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Abstract. — In this paper, we give a self-contained introduction to the mould formalism of
J. Écalle. We provide a dictionary between moulds and the classical Lie algebraic formalism
using non-commutative formal power series. We review results by J. Écalle and B. Vallet
about the Trimmed form of local analytic diffeomorphisms of Cν , for which we provide full
proofs and details. This allows us to discuss a mould approach to the classical Poincaré-Dulac
normal form for diffeomorphisms.

1. Introduction

Let ν ∈ N∗, x = (x1, . . . , xν) ∈ Cν and f : Cν → Cν be a local analytic diffeomorphism

of Cν such that f(0) = 0 and given by

(1.1) f(c) = flin(x) + r(x),

where flin is the linear part of f and r(x) = (r1(x), . . . , rν(x)) consists in terms of order at

least two, i.e., for i = 1, . . . , ν

(1.2) ri(x) =
∑

N∈Nν ,|N |≥2

ai,nx
N , ai,n ∈ C,

with N = (n1, . . . , nν), |N | = n1 + · · ·+ nν and xN = xn1
1 . . . xnνν .

The dynamics of f around 0 can be studied using normal form theory (see [1]). The

basic idea is to look for changes of variables of the form y = h(x), that are tangent to

identity and such that f in this new coordinates system, denoted by fnorm, has a simpler

form. The two objects are related by the conjugacy equation

(1.3) fnorm ◦ h = h ◦ f.
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Poincaré Theorem [1] asserts that if the linear part is non-resonant, i.e., if the set of

eigenvalues µ1, . . . , µν of flin does not satisfy relations, called resonances, of the form

(1.4) µi = µN , for some N ∈ Nν , |N | ≥ 2, and i ∈ {1, . . . , ν}

where µ = (µ1, . . . , µν), then we can linearize f , i.e., we can find a formal change of

coordinates such that

(1.5) fnorm := flin.

In the general case, Poincaré-Dulac Theorem [1] asserts that we can find a formal change

of coordinates such that fnorm takes the form

(1.6) fnorm = flin + fres,

where fres contains only resonant monomials, that is monomials xnei of Cν , where

e1 = (1, 0, . . . , 0), . . . , eν = (0, . . . , 0, 1) is the canonical basis of Cν , with N ∈ Nν such that

µi = µN and |N | ≥ 2.

A form like (1.6) is called a resonant normal form or a prenormal form by J. Écalle [6].

These forms are not unique. In order to obtain uniqueness, we must look for a prenormal

form containing the minimal number of resonant terms and with formal invariants as

coefficients. Such a form always exists [2] and is called the normal form by J. Écalle [6].

Although a normal form can be considered as the simplest prenormal form, it is not in

general possible to compute it. Even if an algorithmic procedure can be obtained [2], its

exact shape is related to the vanishing of certain quantities depending polynomially on

the Taylor coefficients of the diffeomorphisms. This cannot be decided by a computer.

We look for calculable prenormal forms, i.e., prenormal forms which can be obtained

using a procedure which is algorithmic and implementable. As an example of such prenor-

mal forms, we study continuous prenormal forms as defined by J. Écalle [7].

In this paper, we mainly focus on two particular continuous prenormal forms, one

introduced by J. Écalle and B. Vallet [8] called the Trimmed form and the classical

Poincaré-Dulac normal form.
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The paper is organized as follow:

In the first part, we give a self-contained introduction to the mould formalism which

is the natural framework for continuous prenormalization. We then describe the general

problem of prenormalization for diffeomorphisms and define the notion of continuous

prenormalization following Écalle.

In the second part, we review results by J. Écalle and B. Vallet [8] about the Trimmed

form. We provide complete proofs and details for the computations of the different moulds

associated to the Trimmed form. We also give closed formulae for these moulds using a

different initial alphabet.

We then discuss the Poincaré-Dulac normal form in the mould framework and compared

to the Trimmed form. We obtain two universal moulds Poin• and Dulac•. These two

universal moulds are associated to the Poincaré normalization procedure and the Poincaré-

Dulac normal form. It seems very difficult to obtain such objects using the existing methods

of perturbation theory. The mould formalism provides a direct and algorithmic way to

capture the universal features of a normalization procedure.

2. Diffeomorphisms, automorphisms and continuous prenormalization

We consider local analytic diffeomorphisms of Cν with 0 as a fixed point and diagonaliz-

able linear part. We work in a given analytic chart where the linear part is assumed to be

in diagonal form. In such a case, the diffeomorphism is called in prepared form by J. Écalle.

Let f : Cν → Cν , ν ∈ N be defined by

(2.1) f(x1, . . . , xν) = (eλ1x1, . . . , e
λνxν) + h(x1, . . . , xν),

with f(0) = 0, and h = (h1, . . . , hν), hi ∈ C{x} for all i = 1, . . . , ν. We denote by flin the

linear part of f , i.e., flin(x1, . . . , xν) = (eλ1x1, . . . , e
λνxν).

J. Écalle looks for the substitution operator associated to f , denoted by F and defined

by

(2.2) F :
C{x} → C{x},
φ 7→ φ ◦ f,
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where ◦ is the usual composition of functions.

As f is a diffeomorphism, the substitution operator F is an automorphism of (C{x}, ·)
where · is the usual product of functions on C{x}, i.e., for all φ, ψ ∈ C{x}, we have

(2.3) F(φ · ψ) = Fφ · Fψ,

and F−1(φ) = φ ◦ f−1.

J. Écalle proves the following result (see [6] Section 4) , which is a direct consequence of

the Taylor expansion Theorem:

Lemma 1. — Let f be an analytic diffeomorphism of Cν in prepared form and F its

associated substitution operator. There exist a decomposition of F as

(2.4) F = Flin

Id +
∑

n∈A(F)

Bn

 ,

where A(F) is an infinite set of indices n ∈ Zν, Flin the substitution operator associated to

flin, and for all n ∈ A(F), Bn is a homogeneous differential operator of degree n, i.e., for

all m ∈ Nν,

(2.5) Bn(xm) = βn,mx
n+m, βn,m ∈ C.

In the following, we work essentially with the substitution operator F. In order to

simplify our statements, we call diffeo(s) the automorphism F associated to a given diffeo-

morphism f .

