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Présentation générale

Ce mémoire d’habilitation rend compte d’une large partie des recherches que j’ai effectuées après
ma thèse en dynamique discrète, c’est-à-dire l’étude des itérés d’un endomorphisme f : X → X,
dans la catégorie holomorphe. J’ai organisé la lecture de mes travaux en trois parties correspon-
dant à des thématiques distinctes et pouvant être lues indépendamment. Chacune présente un
point de vue sur un sujet que j’ai exploré à travers plusieurs travaux. À la fin de ce texte je
présenterai des commentaires et des questions ouvertes pour des recherches futures.

La première partie est consacrée à la dynamique dynamique holomorphe discrète, d’un point
de vue local et à plusieurs variables. Plus précisément j’expliquerai ma contribution à la des-
cription de la dynamique locale des germes de biholomorphismes de Cn qui fixent l’origine, en
distinguant le cas linárisable du cas non linéarisable.

Tout d’abord je présenterai brièvement l’état de l’art en dimension 1, puis je me concentrerai
sur la dimension supérieure, où les résonances jouent un rôle important dans le problème de
linéarisation. Je rappellerai donc le cadre de la normalisation formelle de Poincaré-Dulac et
présenterai le travail [209] sur la linéarisation holomorphe en présence de résonances et le travail
[210] sur la linéarisation holomorphe simultanée en présence de résonances.

Dans le deuxième chapitre, je me concentrerai sur la dynamique locale des germes tangents
à l’identité en dimension supérieure. Je rappellerai les principaux résultats obtenus dans ce
contexte, avant de me concentrer sur la dernière contribution que nous avons obtenue dans [174]
pour les germes de biholomorphismes de C2 ayant une courbe formelle invariante. Nous avons
travaillé sous l’hypothèse naturelle que la restriction du difféomorphisme à la courbe formelle
invariante soit, ou bien hyperbolique attractive, ou bien rationnellement neutre et non périodique.
J’expliquerai les idées principales de notre preuve de l’existence d’un nombre fini de variétés
stables, qui sont soit des domaines ouverts soit des courbes paraboliques, contenant et consistant
en toutes les orbites convergentes asymptotiquement à la courbe invariante formelle.

Le dernier chapitre de cette partie est consacré à la dynamique locale des germes résonants non
linéarisables. L’intérêt pour la dynamique locale de tels germes s’est accru ces dernières années.
Je présenterai les résultats obtenus dans [63] et dans [211] lorsque les résonances sont engendrées
par un nombre fini de multi-indices. Dans un tel contexte, de manière générale, toute forme
normale de germe de Poincaré-Dulac préserve un feuilletage singulier et y agit comme un germe
tangent à l’identité. L’idée clé est donc d’utiliser les résultats sur la dynamique locale des germes
tangents à l’identité afin d’obtenir des informations sur la dynamique locale des germes résonants
considérés. Il s’avère que les résonances peuvent donner lieu à un comportement parabolique a
priori inattendu, par exemple dans des situations de type elliptique.

Dans la deuxième partie je me concentrerai sur l’utilisation de techniques locales en dyna-
mique holomorphe globale.

Je donnerai un compte rendu actualisé des résultats récents sur les composantes de Fatou
pour les produits semi-directs polynomiaux de C2. L’ensemble de Fatou d’un endomorphisme
holomorphe d’une variété complexe X est le sous-ensemble ouvert de X constitué par tous les
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points ayant un voisinage ouvert sur lequel les itérés de l’endomorphisme forment une famille
normale. Une composante de Fatou est une composante connexe de l’ensemble Fatou. En dimen-
sion 1, le cas le plus important est celui où X est la sphère de Riemann. Dans ce cas, le Théorème
du domaine non-errant de Sullivan, nous assure qu’il n’y a pas de composante de Fatou errante,
c’est-à-dire que toutes les composantes de Fatou sont (pré-)périodiques. En dimension supérieure,
la situation est plus compliquée et le cas particulier des produits semi-directs polynomiaux bidi-
mensionnels s’est avéré être très riche et accessible avec des techniques locales. Je présenterai les
résultats connus, ainsi que les étapes clés de la construction que nous avons obtenue dans [33]
d’un produit semi-direct polynômial de C2 ayant une composante de Fatou errante. Je présen-
terai également les idées principales dans la description que nous avons obtenue dans [197] de la
dynamique près d’une fibre invariante elliptique.

La seconde moitié de cette partie est consacrée aux composantes de Fatou pour les auto-
morphismes holomorphes de Ck. Je mentionnerai les résultats récents sur la classification des
composantes périodiques. J’expliquerai ensuite la construction que nous avons obtenue dans [64]
de la première famille d’automorphismes holomorphes de Ck ayants une composante de Fatou
invariante, non récurrente, et qui n’est pas biholomorphe à Ck. Une telle construction est basée
sur les résultats locaux obtenus dans [63] et a comme corollaire l’existence d’un plongement de
C × (C∗)k−1 en tant que domaine Runge dans Ck. Ceci était une question ouverte de longue
date, résolue donc positivement par notre construction.

La troisième partie a une saveur légèrement différente car elle est consacrée à la dynamique
holomorphe sur les domaines convexes bornés de Cn.

Je vais d’abord donner une courte introduction au Théorème de Wolff-Denjoy et ses généra-
lisations à plusieurs variables complexes. En particulier, je me concentrerai sur la démonstration
du Théorème de Wolff-Denjoy pour les domaines strictement convexes (qui ne sont pas néces-
sairement à bord lisse) que nous avons obtenue dans [17]. Avec des techniques similaires, nous
sommes également capables de prouver un théorème de Wolff-Denjoy pour les domaines faible-
ment convexes, là encore sans aucune hypothèse de régularité pour la frontière du domaine.

Je me concentrerai ensuite sur l’étude des orbites inverses pour les endomorphismes holo-
morphes non inversibles des domaines bornés strictement convexes de Cn avec bord de classe
C2. Je commencerai par rappeler les résultats précédents dans le disque unité et dans la boule
unité de Cn, puis je me concentrerai sur la généralisation obtenue en [16]. Nous avons prouvé
que les orbites inverses avec étape limitée par rapport à la distance de Kobayashi pour un endo-
morphisme hyperbolique ou fortement elliptique doivent nécessairement converger vers un point
fixe isolé répulsif sur la frontière du domaine. En révisant le papier [16] pour la rédaction de ce
manuscrit, j’ai trouvé une lacune dans une des démonstrations, que j’ai pu corriger comme je le
montrerai dans ce chapitre.

Le dernier chapitre de cette partie sera ensuite consacré au Théorème de Julia-Wolff-Carathéo-
dory sur les dérivées angulaires et à ses généralisations à plusieurs variables complexes. Je donne-
rai une brève introduction et je me concentrerai ensuite sur les résultats que nous avons obtenus
dans [18] pour les générateurs infinitésimaux des semigroupes à un paramètre d’endomorphismes
holomorphes de la boule unité de Cn.

Certaines des questions que j’ai développées depuis ma thèse ne seront pas abordées dans
ce mémoire, ou bien seulement indirectement, afin de maintenir une certaine homogénéité dans
mon propos. Ainsi, le travail [26] ne sera que mentionné que brièvement dans les Sections 2.1 et
2.2, et de même pour le travail [15] mentionné dans la Section 1.2. D’autres travaux ne seront
pas évoqués dans le texte, en particulier :

• le travail [87] sur une introduction au formalisme du calcul moulien d’Écalle, où nous avons
révisé les résultats concernant la forme trimmed des germes de biholomorphismes de Cn à
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l’origine, et nous avons discuté une approche à travers le calcul moulien pour les formes
normales de Poincaré-Dulac ;

• le travail [20] sur l’étude des propriétés des operateurs de Toeplitz associés à une mesure
de Borel positive finie sur un domaine borné fortement pseudoconvexe D b Cn ;

• le travail [19] sur une caractérisation à travers des produits de fonctions dans les espaces
de Bergman à poids des mesures dites (λ, γ)-skew Carleson, avec λ > 0 et γ > 1 − 1

n+1 ,
sur un domaine borné fortement pseudoconvexe D b Cn avec bord lisse.

Mes articles sont disponibles sur internet à l’adresse
http://www.math.univ-toulouse.fr/∼jraissy/papers/papers.html





General presentation

In this dissertation, I will account for a large part of the research I did after my Ph.D. on discrete
dynamics, that is the study of the iterates of a map f : X → X from a space to itself, in the
holomorphic category. This report is composed of three main parts which correspond to distinct
thematics and can be read independently. Each one presents a point of view on a topic I explored
through several works. At the end of the manuscript I will present comments and open questions
for future research.

Part I is devoted to local holomorphic discrete dynamics in several variables. More precisely
I will explain my contribution to the description of the local dynamics of the iteration of germs
of biholomorphisms of Cn fixing the origin with respect to the dichotomy between linearizable
and non linearizable germs.

I will first briefly present the state of the art in dimension 1, and then focus on the higher
dimensional case, where an important rôle in the linearization problem is played by the so-called
resonances. I will therefore recall the setting of Poincaré-Dulac formal normalization and present
the works [209] on holomorphic linearization in presence of resonances and [210] on simultaneous
holomorphic linearization in presence of resonances.

In the second chapter I will focus on the local dynamics of tangent to the identity germs
in higher dimension. I will recall the main results in this setting, before focusing on the latest
contribution that we obtained in [174], for germs of biholomorphisms in C2 with an invariant
formal curve. We worked under the natural hypothesis that the restriction of the diffeomorphism
to the formal invariant curve is either hyperbolic attracting or rationally neutral non-periodic. I
will explain the main ideas in our proof of the existence of finitely many stable manifolds, that
are either open domains or parabolic curves, consisting of and containing all converging orbits
asymptotic to the formal invariant curve.

The final chapter of this part is devoted to the local dynamics of non-linearizable resonant
germs. Interest in the local dynamics of such germs has grown in the last years. I will present
the results we obtained in [63] and in [211] when the resonances are finitely generated. In such
a setting, generically, any Poincaré-Dulac normal form of the germ preserves a singular foliation
and acts on it as a tangent to the identity germ. The key idea is therefore to use results on the
local dynamics of tangent to the identity germs to obtain information on the local dynamics of the
considered resonant germs. It turns out that resonances can give rise to an a priori unexpected
parabolic behaviour, for example in elliptic situations.

In Part II, I will focus on the use of local techniques in global holomorphic discrete dynamics
in several variables.

I will give an updated account of the recent results on Fatou components for polynomial
skew-products in C2. The Fatou set of a holomorphic endomorphism of a complex manifold X is
the open subset of X consisting of all points having an open neighbourhood on which the iterates
of the endomorphism form a normal family. A Fatou component is a connected component of
the Fatou set. In dimension one, the most important case is when X is the Riemann sphere. In
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such case, Sullivan’s non-wandering domains Theorem states that there are no wandering Fatou
components, that is all Fatou components are preperiodic. In higher dimension, the situation is
more complicated and the special case of two-dimensional polynomial skew-products turns out
to be very rich and tractable using local techniques. I will present the known results, and the key
steps in the construction we obtained in [33] of a polynomial skew-product having a wandering
Fatou component. I will also present the main ideas in the description that we obtained in [197]
of the dynamics near an elliptic invariant fiber.

The second half of this part is devoted to Fatou components for holomorphic automorphisms
of Ck. I will mention the recent results on the classification of periodic Fatou components for
holomorphic automorphisms of Ck. I will then explain the construction that we obtained [64] of
the first family of holomorphic automorphisms of Ck with an invariant, non-recurrent, attracting
Fatou component not biholomorphic to Ck. Such construction is based on the local results we
obtained in [63] and gives, as a corollary, the existence of an embedding of C×(C∗)k−1 as a Runge
domain in Ck. This was a long standing open question, positively settled by our construction.

Part III is of a slightly different flavour since it is devoted to holomorphic dynamics on
bounded convex domains of Cn.

I will first provide a short introduction to Wolff-Denjoy theorem, and its generalizations in
several complex variables. In particular I will focus on the short proof of Wolff-Denjoy theorem
for (not necessarily smooth) strictly convex domains that we obtained in [17]. With similar
techniques we are also able to prove a Wolff-Denjoy theorem for weakly convex domains, again
without any smoothness assumption on the boundary.

I will then focus on the study of backward orbits for non-invertible holomorphic self-maps of
bounded strongly convex domains in Cn with C2 boundary. I will start by recalling the previous
results obtained in the unit disk and in the unit ball of Cn and then focus on the generalization
we obtained in [16]. We proved that a backward orbit with bounded Kobayashi step for a
hyperbolic or strongly elliptic holomorphic self-map of a bounded strongly convex C2 domain in
Cn necessarily converges to a repelling boundary fixed point. While checking our paper [16] for
the writing of this manuscript, I found a gap in one of the proofs, that I have been able to fix,
as I will show in this chapter.

The final chapter of this part will be then devoted to the Julia-Wolff-Carathéodory theorem
on angular derivatives, and its generalizations in several complex variables. I will give a short
introduction and I will then focus on the results for infinitesimal generators of one-parameter
semigroups of holomorphic self-maps of the unit ball in Cn that we obtained in [18].

Some of the questions I have developed since my PhD will not be addressed in this text, or
only indirectly, to maintain some homogeneity in the discussion. This is the case of the work
[26] mentioned in Sections 2.1 and 2.2, and the work [15] mentioned in Section 1.2. Some other
works will not be referred to in the text, in particular:

• the work [87] on a self-contained introduction to the mould formalism of Écalle, where we
reviewed results about the trimmed form of local biholomorphisms of Cn, and we discussed
a mould approach to Poincaré-Dulac normal forms;

• the work [20] on the study of the mapping properties of Toeplitz operators associated to a
finite positive Borel measure on a bounded strongly pseudoconvex domain D b Cn;

• the work [19] on a characterization through products of functions in weighted Bergman
spaces of (λ, γ)-skew Carleson measures, with λ > 0 and γ > 1 − 1

n+1 , on a bounded
strongly pseudoconvex domain D in Cn with smooth boundary.

My articles are available on the web at
http://www.math.univ-toulouse.fr/∼jraissy/papers/papers.html
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Part I

Resonances, Normal Forms and
Local Discrete Holomorphic

Dynamics

1





Chapter 1

State of the art

In this chapter we give a brief account of the main results on the classification of normal forms
and on the local dynamics of local holomorphic dynamical systems near an isolated fixed point.
We refer to [78, 182] for details for the proofs in dimension 1 and to [10] for a more complete
exposition of the state of the art.

Recall that, given f : X → X and g : Y → Y two dynamical systems, we say that f and
g are semi-conjugated if there is a map ϕ : X → Y such that ϕ ◦ f = g ◦ ϕ. Semi-conjugacies
map the sequences of iterates of f to the sequences of iterates of g. When ϕ is invertible, the
equality ϕ ◦ f = g ◦ ϕ can be rewritten as f = ϕ−1 ◦ g ◦ ϕ, and f and g are called conjugated.
It is clear that the dynamics is invariant under conjugacy. When studying dynamical systems,
we therefore constantly try to construct conjugacies (or at least semi-conjugacies) to simpler
dynamical systems, usually called in normal form.

In the following we will denote by End(C, 0) the set of germs of holomorphic functions of
C fixing the origin, and by End(Cn, O) the set of germs of holomorphic endomorphisms of Cn
fixing the origin O ∈ Cn.

1.1 Normal forms and local dynamics in dimension 1
In this section, we are interested in describing the local dynamics, that is the asymptotic behaviour
of the iterates of a holomorphic function f defined in a neighbourhood of a point p fixed by f .
Up to choosing local coordinates centered at the fixed point, we can locally write f as a power
series without constant term converging in a neighbourhood of the origin:

f(z) = λz + a2z
2 + a3z

3 + · · · .

Definition 1.1. The number λ = f ′(0) is called the multiplier of f at the fixed point.

The multiplier at a fixed point is invariant under analytic conjugacy.
A first useful fact is the following.

Proposition 1.2. Let f ∈ End(C, 0) be a holomorphic germ of function fixing the origin with
multiplier λ ∈ C∗. If λ is not a root of unity, then f is formally linearizable, that is there exists
a unique formal power series ϕ of the form ϕ(z) = z+

∑
n≥2 bnz

2 such that ϕ◦Lλ = f ◦ϕ where
Lλ(z) = λz.

3
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Proof. It suffices to recursively find the coefficients bk by solving the equation given by ϕ(λz) =
f(ϕ(z)) for the terms of degree k. In fact, if we assume to have determined the coefficients
b2, . . . , bk−1, then the terms of degree k in ϕ(λz) = f(ϕ(z)) give

λkbk = λbk + Pk(a2, . . . , ak, b2, . . . , bk−1),

where Pk is a polynomial independent from λ. Since λk 6= λ by hypothesis, we find the unique
solution:

bk =
Pk(a2, . . . , ak, b2, . . . , bk−1)

λk − λ
. (1.1)

The best linear approximation of f is λz, and we shall recall in this section how the local
dynamics of f is strongly influenced by the value of λ. For this reason we introduce the following
definition:

Definition 1.3. Let λ ∈ C be the multiplier of f ∈ End(C, 0). Then

• if λ = 0 we say that the fixed point 0 is superattracting,

• if 0 < |λ| < 1 we say that the fixed point 0 is attracting,

• if |λ| > 1 we say that the fixed point 0 is repelling,

• if |λ| 6∈ {0, 1} we say that the fixed point 0 is hyperbolic,

• if λ ∈ S1 is a root of unity, we say that the fixed point 0 is parabolic or rationally indifferent,

• if λ ∈ S1 is not a root of unity, we say that the fixed point 0 is elliptic or irrationally
indifferent.

We shall explain in the next subsections what is known on the normal forms and the local
dynamics in the various cases.

1.1.1 Holomorphically normalizable germs
Hyperbolic case

We start with the hyperbolic case. A first observation is that if 0 is an attracting fixed point
for f ∈ End(C, 0) with multiplier λ, then it is a repelling fixed point for the inverse map f−1 ∈
End(C, 0) with multiplier λ−1.

It is also not difficult to find holomorphic and topological normal forms for one-dimensional
holomorphic local dynamical systems with a hyperbolic fixed point, as the following result shows.

Theorem 1.4 (Kœnigs, [161]). Let f ∈ End(C, 0) be a one-dimensional holomorphic local dy-
namical system with a hyperbolic fixed point at the origin, and let λ ∈ C∗ \ S1 be its multiplier.
Then:

(i) f is holomorphically (and hence formally) locally conjugated to its linear part Lλ(z) = λz.
The conjugacy ϕ is uniquely determined by the condition ϕ′(0) = 1.

(ii) Two such holomorphic local dynamical systems are holomorphically conjugated if and only
if they have the same multiplier.
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(iii) f is topologically locally conjugated to the map g<(z) = z/2 if |λ| < 1, and to the map
g>(z) = 2z if |λ| > 1.

Idea of the proof. As we already remarked, it suffices to prove the statement in the attracting
case, since if |λ| > 1 it will suffice to apply the same argument to f−1.

(i) The sequence {ϕk} defined by ϕk = f◦k/λk converges locally uniformly in a neighbourhood
of the origin to a holomorphic limit ϕ fixing the origin such that ϕ′(0) = 1 and ϕ ◦ f = λϕ.

If ψ is another local holomorphic function such that ψ′(0) = 1 and ψ−1 ◦Lλ ◦ψ = f , it follows
that ψ ◦ ϕ−1(λz) = λψ ◦ ϕ−1(z) and comparing the expansion in power series of both sides we
find ψ ◦ ϕ−1 ≡ Id, that is ψ ≡ ϕ, and we are done.

(ii) Follows from the invariance of the multiplier under holomorphic local conjugacy.
(iii) Since |λ| < 1 it is easy to build a topological conjugacy between Lλ and g< on a disk

Dε of radius ε > 0 centered at the origin. First we choose a homeomorphism χ between the
annulus {|λ|ε ≤ |z| ≤ ε} and the annulus {ε/2 ≤ |z| ≤ ε} which is the identity on the outer
circle and which is given by χ(z) = z/(2λ) on the inner circle. Now we extend χ by induction
to a homeomorphism between the annuli {|λ|kε ≤ |z| ≤ |λ|k−1ε} and {ε/2k ≤ |z| ≤ ε/2k−1} by
prescribing χ(λz) = 1

2χ(z). We finally obtain a homeomorphism χ of Dε with itself, such that
g = χ−1 ◦ g< ◦ χ, by putting χ(0) = 0.

Superattracting case

The superattracting case can be treated similarly to the hyperbolic case. If the origin 0 is an
isolated superattracting fixed point for f ∈ End(C, 0), we can write

f(z) = arz
r + ar+1z

r+1 + · · ·

with ar 6= 0.

Definition 1.5. Let f ∈ End(C, 0) and let 0 be a superattracting point for f . The order (or
local degree) of the superattracting point is the minimal number r ≥ 2 such that the coefficient
of zr in the power series expansion of f is non-zero.

Theorem 1.6 (Böttcher, [50]). Let f ∈ End(C, 0) be a one-dimensional holomorphic local dy-
namical system with a superattracting fixed point at the origin, and let r ≥ 2 be its order. Then:

(i) f is holomorphically (and hence formally) locally conjugated to the map g(z) = zr, and the
conjugacy is unique up to multiplication by a (r − 1)-root of unity,

(ii) two such holomorphic local dynamical systems are holomorphically (or topologically) conju-
gated if and only if they have the same order.

Idea of the proof. (i) Up to linearly conjugating f we may assume that ar = 1. Let u : (C, 0)→
(C, 0) be the germ defined by

u(z) := log

(
f(z)

zr

)
where log : (C, 1)→ (C, 0) is the inverse branch of exp: (C, 0)→ (C, 1) vanishing at 1. For R > 0
sufficiently large, let HR be the left half-plane {Re(Z) < −R} and F : HR → HR be the map
defined by

F (w) = rw + u ◦ exp(w) so that exp ◦F = f ◦ exp .

For k ≥ 0, set

Φk(w) :=
F ◦k(w)

rk
.
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The sequence {Φk} converges uniformly on HR to the holomorphic function Φ: HR → C so
that Φ ◦ F = rΦ.

It then suffices to take ϕ : D(0, e−R)→ C the map such that exp
(
Φ(w)

)
= φ(z). Then[

φ(z)
]r

= exp
(
rΦ(w)

)
= exp ◦Φ ◦ F (w) = φ ◦ exp

(
F (w)

)
= φ ◦ f(z).

The uniqueness up to multiplication by (r− 1)-roots of unity is easily deduced by comparing
the power series expansions at the origin.

(ii) Since the order is the number of preimages of points close to the origin, zr and zs are
locally topologically conjugated if and only if r = s, and hence we have (ii).

Parabolic case

A holomorphic local dynamical system with a parabolic fixed point is never locally conjugated
to its linear part, not even topologically, unless it is of finite order.

Proposition 1.7. Let f ∈ End(C, 0) be a holomorphic local dynamical system with multiplier
λ, and assume that λ = e2iπp/q is a (primitive) root of the unity of order q. Then f is holomor-
phically (or topologically or formally) locally conjugated to Lλ(z) = λz if and only if fq ≡ Id.

Proof. If ϕ−1 ◦ f ◦ ϕ(z) = e2πip/qz, then ϕ−1 ◦ fq ◦ ϕ = Id, and hence fq = Id.
Conversely, assume that fq ≡ Id and set

ϕ(z) =
1

q

q−1∑
j=0

f j(z)

λj
.

Then it is easy to check that ϕ′(0) = 1 and ϕ ◦ f(z) = λϕ(z), and so f is holomorphically (and
topologically and formally) locally conjugated to λz.

We will recall in Subsection 1.1.2 what is known on the dynamics of holomorphic local dy-
namical system with a parabolic fixed point that are not of finite order.

Elliptic case

In the elliptic case, that is
f(z) = e2πiθz + a2z

2 + · · · , (1.2)

with θ ∈ R \ Q, the local dynamics depends mostly on numerical properties of θ. The main
question here is whether such a local dynamical system is holomorphically conjugated to its
linear part. Let us introduce a bit of terminology.

Definition 1.8. If a holomorphic dynamical system of the form (1.2) is holomorphically lineariz-
able, that is if it is holomorphically locally conjugated to its linear part, the irrational rotation
z 7→ e2πiθz, we shall say that 0 is a Siegel point for f . Otherwise, we shall say that it is a Cremer
point for f .

It turns out that for a full measure subset B of θ ∈ [0, 1] \Q all holomorphic local dynamical
systems of the form (1.2) are holomorphically linearizable. Conversely, the complement [0, 1] \B
is a Gδ-dense set, and for all θ ∈ [0, 1] \ B the quadratic polynomial z 7→ z2 + e2πiθz is not
holomorphically linearizable. This is the gist of the results due to Cremer, Siegel, Brjuno and
Yoccoz we shall describe in this section.

The first important fact in this setting is that it is possible to give a topological characteri-
zation of holomorphically linearizable local dynamical systems.
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Definition 1.9. Let f : (C, 0)→ (C, 0) be a holomorphic map such that f ′(0) = λ with |λ| = 1.
The dynamics of f is stable near 0 if there exist R > r > 0 such that for all n ≥ 0, the iterates
f◦n|Dr are defined with f◦n(Dr) ⊂ DR, where Dr, resp. DR, denotes the disk of radius r, resp.
R, and center at the origin.

