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Abstract. We shall describe an alternative approach to a general renormalization
procedure for formal self-maps, originally suggested by Chen-Dora and Wang-Zheng-Peng,
giving formal normal forms simpler than the classical Poincaré-Dulac normal form. As
example of application we shall compute a complete list of normal forms for bi-dimensional
superattracting germs with non-vanishing quadratic term; in most cases, our normal forms
will be the simplest possible ones (in the sense of Wang-Zheng-Peng). We shall also discuss
a few examples of renormalization of germs tangent to the identity, revealing interesting
second-order resonance phenomena.

0. Introduction

In the study of a class of holomorphic dynamical systems, an important goal often is the classi-
fication under topological, holomorphic or formal conjugation. In particular, for each dynamical
system in the class one would like to have a definite way of choosing a (hopefully simpler, possibly
unique) representative in the same conjugacy class; a normal form of the original dynamical system.

The formal classification of one-dimensional germs is well-known (see, e.g., [A2]): if

f(z) = λz + aµz
µ +Oµ+1 ∈ C[[z]]

is a one-dimensional formal power series with complex cofficients and vanishing constant term,
where aµ 6= 0 and Oµ+1 is a remainder term of order at least µ+ 1, then f is formally conjugated
to:

– g(z) = λz if λ 6= 0 and λ is not a root of unity;
– g(z) = zµ if λ = 0; and to
– g(z) = λz− znq+1 +αz2nq+1 if λ is a primitive q-th root of unity, for suitable n ≥ 1 and α ∈ C

that are formal invariant (and where q = 1 and n = µ when λ = 1).

In several variables, the most famous kind of normal form for local holomorphic dynamical
systems (i.e., germs of holomorphic vector fields at a singular point, or germs of holomorphic self-
maps with a fixed point) is the Poincaré-Dulac normal form with respect to formal conjugation.
Let us recall very quickly its definition, at least in the setting we are interested here, that is of
formal self-maps with a fixed point, that we can assume to be the origin in Cn.

Let F ∈ Ôn be a formal transformation in n complex variables, where Ôn denotes the space
of n-tuples of power series in n variables with vanishing constant term, and let Λ denote the (not
necessarily invertible) linear term of F ; up to a linear change of variables, we can assume that Λ

is in Jordan normal form. For simplicity, given a linear map Λ ∈ Mn,n(C) we shall denote by ÔnΛ
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the set of formal transformations in Ôn with Λ as linear part. If λ1, . . . , λn are the eigenvalues
of Λ, we shall say that a multi-index Q = (q1, . . . , qn) ∈ Nn with q1 + · · ·+ qn ≥ 2 is Λ-resonant if
there is j ∈ {1, . . . , n} such that λq11 · · ·λqnn = λj . If this happens, we shall say that the monomial
zq11 · · · zqnn ej is Λ-resonant, where {e1, . . . , en} is the canonical basis of Cn. Then (see, e.g., [Ar],

[R1, 2], [Rü]) given F ∈ ÔnΛ it is possible to find a (not unique, in general) invertible formal

transformation Φ ∈ ÔnI with identity linear part such that G = Φ−1 ◦ F ◦ Φ contains only Λ-
resonant monomials.

The formal transformation G is a Poincaré-Dulac normal form of F ; notice that, since Φ ∈ ÔnI ,

the linear part of G is still Λ. More generally, we shall say that a G ∈ ÔnΛ is in Poincaré-Dulac
normal form if G contains only Λ-resonant monomials.

The importance of this result cannot be underestimated, and it has been applied uncountably
many times; however it has some limitations. For instance, if Λ = O or Λ = I then all monomials
are resonant; and thus in these cases any F ∈ ÔnΛ is in Poincaré-Dulac normal form, and a further
simplification (a renormalization) is necessary. Actually, even when a Poincaré-Dulac normal form
is different from the original germ, it is often possible to further simplify the germ by applying
invertible transformations preserving the property of being in Poincaré-Dulac normal form.

This idea of renormalizing Poincaré-Dulac normal forms is by now well-established in the
context of vector fields, where the renormalized normal forms are often called hypernormal forms,
and can be obtained by using several different techniques; a (far from exhaustive) list of relevant
papers one might consult is [AFG, AFGG, B, BC, BBS, Be1, Br1, Br2, Bro, G, GP, I, KOW,
LS, MM, Mu2, MS, S]; see also [Mu1] for a fine introduction to the subject. On the other hand,
with a few exceptions (see, for instance, [Be2, CD1, CD2]) this idea has been exploited in the
context of self-maps only recently. One example is [AT1], where it is applied to a particular class
of self-maps with identity linear part. Another, more recent, example can be found in [BZ], where
it is applied to self-maps with invertible linear part whose resonances with respect to some of the
eigenvalues are generated over N by one multi-index. More important for our aims are [WZP1, 2],
where the authors, inspired by [KOW, CD1, CD2, YY], construct an a priori infinite sequence of
renormalizations giving simpler and simpler normal forms.

Let us roughly describe the main ideas underlying the theory of renormalization of formal
transformations. For each ν ≥ 2 let Hν denote the space of n-tuples of homogeneous polynomials
in n variables of degree ν. Then every F ∈ ÔnΛ admits a homogeneous expansion

F = Λ +
∑
ν≥2

Fν ,

where Fν ∈ Hν is the ν-homogeneous term of F . We shall also use the notation {G}ν to denote
the ν-homogeneous term of a formal transformation G.

If Φ = I+
∑
ν≥2Hν ∈ ÔnI is the homogeneous expansion of an invertible formal transformation,

then it turns out that, if LΛ: Ôn → Ôn is defined by setting LΛ(H) = H◦Λ−ΛH, then LΛ(Hν) ⊆ Hν
and

{Φ−1 ◦ F ◦ Φ}ν = Fν − LΛ(Hν) +Rν (0.1)

for all ν ≥ 2, where Rν is a remainder term depending only on Fρ and Hσ with ρ, σ < ν. This
suggests to consider for each ν ≥ 2 splittings of the form

Hν = ImLνΛ ⊕N ν and Hν = KerLνΛ ⊕Mν

where LνΛ = LΛ|Hν , and N ν and Mν are suitable complementary subspaces. Then (0.1) implies
that we can inductively choose Hν ∈ Mν so that {Φ−1 ◦ F ◦ Φ}ν ∈ N ν for all ν ≥ 2; we shall say



Formal Poincaré-Dulac renormalization for holomorphic germs 3

that G = Φ−1 ◦F ◦Φ is a first order normal form of F (with respect to the chosen complementary
subspaces). Furthermore, it is not difficult to see that the quadratic (actually, the first non-linear
non-vanishing) homogeneous term of G is a formal invariant, that is it is the same for all first order
normal forms of F . Notice that when Λ = O or Λ = I we have LΛ ≡ O, and thus in these cases
every F ∈ ÔnΛ is a first order normal form.

When Λ is diagonal, KerLΛ is generated by the resonant monomials, and ImLΛ is gen-
erated by the non-resonant monomials. Furthermore, for each ν ≥ 2 we have the splitting
Hν = ImLνΛ ⊕ KerLνΛ, and thus taking N µ = KerLνΛ and Mµ = ImLνΛ we have recovered the
classical Poincaré-Dulac normal form (when Λ has a nilpotent part the situation is only slightly
more complicated; see [Mu1, Section 4.5] for details).

Summing up, a Poincaré-Dulac formal normal form is composed by homogeneous terms con-
tained in a complementary space of the image of the operator LΛ. Furthermore, the quadratic
homogeneous term is uniquely determined, and we can still act on the normal form by transforma-
tions having all homogeneous terms in the kernel of LΛ.

The k-th renormalization follows the same pattern. Assume that F is in (k − 1)-th normal
form. Then there is a suitable (not necessarily linear if k ≥ 3) operator Lk, depending on the first k
homogeneous terms of F , so that we can bring F in a normal form G whose all homogeneous terms
belong to a chosen complementary subspace∗ of the image of Lk, and the first k + 1 homogeneous
terms of G are uniquely determined; we shall say that G is in k-th order normal form (with respect
to the chosen subspaces).

A formal transformation G is in infinite order normal form if it is in k-th normal form for all k,
with respect to some choice of complementary subspaces and using the operators Lk defined using
the first k homogeneous terms of G. The main result of [WZP2] then states that every element of

ÔnΛ can be brought to a (possibly not unique) infinite order normal form by a sequence of formal
conjugations tangent to the identity.

In the first section of this paper we shall describe an alternative approach, equivalent to the one
proposed by Wang-Zheng-Peng but possibly simpler, to the determination of higher order normal
forms, based on homogeneous polynomials and symmetric multilinear maps instead of on higher
order derivatives. We shall concentrate in particular on second order normal forms because, as we
shall see, in most cases we shall be interested in second order normal forms will automatically be
infinite order normal forms.

To apply these procedures we need a rule for choosing complementary subspaces. It turns out
that an efficient way of doing this is by taking orthogonal complements with respect to the Fischer
Hermitian product, defined by (see [F])

〈zp1

1 · · · zpnn eh, z
q1
1 · · · zqnn ek〉 =


0 if h 6= k or pj 6= qj for some j;

p1! · · · pn!

(p1 + · · ·+ pn)!
if h = k and pj = qj for all j.

(0.2)

With this choice, as we shall see in Sections 2 and 3, the expression of the second order (and often
infinite order) normal forms can be quite simple. For instance, in Section 2 we shall apply this
procedure to the case of superattracting (i.e., with Λ = O) 2-dimensional formal transformations,
case that has no analogue in the vector field setting, proving the following

Theorem 0.1: Let F ∈ Ô2
O be of the form F (z, w) = F2(z, w) +O3. Then:

∗ When k ≥ 3 one has to choose a complementary subspace to a vector space of maximal
dimension contained in the image of Lk. Actually, [WZP2] talks of “the” subspace of maximal
dimension contained in Lk, but a priori it might not be unique.
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(i) if F2(z, w) = (z2, zw) or F2(z, w) = (−z2,−z2 − zw) then F is formally conjugated to an
unique infinite order normal form

G(z, w) = F2(z, w) +
(
ϕ(w)− zψ′(w), 2ψ(w)

)
,

where ϕ, ψ ∈ C[[ζ]] are power series of order at least 3;
(ii) if F2(z, w) = (−zw,−z2−w2) then F is formally conjugated to an unique infinite order normal

form
G(z, w) = F2(z, w) +

(
−2ϕ(z + w) + 2ψ(w − z), ϕ(z + w) + ψ(w − z)

)
,

where ϕ, ψ ∈ C[[ζ]] are power series of order at least 3;
(iii) if F2(z, w) = (zw, zw + w2) then F is formally conjugated to an unique infinite order normal

form
G(z, w) = F2(z, w) +

(
wϕ′(z) + ψ(z), 2ϕ(z)− wϕ′(z)− ψ(z)

)
,

where ϕ, ψ ∈ C[[ζ]] are power series of order at least 3;
(iv) if F2(z, w) =

(
−ρz2, (1 − ρ)zw

)
with ρ 6= 0, 1 then F is formally conjugated to an unique

infinite order normal form

G(z, w) = F2(z, w) +
(
(ρ− 1)zϕ′(w) + ψ(w),−2ρϕ(z)

)
,

where ϕ, ψ ∈ C[[ζ]] are power series of order at least 3;
(v) if F2(z, w) = (−z2 + zw,w2