Definition 1. — Let F and Fconj be two local analytic diffeos of Cν. The diffeo Fconj is

said conjugated to F if there exists a tangent to the identity change of variables h of Cν

such that the associated substitution operator denoted by Θ satisfies

(2.6) Fconj = Θ ◦ F ◦Θ−1.

The substitution operator Θ is called the normalizator in the following. When the

change of variables h is of class formal, Ck or Cω, we speak of a formal, Ck or analytic

normalization.

Definition 2. — Let F be an analytic diffeo of Cν in prepared form. A prenormal form

for F, denoted by Fpren, is an automorphism of C{x} conjugated to F such that

(2.7) Fpren ◦ Flin = Flin ◦ Fpren.



TRIMMED AND POINCARÉ-DULAC NORMAL FORM 5

We can verify that this definition is coherent with the classical one. Indeed, we have

Flin(Id) = flin, and if we denote by fpren = Fpren(Id) we obtain fpren ◦ flin = flin ◦ fpren. As

fpren = flin + r, this equation induces the following relation

(2.8) flin ◦ r = r ◦ flin.

Denoting r(x) = (r1(x), . . . , rν(x)), ri(x) =
∑

N∈Nν , |N |≥2

ri,Nx
N , we obtain

(2.9) eλi
∑

N∈Nν , |N |≥2

ri,nx
n =

∑
N∈Nν ,‖N |≥2

ri,Ne
〈λ,N〉xN ,

where 〈λ,N〉 :=
∑ν

j=1 njλj is the canonical scalar product. Denoting µi = eλi the eigen-

values of f , we have for all N ∈ Nν , |N | ≥ 2

(2.10) µiri,N = µNri,N .

If µi 6= µN then ri,N = 0. As a consequence, the commutation with Flin is equivalent to

impose that fpren contains only resonant terms.

J. Écalle introduced in [7] and extensively studied in [8] a very particular class of prenor-

mal forms called continuous prenormal forms.

Definition 3. — Let F be a diffeo of Cν in prepared form given by

F = Flin

Id +
∑

n∈A(F)

Bn

 .

A continuous prenormal form Fpren is an automorphism of C{x} conjugated to of the form

(2.11) Fpren = Flin

 ∑
n∈A(F)∗

PrennBn

 ,

where A(F)∗ is the set of sequences n = (n1, . . . , nr), ni ∈ A(F ), r ≥ 0, Prenn ∈ C
satisfying

(2.12) Prenn = 0 if 〈‖n‖, λ〉 6∈ 2πiZ,

with λ = (λ1, . . . , λν) ∈ Cν, ‖n‖ = n1 + · · · + nr ∈ Zν for all n ∈ A(F )∗, and Bn =

Bn1 . . . Bnr with the usual composition of differential operators.

These forms are calculable using the formalism of moulds developed by J. Écalle since

1970 in relation with his Resurgence theory (see [5]).
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3. Moulds and prenormalization

3.1. Reminder about moulds. — We provide a self-contained introduction to the

formalism of moulds and we refer to the articles of J. Écalle or to the surveys [3],[4] for

more details.

3.1.1. Moulds and non-commutative formal power series. — We denote by A an alphabet,

finite or not. A letter of A is denoted by a. Let A∗ denotes the set of words constructed

on A, i.e., the finite sequences a1 . . . ar, r ≥ 0, with ai ∈ A, with the convention that for

r = 0 we have the empty-word denoted by ∅. We denote a word of A∗ with bold letter a.

We have a natural operation on A∗ provided by the usual concatenation of two words a,

b ∈ A∗, which glues the words a to b, i.e., ab.

Definition 4. — Let K be a ring (or a field) and A a given alphabet. A K-valued mould

on A is a map from A∗ to K, denoted by M•. The set of K-valued moulds on A is denoted

by MK(A).

The evaluation of M• on a word a ∈ A∗ is denoted by Ma

We can define a C-valued mould on A(F ) by

(3.1)
Pren• : A(F )∗ −→ C

n 7−→ Prenn.

The mould Pren• is obtained collecting the coefficients of a formal power series∑
n∈A(F )∗

PrennBn. There exists a one-to-one correspondence between moulds and for-

mal power series.

For r ≥ 0, we denote by A∗r the set of words of length r, with the convention that

A∗0 = {∅}. We denote by K〈A〉 the set of finite K-linear combinations of elements of A∗,

i.e., non-commutative polynomials on A with coefficients in K, and by Kr〈A〉 the set of

K-linear combination of elements of A∗r, i.e., the set of non-commutative homogeneous

polynomials of degree r. We have a natural graduation on K〈A〉 by the length of words:

(3.2) K〈A〉 =
∞⊕
r=0

Kr〈A〉.
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The completion of K〈A〉 with respect to the graduation by length, denoted by K〈〈A〉〉, is

the set of formal power series with coefficients in K. An element of K〈〈A〉〉 is denoted by

(3.3)
∑
a∈A∗

Maa, Ma ∈ K,

where this sum must be understood as

(3.4)
∑
r≥0

∑
a∈A∗r

Maa

 ,

ans so we have a mould. Conversely, let M• be a K-valued mould on A, its generating

series, denoted by ΦM , belongs to K〈〈A〉〉 and is defined by

(3.5) ΦM =
∑
a∈A∗

Maa,

or in a condensed way as
∑
•

M••. This correspondence provide a one-to-one mapping

from the set MK(A) of K-valued moulds on A and K〈〈A〉〉.

3.1.2. Moulds algebra. — The set of moulds MK(A) inherits a structure of algebra from

K〈〈A〉〉. We recall here the definition of sum and product of two moulds M• and N•, that

are denoted respectively by M• + N• and M• · N•, and defined by

(3.6)
(M• + N•)a = Ma +Na,

(M• · N•)a =
∑

a1a2=a

Ma1

Na2

,

for all a ∈ A∗ where the sum corresponds to all the partition of a as a concatenation of

two words a1 and a2 of A∗.

It is easy to check that the product of moulds is analogous to the composition of operators,

and hence of maps.