Theorem 1.10. Let f ∈ End(C, 0) be a holomorphic local dynamical system with multiplier
λ ∈ S1 at the origin. Then f is holomorphically linearizable if and only if it is topologically
linearizable if and only if the dynamics of f is stable near 0.

Proof. If f is holomorphically linearizable, then it is topologically linearizable, and the dynamics
is stable since the preimages by φ of Euclidean disks centered at 0 are invariant by f .

If f is topologically linearizable (and |λ| = 1) then the dynamics is stable.
If the dynamics of f in a neighborhood of 0 is stable, consider the averages φn : Dr → DR

defined by

φn:=
1

n

n−1∑
j=0

1

λj
f◦j .

We see that φ′n(0) = 1, and

φn ◦ f =
λ

n

n−1∑
j=0

1

λj+1
f◦(j+1) = λφn +

λ

n

(
1

λn
f◦n − Id

)
.

Since the functions φn take their values in DR, they form a normal family by Montel’s Theorem,
and we can extract a converging subsequence φnk . We then have that

λ

nk

(
1

λnk
f◦nk − Id

)
−→

nk→+∞
0.

The limit φ:= limφnk is holomorphic non constant since φ′nk(0) = 1, and linearizes f since
φ ◦ f(z) = λφ(z) as soon as z and f(z) belong to Dr.

Since λ is not a root of unity, Proposition 1.2 ensures us that in this case f is always formally
linerarizable. The formal power series linearizing f is not converging if its coefficients grow too
fast. Thus (1.1) links the radius of convergence of the formal linearization ϕ to the behavior
of λk−λ: if the latter becomes too small, the series defining ϕ does not converge. This is known
in this context as the small denominators problem.

It is then natural to introduce the following quantity:

ωλ(m) = min
2≤k≤m

|λk − λ| ,

for λ ∈ S1 and m ≥ 2. Clearly, λ is a root of unity if and only if ωλ(m) = 0 for all m greater
than or equal to some m0 ≥ 2; furthermore,

lim
m→+∞

ωλ(m) = 0

for all λ ∈ S1.
The first one to actually prove the existence of non-linearizable elliptic holomorphic local

dynamical systems has been Cremer, in [85]. His more general result is the following.
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Theorem 1.11 (Cremer, [86]). Let λ ∈ S1 be such that

lim sup
m→+∞

1

m
log

1

ωλ(m)
= +∞ . (1.3)

Then there exists f ∈ End(C, 0) with multiplier λ which is not holomorphically linearizable.
Furthermore, the set of λ ∈ S1 satisfying (1.3) contains a Gδ-dense set.

On the other hand, Siegel in [243] gave a condition on the multiplier ensuring holomorphic
linearizability.

Theorem 1.12 (Siegel, [243]). Let λ ∈ S1 be such that there exists β > 1 and γ > 0 so that for
all m ≥ 2

1

ωλ(m)
≤ γ mβ . (1.4)

Then all f ∈ End(C, 0) with multiplier λ are holomorphically linearizable. Furthermore, the set
of λ ∈ S1 satisfying (1.4) for some β > 1 and γ > 0 is of full Lebesgue measure in S1.

Notice that when θ ∈ [0, 1) \Q is algebraic then λ = e2πiθ satisfies (1.4) for some β > 1 and
γ > 0. However, the set of λ ∈ S1 satisfying (1.4) is much larger, being of full measure.

It is also interesting to notice that for generic (in a topological sense) λ ∈ S1 there is a
non-linearizable holomorphic local dynamical system with multiplier λ, while for almost all (in
a measure-theoretic sense) λ ∈ S1 every holomorphic local dynamical system with multiplier λ
is holomorphically linearizable.

Theorem 1.12 suggests the existence of a number-theoretical condition on λ ensuring that the
origin is a Siegel point for any holomorphic local dynamical system of multiplier λ. And indeed
this is the content of the Brjuno-Yoccoz theorem.

Theorem 1.13 (Brjuno, [65, 66, 67], Yoccoz, [267, 268]). Let λ ∈ S1. Then the following
statements are equivalent:

(i) the origin is a Siegel point for the quadratic polynomial fλ(z) = λz + z2;

(ii) the origin is a Siegel point for all f ∈ End(C, 0) with multiplier λ;

(iii) the number λ satisfies Brjuno’s condition

+∞∑
k=0

1

2k
log

1

ωλ(2k+1)
< +∞ . (1.5)

Brjuno, using majorant series as in Siegel’s proof of Theorem 1.12 (see also [141] and references
therein) has proved that condition (iii) implies condition (ii). Yoccoz, using a more geometric
approach based on conformal and quasi-conformal geometry, has proved that (i) is equivalent
to (ii), and that (ii) implies (iii), that is that if λ does not satisfy (1.5) then the origin is a
Cremer point for some f ∈ End(C, 0) with multiplier λ — and hence it is a Cremer point for the
quadratic polynomial fλ(z). See also [195] for related results.

Let us recall here that the Brjuno condition (1.5) is usually expressed in a different way.
Writing λ = e2πiθ, and letting {pk/qk} be the sequence of rational numbers converging to θ given
by the expansion in continued fractions, (1.5) is indeed equivalent to

+∞∑
k=0

1

qk
log qk+1 < +∞ ,
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while (1.4) is equivalent to
qn+1 = O(qβn) ,

and (1.3) is equivalent to

lim sup
k→+∞

1

qk
log qk+1 = +∞ .

We refer to [159] for a tractation on continued fractions, and to [141, 268, 182, 75, 76, 78] and
references therein for further details on condition (1.5).

Remark 1.14. A clear obstruction to the holomorphic linearization of an elliptic germ f ∈
End(C, 0) with multiplier λ = e2πiθ ∈ S1 is the existence of small cycles, that is of periodic orbits
contained in any neighbourhood of the origin. Pérez-Marco [188], using Yoccoz’s techniques, has
shown that when the series

+∞∑
k=0

log log qk+1

qk

converges then every germ with multiplier λ is either linearizable or has small cycles, and that
when the series diverges there exists such germs with a Cremer point but without small cycles.

The complete proof of Theorem 1.13 is beyond the scope of this chapter and we refer to the
original papers and to [78].

1.1.2 Non-holomorphically linearizable germs
We have briefly seen in the previous subsection that there are non-holomorphically linearizable,
and we are interested in describing the local dynamics in these cases. We will separately deal
with the parabolic case and the elliptic non-holomorphically linearizable case.

Parabolic case: the Leau-Fatou flower Theorem

Let f ∈ End(C, 0) be a holomorphic local dynamical system with a parabolic fixed point at the
origin not of finite order. Then we can write

f(z) = e2iπp/qz + ak+1z
k+1 + ak+2z

k+2 + · · · , (1.6)

with ak+1 6= 0.

Definition 1.15. The rational number p/q ∈ Q ∩ [0, 1) is the rotation number of f , and the
multiplicity of f at the fixed point is the minimal number k + 1 ≥ 2 such that the coefficient of
zk+1 in the power series expansion of f is non-zero. If p/q = 0 (that is, if the multiplier is 1),
we shall say that f is tangent to the identity.

Proposition 1.7 tells us that if f is tangent to the identity then it cannot be locally conjugated
to the identity (unless it was the identity from the beginning, which is not a very interesting case
dynamically speaking).

In order to understand the local dynamics in this case, let us first consider the case of the
map f(z) = z · (1 + azk). Note that the k half-lines where azk belongs to R+ are mapped into
themselves and that on those lines

∣∣f(z)
∣∣ > |z|. It follows easily that when z belongs to such a

half-line, f◦n(z)→∞ as n→ +∞. Those k half-lines will be called repelling directions for f at
0. Similarly, the k half-lines where azk belongs to R− are mapped into themselves and on those
lines when z is sufficiently close to 0, more precisely when |azk| < 1, we have that

∣∣f(z)
∣∣ < |z|.
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It follows easily than when z belongs to such a half-line and is sufficiently close to 0, f◦n(z)→ 0
as n→ +∞. Those k half-lines will be called attracting directions for f at 0.

The Leau-Fatou flower Theorem states that a similar description is still valid for f(z) =
z ·
(
1 + azk + o(zk)

)
. We have the following definition.

Definition 1.16. Let f ∈ End(C, 0) be tangent to the identity of multiplicity k+ 1 ≥ 2. Then a
unit vector v ∈ S1 is an attracting (resp., repelling) direction for f at the origin if ak+1v

k is real
and negative (resp., positive), where ak+1 is the coefficient of zk+1 in the power series expansion
of f .

Clearly, there are k equally spaced attracting directions, separated by k equally spaced re-
pelling directions: if ak+1 = |ak+1|eiα, then v = eiθ is attracting (resp., repelling) if and only
if

θ =
2`+ 1

k
π − α

k

(
resp., θ =

2`

k
π − α

k

)
.

Furthermore, a repelling (resp., attracting) direction for f is attracting (resp., repelling) for f−1,
which is defined in a neighbourhood of the origin.

Definition 1.17. Let f ∈ End(C, 0) be tangent to the identity, and let (U, f) be a representative
of f . An attracting petal centered at an attracting direction v of f is a non-empty open simply
connected f -invariant set P ⊆ U \{0} such that the orbit of a point tends to 0 ∈ ∂P tangent to v
if and only if it is eventually contained in P . A repelling petal (centered at a repelling direction)
is an attracting petal for the inverse of f .

The Leau-Fatou flower Theorem gives us a complete description of the local dynamics in a
punctured neighbourhood of the origin.

Theorem 1.18 (Leau, [169], Fatou, [113, 114, 115]). Let f ∈ End(C, 0) be a holomorphic local
dynamical system tangent to the identity with multiplicity k + 1 ≥ 2 at the fixed point. Let
v+

1 , . . . , v
+
k ∈ S1 be the k attracting directions of f at the origin, and v−1 , . . . , v

−
k ∈ S1 the k

repelling directions. Then:

(i) for each attracting (resp., repelling) direction v±j there exists an attracting (resp., repelling)
petal P±j , so that the union of these 2k petals together with the origin forms a neighbourhood
of the origin. Furthermore, the 2k petals are arranged cyclically so that two petals intersect
if and only if the angle between their central directions is π/k.

(ii) For each petal P centered at one of the attracting directions, then there is a holomorphic
function ϕ : P → C such that ϕ ◦ f(z) = ϕ(z) + 1 for all z ∈ P and ϕ is a biholomor-
phism with an open subset of the complex plane containing a right half-plane, and so f |P
is holomorphically conjugated to the translation z 7→ z + 1.

Camacho, using fundamental domains, has pushed this argument even further, obtaining
a complete topological classification of one-dimensional holomorphic local dynamical systems
tangent to the identity (see also [78, Theorem 1.7]).

Theorem 1.19 (Camacho, [80], Shcherbakov, [240]). Let f ∈ End(C, 0) be a holomorphic local
dynamical system tangent to the identity with multiplicity k + 1 at the fixed point. Then f is
topologically locally conjugated to the map

g(z) = z − zk+1 .
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It is clear from the proof of Camacho [80] that such topological conjugacy is indeed C∞ in
a punctured neighbourhood of the origin. We refer to [80] and [53] for a proof, and to [152] for
a more detailed proof. Jenkins in [152] also proved that if f ∈ End(C, 0) is a holomorphic local
dynamical system tangent to the identity with multiplicity 2, such that there exists a topological
conjugacy (conjugating it with g(z) = z − z2), which is indeed real-analytic in a punctured
neighbourhood of the origin, with real-analytic inverse, then there exists a holomorphic conjugacy
between f and g. Finally, Martinet and Ramis [181] proved that if a germ f ∈ End(C, 0), tangent
to the identity, is C1-conjugated (in a full neighbourhood of the origin) to g(z) = z− zk+1, then
it is holomorphically or antiholomorphically conjugated to it.

The formal classification is simple too, though different (see, e.g., Milnor [182]):

Proposition 1.20. Let f ∈ End(C, 0) be a holomorphic local dynamical system tangent to the
identity with multiplicity k + 1 at the fixed point. Then f is formally conjugated to the map

g(z) = z − zk+1 + βz2k+1 ,

where β is a formal (and holomorphic) invariant given by

β =
1

2πi

∫
γ

dz

z − f(z)
, (1.7)

where the integral is taken over a small positive loop γ around the origin.

On the other hand, the holomorphic classification of maps tangent to the identity is much
more complicated, and, as shown by Écalle [97, 98] and Voronin [257], it depends on functional
invariants. We refer to [10] and [149, 179, 180, 160, 78] and the original papers for details.

Finally, if f ∈ End(C, 0) satisfies λ = e2πip/q, then f◦q is tangent to the identity. Therefore
we can apply the previous results to f◦q and then infer informations about the dynamics of the
original f (see for example [78, 182]).

Elliptic case

If 0 is a Siegel point for f ∈ End(C, 0), the local dynamics of f is completely clear, and simple
enough. On the other hand, if 0 is a Cremer point of f , then the local dynamics of f is very
complicated and not yet completely understood. Pérez-Marco in [189, 191, 192, 193, 194] and
Biswas in [46, 47] studied the topology and the dynamics of the stable set in this case. Some of
their results can be briefly summarized as follows.

Theorem 1.21 (Pérez-Marco, [193, 194]). Assume that 0 is a Cremer point for an elliptic
holomorphic local dynamical system f ∈ End(C, 0).Then:

(i) There is a completely invariant stable set Kf which is compact, connected, full (i.e., C\Kf

is connected), it is not reduced to {0}, and it is not locally connected at any point distinct
from the origin.

(ii) Any point of Kf \ {0} is recurrent (that is, a limit point of its orbit).

(iii) There is an orbit in Kf which accumulates at the origin, but no non-trivial orbit converges
to the origin.

Theorem 1.22 (Biswas, [47]). The rotation number and the conformal class of Kf are a complete
set of holomorphic invariants for Cremer points. In other words, two elliptic non-linearizable
holomorphic local dynamical systems f and g are holomorphically locally conjugated if and only
if they have the same rotation number and there is a biholomorphism of a neighbourhood of Kf

with a neighbourhood of Kg.
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Thus if λ ∈ S1 is not a root of unity and does not satisfy Brjuno’s condition (1.5), we can find
f1, f2 ∈ End(C, 0) with multiplier λ such that f1 is holomorphically linearizable while f2 is not.
Then f1 and f2 are formally conjugated without being neither holomorphically nor topologically
locally conjugated.

Yoccoz [268] has proved that if λ ∈ S1 is not a root of unity and does not satisfy Brjuno’s
condition (1.5) then there is an uncountable family of germs in End(C, 0) with multiplier λ which
are not holomorphically conjugated to each other nor holomorphically conjugated to any entire
function.

See also [188, 190] for other results on the dynamics about a Cremer point, and [196] for
relationships with holomorphic foliations in C2.

1.2 Formal normal forms in higher dimension
Let F ∈ End(Cn, O) be a holomorphic local dynamical system at O ∈ Cn, with n ≥ 2. The
homogeneous expansion of F is

F (z) = P1(z) + P2(z) + · · · ∈ C{z1, . . . , zn}n ,

where Pj is an n-uple of homogeneous polynomials of degree j. In particular, P1 is the differen-
tial DFO of f at the origin, and f is locally invertible if and only if P1 is invertible.

The holomorphic and even the formal classification are not as well understood as in dimension
topological one. As we saw in Section 1.2, one of the main questions in the study of local
holomorphic dynamics is when f is holomorphically linearizable. The answer to this question
depends on the set of eigenvalues of DFO, usually called the spectrum of DFO, and the main
problem is caused by the so-called resonances. In the rest, we shall need the following notation.

Let p ≥ 2. We denote by Hp the complex vector space of homogeneous polynomial endomor-
phisms of Cn of degree p, and we consider on it the standard basis Bp = {zQej | |Q| = p, 1 ≤
j ≤ n}. We shall denote by o(k) every holomorphic map of the form

∑
p≥k+1 hp with hp ∈ Hp.

Let us first see what happens when we conjugate F by a germ of biholomorphism of the form
Ψp := Id +Ψ̂p with Ψ̂p ∈ Hp and p ≥ 2.

Lemma 1.23. Let Ψ := Id +Ψ̂ be a germ of biholomorphism of Cn with Ψ̂ ∈ Hq, and let
F = Λ + Sq−1 + Hq + o(q) be a germ of biholomorphism with Sq−1 ∈ H1 ⊕ · · · ⊕ Hq−1 and
Hq ∈ Hq. Then

Ψ−1 ◦ F ◦Ψ = Λ + Sq−1 + [Hq + Λ ◦ Ψ̂− Ψ̂ ◦ Λ] + o(q).

Thus the germ ψq := I + ψ̂q conjugates f = Λ +Hq + o(q) with Λ + o(q) if and only if ψ̂q is
a solution of the equation Hq = ψ̂ ◦ Λ − Λ ◦ ψ̂. We have then to study the invertibility of the
linear operators

Mr
Λ : Hr → Hr

defined by
Mr

Λ(h) = h ◦ Λ− Λ ◦ h.
When Λ = Diag(λ1, . . . , λn) it is easy to answer this question. In fact, for each element zQej of
the basis Br we have

Mr
Λ(zQej) = (λQ − λj)zQej , (1.8)

hence ker(Mr
Λ) = {zQej | λQ − λj = 0, |Q| ≥ 2, 1 ≤ j ≤ n}.

We are then led to give the following definition.
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Definition 1.24. Let λ ∈ (C∗)n and let j ∈ {1, . . . , n}. We say that a multi-index Q ∈ Nn,
with |Q| ≥ 2, gives a multiplicative resonance relation for λ relative to the j-th coordinate if

λQ := λq11 · · ·λqnn = λj .

We denote
Resj(λ) := {Q ∈ Nn | |Q| ≥ 2, λQ = λj}.

The elements of Res(λ) :=
⋃n
j=1 Resj(λ) are simply called resonant multi-indices.

Notice that when n = 1 there is a resonance if and only if the multiplier is a root of unity, or
zero. This is no more true for n > 1.

Resonances are the obstruction to formal linearization. Indeed, a computation completely
analogous to the one yielding Proposition 1.2 shows that the coefficients of a formal linearization
have in the denominators quantities of the form λk1

1 · · ·λknn − λj , and we can easily construct
germs that are not formally linearizable. We have the following classical general result (see [27,
pp. 192–193 ] or [206] for a proof), that shows that in presence of resonances, even the formal
classification is not that easy.

Let us assume, for simplicity, that DFO is in Jordan form, that is

P1(z) = (λ1z, ε2z1 + λ2z2, . . . , εnzn−1 + λnzn) ,

with ε1, . . . , εn−1 ∈ {0, 1}.

Definition 1.25. We shall say that a monomial zQ := zq11 · · · zqnn in the j-th coordinate of f is
resonant with respect to λ1, . . . λn ∈ C∗ (or simply (λ1, . . . λn)-resonant) if |Q| =

∑n
j=1 qj ≥ 2

and λQ := λq11 · · ·λqnn = λj.

Theorem 1.26 (Poincaré, [203], Dulac, [96]). Let F ∈ End(Cn, O) be a locally invertible holo-
morphic local dynamical system. Then it is formally conjugated to a G ∈ C[[z1, . . . , zn]]n without
constant term and such that DGO is in Jordan normal form, and g has only resonant monomials.
Moreover, the resonant part of the formal change of coordinates ψ can be chosen arbitrarily, but
once this is done, ψ and g are uniquely determined.

Definition 1.27. A formal power series G ∈ C[[z1, . . . , zn]]n without constant term, and with
linear part Λ in Jordan normal form with eigenvalues λ1, . . . , λn ∈ C∗, is called in Poincaré-Dulac
normal form if it contains only resonant monomials with respect to λ1, . . . , λn.

Definition 1.28. Let F be a germ of biholomorphism of Cn fixing the origin. A formal trans-
formation G in Poincaré-Dulac normal form that can be formally conjugated to F is called a
Poincaré-Dulac (formal) normal form of F .

We already remarked that there are germs of biholomorphisms of Cn fixing the origin and
not linearizable, even formally.

The main problem with Poincaré-Dulac normal forms is that they are not unique. In partic-
ular, one may wonder whether it could be possible to have such a normal form including finitely
many resonant monomials only (as happened, for instance, in Proposition 1.20). We shall see
in Subsection 1.4.1 that this is indeed the case when F belongs to the Poincaré domain, that is
when DFO is invertible and O is either attracting or repelling.

Definition 1.29. We say that F , a germ of biholomorphism of Cn fixing the origin, is holomor-
phically normalizable if there exists a local change of coordinates ϕ ∈ End(Cn, O), tangent to the
identity, conjugating F to one of its Poincaré-Dulac normal forms.
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Remark 1.30. Let us mention here that, together with Abate, we described in [15] an alternative
approach to a general renormalization procedure for formal self-maps, originally suggested by
Chen-Della Dora and Wang-Zheng-Peng, giving formal normal forms simpler than the classical
Poincaré-Dulac normal form. Such an approach becomes particularily interesting for tangent to
the identity maps, where since every monomial is resonant, Poincaré-Dulac Theorem 1.26 gives
no simplification.

We have seen that in dimension one the multiplier (i.e., the derivative at the origin) plays a
main rôle. When n > 1, a similar rôle is played by the eigenvalues of the differential. We shall
use the following classification.

Definition 1.31. Let F ∈ End(Cn, O) be a holomorphic local dynamical system at O ∈ Cn, with
n ≥ 2. Then

• if all eigenvalues of DFO have modulus strictly less than 1, we say that the fixed point O
is attracting;

• if all eigenvalues of DFO have modulus strictly greater than 1, we say that the fixed point O
is repelling;

• if all eigenvalues of DFO have modulus different from 1, we say that the fixed point O is
hyperbolic (notice that we allow the eigenvalue zero);

• if O is attracting or repelling, and DFO is invertible, we say that F is in the Poincaré
domain;

• if O is hyperbolic, DFO is invertible, and F is not in the Poincaré domain (and thus not
all eigenvalues of DFO are inside or outside the unit disk) we say that F is in the Siegel
domain;

• if all eigenvalues of DFO are roots of unity, we say that the fixed point O is parabolic; in
particular, if DFO = Id we say that F is tangent to the identity;

• if all eigenvalues of DFO have modulus 1 but none is a root of unity, we say that the fixed
point O is elliptic;

• if DFO = O, we say that the fixed point O is superattracting.

Other cases are clearly possible, but for the aim of this chapter this list is enough.

For the rest of the chapter we shall only consider germs of biholomorphisms. In the following
we will restrict our attention to invertible holomorphic local dynamical system. We refer for
example to [10, Section 5], [77], [236] and references therein for normal forms and dynamics of
non-invertible local holomorphic dynamical systems.

1.2.1 Formal linearization
A consequence of Poincaré-Dulac Theorem 1.26 is the following classical result on formal lin-
earization.

Theorem 1.32. Let F be a germ of holomorphic diffeomorphism of Cn fixing the origin O with
no resonances. Then F is formally linearizable.
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In the resonant case, one can still find formally linearizable germs, (see for example [207, 205]),
so it natural to ask whether a formally linearizable germ can have several different Poincaré-Dulac
formal normal forms. The answer to such a question has been given by Rüssmann (this statement
is slightly different from the original one presented in [238] but perfectly equivalent).

Theorem 1.33 (Rüssmann, [238]). Let F be a germ of biholomorphism of Cn fixing the origin.
If F is formally linearizable, then the linear form is its unique Poincaré-Dulac normal form.

We refer to [209] for a direct proof of this result using power series expansions.

1.3 Holomorphic linearization in higher dimension
Each non-resonant germ which is in the Poincaré domain can be holomorphically linearized. In
fact, in [203], using majorant series, Poincaré proved the following stronger result.

Theorem 1.34 (Poincaré, [203]). Let F ∈ End(Cn, O) be a locally invertible holomorphic local
dynamical system in the Poincaré domain. Then F is holomorphically linearizable if and only
if it is formally linearizable. In particular, if there are no resonances then F is holomorphically
linearizable.

Even when there are no resonances, or more generally, when we know a priori that a given
germ is formally linearizable, not so much is known about the convergence of the linearizations
in the cases different from the Poincaré domain.

A first easy observation is that Theorem 1.10 naturally generalizes to higher dimension.
Here, given F : (Cn, O) → (Cn, O) a holomorphic map such that all the eigenvalues of DF (0)
have modulus one, the dynamics of F is stable near O if there exist R > r > 0 such that for all
k ≥ 0, the iterates F ◦k|Br are defined with F ◦k|Br ⊂ BR, where Br, resp. BR, denotes the ball of
radius r, resp. R, and center at the origin.

Proposition 1.35. Let F ∈ End(Cn, O) be a holomorphic local dynamical system such that all
the eigenvalues of DF (0) have modulus one. Then F is holomorphically linearizable if and only
if it is topologically linearizable if and only if the dynamics of F is stable near O.

