∩E0(1, βτ ) .

Now, E0(1, βτ ) is an Euclidean disk of radius βτ/(βτ +1) tangent to ∂∆ in 1, and E0(−1, βσ) is an
Euclidean disk of radius βσ/(βσ + 1) tangent to ∂∆ in −1. So these disks intersect if and only if

1− 2βτ
βτ + 1

≤ −1 +
2βσ

βσ + 1
,

which is equivalent to βσβτ ≥ 1, as claimed. �

In this way we proved Theorem 0.1.(i) for hyperbolic and parabolic maps. Now we prove
Theorem 0.1.(iv):

Lemma 2.5: Let D ⊂⊂ C
d be a bounded strongly convex C2 domain, and fix p ∈ D. Let

f ∈ Hol(D,D) be hyperbolic or parabolic with Wolff point τ ∈ ∂D, and let {zn} ⊂ D be a
backward orbit for f with bounded Kobayashi step a = 1

2 logα converging to σ ∈ ∂D. Then for
every p ∈ D there exists M > 0 such that zn ∈ Kp(σ,M) eventually.

Proof : Choose p ∈ M . We clearly have

lim inf
n→∞

[kD(p, zn+1)− kD(p, zn)] ≥ 1
2
log βσ ;

since, by the previous lemma, βσ ≥ 1, there thus exists n0 ≥ 0 such that

kD(p, zn+1)− kD(p, zn) ≥ 1
2 log β

1/2
σ

for all n ≥ n0. Therefore

kD(p, zn+1)− kD(p, zn)− kD(zn+1, zn) ≥ 1
2 log β

1/2
σ − 1

2 logα > −∞ ,

and hence

kD(p, zn+2)− kD(p, zn)− kD(zn+2, zn)≥kD(p, zn+1)− kD(zn+2, zn+1)− kD(p, zn)− kD(zn+2, zn)

≥kD(p, zn+1)− kD(p, zn)− kD(zn+1, zn)

≥ 1
2 log

β
1/2
σ

α
.
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By induction, for any m > n ≥ n0 we thus have

kD(p, zm)− kD(p, zn)− kD(zm, zn) ≥ 1
2 log

β
1/2
σ

α
,

i.e.,

kD(zm, zn)− kD(p, zm) + kD(p, zn) ≤ 1
2 log

(
αβ−1/2

σ

)
.

Then

lim
w→σ

[kD(zn, w) − kD(p,w)] + kD(p, zn) = lim
m→∞

[kD(zn, zm)− kD(p, zm)] + kD(p, zn)

≤ 1
2 log

(
αβ−1/2

σ

)
< +∞ ,

for all n ≥ n0, and we are done. �

To prove Theorem 0.1.(iii) we need another lemma:

Lemma 2.6: Let D ⊂⊂ C
d be a bounded strongly convex C2 domain, and fix p ∈ D. Let

f ∈ Hol(D,D) be hyperbolic or parabolic with Wolff point τ ∈ ∂D and dilation coefficient
0 < βτ ≤ 1. Let {zn} ⊂ D be a backward orbit for f . Then

∀n ∈ N hτ,p(zn) ≥
(

1

βτ

)n

hτ,p(z0) .

Proof : Put tn = hτ,p(zn). By definition, zn ∈ ∂Ep(τ, tn). By Proposition 1.4, if zn+1 ∈ Ep(τ,R)
then zn ∈ Ep(τ, βτR). Since zn /∈ Ep(τ, tn), we have that zn+1 /∈ Ep(τ, β

−1
τ tn), that is

tn+1 ≥ 1

βτ
tn , (2.1)

and the assertion follows by induction. �

Corollary 2.7: Let D ⊂⊂ C
d be a bounded strongly convex C2 domain. Let f ∈ Hol(D,D)

be hyperbolic with Wolff point τ ∈ D. Let {zn} ⊂ D be a backward orbit for f with bounded
Kobayashi step a > 0 converging to σ ∈ ∂D. Then σ 6= τ .

Proof : By Lemma 2.5, the sequence {zn} converges to σ inside a Korányi region with center σ.
But, by Lemma 2.6, zn is eventually outside any horosphere centered in τ , and this clearly implies
τ 6= σ as claimed. �

So we have Theorem 0.1.(iii), and together with Lemma 2.4 we also proved Theorem 0.1.(ii)
for the hyperbolic case.