)
then F is formally conjugated to an unique infinite order normal

form
G(z, w) = F2(z, w) +

(
ϕ( z2 + w),− 1

4ϕ( z2 + w) + ψ(z)
)
,

where ϕ, ψ ∈ C[[ζ]] are power series of order at least 3;
(vi) if F2(z, w) =

(
ρz2 + zw, (1 + ρ)zw + w2

)
with ρ 6= 0, −1 then F is formally conjugated to an

unique infinite order normal form

G(z, w) = F2(z, w)+

(
1

ρ

[
1−
√
−ρ

2m2
ρ

ϕ(mρz + w) +
1 +
√
−ρ

2n2
ρ

ϕ(nρz + w)

]
+

1 + ρ

2
√
−ρ

(
1

m2
ρ

ψ(mρz + w)− 1

n2
ρ

ψ(nρz + w)

)
,

1−
√
−ρ

2
ϕ(mρz + w) +

1 +
√
−ρ

2
ϕ(nρz + w)

+
ρ(1 + ρ)

2
√
−ρ

(
ψ(mρz + w)− ψ(nρz + w)

))
where

√
−ρ is any square root of −ρ,

mρ =

√
−ρ− ρ

ρ(1 + ρ)
, nρ = −

√
−ρ+ ρ

ρ(1 + ρ)
,

and ϕ, ψ ∈ C[[ζ]] are power series of order at least 3;
(vii) if F2(z, w) =

(
ρ(−z2 + zw), (1− ρ)(zw − w2)

)
with ρ 6= 0, 1 then F is formally conjugated to

an unique infinite order normal form

G(z, w) = F2(z, w)+

(
z
∂

∂z

[
ϕ(z + w) + ψ(z + w)

]
− ϕ(z + w),

ρ− 1

ρ

(
z
∂

∂z

[
ϕ(z + w)− ψ(z + w)

]
− 3ϕ(z + w) + 2ψ(z + w)

))
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where ϕ, ψ ∈ C[[ζ]] are power series of order at least 3;

(ix) if F2(z, w) = (−z2,−w2) then F is formally conjugated to an unique infinite order normal
form

G(z, w) = F2(z, w) +
(
ϕ(w), ψ(z)

)
where ϕ, ψ ∈ C[[ζ]] are power series of order at least 3;

(x) if F2(z, w) = (−ρz2, (1− ρ)zw−w2) with ρ 6= 0, 1 then F is formally conjugated to an unique
infinite order normal form

G(z, w) = F2(z, w) +

(
ϕ(w) +

(1− ρ)2

4ρ
ψ

(
2

1− ρ
z + w

)
, ψ

(
2

1− ρ
z + w

))

where ϕ, ψ ∈ C[[ζ]] are power series of order at least 3;

(xi) if F2(z, w) = (−ρz2 + (1 − τ)zw, (1 − ρ)zw − τw2) with ρ, τ 6= 0, 1 and ρ + τ 6= 1 then F is
formally conjugated to an unique infinite order normal form

G(z, w) = F2(z, w)+

(
τ

ρ

[√
ρ+ τ − 1 +

√
ρτ

2m2
ρ,τ

ϕ(mρ,τz + w)

+

√
ρ+ τ − 1−√ρτ

2n2
ρ,τ

ϕ(nρ,τz + w)

+
1

m2
ρ,τ

ψ(mρ,τz + w)− 1

n2
ρ,τ

ψ(nρ,τz + w)

]
,

√
ρ+ τ − 1 +

√
ρτ

2
ϕ(mρ,τz + w)

+

√
ρ+ τ − 1−√ρτ

2
ϕ(nρ,τz + w)

+ ψ(mρ,τz + w)− ψ(nρ,τz + w)

)
,

where

mρ,τ =

√
ρτ
√
ρ+ τ − 1− ρτ
ρ(ρ− 1)

, nρ,τ = −
√
ρτ
√
ρ+ τ − 1 + ρτ

ρ(ρ− 1)
.

and ϕ, ψ ∈ C[[ζ]] are power series of order at least 3.

Notice that the uniqueness of the infinite normal form implies that the power series ϕ and ψ
appearing in this statement are formal invariants of the original map, in stark contrast with the one-
dimensional case where the only formal invariant is the degree of the first non-linear non-vanishing
term. Furthermore, the possibility of expressing the normal forms by using only two power series
of one variables (and their derivatives) comes from the use of Fischer Hermitian product, which is
particularly suited to this aim; other choices of complementary subspaces would lead to much more
involved normal forms.

In [A1] we showed that the quadratic terms considered in Theorem 0.1 form an almost complete
list of all possible quadratic terms up to linear change of coordinates; the only exceptions are four
degenerate cases where one of the coordinates is identically zero. In these remaining cases we shall
anyway be able to compute a second order normal form:
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Proposition 0.2: Let F ∈ Ô2
O be of the form F (z, w) = F2(z, w) +O3. Then:

(i) if F2(z, w) = (0,−z2) then F is formally conjugated to a unique second order normal form

G(z, w) = F2(z, w) +
(
Φ(z, w), ψ(w)

)
,

where ψ ∈ C[[ζ]] and Φ ∈ C[[z, w]] are power series of order at least 3;
(ii) if F2(z, w) = (0, zw) then F is formally conjugated to a unique second order normal form

G(z, w) = F2(z, w) +
(
Φ(z, w), 0

)
,

where Φ ∈ C[[z, w]] is a power series of order at least 3;
(iii) if F2(z, w) = (−z2, 0) then F is formally conjugated to a unique second order normal form

G(z, w) = F2(z, w) +
(
ψ(w),Φ(z, w)

)
,

where ψ ∈ C[[ζ]] and Φ ∈ C[[z, w]] are power series of order at least 3;
(iv) if F2(z, w) = (z2− zw, 0) then F is formally conjugated to a unique second order normal form

G(z, w) = F2(z, w) +
(
0,Φ(z, w)

)
,

where Φ ∈ C[[z, w]] is a power series of order at least 3.

Finally, in Section 3 we shall also discuss a few interesting examples with Λ = I, showing in
particular the appearance of non-trivial second-order resonance phenomena. For instance, we shall
prove the following

Proposition 0.3: Let F ∈ Ô2
I be of the form F (z, w) = (z, w) + F2(z, w) +O3, with

F2(z, w) =
(
−ρz2, (1− ρ)zw

)
and ρ 6= 0. Put

E =
(
[0, 1] ∩Q

)
∪
{
− 1

n

∣∣∣∣ n ∈ N∗
}

and F =
(
[0, 1] ∩Q

)
∪
{

1 +
1

n
, 1 +

2

n

∣∣∣∣ n ∈ N∗
}
.

Then:

(i) if ρ /∈ E ∪ F then F is formally conjugated to a unique second order normal form

G(z, w) = (z, w) + F2(z, w) +
(
az3 + ϕ(w) + (1− ρ)zψ′(w), (1− ρ)wψ′(w) + (3ρ− 1)ψ(z)

)
,

where ϕ, ψ ∈ C[[ζ]] are power series of order at least 3, and a ∈ C;
(ii) if ρ = 1 + 1

n ∈ F \ E then F is formally conjugated to a unique second order normal form

G(z, w) = (z, w) + F2(z, w)

+

(
a0z

3 + a1z
2wn+1 + ϕ(w)− 1

n
zψ′(w),− 1

n
wψ′(w) +

(
2 +

3

n

)
ψ(w)

)
,

where ϕ, ψ ∈ C[[ζ]] are power series of order at least 3, and a0, a1 ∈ C;
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(iii) if ρ = 1 + 2
m ∈ F \ E with m odd then F is formally conjugated to a unique second order

normal form

G(z, w) = (z, w) + F2(z, w)

+

(
a0z

3 + ϕ(w)− 2

m
z
(
wψ′(w) + ψ(w)

)
,

− 2

m
w2ψ′(w) +

(
2 +

4

m

)
wψ(w)

)
,

where ϕ, ψ ∈ C[[ζ]] are power series of order at least respectively 3 and 2, and a0 ∈ C;
(iv) if ρ = − 1

n ∈ E \ F then F is formally conjugated to a unique second order normal form

G(z, w) = (z, w) + F2(z, w)

+

(
a0z

3 + ϕ(w) +

(
1 +

1

n

)
z
(
wψ′(w) + ψ(w)

)
,

a1z
n+2 + ψ(z) +

(
1 +

1

n

)
w2ψ′(w)− 2

n
wψ(w)

)
,

where ϕ, ψ ∈ C[[ζ]] are power series of order at least respectively 3 and 2, and a0 a1 ∈ C;
(v) if ρ = 1 ∈ E ∩ F then F is formally conjugated to a unique second order normal form

G(z, w) = (z, w) + F2(z, w) +
(
ϕ1(w) + z3ψ(w), ϕ2(w) + zϕ3(w)

)
,

where ϕ1, ϕ2 ∈ C[[ζ]] are power series of order at least 3, ϕ2 ∈ C[[ζ]] is a power series of order
at least 2, and ϕ3 ∈ C[[ζ]] is a power series;

(vi) if ρ = a/b ∈ (0, 1)∩Q ⊂ E \F then F is formally conjugated to a unique second order normal
form

G(z, w) = (z, w) + F2(z, w)

+

(
ϕ(w) + z3ϕ0(zb−awa) + (b− a)

∂

∂w

(
z2wχ(zb−awa)

)
+
(

1− a

b

)
z
(
wψ′(w) + ψ(w)

)
,

a
∂

∂z

(
z2wχ(zb−awa)

)
+
(

1− a

b

)
w2ψ′(w) + 2

a

b
wψ(w)

)
,

where ϕ, ψ ∈ C[[ζ]] are power series of order at least 3, and ϕ0, χ ∈ C[[ζ]] are power series of
order at least 1.

In future papers we plan to study the dynamics of the normal forms we obtained, and to
discuss the convergence of the normalizing transformations.

1. Renormalization

In this section we shall present the renormalization procedure for formal transformations, concen-
trating on the parts that will be useful for our aims. One of the main differences between our
approach and the one followed by Wang, Zheng and Peng is that we shall systematically use the
relations between homogeneous polynomials and symmetric multilinear maps instead of relying on
higher order derivatives as in [WZP2].

Let us start collecting a few results on homogeneous polynomials and maps we shall need later.
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Definition 1.1: We shall denote by Hd the space of homogenous maps of degree d, i.e., of
n-tuples of homogeneous polynomials of degree d ≥ 1 in the variables (z1, . . . , zn). It is well known
(see, e.g., [C, pp. 79–88]) that to each P ∈ Hd is associated a unique symmetric multilinear map
P̃ : (Cn)d → Cn such that

P (z) = P̃ (z, . . . , z)

for all z ∈ Cn. We also set H =
∏
d≥2

Hd.

Roughly speaking, the symmetric multilinear map associated to a homogeneous map H encodes
the derivatives of H. For instance, it is easy to check that for each H ∈ Hd we have

(JacH)(z) · v = d H̃(v, z, . . . , z) (1.1)

for all z, v ∈ Cn.

Later on we shall need to compute the multilinear map associated to a homogeneous map
obtained as a composition. The formula we are interested in is contained in the next lemma.

Lemma 1.1: Assume that P ∈ Hd is of the form

P (z) = K̃
(
Hd1

(z), . . . ,Hdr (z)
)
,

where K̃ is r-multilinear, d1 + · · ·+ dr = d, and Hdj ∈ Hdj for j = 1, . . . , r. Then

P̃ (v, w, . . . , w) =
1

d

r∑
j=1

djK̃
(
Hd1(w), . . . , H̃dj (v, w, . . . , w), . . . ,Hdr (w)

)
for all v, w ∈ Cn.