Proof. The proof is the same as the one of Theorem 1.10. Here it suffices to consider the averages
ΦN : Br → BR defined by

ΦN :=
1

N

N−1∑
j=0

Λ−jF ◦j ,

where Λ is the diagonal matrix representing DF (O) is local coordinates.

Usually we have no information about stability near a fixed point. A first result about
convergence is then the natural generalization of Siegel’s Theorem 1.12.

Theorem 1.36. Let λ = (λ1, . . . , λn) ∈ (C∗)n be a non-resonant vector such that there exists
β > 1 and γ > 0 so that for every Q ∈ Nn, |Q| ≥ 2

1

|λQ − λj |
≤ γ |Q|β . (1.9)

Then all F ∈ End(Cn, O) such that DFO is diagonalizable and has spectrum {λ1, . . . , λn} are
holomorphically linearizable.
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As in one variable, (1.9) is a particular case of a more general condition, the multi-dimensional
Brjuno condition.

When DFO belongs to the Siegel domain, even without resonances, the formal linearization
might diverge. To describe the known results, let us introduce the following definition.

Definition 1.37. For λ1, . . . , λn ∈ C and m ≥ 2 set

ωλ1,...,λn(m) = min

{
|λk1

1 · · ·λknn − λj |
∣∣ k1, . . . , kn ∈ N, 2 ≤

n∑
h=1

kh ≤ m, 1 ≤ j ≤ n

}
. (1.10)

If λ1, . . . , λn are the eigenvalues of DFO, we shall write ωf (m) for ωλ1,...,λn(m).

It is clear that ωf (m) 6= 0 for all m ≥ 2 if and only if there are no resonances. It is also not
difficult to prove that if F belongs to the Siegel domain then

lim
m→+∞

ωf (m) = 0 ,

which is the reason why, even without resonances, the formal linearization might be diverging,
exactly as in the one-dimensional case.

Definition 1.38. Let n ≥ 2 and let λ1, . . . , λn ∈ C∗ be not necessarily distinct. We say that λ
satisfies the Brjuno condition if∑

ν≥0

1

2ν
logωλ1,...,λn(2ν+1)−1 <∞. (1.11)

As far as we know, the best positive result in the non-resonant case is due to Brjuno [66, 67],
using majorant series, and is a natural generalization of its one-dimensional counterpart:

Theorem 1.39 (Brjuno, [66, 67]). Let F be a germ of biholomorphism of Cn fixing the origin,
such that DFO is diagonalizable. Assume moreover that the spectrum of DFO has no resonances
and it satisfies the Brjuno condition. Then F is holomorphically linearizable.

It is also possible to generalize Theorem 1.11 proving that if λ1, . . . , λn ∈ C have no resonances
and

lim sup
m→+∞

1

m
log

1

ωλ1,...,λn(m)
= +∞,

then there exists a germ of biholomorphism of (Cn, O), fixing the origin, with differential DFO =
Diag(λ1, . . . , λn), and not holomorphically linearizable (see for example [206, Theorem 1.5.1]).
Another result in the same spirit is the following.

Theorem 1.40 (Yoccoz, [268]). Let A ∈ GL(n,C) be an invertible matrix such that its eigen-
values have no resonances and such that its Jordan normal form contains a non-trivial block
associated to an eigenvalue of modulus one. Then there exists F ∈ End(Cn, O) with DFO = A
which is not holomorphically linearizable.

Remark 1.41. Contrarily to the one-dimensional case, it is not yet known whether the Brjuno
condition is necessary for the holomorphic linearizability of all holomorphic local dynamical sys-
tems with a given linear part belonging to the Siegel domain. However, it is easy to check that if
λ ∈ S1 does not satisfy the one-dimensional Brjuno condition then any F ∈ End(Cn, O) of the
form

f(z) =
(
λz1 + z2

1 , g(z)
)

is not holomorphically linearizable: indeed, if ϕ ∈ End(Cn, O) is a holomorphic linearization
of F , then ψ(ζ) = ϕ(ζ,O) is a holomorphic linearization of the quadratic polynomial λζ + ζ2,
contradicting Theorem 1.13.
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Another approach to this kind of problems was given by Rüssmann in [237, 238]. Rüssmann
introduced the following condition, that we shall call Rüssmann condition.

Definition 1.42. Let n ≥ 2 and let λ1, . . . , λn ∈ C∗ be not necessarily distinct. We say that λ =
(λ1, . . . , λn) satisfies the Rüssmann condition if there exists a function Ω: N→ R such that:

(i) k ≤ Ω(k) ≤ Ω(k + 1) for all k ∈ N,

(ii)
∑
k≥1

1
k2 log Ω(k) ≤ +∞, and

(iii) |λQ − λj | ≥ 1
Ω(|Q|) for all j = 1, . . . n and for each multi-index Q ∈ N with |Q| ≥ 2 not

giving a resonance relative to j.

Rüssmann then proved the following generalization of Brjuno Theorem 1.39 (the statement
is slightly different from the original one presented in [238] but perfectly equivalent).

Theorem 1.43 (Rüssmann, [238]). Let F be a germ of biholomorphism of Cn fixing the origin
and such that DFO is diagonalizable. If F is formally linearizable and the spectrum of DFO
satisfies the Rüssmann condition, then it is holomorphically linearizable.

We refer to the article [238] for the original proof of Rüssmann and to [209] where we recalled
the main ideas of it. In [209] we gave the natural generalization of Brjuno’s Theorem 1.39 in
presence of resonances. The key remark is that, when there are no resonances, the function
ωf (m) defined in Definition 1.37 satisfies

|λQ − λj | ≥ ωf (|Q|)

for each multi-index Q ∈ N with |Q| ≥ 2.
This leads to the following natural definitions.

Definition 1.44. Let n ≥ 2 and let λ1, . . . , λn ∈ C∗ be not necessarily distinct. For m ≥ 2 set

ω̃λ1,...,λn(m) = min
1≤j≤n

min
2≤|K|≤m
K 6∈Resj(λ)

|λK − λj |,

where Resj(λ) is the set of multi-indices K ∈ Nn, with |K| ≥ 2, giving a resonance relation
for λ = (λ1, . . . , λn) relative to 1 ≤ j ≤ n, i.e., λK − λj = 0. If λ1, . . . , λn are the eigenvalues
of DFO, we shall write ω̃f (m) for ω̃λ1,...,λn(m).

Definition 1.45. Let n ≥ 2 and let λ = (λ1, . . . , λn) ∈ (C∗)n. We say that λ satisfies the
reduced Brjuno condition if ∑

ν≥0

1

2ν
log ω̃λ1,...,λn(2ν+1)−1 <∞.

We have the following relation between the Rüssmann and the reduced Brjuno condition.

Lemma 1.46. Let n ≥ 2 and let λ = (λ1, . . . , λn) ∈ (C∗)n. If λ satisfies Rüssmann condition,
then it also satisfies the reduced Brjuno condition.

We proved in [210, Theorem 4.1] that the Rüssmann condition is indeed equivalent to the
reduced Brjuno condition in the multi-dimensional case. Notice that Rüssmann was able to prove
that in dimension 1, his condition is equivalent to Brjuno condition, but to do so he strongly
used the one-dimensional characterization of these conditions via continued fraction.

In [209] we proved the following analog of Theorem 1.43.
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Theorem 1.47 (R., [209]). Let F be a germ of biholomorphism of Cn fixing the origin and such
that DFO is diagonalizable. If F is formally linearizable and the spectrum of DFO satisfies the
reduced Brjuno condition, then F is holomorphically linearizable.

Idea of the proof. The proof has two main parts. First we need explicit computation for the
power series expansion of a suitable linearization, and then we prove its convergence via majorant
series.

The key point for the first part is that, thanks to Theorem 1.33, when a germ is formally
linearizable, then the linear form is its unique Poincaré-Dulac normal form. In fact as a con-
sequence of such result, we obtain that any formal normalization given by the Poincaré-Dulac
procedure applied to a formally linerizable germ F is indeed a formal linearization of the germ.
In particular, we have uniqueness of the Poincaré-Dulac normal form (which is linear and hence
holomorphic), but not of the formal linearizations. Hence a formally linearizable germ F is
formally linearizable via a formal transformation ϕ = Id +ϕ̂ containing only non-resonant mono-
mials. In fact, thanks to the proof of Poincaré-Dulac Theorem 1.26, we can consider the formal
normalization obtained with the Poincaré-Dulac procedure and imposing that the coefficient ϕQ,j
of the monomial zQ in the j-th coordinate of ϕ vanishes for all Q and j such that λQ = λj ; and
this formal transformation ϕ conjugates F to its linear part.

The proof of the convergence then follows by carefully adapting Brjuno’s proof of Theo-
rem 1.39.

It is natural to search for conditions for formal linearization in presence of resonances. A first
result is due to Rong [220] when the spectrum of the differential at the origin of a given germ of
biholomorphism fixing the origin contains 1 and λj ’s with |λj | = 1, but the λj ’s are not roots of
unity, the germ F admits a curve of fixed points tangent to the generalized eigenspace of 1 and
such that the other eigenvalues satisfy a Bryuno-type condition along the curve of fixed points.
During the Ph.D. we generalized and specified Rong’s result in [207].

1.3.1 Partial linearization
A way to generalize Brjuno’s Theorem 1.39 is to look for partial linearization results, e.g., study-
ing the linearization problem along submanifolds.

Pöschel [204] showed how to modify (1.10) and (1.11) to obtain partial linearization results
along submanifolds. To do so, he uses a notion of partial Brjuno condition which is explained in
the following definitions:

Definition 1.48. Let n ≥ 2 and let λ1, . . . , λn ∈ C∗ be not necessarily distinct. Fix 1 ≤ s ≤ n
and let λ = (λ1, . . . , λs). For any m ≥ 2 put

ωs(m) = min
2≤|K|≤m

min
1≤j≤n

|λK − λj |,

where K = (k1, . . . , ks) and λK = λk1
1 · · ·λkss .

The following definition is a reformulation of Pöschel’s definition of admissible eigenvalues as
stated in [204].

Definition 1.49. Let n ≥ 2 and let λ1, . . . , λn ∈ C∗ be not necessarily distinct. Fix 1 ≤ s ≤ n.
We say that λ = (λ1, . . . , λn) satisfies the partial Brjuno condition of order s if∑

ν≥0

1

2ν
logωs(2

ν+1)−1 <∞.
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It is clear that ωs(m) 6= 0 for all m ≥ 2 if and only if there are no resonant multi-indices Q
of the form Q = (q1, . . . qs, 0, . . . , 0).

Remark 1.50. For s = n the partial Brjuno condition of order s is nothing but the usual Brjuno
condition introduced in [66, 67]. When s < n, the partial Brjuno condition of order s is indeed
weaker than the Brjuno condition. Let us consider for example n = 2 and let λ, µ ∈ C∗ be
distinct. To check whether the pair (λ, µ) satisfies the partial Brjuno condition of order 1, we
have to consider only the terms |λk − λ| and |λk − µ| for k ≥ 2, whereas to check the full Brjuno
condition we have to consider also the terms |µh−λ|, |µh−µ| for h ≥ 2, and |λkµh−λ|, |λkµh−µ|
for k, h ≥ 1.

Remark 1.51. A n-tuple λ = (λ1, . . . , λs, 1, . . . , 1) ∈ (C∗)n satisfies the partial Brjuno condition
of order s if and only if (λ1, . . . , λs) satisfies the Brjuno condition.

We assume that the differential DFO is diagonalizable. Then, possibly after a linear change
of coordinates, we can write

F (z) = Λz + F̂ (z),

where Λ = Diag(λ1, . . . , λn), and F̂ vanishes up to first order at O ∈ Cn.
The linear map z 7→ Λz has a very simple structure. For instance, for any subset λ1, . . . , λs

of eigenvalues with 1 ≤ s ≤ n, the direct sum of the corresponding eigenspaces obviously is an
invariant manifold on which this map acts linearly with these eigenvalues.

We have the following result of Pöschel [204].

Theorem 1.52 (Pöschel, [204]). Let F be a germ of holomorphic diffeomorphism of Cn fixing the
origin O. If there exists a positive integer 1 ≤ s ≤ n such that the eigenvalues λ1, . . . , λn of DFO
satisfy the partial Brjuno condition of order s, then there exists locally a complex analytic F -
invariant manifold M of dimension s, tangent to the eigenspace of λ1, . . . , λs at the origin, on
which the mapping is holomorphically linearizable.

1.3.2 Simultaneous linearization
Another generalization of the linearization problem is to ask when h ≥ 2 germs of biholomor-
phisms F1, . . . , Fh of Cn at the same fixed point, which we may place at the origin, are simulta-
neously holomorphically linearizable, i.e., there exists a local holomorphic change of coordinates
conjugating Fk to its linear part for each k = 1, . . . , h.

In dimension 1, this problem has been thoroughly studied, also for commuting systems of
analytic or smooth circle diffeomorphisms, that are indeed deeply related to commuting systems
of germs of holomorphic functions, as explained in [194]. The question about the smoothness
of a simultaneous linearization of such a system, raised by Arnold, was brilliantly answered
by Herman [140], and extended by Yoccoz [266] (see also [269]). In [184], Moser raised the
problem of smooth linearization of commuting circle diffeomorphisms in connection with the
holonomy group of certain foliations of codimension 1, and, using the rapidly convergent Nash-
Moser iteration scheme, he proved that if the rotation numbers of the diffeomorphisms satisfy a
simultaneous Diophantine condition and if the diffeomorphisms are in some C∞-neighborhood of
the corresponding rotations then they are C∞-linearizable, that is, C∞-conjugated to rotations.
We refer to [111] and references therein for a clear exposition of the one-dimensional problem
and for the best results in such a context. Furthermore, the problem for commuting germs of
holomorphic functions in dimension one has been studied by DeLatte [88], and by Biswas [48],
under Brjuno-type conditions generalizing Moser’s simultaneous Diophantine condition.
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In dimension n ≥ 2 much less is known in the formal and holomorphic settings. Gramchev
and Yoshino [131] have proved a simultaneous holomorphic linearization result for pairwise com-
muting germs without simultaneous resonances, with diagonalizable linear parts, and under a
simultaneous Diophantine condition (further studied by Yoshino in [270]) and a few more tech-
nical assumptions. In [89], DeLatte and Gramchev investigated on holomorphic linearization of
germs with linear parts having Jordan blocks, leaving as an open problem the study of simulta-
neous formal and holomorphic linearization of commuting germs with non-diagonalizable linear
parts.

Therefore, there are at least three natural questions arising in this setting:

(Q1) Is it possible to say anything on the shape a (formal) simultaneous linearization can have?

(Q2) Are there any conditions on the eigenvalues of the linear parts of h ≥ 2 germs of simulta-
neously formally linearizable biholomorphisms ensuring simultaneous holomorphic lineariz-
ability?

(Q3) Under which conditions on the eigenvalues of the linear parts of h ≥ 2 pairwise commut-
ing germs of biholomorphisms can one assert the existence of a simultaneous holomorphic
linearization of the given germs? In particular, is there a Brjuno-type condition sufficient
for convergence?

Note that the third question is a natural generalization to dimension n ≥ 2 of the question
raised by Moser [184] in the one-dimensional case (see also the introduction of [111]).

In [210] we gave complete answers to these three questions without making any assumption on
the resonances. Before stating our answer to the first question, we need the following definition.

Definition 1.53. Let M1, . . . ,Mh be h ≥ 2 complex n × n matrices. We say that M1, . . . ,Mh

are almost simultaneously Jordanizable, it there exists a linear change of coordinates A such that
A−1M1A, . . . , A

−1MhA are almost in simultaneous Jordan normal form, i.e., for k = 1, . . . , h
we have

A−1MkA =


λk,1
εk,1 λk,2

. . . . . .
εk,n−1 λk,n

 , εk,j 6= 0 =⇒ λk,j = λk,j+1. (1.12)

We say that M1, . . . ,Mh are simultaneously Jordanizable if there exists a linear change of coor-
dinates A such that we have (1.12) with εk,j ∈ {0, ε}.

Notice that two commuting matrices are not necessarily almost simultaneously Jordaniz-
able, and that two almost simultaneously Jordanizable matrices do not necessarily commute.
However, the almost simultaneously Jordanizable hypothesis remains less restrictive than the
simultaneously diagonalizable assumption usual in this context.

The following result gives an answer to (Q1).

Theorem 1.54 (R. [210]). Let F1, . . . , Fh be h ≥ 2 formally linearizable germs of biholomor-
phisms of Cn fixing the origin and with almost simultaneously Jordanizable linear parts. If
F1, . . . , Fh are simultaneously formally linearizable, then they are simultaneously formally lin-
earizable via a linearization ϕ such that the coefficient ϕQ,j of the monomial zQ in the j-th
coordinate of ϕ vanishes for each Q and j so that Q ∈ ∩hk=1Resj(Λk), and such a linearization
is unique.
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We also have a condition ensuring formal simultaneous linearizability.

Theorem 1.55 (R. [210]). Let F1, . . . , Fh be h ≥ 2 formally linearizable germs of biholomor-
phisms of Cn fixing the origin and with almost simultaneously Jordanizable linear parts. If
F1, . . . , Fh all commute pairwise, then they are simultaneously formally linearizable.

To state our result on simultaneous holomorphic linearizability we introduced the following
Brjuno-type condition.

Definition 1.56. Let n ≥ 2 and let Λ1 = (λ1,1, . . . , λ1,n), . . . ,Λh = (λh,1, . . . , λh,n) be h ≥ 2 n-
tuples of complex, not necessarily distinct, non-zero numbers. We say that Λ1, . . . ,Λh satisfy the
simultaneous Brjuno condition if there exists a strictly increasing sequence of integers {pν}ν≥0

with p0 = 1 such that ∑
ν≥0

1

pν
log

1

ωΛ1,...,Λh(pν+1)
< +∞,

where for any m ≥ 2 we set

ωΛ1,...,Λh(m) = min
2≤|Q|≤m

Q 6∈∩h
k=1
∩n
j=1

Resj(Λk)

εQ,

with
εQ = min

1≤j≤n
max

1≤k≤h
|ΛQk − λk,j |.

If Λ1, . . . ,Λh are the sets of eigenvalues of the linear parts of F1, . . . , Fh, we shall say that
F1, . . . , Fh satisfy the simultaneous Brjuno condition.

Our holomorphic linearization result answering (Q2) is then the following.

Theorem 1.57 (R. [210]). Let F1, . . . , Fh be h ≥ 2 simultaneously formally linearizable germs
of biholomorphism of Cn fixing the origin and such that their linear parts Λ1, . . . ,Λh are simul-
taneously diagonalizable. If F1, . . . , Fh satisfy the simultaneous Brjuno condition, then F1, . . . Fh
are holomorphically simultaneously linearizable.

Notice that the previous result can also be seen as a consequence of [247, Theorem 2.1].
Using Theorem 1.57 we are also able to give a positive answer to the generalization (Q3) of

Moser’s question.

Theorem 1.58 (R. [210]). Let F1, . . . , Fh be h ≥ 2 formally linearizable germs of biholomor-
phisms of Cn fixing the origin, with simultaneously diagonalizable linear parts, and satisfying the
simultaneous Brjuno condition. Then F1, . . . , Fh are simultaneously holomorphically linearizable
if and only if they all commute pairwise.

1.4 Holomorphic normalization in higher dimension and lo-
cal dynamics

As we already remarked in Section 1.2, there are germs F ∈ End(Cn, O) that are not formally
linearizable. However, since by Poincaré-Dulac Theorem 1.26 every germ F ∈ End(Cn, O) can
be formally normalized, it is natural to ask whether a germ is holomorphically normalizable.
As we will recall in the following subsection, this is always the case in the attracting (resp.
repelling) case, but the non-uniqueness of Poincaré-Dulac normal forms makes the problem of
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finding canonical formal normal forms when F belongs to the Siegel domain more difficult.
Furthermore, even if Écalle in his monumental work [99] provides completes sets of invariants
characterizing the conjugacy classes of germs in End(Cn, O), those invariants are not so easily
computable and it remains somehow difficult to use them in studying particular cases. During the
Ph.D., we were able to give in [208] a geometric characterization of holomorphically normalizable
germs and we will briefly recall it in Subsection 1.4.2.

1.4.1 Attracting/Repelling germs
If a germ F ∈ End(Cn, O) is in the Poincaré domain, that is the origin is an attracting or a
repelling fixed point, then the holomorphic classification is clear. Since, as in the one-dimensional
case, if the origin is a repelling fixed point for F then it is an attracting fixed point for f−1, it
suffices to study the attracting case.

The attracting (resp. repelling) case was first studied by Poincaré [203]; Fatou [116] and
Bieberbach [45] used this case to construct the first examples of proper open subsets of Cn (with
n ≥ 2) biholomorphic to the whole of Cn, a phenomenon that cannot occur in one variable. A
very clear exposition of this case was given, using a functional approach, by Rosay and Rudin
in the appendix of [233]. Recently, Berteloot in [42] provided a very beautiful exposition of this
functional approach to the problem, and we refer to [42] for the proofs of the results presented
here (see also [206]).

The first observation is that, in the attracting (and hence in the repelling) case, there can be
only finitely many resonances.

Lemma 1.59. Let λ = (λ1, . . . , λn) ∈ (C∗)n. If |λj | < 1 for all j ∈ {1, . . . , n}, then we have
card(

⋃n
j=1 Resj(λ)) < +∞. If moreover 0 < |λ1| ≤ · · · ≤ |λn| < 1, then Q ∈ Resj(λ) only if it is

of the form Q = (0, . . . , 0, qj+1, . . . , qn), and

|Q| ≤
⌊

log |λ1|
log |λn|

⌋
,

where b·c denotes the integer part.

Proof. Up to reordering the coordinates, we may assume that

0 < |λ1| ≤ · · · ≤ |λn| < 1.

Hence |λ1| ≤ |λj | ≤ |λj |q1+···+qj |λn||Q|−(q1+···+qj) ≤ |λj |q1+···+qj , for any multi-index Q with
|Q| ≥ 2, and we have the thesis.

Moreover Poincaré proved the following result.

Theorem 1.60 (Poincaré, [203]). Let G be a germ of biholomorphism of Cn fixing the origin,
with linear part Λ such that a‖z‖ ≤ ‖Λz‖ ≤ A‖z‖, where 0 < a ≤ A < 1, and let F : Br → Cn
be a holomorphic map such that

F = G+
∑
m≥k

Hm

where Hm ∈ Hm. Then, if k > log(a)/ log(A), the sequence {G−p ◦Gp}p converges to a germ of
biholomorphism Φ such that Φ(O) = O, DΦO = Id and Φ−1 ◦ F ◦ Φ = G.

Then, since the proof of Poincaré-Dulac Theorem 1.26 implies that we can always holomor-
phically conjugate a germ F to a germ G in Poincaré-Dulac form up to any finite given order,
we have the following result.
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Theorem 1.61 (Poincaré, [203]; Dulac, [96]). Let F be a germ of biholomorphism of Cn in the
Poincaré domain. Then F is locally holomorphically conjugated to one of its Poincaré-Dulac
normal forms. Moreover, if the spectrum of DFO is non-resonant, then F is holomorphically
linearizable.

Reich [212] describes holomorphic normal forms when DFO belongs to the Poincaré domain
and there are resonances (see also [102]).

1.4.2 Torus actions and Holomorphic normalization in higher dimen-
sion

In [208], following the analogous idea of Zung in [273] for germs of holomorphic vector fields, we
found that commuting with a linearizable germ gives us information on the germs conjugated to
a given one, and also on the linearization. More precisely we proved the following results (see
[208] for the precise definitions and the proofs).

Theorem 1.62 (R. [208]). Let F be a germ of biholomorphism of Cn fixing the origin O. Then F
commutes with a holomorphic effective action on (Cn, O) of a torus of dimension 1 ≤ r ≤ n with
weight matrix Θ ∈ Mn×r(Z) if and only there exists a local holomorphic change of coordinates
conjugating F to a germ with linear part in Jordan normal form and containing only Θ-resonant
monomials.

Theorem 1.63 (R. [208]). Let F be a germ of biholomorphism of Cn fixing the origin O.
Then F is holomorphically linearizable if and only if it commutes with a holomorphic effective
action on (Cn, O) of a torus of dimension 1 ≤ r ≤ n with weight matrix Θ having no resonances.

We then found out in a clear and computable manner what kind of structure a torus action
must have in order to obtain a Poincaré-Dulac holomorphic normalization from Theorem 1.62.
In particular, to do so we need to link in a clever way the eigenvalues of DFO to the weight
matrix of the action. Zung dealt with this problem in the case of holomorphic vector fields (see
[273]), introducing the key notion of toric degree of a vector field.

It is a common thinking that once something can be done with germs of vector fields, i.e.,
for continuous local dynamical systems, then it can be translated analogously for germs of bi-
holomorphisms, i.e., for discrete local dynamical systems. This is not completely true. At the
very least there are torsion phenomena to be considered, preventing a straightforward translation
from additive resonances (see below for the definition) to multiplicative resonances, and giving
rise to new behaviors. One of the difficulties we overcame was exactly to understand up to which
point one can push the analogies between continuous and discrete dynamics in the normalization
problem. Following Écalle [101], we used the following definition of torsion.