Remark 2.1: Lemma 2.6 can be used to give another proof of the convergence of a backward
orbit of bounded Kobayashi step for hyperbolic maps. First of all, [AS, Remark 3] yields a constant
C1 > 0 such that

‖zn − zn+1‖ ≤ C1√
1− â2

√
d(zn, ∂D) ≤ C1

1− â

√
d(zn, ∂D) , (2.2)

where â = tanh a ∈ (0, 1) and a is the Kobayashi step of the backward orbit {zn}. On the other
hand, given p ∈ D the triangular inequality and the upper estimate [A2, Theorem 2.3.51] on the
boundary behavior of the Kobayashi distance yield a constant C2 > 0 such that

1
2 log hτ,p(zn) ≤ kD(p, zn) ≤ C2 − 1

2 log d(zn, ∂D) ,
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and thus

‖zn − zn+1‖ ≤ C

1− â

√
1

hτ,p(zn)
, (2.3)

for a suitable C > 0. Therefore using Lemma 2.6 we get that for every m ≥ n ≥ 0 we have

‖zm − zn‖ ≤
m−1∑

j=n

‖zj+1 − zj‖ ≤ C

1− â

1√
hτ,p(z0)

m−1∑

j=n

βj/2
τ ≤ C

1− â

1

1− β
1/2
τ

β
n/2
τ√

hτ,p(z0)
,

and so {zn} is a Cauchy sequence in C
d, converging to a point σ ∈ ∂D by Lemma 2.1.

Let us now deal with strongly elliptic maps. We need a preliminary lemma:

Lemma 2.8: Let D ⊂⊂ C
d be a bounded strongly convex C2 domain. Let f ∈ Hol(D,D) be

strongly elliptic with Wolff point p ∈ D. Then for every R0 > 0 there exists 0 < c = c(R0) < 1
such that

kD
(
f(z), p

)
− kD(z, p) ≤ 1

2
log c < 0

for all z ∈ D with kD(z, p) ≥ R0.

Proof : By contradiction, assume that for every c < 1 there exists z(c) ∈ D with kD
(
z(c), p

)
≥ R0

so that
kD

(
f
(
z(c)

)
, p
)
− kD

(
z(c), p

)
> 1

2
log c .

Let z∞ ∈ D be a limit point of the sequence {z(1 − 1/n)}. If z∞ ∈ D then

kD
(
f
(
z∞

)
, p
)
− kD(z∞, p) ≥ 1

2 log 1 = 0 .

against Lemma 1.1. Thus z∞ ∈ ∂D. But then

lim inf
z→z∞

[
kD(z, p)− kD

(
f(z), p

)]
≤ 0 .

By Proposition 1.4 we then have f
(
Ep(z∞, R)

)
⊆ Ep(z∞, R) for every R > 0. Choose R < 1 so that

p /∈ Ep(z∞, R), and let w ∈ Ep(z∞, R) the point closest to p with respect to the Kobayashi distance.

Since f(w) ∈ Ep(z∞, R), it follows that kD
(
f(w), p

)
≥ kD(w, p), which is again impossible, because

w 6= p and f is strongly elliptic. �

Lemma 2.9: Let D ⊂⊂ C
d be a bounded strongly convex C2 domain. Let f ∈ Hol(D,D) be

strongly elliptic with Wolff point p ∈ D, and let {zn} ⊂ D be a backward orbit with Kobayashi
bounded step a = 1

2
log α. Then zn → σ ∈ ∂D, and σ is a boundary fixed point of f with βσ ≤ α.

Proof : Let define sn > 0 by setting − 1
2 log sn = kD(zn, p). Without loss of generality, we can

assume that z0 6= p; let R0 = kD(z0, p), and c = c(R0) < 1 given by Lemma 2.8. Arguing by
induction we have

kD(zn, p)− kD(zn+1, p) ≤ 1
2
log c < 0 ;

in particular, kD(zn+1, p) > kD(zn, p) ≥ R0 always. Hence

− 1
2 log sn + 1

2 log sn+1 ≤ 1
2 log c ,

that is
sn+1 ≤ csn . (2.4)

Therefore sn+k ≤ cksn for every n, k ∈ N. So sn → 0 as n → +∞, that is zn → ∂D, and the
assertion follows from Lemma 2.2 and 2.3. �
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Remark 2.2: We can give another proof of the convergence of a backward orbit {zn} with
bounded Kobayashi step a > 0 for strongly elliptic maps along the lines of Remark 2.1. Indeed,
using (2.2) and [A2,Theorem 2.3.51] we get

‖zn − zn+1‖ ≤ C

1− â

√
sn

for a suitable C > 0, where â = tanh a and − 1
2 log sn = kD(p, zn). Since (2.4) yields sn ≤ cns0,

arguing as in the Remark 2.1 we see that {zn} is a Cauchy sequence in C
d converging to a

point σ ∈ ∂D.