Proof : Write z = w + εv. Then

P (w) + dεP̃ (v, w, . . . , w) +O(ε2)

= P (w + εv) = K̃
(
H̃d1

(w + εv, . . . , w + εv), . . . , H̃dr (w + εv, . . . , w + εv)
)

= K̃
(
Hd1(w), . . . ,Hdr (w)

)
+ ε

r∑
j=1

djK̃
(
Hd1(w), . . . , H̃dj (v, w, . . . , w), . . . ,Hdr (w)

)
+O(ε2) ,

and we are done. �

Definition 1.2: Given a linear map Λ ∈Mn,n(C), we define a linear operator LΛ:H → H by
setting

LΛ(H) = H ◦ Λ− ΛH .

We shall say that a homogeneous map H ∈ Hd is Λ-resonant if LΛ(H) = O, and we shall denote
by HdΛ = KerLΛ ∩ Hd the subspace of Λ-resonant homogeneous maps of degree d. Finally, we set
HΛ =

∏
d≥2

HdΛ.

When Λ is diagonal, then the Λ-resonant monomials are exactly the resonant monomials ap-
pearing in the classical Poincaré-Dulac theory.



Formal Poincaré-Dulac renormalization for holomorphic germs 9

Definition 1.3: If Q = (q1, . . . , qn) ∈ Nn is a multi-index and z = (z1, . . . , zn) ∈ Cn, we
shall put zQ = zq11 · · · zqnn . Given Λ = diag(λ1, . . . , λn) ∈ Mn,n(C), we shall say that Q ∈ Nn with
q1 + · · ·+ qn ≥ 2 is Λ-resonant on the j-th coordinate if λq11 · · ·λqnn = λj . If Q is Λ-resonant on the
j-th coordinate, we shall also say that the monomial zQej is Λ-resonant, where {e1, . . . , en} is the
canonical basis of Cn.

Remark 1.1: If Λ = diag(λ1, . . . , λn) ∈Mn,n(C) is diagonal, and zQej ∈ Hd is a homogeneous
monomial (with q1 + · · ·+ qn = d), then (identifying the matrix Λ with the vector, still denoted by
Λ, of its diagonal entries) we have

LΛ(zQej) = (ΛQ − λj)zQej .

Therefore zQej is Λ-resonant if and only if Q is Λ-resonant in the j-th coordinate. In particular, a
basis of HdΛ is given by the Λ-resonant monomials, and we have

Hd = HdΛ ⊕ ImLΛ|Hd

for all d ≥ 2.

It is possible to detect the Λ-resonance by using the associated multilinear map:

Lemma 1.2: If Λ ∈Mn,n(C) and H ∈ Hd then H is Λ-resonant if and only if

H̃(Λv1, . . . ,Λvd) = ΛH̃(v1, . . . , vd) (1.2)

for all v1, . . . , vd ∈ Cn. In particular, if H ∈ HdΛ then(
(JacH) ◦ Λ

)
· Λ = Λ · (JacH) . (1.3)

Proof : One direction is trivial. Conversely, assume H ∈ HdΛ. By definition, H is Λ-resonant if and
only if H̃(Λw, . . . ,Λw) = ΛH̃(w, . . . , w) for all w ∈ Cn. Put w = z + εv1; then

H̃(Λz, . . . ,Λz) + εd H̃(Λv1,Λz, . . . ,Λz) +O(ε2) = H̃
(
Λ(z + εv1), . . . ,Λ(z + εv1)

)
= ΛH̃(z + εv1, . . . , z + εv1)

= ΛH̃(z, . . . , z) + εdΛH̃(v1, z, . . . , z) +O(ε2) ,

and thus
H̃(Λv1,Λz, . . . ,Λz) = ΛH̃(v1, z, . . . , z) ; (1.4)

in particular (1.3) is a consequence of (1.1).
Now put z = z1 + εv2 in (1.4). We get

H̃(Λv1,Λz1, . . . ,Λz1) + ε(d− 1)H̃(Λv1,Λv2,Λz1, . . . ,Λz1) +O(ε2)

= H̃
(
Λv1,Λ(z1 + εv2), . . . ,Λ(z1 + εv2)

)
= ΛH̃(v1, z1 + εv2, . . . , z1 + εv2)

= ΛH̃(v1, z1, . . . , z1) + ε(d− 1)ΛH̃(v1, v2, z, . . . , z) +O(ε2) ,

and hence
H̃(Λv1,Λv2,Λz1, . . . ,Λz1) = ΛH̃(v1, v2, z1, . . . , z1)

for all v1, v2, z1 ∈ Cn. Proceeding in this way we get (1.2). �
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We now introduce the operator needed for the second order normalization.

Definition 1.4: Given P ∈ Hµ and Λ ∈Mn,n(C), let LP,Λ:Hd → Hd+µ−1 be given by

LP,Λ(H)(z) = d H̃
(
P (z),Λz, . . . ,Λz

)
− µP̃

(
H(z), z, . . . , z

)
.

Remark 1.2: Equation (1.1) implies that

d H̃
(
P (z),Λz, . . . ,Λz

)
= (JacH)(Λz) · P (z) .

Therefore
LP,Λ(H) =

(
(JacH) ◦ Λ

)
· P − (JacP ) ·H ;

In the notations of [WZP2] we have LP,Λ(H) = [H,P ), and LP,Λ|Hd
Λ

= Td[P ] when P ∈ HµΛ.

Using multilinear maps it is easy to prove the following useful fact:

Lemma 1.3: Take Λ ∈Mn,n(C) and P ∈ HµΛ. Then LP,Λ(HdΛ) ⊆ Hd+µ−1
Λ for all d ≥ 2.

Proof : Using Lemma 1.2 and the definition of LP,Λ, if H ∈ HdΛ we get

LP,Λ(H)(Λz) = d H̃
(
P (Λz),Λ2z, . . . ,Λ2z

)
− µP̃

(
H(Λz),Λz, . . . ,Λz

)
= d H̃

(
ΛP (z),Λ2z, . . . ,Λ2z

)
− µP̃

(
ΛH(z),Λz, . . . ,Λz

)
= dΛH̃

(
P (z),Λz, . . . ,Λz

)
− µΛP̃

(
H(z), z, . . . , z

)
= ΛLP,Λ(H)(z) .

�

To state and prove the main technical result of this section we fix a few more notations.

Definition 1.5: We shall denote by Ôn =
∏
d≥1

Hd the space of n-tuples of formal power series

with vanishing constant term. Furthermore, given Λ ∈Mn,n(C) we shall denote by ÔnΛ the subset

of F ∈ Ôn with dFO = Λ. Every F ∈ Ôn can be written in a unique way as a formal sum

F =
∑
d≥1

Fd (1.5)

with Fd ∈ Hd; (1.5) is the homogeneous expansion of F , and Fd is the d-homogeneous term of F .

We shall often write {F}d for Fd. In particular, if F ∈ ÔnΛ then {F}1 = Λ.

The homogeneous terms behave in a predictable way with respect to composition and inverse:
indeed it is easy to see that if F =

∑
d≥1

Fd and G =
∑
d≥1

Gd are two elements of Ôn then

{F ◦G}d =
∑

1≤r≤d
d1+···+dr=d

F̃r(Gd1 , . . . , Gdr ) (1.6)

for all d ≥ 1; and that if Φ = I +
∑
d≥2

Hd belongs to ÔnI then the homogeneous expansion of the

inverse transformation Φ−1 = I +
∑
d≥2

Kd is given by

Kd = −Hd −
∑

2≤r≤d−1
d1+···+dr=d

K̃r(Hd1
, . . . ,Hdr ) (1.7)

for all d ≥ 2. In particular we have
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Lemma 1.4: Let Φ = I +
∑
d≥2

Hd ∈ ÔnI , and let Φ−1 = I +
∑
d≥2

Kd be the homogeneous expansion

of the inverse. Then if H2, . . . ,Hd are Λ-resonant for some Λ ∈Mn,n(C) and d ≥ 2 then also Kd is
Λ-resonant.

Proof : We argue by induction. Assume that H2, . . . ,Hd are Λ-resonant. If d = 2 then K2 = −H2

and thus K2 is clearly Λ-resonant. Assume the assertion true for d− 1; in particular, K2, . . . ,Kd−1

are Λ-resonant. Then

Kd ◦ Λ = −Hd ◦ Λ−
∑

2≤r≤d−1
d1+···+dr=d

K̃r(Hd1 ◦ Λ, . . . ,Hdr ◦ Λ)

= ΛHd −
∑

2≤r≤d−1
d1+···+dr=d

K̃r(ΛHd1 , . . . ,ΛHdr ) = ΛKd

because K2, . . . ,Kd−1 are Λ-resonant (and we are using Lemma 1.2). �

Definition 1.6: Given Λ ∈Mn,n(C), we shall say that F ∈ Ôn is Λ-resonant if F ◦ Λ = ΛF .
Clearly, F is Λ-resonant if and only if {F}d ∈ HdΛ for all d ∈ N.

The main technical result of this section is the following:

Theorem 1.5: Given F ∈ ÔnO, let F = Λ +
∑
d≥µ

Fd be its homogeneous expansion, with Fµ 6= O.

Then for every Φ ∈ ÔnI with homogeneous expansion Φ = I +
∑
d≥2

Hd and every ν ≥ 2 we have

{Φ−1 ◦ F ◦ Φ}ν = Fν − LΛ(Hν)− LFµ,Λ(Hν−µ+1) +Qν +Rν , (1.8)

where Qν depends only on Λ and on Hγ with γ < ν, while Rν depends only on Fρ with ρ < ν and
on Hγ with γ < ν − µ+ 1, and we put LFµ,Λ(H1) = O. Furthermore, we have:

(i) if H2, . . . ,Hν−1 ∈ HΛ then Qν = O; in particular, if Φ is Λ-resonant then LΛ(Hν) = Qν = O
for all ν ≥ 2;

(ii) if Φ is Λ-resonant then {Φ−1 ◦ F ◦ Φ}ν = O for 2 ≤ ν < µ, {Φ−1 ◦ F ◦ Φ}µ = Fµ, and

{Φ−1 ◦ F ◦ Φ}µ+1 = Fµ+1 − LFµ,Λ(H2) ;

(iii) if F = Λ then Rν = O for all ν ≥ 2;
(iv) if F2, . . . , Fν−1 and H2, . . . ,Hν−µ are Λ-resonant then Rν is Λ-resonant.

Proof : Using twice (1.6) we get

{Φ−1 ◦ F ◦ Φ}ν =
∑

1≤s≤ν
ν1+···+νs=ν

K̃s({F ◦ Φ}ν1 , . . . , {F ◦ Φ}νs)

=
∑

1≤s≤ν
ν1+···+νs=ν

∑
1≤r1≤ν1

d11+···+d1r1
=ν1

· · ·
∑

1≤rs≤νs
ds1+···+dsrs=νs

K̃s

(
F̃r1(Hd11

, . . . ,Hd1r1
), . . . , F̃rs(Hds1 ,. . . ,Hdsrs

)
)

= Tν + S1(ν) +
∑
s≥2

Ss(ν) ,

where Φ−1 = I +
∑
d≥2

Kd is the homogeneous expansion of Φ−1, and:

(1) Tν =
∑

1≤s≤ν
ν1+···+νs=ν

K̃s(ΛHν1
, . . . ,ΛHνs)
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is obtained considering only the terms with r1 = . . . = rs = 1;

(2) S1(ν) =
∑
µ≤r≤ν

d1+···+dr=ν

F̃r(Hd1
, . . . ,Hdr )

contains the terms with s = 1 and r1 > 1; and
(3)

Ss(ν) =
∑

ν1+···+νs=ν

∑
1≤r1≤ν1

...
1≤rs≤νs

max{r1,...,rs}≥µ

∑
d11+···+d1r1

=ν1

...
ds1+···+dsrs=νs

K̃s

(
F̃r1(Hd11

, . . . ,Hd1r1
), . . . , F̃rs(Hds1 , . . . ,Hdsrs

)
)

contains the terms with fixed s ≥ 2 and at least one rj greater than 1 (and thus greater than or
equal to µ, because F2 = . . . = Fµ−1 = O by assumption).