Definition 1.64. Let λ ∈ (C∗)n. The torsion of λ is the natural integer τ such that

1

τ
2πiZ = (2πiQ) ∩

(2πiZ)
⊕

1≤j≤n

(log(λj)Z)

 .

To understand what kind of structure a torus action must have in the case of germs of
biholomorphisms to obtain a result equivalent to the one obtained by Zung, we first needed
a right notion of toric degree for germs of biholomorphisms, and to link it to the torsion we
introduced above. The link and the structure we found are more complicated than what one
would expect: torsion is not enough to measure the difference between germs of holomorphic
vector fields and germs of biholomorphisms. We therefore needed a more detailed study.
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Notice that given λ ∈ (C∗)n, there is a unique [ϕ] ∈ (C/Z)n such that λ = e2πi[ϕ], i.e., λj =
e2πi[ϕj ] for every j = 1, . . . , n. The right definition of toric degree for maps is then the following

Definition 1.65. Let [ϕ] = ([ϕ1], . . . , [ϕn]) ∈ (C/Z)n, where [ · ] : Cn → (C/Z)n denotes the stan-
dard projection. The toric degree of [ϕ] is the minimum r ∈ N such that there exist α1, . . . , αr ∈ C
and θ(1), . . . , θ(r) ∈ Zn such that

[ϕ] =

[
r∑

k=1

αkθ
(k)

]
.

The r-tuple θ(1), . . . , θ(r) is called a r-tuple of toric vectors associated to [ϕ], and the num-
bers α1, . . . , αr ∈ C are toric coefficients of the toric r-tuple.

Definition 1.66. Given θ ∈ Cn and j ∈ {1, . . . , n}, we say that a multi-index Q ∈ Nn, with |Q| =∑n
h=1 qh ≥ 2, gives an additive resonance relation for θ relative to the j-th coordinate if

〈Q, θ〉 =

n∑
h=1

qhθh = θj

and we put
Res+

j (θ) = {Q ∈ Nn | |Q| ≥ 2, 〈Q, θ〉 = θj}.

Given [ϕ] ∈ (C/Z)n, the set

Resj([ϕ]) = {Q ∈ Nn | |Q| ≥ 2, [〈Q,ϕ〉 − ϕj ] = [0]}

of multiplicative resonances of [ϕ] is well-defined and we have Resj(λ) = Resj([ϕ]), where λ =
e2πi[ϕ].

We then found relations between the additive resonances of toric vectors associated to [ϕ]
and the multiplicative resonances of [ϕ]. One of the advantages of the approach we found is that
we shall be able to easily compute the multiplicative resonances, passing through the additive
resonances of r-tuples of toric vectors.

Given [ϕ] ∈ (C/Z)n of toric degree 1 ≤ r ≤ n, even when the r-tuple of toric vectors associated
to [ϕ] is not unique, we can always say whether the toric coefficients are rationally independent
with 1 or not.

Definition 1.67. Let [ϕ] ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n. We say that [ϕ] is in the
torsion-free case, or simply [ϕ] is torsion-free, if its r-tuples of toric vectors have toric coefficients
rationally independent with 1.

As a first application of our methods, we proved the following characterization of the vec-
tors λ ∈ (C∗)n without torsion.

Theorem 1.68 (R. [208]). Let λ = e2πi[ϕ] ∈ (C∗)n. Then [ϕ] is torsion-free if and only if the
torsion of λ is 1.

In the torsion case, we can always find a more useful toric r-tuple.

Definition 1.69. Let [ϕ] = ([ϕ1], . . . , [ϕn]) ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n in the
torsion case. We say that a r-tuple η(1), . . . , η(r) of toric vectors associated to [ϕ] with toric co-
efficients β1, . . . , βr rationally dependent with 1 is reduced if β1 = 1/m with m ∈ N \ {0, 1}
and m, η

(1)
1 , . . . , η

(1)
n coprime. In this case the toric vectors η(2), . . . , η(r) are called reduced

torsion-free toric vectors associated to [ϕ].
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We have explicit techniques to compute the toric degree and toric r-tuples (reduced in the
torsion case) of [ϕ]. Furthermore, we also showed that, in the torsion case, the torsion of e2πi[ϕ]

always divides m.
As expected, we were able to show that the torsion-free case behaves as the vector fields case,

proving the following result (which works even when DFO is not diagonalizable).

Theorem 1.70 (R. [208]). Let F be a germ of biholomorphism of Cn fixing the origin O.
Assume that, denoting by λ = {λ1, . . . , λn} the spectrum of DFO, the unique [ϕ] ∈ (C/Z)n such
that λ = e2πi[ϕ] is of toric degree 1 ≤ r ≤ n and torsion-free. Then F admits a holomorphic
Poincaré-Dulac normalization if and only if there exists a holomorphic effective action on (Cn, O)
of a torus of dimension r commuting with F and such that the columns of the weight matrix of
the action are a r-tuple of toric vectors associated to [ϕ].

The torsion case is more delicate and difficult to deal. First of all, given [ϕ] ∈ (C/Z)n with
toric degree 1 ≤ r ≤ n and torsion τ ≥ 2, and a reduced toric r-tuple η(1), . . . , η(r), we always
have

r⋂
k=2

Res+
j (η(k)) ⊇ Resj([ϕ]) ⊇

r⋂
k=1

Res+
j (η(k)).

This suggests a subdivision in several subcases, all realizable (we found examples for all of them)
and, surprisingly, having very different behaviours. There are cases similar to the case of germs of
vector fields (even when the torsion is non zero), and cases that are indeed different. In particular,
considering iterates of F to reduce to the torsion-free case hides very interesting phenomena, and
it does not allow to see that some torsion cases can be directly studied. Moreover, we have explicit
and computable techniques to decide in which subcase a given [ϕ] ∈ (C/Z)n belongs to.

Definition 1.71. Let [ϕ] ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n and in the torsion case. We say
that [ϕ] is in the impure torsion case if, for one (and hence any: see Lemma 7.6) reduced r-tuple
η(1), . . . , η(r) of toric vectors associated to [ϕ] we have

Resj([ϕ]) =

r⋂
k=2

Res+
j (η(k)), (1.13)

for all j ∈ {1, . . . , n}. Otherwise we say that [ϕ] is in the pure torsion case.

The impure torsion case is the subcase behaving as the case of germs of vector fields, and in
which, again, we do not need DFO diagonalizable. In fact, we could prove the following result.

Theorem 1.72 (R. [208]). Let F be a germ of biholomorphism of Cn fixing the origin O.
Assume that, denoting by λ = {λ1, . . . , λn} the spectrum of DFO, the unique [ϕ] ∈ (C/Z)n such
that λ = e2πi[ϕ] is of toric degree 1 ≤ r ≤ n and in the impure torsion case. Then it admits
a holomorphic Poincaré-Dulac normalization if and only if there exists a holomorphic effective
action on (Cn, O) of a torus of dimension r − 1 commuting with F , and such that the columns
of the weight matrix of the action are reduced torsion-free toric vectors associated to [ϕ].

The next subcase is the following.

Definition 1.73. Let [ϕ] ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n and in the pure torsion case.
We say that [ϕ] can be simplified if it admits a reduced r-tuple of toric vectors η(1), . . . , η(r) such
that

Resj([ϕ]) =

r⋂
k=1

Res+
j (η(k)), (1.14)

for all j = 1, . . . , n. The r-tuple η(1), . . . , η(r) is said a simple reduced r-tuple associated to [ϕ].
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Condition (1.14) depends on the chosen toric r-tuple. However, we have techniques to decide
whether [ϕ] can be simplified or not. The case in which [ϕ] can be simplified is similar to the
case of germs of vector fields, but we have a distinction between the case of DFO diagonalizable
and DFO not diagonalizable, as we see in the following result.

Theorem 1.74 (R. [208]). Let F be a germ of biholomorphism of Cn fixing the origin O.
Assume that, denoting by λ = {λ1, . . . , λn} the spectrum of DFO, the unique [ϕ] ∈ (C/Z)n such
that λ = e2πi[ϕ] is of toric degree 1 ≤ r ≤ n and in the pure torsion case and it can be simplified.
Then

(i) if DFO is diagonalizable, F admits a holomorphic Poincaré-Dulac normalization if and
only if there exists a holomorphic effective action on (Cn, O) of a torus of dimension r
commuting with F and such that the columns of the weight matrix Θ of the action are a
simple reduced r-tuple of toric vectors associated to [ϕ];

(ii) if DFO is not diagonalizable and there exists a simple reduced r-tuple of toric vectors asso-
ciated to [ϕ] such that its vectors are the columns of a matrix Θ compatible with DFO, F
admits a holomorphic Poincaré-Dulac normalization if and only if there exists a holomor-
phic effective action on (Cn, O) of a torus of dimension r commuting with F and with
weight matrix Θ.

The case in which [ϕ] cannot be simplified is the furthest from the case of germs of vectors
fields, because we cannot reduce the multiplicative resonances to additive ones. In fact, in this
case we only have a sufficient condition for holomorphic normalization.

Proposition 1.75 (R. [208]). Let F be a germ of biholomorphism of Cn fixing the origin O.
Assume that, denoting by λ = {λ1, . . . , λn} the spectrum of DFO, the unique [ϕ] ∈ (C/Z)n such
that λ = e2πi[ϕ] is of toric degree 1 ≤ r ≤ n and in the pure torsion case and it cannot be simpli-
fied. If there exists a holomorphic effective action on (Cn, O) of a torus of dimension r commuting
with F and such that the columns of the weight matrix of the action are a reduced r-tuple of toric
vectors associated to [ϕ], then F admits a holomorphic Poincaré-Dulac normalization.

These results give a complete understanding of the relations between torus actions, holomor-
phic Poincaré-Dulac normalizations, and torsion phenomena. In [208] we also gave an example
of techniques to construct torus actions.

1.5 Local dynamics in higher dimension
The description of the local dynamics of a holomorphic local dynamical system near an isolated
fixed point in higher dimension cannot yet be given in a systematic way as we presented it in
dimension 1.

As in dimension one, there is a natural dichotomy between the holomorphically linearizable
case, where the dynamics is easy to understand, and the non linearizable case. However, the
non linearizable case splits here into several different cases: a germ can be formally but not
holomorphically linearizable, resonant not formally linearizable but holomorphically normaliz-
able, resonant and not holomorphically normalizable. Moreover, unless for germs in the Poincaré
domain (that is attracting or repelling), we do not have yet a complete description of the local
holomorphic dynamics of holomorphically normalizable germs.

This could be one of the reasons why, until very recently, there has not been a systematic
study of local dynamics in higher dimension using normal forms. We will present in Chapter
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3 the recent results obtained using normal forms for non-formally linearizable resonant germs,
when the resonances are finitely generated. These germs are called multi-resonant.

Another reason could be given by the fact that, as we pointed out in Remark 1.30, Poincaré-
Dulac normal forms give no simplification in the tangent to the identity case. The local dynamics
of tangent to the identity germs in higher dimension has been extensively studied since the eighties
and we will present in the next chapter the description achieved so far, detailing our contribution
to it.

We end this section and this chapter by citing the results we know on local dynamics in higher
dimension in particular cases, without giving the precise statements.

We start by recalling that a local holomorphic invertible dynamical system with a hyperbolic
fixed point is always topologically linearizable [132, 133, 137] and the Stable Manifold Theorem
(see Wu [265] for a proof in the holomorphic category) gives us a description of the local dynamics
near a hyperbolic fixed point.

The local dynamics of semi-attractive dynamical systems has been studied by Fatou [117],
Nishimura [186], Ueda [251, 252], Hakim [134], Rivi [217, 218], Rong [226, 232]. Their results
more or less say that the eigenvalue 1 yields the existence of a manifoldM of a suitable dimension
where orbits converge to the origin, which lies in the boundary of M , while the eigenvalues with
modulus less than one ensure, roughly speaking, that the orbits of points in the normal bundle
of M close enough to M are attracted to it.

The local dynamics of parabolic-elliptic dynamical systems has been studied by Bracci and
Molino [56], Rong [221, 223], and Bracci and Rong [59]. Interesting very recent results generaliz-
ing Pérez-Marco’s results in dimension 2 for semi-indifferent germs, that is with eigenvalues λ, µ
with |λ| = 1 and |µ| < 1 are due to Firsova, Lyubich, Radu and Tanase in [118] and Lyubich,
Radu and Tanase in [177].





Chapter 2

Local dynamics of tangent to the
identity germs

In this chapter we will deal with the local dynamics of tangent to the identity germs in higher
dimension. that is F ∈ End(Cn, O) whose local expansion as sum of homogeneous polynomials
is

F (z) = z + Pν+1(z) + · · · , (2.1)

where Pν+1 is the first non-zero term in the homogeneous expansion of F , and ν+1 ≥ 2 is called
the multiplicity or order of F .

We will start by briefly recalling the main results in this setting, before focusing on our latest
contribution and its applications to this topic. We refer to the interesting and complete survey
[11] and references therein for a more detailed exposition of the state of the art.

In the following we will denote by End1(Cn, O) the set of germs of holomorphic endomor-
phisms of Cn fixing the origin O ∈ Cn and tangent to the identity, and by Diff(Cn, O) the set of
germs of holomorphic diffeomorphisms of Cn fixing the origin O ∈ Cn.

2.1 Leau-Fatou flowers in higher dimension: petals
The natural question arising here is whether it is possible to find a multi-dimensional version of
the Leau-Fatou flower theorem, giving a complete characterization of the local dynamics in a full
neighbourhood of the origin.

A first special situation is when F admits a non-trivial one-dimensional F -invariant curve
passing through the origin, that is an injective holomorphic map ψ : ∆ → Cn, where ∆ ⊂ C
is a neighbourhood of the origin, such that ψ(0) = O, ψ′(0) 6= O and F

(
ψ(∆)

)
⊆ ψ(∆) with

F |ψ(∆) 6≡ Id. In this case in fact we can apply Leau-Fatou flower theorem to F |ψ(∆) obtaining a
one-dimensional Fatou flower for F inside the invariant curve. In particular, if z̃ ∈ ψ(∆) belongs
to an attractive petal, we have F ◦k(z̃) → O and [F ◦k(z̃)] → [ψ′(0)], where [·] : Cn \ {O} →
Pn−1(C) is the canonical projection. It turns out that [ψ′(0)] cannot be any direction in Pn−1(C)
as proven by Hakim (see also [26]).

Proposition 2.1 (Hakim, [135]). Let F (z) = z + Pν+1(z) + · · · ∈ End1(Cn, O) be tangent to
the identity of order ν + 1 ≥ 2. Assume there is z̃ in a neighbourhood of the origing such that
F ◦k(z̃)→ O and [F ◦k(z̃)]→ [v] ∈ Pn−1(C). Then Pν+1(v) = λv for some λ ∈ C.

This leads to the following definition.

29
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Definition 2.2. Let P : Cn → Cn be a homogeneous polynomial map. A direction [v] ∈ Pn−1(C)
is characteristic for P if P (v) = λv for some λ ∈ C. Furthermore, we shall say that [v] is
degenerate if P (v) = O, and non-degenerate otherwise.

From now on, given F ∈ End1(Cn, O) tangent to the identity of order ν + 1 ≥ 2, every
notion/object/concept introduced for its leading term Pν+1 will be introduced also for F ; for
instance, a (degenerate/non-degenerate) characteristic direction for Pν+1 will also be a (degene-
rate/non-degenerate) characteristic direction for F .

Characteristic directions always exist, and it is not difficult to show (see for example [23])
that a generic F has exactly (νn− 1)/(ν− 1) characteristic directions, counted with respect to a
suitable multiplicity, but it can also happen that for special germs all directions are characteristic.

Definition 2.3. We shall say that P is dicritical if all directions are characteristic; non-dicritical
otherwise.

The local dynamics of dicritical tangent to the identity germs has been investigated by
Brochero-Martínez in [68, 69]. In the following we will only consider non-dicritical tangent
to the identity germs.

Remark 2.4. Note that if F ∈ End1(Cn, O) is given by (2.1), then the local expansion of
F−1 ∈ End1(Cn, O) is given by

F−1(z) = z − Pν+1(z) + · · · .

In particular, F and F−1 have the same (degenerate/non-degenerate) characteristic directions.

If we have an F -invariant one-dimensional curve ψ through the origin then [ψ′(0)] must
be a characteristic direction, and if ψ : ∆ → Cn is a one-dimensional curve with ψ(0) = O and
ψ′(0) 6= O such that F |ψ(∆) ≡ Id, it is easy to see that [ψ′(0)] must be a degenerate characteristic
direction for F . However, in general there are non-degenerate characteristic directions which are
not tangent to any F -invariant curve passing through the origin.

Example 2.5 (Hakim, [135]). The germ F ∈ End(C2, O) given by

F (z, w) =

(
z

1 + z
, w + z2

)
,

is tangent to the identity of order 1, and P2(z, w) = (−z2, z2). In particular, F has a degenerate
characteristic direction [0 : 1] and a non-degenerate characteristic direction [v] = [1 : −1]. The
degenerate characteristic direction is tangent to the curve {z = 0}, which is pointwise fixed by F .
No F -invariant curve can be tangent to [v].

Ribón has given in [216] examples of germs having no holomorphic invariant curves at all.
For instance, this is the case for germs of the form F (z, w) = (z+w2, w+ z2 +λz5) for all λ ∈ C
outside a polar Borel set.

The first result that we would like to cite here states that we do always have a Fatou flower
tangent to a non-degenerate characteristic direction, even when there are no invariant complex
curves containing the origin in their relative interior. To state it, we need to give a definition of
petal in this multidimensional setting.

Definition 2.6. A parabolic curve for F ∈ End1(Cn, O) tangent to the identity is an injective
holomorphic map ϕ : D → Cn \ {O} satisfying the following properties:
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(i) D is a simply connected domain in C with 0 ∈ ∂D;

(ii) ϕ is continuous at the origin, and ϕ(0) = O;

(iii) ϕ(D) is F -invariant, and (F |ϕ(D))
◦k → O uniformly on compact subsets as k → +∞.

Furthermore, if [ϕ(ζ)] → [v] in Pn−1(C) as ζ → 0 in D, we shall say that the parabolic curve
ϕ is tangent to the direction [v] ∈ Pn−1(C). Finally, a Fatou flower with ν petals tangent to a
direction [v] is a holomorphic map Φ: Dν,δ → C, where

Dν,δ = {z ∈ C | |zν − δ| < δ}

is such that Φ restricted to any connected component of Dν,δ is a parabolic curve tangent to [v],
a petal of the Fatou flower. If ν is the order of F then we shall talk of a Fatou flower for F
without mentioning the number of petals.

Écalle, using his resurgence theory, and Hakim, using more classical methods, have proved
the following result (see also [259]), of which a proof in full generality can be found in [26].

Theorem 2.7 (Écalle [99], Hakim [135, 136]). Let F ∈ End(Cn, O) be tangent to the identity,
and [v] ∈ Pn−1(C) a non-degenerate characteristic direction for F . Then there exists (at least)
one Fatou flower tangent to [v]. Furthermore, for every petal ϕ : ∆ → Cn of the Fatou flower
there exists a Fatou coordinate, that is an injective holomorphic map χ : ϕ(∆) → C such that
χ
(
f(z)

)
= χ(z) + 1 for all z ∈ ϕ(∆).

A characteristic direction is a complex direction, not a real one; so it should not be confused
with the attracting/repelling directions of Leau-Fatou Flower Theorem 1.18. All petals of a
Fatou flower are tangent to the same characteristic direction, but each petal is tangent to a
different real direction inside the same complex (characteristic) direction. In particular, Fatou
flowers of F and F−1 are tangent to the same characteristic directions but the corresponding
petals are tangent to different real directions, as in Leau-Fatou Flower Theorem 1.18.

In particular for the germ of Example 2.5 there exist parabolic curves tangent to [1 : −1]
even though there is no invariant curve passing through the origin tangent to that direction.

Theorem 2.7 applies to germs tangent to the identity having non-degenerate characteristic
directions. However, it is not difficult to find examples of germs having only degenerate charac-
teristic directions. In dimension 2 it is possible to obtain Fatou flowers also in this case.

Theorem 2.8 (Abate [8]). Every germ F ∈ End(C2, O) tangent to the identity, with the origin
as an isolated fixed point, admits at least one Fatou flower tangent to some direction.

Abate proved in [8] a more general version of this result and we refer to [11] for its statement
and a sketch of the proof.

Other interesting results in parabolic curves for tangent to the identity germs can be found
in [23, 14, 51, 61, 183, 217, 224, 225, 228].

We end this section by mentioning that Abate and Tovena studied in [24] the dynamics of
time-1 maps of n-dimensional homogeneous vector fields, reducing it to a study of singular holo-
morphic foliations in Riemann surfaces of Pn−1(C) and of geodesics for meromorphic connections
on Riemann surfaces. Since a singular holomorphic foliation in P1(C) is completely determined
by its finite set of singular points, when n = 2 the problem reduces to the study of geodesics for
a meromorphic connection on P1(C).

They introduced a refined classification for characteristic directions in dimension 2. Given
ν ≥ 1 and Pν+1 = (Q1(z, w), Q2(z, w)) a homogeneous polynomial map of C2 of degree ν+ 1, we
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clearly have that [1 : u0] is a characteristic direction when Q2(1, u0) = u0Q1(1, u0). Equivalently
if we define g2(u) = Q2(1, u)− uQ1(1, u), then [1 : u0] is a characteristic direction if g2(u0) = 0.
Define g1(u) = Q1(1, u).

Let µj(u0) ∈ N be the order of vanishing of gj at u0. Then we say that the direction given
by [1 : u0] is:

• an apparent characteristic direction if µ2(u0) < µ1(u0) + 1,

• a Fuchsian characteristic direction if µ2(u0) = µ1(u0) + 1,

• an irregular characteristic direction if µ2(u0) > µ1(u0) + 1.

As we shall recall in Section 2.2.1, it is possible to associate holomorphic invariants to char-
acteristic directions. Here, we have the index of a characteristic direction i[1:u0], which is defined
as the residue Resu=u0

g1(u)
g2(u) .

Abate and Tovena gave a complete description of the dynamics for a substantial class of
examples in C2 (we refer to [11, Section 6] for the definitions). For instance, they were able to
completely describe the dynamics of most vector fields of the form

H(z, w) =
(
ρz2 + (1 + τ)zw

) ∂
∂z

+
(
(1 + ρ)zw + τw2

) ∂
∂w

.

Proposition 2.9 (Abate, Tovena [24]). Let H ∈ X ν+1
2 be a homogeneous vector field on C2

of degree ν + 1 ≥ 2. Assume that H is non-dicritical and all its characteristic directions are
Fuchsian of multiplicity 1. Assume moreover that for no set of characteristic directions the real
part of the sum of the induced residues belongs to the interval (−3/2,−1/2). Let γ : [0, ε0)→ C2

be a maximal integral curve of H. Then:

(a) if γ(0) belongs to a characteristic leaf Lv0
, then the image of γ is contained in Lv0

and
moreover, either γ(t)→ O (and this happens for a Zariski open dense set of initial conditions
in Lv0), or ‖γ(t)‖ → +∞;

(b) if γ(0) does not belong to a characteristic leaf then either

(i) γ converges to the origin tangentially to a characteristic direction [v0] whose index has
positive real part, or

(ii) ‖γ(t)‖ → +∞ tangentially to a characteristic direction [v0] whose index has negative
real part.

Furthermore, case (i) happens for a Zariski open set of initial conditions.

The conditions in Proposition 2.9 imply that there must be at least one index with positive
real part.

2.1.1 The formal infinitesimal generator
A different approach to the study of parabolic curves in C2 has been suggested by Brochero-
Martínez, Cano and López-Hernanz [70], and further developed by Câmara and Scárdua [81],
López-Hernanz and Sánchez [173], López-Hernanz, R., Ribón and Sánchez [174], and López-
Hernanz and Rosas [175]. It consists in using the formal infinitesimal generator of a germ
tangent to the identity. To describe this approach, we need to introduce several definitions.
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Definition 2.10. We shall denote by Ôn = C[[z1, . . . , zn]] the space of formal power series in n
variables. The order ord(̂̀) of ̂̀∈ Ôn is the lowest degree of a non-vanishing term in the Taylor
expansion of ̂̀. A formal map is a n-tuple of formal power series in n variables; the space of
formal maps will be denoted by Ôn

n
. We shall denote by Ênd(Cn, O) the set of formal maps with

vanishing constant term; by Ênd1(Cn, O) the subset of formal maps tangent to the identity, and
by Êndν(Cn, O) the subset of formal maps tangent to the identity of order at least ν ≥ 1.