Lemma 2.10: Let D ⊂⊂ C
d be a bounded strongly convex C2 domain. Let f ∈ Hol(D,D) be

strongly elliptic with Wolff point p ∈ D. If σ ∈ ∂D is a boundary fixed point then βσ > 1.

Proof : Indeed, Lemma 2.8 yields 0 < c < 1 such that

1
2
log βσ = lim inf

z→σ

[
kD(z, p)− kD

(
f(z), p

)
] ≥ − 1

2
log c > 0 ,

and we are done. �

So we have proven Theorem 0.1.(i) and (ii); (iii) follows from the obvious fact that p ∈ D
whereas σ ∈ ∂D. We now conclude the proof of Theorem 0.1 with

Lemma 2.11: Let D ⊂⊂ C
d be a bounded strongly convex C2 domain. Let f ∈ Hol(D,D) be

strongly elliptic, with Wolff point p ∈ D. Let {zn} ⊂ D be a backward orbit for f with bounded
Kobayashi step converging to σ ∈ ∂D. Then for every q ∈ D there exists M > 0 such that
zn ∈ Kq(σ,M) eventually.

Proof : As usual, it suffices to prove the statement for q = p. Lemma 2.8 yields 0 < c < 1 such that

lim inf
n→∞

[kD(p, zn+1)− kD(p, zn)] ≥ 1
2 log

1

c
> 0 ,

and then the assertion follows arguing as in the proof of Lemma 2.5. �

3. Construction of backward orbits with bounded Kobayashi step

In this section we shall construct backward orbits with bounded Kobayashi step converging to
isolated boundary fixed points. To do so we need a definition and two lemmas.

Definition 3.1: Let D ⊂⊂ C
d be a bounded strongly convex C2 domain, and f ∈ Hol(D,D).

A boundary fixed point σ ∈ ∂D with dilation coefficient βσ is isolated if there is a neighbourhood
U ⊂ C

d of σ in C
d such that U ∩ ∂D contains no other boundary fixed point of f with dilation

coefficient at most βσ.

Lemma 3.1: Let D ⊂⊂ C
d be a bounded strongly convex C2 domain, and f ∈ Hol(D,D). Let

σ ∈ ∂D be a boundary fixed point of f with finite dilation coefficient βσ, and choose a complex
geodesic ϕ ∈ Hol(∆,D) with ϕ(1) = σ. Then

lim
t→1−

kD
(
ϕ(t), f

(
ϕ(t)

))
= 1

2
| log βσ| .

Proof : We shall first prove the statement when D = ∆ and ϕ = id∆. In this case

k∆
(
t, f(t)

)
= 1

2 log
1 +

∣∣∣ t−f(t)
1−tf(t)

∣∣∣

1−
∣∣∣ t−f(t)
1−tf(t)

∣∣∣
.
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Now, the classical Julia-Wolff-Carathéodory theorem yields

1− tf(t)

1− t
= 1 + t

1− f(t)

1− t
→ 1 + β1 ,

1− tf(t)

1− f(t)
= 1 + f(t)

1− t

1− f(t)
→ 1 +

1

β1

as t → 1−; therefore

t− f(t)

1− tf(t)
=

1− f(t)

1− tf(t)
− 1− t

1− tf(t)
→ 1

1 + (1/β1)
− 1

1 + β1
=

β1 − 1

β1 + 1
,

and the assertion follows.
In the general case, let p̃ϕ ∈ Hol(D,∆) be the left-inverse of ϕ, and pϕ = ϕ ◦ p̃ϕ. Put

fϕ = pϕ ◦ f ∈ Hol(D,D) and f̃ = p̃ϕ ◦ f ◦ ϕ ∈ Hol(∆,∆). First of all

kD
(
ϕ(t), f

(
ϕ(t)

))
= kD

(
ϕ(t), fϕ

(
ϕ(t)

))
+ kD

(
ϕ(t), f

(
ϕ(t)

))
− kD

(
ϕ(t), fϕ

(
ϕ(t)

))

= k∆
(
t, f̃(t)

)
+ kD

(
ϕ(t), f

(
ϕ(t)

))
− kD

(
ϕ(t), fϕ

(
ϕ(t)

))
.