The neutral element for the mould product is denoted by 1• and defined by

(3.7) 1• =

{
1 if • = ∅,
0 otherwise,

Let M• be a mould. We denote by −−M• the inverse of M• for the mould product when it

exists, i.e., the solution of the mould equation:

(3.8) M• ·−−M• = −−M• ·M• = 1•.
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3.1.3. Composition of moulds. — Assuming that A possesses a semi-group structure, we

can define a non-commutative version of the classical operation of substitution of formal

power series.

We denote by ? an internal law on A, such that (A, ?) is a semi-group. We denote by

‖ · ‖? the mapping from A∗ to A defined by

(3.9)
‖ · ‖? : A∗ −→ A,

a = a1 . . . ar 7−→ a1 ? · · · ? ar.
The ? will be omitted when clear from the context.

The set K〈〈A〉〉 is graded by ‖ ‖?. A homogeneous component of degree a ∈ A of a

non-commutative series ΦM =
∑
a∈A∗

Maa is the quantity

(3.10) Φa
M =

∑
a∈A∗, ‖a‖?=a

Maa.

We have by definition

(3.11) ΦM =
∑
a∈A

Φa
M .

Definition 5 (Composition). — Let (A, ?) be a semi-group structure. Let M• and N•

be two moulds onMK(A) and ΦM , ΦN their associated generating series. The substitution

of ΦN in ΦM , denoted by ΦM ◦ ΦN is defined by

(3.12) ΦM ◦ ΦN =
∑
a∈A∗

MaΦa
N ,

where Φa
N is given by Φa1

N . . .Φar
N for a = a1 . . . ar.

We denote by M• ◦ N• the mould of MK(A) such that

(3.13) ΦM ◦ ΦN =
∑
a∈A∗

(M• ◦ N•)aa.

Equation (3.13) define a natural operation on moulds denoted ◦ and called composition.

Using ‖ ‖? we can give a closed formula for the composition of two moulds.

Lemma 2. — Let (A, ?) be a semi-group and M•, N• be two moulds of MK(A). We have

for all a ∈ A∗,

(3.14) (M• ◦ N•)a =

l(a)∑
k=1

∑∗

a1...ak=a

M‖a1‖?...‖ak‖?Na1

. . . Nak ,
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where l(•) denotes the length of a word of A∗, and by
∑∗ we mean the sum restricted to

the partitions a1 . . . ak = a with non-empty elements, that is such that ai 6= ∅, i = 1, . . . , k.

Proof. — Equation (3.12) is equivalent to

(3.15)

ΦM ◦ ΦN =
∑
r≥0

∑
b=b1...br∈A∗r

M b1...br

 ∑
a1∈A∗, ‖a1‖?=b1

Na1

a1

 . . .

 ∑
ar∈A∗, ‖ar‖?=br

Narar

 .

Let a ∈ A∗ be a given word of A∗. Each partition of a of the form a = a1 . . . ak, k =

1, . . . , l(a), occurs in the sum (3.15) with a coefficient given by

(3.16) M b1...brNa1

. . . Nak ,

where bi = ‖ai‖?. Collecting all these coefficients, we obtain the formula (3.14) for the

coefficient of a in ΦM ◦ ΦN .

The neutral element for the mould composition is denoted by I• and defined by

(3.17) I• =

{
1 if l(•) = 1,
0 otherwise,

where l(•) is the length of a word of A∗.

3.1.4. Exponential and logarithm of moulds. — We denote by (K〈〈A〉〉)∗ the set of for-

mal power series without a constant term. We define the exponential of an element

x ∈ (K〈〈A〉〉)∗ , denoted by exp(x) using the classical formula

(3.18) exp(x) =
∑
n≥0

xn

n!
.

The logarithm of an element 1 +x ∈ 1 + (K〈〈A〉〉)∗ is denoted by log(1 +x) and defined by

(3.19) log(1 + x) =
∑
n≥1

(−1)n+1x
n

n
.

These two applications have their natural counterpart in MK(A).

Definition 6. — Let M• be a mould of MK(A) and ΦM the associated generating series.

Assume that exp(ΦM) is defined. We denote by ExpM• the mould satisfying the equality

(3.20) exp

(∑
•

M••

)
=
∑
•

ExpM• • .

Simple computations lead to the following direct definition of Exp on moulds:

(3.21) ExpM• =
∑
n≥0

[M•](×n)

n!
,
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where [M•](×n), n ∈ N, stands for

(3.22) [M•](×n) = M• · · ·M•︸ ︷︷ ︸
n times

.

The same procedure can be applied to define the logarithm of a mould.

Definition 7. — Let M• be a mould of MK(A) and ΦM the associated generating series.

Assume that log(1+ΦM) is defined. We denote by LogM• the mould satisfying the equality

(3.23) log

(
1 +

∑
•

M••

)
=
∑
•

LogM• • .

A direct definition of Log is then given by

(3.24) LogM• =
∑
n≥1

(−1)n+1
[M•](×n)

n
.

As exp and log satisfy exp(log(1 + x)) = 1 + x and log(1 + exp(x)− 1) = x, we have

(3.25) Exp (LogM•) = 1 + M• and Log (ExpM• − 1) = M•,

for all moulds M• with M∅ = 0.

3.1.5. A technical lemma. — In this section, we derive simple results for the exponential

and logarithm of moulds with non-zero components only on words of length 1.

Lemma 3. — Let us denote by Z• a mould of MK(A) such that Z• = 0 for all • of length

different from 1. For all a ∈ A∗, r ≥ 1, we have

[Z•]a×r =

{
Za1 . . .Zar if l(a) = r, a = a1 . . . ar,
0 otherwise.

(3.26)

[ExpZ•]a = 1a +
1

l(a)!
[Z•]a(×l(a)) ,(3.27)

[LogZ•]a =
(−1)l(a)+1

l(a)
[Z•]a(×l(a)) .(3.28)

Proof. — We first remark that equations (3.27) and (3.28) easily follow from equation

(3.26).

The proof of equation (3.26) is done by induction on r. Formula (3.26) is trivially true

for r = 1. Assume that formula (3.26) is true for r ≥ 1. By definition, we have

(3.29) [Z•](×r+1) = Z• · [Z•](×r) .
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Let a = ab, then by assumption on Z• we obtain

(3.30) [Z•]ab(×r+1) = Za [Z•]b(×r) .