Definition 2.11. We shall denote by Xn the space of germs at the origin of holomorphic vector
fields in Cn. A formal vector field is an expression of the form X̂ = X̂1

∂
∂z1

+ · · ·+ X̂n
∂
∂zn

where
X̂1, . . . , X̂n ∈ Ôn are the components of X̂. The space of formal vector fields will be denoted by
X̂n. The order ord(X̂) of X̂ ∈ X̂n is the minimum among the orders of its components. We put
X̂ kn = {X̂ ∈ X̂n | ord(X̂) ≥ k}. If X̂ ∈ X̂ kn , the principal part of X̂ will be the unique polynomial
homogeneous vector field Hk of degree exactly k such that X̂ − Hk ∈ X̂ k+1

n . A characteristic
direction for X̂ is an invariant line for Hk.

Remark 2.12. There is a clear bijection between X̂n and Ôn
n

obtained by associating to a
formal vector field the n-tuple of its components; so we shall sometimes identify formal vector
fields and formal maps without comments. In particular, this bijection preserves characteristic
directions.

If X ∈ Xn is a germ of holomorphic vector field vanishing at the origin (that is, of order at
least 1), the associated time-1 map FX will be a well-defined germ in End(Cn, O), that can be
recovered as follows (see, e.g., [70]):

FX =
∑
k≥0

1

k!
X(k)(Id) , (2.2)

where X(k) is the k-th iteration of X thought of as derivation of End(Cn, O). Now, not every
germ in End(Cn, O) can be obtained as a time-1 map of a convergent vector field (see, e.g., [150,
Theorem 21.31]). However, it turns out that the right-hand side of (2.2) is well-defined as a
formal map for all X ∈ X̂ 1

n .

Definition 2.13. The exponential map exp: X̂ 1
n → Ênd(Cn, O) is defined by the right-hand side

of (2.2).

When k ≥ 2, if X̂ ∈ X̂ kn has principal part Hk then it is easy to check that

exp(X̂) = Id +Hk + h.o.t. . (2.3)

In particular, the exponential of a formal vector field of order k is a formal map tangent to the
identity of order k − 1. Takens (see, e.g., [150, Theorem 3.17]) has shown that on the formal
level the exponential map is bijective:

Proposition 2.14. The exponential map exp: X̂ ν+1
n → Êndν(Cn, O) is bijective for all ν ≥ 1.

Definition 2.15. If F̂ ∈ Êndν(Cn, O), the unique formal vector field X̂ ∈ X̂ ν+1
n such that

exp(X̂) = F̂ is the formal infinitesimal generator of F̂ .

The idea is then to read properties of a holomorphic germ tangent to the identity from
properties of its formal infinitesimal generator, using Theorem 2.7 as a bridge for going back
from the formal side to the holomorphic side.
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Let π : (C̃2, E)→ (C2, O) be the blow-up of the origin. If X̂ ∈ X̂ 2
2 is a formal vector field and

[v] ∈ E is a characteristic direction of (the principal part of) X̂, then we can find a formal vector
field X̂[v] ∈ X̂ 2

2 such that dπ(X̂[v]) = X̂ ◦ π. This lifting is compatible with the exponential in
the following sense.

Proposition 2.16 (Brochero-Martínez, Cano, López-Hernanz, [70]). Let F ∈ End1(C2, O) be
tangent to the identity with formal infinitesimal generator X̂ ∈ X̂ 2

2 , and let F̃ ∈ End(C̃2, E) be
the lifting of F . Let [v] ∈ E be a characteristic direction of F , and denote by F̃[v] the germ of F̃
at [v]. Then F̃[v] = exp(X̂[v]).

In particular, Brochero-Martínez, Cano and López-Hernanz’s proof of Theorems 2.8 go as
follows: let X̂ ∈ X̂ 2

2 be the formal infinitesimal generator of F ∈ End1(C2, O) with an isolated
fixed point (so that X̂ has an isolated singular point at the origin). Then the formal version
of Camacho-Sad’s theorem shows that we can find a finite composition π : (M,E) → (C2, O) of
blow-ups at singular points and a smooth point p ∈ E such that the lifting X̂p of X̂, in suitable
coordinates centered at p adapted to E (in the sense that E is given by the equation {z = 0}
near p), has the expression

X̂p(z, w) = zm
((
λ1z +O(z2)

) ∂
∂z

+
(
λ2w +O(z)

) ∂
∂w

)
with λ1 6= 0, λ2/λ1 /∈ Q+ and m ≥ ord(X̂)− 1. Then exp(X̂p) has the form

exp(X̂p)(z, w) =
(
z + λ1z

m+1 +O(zm+2), w + λ2z
mw +O(zm+1)

)
,

which has a non-degenerate characteristic direction transversal to E — and hence a Fatou flower
outside the exceptional divisor. By Proposition 2.16, exp(X̂p) is the blow-up of exp(X̂) = F ;
therefore projecting this Fatou flower down by π we obtain a Fatou flower for F .

In [81] and [173] this approach has been pushed further showing how to relate formal sepa-
ratrices and parabolic curves.

Definition 2.17. A formal curve Ĉ in (C2, 0) is a reduced principal ideal of Ô2. Any generator
of the ideal is an equation of the curve; the equation is defined up to an unit in Ô2. The tangent
cone of a formal curve Ĉ is the set of zeros of the homogeneous part of least degree of any equation
of Ĉ; the tangent directions to Ĉ are the points in P1(C) determined by the tangent cone.

It is known that a formal curve Ĉ is irreducible if and only if it has a unique tangent direction.

Definition 2.18. Let X̂ ∈ X̂ 2
2 . A singular formal curve for X̂ is a formal curve Ĉ = (̂̀) such

that X̂ = ̂̀X̂1 for some X̂ ∈ X̂ 1
2 . A formal separatrix of X̂ is a formal curve Ĉ = (̂̀) such that

X̂(̂̀) ∈ (̂̀). Clearly singular formal curves are formal separatrices.

The corresponding notions for germs tangent to the identity are:

Definition 2.19. Let F ∈ End1(C2, O). A formal curve Ĉ = (̂̀) is a formal separatrix for F if̂̀◦ f ∈ (̂̀). In particular, this means that F acts by composition on Ô2/(̂̀); if the action is the
identity, we say that Ĉ is completely fixed by F . Notice that Ĉ is completely fixed by F if and
only if we can write F = Id +̂̀̂g for some ĝ ∈ Ô2

2.

Proposition 2.20 (Camara, Scardua, [81]). Let X̂ ∈ X̂ 2
2 be the formal infinitesimal generator

of F ∈ End1(C2, O). Then:
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(i) a formal curve is a formal separatrix for F if and only if it is a formal separatrix for X̂;

(ii) a formal curve is completely fixed for F if and only if it is a singular formal curve for X̂;

(iii) a completely fixed curve for F always has a convergent equation;

(iv) the tangent directions to a formal separatrix are characteristic directions for F , and the
tangent directions to a completely fixed curve are degenerate characteristic directions for F .

Let Ĉ = (̂̀) be a formal curve, and [v] ∈ P1(C) a tangent direction to Ĉ. If π : (C̃2, E) →
(C2, O) is the blow-up of the origin, we can find a formal curve π∗Ĉ[v] = (̂̀[v]) at [v] such that̂̀
[v] = ̂̀◦ π; the tangent directions to π∗Ĉ[v] are higher order tangent directions of Ĉ. This
construction can be iterated, and it gives a way of lifting formal curves along a finite sequence
of blow-ups. Using this idea, and a generalization of Hakim’s technique, López-Hernanz and
Sánchez have been able to prove the following result.

Theorem 2.21 (López-Hernanz and Sánchez, [173]). Let F ∈ End1(C2, O) be a germ tangent
to the identity admitting a formal separatrix Ĉ not completely fixed. Then F or F−1 (or both)
admit a parabolic curve tangent to (a tangent direction of) Ĉ.

Together with López-Hernanz, Ribón and Sánchez, we generalized this result in a more general
setting as we will explain in details in Section 2.3.

2.2 Leau-Fatou flowers in higher dimension: Parabolic man-
ifolds

Parabolic curves are one-dimensional objects in an n-dimensional space; it is natural to wonder
about the existence of higher dimensional invariant subsets. A sufficient condition for their
existence has been given by Hakim; to state it we need to introduce another definition.

Definition 2.22. Let [v] ∈ Pn−1(C) be a non-degenerate characteristic direction for a homo-
geneous map P : Cn → Cn of degree ν + 1 ≥ 2; in particular, [v] is a fixed point for the mero-
morphic self-map [P ] of Pn−1(C) induced by P . The directors of P in [v] are the eigenvalues
α1, . . . , αn−1 ∈ C of the linear operator

1

ν

(
d[P ][v] − Id

)
: T[v]Pn−1(C)→ T[v]Pn−1(C) .

As usual, if F ∈ End1(Cn, O) is of the form (2.1), then the directors of F in a non-degenerate
characteristic direction [v] are the directors of Pν+1 in [v]. If all the directors of [v] have strictly
positive real parts, we call [v] a fully attractive non-degenerate characteristic direction of h.

Note that if [v] is a non-degenerate characteristic direction of a homogeneous map P of degree
ν + 1 ≥ 2, and P (v) = λv. Then, up to replacing v by (−νλ)−1/νv, we can assume

P (v) = −1

ν
v. (2.4)

Definition 2.23. A representative v of [v] such that (2.4) is satisfied is called normalized.

Note that a normalized representative is uniquely determined up to multiplication by ν-th
roots of unity.
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Remark 2.24. Note that with this definition, in dimension 1 each tangent to the identity germ
has exactly one non-degenerate characteristic direction which is clearly fully attractive.

We showed in [26] that Definition 2.22 is equivalent to the original definition used by Hakim.
Furthermore, in dimension 2 if [v] = [1 : 0] is a non-degenerate characteristic direction of P =
(P1, P2) we have P1(1, 0) 6= 0, P2(1, 0) = 0 and the director can be easily computed:

1

ν

d

dζ

P2(1, ζ)− ζP1(1, ζ)

P1(1, ζ)

∣∣∣∣
ζ=0

=
1

ν

[
∂P2

∂z2
(1, 0)

P1(1, 0)
− 1

]
.

Remark 2.25. Recalling Remark 2.4 one sees that a germ F ∈ End1(Cn, O) tangent to the
identity and its inverse F−1 have the same directors at their non-degenerate characteristic di-
rections.

Definition 2.26. A parabolic manifold for a germ F ∈ End1(Cn, O) tangent to the identity is
an F -invariant complex submanifold M ⊂ Cn \ {O} with O ∈ ∂M such that F ◦k(z) → O for
all z ∈ M . A parabolic domain is a parabolic manifold of dimension n. We shall say that M
is centered at the characteristic direction [v] ∈ Pn−1(C) if furthermore [F ◦k(z)] → [v] for all
z ∈M .

Hakim proved (see also [26] for the details of the proof) the following result.

Theorem 2.27 (Hakim [136]). Let F ∈ End1(Cn, O) be tangent to the identity of order ν+1 ≥ 2.
Let [v] ∈ Pn−1(C) be a non-degenerate characteristic direction, with directors α1, . . . , αn−1 ∈ C.
Furthermore, assume that Reα1, . . . ,Reαd > 0 and Reαd+1, . . . ,Reαn−1 ≤ 0 for a suitable d ≥ 0.
Then:

(i) There exist (at least) ν parabolic (d+ 1)-manifolds M1, . . . ,Mν of Cn centered at [v];

(ii) F |Mj
is holomorphically conjugated to the translation τ(w0, w1, . . . , wd) = (w0+1, w1, . . . , wd)

defined on a suitable right half-space in Cd+1.

2.2.1 Parabolic domains
Theorem 2.27 yields conditions ensuring the existence of parabolic domains attached to a non-
degenerate characteristic direction. In fact, if all the directors of [v] have positive real part, there
is at least one parabolic domain.

Theorem 2.28 (Hakim [136]). Let F ∈ End1(Cn, O) be tangent to the identity of order ν+1 ≥ 2.
Let [v] ∈ Pn−1(C) be a fully attractive non-degenerate characteristic direction for F . Then there
exist ν parabolic domains such that F ◦j(z) 6= 0 for all j and limj→∞[F ◦j(z)] = [v] for all fixed
z in one such a parabolic domain. Moreover, if v is a normalized representative of [v], then the
parabolic domains can be chosen of the form

M i
R,C = {(x, y) ∈ C× Cn−1 : x ∈ Πi

R, ‖y‖ < C|x|}, (2.5)

where Πi
R, i = 1, . . . , k0, are the connected components of the set ∆R = {x ∈ C : |xk0− 1

2R | <
1

2R},
and R > 0 is sufficiently large.

However, the condition given by Theorem 2.27 is not necessary for the existence of parabolic
domains as shown for instance in [217] and [24], and in [229] where Rong gives conditions ensuring
the existence of a parabolic domain when some directors have strictly positive real part and the
others are equal to zero. Moreover, Lapan [166] has proved that if n = 2 and F has a unique
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characteristic direction [v] which is non degenerate then there exists a parabolic domain centered
at [v] even though the director is necessarily 0.

In dimension 2, Vivas has found conditions ensuring the existence of a parabolic domain
attached to Fuchsian and irregular degenerate characteristic directions, and Rong has found in
[230] conditions ensuring the existence of a parabolic domain attached to apparent degenerate
characteristic directions. Very recently, Lapan [167] has extended Rong’s approach to cover more
types of degenerate characteristic directions.

More precisely, Vivas has proved the following result:

Theorem 2.29 (Vivas [254]). Let F ∈ End1(C2, O) be tangent to the identity of order ν+1 ≥ 2,
with O non-dicritical. Let [v] ∈ P1(C) be a characteristic direction, and f̃ the blow-up of F .
Denote by µ + 1 ≥ 2 the multiplicity, by τ ≥ 0 the transversal multiplicity, by ι ∈ C the index,
and by νo ≥ 1 the pure order of f̃ at [v]. Assume that either

(a) [v] is Fuchsian (thus necessarily τ ≥ 1 because [v] is degenerate) and

Re(ι) + τ > 0 ,
∣∣∣ι+

τ

2
− νµ

2

∣∣∣ > τ

2
+
νµ

2
,

or

(b) [v] is Fuchsian, νo = 1 and ∣∣∣ι− µν

2

∣∣∣ < µν

2
,

or

(c) [v] is Fuchsian, νo > 1 and

Reι+ τ > 0 ,

∣∣∣∣ι− (ν + 1)τ

2

∣∣∣∣ > (ν + 1)τ

2
,

or

(d) [v] is irregular.

Then there is a parabolic domain centered at [v].

2.3 Formal invariant curves
In collaboration with López-Hernanz, Ribón and Sanz-Sánchez we investigated in [174] the local
dynamics of germs of holomorphic diffeomorphisms of C2 having a formal invariant curve. We
will explain here the result we obtained and its consequences in the tangent to the identity case.

Let F ∈ Diff(Cn, O) be a germ of a holomorphic diffeomorphism. Recall that a stable set of
F is a subset B ⊂ V of an open neighbourhood V of 0 where F is defined, which is invariant,
i.e. F (B) ⊂ B, and such that the orbit of each point of B converges to 0. If B is an analytic,
locally closed submanifold of V then we say that B is a stable manifold of F (in V ).

As we briefly recalled in Chapter 1, for one-dimensional local diffeomorphisms the existence
of stable manifolds depends mainly on the multiplier λ = F ′(0) ∈ C. More precisely, F has
non-trivial stable manifolds when F is (hyperbolic) attracting (|λ| < 1), in which case a whole
neighbourhood of 0 ∈ C is a stable manifold, or parabolic (λ is a root of unity) and non-periodic,
in which case the attracting petals of Leau-Fatou Flower Theorem 1.18 are stable manifolds. In
the remaining cases, (hyperbolic) repelling (|λ| > 1), periodic or irrationally neutral (|λ| = 1 and
λ is not a root of unity), the origin itself is the only stable manifold of F in any neighbourhood.
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In [174] we studied the case of a planar diffeomorphism F ∈ Diff(C2, O) and we look for
stable manifolds consisting of orbits which are asymptotic to a given invariant formal curve
Γ. Moreover, we described a family of such stable manifolds whose union captures any orbit
asymptotic to Γ. Following the terminology adopted by Ueda in [251], we constructed a base of
the set of orbits asymptotic to Γ which is a union of stable manifolds. Our assumptions in order
to guarantee the existence of such stable manifolds are just the necessary conditions inherited
from the one-dimensional dynamics induced by F on Γ and we required no further hypotheses
on the linear part at the origin DFO.

We will now describe our main result in more precise terms. We will discuss at the end of
this chapter its relations with some of the results mentioned earlier.

Recall that a formal curve Γ at O ∈ C2 is a reduced principal ideal of C[[x, y]]. It is called
irreducible if Γ is a prime ideal. We say that Γ is invariant by F , or F -invariant, if Γ ◦ F = Γ.
If Γ is irreducible and F -invariant then we can consider the restriction F |Γ, which is a formal
diffeomorphism in one variable (see Section 2).

A formal irreducible curve Γ0 is m-periodic if Γ0 ◦ F ◦m = Γ0 and m is the minimum positive
integer holding such property. In that case, the formal curve

Γ =

m−1⋂
j=0

Γ0 ◦ F ◦j

is F -invariant. Note that if Γ0 defines an analytic curve V (Γ0) then V (Γ) = ∪m−1
j=0 F

◦j(V (Γ0)).
Thus V (Γ) is the minimal F -invariant curve containing V (Γ0). Equivalently, Γ is the maximal
F -invariant ideal contained in Γ0, this conclusion being valid also in the formal setting. We say
that Γ is the invariant curve associated to Γ0. In this case, the irreducible components of Γ are
the m-periodic curves Γj := Γ0 ◦ F ◦j for j = 0, ...,m− 1.

Given a m-periodic curve Γ0 of F , a non-trivial orbit O of F is said to be asymptotic to the
associated invariant curve Γ if it converges to the origin and, for any finite composition of blow-
ups of points σ : M → C2, the ω-limit of the lifted sequence σ−1(O) is contained in the finite set
determined by the components of Γ in the exceptional divisor σ−1(O) (see [174, Section 2] for
details).

Our main result can be stated as follows.

Theorem 2.30 (López-Hernanz, R., Ribón, Sanz-Sánchez [174]). Consider F ∈ Diff(C2, O)
and let Γ0 be a formal m-periodic curve of F whose associated invariant curve is denoted by
Γ. Assume that the restriction F ◦m|Γ0 is either attracting or parabolic and non-periodic. Then,
in any sufficiently small open neighbourhood V of 0, there exists a non-empty finite family of
pairwise disjoint stable manifolds S1, ..., Sr ⊂ V of F of pure positive dimension and with finitely
many connected components such that the orbit of every point in Sj is asymptotic to Γ and such
that any orbit of F asymptotic to Γ is eventually contained in S1 ∪ · · · ∪ Sr.

It is worth mentioning that a diffeomorphism F ∈ Diff(C2, O) always has a formal periodic
curve by a result of Ribón [216], although as we mentioned before they may be all divergent and
non-invariant.

Roughly speaking, Theorem 2.30 can be interpreted by saying that the condition ensuring the
existence of stable manifolds in dimension 1 also provides (applied to F |Γ) stable manifolds of
orbits asymptotic to Γ. Although these hypotheses are not necessary in general, if they are not
satisfied then one can find simple examples where no orbit asymptotic to Γ exists. In the case
where F |Γ is hyperbolic, being attracting is a necessary condition for having orbits asymptotic
to Γ. In the case where F |Γ is periodic (and hence parabolic), since the set of fixed points of a
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diffeomorphism is an analytic set, either F is itself periodic or Γ is convergent. In the first case,
there are no non-trivial orbits converging to the origin; in the second case, there are examples
with no asymptotic orbits (for instance F (x, y) = (−x, 2y) and Γ = (y)) and examples with
asymptotic orbits (for instance F = Exp(y(x2∂/∂x + y∂/∂y)) and Γ = (y)). In the case where
F |Γ is irrationally neutral, although we can also find simple linear examples with no asymptotic
orbits, we still do not know whether there are examples with asymptotic orbits.

2.3.1 Idea of the proof of Theorem 2.30
It suffices to prove Theorem 2.30 in the case of an irreducible formal invariant curve, that is
m = 1. In fact, if Γ0 is m-periodic we can apply the theorem to F ◦m and the F ◦m-invariant
irreducible curve Γ0. Let F0 = {S1, ..., Sr} be a family of stable manifolds of F ◦m obtained
for a domain V in which every F ◦j , for j = 1, ...,m − 1, is defined and injective, and set
F = {∪m−1

j=0 F
◦j(S1), . . . ,∪m−1

j=0 F
◦j(Sr)}. Then F is a family with the required properties of

Theorem 2.30 for F and the invariant curve Γ. Notice that, since each component of Γ is
invariant under F ◦m, the points determined by Γ in the exceptional divisor after blow-ups are
fixed points for the corresponding transform of F ◦m. Therefore, an orbit O = {F ◦n(p)}n≥0 of
F is asymptotic to Γ if and only if each one of the m orbits Oj = {Fnm+j(p)}n≥0 of F ◦m for
j = 0, ...,m − 1 is asymptotic to one and only one of the components of Γ. Hence, the orbit
under F ◦m of a point in F j(Si) is asymptotic to Γj = F j(Γ0) for any j = 0, ...,m − 1 and any
i = 1, ..., r and thus F j(Si) ∩ F k(Sl) = ∅ whenever i 6= l and j, k ∈ {0, . . . ,m− 1}.

After this first reduction, the proof of Theorem 2.30 is divided into the two situations for F |Γ,
namely hyperbolic attracting or parabolic, since the arguments and the structure of the stable
manifolds Sj are notably different in both cases.

Hyperbolic attracting case

The result in the case where F |Γ is hyperbolic attracting is a consequence of the classical Stable
Manifold and Hartman-Grobman Theorems for diffeomorphisms. We show that Γ is an analytic
curve eventually containing any orbit of F which is asymptotic to Γ. Indeed the hyperbolic case
can be characterized in terms of the family of stable manifolds F = {S1, . . . , Sr} provided by
Theorem 2.30 in the following way: F |Γ is hyperbolic if and only if Sj is a germ of analytic
curve at 0 for some 1 ≤ j ≤ r and in this case F = {Γ \ {0}}. We also prove that Γ is either
non-singular or a cusp yp = xq in some coordinates and that, in this last case, F is analytically
linearizable.

The precise statement is the following.

Theorem 2.31 ([174, Theorem 2.5]). Let F ∈ Diff(C2, O) and let Γ be an invariant formal
curve of F . Assume that Γ is hyperbolic attracting. Then Γ is a germ of an analytic curve at the
origin such that a (sufficiently small) representative of it is a stable manifold of F and contains
the germ of any orbit of F asymptotic to Γ.

Parabolic case

The case where F |Γ is parabolic is more involved. As usual, up to considering an iterate of F ,
we may assume that F |Γ is a parabolic formal diffeomorphism, i.e. (F |Γ)′(0) = 1.

The first step is to show that, after finitely many blow-ups along Γ, we can consider analytic
coordinates (x, y) at the origin such that Γ is non-singular and tangent to the x-axis and F is of
the form

x ◦ F (x, y) = x− xk+p+1 +O(x2k+2p+1)
y ◦ F (x, y) = µ(y + xka(x)y +O(xk+p+1y, xk+p+2))

(2.6)
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where k ≥ 1, p ≥ 0 and a(x) is a polynomial of degree at most p with a(0) 6= 0. Notice that
k + p+ 1 is the order of contact with the identity of the restriction F |Γ and hence depends only
on F and Γ.

Let A(x) = A0 +A1x+ · · ·+Apx
p be the polynomial defined by the formula

logµ+ xk (A0 +A1x+ · · ·+Apx
p) = Jk+p

(
log
(
µ
(
1 + xka(x)

)))
,

where Jm denotes the truncation of a series up to degree m. As we mentioned in 2.1.1, the idea
behind this definition is that the jets of order k+ p+ 1 of F and of the exponential of the vector
field

Z = −xk+p+1 ∂

∂x
+ (logµ+ xkA(x))y

∂

∂y

coincide, and the dynamics of F and Exp(Z) are somewhat related.
The behaviour of the orbits of the toy model Exp(Z) converging to the origin and asymptotic

to the invariant curve y = 0, which plays the rôle of Γ, can be briefly described as follows. Given
such an orbit O = {(xn, yn)}, the sequence {xn} is an orbit of the one-dimensional parabolic
diffeomorphism x 7→ Exp(−xk+p+1 ∂

∂x ) and hence it converges to 0 ∈ C along a well-defined real
limit direction, necessarily one of the k + p half-lines ξR+ with ξk+p = 1, called the attracting
directions (they correspond to the central directions of the attracting petals in Leau-Fatou Flower
Theorem). On the other hand, Z has a first integral H(x, y) = yh(x), where

h(x) = exp

(∫
logµ+ xkA(x)

xk+p+1
dx

)
,

and the behaviour of the orbits of Exp(Z), since they are contained in fibers of H, depends on
the asymptotics of H in a neighbourhood of the corresponding attracting direction `.

Definition 2.32. An attracting direction ` = ξR+ is a node direction for (F,Γ) if(
log |µ|,Re

(
ξkA0

)
, ...,Re

(
ξk+p−1Ap−1

))
< 0

in the lexicographic order; otherwise, it is a saddle direction. In the case |µ| = 1, we define the
first asymptotic significant order of ` as p, if Re(ξk+jAj) = 0 for all 0 ≤ j ≤ p − 1, or as the
first index 0 ≤ r` ≤ p− 1 such that Re(ξk+r`Ar`) 6= 0, otherwise.