Let us first study Tν . The summand corresponding to s = 1 is ΛHν ; the summand correspond-
ing to s = ν is Kν ◦ Λ; therefore

Tν = ΛHν +Kν ◦ Λ +
∑

2≤s≤ν−1
ν1+···+νs=ν

K̃s(ΛHν1
, . . . ,ΛHνs) = −LΛ(Hν) +Qν ,

where, using (1.7) to express Kν ,

Qν =
∑

2≤s≤ν−1
ν1+···+νs=ν

[
K̃s(ΛHν1

, . . . ,ΛHνs)− K̃s(Hν1
◦ Λ, . . . Hνs ◦ Λ)

]

depends only on Λ and Hγ with γ < ν because 2 ≤ s ≤ ν − 1 in the sum. In particular, if
H1, . . . ,Hν−1 ∈ HΛ then Qν = O, and (i) is proved.

Now let us study S1(ν). First of all, we clearly have S1(ν) = O for 2 ≤ ν < µ, and S1(µ) = Fµ.
When ν > µ we can write

S1(ν) = Fν +
∑

µ≤r≤ν−1
d1+···+dr=ν

F̃r(Hd1 , . . . ,Hdr )

= Fν + µF̃µ(Hν−µ+1, I, . . . , I) +
∑

d1+···+dµ=ν

1<max{dj}<ν−µ+1

F̃µ(Hd1
, . . . ,Hdµ) +

∑
µ+1≤r≤ν−1
d1+···+dr=ν

F̃r(Hd1
, . . . ,Hdr ) .

in particular, S1(µ + 1) = Fµ+1 + µF̃µ(H2, I, . . . , I). Notice that the two remaining sums depend
only on Fρ with ρ < ν and on Hγ with γ < ν−µ+ 1 (in the first sum is clear; for the second one, if
dj ≥ ν−µ+ 1 for some j we then would have d1 + · · ·+ dr ≥ ν−µ+ 1 + r− 1 ≥ ν+ 1, impossible).
Summing up we have

S1(ν) =


O for 2 ≤ ν < µ,
Fµ for ν = µ,

Fµ+1 + µF̃µ(H2, I, . . . , I) for ν = µ+ 1,

Fν + µF̃µ(Hν−µ+1, I, . . . , I) +R1
ν for ν > µ+ 1,

where
R1
ν =

∑
d1+···+dµ=ν

1<max{dj}<ν−µ+1

F̃µ(Hd1 , . . . ,Hdµ) +
∑

µ+1≤r≤ν−1
d1+···+dr=ν

F̃r(Hd1 , . . . ,Hdr )
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depends only on Fρ with ρ < ν and on Hγ with γ < ν − µ+ 1.

Let us now discuss Ss(ν) for s ≥ 2. First of all, the condition max{r1, . . . , rs} ≥ µ implies

µ+ s− 1 ≤ r1 + · · ·+ rs ≤ ν1 + · · ·+ νs = ν ,

that is s ≤ ν − µ + 1. In particular, Ss(ν) = O if ν ≤ µ or if s > ν − µ + 1. Moreover, if we had
dij ≥ ν − µ+ 1 for some 1 ≤ i ≤ s and 1 ≤ j ≤ rs we would get

ν = d11 + · · ·+ dsrs ≥ ν − µ+ 1 + r1 + · · ·+ rs − 1 ≥ ν − µ+ 1 + µ+ s− 1− 1 = ν + s− 1 > ν ,

impossible. This means that Ss(ν) depends only on Fρ with ρ < ν for all s, on Hγ with γ < ν−µ+1

when s < ν − µ + 1, and that Sν−µ+1(ν) depends on Hν−µ+1 just because it contains K̃ν−µ+1.
Furthermore, the conditions max{r1, . . . , rν−µ+1} ≥ µ and ν1 + . . .+ νν−µ+1 = ν imply that

Sν−µ+1(ν) = (ν − µ+ 1)K̃ν−µ+1(Fµ,Λ, . . . ,Λ) = −(ν − µ+ 1)H̃ν−µ+1(Fµ,Λ, . . . ,Λ) +R2
ν ,

where (using Lemmas 1.1 and (1.7))

R2
ν =

∑
2≤r≤ν−µ

d1+···+dr=ν−µ+1

r∑
j=1

djK̃r

(
Hd1
◦ Λ, . . . , H̃dj (Fµ,Λ, . . . ,Λ), . . . ,Hdr ◦ Λ

)

depends only on Λ, Fµ and Hγ with γ < ν − µ+ 1.

Putting everything together, we have

{Φ−1 ◦ F ◦ Φ}ν = Tν + S1(ν) +

ν−µ+1∑
s=2

Ss(ν)

= Fν − LΛ(Hν) +Qν +


O if 2 ≤ ν ≤ µ,
−LFµ,Λ(H2) if ν = µ+ 1,
−LFµ,Λ(Hν−µ+1) +Rν if ν > µ+ 1,

where

Rν = R1
ν +R2

ν +

ν−µ∑
s=2

Ss(ν)

depends only on Fρ with ρ < µ and on Hγ with γ < ν − µ + 1. In particular, if F = Λ then we
have Ss(ν) = O for all s ≥ 1 and hence Rν = O for all ν ≥ 2.

In this way we have proved (1.8) and parts (i), (ii) and (iii). Concerning (iv), it suffices to
notice that if F2, . . . , Fν−1 and H2, . . . ,Hν−µ+1 are Λ-resonant, then also R1

ν , S2(ν), . . . , Sν−µ(ν)
and R2

ν (by Lemmas 1.2 and 1.4) are Λ-resonant. �

Remark 1.3: In [WZP2, Theorem 2.4] the remainder term Rν is expressed by using combi-
nations of higher order derivatives instead of combinations of multilinear maps.

We can now introduce the second order normal forms, using the Fischer Hermitian product to
provide suitable complementary spaces.
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Definition 1.7: The Fischer Hermitian product on H is defined by

〈zp1

1 · · · zpnn eh, z
q1
1 · · · zqnn ek〉 =


0 if h 6= k or pj 6= qj for some j;

p1! · · · pn!

(p1 + · · ·+ pn)!
if h = k and pj = qj for all j.

Definition 1.8: Given Λ ∈ Mn,n(C), we shall say that a G ∈ ÔnΛ is in second order normal
form if G = Λ or (G 6= Λ and) the homogeneous expansion G = Λ +

∑
d≥µ

Gd of G satisfies the

following conditions:

(a) Gµ 6= O;
(b) Gd ∈ Hd ∩ (ImLGµ,Λ)⊥ for all d > µ (where we are using Fischer Hermitian product).

Given F ∈ ÔnΛ, we shall say that G ∈ ÔnΛ is a second order normal form of F if G is in second order

normal form and G = Φ−1 ◦ F ◦ Φ for some Φ ∈ ÔnI .

We can now prove the existence of second order normal forms:

Theorem 1.6: Let Λ ∈ Mn,n(C) be given. Then each F ∈ ÔnΛ admits a second order normal
form. More precisely, if F = Λ +

∑
d≥µ

Fd is in Poincaré-Dulac normal form (and F 6≡ Λ) then there

exists a unique Λ-resonant Φ = I +
∑
d≥2

Hd ∈ ÔnI such that Hd ∈ (KerLFµ,Λ)⊥ for all d ≥ 2 and

G = Φ−1◦F ◦Φ is in second order normal form. Furthermore, if Λ is diagonal we also have Gd ∈ HdΛ
for all d ≥ µ.

Proof : By the classical theory we can assume that F is in Poincaré-Dulac normal form. If F ≡ Λ
we are done; assume then that F 6≡ Λ.

First of all, by Theorem 1.5 if Φ is Λ-resonant we have {Φ−1 ◦F ◦Φ}d = Fd for all d ≤ µ. Now
consider the splittings

Hd = ImLFµ,Λ|Hd−µ+1
Λ

©⊥ (ImLFµ,Λ|Hd−µ+1
Λ

)⊥

and
Hd−µ+1

Λ = KerLFµ,Λ|Hd−µ+1
Λ

©⊥ (KerLFµ,Λ|Hd−µ+1
Λ

)⊥ .

If d = µ+1 we can find a unique Gµ+1 ∈ (ImLFµ,Λ)⊥∩Hµ+1 and a unique H2 ∈ (KerLFµ,Λ)⊥∩H2
Λ

such that Fµ+1 = Gµ+1 + LFµ,Λ(H2). Then Theorem 1.5 yields

{Φ−1 ◦ F ◦ Φ}µ+1 = Fµ+1 − LFµ,Λ({Φ}2) = Gµ+1 + LFµ,Λ(H2)− LFµ,Λ({Φ}2) ;

so to get {Φ−1◦F ◦Φ}µ+1 ∈ (ImLFµ,Λ)⊥∩Hµ+1 with {Φ}2 ∈ (KerLFµ,Λ)⊥∩H2
Λ we must necessarily

take {Φ}2 = H2.
Assume, by induction, that we have uniquely determined H2, . . . ,Hd−µ ∈ (ImLFµ,Λ)⊥ ∩ HΛ,

and thus Rd ∈ Hd in (1.8). Hence there is a unique Gd ∈ (ImLFµ,Λ)⊥ ∩ Hd and a unique

Hd−µ+1 ∈ (KerLFµ,Λ)⊥ ∩ Hd−µ+1
Λ such that Fd + Rd = Gd + LFµ,Λ(Hd−µ+1). Thus to get

{Φ−1 ◦ F ◦ Φ}d ∈ (ImLFµ,Λ)⊥ ∩ Hd with {Φ}d−µ+1 ∈ (KerLFµ,Λ)⊥ ∩ Hd−µ+1
Λ the only possi-

ble choice is {Φ}d−µ+1 = Hd−µ+1, and thus {Φ−1 ◦ F ◦ Φ}d = Gd.
Finally, if Λ is diagonal then Fd ∈ HdΛ for all d ≥ µ. Furthermore, Lemma 1.3 yields

ImLFµ,Λ|Hd−µ+1
Λ

⊆ HdΛ for all d ≥ µ; recalling Theorem 1.5.(vi) we then see can we can always find

Gd ∈ HdΛ, and we are done. �
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The definition and construction of k-th order normal forms is similar; the idea is to extract from
the remainder term Rν the pieces depending on Hγ with γ varying in a suitable range, and use them
to build operators generalizing LΛ and LP,Λ. Since we shall not need it here we refer to [WZP2] for

details; for our needs it suffices to recall that given F = Λ+
∑
d≥2 Fd ∈ ÔnΛ it is possible to introduce

a sequence of (not necessarily linear) operators L(d)[Λ, F2, . . . , Fd]: KerL(d−1) ×Hd+1 → Hd+1 for
d ≥ 1, with L(1)[Λ](H2) = LΛ(H2) and L(2)[Λ, F2](H2, H3) = LΛ(H3) + LF2,Λ(H2).