As the mould [Z•](×r) is non-trivial only on words of length r, we deduce that the mould

[Z•](×r+1) is non-trivial only on words of length r + 1.

Moreover, using the fact that [Z•]a1...ar(×r) = Za1 . . .Zar for all ai ∈ A, we also deduce that

[Z•]
a1...ar+1

(×r+1) = Za1 . . .Zar+1 . This concludes the proof.

3.2. Prenormalization. — We can associate

Let F be a diffeo in prepared form given by

F = Flin

Id +
∑

n∈A(F )

Bn

 .

Let ΦΘ be an automorphism of C{x} of the form

(3.31) ΦΘ =
∑

n∈A(F )∗

ΘnBn,

where Θn ∈ C for all n ∈ A(F )∗, i.e., ΦΘ ∈ C〈〈B〉〉, where B = {Bn}n∈A(F ) and

Θ• ∈MC(A(F )).

Using the moulds 1• and I• we write Id +
∑

n∈A(F )

Bn as an element of C〈〈B〉〉:

(3.32) Id +
∑

n∈A(F )

Bn =
∑
•

(1• + I•)B•.

We assume that F is conjugated to an automorphism Fconj via ΦΘ. Equation (2.6) is then

given by

(3.33) Fconj = ΦΘ · F · Φ−1
Θ .

The automorphism Fconj can be written as

(3.34) Fconj = Flin

(∑
•

C•B•

)
.

Equation (3.33) is then equivalent to

(3.35) Flin

(∑
•

C•B•

)
=

(∑
•

Θ•B•

)
Flin

(∑
•

(1• + I•)B•

)(∑
•

−−ΘB•

)
,

where −−Θ is such that −−Θ ·Θ• = Θ• ·−−Θ = 1•, i.e., Φ−1
Θ =

∑
•

−−ΘB•.
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In order to explicit C• we need to understand the action of a formal power series of

C〈〈B〉〉 on Flin. We have the following fundamental lemma:

Lemma 4. — Let M• ∈MC(A(F )) . We have

(3.36)

(∑
•

M•B•

)
Flin = Flin

(∑
•

e∆ (M•)• B•

)
,

where e∆ is a map from MC(A(F )) to MC(A(F )) defined by

(3.37) e∆ (M•)n = e−〈λ,‖n‖〉Mn for all n ∈ A(F )∗.

Proof. — Let Bn = Bn1...nr such that Bni(x
m) = βnimx

m+ni , βnim ∈ C, i = 1, . . . , r, for all

m ∈ Nν . We have

(3.38) Bn(xm) = βn1
m+nr+···+n2

βn2
m+nr+···+n3

. . . βnrm x
m+n1+···+nr .

As Flin(xm) = e〈λ,m〉xm we obtain

(3.39)

Bn (Flin(xm)) = e〈λ,m〉Bn(xm),

= e−〈λ,n1+···+nr〉e〈λ,m+n1+···+nr〉Bn(xm),

= e−〈λ,n1+···+nr〉Flin (Bn(xm)) ,

= Flin

(
e−〈λ,n1+···+nr〉Bn(xm)

)
.

This concludes the proof.

Next lemma gives an explicit formula to compute the mould C• assuming that the mould

Θ• is known.

Lemma 5. — Equation (3.35) is equivalent to the mould equation

(3.40) C• = e∆ (Θ•) · (1• + I•) ·−−Θ.

Proof. — Using Lemma 4, we have

(3.41)

Flin

(∑
•

C•B•

)
=

(∑
•

Θ•B•

)
Flin

(∑
•

(1• + I•)B•

)(∑
•

−−ΘB•

)
,

= Flin

(∑
•

e∆ (Θ•) B•

)(∑
•

(1• + I•)B•

)(∑
•

−−ΘB•

)
,

= Flin

(∑
•

(
e∆ (Θ•) · (1• + I•) ·−−Θ

)
B•

)
.

This concludes the proof.
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As a consequence, choosing carefully the normalizator ΦΘ, we can obtain an inductive

expression for the mould of normalization C•.

We will give explicit formulae for C• using specific moulds for Θ• in the next section.

3.3. Universality of moulds and prenormalization. — Lemma 5 gives an important

feature of the mould formalism in the context of continuous prenormalization. Formula

(3.40) is valid whatever is the underlying alphabet A(F ). We then obtain a universal

object underlying the prenormalization problem which is studied.

For example, in the context of linearization, i.e., Fconj = Flin, the universal mould of

linearization which defined the linearizing change of variables is given as follow (see [3]

Chap. III for more details):

Theorem 1. — Let L = {Lr}r≥1, r ∈ N, be the set of C-valued functions Lr : Cr → C
defined by

(3.42) Lr(x1, . . . , xr) =
[(
e−(x1+···+xr) − 1

) (
e−(x2+···+xr) − 1

)
. . .
(
e−xr − 1

)]−1
,

for all (x1, . . . , xr) ∈ Cr \ Sr where the singular set Sr is given by

(3.43) Sr = {xr ∈ 2πiZ}
⋃
{xr + xr−1 ∈ 2πiZ}

⋃
· · ·
⋃
{x1 + · · ·+ xr ∈ 2πiZ}.

If F possesses a non-resonant linear part λ, the mould of formal linearization is given for

all n ∈ A(F )∗, n = n1, . . . , nr, by

(3.44) Θn1...nr = Lr(ω1, . . . , ωr),

where ωi = 〈ni, λ〉 for i = 1, . . . , r.

This result cannot be obtained using other existing formalisms. It is well-known that

an expression like (3.44) is the important quantity entering the linearization problem.

However, the previous result associates universal coefficients from which one can compute

the desired linearization map for a given particular diffeo F by posing

ΦΘ =
∑

n∈A(F )∗

ΘnBn.

4. The Trimmed form

In this section, we give detailed proofs for results, presented in [8] with a sketch of proof,

concerning the Trimmed form defined by J. Écalle and B. Vallet.
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4.1. Cancelling non-resonant terms. — In this section, we give a mould approach to

the classical problem of cancellation of non-resonant terms.