Since σ is a boundary fixed point of f it immediately follows that 1 is a boundary fixed point of f̃ .
Furthermore, (1.2) implies that the dilation coefficient of f̃ at 1 is βσ ; hence k∆

(
t, f̃(t)

)
→ 1

2 | log βσ |
as t → 1−. Now,

∣∣kD
(
ϕ(t), f

(
ϕ(t)

))
− kD

(
ϕ(t), fϕ

(
ϕ(t)

))∣∣ ≤ kD
(
f
(
ϕ(t)

)
, fϕ

(
ϕ(t)

))
;

so to conclude the proof it suffices to show that kD
(
f
(
ϕ(t)

)
, fϕ

(
ϕ(t)

))
→ 0 as t → 1−.

Set γ(t) = f
(
ϕ(t)

)
. By [A2, Proposition 2.7.11] it suffices to prove

– that pϕ ◦ γ(t) → σ non-tangentially;
– that γ(t) is eventually inside an euclidean ball contained in D and tangent to ∂D in σ;
– and that

lim
t→1−

∥∥γ(t)− pϕ
(
γ(t)

)∥∥2

d
(
pϕ

(
γ(t)

)
, ∂D

) = 0 . (3.1)

Since ϕ is transversal to ∂D, to prove that pϕ ◦ γ(t) → σ non-tangentially it suffices to show

that p̃ϕ ◦ γ(t) = f̃(t) → 1 non-tangentially. But the classical Julia-Wolff-Carathéodory theorem
yields

|1− f̃(t)|
1− |f̃(t)|

=

∣∣∣∣∣
1− f̃(t)

1− t

∣∣∣∣∣
1− t

1− |f̃(t)|
→ βσ · 1

βσ
= 1 , (3.2)

and this is done.
To prove (3.1), we first recall that [A2, Proposition 2.7.23] yields

lim
t→1−

∥∥γ(t)− pϕ
(
γ(t)

)∥∥2

1− t
= 0 . (3.3)

Furthermore, we already noticed that

lim
t→1−

1− t

1− |f̃(t)|
=

1

βσ
> 0 . (3.4)
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Finally, the lower estimate [A2, Theorem 2.3.52] on the boundary behavior of the Kobayashi dis-
tance yields c1 ∈ R such that

1
2 log

1 + |f̃(t)|
1− |f̃(t)|

= k∆
(
0, f̃(t)

)
= kD

(
ϕ(0), fϕ

(
ϕ(t)

))
≥ c1 − 1

2 log d
(
fϕ

(
ϕ(t)

)
, ∂D

)
,

that is
1− |f̃(t)|

d
(
fϕ

(
ϕ(t)

)
, ∂D

) ≤ 2e−2c1 . (3.5)

Putting together (3.3), (3.4) and (3.5) we get (3.1).
More precisely, (3.2) says that the curve t 7→ f̃(t) converges to 1 radially (that is, tangent to

the radius ending in 1); therefore the curve pϕ ◦ γ goes to σ tangentially to the transversal curve
t 7→ ϕ(t). Furthermore, the upper estimate [A2, Theorem 2.3.51] yields c2 ∈ R such that

1
2 log

1 + |f̃(t)|
1− |f̃(t)|

≤ c2 − 1
2 log d

(
fϕ

(
ϕ(t)

)
, ∂D

)
;

hence recalling (3.4) and (3.5) we see that d
(
fϕ

(
ϕ(t)

)
, ∂D

)
is comparable to 1− t. Recalling (3.3)

we then obtain that γ(t) is eventually contained in euclidean balls internally tangent to ∂D in σ of
arbitrarily small radius, and we are done. �

Lemma 3.2: Let D ⊂⊂ C
d be a bounded strongly convex C2 domain, and f ∈ Hol(D,D). Let

{zn} ⊂ D be a sequence converging to σ ∈ ∂D such that lim sup
n→+∞

kD
(
zn, f(zn)

)
= 1

2 log α < +∞.