Definition 1.9: We shall say that G = Λ +
∑
d≥2

Gd ∈ ÔnΛ is in infinite order normal form if

Gd ∈W⊥d for all d ≥ 2, where Wd is a vector subspace of maximal dimension contained in the image

of L(d−1)[Λ, G2, . . . , Gd−1]. We shall also say that G is an infinite order normal form of F ∈ ÔnΛ if
it is in infinite order normal form and it is formally conjugated to F .

We end this section quoting a result from [WZP2] giving a condition ensuring that a second
order normal form is actually an infinite order normal form:

Proposition 1.7: ([WZP2, Theorem 4.9]) Let Λ ∈Mn,n(C) be diagonal, and F = Λ+
∑
d≥2

Fd ∈ ÔnΛ
with F2 6= O and Λ-resonant. Assume that KerLF2,Λ|Hd

Λ
= {O} for all d ≥ 2. Then the second

order normal form of F is the unique infinite order normal form of F .

2. Superattracting germs

In this section we shall completely describe the second order normal forms obtained when n = µ = 2
and Λ = O, that is for 2-dimensional superattracting germs with non-vanishing quadratic term.
Except in four degenerate instances, the second order normal forms will be infinite order normal
forms, and will be expressed just in terms of two power series of one variable, thus giving a drastic
simplification of the germs.

In [A1] we showed that, up to a linear change of variable, we can assume that the quadratic
term F2 is of one (and only one) of the following forms:

(∞) F2(z, w) = (z2, zw);
(100) F2(z, w) = (0,−z2);
(110) F2(z, w) =

(
−z2,−(z2 + zw)

)
;

(111) F2(z, w) =
(
−zw,−(z2 + w2)

)
;

(2001) F2(z, w) = (0, zw);
(2011) F2(z, w) = (zw, zw + w2);
(210ρ) F2(z, w) =

(
−ρz2, (1− ρ)zw), with ρ 6= 0;

(211ρ) F2(z, w) =
(
ρz2 + zw, (1 + ρ)zw + w2

)
, with ρ 6= 0;

(3100) F2(z, w) = (z2 − zw, 0);
(3ρ10) F2(z, w) =

(
ρ(−z2 + zw), (1− ρ)(zw − w2)

)
, with ρ 6= 0, 1;

(3ρτ1) F2(z, w) =
(
−ρz2 + (1− τ)zw, (1− ρ)zw − τw2

)
, with ρ, τ 6= 0 and ρ+ τ 6= 1

(where the labels refer to the number of characteristic directions and to their indices; see also
[AT2]).

We shall use the standard basis {ud,j , vd,j}j=0,...,d of Hd, where

ud,j = (zjwd−j , 0) and vd,j = (0, zjwd−j) ,

and we shall endow Hd with Fischer Hermitian product, so that {ud,j , vd,j}j=0,...,d is an orthogonal
basis and

‖ud,j‖2 = ‖vd,j‖2 =

(
d

j

)−1

.
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When Λ = O, we have HΛ = H, and the operator L = LF2,Λ:Hd → Hd+1 is given by

L(H) = − Jac(F2) ·H .

To apply Proposition 1.7, we need to know when KerL|Hd = {O}. Since

dim KerL|Hd + dim ImL|Hd = dimHd = dimHd+1 − 2 = dim ImL|Hd + dim(ImL|Hd)⊥ − 2 ,

we find that
KerL|Hd = {O} if and only if dim(ImL|Hd)⊥ = 2 . (2.1)

We shall now study separately each case.

• Case (∞).
In this case we have

L(ud,j) = −2ud+1,j+1 − vd+1,j and L(vd,j) = −vd+1,j+1

for all d ≥ 2 and j = 0, . . . , d. Therefore

ImL|Hd = Span (ud+1,2, . . . , ud+1,d+1, 2ud+1,1 + vd+1,0, vd+1,1, . . . , vd+1,d+1) ,

and thus
(ImL|Hd)⊥ = Span (ud+1,0, (d+ 1)ud+1,1 − 2vd+1,0) .

In particular, thanks to (2.1) and Proposition 1.7, a second order normal form is automatically an
infinite order normal form.

It then follows that every formal power series of the form

F (z, w) = (z2 +O3, zw +O3)

(where O3 denotes a remainder term of order at least 3) has a unique infinite order normal form

G(z, w) =
(
z2 + ϕ(w) + zψ′(w), zw − 2ψ(w)

)
where ϕ, ψ ∈ C[[ζ]] are power series of order at least 3. Notice that (here and in later formulas) the
appearance of the derivative (which simplifies the expression of the normal form) is due to the fact
we are using the Fischer Hermitian product; using another Hermitian product might lead to more
complicated normal forms.

• Case (100).
In this case we have

L(ud,j) = 2vd+1,j+1 and L(vd,j) = 0

for all d ≥ 2 and j = 0, . . . , d. Therefore

ImL|Hd = Span (vd+1,1, . . . , vd+1,d+1) ,

and thus
(ImL|Hd)⊥ = Span (ud+1,0, . . . , ud+1,d+1, vd+1,0) .

This a degenerate case, where we cannot use Proposition 1.7. Anyway, Theorem 1.6 still apply,
and it follows that every formal power series of the form

F (z, w) = (O3,−z2 +O3)

has a second order normal form

G(z, w) =
(
Φ(z, w),−z2 + ψ(w)

)
where ψ ∈ C[[ζ]] and Φ ∈ C[[z, w]] are power series of order at least 3.
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• Case (110).
In this case we have

L(ud,j) = 2ud+1,j+1 + 2vd+1,j+1 + vd+1,j and L(vd,j) = vd+1,j+1

for all d ≥ 2 and j = 0, . . . , d. Therefore

ImL|Hd = Span (2ud+1,1 + vd+1,0, ud+1,2, . . . , ud+1,d+1, vd+1,1, . . . , vd+1,d+1) ,

and thus
(ImL|Hd)⊥ = Span (ud+1,0, (d+ 1)ud+1,1 − 2vd+1,0) .

It then follows that every formal power series of the form

F (z, w) = (−z2 +O3,−z2 − zw +O3)

has a unique infinite order normal form

G(z, w) =
(
−z2 + ϕ(w) + zψ′(w),−z2 − zw − 2ψ(w)

)
where ϕ, ψ ∈ C[[ζ]] are power series of order at least 3.

• Case (111).
In this case we have

L(ud,j) = ud+1,j + 2vd+1,j+1 and L(vd,j) = ud+1,j+1 + 2vd+1,j

for all d ≥ 2 and j = 0, . . . , d. It follows that

ImL|Hd = Span(ud+1,0 − ud+1,2, . . . , ud+1,d−1 − ud+1,d+1,

vd+1,2 − vd+1,0, . . . , vd+1,d+1 − vd+1,d−1, ud+1,0 + 2vd+1,1, ud+1,1 + 2vd+1,0) ,

and a few computations yield

(ImL|Hd)⊥ = Span

d+1∑
j=0

(
d+ 1

j

)
(vd+1,j − 2ud+1,j),

d+1∑
j=0

(−1)j
(
d+ 1

j

)
(vd+1,j + 2ud+1,j)


= Span

((
−2(z + w)d+1, (z + w)d+1

)
,
(
2(w − z)d+1, (w − z)d+1

)) .

It then follows that every formal germ of the form

F (z, w) = (−zw +O3,−z2 − w2 +O3)

has a unique infinite order normal form

G(z, w) =
(
−zw − 2ϕ(z + w) + 2ψ(w − z),−z2 − w2 + ϕ(z + w) + ψ(w − z)

)
where ϕ, ψ ∈ C[[ζ]] are arbitrary power series of order at least 3. Again, the fact that the normal
form is expressed in terms of power series evaluated in z + w and z − w is due to the fact we are
using Fischer Hermitian product.
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• Case (2001).
In this case we have

L(ud,j) = −vd+1,j and L(vd,j) = −vd+1,j+1

for all d ≥ 2 and j = 0, . . . , d. It follows that

ImL|Hd = Span (vd+1,0, . . . , vd+1,d+1)

and hence
(ImL|Hd)⊥ = Span (ud+1,0, . . . , ud+1,d+1) .

We are in a degenerate case; hence every formal germ of the form

F (z, w) = (O3, zw +O3)

has a second order normal form
G(z, w) =

(
Φ(z, w), zw

)
where Φ ∈ C[[z, w]] is a power series of order at least three.

• Case (2011).
In this case we have

L(ud,j) = −ud+1,j − vd+1,j and L(vd,j) = −ud+1,j+1 − 2vd+1,j − vd+1,j+1

for all d ≥ 2 and j = 0, . . . , d. It follows that

ImL|Hd = Span(ud+1,0, . . . , ud+1,d−1, vd+1,0, . . . , vd+1,d−1,

ud+1,d + vd+1,d, ud+1,d+1 + vd+1,d+1 + 2vd+1,d) ,

and hence

(ImL|Hd)⊥ = Span ((d+ 1)ud+1,d − (d+ 1)vd+1,d + 2vd+1,d+1, ud+1,d+1 − vd+1,d+1) .

It then follows that every formal germ of the form

F (z, w) = (zw +O3, zw + w2 +O3)

has a unique infinite order normal form

G(z, w) =
(
zw + wϕ′(z) + ψ(z), zw + w2 + 2ϕ(z)− wϕ′(z)− ψ(z)

)
,

where ϕ, ψ ∈ C[[ζ]] are power series of order at least 3.

• Case (210ρ).
In this case we have

L(ud,j) = 2ρud+1,j+1 + (ρ− 1)vd+1,j and L(vd,j) = (ρ− 1)vd+1,j+1

for all d ≥ 2 and j = 0, . . . , d. We clearly have two subcases to consider.
If ρ = 1 then

ImL|Hd = Span (ud+1,1, . . . , ud+1,d+1) ,
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and hence

(ImL|Hd)⊥ = Span (ud+1,0, vd+1,0, . . . , vd+1,d+1) .

We are in the third degenerate case; hence every formal germ of the form

F (z, w) = (−z2 +O3, O3)

has a second order normal form

G(z, w) =
(
−z2 + ψ(w),Φ(z, w)

)
,

where ψ ∈ C[[ζ]] and Φ ∈ C[[z, w]] are power series of order at least 3.
If instead ρ 6= 1 (recalling that ρ 6= 0 too) then

ImL|Hd = Span (2ρud+1,1 + (ρ− 1)vd+1,0, ud+1,2, . . . , ud+1,d+1, vd+1,1, . . . , vd+1,d+1) ,

and hence

(ImL|Hd)⊥ = Span (ud+1,0, (ρ− 1)(d+ 1)ud+1,1 − 2ρvd+1,0) .

It then follows that every formal germ of the form

F (z, w) =
(
−ρz2 +O3, (1− ρ)zw +O3

)
with ρ 6= 0, 1 has a unique infinite order normal form

G(z, w) =
(
−ρz2 + (ρ− 1)zϕ′(w) + ψ(w), (1− ρ)zw − 2ρϕ(z)

)
,

where ϕ, ψ ∈ C[[ζ]] are power series of order at least 3.