4.1.1. Around the Baker-Campbell-Hausdorff formula. — Let F be a diffeo in prepared

form given by (2.4). The operator Id +
∑

n∈A(F )

Bn is an automorphism of C{x} which can

be viewed as the exponential of a vector field, i.e.,

(4.1) Id +
∑

n∈A(F )

Bn = exp

 ∑
m∈A(F )

Dm

 ,

where Dm is a homogeneous differential operator of degree m and order 1, i.e., a derivation

on C{x}, m = (m1, . . . ,mν) ∈ Zν , with all mi ∈ N, i = 1, . . . , ν except at most one which

can be −1, and A(F ) the set of degrees coming in the decomposition.

We look for an automorphism given by the exponential of a vector field V given by

(4.2) V =
∑

n∈A(F )∗

demnBn,

or equivalently given on the alphabet A(F )∗ by

(4.3) V =
∑

m∈A(F )∗

DemmDm,

where m = m1 · · ·mr and Dm = Dm1Dm2 · · ·Dmr , with the usual composition of differen-

tial operators.

The action of exp V on F is given by

(4.4) exp V · F · exp(−V)

Equation (4.4) can be analyzed using the moulds expression of V and F with respect to

the alphabet A(F ). We have the following lemma:

Lemma 6. — Equation (4.4) is equal to

(4.5) exp V · F · exp(−V) = Flin exp
(
Ṽ + D−V + . . .

)
,

where the . . . stands for a formal power series beginning with words of length at least 2,

and D and Ṽ are vector fields defined by D =
∑

m∈A(F )

Dm and

(4.6) Ṽ =
∑

m∈A(F )∗

e−〈λ,‖m‖〉DemmDm,
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respectively.

Proof. — Using the Baker-Campbell-Hausdorff formula (see [10], Theorem II.4.29), we

obtain

exp D · exp(−V) = exp

(
D−V +

1

2
[D,−V] +

1

12
[D, [D,−V]]− 1

12
[−V, [D,−V]] + . . .

)
,

= exp (D−V + h.o.t.) ,

where h.o.t. stands for higher order terms.

Using Lemma 4, we have

(4.7) exp V · Flin = Flin · exp Ṽ,

where Ṽ is given by

(4.8) Ṽ =
∑

m∈A(F )∗

e−〈λ,‖m‖〉DemmDm.

As a consequence, applying again the Baker-Campbell-Hausdorff formula we obtain

exp Ṽ · exp D · exp(−V) = exp
(
Ṽ + D−V + . . .

)
,

where the . . . stand for a formal power series beginning with words of length at least 2.

This concludes the proof.

4.1.2. The simplified form and the moulds dem• and Dem•. — The main consequence of

Lemma 6 is that we can cancel the non-resonant terms of D using a simple vector field V.

Definition 8. — Let V be the vector field defined by the mould

(4.9) Dem• =


Im

1− e〈‖m‖,λ〉
for m ∈ A(F )∗ \ R(F ),

0 otherwise,

where R(F ) is the set of resonant words of A(F )∗, i.e., m ∈ R(F ) if and only if 〈‖m‖, λ〉 ∈
2πiZ. We denote by dem• the associated mould on MC(A(F )), i.e.,

(4.10) V =
∑
•

Dem•D• =
∑
•

dem•B•.

We call simplified form of F and we denote by FSem the automorphism obtained from F

under the action of exp V.
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Theorem 2 (Simplified form). — Let V be the vector field defined by the mould in

(4.9), and let FSem be the simplified form of F under the action of exp V. We have

(4.11)

FSem = Flin

 ∑
m∈A(F )∗

SemmDm

 ,

= Flin

 ∑
n∈A(F )∗

semnBn


with the mould Sem• given by

(4.12) Sem• = e∆ (Exp(Dem•)) · Exp(I•) · Exp(−Dem•),

and the mould sem• given by

(4.13) sem• = e∆ (Exp(dem•)) · (1• + I•) · Exp(−dem•).

Proof. — We have FSem = exp V · F · exp(−V) with V =
∑

n∈A(F )∗

demnBn. As a conse-

quence, we have exp V =
∑

n∈A(F )∗

(Exp dem•)nBn and the formula for sem• follows from

Lemma 5 using Θ• = Exp(dem•).

For Sem•, we first use Lemma 4 to obtain

(4.14) exp VFlin = Flin

 ∑
m∈A(F )∗

[
e∆ (ExpDem•)

]m
Dm

 .

As a consequence, the conjugacy equation is equivalent to

FSem = exp V · F · exp(−V),

= Flin

(∑
•

e∆ (ExpDem•) D•

)(∑
•

ExpI•D•

)(∑
•

Exp(−Dem•)D•

)
,

= Flin

(∑
•

[
e∆ (ExpDem•) · ExpI• · Exp(−Dem•)

]•
D•

)
.

This concludes the proof.
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The mould Sem• can be computed explicitly. We first introduce some convenient nota-

tions.

Let m = m1 . . .mr be a word of length r, r ≥ 1. We denote by m≤i and m>i the words

(4.15) m≤i = m1 . . .mi, m>i = mi+1 . . .mr,

and analogously for m<i and m≥i. Moreover, we denote by d(m) the index of the last mi

in m = m1 . . .mr such that 〈λ,mi〉 ∈ 2πiZ, and we denote by q(m) the last index just

before of the first resonance ωj = 〈λ,mj〉. We have q(m) < d(m) unless 〈λ,mi〉 /∈ 2πiZ
for all i, when one instead has d(m) = 0 and q(m) = l(m).

Theorem 3. — For all m ∈ A(F )∗, we have Semm = 1 if l(m) = 0, 1, and

Semm =
(−1)l(m)

l(m)!
[Dem•]m(×l(m)) +

1

l(m)!
+

l(m)∑
j=max(d(m)+1,2)

(−1)l(m
>j) [Dem•]m

≥j

(×l(m≥j))

l(m<j)!l(m≥j)!
+ e−〈λ,‖m‖〉 1m

+
e−〈λ,‖m‖〉

l(m)!
[Dem•]m(×l(m))

min(q(m),l(m)−1)∑
i=1

e−〈λ,‖m
≤i‖〉

l(m≤i)!
[Dem•]m

≤i

(×l(m≤i))×(−1)l(m)

l(m)!
[Dem•]m

>i

(×l(m>i)) +
1

l(m>i)!
+

l(m>i)∑
j=max(d(m>i)+1,2)

(−1)l(m
>j)≥j [Dem•]

(m>i)≥j

(×l((m>i)≥j))

l((m>i)<j)!l((m>i)≥j)!