Then σ is a boundary fixed point with dilation coefficient at most α.

Proof : The lower estimate [A2, Corollary 2.3.55] immediately implies that f(zn) → σ as well. Fix
p ∈ D; then

1
2
log βσ,p ≤ lim inf

n→+∞

[
kD(zn, p)− kD

(
f(zn), p

)]
≤ lim sup

n→+∞

kD
(
zn, f(zn)

)
= 1

2
logα .

The assertion then follows arguing as in the proof of Lemma 2.3. �

And now we can prove the announced

Theorem 3.3: Let D ⊂⊂ C
d be a bounded strongly convex C2 domain, and take f ∈ Hol(D,D)

hyperbolic, parabolic or strongly elliptic with Wolff point τ ∈ D. Let σ ∈ ∂D \ {τ} be an isolated
repelling boundary fixed point for f with dilation coefficient βσ > 1. Then there is a backward
orbit with Kobayashi step bounded by 1

2 log βσ converging to σ.

Proof : We follows closely the proof of [PC1, Lemma 1.4].
Let U ⊆ C

d be a small ball centered at σ in C
d such that U ∩D contains neither τ nor other

boundary fixed points with dilation coefficient at most βσ, and put J = ∂U ∩D.
Let ϕ ∈ Hol(∆,D) be a complex geodesic with ϕ(1) = σ, and put p = ϕ(0). Furthermore, let

n0 ≥ 0 be such that Ek = Ep(σ, β
−n0−k
σ ) ⊂ U for all k ≥ 0; set rk = ϕ(tk), where tk ∈ (0, 1) is such

that rk ∈ ∂Ek ∩ ϕ(∆).
For each k, let γk be the line segment connecting rk and f(rk). Since fn(rk) → τ /∈ U ,

and
⋃n−1

j=0 f j(γk) is a path connecting rk with fn(rk), there is a smallest integer nk such that
fnk(γk) intersects J . Since, by Proposition 1.4, f(Ek+1) ⊆ Ek, and the horospheres are convex, we
necessarily have nk > k.
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Put zk = fnk(rk) ∈ U ∩ D; we claim that the sequence {zk} is relatively compact in D.
If not, we can extract a subsequence {zkj

} converging to a point η ∈ ∂D. By Lemma 3.1,
kD

(
zkj

, f(zkj
)
)
→ 1

2 log βσ . It follows, by Lemma 3.2, that η is a boundary fixed point with

dilation coefficient at most βσ ; since η ∈ U ∩ ∂D, this contradicts the choice of U .
So there is an infinite set I0 ⊆ N such that {zk}k∈I0 converges to w0 ∈ D. Fix j ≥ 1, and

assume that we can extract from Ij−1 an infinite set Ij such that {fnk−j(rk)} converges to some
wj ∈ D. Let S = {fnk−(j+1)(rk)}k∈Ij ; since

kD
(
fnk−(j+1)(rk), f

nk−j(rk)
)
≤ kD

(
rk, f(rk)

)
→ 1

2 log βσ ,

the sequence S is still relatively compact in D, and thus we can extract from Ij an infinite set
Ij+1 such that {fnk−(j+1)(rk)}k∈Ij+1

converges to a point wj+1 ∈ D. Notice that, by construction,
f(wj+1) = wj ; therefore {wj} is a backward orbit.

Since points of the form fnk−j(rk) with nk > j are contained in U , we have that wj ∈ U ∩D
for all j. Furthermore,

kD(wj+1, wj) = lim
k∈Ij+1

kD
(
fnk−(j+1)(rk), f

nk−j(rk)
)
≤ lim

k∈Ij+1

kD
(
rk, f(rk)

)
= 1

2 log βσ ;

so we are left to prove that wj → σ.
Assume, by contradiction, that there is a subsequence {wjh} converging to q ∈ D \ {σ}. If

q ∈ D, then the sequence K = {wjh} is relatively compact in D; so there is an n > 0 such that
fn(K)∩U = ∅. But K is a subsequence of a backward orbit contained in U , and so fn(K)∩U 6= ∅

for all n ≥ 0.
Finally, if q ∈ ∂D, then, again by Lemma 3.2, q is a boundary fixed point with dilation

coefficient at most βσ; since q ∈ U , this contradicts the choice of U , and we are done. �
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