• Case (211ρ).
In this case we have {

L(ud,j) = −2ρud+1,j+1 − ud+1,j − (1 + ρ)vd+1,j

L(vd,j) = −ud+1,j+1 − 2vd+1,j − (1 + ρ)vd+1,j+1
(2.2)

for all d ≥ 2 and j = 0, . . . , d. We clearly have two subcases to consider.
If ρ = −1 then

ImL|Hd = Span (ud+1,0 − 2ud+1,1, . . . , ud+1,d − 2ud+1,d+1, ud+1,1 + 2vd+1,0, . . . , ud+1,d + 2vd+1,d) ,

and hence

(ImL|Hd)⊥ = Span

d+1∑
j=0

(
d+ 1

j

)
1

2j
(ud+1,j −

1

4
vd+1,j), vd+1,d+1


= Span

(((
z
2 + w

)d+1
,−1

4

(
z
2 + w

)d+1
)
, (0, zd+1)

)
.

It then follows that every formal germ of the form

F (z, w) = (−z2 + zw +O3, w
2 +O3)
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has a unique infinite order normal form

G(z, w) =

(
−z2 + zw + ϕ( z2 + w), w2 − 1

4
ϕ( z2 + w) + ψ(z)

)
,

where ϕ, ψ ∈ C[[ζ]] are power series of order at least 3.
If instead ρ 6= −1 (recalling that ρ 6= 0 too) then a basis of ImL|Hd is given by the vectors

listed in (2.2), and a computation shows that (ImL|Hd)⊥ is given by homogeneous maps of the
form

d+1∑
j=0

(ajud+1,j + bjvd+1,j)

where the coefficients aj , bj satisfy the following relations:

cjbj = − 2

1 + ρ
cj−1bj−1 −

1

ρ(1 + ρ)
cj−2bj−2 for j = 2, . . . , d+ 1,

cjaj =
1

ρ
cj−2bj−2 for j = 2, . . . , d+ 1,

a0 = (3ρ− 1)b0 + 2
ρ(1 + ρ)

d+ 1
b1 ,

a1 = −2(d+ 1)b0 − (1 + ρ)b1 ,

where c−1
j =

(
d+1
j

)
and b0, b1 ∈ C are arbitrary. Solving these recurrence equations one gets

bj =
1

2
√
−ρ

(
d+ 1

j

)[
ρ(1 + ρ)

d+ 1
(mj

ρ − njρ)b1 +
(
ρ(mj

ρ − njρ) +
√
−ρ(mj

ρ + njρ)
)
b0

]
,

where
√
−ρ is any square root of −ρ, and

mρ =

√
−ρ− ρ

ρ(1 + ρ)
, nρ = −

√
−ρ+ ρ

ρ(1 + ρ)
.

It follows that the unique infinite order normal form of a formal germ of the form

F (z, w) =
(
ρz2 + zw +O3, (1 + ρ)zw + w2 +O3

)
with ρ 6= 0, −1 is

G(z, w) =

(
ρz2 + zw +

1

ρ

[
1−
√
−ρ

2m2
ρ

ϕ(mρz + w) +
1 +
√
−ρ

2n2
ρ

ϕ(nρz + w)

]
+

1 + ρ

2
√
−ρ

(
1

m2
ρ

ψ(mρz + w)− 1

n2
ρ

ψ(nρz + w)

)
,

(1 + ρ)zw + w2 +
1−
√
−ρ

2
ϕ(mρz + w) +

1 +
√
−ρ

2
ϕ(nρz + w)

+
ρ(1 + ρ)

2
√
−ρ

(
ψ(mρz + w)− ψ(nρz + w)

))
where ϕ, ψ ∈ C[[ζ]] are power series of order at least 3.
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• Case (3100).
In this case we have

L(ud,j) = ud+1,j − 2ud+1,j+1 and L(vd,j) = ud+1,j+1

for all d ≥ 2 and j = 0, . . . , d. It follows that

ImL|Hd = Span (ud+1,0, . . . , ud+1,d+1)

and hence
(ImL|Hd)⊥ = Span (vd+1,0, . . . , vd+1,d+1) .

We are in the last degenerate case; hence every formal germ of the form

F (z, w) = (z2 − zw +O3, O3)

has a second order normal form

G(z, w) =
(
z2 − zw,Φ(z, w)

)
,

where Φ ∈ C[[z, w]] is a power series of order at least 3.

• Case (3ρ10).
In this case we have {

L(ud,j) = ρ(2ud+1,j+1 − ud+1,j) + (ρ− 1)vd+1,j

L(vd,j) = −ρud+1,j+1 + (ρ− 1)(vd+1,j+1 − 2vd+1,j)
(2.3)

for all d ≥ 2 and j = 0, . . . , d. Then a basis of ImL|Hd is given by the homogeneous maps listed in
(2.3), and a computation shows that (ImL|Hd)⊥ is given by homogeneous maps of the form

d+1∑
j=0

(ajud+1,j + bjvd+1,j)

where the coefficients aj , bj satisfy the following relations:
cj+1aj+1 =

ρ− 1

ρ
(cj+1bj+1 − 2cjbj) for j = 0, . . . , d,

cj+1bj+1 = 2cjbj − cj−1bj−1 for j = 1, . . . , d,

c0a0 = 2c1a1 +
ρ− 1

ρ
c0b0 ,

where c−1
j =

(
d+1
j

)
and b0, b1 ∈ C are arbitrary. Solving these recurrence equations we find bj =

(
d+1
j

) [
j
d+1b1 − (j − 1)b0

]
for j = 0, . . . , d+ 1,

aj = ρ−1
ρ

(
d+1
j

) [
2−j
d+1b1 + (j − 3)b0

]
for j = 0, . . . , d+ 1,

where b0, b1 ∈ C are arbitrary. So every formal germ of the form

F (z, w) =
(
ρ(−z2 + zw) +O3, (1− ρ)(zw − w2) +O3

)
with ρ 6= 0, 1 has a unique infinite order normal form

G(z, w) =

(
ρ(−z2 + zw) + z

∂

∂z

[
ϕ(z + w) + ψ(z + w)

]
− ϕ(z + w),

(1− ρ)(zw − w2) +
ρ− 1

ρ

(
z
∂

∂z

[
ϕ(z + w)− ψ(z + w)

]
− 3ϕ(z + w) + 2ψ(z + w)

))
where ϕ, ψ ∈ C[[ζ]] are power series of order at least 3.
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• Case (3ρτ1).
In this case we have

L(ud,j) = (τ − 1)ud+1,j + 2ρud+1,j+1 + (ρ− 1)vd+1,j

and

L(vd,j) = (τ − 1)ud+1,j+1 + 2τvd+1,j + (ρ− 1)vd+1,j+1

for all d ≥ 2 and j = 0, . . . , d. As before, we have a few subcases to consider.
Assume first ρ = τ = 1. Then

ImL|Hd = Span (ud+1,1, . . . , ud+1,d+1, vd+1,0, . . . , vd+1,d) ;

hence

(ImL|Hd)⊥ = Span (ud+1,0, vd+1,d+1) ,

It then follows that every formal germ of the form

F (z, w) = (−z2 +O3,−w2 +O3)

has a unique infinite order normal form

G(z, w) =
(
−z2 + ϕ(w),−w2 + ψ(z)

)
,

where ϕ, ψ ∈ C[[ζ]] are power series of order at least 3.
Assume now ρ 6= 1. Then a computation shows that (ImL|Hd)⊥ is given by homogeneous

maps of the form
d+1∑
j=0

(ajud+1,j + bjvd+1,j)

where the coefficients aj , bj satisfy the following relations:

cj+1aj+1 =
τ

ρ
cj−1bj−1 for j = 1, . . . , d,

cj+1bj+1 = − 2τ

ρ− 1
cjbj −

τ(τ − 1)

ρ(ρ− 1)
cj−1bj−1 for j = 1, . . . , d,

(τ − 1)c1a1 + (ρ− 1)c1b1 + 2τc0b0 = 0 ,
(τ − 1)c0a0 + (ρ− 1)c0b0 + 2ρc1a1 = 0 ,

(2.4)

where c−1
j =

(
d+1
j

)
and b0, b1 ∈ C are arbitrary.

When τ = 1 conditions (2.4) reduce to

cj+1aj+1 =
1

ρ
cj−1bj−1 for j = 1, . . . , d,

cj+1bj+1 = − 2

ρ− 1
cjbj for j = 1, . . . , d,

(ρ− 1)c1b1 + 2c0b0 = 0 ,
(ρ− 1)c0b0 + 2ρc1a1 = 0 ,



Formal Poincaré-Dulac renormalization for holomorphic germs 23

whose solution is 
aj =

(
d+ 1

j

)
1

ρ

(
2

1− ρ

)j−2

b0 for j = 1, . . . , d+ 1,

bj =

(
d+ 1

j

)(
2

1− ρ

)j
b0 for j = 0, . . . , d+ 1,

where a0, b0 ∈ C are arbitrary. Therefore

(ImL|Hd)⊥ = Span

(
(wd+1, 0),

(
(1− ρ)2

4ρ

(
2

1− ρ
z + w

)d+1

,

(
2

1− ρ
z + w

)d+1
))

,

and thus every formal germ of the form

F (z, w) =
(
−ρz2 +O3, (1− ρ)zw − w2 +O3

)
with ρ 6= 1 has a unique infinite order normal form

G(z, w) =

(
−ρz2 + ϕ(w) +

(1− ρ)2

4ρ
ψ

(
2

1− ρ
z + w

)
, (1− ρ)zw − w2 + ψ

(
2

1− ρ
z + w

))
,

where ϕ, ψ ∈ C[[ζ]] are arbitrary power series of order at least 3.
The case ρ = 1 and τ 6= 1 is treated in the same way; we get that every formal germ of the

form
F (z, w) =

(
−z2 + (1− τ)zw +O3,−τw2 +O3

)
with τ 6= 1 has a unique infinite order normal form

G(z, w) =

(
−z2 + (1− τ)zw + ψ

(
1− τ

2
z + w

)
,−τw2 + ϕ(z) +

(1− τ)2

4τ
ψ

(
1− τ

2
z + w

))
,

where ϕ, ψ ∈ C[[ζ]] are power series of order at least 3.
Finally assume ρ, τ 6= 1 (and ρ+ τ 6= 1). Solving the recurrence equations (2.4) we find

bj =
1

2
√
ρτ(ρ+ τ − 1)

(
d+ 1

j

)[
ρ(ρ− 1)

d+ 1
(mj

ρ,τ − njρ,τ )b1

+
(
ρτ(mj

ρ,τ − njρ,τ ) +
√
ρτ(ρ+ τ − 1)(mj

ρ,τ + njρ,τ )
)
b0

]
,

for j = 0, . . . , d+ 1, where
√
ρτ(ρ+ τ − 1) is any square root of ρτ(ρ+ τ − 1), and

mρ,τ =

√
ρτ(ρ+ τ − 1)− ρτ

ρ(ρ− 1)
, nρ,τ = −

√
ρτ(ρ+ τ − 1) + ρτ

ρ(ρ− 1)
.