 ,

for l(m) > 1.

Proof. — It follows obviously from (4.12), that Semm = 1 for every m ∈ A(F )∗ with

l(m) = 0 or l(m) = 1.

Let us now consider m ∈ A(F )∗ with l(m) > 1. In order to compute the mould Sem•,

we first compute ExpI• · Exp(−Dem•). We have

(ExpI• · Exp(−Dem•))n =
∑

n1n2=n

(ExpI•)n
1

Exp(−Dem•)n
2

,

=
∑

n1n2=n

(
1n1

+
1

l(n1)!
[I•]n

1

(×l(n1))

)(
1n2

+
(−1)l(n

2)

l(n2)!
[Dem•]n

2

(×l(n2))

)
,

=
∑

n1n2=n

(
1n1

1n2

+ 1n1 (−1)l(n
2)

l(n2)!
[Dem•]n

2

(×l(n2))

+ 1n2 1

l(n1)!
[I•]n

1

(×l(n1)) +
(−1)l(n

2)

l(n1)!l(n2)!
[I•]n

1

(×l(n1)) [Dem•]n
2

(×l(n2))

)
.
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It is clear that (ExpI• · Exp(−Dem•))∅ = 1. If l(n) ≥ 1 we have

(ExpI• · Exp(−Dem•))n =
(−1)l(n)

l(n)!
[Dem•]n(×l(n)) +

1

l(n)!
[I•]n(×l(n))

+
∑∗

n1n2=n

(
(−1)l(n

2)

l(n1)!l(n2)!
[Dem•]n

2

(×l(n2))

)

=
(−1)l(n)

l(n)!
[Dem•]n(×l(n)) +

1

l(n)!
+

l(n)∑
j=max(d(n)+1,2)

(−1)l(n
≥j) [Dem•]n

≥j

(×l(n≥j))

l(n<j)!l(n≥j)!
.

Now we can compute Sem•.

Semn =
(
e∆ (Exp(Dem•)) · Exp(I•) · Exp(−Dem•)

)n
=

∑
n1n2=n

(
e∆Exp(Dem•)

)n1
(

(−1)l(n
2)

l(n2)!
[Dem•]n

2

(×l(n2)) +
1

l(n2)!

+

l(n2)∑
j=max(d(n2)+1,2)

(−1)l((n
2)≥j) [Dem•]

(n2)≥j

(×l((n2)≥j))

l((n2)<j)!l((n2)≥j)!

)
,

=
∑

n1n2=n

e−〈λ,‖n
1‖〉
(

1n1

+
1

l(n1)!
[Dem•]n

1

(×l(n1))

)
×

(
(−1)l(n

2)

l(n2)!
[Dem•]n

2

(×l(n2)) +
1

l(n2)!
+

l(n2)∑
j=max(d(n2)+1,2)

(−1)l((n
2)≥j) [Dem•]

(n2)≥j

(×l((n2)≥j))

l((n2)<j)!l((n2)≥j)!

)
,

=
(−1)l(n)

l(n)!
[Dem•]n(×l(n)) +

1

l(n)!
+

l(n)∑
j=max(d(n)+1,2)

(−1)l(n
≥j) [Dem•]n

≥j

(×l(n≥j))

l(n<j)!l(n≥j)!

+ e−〈λ,‖n‖〉
(

1n +
1

l(n)!
[Dem•]n(×l(n))

)
+

min(q(n)l(n)−1)∑
i=1

e−λ.‖n
≤i‖

l(n≤i)!
[Dem•]n

≤i

(×l(n≤i))×(−1)l(n
>i)

l(n>i)!
[Dem•]n

>i

(×l(n>i))+
1

l(n>i)!
+

l(n>i)∑
j=max(d(n>i)+1,2)

(−1)l(n
>i)≥j [Dem•]

(n>i)≥j

(×l((n>i)≥j))

l((n>i)<j)!l((n>i)≥j)!

 .

This concludes the proof.

4.2. The Trimmed form. — The Trimmed form is constructed by induction applying

successively the previous simplification scheme to remove non-resonant terms of higher

and higher degrees, and hence it will have non-trivial values only on resonant words. The

mould formalism allows us to explicit some particular moulds underlying this construction

as well as algorithmic and explicit formulae for some of them.
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4.2.1. The Trimmed form up to order r. — We can use the simplification procedure pre-

viously defined inductively in order to cancel non-resonant terms of higher and higher

degrees.

Definition 9 (Trimmed form up to order r). — Given r ∈ N, the Trimmed form up

to order r is defined as FrSem obtained from F after r successive simplifications, i.e.,

(4.16) F = F0
Sem

Simp1

→ F1
Sem

Simp2

→ · · · Simpr→ FrSem,

where Simpi is the automorphism of simplification defined by

(4.17) Simpi = exp(Vi),

with Vi the vector fields associated to the mould Dem• on the alphabet A(Fi−1
Sem) associated

to Fi−1
Sem.

Using Theorem 2, we deduce the following useful result:

Theorem 4. — For all r ∈ N, the Trimmed form up to order r denoted FrSem possesses

a mould expansion, i.e., there exists moulds denoted by rSem• ∈ MC(A(F )) and rsem• ∈
MC(A(F )) such that

(4.18) Frsem = Flin

(∑
•

rSem•D•

)
= Flin

(∑
•

rsem•B•

)
.

Despite its moulds expansion, the Trimmed form up to order r is not a prenormal form

since it can have non-resonant terms for words of length l ≥ r + 1.

4.2.2. The moulds rsem• and rSem•. — The mould rsem• has a simple expression in

function of sem•.

Lemma 7. — For all r ∈ N, we have

(4.19) rsem• = sem• ◦ · · · ◦ sem•︸ ︷︷ ︸
r times

.

Proof. — The simplification procedure can be written as follows:

(4.20)
∑
•

I•B• 7−→
∑
•

sem•B•.

Iterating this mapping we go from step i to i+ 1

(4.21)
∑
•

isem•B• =
∑
•

I•i+1B• 7−→
∑
•

i+1sem•B• =
∑
•

sem•i+1B•,
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where
∑
•

I•i+1B• denotes the homogeneous decomposition constructed on Fisem.