Therefore, up to making a linear change of variables so that ` = R+, we have that ` is a node
direction if (log |µ|,Re (A0) , ...,Re (Ap−1)) < 0 in the lexicographic order, and otherwise, ` is a
saddle direction.

In the simplest case where |µ| 6= 1, that is F is semi-hyperbolic, then ` is a saddle or a node
direction if |µ| > 1 or |µ| < 1, respectively. There exists a sector Ω ⊂ C bisected by ` in which
either h(x) or 1/h(x) is a flat function depending on whether ` is a saddle or a node direction,
respectively. Thus, the fibers of H in Ω × C behave correspondingly as a saddle (only y = 0 is
bounded) or a node (any fiber is bounded and asymptotic to y = 0). In the general case, we can
show a similar description for the fibers of H in Ω × C, where Ω is a domain of C containing `
which is not necessarily a sector. Moreover, Ω × C eventually contains any orbit {(xn, yn)} of
Exp(Z) such that {xn} has ` as a limit direction. We obtain that Ω×C (respectively Ω×{0}) is
a stable manifold of Exp(Z) when ` is a node direction (respectively saddle direction) composed
of orbits asymptotic to the curve y = 0. The family of these stable manifolds satisfies the
conclusions of Theorem 2.30.

For a general diffeomorphism F written in the reduced form (2.6), we obtain a similar de-
scription of the orbits asymptotic to Γ. In fact, we construct a family {S`} of stable manifolds
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of F , where ` varies in the set of attracting directions ` = ξR+, with ξk+p = 1, satisfying the
assertion of Theorem 2.30. In particular, for the case of a saddle direction we obtain that S` is a
parabolic curve, whereas in the case of a node direction we obtain that S` is a simply connected
open set.

More precisely we obtain the following result, whose strategy of the proof is analogous to the
one in [173], and inspired by the techniques used by Hakim in [135].

Theorem 2.33 (López-Hernanz, R., Ribón, Sanz-Sánchez [174, Theorem 2.5]). Consider F ∈
Diff(C2, O) and let Γ be an invariant formal curve of F . Assume that Γ is parabolic and that the
restricted diffeomorphism F |Γ is not periodic. Then, for any sufficiently small neighborhood V of
the origin, there exists a non empty finite family of mutually disjoint stable manifolds {S1, ..., Sr}
in V of pure positive dimension satisfying:

(i) Every orbit in the union S =
⋃r
j=1 Sj is asymptotic to Γ.

(ii) S contains the germ of any orbit of F asymptotic to Γ.

(iii) If n is the order of the inner eigenvalue λΓ as a root of unity, then each Sj is a finite union
of n connected and simply connected mutually disjoint stable manifolds Sj1, . . . , Sjn of the
iterated diffeomorphism F ◦n (i.e. either parabolic curves or open stable sets of F ◦n). In
fact, Sji = F (Sj,i−1) for i = 2, ..., n and for any j.

Moreover, if dim(Sj) = 1 then Sj is asymptotic to Γ. If dim(Sj) = 2, one can also choose Sj to
be asymptotic to Γ.

2.3.2 Consequences of Theorem 2.30
A first consequence of our results in [174] is the following generalization of the results in [56] and
[173].

Theorem 2.34 (López-Hernanz, R., Ribón, Sanz-Sánchez [174, Theorem 2]). Let F ∈ Diff(C2, O).
Let Γ be an irreducible formal invariant curve of F such that F |Γ is parabolic, with F |Γ 6= Id,
and assume that Spec(DFO) = {1, µ}, with |µ| ≥ 1. Then there exists a parabolic curve for F ,
which is asymptotic to Γ.

This result gives a positive answer to the question stated in [33] concerning the existence of
parabolic curves for the polynomial maps used in our construction of wandering domain.

We can also compare our approach to find stable manifolds with some special situations for
the diffeomorphism F already treated in the literature.

Semi-hyperbolic attracting case: |µ| < 1. In this case, every attracting direction is a
node direction. We obtain r = k + p open stable manifolds whose union forms a base for the
set of orbits of F asymptotic to Γ. This case is the one considered by Ueda in [251], and our
unified point of view recovers his result (observe that in the semi-hyperbolic case, the Poincaré-
Dulac normal form F̃ of F has a unique formal invariant curve Γ̃ such that the restriction F̃ |Γ̃
is parabolic and hence so does F ).

Semi-hyperbolic repelling case: |µ| > 1. In this case, every attracting direction is
a saddle direction and we obtain r = k + p parabolic curves, defined as graphs of holomorphic
functions over open sectors in the x-variable, whose union is a base of the set of orbits asymptotic
to Γ. This case is also treated by Ueda in [252] and we again recover his conclusion.

Briot-Bouquet case: Spec(DFO) = {1} and p = 0. In this case, every attracting direction
is a saddle direction. We obtain, as in Écalle [99] and Hakim [135], that there exist k parabolic
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curves of F whose union is a base of convergent orbits asymptotic to Γ (notice that the tangent
direction of Γ in this case is a characteristic direction of F ). This result was used by Abate [8]
(see also [70]) to show that every tangent to the identity diffeomorphism with isolated fixed point
has a parabolic curve.

Parabolic-Elliptic case: Spec(DFO) = {1, µ}, with |µ| = 1, µ not a root of unity and
p = 0. In this case, every attracting direction is a saddle direction, and Bracci and Molino [56]
proved the existence of k parabolic curves of F . Since in this case there exists a formal invariant
curve Γ such that F |Γ is parabolic, using the Poincaré-Dulac normal form, our approach recovers
their result and generalizes it to the case p > 0.

Parabolic López and Sanz case: Spec(DFO) = {1} and Re(A0) > 0. This is a particular
case of a saddle direction, and López and Sanz proved in [173] the existence of a parabolic curve
of F asymptotic to Γ. Following the same arguments (which are in turn a modification of Hakim’s
proof in [135]) we recovered that result and generalize it for an arbitrary saddle direction.

Parabolic Rong case: Spec(DFO) = {1} and Re(A0) < 0. This is a particular case
of a node direction, and Rong proved in [230] the existence of an open stable manifold. Note
that, since A0 6= 0, applying Briot-Bouquet’s theorem to the infinitesimal generator of F we
conclude that there always exists a formal invariant curve Γ such that F |Γ is parabolic. Hence,
our approach recovers Rong’s result and generalizes it for an arbitrary node direction.

Stable manifolds for non-dicritical tangent to the identity germs in C2.

Theorem 2.30 is the key result in the following result obtained by López-Hernanz and Rosas in
[175] which gives a positive answer to the question whether every characteristic direction for a
non-dicritical tangent to the identity germs in C2 has some stable dynamics associated to it.

Theorem 2.35 (López-Hernanz, Rosas [175]). Let F ∈ Diff(C2, O) be a tangent to the identity
diffeomorphism of order k + 1, and let [v] be a characteristic direction of F . Then at least one
of the following possibilities holds:

1. There exists an analytic curve pointwise fixed by F and tangent to [v].

2. There exist at least k invariant sets S1, . . . , Sk, where each Sj is either a parabolic curve
tangent to [v] or a parabolic domain centered at [v] and such that all the orbits in S1∪· · ·∪Sk
are mutually asymptotic. Moreover, at least one of the invariant sets Sj is a parabolic curve.

3. There exist at least k parabolic domains S1, . . . , Sk centered at [v], where each Sj is foliated
by parabolic curves and such that all the orbits in S1 ∪ · · · ∪ Sk are mutually asymptotic.

In particular, if F has an isolated fixed point then for any characteristic direction [v] there is a
parabolic curve tangent to [v].



Chapter 3

Local dynamics of resonant germs

The study of the local dynamics of non-linearizable resonant germs is less developed than the
one of tangent to the identity germs. The first contribution to such study has been given by
Bracci and Zaitsev in [62] where they investigated the case of germs with one-dimensional sets of
resonances. We completed such study and continued it in the case of resonances having finitely
many generators in collaboration with Bracci and Zaitsev in [63] and in the case of germs with
two-dimensional sets of resonances in collaboration with Vivas in [211].

Given a non-linearizable resonant germs F , we assume that its resonances are finitely gener-
ated by m ≥ 1 multi-indices P 1, . . . , Pm ∈ Nn. Then, generically, any Poincaré-Dulac normal
form of F preserves the singular foliation ∪c∈Cm{(zP

1

, . . . , zP
m

) = (c1, . . . , cm)} and acts on it
as a tangent to the identity germ. The key idea is therefore to use results on the local dynamics
of tangent to the identity germs to obtain information on the local dynamics of the considered
resonant germs. It turns out that resonances can give rise to an a priori unexpected parabolic
behaviour, for example in elliptic situations.

In this chapter we will give an account of the results we obtained in this setting.

3.1 Multi-resonant germs
Definition 3.1. Let F be in Diff(Cn, O), and let λ1, . . . , λn be the eigenvalues of the differential
DF). Let m ≥ 1. We say that F is m-resonant with respect to the first r eigenvalues λ1, . . . , λr
(1 ≤ r ≤ n) if there exist m multi-indices P 1, . . . , Pm ∈ Nr × {0}n−r linearly independent over
Q, so that the resonant multi-indices L with respect to the j-th coordinate with 1 ≤ j ≤ r are
precisely of the form

L = ej + k1P
1 + · · ·+ kmP

m (3.1)

with k1, . . . , km ∈ N and k1 + · · ·+km ≥ 1 and where ej ∈ Nn is the unit vector with 1 at the j-th
place and 0 otherwise. The vectors P 1, . . . , Pm are called generators over N of the resonances of
F in the first r coordinates.

We call F multi-resonant with respect to the first r eigenvalues if it is m-resonant with respect
to these eigenvalues for some 1 ≤ m ≤ r.

Example 3.2. Assume that the differential of F ∈ Diff(C4, 0) has eigenvalues λ1, . . . , λ4 such
that λ3

1 = 1 but λ1 6= 1, λ2 = −1, and λ−1
3 λ2

4 = 1. Then F is two-resonant with respect to λ1, λ2

with generators P 1 = (3, 0, 0, 0), P 2 = (0, 2, 0, 0). On the other hand, F is not multi-resonant
with respect to all eigenvalues because it has the resonance λ3 = λ2

4 which is not of the form
(3.1).

43
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We proved in [63] that if F ism-resonant with respect to λ1, . . . , λr, then λj 6= λs for 1 ≤ j ≤ r
and 1 ≤ s ≤ n with j 6= s.

Moreover, the set of generators is unique up to reordering (with respect to the lexicographic
order) and if P 1, . . . , Pm are generators over N of (all, that is with r = n) the resonances of F ,
each multi-index P ∈ Nn such that λP = 1 is of the form

P = k1P
1 + · · ·+ kmP

m

with k1, . . . , km ∈ N.

Definition 3.3. The generators P 1, . . . , Pm are called ordered if P 1 < · · · < Pm.

Let F ∈ Diff(Cn, O) bem-resonant (with respect to the first r eigenvalues), and let P 1, . . . , Pm

be the ordered generators over N of its resonances. Thanks to Poincaré-Dulac Theorem 1.26, we
can find a tangent to the identity (possibly) formal change of coordinates of (Cn, O) conjugating
F to a germ in a (possibly formal) Poincaré-Dulac normal form, i.e., of the form

F̃ (z) = Dz +

r∑
s=1

∑
|KP|≥2
K∈Nm

aK,sz
KPzses +

n∑
s=r+1

Rs(z)es, (3.2)

where D = Diag(λ1, . . . , λn), we denote by KP =
∑m
h=1 khP

h, and Rs(z) = O(‖z‖2) for s =
r + 1, . . . , n.

Moreover, it follows from the proof of the Poincaré-Dulac theorem that, given any l ≥ 2,
there exists a polynomial (hence holomorphic) change of coordinates tangent to the identity in
(Cn, O) conjugating F to a Poincaré-Dulac normal form up to order l.

As we already mentioned, Poincaré-Dulac normal forms are not unique because they depend
on the choice of the resonant part of the normalization. However, they are all conjugate to each
other, which makes the following definition well-posed.

Definition 3.4. Let F ∈ Diff(Cn, O) bem-resonant with respect to {λ1, . . . , λr}, and let P 1, . . . , Pm

be the ordered generators over N of its resonances. Let F̃ be a Poincaré-Dulac normal form for
F given by (3.2). The weighted order of F is the minimal k0 = |K| ∈ N \ {0} such that the
coefficient aK,s of F̃ is non-zero for some 1 ≤ s ≤ r.

The weighted order of F is +∞ if and only if F is formally linearizable in the first r coordi-
nates.

Now, consider F ∈ Diff(Cn, O) m-resonant, and let P 1, . . . , Pm be the ordered generators
over N of its resonances. Write P j = (pj1, . . . , p

j
r, 0, . . . , 0), for j = 1, . . . ,m. Let k0 < ∞ be the

weighted order of F . Let F̃ be a Poincaré-Dulac normal form for F given by (3.2). Then we set

G(z) = Dz +

r∑
s=1

∑
|K|=k0
K∈Nm

aK,sz
KPzses.

Consider the map π : (Cn, O)→ (Cm, 0) defined by π(z1, . . . , zn) := (zP
1

, . . . , zP
m

) = (u1, . . . , um).
Therefore we can write

G(z) = Dz +

r∑
s=1

∑
|K|=k0
K∈Nm

aK,su
Kzses,
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and G induces a unique map Φ: (Cm, 0)→ (Cm, 0) satisfying Φ ◦ π = π ◦G, which is tangent to
the identity of order greater than or equal to k0 + 1, and is of the form

Φ(u) = u+Hk0+1(u) +O(‖u‖k0+2),

where

Hk0+1(u) =


u1

∑
|K|=k0

(
p1

1

aK,1
λ1

+ · · ·+ p1
r

aK,r
λr

)
uK

...

um
∑
|K|=k0

(
pm1

aK,1
λ1

+ · · ·+ pmr
aK,r
λr

)
uK


. (3.3)

Therefore, roughly speaking, any Poincaré-Dulac normal form of F preserves the singular
foliation ∪c∈Cm{(zP

1

, . . . , zP
m

) = (c1, . . . , cm)}.

Definition 3.5. We call u 7→ u+Hk0+1(u) a parabolic shadow of F .

The key idea now is that we can infer on the local dynamics of F by analyzing the induced
parabolic action of G on such foliation, since Hk0+1 remains unchanged under (holomorphic or
formal) changes of coordinates preserving the Poincaré-Dulac normal forms of F . If m = 1, then
thanks to the Leau-Fatou Flower Theorem 1.18 we have a complete description of the dynamics
of the parabolic shadow f of F in a neighbourhood of the origin. If m ≥ 2 we do not have a
complete description in a neighbourhood of the origin but we can still use Hakim’s Theorem 2.28
on the existence of parabolic domains.

Definition 3.6. Let F ∈ Diff(Cn, O) be m-resonant with respect to λ1, . . . , λr, with P 1, . . . , Pm

being the ordered generators over N of the resonances, and of weighted order k0 < +∞. Let f
be a parabolic shadow of F . We say that F is (f, v)-attracting-non-degenerate if v ∈ Cm is a
normalized representative of a fully attractive non-degenerate characteristic direction for f .

If F is (f, v)-attracting-non-degenerate and f(u) = u+Hk0+1(u) with Hk0+1 as in (3.3), we
say that F is (f, v)-parabolically attracting with respect to {λ1, . . . , λr} if

Re

( ∑
|K|=k0
K∈Nm

aK,j
λj

vK

)
< 0 j = 1, . . . , r. (3.4)

We say that F is attracting-non-degenerate (resp. parabolically attracting) if F is (f, v)-
attracting-non-degenerate (resp. (f, v)-parabolically attracting) with respect to some parabolic
shadow f and some normalized representative v ∈ Cm of a fully attractive non-degenerate char-
acteristic direction for f .

In [63] we were then able to prove the following general result.

Theorem 3.7 (Bracci, R., Zaitsev, [63]). Let F ∈ Diff(Cn, O) be m-resonant with respect to the
eigenvalues {λ1, . . . λr} and of weighted order k0 < +∞. Assume that |λj | = 1 for j = 1, . . . , r
and |λj | < 1 for j = r + 1, . . . , n. If F is parabolically attracting, then there exist (at least) k0

disjoint basins of attraction having 0 at the boundary.
Moreover, for each basin of attraction B of F there exists a Fatou coordinate µ : B → C, that

is a holomorphic function µ : B → C semi-conjugating F to a translation, µ ◦ F (z) = µ(z) + 1.
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Idea of the proof. Let P 1, . . . , Pm be the ordered generators over N of the resonances of F . For
any fixed l ≥ 2, up to biholomorphic conjugacy, we can assume that F (z) = (F1(z), . . . , Fn(z))
is of the form

Fj(z) = λjzj

(
1 +

∑
k0≤|K|≤kl
K∈Nm

aK,j
λj

zKP

)
+O

(
‖z‖l+1

)
, j = 1, . . . , r,

Fj(z) = λjzj +O(‖z‖2), j = r + 1, . . . , n,

where
kl := max{|K| : |KP| ≤ l},

with KP :=
∑m
h=1 khP

h.
We consider the map π : (Cn, O)→ (Cm, 0) defined by π(z) = u := (zP

1

, . . . , zP
m

). Then we
can write

Fj(z) = Gj(u, z) +O
(
‖z‖l+1

)
, Gj(u, z) := λjzj

(
1 +

∑
k0≤|K|≤kl
K∈Nm

aK,j
λj

uK

)
, j = 1, . . . , r.

The composition φ := π ◦ F can be written as

φ(z) = Φ(u, z) := Φ(u) + g(z), Φ(u) = u+Hk0+1(u) + h(u),

where Φ: Cm × Cn → Cm, Φ is induced by G via π ◦ G = Φ ◦ π, the homogeneous polynomial
Hk0+1(u) has the form (3.3), and where h(u) = O(‖u‖k0+2) and g(z) = O(‖z‖l+1).

Since F is attracting-non-degenerate by hypothesis, its parabolic shadow u 7→ u+Hk0+1(u)
has a fully attractive non-degenerate characteristic direction [v], such that v ∈ Cm is a normalized
representative, i.e., v satisfies (2.4) and the real parts of the directors of [v] are all positive. In
particular, we can apply Theorem 2.28 to Φ(u). Then there exist k0 disjoint parabolic domains
M i
R,C , i = 1, . . . , k0, for Φ at 0 in which every point is attracted to the origin along a trajectory

tangent to [v]. We can use linear coordinates (x, y) ∈ C × Cm−1 where v has the form v =
(1, 0, . . . , 0).

We therefore construct k0 basins of attraction B̃iR,C ⊂ Cn, i = 1, . . . , k0 for F in such a
way that each B̃iR,C is projected into M i

R,C via π. The parabolic domains M i
R,C ’s are given by

(2.5), and we can assume that the component Π1
R is chosen centered at the direction 1. We first

construct a basin of attraction based on M1
R,C . We consider the sector

SR(ε) := {x ∈ ∆R : |Arg(x)| < ε} ⊂ Π1
R,

for some ε > 0 small to be chosen later, and we let

B1
R,C(ε) = {(x, y) ∈ C× Cm−1 : x ∈ SR(ε), ‖y‖ < C|x|}.

Then for β > 0 we set

B̃ := {z ∈ Cn : |zj | < |x|β for j = 1, . . . , n, u = π(z) ∈ B1
R,C(ε), u = (x, y) ∈ C× Cm−1},

Taking β > 0 sufficiently small it is easy to check that B̃ is an open non-empty set of Cn and
0 ∈ ∂B̃.

Next, we prove that B̃ is F -invariant. We first prove that we can choose β > 0 small enough so
that for any l > 1 such that βl > k0 +1 we have that if z ∈ B̃ then π(F (z)) = Φ(u, z) ∈ B1

R,C(ε).
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Then, given z ∈ B̃, we have to estimate |Fj(z)| for j = 1, . . . , n. The estimates for the
components Fj for j = r + 1, . . . , n follow easily since |λj | < 1 for j = r + 1, . . . , n. For
the other components we need more detailed and precise estimates that are satisfied thanks to
condition (3.4).

Finally, setting inductively u(l) = (x(l), y(l)) := π(F ◦(l−1)(z)), and denoting by πj : Cn → C
the projection πj(z) = zj , we obtain ∣∣πj ◦ F ◦l(z)∣∣ ≤ ∣∣∣x(l)

∣∣∣β
for all z ∈ B̃. Moreover, we have liml→+∞ x(l) = 0, implying that F ◦l(z)→ 0 as l → +∞. This
proves that B̃ is a basin of attraction of F at 0.

The construction of the Fatou coordinate µ follows as in the one-dimensional case (see [63,
Proposition 4.3] for details).

The same argument can be repeated for each of the parabolic domains M i
R,C of Φ, and since

those are disjoint, we obtain at least k0 disjoint basins of attraction, concluding the proof.

When F is m-resonant with respect to all the eigenvalues {λ1, . . . , λn} and |λj | = 1 for all
j = 1, . . . , n, we showed that if F is attracting-non-degenerate or parabolically attracting then
so is F−1. This allowed us to show the existence of repelling basins for F in [63, Proposition 5.1,
Corollary 5.2].

It is natural to ask what happens when condition (3.4) is satisfied only partially, that is for
j = 1, . . . , s with 1 ≤ s < r. In this case we obtain the existence of parabolic manifolds.

Corollary 3.8 (R., Vivas [211, Corollary 1]). Let G ∈ Diff(Cn, O) be m-resonant with respect
to all eigenvalues {λ1, . . . , λn}, with |λj | = 1 not a root of unity, for j = 1, . . . , n, and holomor-
phically normalizable. Assume that G is attracting-nondegenerate. If G is partially parabolically-
attracting of order 1 ≤ s < n, that is condition (3.4) is satisfied only for j = 1, . . . , s, and the
ordered generators over N of the resonances satisfy P 1, . . . , Pm ∈ Ns × {0}n−s, then there exists
a parabolic manifold of dimension s for G at O.

3.1.1 Two-resonant germs
In this section we specify to the case of two-resonant germ. As we have seen in Chapter 2,
we have more results on the existence of parabolic domains for tangent to the identity germs
in dimension 2. In particular, it could seem possible to use all the results obtained by Vivas in
Theorem 2.29 [254], together with the parabolically -attracting condition of [63], to obtain basins
of attraction for two-resonant germs whose parabolic shadow has a degenerate or an irregular
non-degenerate characteristic direction.

We proved in [211] that this is not possible for the degenerate characteristic directions. More
precisely, we proved that a map whose parabolic shadow has a degenerate characteristic direction
cannot be also parabolically-attracting.

Proposition 3.9 (R., Vivas [211]). Let F ∈ Diff(Cn, O) be m-resonant with respect to the first
r ≤ n eigenvalues, and let f be a parabolic shadow of F . If v ∈ Cm is any representative of a
degenerate characteristic direction [v] for f , then F cannot be (f, v)-parabolically-attracting.

We also obtained examples of germs with parabolic shadows having a basin along a degenerate
characteristic direction but with no basins of attraction.

On the other hand, following the same strategy as in Theorem 3.7 we could prove the existence
of basins when the parabolic shadow has an irregular non-degenerate characteristic direction and
the map F is parabolically-attracting.
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Theorem 3.10 (R., Vivas [211]). Let F ∈ Diff(Cn, O) be two-resonant with respect to the
eigenvalues {λ1, . . . λr}. Assume that |λj | = 1 for j = 1, . . . , r and |λj | < 1 for j = r + 1, . . . , n.
If F is irregular-nondegenerate and parabolically-attracting, then there exists a basin of attraction
having O at the boundary.

This result shows the non-necessity of the hypothesis of fully-attracting for the characteristic
direction of the parabolic shadow.

3.2 One-resonant germs
We end this chapter with the description of the results obtained by Bracci and Zaitsev in [62] and
in collaboration with Bracci and Zaitsev in [63] on the dynamics of one-resonant germs. As one
can expect, the complete description of the local dynamics in a neighbourhood of the origin for
a tangent to the identity germ of holomorphic function in (C, 0) allows to have a better picture
for one-resonant non-linearizable germs in higher dimension.

In this setting Definition 3.1 can be stated as follows.

Definition 3.11. For F ∈ Diff(Cn, O), let λ1, . . . , λn be the eigenvalues of the differential DFO.
We say that F is one-resonant with respect to the first r eigenvalues {λ1, . . . , λr} (1 ≤ r ≤ n)
if there exists a fixed multi-index P = (P1, . . . , Pr, 0, . . . , 0) 6= 0 ∈ Nn such that the resonant
multi-indices with respect to the j-th coordinate with j ∈ {1, . . . ,m} are of the form (j, Pk+ ej),
where ej ∈ Nn is the unit vector with 1 at the j-th place and 0 otherwise and where k ≥ 1 ∈ N is
arbitrary. The multi-index P is called the index of resonance. If F is one-resonant with respect
to {λ1, . . . , λn} (i.e. m = n) we simply say that F is one-resonant.