Moreover, from (2.4) we also get

aj =
τ

2ρ
√
ρτ(ρ+ τ − 1)

(
d+ 1

j

)[
ρ(ρ− 1)

d+ 1
(mj−2

ρ,τ − nj−2
ρ,τ )b1

+
(
ρτ(mj−2

ρ,τ − nj−2
ρ,τ ) +

√
ρτ(ρ+ τ − 1)(mj−2

ρ,τ + nj−2
ρ,τ )

)
b0

]
,
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again for j = 0, . . . , d+ 1. It follows that the unique infinite order normal form of a formal germ of
the form

F (z, w) =
(
−ρz2 + (1− τ)zw +O3, (1− ρ)zw − τw2 +O3

)
with ρ, τ 6= 0, 1 and ρ+ τ 6= 1, is

G(z, w) =

(
−ρz2 + (1− τ)zw +

τ

ρ

[√
ρ+ τ − 1 +

√
ρτ

2m2
ρ,τ

ϕ(mρ,τz + w)

+

√
ρ+ τ − 1−√ρτ

2n2
ρ,τ

ϕ(nρ,τz + w)

+
1

m2
ρ,τ

ψ(mρ,τz + w)− 1

n2
ρ,τ

ψ(nρ,τz + w)

]
,

(1− ρ)zw − τw2 +

√
ρ+ τ − 1 +

√
ρτ

2
ϕ(mρ,τz + w)

+

√
ρ+ τ − 1−√ρτ

2
ϕ(nρ,τz + w)

+ ψ(mρ,τz + w)− ψ(nρ,τz + w)

)
,

where the square roots of ρτ and of ρ + τ − 1 are chosen so that their product is equal to the
previously chosen square root of ρτ(ρ+ τ − 1), and ϕ, ψ ∈ C[[ζ]] are power series of order at least 3
— and we have finished proving Theorem 0.1 and Proposition 0.2.

3. Germs tangent to the identity

In this section we shall assume n = µ = 2 and Λ = I, that is we shall be interested in 2-dimensional
germs tangent to the identity of order 2. We shall keep the notations introduced in the previous
section. It should be recalled that in his monumental work [É1] (see [É2] for a survey) Écalle
studied the formal classification of germs tangent to the identity in dimension n, giving a complete
set of formal invariants for germs satisfying a generic condition: the existence of at least one
non-degenerate characteristic direction (an eigenradius, in Écalle’s terminology). A characteristic
direction of a germ tangent to the identity F is a non-zero direction v such that Fµ(v) = λv for
some λ ∈ C, where Fµ is the first (nonlinear) non-vanishing term in the homogeneous expansion
of F . The characteristic direction v is degenerate if λ = 0.

For this reason, we decided to discuss here the cases without non-degenerate characteristic
directions, that is the cases (100), (110) and (2001), that cannot be dealt with Écalle’s methods.
Furthermore, we shall also study the somewhat special case (∞), where all directions are char-
acteristic; and we shall examine in detail case (210ρ), where interesting second-order resonance
phenomena appear.

When Λ = I the operator L = LF2,Λ is given by

L(H) = Jac(H) · F2 − Jac(F2) ·H .

In particular, L(F2) = O always; therefore we cannot apply Proposition 1.7 (nor other similar
conditions stated in [WZP2]), and we shall compute the second order normal form only.

• Case (∞).
In this case we have

L(ud,j) = (d− 2)ud+1,j+1 − vd+1,j and L(vd,j) = (d− 1)vd+1,j+1
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for all d ≥ 2 and j = 0, . . . , d. Therefore

ImL|Hd =

{
Span (ud+1,2, . . . , ud+1,d+1, (d− 2)ud+1,1 − vd+1,0, vd+1,1, . . . , vd+1,d+1) for d > 2,
Span (v3,0, . . . , v3,3) for d = 2.

Thus

(ImL|Hd)⊥ =

{
Span (ud+1,0, (d+ 1)ud+1,1 + (d− 2)vd+1,0) for d > 2,
Span (u3,0, . . . , u3,3) for d = 2.

It then follows that every formal power series of the form

F (z, w) = (z + z2 +O3, w + zw +O3)

has as second order normal form

G(z, w) =
(
z + z2 + a0z

3 + a1z
2w + a2zw

2 + ϕ(w) + zψ′(w), zw + wψ′(w)− 3ψ(w)
)

where ϕ ∈ C[[ζ]] is a power series of order at least 3, ψ ∈ C[[ζ]] is a power series of order at least 4
and a0, a1, a2 ∈ C.

• Case (100).
In this case we have

L(ud,j) = (j − d)ud+1,j+2 + 2vd+1,j+1 and L(vd,j) = (j − d)vd+1,j+2

for all d ≥ 2 and j = 0, . . . , d. Therefore

ImL|Hd = Span (2vd+1,1 − dud+1,2, ud+1,3, . . . , ud+1,d+1, vd+1,2, . . . , vd+1,d+1) ,

and thus
(ImL|Hd)⊥ = Span (ud+1,0, ud+1,1, vd+1,0, ud+1,2 + vd+1,1) .

It then follows that every formal power series of the form

F (z, w) = (z +O3, w − z2 +O3)

has as second order normal form

G(z, w) =
(
z + wϕ1(w) + zϕ2(w) + z2ψ(w), w − z2 + wϕ3(w) + zwψ(w)

)
,

where ϕ1, ϕ2, ϕ3 ∈ C[[ζ]] are power series of order at least 2, and ψ ∈ C[[ζ]] is a power series of order
at least 1.

• Case (110).
In this case we have

L(ud,j) = (2− d)ud+1,j+1 − (d− j)ud+1,j+2 + 2vd+1,j+1 + vd+1,j

and
L(vd,j) = (1− d)vd+1,j+1 − (d− j)vd+1,j+2

for all d ≥ 2 and j = 0, . . . , d. Therefore

ImL|Hd =

{
Span ((2− d)ud+1,1 + vd+1,0, ud+1,2, . . . , ud+1,d+1, vd+1,1, . . . , vd+1,d+1) for d > 2,
Span (v3,0 − 2u3,2, u3,3, v3,1, v3,2, v3,3) for d = 2,

and thus

(ImL|Hd)⊥ =

{
Span (ud+1,0, (d+ 1)ud+1,1 + (d− 2)vd+1,0) for d > 2,
Span (u3,0, u3,1, 3u3,2 + 2v3,0) for d = 2.

It then follows that every formal power series of the form

F (z, w) = (z − z2 +O3, w − z2 − zw +O3)

has as second order normal form

G(z, w) =
(
z − z2 + ϕ(w) + a1zw

2 + 3a2z
2w + zψ′(w), w − z2 − zw + 2a2w

3 + wψ′(w)− 3ψ(w)
)
,

where ϕ ∈ C[[ζ]] is a power series of order at least 3, ψ ∈ C[[ζ]] is a power series of order at least 4,
and a1, a2 ∈ C.
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• Case (2001).
In this case we have

L(ud,j) = (d− j)ud+1,j+1 − vd+1,j and L(vd,j) = (d− j − 1)vd+1,j+1

for all d ≥ 2 and j = 0, . . . , d. It follows that

ImL|Hd = Span (dud+1,1 − vd+1,0, ud+1,2, . . . , ud+1,d, vd+1,1, . . . , vd+1,d+1)

and hence
(ImL|Hd)⊥ = Span (ud+1,0, ud+1,d+1, (d+ 1)ud+1,1 + dvd+1,0) .

It then follows that every formal germ of the form

F (z, w) = (z +O3, w + zw +O3)

has as second order normal form

G(z, w) =
(
z + ϕ1(z) + ϕ2(w) + zψ′(w), zw + wψ′(w)− ψ(w)

)
where ϕ1, ϕ2, ψ ∈ C[[ζ]] are power series of order at least 3.

• Case (210ρ).
In this case we have

L(ud,j) = (d−j−dρ+2ρ)ud+1,j+1+(ρ−1)vd+1,j and L(vd,j) = (d−j−dρ+ρ−1)vd+1,j+1 (3.1)

for all d ≥ 2 and j = 0, . . . , d. Here we shall see the resonance phenomena we mentioned at the
beginning of this section: for some values of ρ the dimension of the kernel of L|Hd increases, and in
some cases we shall end up with a normal form depending on power series evaluated in monomials
of the form zb−awa.

Let us put

Ed =

{
d− j − 1

d− 1

∣∣∣∣ j = 0, . . . , d

}
\ {0} and Fd =

{
d− j
d− 2

∣∣∣∣ j = 0, . . . , d− 1

}
(we are excluding 0 because ρ 6= 0 by assumption), where Ed is defined for all d ≥ 2 whereas Fd is
defined for all d ≥ 3, and set

E =
⋃
d≥2

Ed =
(
(0, 1] ∩Q

)
∪
{
− 1

n

∣∣∣∣ n ∈ N∗
}

and

F =
⋃
d≥3

Fd =
(
(0, 1] ∩Q

)
∪
{

1 +
1

n
, 1 +

2

n

∣∣∣∣ n ∈ N∗
}
.

So E is the set of ρ ∈ C∗ such that L(vd,j) = 0 for some d ≥ 2 and 0 ≤ j ≤ d, while F is the set of
ρ ∈ C∗ such that L(ud,j) = (ρ− 1)vd+1,j for some d ≥ 3 and 0 ≤ j ≤ d− 1.

Let us first discuss the non-resonant case, when ρ 6∈ E ∪ F . Then none of the coefficients in
(3.1) vanishes, and thus

ImL|H2 = Span (2u3,1 + (ρ− 1)v3,0, u3,2, v3,1, v3,2, v3,3)
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and

ImL|Hd = Span ((d− dρ+ 2ρ)ud+1,1 + (ρ− 1)vd+1,0, ud+1,2, . . . , ud+1,d+1, vd+1,1, . . . , vd+1,d+1) ,

for d ≥ 3, and hence

(ImL|Hd)⊥ =

{
Span (ud+1,0, (1− ρ)(d+ 1)ud+1,1 + (d(1− ρ) + 2ρ)vd+1,0) for d ≥ 3,
Span (u3,0, u3,3, 3(1− ρ)u3,1 + 2v3,0) for d = 2.

It then follows that every formal germ of the form

F (z, w) = (z − ρz2 +O3, w + (1− ρ)zw +O3)

with ρ 6∈ E ∪ F (and ρ 6= 0) has as second order normal form

G(z, w) =
(
z − ρz2 + az3 +ϕ(w) + (1− ρ)zψ′(w), w+ (1− ρ)zw+ (1− ρ)wψ′(w) + (3ρ− 1)ψ(z)

)
,

where ϕ, ψ ∈ C[[ζ]] are power series of order at least 3, and a ∈ C.
Assume now ρ ∈ F \ E . Then L(vd,j) 6= O always, and thus vd+1,j ∈ ImL|Hd for all d ≥ 2 and

all j = 1, . . . , d+ 1. Since ρ > 1, if d > 2 it also follows that ud+1,j+1 ∈ ImL|Hd for j = 1, . . . , d.
Now, if ρ = 1 + (1/n) then

d

d− 2
= ρ ⇐⇒ d = 2(n+ 1) ,

and
d− 1

d− 2
= ρ ⇐⇒ d = n+ 2 .

Taking care of the case d = 2 separately, we then have

ImL|Hd

=


Span ((d− dρ+ 2ρ)ud+1,1 + (ρ− 1)vd+1,0, ud+1,2, . . . , ud+1,d+1, vd+1,1, . . . , vd+1,d+1)

for d ≥ 3, d 6= n+ 2, 2(n+ 1),
Span (ud+1,1 + (ρ− 1)vd+1,0, ud+1,3, . . . , ud+1,d+1, vd+1,1, . . . , vd+1,d+1) for d = n+ 2,
Span (ud+1,2, . . . , ud+1,d+1, vd+1,0, . . . , vd+1,d+1) for d = 2(n+ 1),
Span (2u3,1 + (ρ− 1)v3,0, u3,2, v3,1, v3,2, v3,3) for d = 2,

and hence

(ImL|Hd)⊥

=


Span (ud+1,0, (1− ρ)(d+ 1)ud+1,1 + (d(1− ρ) + 2ρ)vd+1,0) for d ≥ 3, d 6= n+ 2, 2(n+ 1),
Span (ud+1,0, ud+1,2, (1− ρ)(d+ 1)ud+1,1 + vd+1,0) for d = n+ 2,
Span (ud+1,0, ud+1,1) for d = 2(n+ 1),
Span (u3,0, u3,3, 3(1− ρ)u3,1 + 2v3,0) for d = 2.