By definition of the composition for moulds we have

(4.22)
∑
•

sem•i+1B• =
∑
•

(sem• ◦ isem•) B•,

from which we deduce the recursive relation

(4.23) i+1sem• = sem• ◦ isem•.

We conclude by induction on i.

For the mould rSem• we have a more complicated formula:

Lemma 8. — For all r ∈ N, we have

(4.24) Log[rSem•0] = Log(Sem•0) ◦ · · · ◦ Log(Sem•0)︸ ︷︷ ︸
r times

,

where we set Sem•0 := Sem• − 1•.

The fact that we must take the Log of Sem•0 instead of Sem•0 is related to the fact that the

alphabet of derivation i+1D• constructed at step i from Fisem is not related to
∑
• iSem•0D•

but to its logarithm.

Proof. — The simplification procedure can be written as follows:

(4.25) exp

(∑
•

I•D•

)
7−→

∑
•

Sem•0D• = exp

(∑
•

Log(Sem•0)D•

)
.

Iterating this mapping we go from step i to i+ 1

(4.26)

exp

(∑
•

Log[iSem•0]D•

)
= exp

(∑
•

I•i+1D•

)
↓

exp

(∑
•

Log[i+1Sem•0]D•

)
= exp

(∑
•

Log(Sem•0)i+1D•

)
,

where
∑
•

I•i+1D• denotes the homogeneous decomposition constructed on
∑
•

Log[iSem•0]D•.

By definition of the composition of moulds, we deduce that

(4.27) Log[i+1Sem•0] = Log(Sem•0) ◦ Log[iSem•0].

We conclude the proof by induction on i.
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4.2.3. The Trimmed form. —

Definition 10. — The Trimmed form of F is the limit of the simplification procedure.

Theorem 5. — The Trimmed form is a continuous prenormal form given by

(4.28)

FTrem = Flin

 ∑
m∈A(F )∗

TremmDm

 ,

= Flin

 ∑
n∈A(F )∗

tremnBn


with the moulds Trem• and trem• defined by

(4.29)
Trem• − 1• := Trem0 = limstatr→∞ [Sem•0](◦r) ,

trem• − 1• := trem0 = limstatr→∞ [sem•0](◦r) ,

where sem•0 := sem• − 1•, and limstat is the stationary limit (see [9]).

The proof is a direct consequence of the simplification procedure.

Remark 1. — Following ([8] §.7) we have divergence and resurgence of the simplification

procedure. This is not the case when working directly with the diffeomorphism instead of

its associated automorphism of substitution. However, this problem can be avoided (see [8]

p.8).

4.2.4. The mould Trem•. — We can compute the mould Trem• using a simple remark.

By definition, we have the following identities

Trem•0 = Sem•0 ◦ Trem•0,(4.30)

Trem•0 = Trem•0 ◦ Sem•0.(4.31)

Using the first equation and the definition of composition for moulds we obtain for all

m ∈ A(F )∗

(4.32) Tremm = Sem‖m‖Tremm + s.l.,

where s.l. denotes terms which depend on Trem• for words with a length strictly shorter

than l(m).

By construction, the mould Trem• takes non-trivial values only on resonant words, i.e.,

m ∈ A(F )∗ such that 〈‖m‖, λ〉 ∈ 2πiZ. However, the mould Sem• is equal to 1 on resonant

words of length 1. As a consequence, equation (4.32) cannot be used to compute the mould

Trem• by induction on the length of words.
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On the other hand, using equation (4.31), and the definition of composition for moulds,

we obtain

(4.33) Tremm = Trem‖m‖Semm1 . . . Semmr + s.l = Trem‖m‖ + s.l,

and hence we can compute the mould Trem• by induction on the length of words.

4.3. About Écalle-Vallet results. — All our computations have been done in DA(F ) :=

{Dn}n∈A(F ), that is for the mould D• with the alphabet A(F ), whereas J. Écalle and B.

Vallet used BA(F ) := {Bn}n∈A(F ) to formulate their results in [8]. In order to compare our

approach, we first give a simple formula connecting the two alphabets DA(F ) and BA(F ).

We then discuss some of the differences between the moulds dem•, sem• and trem• with

the moulds Dem•, Sem•, and Trem•, showing that these moulds, except for the mould

dem•, can be expressed via closed formulae.

4.3.1. Relation between the alphabets BA(F ) and DA(F ). — By definition, we have the

identity

(4.34) 1 +
∑

n∈A(F )

Bn = exp

 ∑
m∈A(F )

Dm

 .

Using the logarithm, we obtain

(4.35) log

1 +
∑

n∈A(F )

Bn

 =
∑

m∈A(F )

Dm.

As
∑

n∈A(F ) Bn =
∑

n∈A∗(F )

InBn, we have

(4.36)
∑

n∈A∗(F )

(LogI•)nBn =
∑

m∈A(F )

Dm.

We deduce the following relation between DA(F ) and BA(F ):

Lemma 9. — For all Dm ∈ DA(F ), we have

(4.37) Dm =
∑

n∈A(F )∗, ‖n‖=m

(LogI•)nBn.

The proof is based on the fact that a differential operator Bn is of order ‖n‖.
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4.3.2. The mould dem•. — By definition, we have the identity

(4.38)
∑

n∈A(F )∗

demnBn =
∑

m∈A(F )\RA(F )

Dm

1− e〈m,λ〉
.

Using Lemma 9, we deduce:

Lemma 10. — The mould dem• of MC(A(F )) is defined for all n ∈ A(F )∗ by

(4.39) demn =
(−1)l(n)+1

l(n)

1

1− e〈‖n‖,λ〉
[I•]n(×l(n)) 1N(F )(n),

where N(F ) = {n ∈ A(F )∗, 〈‖n‖, λ〉 /∈ 2πiZ} is the set of non-resonant words of A(F )∗

and 1J is the indicatrix of the set J , i.e., 1J(x) is equal to 1 if x ∈ J , 0 otherwise.

This mould was defined by J. Écalle and B. Vallet (see [8], p.30).

Proof. — Equation (4.38) can be rewritten as

(4.40)
∑

n∈A(F )∗

demnBn =
∑

m∈A(F )

Dm

1− e〈m,λ〉
1{〈m,λ〉/∈2πiZ}(m).