In particular, it follows that the relation λP1
1 · · ·λPrr = 1 holds and generates all other relations

λQ1

1 · · ·λQrr = 1 with Qs ≥ 0 for all s.
It also follows directly from the definition that, if F is one-resonant with respect to {λ1, . . . , λr},

then for any j ∈ {1, . . . , r} with Pj 6= 0, the eigenvalue λj differs from any other eigenvalue λs,
s ∈ {1, . . . , n}\{j}. Indeed, otherwise one would have resonances (j,Q+ej) where Q is obtained
from P by replacing Pj and Ps with 0 and Pj + Ps respectively.

Formal Poincaré-Dulac normal forms of a one-resonant germ F are of the formG = (G1, . . . , Gn)
such that

Gj(z) = λjzj + ajz
k0P zj +Rj(z), j = 1, . . . , r, (3.5)

where either a = (a1, . . . , ar) 6= 0 and Rj(z) contains only resonant monomials aj,szsP zj with
s > k0 or aj = 0 and Rj ≡ 0 for all j = 1, . . . , r. Note that the second case occurs precisely
when F is formally linearizable in the first r variables.

The integer k0 in (3.5) is the weighted order defined in Definition 3.4, and here it will be
simply called the order of F with respect to λ1, . . . , λr.

Recall that the vector a = (a1, . . . , am) is invariant up to multiplication by a scalar, and
setting

Λ(F ) :=

m∑
j=1

aj
λj
Pj .

We say that F is non-degenerate if Λ(F ) 6= 0.
This non-degeneracy condition is invariant under conjugacies preserving the Poincaré-Dulac

normal form. If F is one-resonant with respect to {λ1}, then λ1 is a root of unity. Moreover, in
this case F is non-degenerate if and only if it is not formally linearizable in the first component.
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As we already recalled in Section 3.1, any Poincaré-Dulac normal form of a non-linearizable
one-resonant germ F preserves the singular foliation F = ∪c∈C{zP = c} and acts on it as
a tangent to the identity function. Similarly to dimension 1, Bracci and Zaitsev proved the
following normal form for non-degenerate partially one-resonant diffeomorphisms.

Theorem 3.12 (Bracci, Zaitsev [62, Theorem 3.6]). Let F ∈ Diff(Cn, O) be one-resonant
and non-degenerate with respect to λ1, . . . , λr with index of resonance P . Then there exist
k0 ∈ N and numbers µ, a1, . . . , ar ∈ C such that F is formally conjugated to the map F̂ (z) =

(F̂1(z), . . . , F̂n(z)), where

F̂j(z) = λjzj + ajz
k0P zj + µ

Pj

λj
z2k0P zj , j = 1, . . . , r, (3.6)

and the components F̂j(z) for j = r + 1, . . . , n, contain only resonant monomials.

They also gave a description of the dynamics of Poincaré-Dulac normal forms on the foliation
F in [62, Section 4].

In this setting, Definition 3.6 is given in the following easier form. Given F ∈ Diff(Cn, O)
one-resonant and non-degenerate with respect to {λ1, . . . , λr}, we can set

p(F ) := −|Λ(F )|
Λ(F )

.

If k0 ∈ N is the order of F with respect to λ1, . . . , λr and we choose coordinates such that (3.5)
holds, we say that F is parabolically attracting with respect to {λ1, . . . , λr} if

|λj | = 1, Re

(
aj
λj

p(F )

)
< 0, j = 1, . . . , r. (3.7)

The statement of Theorem 3.7 then becomes:

Theorem 3.13 (Bracci, Zaitsev [62], Bracci, R., Zaitsev [63]). Let F ∈ Diff(Cn, O) be one-re-
sonant with respect to the eigenvalues {λ1, . . . λr} and of order k0 < +∞. Assume that |λj | < 1
for j = r + 1, . . . , n. If F is parabolically attracting, then there exist (at least) k0 disjoint basins
of attraction having 0 at the boundary.

Moreover, for each basin of attraction B of F there exists a Fatou coordinate µ : B → C, that
is a holomorphic function µ : B → C semi-conjugating F to a translation, µ ◦ F (z) = µ(z) + 1.

The proof is the same as in the multi-resonant case, except that here it is based on the
Leau-Fatou Flower Theorem.

Leau-Fatou flower theorem for one-resonant Poincaré-Dulac normal form

We also obtained a full generalization of the Leau-Fatou Flower theorem in the fully one-resonant
case for holomorphically normalizable germs to a Poincaré-Dulac normal form.

Theorem 3.14 (Bracci, R., Zaitsev [63, Theorem 5.3]). Let F ∈ Diff(Cn, O) be one-resonant with
respect to all eigenvalues {λ1, . . . , λn} with generator P ∈ Nn. Assume that F is holomorphically
conjugated to one of its Poincaré-Dulac normal forms. Suppose that |λj | = 1, j = 1, . . . , n
and F is parabolically attracting. Then for each j ∈ {1, . . . , n} such that Pj 6= 0 there exists
a germ Mj of a complex manifold tangent to {zj = 0} at 0 such that F (Mj) ⊂ Mj and F |Mj

is holomorphically linearizable. Moreover, there exists an open neighbourhood W of 0 such that
W \

⋃
jMj is the union of attracting and repelling basins of F .
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We can also deduce the existence of parabolic manifolds when condition (3.4) is satisfied only
partially, that is for j = 1, . . . , s with 1 ≤ s < n.

Proposition 3.15 (R., Vivas [211, Proposition 3]). Let F ∈ Diff(Cn, O) be one-resonant with
respect to all eigenvalues {λ1, . . . , λn}, with |λj | = 1, but not a root of unity, for j = 1, . . . , n,
and non-degenerate. Assume that F is holomorphically normalizable germ, such that:

Re

(
aj
λj

1

Λ(G)

)
> 0 for j = 1, . . . , s,

Re

(
ah
λh

1

Λ(G)

)
< 0 for h = s+ 1, . . . , n,

for some 1 ≤ s < n, and let P ∈ Nn be the generator of the resonances of {λ1, . . . , λn}. Then:

1. if P 6∈ Ns×{0}n−s, then the unique point in a neighbourhood of the origin with orbit under
F converging to O is the origin itself;

2. if P ∈ Ns × {0}n−s, then there exists a parabolic manifold of dimension s for F at O.

Jasmin
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Chapter 4

Bulging and Wandering Fatou
components of polynomial
skew-products in dimension 2

In this chapter we give an updated account of the recent results on Fatou components for poly-
nomial skew-products in complex dimension two in a neighbourhood of a periodic fiber, dividing
our discussion according to the different possible kinds of periodic fibers.

4.1 Preliminaries
Consider the discrete holomorphic dynamical system given by a complex manifold X and the
iteration of a holomorphic endomorphism F : X → X. In the investigation of the global behaviour
of such a system it is natural to introduce the Fatou set of F , that is the largest open set F(F )
where the family of iterates {F ◦n}n∈N of F is normal. A connected component of the Fatou set
is called a Fatou component.

In complex dimension one, Fatou components of rational maps of degree at least 2 on the
Riemann sphere are well understood. In fact, from one hand, Fatou conjectured the following
classification for invariant Fatou components, which was partially proven by Fatou himself and
completed by several authors (Julia, Leau, Siegel, Herman, Yoccoz...).

Theorem 4.1 (Fatou’s Classification of invariant Fatou components). Let f : P1(C)→ P1(C) be
a rational map of degree d ≥ 2 on the Riemann sphere. Let Ω be an invariant Fatou component
of f . Then Ω is either:

(i) the basin of an attracting fixed point p, i.e. |f ′(p)| < 1,

(ii) the parabolic basin of a parabolic fixed point p, i.e. |f ′(p)| is a root of unity, and in this
case f ′(p) = 1,

(iii) a rotation domain, that can be a Siegel disk of an elliptic fixed point p, i.e. f ′(p) = e2πiθ

with θ ∈ R \Q, or a Herman ring.

We recall that a connected open set U is called:

• a basin of an attracting fixed point p if it contains a fixed point p such that |f ′(p)| < 1 and
the sequence of iterates {f◦k} converges uniformly to p on every compact subset of U ;

53
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• a parabolic basin if there is a fixed point p ∈ ∂U with |f ′(p)| = 1, and the sequence of
iterates {f◦k} converges uniformly to p on every compact subset of U ;

• a Siegel disk if it is simply connected, and there exists a holomorphic isomorphism h : U → D
such that h ◦ f ◦ h−1(z) = e2πiθz, with θ ∈ R \Q;

• a Herman ring if it is doubly connected, and there exists a radius r > 0 and a holomorphic
isomorphism h : U → Ar := {z ∈ C | r < |z| < 1}, such that h ◦ f ◦ h−1(z) = e2πiθz, with
θ ∈ R \Q.

On the other hand, Sullivan proved his celebrated non-wandering domains theorem.

Theorem 4.2 (Sullivan [248]). Let f : P1(C)→ P1(C) be a rational map of degree d ≥ 2. Then
every Fatou component of f is (pre-)periodic.

Therefore, up to considering iterates of f we can describe all its Fatou components. The proof
of Sullivan’s non-wandering Theorem strongly relies on the Ahlfors-Bers mesurable mapping
Theorem for quasi-conformal functions and we refer to the original paper of Sullivan [248] for it.
The recent notes [74] by Buff present a proof due to Adam Epstein based on a density result of
Bers for quadratic differentials. Such results are strongly one-dimensional and do not have an
analogue in higher dimension, making impossible to mimic Sullivan’s proof there. Besides this
observation, little was known about this problem so far.

Moreover, in complex dimension two, the understanding of Fatou components is far less
complete. A considerable progress in the classification of periodic Fatou components has been
achieved thanks to Bedford and Smillie [37] [38] [39], Fornæss and Sibony [125], Lyubich and
Peters [176] and Ueda [250].

The question of the existence of wandering (i.e., not pre-periodic) Fatou components in higher
dimension was put forward by several authors since the 1990’s (see e.g. [127]).

A first natural class of maps to consider are direct product polynomial endomorphisms of C2,
that is maps F : C2 → C2 of the form

F (z, w) = (f(z), g(w)),

where f and g are complex polynomials in one variable. This allows us to recover the generaliza-
tions of one-dimensional dynamical behaviours in dimension two, for instance higher dimensional
transcendental mappings with wandering domains can be constructed from one-dimensional ex-
amples by taking direct products, but without giving us a complete understanding of all possible
behaviours of polynomial endomorphisms in C2, as direct products are a very particular class. An
example of a transcendental biholomorphism of C2 with a wandering Fatou component oscillating
to infinity was constructed by Fornæss and Sibony in [126]. Nonetheless, until recently very little
was known about the existence of wandering Fatou components for holomorphic endomorphisms
of P2(C) or for polynomial endomorphisms of C2.

A more interesting class to consider is given by polynomial skew-products in C2, namely
polynomial maps F : C2 → C2 of the form

F (z, w) = (f(z, w), g(w)), (4.1)

where g is a complex polynomial in one variable and f is a complex polynomial in two variables.
Since they leave invariant the fibration {w = const.}, skew-products allow us to build on one-
dimensional dynamics and to get a first flavour of the richness of the higher dimension setting
we are working in. This idea has been used by several authors to construct maps with particular
dynamical properties. Dujardin, for example, used in [94] specific skew-products to construct a
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non-laminar Green current. Boc-Thaler, Fornæss and Peters constructed in [49] a map having a
Fatou component with a punctured limit set. Last but not least, as we will explain in Section
4.3, skew-products are one of the key ingredients in the construction we recently obtained in [33]
in collaboration with Astorg, Buff, Dujardin, Peters of holomorphic endomorphisms of P2(C)
having a wandering Fatou component.

The investigation of the holomorphic dynamics of polynomial skew-products was started by
Heinemann [138] and then continued by Jonsson [153]. The topology of Fatou components of
skew-products has been studied by Roeder in [219].

Given a Fatou component Ω of a polynomial skew-product F in C2, its projection on the
second coordinate Ω2 = π2(Ω) is a Fatou components for g and hence thanks to Sullivan’s non-
wandering Theorem 4.2, up to considering an iterate of F , it has to fall into one of the three cases
given by Theorem 4.1, and moreover, since we are considering polynomials, Herman rings cannot
occur. Therefore, since (pre-)periodic points for g correspond to (pre-)periodic fibers for F , up to
considering an iterate of F , we can restrict ourselves to study what happens in neighbourhoods of
invariant fibers of the form {w = c}. One-dimensional theory also describes the dynamics on the
invariant fiber, which is given by the action of the one-dimensional polynomial f(z, c) := fc(z),
and hence the Fatou components of fc will be again all pre-periodic and, up to consider an
iterate, we can assume that they are either attracting basins, or parabolic basins or Siegel disks.
This structure leads us to two immediate questions.

(Q1) Do all Fatou components of fc bulge to two-dimensional Fatou components of F?

(Q2) Is it possible to have wandering Fatou components for F in a neighbourhood of an invariant
fiber?

In the following we shall call an invariant fiber {w = c} attracting, parabolic or elliptic
according to whether c is an attracting, parabolic or elliptic fixed point for g. A bulging Fatou
component will be a Fatou component Ω of F such that Ω∩ {w = c} is a one-dimensional Fatou
component of fc on the invariant fiber {w = c}. With a slight abuse of terminology we shall
say that a Fatou component Ωc of fc on the invariant fiber {w = c} is bulging if there exists a
bulging Fatou component Ω of F so that Ωc = Ω ∩ {w = c}.

The purpose of this chapter is to provide an updated account of the results related to these
questions. We shall divide our discussion according to the different possible kinds of invariant
fibers.

4.2 Attracting invariant fiber
Let us consider a polynomial skew-product F : C2 → C2 of degree d ≥ 2

F (z, w) = (f(z, w), g(w)),

with an attracting invariant fiber. We can assume without loss of generality that the invariant
fiber is {w = 0}. Therefore we have g(0) = 0 and |g′(0)| < 1. In this case it is a well-known one-
dimensional result (see for exemple [83] or [182]) that there exists an attracting basin, containing
the origin, of points whose iterates converge to the origin. The rate of convergence to the fixed
point depends on whether g′(0) = 0, in which case the fixed point is called superattracting, or
g′(0) 6= 0, in which case the fixed point is called attracting or geometrically attracting.
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4.2.1 Superattracting case
This setting was studied by Lilov in [171] who was able to answer both questions stated in the
introduction. He first proved the following result giving a positive answer to Question 1.

Theorem 4.3 (Lilov [171]). Let F : C2 → C2 be a polynomial skew-product of the form (4.1) of
degree d ≥ 2. Let {w = c} be a superattracting invariant fiber for F . Then all one-dimensional
Fatou components of fc bulge to Fatou components of F .

Idea of the proof. We can assume c = 0 without loss of generality. Thanks to Theorem 4.1
and Theorem 4.2, all Fatou components of the restriction f0(z) = f(z, 0) of f(z, w) to the
invariant fiber are (pre-)periodic and are either attracting basins, or parabolic basins or Siegel
domains. The strategy of the proof is to prove separately for each of these cases that the
corresponding component is contained in a two-dimensional Fatou component of F . The bulging
of one-dimensional Fatou components of attracting periodic points of f0(z) is well-known and
follows for instance from the results of Rosay and Rudin [233]. For the remaining cases, by [171,
Theorem 3.17] there exists a strong stable manifold through all point in the one-dimensional
Fatou components of parabolic or elliptic periodic points of f0(z), and so the corresponding
bulging Fatou components simply consist of the union of such manifolds.

Then Lilov proved the following result implying the non-existence of wandering Fatou com-
ponents in a neighbourhood of a superattracting invariant fiber.

Theorem 4.4 (Lilov [171]). Let F : C2 → C2 be a polynomial skew-product of the form (4.1) of
degree d ≥ 2. Let {w = c} be a superattracting invariant fiber for F and let B be the immediate
basin of the superattracting fixed point c. Let w0 ∈ B and let Dw0

be a one-dimensional open
disk lying in the fiber over w0 (C × {w0}). Then the forward orbit of D must intersect one of
the bulging Fatou components of fc.

The proof relies on the repeated use of [171, Lemma 3.2.4] to the orbit of a disk lying in
a fiber over a point in the attracting basin, in order to obtain estimates from below for the
radii of the images. Thanks to [171, Proposition 3.2.8], by studying the geometry of the bulging
Fatou components, it is also possible to obtain an upper bound on the largest possible disk
lying in a fiber over a point in the attracting basin that can lie in the complement of a bulging
Fatou component, depending on the distance to the invariant fiber. The conclusion then follows
combining these two estimates.

All bulging Fatou components are (pre-)periodic, therefore all Fatou components for F in a
neighbourhood of a superattracting invariant fiber are (pre-)periodic, and then the non-existence
of wandering Fatou components in a neighbourhood of a superattracting invariant fiber follows
immediately.

Corollary 4.5 (Lilov [171]). Let F : C2 → C2 be a polynomial skew-product of the form (4.1) of
degree d ≥ 2. Let {w = c} be a superattracting invariant fiber for F and let B be the immediate
basin of the superattracting fixed point c. Then there are no wandering Fatou components in
B × C.

4.2.2 Geometrically attracting case
The geometrically attracting case was first partially addressed by Lilov in [171] even if not stated
explicitly. In fact, the proof of Theorem 4.3 can be readily adjusted to this case obtaining the
following statement answering Question 1.
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Theorem 4.6 (Lilov [171]). Let F : C2 → C2 be a polynomial skew-product of the form (4.1) of
degree d ≥ 2. Let {w = c} be an attracting invariant fiber for F , that is |g′(c)| < 1. Then all
one-dimensional Fatou components of fc bulge to Fatou components of F .

On the other hand, the proof of Theorem 4.4 cannot be generalized to this setting, which is
indeed more complicated than the superattracting case. In fact, Theorem 4.4 does not hold in
general, as showed by Peters and Vivas with the following result.

Theorem 4.7 (Peters, Vivas [199]). Let F : C2 → C2 be a polynomial skew-product of the form

F (z, w) = (p(z) + q(w), λw), (4.2)

with 0 < |λ| < 1 and p and q complex polynomials. Then there exists a triple (λ, p, q) and a
holomorphic disk D ⊂ {w = w0} whose forward orbit accumulates at a point (z0, 0), where z0 is
a repelling fixed point in the Julia set of f0.

As a consequence, the forward orbits of D cannot intersect the bulging Fatou components of
f0. The family {F |nD}n∈N is normal on the disks D, and so these are Fatou disks. However such
disks are completely contained in the Julia set of F , which is the complement in C2 of the Fatou
set (see [199, Theorem 6.1]).

The geometrically attracting case has been further investigated by Peters and Smit in [198].
They focused their investigation on polynomial skew-products such that the action on the in-
variant attracting fiber is subhyperbolic, that is the polynomial does not have parabolic periodic
points and all critical points lying on the Julia set are pre-periodic. They proved the following
result.

Proposition 4.8 (Peters, Smit [198]). Let F : C2 → C2 be a polynomial skew-product of the
form (4.1). Assume that the origin is an attracting, not superattracting, fixed point for g with
corresponding basin Bg, and the polynomial f0(z) := f(z, 0) is subhyperbolic. Then there exists
a set E ⊂ C of full mesure, such that for every w0 ∈ E the forward orbit of every disk in the
fiber {w = w0} must intersect a bulging Fatou component of f0.

Idea of the proof. Notice that it suffices to prove the proposition in a neighbourhood of the
attracting fiber {w = 0}. Therefore, up to considering a smaller neighbourhood, we can assume
without loss of generality that g(w) = λw, and

f(z, w) = a0(w) + a1(w)z + · · ·+ ad(w)zd

where a0(w), . . . , ad(w) are holomorphic functions in w. The subhyperbolicity of the polynomial
f0 implies that its Fatou set is the union of finitely many attracting basins, and the orbits of the
critical points contained in the Fatou set converge to one of these attracting cycles. The proof
can be divided into 5 main steps.
Step 1. Fix R > 0 large enough so that for all z such that |z| > R we have |f0(z)| > 2|z| and set

W0 = {|z| > R} ∪
⋃

y∈Att(f0)

Wy

where Att(f0) is the set of all attracting periodic points of f0, and for each y ∈ Att(f0) the setWy

is an open neighbourhood of the orbit of y such that f0(Wy) ⊂ Wy. Fix a neighbourhood U of
the post-critical set of f0. Then by [198, Proposition 15], there exists a set E ⊂ C of full mesure
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in a neighbourhood of the origin such that for all w0 ∈ E there exists a constant C = C(w0, U)
such that for all n ∈ N we have

Card

{
z :

∂F ◦n1

∂z
(z, w0) = 0 and F ◦n1 (z, w0) 6∈W0 × U

}
≤ C
√
n, (4.3)

where F ◦n1 is the first component of the n-th iterate of F .
Step 2. Assume by contradiction that a fiber {w = w0}, with w0 ∈ E, contains a disk D whose
forward orbit avoids the bulging Fatou components of f0. Then the restriction of F ◦n to D is
bounded and hence a normal family. Therefore, up to shrinking D there exists a subsequence
Fnj such that Fnj |D converges, uniformly on compact subsets of D, to a point ζ in the Julia set
of f0. Moreover, there exists ε > 0 so that F ◦n(D) ∩ (W0 ×D(0, ε)) is empty for all n ∈ N.
Step 3. Each critical point x contained in the Julia set is eventually mapped into a repelling
periodic point, and up to considering an iterate of F we may assume that it is eventually mapped
into a repelling fixed point with multiplier µ, with |µ| > 1. The main tool to control the orbits
of the critical points of F is obtained using a linearization map of the unstable manifold of the
repelling fixed point, given by a map Φ: C → C satisfying Φ(µt) = fk0 ◦ Φ(t) for some k ∈ N.
Thanks to [198, Proposition 10], there exist C̃ > 1 and 0 < γ < 1 so that

Area(F ◦n(D)) ≤ C̃γn. (4.4)

Step 4. We may assume that ζ does not lie in the post-critical set, and we may choose U and
r > 0 such that D(ζ, r)∩ (U ∪W0) = ∅. Let j1 ∈ N be such that Fnj1 (D) ⊆ D(ζ, r2 ) for all j ≥ j1,
and consider Oj the connected component of (Fnj )−1(D(ζ, r) × {λnjw0}) containing D. Then
D ⊆ Oj ⊆ D(0, R)×{w0}, and we can study the proper holomorphic function Fnj1 : Oj → D(ζ, r).
Thanks to (4.3), such a map has at most dj = C

√
nj critical points.

Step 5. It is possible (see [198, Proposition 28]) to find a uniform constant C1 > 0 so that if
f : D → D is a proper holomorphic function of degree d, the set R ⊂ D has Poincaré area equal
to A, and d · A1/2d < 8, then the Poincaré area of f−1(R) is at most C1d

3A1/d. Then, setting
Rj = F

nj
1 (D) and denoting by Aj its Poincaré area AreaD(ζ,r)(Rj) with respect to D(ζ, r), for

j ≥ j1, we have Rj ⊆ D(ζ, r), and we can estimate Aj applying (4.4). Therefore there exists
j2 ≥ j1 such that djA

1/2dj
j < 1/8 for all j ≥ j2. This implies

AreaD(0,R)(D) ≤ AreaOj (D) ≤ C2d
3
jA

1/dj
j ≤Mn

3/2
j γn

3/2
j

where M > 0. The contradiction follows from the fact that the last expression will converge to
zero as j increases towards infinity.

Thanks to the fact that in particular E is dense, Peters and Smit are able to give a negative
answer to Question 2 when the action on the invariant fiber is subhyperbolic. They also obtain
as a corollary that the only Fatou components of F are the bulging ones, since the topological
degree of F equals the one of f0, implying that the only Fatou components that can be mapped
onto the bulging Fatou components of f0 are exactly those bulging Fatou components.

Theorem 4.9 (Peters-Smit, [198]). Let F : C2 → C2 be a polynomial skew-product of the form
(4.1). Assume that the origin is an attracting fixed point for g with corresponding basin Bg, and
the polynomial f0(z) := f(z, 0) is subhyperbolic. Then F has no wandering Fatou component
over Bg.
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Very recently, Ji was able in [154] to generalize Lilov’s Theorem 4.4 to polynomial skew-
products with an invariant geometrically attracting fiber under the hypothesis that the multiplier
of the invariant fiber is small. More precisely he proved the following result.

Theorem 4.10 (Ji, [154]). Let F : C2 → C2 be a polynomial skew-product of the form (4.1) of
degree d ≥ 2. Let {w = c} be an attracting invariant fiber for F and let Bc be the basin of the
attracting fixed point c. Then there exists λ0(c, f) > 0 depending only on f and c such that if
|g′(c)| < λ0, then there are no wandering Fatou components in Bc × C.

The proof of this result follows Lilov’s strategy. The main difficulty is due to the breaking
down of Lilov’s argument in the geometrically attracting case as we pointed out at the beginning
of this section. Ji is able to overcome such difficulty by adapting a one-dimensional result due
to Denker, Przytycki and Urbanski in [91] in this case. Such result is used to obtain estimates
of the size of bulging Fatou components and of the size of forward images of wandering Fatou
disks.