It then follows that every formal germ of the form

F (z, w) =

(
z −

(
1 +

1

n

)
z2 +O3, w −

1

n
zw +O3

)
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with n ∈ N∗ has as second order normal form

G(z, w) =

(
z −

(
1 +

1

n

)
z2 + ϕ(w) + (1− ρ)zψ′(w) + a0z

3 + a1z
2wn+1,

w − 1

n
zw + (1− ρ)wψ′(w) + (3ρ− 1)ψ(w)

)
,

where ϕ, ψ ∈ C[[ζ]] are power series of order at least 3, and a0, a1 ∈ C.
If instead ρ = 1 + (2/m) with m odd (if m is even we are again in the previous case) then

d

d− 2
= ρ ⇐⇒ d = m+ 2 ,

whereas d−1
d−2 6= ρ always. Hence

ImL|Hd

=


Span ((d− dρ+ 2ρ)ud+1,1 + (ρ− 1)vd+1,0, ud+1,2, . . . , ud+1,d+1, vd+1,1, . . . , vd+1,d+1)

for d ≥ 3, d 6= m+ 2,
Span (ud+1,2, . . . , ud+1,d+1, vd+1,0, . . . , vd+1,d+1) for d = m+ 2,
Span (2u3,1 + (ρ− 1)v3,0, u3,2, v3,1, v3,2, v3,3) for d = 2,

and thus

(ImL|Hd)⊥ =


Span (ud+1,0, (1− ρ)(d+ 1)ud+1,1 + (d− dρ+ 2ρ)vd+1,0) for d ≥ 3, d 6= m+ 2,
Span (ud+1,0, ud+1,1) for d = m+ 2,
Span (u3,0, u3,3, 3(1− ρ)u3,1 + 2v3,0) for d = 2.

It then follows that every formal germ of the form

F (z, w) =

(
z −

(
1 +

2

m

)
z2 +O3, w −

2

m
zw +O3

)
with m ∈ N∗ odd has as second order normal form

G(z, w) =

(
z −

(
1 +

2

m

)
z2 + ϕ(w) + a0z

3 + (1− ρ)z(wψ′(w) + ψ(w)),

w − 2

m
zw + (1− ρ)w2ψ′(w) + 2ρwψ(w)

)
,

where ϕ ∈ C[[ζ]] is a power series of order at least 3, ψ ∈ C[[ζ]] is a power series of order at least 2,
and a0 ∈ C.

Now let us consider the case ρ = −1/n ∈ E \ F . In this case the coefficients in the expression
of L(ud,j) are always different from zero (with the exception of d = j = 2), whereas

d− j − dρ+ ρ− 1 = 0 ⇐⇒ j = d = n+ 1 .

It follows that

ImL|Hd

=


Span ((d− dρ+ 2ρ)ud+1,1 + (ρ− 1)vd+1,0, ud+1,2, . . . , ud+1,d+1, vd+1,1, . . . , vd+1,d+1)

for d ≥ 3, d 6= n+ 1,
Span ((d− dρ+ 2ρ)ud+1,1 + (ρ− 1)vd+1,0, ud+1,2, . . . , ud+1,d+1, vd+1,1, . . . , vd+1,d)

for d = n+ 1,
Span (2u3,1 + (ρ− 1)v3,0, u3,2, v3,1, v3,2, v3,3) for d = 2,
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and thus

(ImL|Hd)⊥

=


Span (ud+1,0, (1− ρ)(d+ 1)ud+1,1 + (d− dρ+ 2ρ)vd+1,0) for d ≥ 3, d 6= n+ 1,
Span (ud+1,0, vd+1,d+1, (1− ρ)(d+ 1)ud+1,1 + (d− dρ+ 2ρ)vd+1,0) for d = n+ 1,
Span (u3,0, u3,3, 3(1− ρ)u3,1 + 2v3,0) for d = 2.

It then follows that every formal germ of the form

F (z, w) =

(
z +

1

n
z2 +O3, w +

(
1 +

1

n

)
zw +O3

)
with n ∈ N∗ has as second order normal form

G(z, w) =

(
z +

1

n
z2 + ϕ(w) + a0z

3 + (1− ρ)z(wψ′(w) + ψ(w)),

w +

(
1 +

1

n

)
zw + ψ(z) + a1z

n+2 + (1− ρ)w2ψ′(w) + 2ρwψ(w)

)
,

where ϕ ∈ C[[ζ]] is a power series of order at least 3, ψ ∈ C[[ζ]] is a power series of order at least 2,
and a0, a1 ∈ C.

Let us now discuss the extreme case ρ = 1. It is clear that

ImL|Hd = Span (ud+1,1, ud+1,2, ud+1,4, . . . , ud+1,d+1, vd+1,2, . . . , vd+1,d+1) ,

and hence

(ImL|Hd)⊥ = Span (ud+1,0, ud+1,3, vd+1,0, vd+1,1) ,

It then follows that every formal germ of the form

F (z, w) =
(
z − z2 +O3, w +O3

)
has as second order normal form

G(z, w) =
(
z − z2 + ϕ1(w) + z3ψ(w), w + ϕ2(w) + zϕ3(w)

)
,

where ϕ1, ϕ2 ∈ C[[ζ]] are power series of order at least 3, ϕ3 ∈ C[[ζ]] is a power series of order at
least 2, and ψ ∈ C[[ζ]] is a power series.

We are left with the case ρ ∈ (0, 1) ∩Q. Write ρ = a/b with a, b ∈ N coprime and 0 < a < b.
Now

d− j − 1− a

b
(d− 1) = 0 ⇐⇒ j =

(d− 1)(b− a)

b
;

since a and b are coprime, this happens if and only if d = b` + 1 and j = (b − a)` for some ` ≥ 1.
Analogously,

d− j − a

b
(d− 2) = 0 ⇐⇒ j = d− a(d− 2)

b
;
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again, being a and b coprime, this happens if and only if d = b`+ 2 and j = (b− a)`+ 2 for some
` ≥ 0. It follows that

ImL|Hd

=



Span ((d− dρ+ 2ρ)ud+1,1 + (ρ− 1)vd+1,0, ud+1,2, . . . , ud+1,d+1, vd+1,1, . . . , vd+1,d+1)
for d ≥ 3, d 6≡ 1, 2 (mod b)

Span ((d− dρ+ 2ρ)ud+1,1 + (ρ− 1)vd+1,0, ud+1,2, . . . , ̂ud+1,(b−a)`+2, . . . , ud+1,d+1,

vd+1,1, . . . , ̂vd+1,(b−a)`+1, . . . , vd+1,d+1,
a
bud+1,(b−a)`+2 −

(
a
b − 1

)
vd+1,(b−a)`+1)

for d = b`+ 1,
Span ((d− dρ+ 2ρ)ud+1,1 + (ρ− 1)vd+1,0, ud+1,2, . . . , ̂ud+1,(b−a)`+3, . . . , ud+1,d+1,

vd+1,1, . . . , vd+1,d+1) for d = b`+ 2,
Span (2u3,1 + (ρ− 1)v3,0, u3,2, v3,1, v3,2, v3,3) for d = 2,

(where the hat indicates that that term is missing from the list), and thus

(ImL|Hd)⊥

=


Span (ud+1,0, (1− ρ)ud+1,1 + (d− dρ+ 2ρ)vd+1,0) for d ≥ 3, d 6≡ 1, 2 (mod b),
Span (ud+1,0, (1− ρ)ud+1,1 + (d− dρ+ 2ρ)vd+1,0,

(b− a)(a`+ 1)ud+1,(b−a)`+2 + a
(
(b− a)`+ 2

)
vd+1,(b−a)`+1) for d = b`+ 1,

Span
(
ud+1,0, ud+1,(b−a)`+3, (1− ρ)ud+1,1 + (d− dρ+ 2ρ)vd+1,0

)
for d = b`+ 2,

Span (u3,0, u3,3, 3(1− ρ)u3,1 + 2v3,0) for d = 2.

It then follows that every formal germ of the form

F (z, w) =
(
z − a

b
z2 +O3, w +

(
1− a

b

)
zw +O3

)
with a/b ∈ (0, 1) ∩Q and a, b coprime, has as second order normal form

G(z, w)

=

(
z − a

b
z2 + ϕ(w) + z3ϕ0(zb−awa) + (b− a)

∂

∂w

(
z2wχ(zb−awa)

)
+
(

1− a

b

)
z(wψ′(w) + ψ(w)

)
,

w +
(

1− a

b

)
zw + a

∂

∂z

(
z2wχ(zb−awa)

)
+
(

1− a

b

)
w2ψ′(w) + 2

a

b
wψ(w)

)
,

where ϕ, ψ ∈ C[[ζ]] are power series of order at least 3, and ϕ0, χ ∈ C[[ζ]] are power series of order
at least 1 — and we have proved Proposition 0.3.
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Formal Poincaré-Dulac renormalization for holomorphic germs 31

[AFG] A. Algaba, E. Freire, E. Gamero: Hypernormal forms for equilibria of vector fields. Codi-
mension one linear degeneracies. Rocky Mountain J. Math. 29 (1999), 13–45.

[AFGG] A. Algaba, E. Freire, E. Gamero. C. Garcia: Quasi-homogeneous normal forms. J.
Comput. Appl. Math. 150 (2003), 193–216.

[Ar] V.I. Arnold: Geometrical methods in the theory of ordinary differential equa-
tions. Springer Verlag, New York, 1988.

[B] A. Baider: Unique normal forms for vector fields and Hamiltonians. J. Diff. Eq. 78
(1989), 33–52.

[BC] A. Baider, R. Churchill: Unique normal forms for planar vector fields. Math. Z. 199
(1988), 303–310.

[BS] A. Baider, J. Sanders: Further reduction of the Takens-Bogdanov normal form. J. Diff.
Eq. 99 (1992), 205–244.

[Be1] G.R. Belitskii: Invariant normal forms of formal series. Funct. Anal. Appl. 13 (1979),
46–67.

[Be2] G. R. Belitskii: Normal forms relative to a filtering action of a group. Trans. Moscow
Math. Soc. 1981, (1982), 1–39.

[BZ] F. Bracci, D. Zaitsev: Dynamics of one-resonant biholomorphisms. to appear in J. Eur.
Math. Soc., arXiv:0912.0428v2.

[Br1] A.D. Brjuno: Analytic form of differential equations. I . Trans. Moscow Math. Soc. 25
(1971), 131–288.

[Br2] A.D. Brjuno: Analytic form of differential equations. II . Trans. Moscow Math. Soc. 26
(1972), 199–239.

[Bro] H. Broer: Formal normal form theorems for vector fields and some consequences for
bifurcations in the volume preserving case. In Dynamical systems and turbulence,
Warwick 1980 (Coventry, 1979/1980), Lecture Notes in Math., 898, Springer, Berlin,
1981, pp. 54–74.

[C] H. Cartan: Cours de calcul différentiel. Hermann, Paris, 1977.
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