Using Lemma 9, we have

(4.41)

∑
m∈A(F )

Dm

1− e〈m,λ〉
1{〈m,λ〉/∈2πiZ}(m) =

∑
m∈A(F )

∑
n∈A(F )∗, ‖n‖=m

(LogI•)n

1− e〈m,λ〉
1{〈m,λ〉/∈2πiZ}Bn,

=
∑

n∈A(F )∗

(LogI•)n

1− e〈‖n‖,λ〉
1N(F )Bn,

using the fact that

(4.42)
⋃

m∈A(F )

{n ∈ A(F )∗, ‖n‖ = m} = A(F )∗,

by assumption.

Using Lemma 3 for the mould I•, we obtain for all n ∈ A(F )∗

(4.43) LogIn =
(−1)l(n)+1

l(n)
[I•]n(×l(n)) .

Replacing LogI• by its expression in equation (4.41) we conclude the proof.
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5. The Poincaré-Dulac normal form

The Trimmed form is constructed using cancellation of non-resonant terms as the clas-

sical Poincaré-Dulac normal form. However, these two prenormal forms do not coincide in

general. We introduce the universal mould associated to the Poincaré-Dulac normal form

and the universal mould of the associated cancellation procedure. The difference between

the two procedures lies in the treatment of the homogeneous components of the diffeomor-

phism. For a classical approach to the Poincaré-Dulac normal form we refer to ([1] §.B
p.178).

5.1. Homogeneous components and the Trimmed form. — We keep the notations

introduced in §.4.1. In order to discuss the cancellation of non-resonant terms, we must

write our prepared form as follows:

(5.1) Id +
∑

n∈A(F )

Bn = exp D = exp

 ∑
m∈A(F )

Dm

 = exp

(∑
k≥1

Dk

)
,

where

(5.2) Dk =
∑

n∈A(F ), |n|=k

Dm,

denotes the homogeneous component of degree k of the vector field D.

For a given vector field D we introduce the following degree of resonance, denoted by K:

(5.3) K = min
k≥1
{Nk 6= ∅} ,

where Nk denotes the set of non-resonant letters m ∈ A(F ) of degree k, i.e.,

(5.4) Nk = {m ∈ A(F ) | |m| = k, 〈m,λ〉 ∈ 2πiZ} .

So, if we write

(5.5) D =
∑

1≤k<K

Dk + DK +
∑
k>K

Dk,

the first sum up to order K − 1 is made of resonant terms. The first non-resonant terms

belong to DK .

The field V introduced in §.4.1.2 cancels the non-resonant terms of degree K but it

introduces several other terms in the homogeneous components of degree > K which can

be non-resonant. As a consequence, even if the field V is constructed in order to cancel

all the non-resonant terms of the vector field D, we have an effective cancellation only for
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the components of degree K.

As a consequence, the vector field V must be modified in order to cancel only non-

resonant terms of degree K.

Definition 11. — Let S be the vector field defined by the mould

(5.6) Den• =


1

1− e〈m,λ〉
for m ∈ NK(F ),

0 otherwise,

We denote by den• the associated mould on MC(A(F )), i.e.,

(5.7) S =
∑
•

Den•D• =
∑
•

den•B•.

We call Poincaré form of F the automorphism, denoted by FPoin, obtained from F under

the action of exp S.

Arguing exactly as in the proof of Theorem 2, we then have the following result.

Theorem 6 (Poincaré normalization procedure). — Let FPoin be the Poincaré form

of F . Then we have

(5.8)

FPoin = Flin

 ∑
m∈A(F )∗

PoinmDm

 ,

= Flin

 ∑
n∈A(F )∗

poinnBn


where the mould Poin• is given by

(5.9) Poin• = e∆ (Exp(Den•)) · Exp(I•) · Exp(−Den•),

and the mould poin• is given by

(5.10) poin• = e∆ (Exp(den•)) · (1• + I•) · Exp(−den•).

5.2. The Poincaré normal form of order r. — We apply the Poincaré normalization

procedure inductively in order to cancel non-resonant terms in homogeneous components

of higher and higher degrees.
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Definition 12 (Poincaré normal form up to order r). — Let r ∈ N, the Poincaré

normal form up to order r is defined as FrPoin obtained from F after r successive simplifi-

cations, i.e.,

(5.11) F = F0
Poin

Simp1

→ F1
Poin

Simp2

→ · · · Simpr→ FrPoin,

where Simpi is the automorphism of simplification defined by

(5.12) Simpi = exp(Si),

with Si the vector fields associated to the mould Den• on the alphabet A(Fi−1
Poin) associated

to Fi−1
Poin.

Using Theorem 6, we obtain:

Theorem 7. — For all r ∈ N, the Poincaré normal form up to order r denoted FrPoin

possesses a mould expansion, i.e., there exist moulds denoted by rPoin• ∈ MC(A(F )) and

rpoin• ∈MC(A(F )) such that

(5.13) FrPoin = Flin

(∑
•

rPoin•D•

)
= Flin

(∑
•

rpoin•B•

)
.

As for the moulds rsem• and rSem•, we have explicit inductive formulae to compute the

moulds rpoin• and rPoin• using only poin• and Poin•.

5.3. The Poincaré-Dulac normal form. — The mould formulation of the Poincaré-

Dulac normal form is:

Definition 13. — The Poincaré-Dulac normal form of F is the limit of the Poincaré

normalization procedure.

Theorem 8. — The Poincaré-Dulac normal form is a continuous prenormal form given

by

(5.14)

FDulac = Flin

 ∑
m∈A(F )∗

DulacmDm

 ,

= Flin

 ∑
n∈A(F )∗

dulacnBn


with the moulds Dulac• and dulac• defined by

(5.15)
Dulac• − 1• = limstatr→∞ [Poin• − 1•](◦r) ,

dulac• − 1• = limstatr→∞ [poin• − 1•](◦r) ,
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where limstat is the stationary limit.

The mould Dulac• (or dulac•) is the universal part of the Poincaré-Dulac normal form as

it does not depends on the exact values of the coefficients coming in the Taylor expansion

of the diffeomorphism. It seems very difficult to characterize such kind of objects without

using the mould formalism.
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