4.3 Parabolic invariant fiber and wandering domains
A first contribution to the investigation of this case is due to Vivas, who proved a parametrization
result [256, Theorem 3.1] for the unstable manifolds for special parabolic skew-product of C2.
Vivas used this parametrization as the main tool to prove the analogue of Theorem 4.7 for special
parabolic skew-product. However, this construction does not allow to construct a wandering
Fatou component in a neighbourhood of the parabolic invariant fiber.

In [33], together with Astorg, Buff, Dujardin, Peters, we proved the existence of polynomial
skew-products of C2, extending to holomorphic endomorphisms of P2(C), having a wandering
Fatou component. The key tool consists in using parabolic implosion techniques on polynomial
skew-products, and this idea was initially suggested by Lyubich. The main strategy is to combine
slow convergence to an invariant parabolic fiber and parabolic transition in the fiber direction,
to produce orbits shadowing those of the so-called Lavaurs map.

Theorem 4.11 (Astorg, Buff, Dujardin, Peters, R. [33]). There exists a holomorphic endomor-
phism F : P2(C) → P2(C), induced by a polynomial skew-product mapping F : C2 → C2, having
a wandering Fatou component. More precisely, let f : C → C and g : C → C be polynomials of
the form

f(z) = z + z2 + O(z3) and g(w) = w − w2 + O(w3). (4.5)

If the Lavaurs map Lf : Bf → C has an attracting fixed point, then the skew-product F : C2 → C2

defined by

F (z, w) :=

(
f(z) +

π2

4
w, g(w)

)
(4.6)

has a wandering Fatou component.

The orbits in these wandering Fatou components are bounded and the approach used in
the proof is essentially local. Notice that if f and g have the same degree, F extends to a
holomorphic endomorphism of P2(C). Moreover we can obtain examples in arbitrary dimension
k ≥ 2 by simply considering products mappings of the form (F,Q), where Q has a fixed Fatou
component.

To give the definition of Lavaurs map and the main ideas of the proof, we have to recall
some facts on parabolic dynamics (more details can be found in [33, Appendix A]). Let f be a
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polynomial of the form

f(z) = z + z2 + az3 + O(z4) for some a ∈ C.

and denote by
Bf :=

{
z ∈ C ; f◦k(z)

6=−→
n→+∞

0
}

the parabolic basin of 0. It is a well-known one-dimensional result that there exists an attracting
Fatou coordinate ϕf : Bf → C conjugating f to the translation T1 by 1:

ϕf ◦ f = T1 ◦ ϕf .

The Fatou coordinate can be normalized by requiring that

ϕf (z) = −1

z
− (1− a) log

(
−1

z

)
+ o(1) as Re

(
−1

z

)
→ +∞,

where the branch of log used in this normalization, as well as in the next one, is the one defined
in C \ R− which vanishes at 1. There also exists a repelling Fatou parameterization ψf : C→ C
satisfying

ψf ◦ T1 = f ◦ ψf ,

which may be normalized by requiring that

− 1

ψf (Z)
= Z + (1− a) log(−Z) + o(1) as Re(Z)→ −∞.

The Lavaurs map Lf is then defined by

Lf := ψf ◦ ϕf : Bf → C,

and it clearly commutes with f since ϕf ◦ f = T1 ◦ ϕf and ψf ◦ T1 = f ◦ ψf . This kind of
functions appear in considering high iterates of small perturbations of f : this phenomenon is
known as parabolic implosion, and plays a key rôle in our construction. A first introduction
to this topic can be found in [92], and we also refer to [241] for a very detailed presentation.
(Semi-)parabolic implosion was recently studied for dissipative polynomial automorphisms of C2

by Bedford, Smillie and Ueda in [40] (see also [95]) and their strategy was recently adapted by
Bianchi in [44] for a perturbation of a class of holomorphic endomorphisms tangent to identity,
establishing a two-dimensional Lavaurs theorem for such a class.

A first step in the proof of Theorem 4.11 is to find a parabolic polynomial f whose Lavaurs
map Lf admits an attracting fixed point.

Proposition 4.12 (Astorg, Buff, Dujardin, Peters, R. [33, Proposition B]). Let f : C → C be
the cubic polynomial defined by

f(z) = z + z2 + az3 with a ∈ C.

If r > 0 is sufficiently close to 0 and a belongs to the disk D(1 − r, r), then the Lavaurs map
Lf : Bf → C admits an attracting fixed point.

Idea of the proof. We consider

Uf := ψ−1
f (Bf ) and Ef := ϕf ◦ ψf : Uf → C.
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The open set Uf contains an upper half-plane and a lower half-plane, and it is invariant under
T1. Like the Lavaurs map, the map Ef commutes with T1, therefore Ef − Id is periodic of period
1 and admits a Fourier expansion in a upper half-plane:

Ef (Z) = Z +
∑
k≥0

cke2πikZ .

Using the expansion of ϕf and ψf near infinity, we obtain with an elementary computation:

Ef (Z) = ϕf ◦ ψf (Z) = Z + (1− a) log(−Z) + o(1)

− (1− a) log
(
Z + (1− a) log(−Z) + o(1)

)
+ o(1)

= Z + (1− a) log(Z)− πi(1− a)− (1− a) log(Z) + o(1)

= Z − πi(1− a) + o(1),

and so c0 = −πi(1− a).
Thanks to a more elaborate argument, based on the notion of finite type analytic map intro-

duced by Adam Epstein, it is possible to prove that:

Ef (Z) = Z − πi(1− a) + c1e2πiZ + o(e2πiZ) with c1 6= 0.

It then follows that for a 6= 1 close to 1, Ef has a fixed point Zf with multiplier ρf satisfying

c1e2πiZf ∼ πi(1− a) and ρf − 1 ∼ 2πic1e2πiZf ∼ −2π2(1− a) as a→ 1.

Therefore, for r > 0 sufficiently close to 0 and a ∈ D(1 − r, 1), the multiplier ρf belongs to the
unit disk and Zf is an attracting fixed point of Ef . This concludes the proof since ψf : Uf → Bf
semi-conjugates Ef to Lf , and so, the fact that Zf is an attracting fixed point of Ef implies that
the point ψf (Zf ) is an attracting fixed point of Lf .

The key result in the proof of proof of Theorem 4.11 relies on a non-autonomous analog of
Lavaurs estimates in the setting of skew-products.

Let Bf and Bg be the parabolic basins of 0 under iteration of respectively f and g. One of
the key points is to choose (z0, w0) ∈ Bf ×Bg so that the first coordinate of F ◦m(z0, w0) returns
infinitely many times close to the attracting fixed point of Lf . The proof is designed so that the
return times are the integers n2 for n ≥ n0. Therefore, we need to analyze the orbit segment
between n2 and (n+ 1)2, which is of length 2n+ 1.

Proposition 4.13 (Astorg, Buff, Dujardin, Peters, R. [33]). As n→ +∞, the sequence of maps

C2 3 (z, w) 7→ F 2n+1
(
z, gn

2

(w)
)
∈ C2

converges locally uniformly in Bf × Bg to the map

Bf × Bg 3 (z, w) 7→
(
Lf (z), 0

)
∈ C× {0}.

Idea of the proof. Let Bg the parabolic basin of 0 under iteration of g. For all w ∈ Bg, the orbit
gm(w) converges to 0 like 1/m. We want to analyze the behaviour of F starting at

(
z, g◦n

2

(w)
)

during 2n+ 1 iterates. For large n, the first coordinate of F along this orbit segment is approx-
imately

f(z) + ε2 with
π

ε
' 2n.
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A rough statement of Lavaurs Theorem from parabolic implosion gives us that if πε = 2n, then
for large n, the (2n)th iterate of f(z) + ε2 is approximately equal to Lf (z) on Bf .

Our setting is different since in our case ε keeps decreasing along the orbit. Indeed on the
first coordinate we are taking the composition of 2n+ 1 transformations of the form

f(z) + ε2
k with

π

εk
' 2n+

k

n
and 1 ≤ k ≤ 2n+ 1.

The key step in the proof of the statement consists in a detailed analysis of this non-autonomous
situation, proving that the decay of εk is counterbalanced by taking exactly one additional iterate
of F .

With this proposition in hand, the proof of the Theorem 4.11 is easily completed.
Proof of Theorem 4.11. Let ξ be an attracting fixed point of Lf and let V ⊂ Bf be a disk
centered at ξ and such that Lf (V ) is compactly contained in V . Therefore L◦kf (V ) converges to
ξ as k → +∞. Let W b Bg be an arbitrary disk.

Thanks to Proposition 4.13, there exists n0 ∈ N such that for every n ≥ n0,

π1 ◦ F ◦(2n+1)(V × g◦n
2

(W )) b V,

where π1 : C2 → C denotes the projection on the first coordinate, that is π1(z, w) := z.
Let U be a connected component of the open set F−n

2
0

(
V ×g◦n2

0(W )
)
. Then for every integer

n ≥ n0, we have
F ◦n

2

(U) ⊆ V × g◦n
2

(W ). (4.7)

In fact, this holds by assumption for n = n0. Now if the inclusion is true for some n ≥ n0, then

π1 ◦ F ◦(n+1)2

(U) = π1 ◦ F ◦(2n+1)
(
F ◦n

2

(U)
)

⊂ π1 ◦ F ◦(2n+1)
(
V × g◦n

2

(W )
)
⊂ V,

from which (4.7) follows. This yields that the sequence {F ◦n2}n≥0 is uniformly bounded, and
hence normal, on U . Moreover, any cluster value of this sequence of maps is constant and of the
form (z, 0) for some z ∈ V , and (z, 0) is a limit value (associated to a subsequence {nk}) if and
only if

(
Lf (z), 0

)
is a limit value (associated to the subsequence {1 + nk}). Therefore the set of

cluster limits is totally invariant under Lf : V → V , and so it must coincide with the attracting
fixed point ξ of Lf . Therefore the sequence {F ◦n

2}n≥0 converges locally uniformly to (ξ, 0) on U .
The sequence {F ◦m}m≥0 is locally bounded on U if and only if there exists a subsequence

{mk} such that {F ◦mk |U}k≥0 has the same property. In fact, since W is compact, there exists
R > 0 such that if |z| > R, then for every w ∈ W , (z, w) escapes locally uniformly to infinity
under iteration. The domain U is therefore contained in the Fatou set of F .

Let Ω be the component of the Fatou set FF containing U . For any integer j ≥ 0, the
sequence of maps {F ◦n2+j}n∈N converges locally uniformly to F ◦j(ξ, 0) = (f◦j(ξ), 0) on U and
hence on Ω. Therefore the sequence {F ◦n2}n∈N converges locally uniformly to (f◦j(ξ), 0) on
F ◦j(Ω). If i, j are nonnegative integers such that F ◦i(Ω) = F ◦j(Ω), then f◦i(ξ) = f◦j(ξ), and
so i = j because ξ cannot be pre-periodic under iteration of f , since it belongs to the parabolic
basin Bf . This proves that Ω is not (pre-)periodic under iteration of F , and so it is a wandering
Fatou component for F .

We end this section recalling some explicit examples satisfying the assumption of Theo-
rem 4.11.
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Example 4.14. As a consequence of Proposition 4.12 we obtain that if f : C → C is the cubic
polynomial f(z) = z+ z2 +az3, and g is as in (4.5), then the polynomial skew-product F defined
in (4.6) admits a wandering Fatou component for r > 0 sufficiently small and a ∈ D(1− r, r).

It is also interesting to search for real polynomial mappings with wandering Fatou domains
intersecting R2. We also have such examples.

Example 4.15 ([33, Proposition C]). Let f : C→ C be the degree 4 polynomial defined by

f(z) := z + z2 + bz4 with b ∈ R.

There exist parameters b ∈ (−8/27, 0) such that for g as in (4.5), the polynomial skew-product
F defined in (4.6) has a wandering Fatou component intersecting R2.

4.4 Elliptic invariant fiber
In collaboration with Peters, we investigated in [197] the case of invariant fibers at the center of
a Siegel disk. More precisely, we considered a polynomial skew-product of the form (4.1) having
an elliptic invariant fiber. As before, we can assume without loss of generality that the invariant
fiber is {w = 0} and so we have g(0) = 0 and g′(0) = e2πiθ with θ ∈ R \ Q. We assume that
the origin belongs to a Siegel disk for g and hence g is locally holomorphically linearizable near
w = 0. Therefore, up to a local change of coordinates we may assume that F is of the form

F (z, w) = (f(z, w), λ · w),

where fw(z) := f(z, w) is a polynomial in z with coefficients depending holomorphically on w.
We assume that the degree of the polynomial fw is constant near {w = 0}, and at least 2.

In this case we only have a partial answer to Question 1. In fact, while we already know
that the attracting Fatou components of f0 always bulge, the general situation appears to be
more complicated as there might be resonance phenomena. In [197] we proved the following
local result, implying that all parabolic Fatou components of a polynomial skew-product with
an elliptic invariant fiber bulge if the rotation number satisfies the Brjuno condition (1.5).

Proposition 4.16 (Peters, R. [197, Proposition 2]). Let F be a holomorphic skew-product of the
form

F (z, w) = (fw(z), g(w)) (4.8)

with g(w) = λw+O(w2), f0(0) = 0, and f ′0(0) = 1. Assume λ is a Brjuno number. If f0(w) ≡ w,
then F is holomorphically linearizable. If f0(z) = z + f0,k+1z

k+1 +O(zk+2) with f0,k+1 6= 0 for
some k ≥ 1, then for any h ≥ 0 there exists a local holomorphic change of coordinates near the
origin conjugating F to a map of the form F̃ (z, w) = (f̃(z, w), λw) satisfying

f̃(z, w) = z + f0,k+1z
k+1 + · · ·+ f0,k+h+1z

k+h+1 +
∑
j≥h

zk+j+2αk+j+2(w), (4.9)

where, for j ≥ h, αk+j+2(w) is a holomorphic function in w such that αk+j+2(0) = f0,k+j+2.

The proof of the previous proposition makes use of a procedure inspired by the Poincaré-Dulac
normalization process [27, Chapter 4] aiming to conjugate the given polynomial skew-product
to a skew-product in a simpler form. At each step of the usual Poincaré-Dulac normalization
procedure we can use a polynomial change of coordinates to eliminate all non-resonant monomials
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of a given degree. A similar idea is used here, and thanks to the skew-product structure of the
germ and the Brjuno assumption we are able to eliminate all non-resonant terms of a given degree
in the powers of z by means of changes of coordinates that are polynomial in z with holomorphic
coefficients in w. It turns out that there are some differences in between the first degrees as it is
pointed out in [197, Section 2].

The arithmetic Brjuno condition is strongly needed in the proof of Proposition 4.16 and it
is natural to ask whether parabolic Fatou components of f0 always bulge, or it is possible to
characterize when they bulge. We do not have a complete answer to such question. However we
can proove the following result.

Proposition 4.17 (Peters, R. [197, Proposition 10]). Let F (z, w) = (fz(w), g(w)) be a holomor-
phic skew-product with an elliptic linearizable invariant fiber. If F does not admit a holomorphic
invariant curve on the invariant fiber, then the parabolic Fatou components of f0 do not bulge.

Moreover, we can construct examples showing that the Brjuno condition cannot be completely
omitted. In fact by taking Cremer numbers, that is λ ∈ C with |λ| = 1 and satisfying (1.3),
we can construct examples of polynomial skew-product not admitting a holomorphic invariant
curve on the invariant fiber. An elementary example is the following polynomial skew-product

F (z, w) = (z + w + zw, λw)

with λ a Cremer number (see [197, Example 8] for details). More generally, arguing as in Cremer’s
example [86] we can show (see [197, Proposition 9]) the existence of holomorphic skew-products
without invariant holomorphic curves of the form {w = ϕ(z)}, having an elliptic invariant fiber
that is not point-wise fixed.

Describing the general situation can also be complicated by resonance phenomena. For exam-
ple, an invariant fiber at the center of a Siegel disk was used in [49] to construct a non-recurrent
Fatou component with limit set isomorphic to a punctured disk, and in their construction the
invariant fiber also contains a Siegel disk, but with opposite rotation number. Moreover, it might
happen that Fatou components on the invariant fiber do not bulge. For example, we can consider
the skew-product

F (z, w) = (λz(1 + azw), λ−1w),

with a ∈ C∗, λ = e2πiθ and θ ∈ R \ Q. We have F (z, 0) = (λz, 0), but the Siegel disk around
the origin in {w = 0} is not bulging, and in fact it follows from [62] and [63] that there exists a
Fatou component of parabolic type having on its boundary the origin of C2, which is fixed by F .

We also have an answer to Question 2, under the assumption that the multiplier at the elliptic
invariant fiber is Brjuno and all critical points of the polynomial acting on the invariant fiber lie
in basins of attracting or parabolic cycles.

Theorem 4.18 (Peters, R. [197, Theorem 1]). Let F be a polynomial skew-product of the form

F (z, w) = (fw(z), g(w)), (4.10)

and let {w = c} be an elliptic invariant fiber with multiplier λ. If λ is Brjuno and all critical points
of the polynomial fc lie in basins of attracting or parabolic cycles, then all Fatou components of
fc bulge, and there is a neighbourhood of the invariant fiber {w = c} in which the only Fatou
components of F are the bulging Fatou components of fc. In particular there are no wandering
Fatou components in this neighbourhood.
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Idea of the proof. The proof relies on the fact that, in dimension 1, if every critical point of
the polynomial either (1) lies in the basin of an attracting periodic cycle, (2) lies in the basin
of a parabolic periodic cycle, or (3) lies in the Julia set and after finitely many iterates is
mapped to a periodic point, then it is possible to construct a conformal metric µ, defined in a
backward invariant neighbourhood of the Julia set minus the parabolic periodic orbits, so that
fc is expansive with respect to this metric. It then follows that there can be no wandering Fatou
components.

The key step in the proof is that for fibers {w = w0} sufficiently close to the invariant fiber
{w = c} we can define conformal metrics µw0

that depend continuously on w0, and so that F
acts expansively with respect to this family of metrics (see [197, Section 3] for details). That is,
for a point (z0, w0) ∈ C2 lying in the region where the metrics are defined, and for a non-zero
tangent vector ξ ∈ Tz0(Cw0) we have that

µw1
(z1, dfw0

ξ) > µw0
(z0, ξ),

where (z1, w1) = F (z0, w0). Therefore, if (z0, w0) does not lie in one of the bulging Fatou
components and its orbit (zn, wn) remains in the neighbourhood where the expanding metrics
are defined, for any tangent vector ξ ∈ Tz0(Cw0) we have that

µwndfzn−1
· · · dfz0ξ →∞,

from which it follows that the family {F ◦n} cannot be normal on any neighbourhood of (z0, w0).
This proves that there are no Fatou components but the bulging components near the invariant
fiber {w = c}.

Note that we only allow critical points of the type (1) and (2). Whether the same techniques
could be used to deal with pre-periodic critical points lying on the Julia set is unclear to us. The
difficulty is that the property that critical points are eventually mapped onto periodic cycles is
not preserved in nearby fibers.





Chapter 5

Periodic Fatou components of
holomorphic automorphisms of Ck

In this chapter we give an updated account of the recent results on the classification of periodic
Fatou components for holomorphic automorphisms of Ck.

As we already mentioned in Chapter 4, the problem of describing the dynamics on the Fatou
set, and the kinds of behaviour on its components, is now completely understood for ratio-
nal endomorphisms of the Riemann sphere, thanks to Fatou’s Classification of invariant Fatou
components, Theorem 4.1, together with Sullivan’s non-wandering domains Theorem 4.2. The
situation in higher dimension is more complicated and the classification of periodic Fatou com-
ponents is not yet completed even in dimension 2, as we will explain in the rest of this chapter.
For simplicity, we will focus on the classification of invariant Fatou components.

5.1 Polynomial automorphisms
The classification of invariant Fatou components for polynomial automorphisms of Ck for any
k ≥ 2 is not yet complete as such group is big and complicated. For the rest of this section we
will restrict ourselves to dimension 2, where the situation is better understood. In fact, interest
in the dynamics of polynomial automorphisms of C2 and in particular of Hénon maps, rose at
the end of the 1980’s, also thanks to the fundamental work of Friedland and Milnor [119], who
proved that every polynomial automorphisms of C2 is affinely conjugate to either an affine map,
an elementary map, or a finite compositions of generalized Hénon maps, usually called complex
Hénon maps.

Definition 5.1. A complex Hénon map is a holomorphic map H : C2 → C2 of the form

H(z, w) = (p(z)− δw, z), (5.1)

where p is a one-dimensional polynomial and δ ∈ C \ {0}.

It is easy to describe the dynamics of affine and elementary maps.
Complex Hénon maps have been extensively studied by Hubbard and Oberste-Vorth [146,

147, 148], Bedford-Smillie [37, 38], Fornæss-Sibony [123] and several other authors. A basic useful
property of Hénon maps is the existence of the following filtration. For R > 0 large enough we
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set
W = {(z, w) ∈ C2 | max(|z|, |w|) ≤ R},
V+ = {(z, w) ∈ C2 | |z| ≥ max(|w|, R)},
V− = {(z, w) ∈ C2 | |w| ≥ max(|z|, R)}.

It is easy to check that H(V+) ⊂ V+, H−1(V−) ⊂ V−, and the orbit of any point in V+ converge
to the attracting fixed point [1 : 0 : 0] on the line at infinity. Therefore the escaping set

I∞ =
⋃
n∈N

H−n(V+) = {(z, w) ∈ C2 | ‖H(z, w)‖ → ∞}

is a Fatou component, and the forward orbits for any other Fatou component are bounded.
First results on the dynamics on periodic Fatou components for Hénon maps have been

obtained by Bedford and Smillie in 1991 [38], followed by Fornæss and Sibony in 1995 [125], with
a later complement by Ueda [253]. Bedford and Smillie introduced the notion of recurrent Fatou
component.

Definition 5.2. An invariant Fatou component Ω for a holomorphic endomorphism F on a
complex manifold X is called recurrent if there exists a point p ∈ Ω whose orbit accumulates at
a point in Ω.

Therefore, by normality, a Fatou component is recurrent exactly when it contains a recurrent
orbit. For a non-recurrent Fatou component Ω all orbits in Ω converge to ∂Ω. In dimension one,
for rational endomorphisms of the Riemann sphere we therefore have that basins of attracting
fixed points, Siegel disks and Herman rings are recurrent Fatou components, while the only
non-recurrent components are basins of parabolic fixed points. Recurrent Fatou components for
Hénon maps in dimension 2 have been studied by Bedford and Smillie [38, 39], Fornæss and
Sibony [125] and Ueda [253]. Their results can be summarized as follows.

Theorem 5.3 ([38, 39, 125, 253]). Let H be a Hénon map or a holomorphic endomorphism of
P2(C) with a recurrent invariant Fatou component Ω. Then one of the following holds:

1. Ω is an attracting basin of some fixed point in Ω, and Ω is biholomorphic to C2,

2. there exists a one-dimensional closed complex submanifold Σ of Ω and H◦n(K) → Σ for
any compact set K in Ω. The Riemann surface Σ is biholomorphic to a disk or an annulus
and H|Σ is conjugate to an irrational rotation,

3. Ω is a Siegel domain, that is there exists a sequence {nj} such that {H◦nj} converges
uniformly on compact subsets of Ω to the identity.

This result has been generalized to holomorphic endomorphisms of Pk(C), k ≥ 3 by Fornæss
and Rong in [121].

5.1.1 Non-recurrent invariant Fatou components
Non-recurrent invariant Fatou components for polynomial automorphisms in C2 have been first
studied by Weickert [260] and Jupiter and Lilov [157]. One of the main difficulties consists in
the fact that since for an invariant non-recurrent Fatou component Ω all orbits converge to the
boundary of the component, by normality there exists a sequence {H◦nk} converging uniformly
on compact subsets, to a limit map h : Ω→ ∂Ω. In general the map h is not unique, it depends
on the sequence {nk}, and a priori it is not even clear whether the limit set h(Ω) is always unique.

Recently, Lyubich and Peters were able to prove the following result giving a precise classifi-
cation of non-recurrent invariant Fatou components under the assumption that h(Ω) is unique.
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Theorem 5.4 (Lyubich, Peters [176, Theorem 6]). Let H be a Hénon map and suppose that
Ω is a non-recurrent invariant Fatou component. Then there exists a sequence {H◦nk} that
converges uniformly on compact subsets of Ω to a fixed point p ∈ ∂Ω. If the entire sequence
{H◦n} converges to p then the eigenvalues of DHp are 1 and λ, with |λ| < 1. Moreover, Ω is
biholomorphically equivalent to C2.

They also obtained in [176, Theorem 7] that, for a polynomial endomorphism P of P2(C) with
a non-recurrent invariant Fatou component Ω, if the limit set is unique, then it either consists
of one point, or it is an injectively immersed Riemann surface, conformally equivalent to either
the unit disk, the punctured unit disk or an annulus, and P acts on it as an irrational rotation.
Moreover, all cases were known to occur except for the punctured unit disk, whose existence has
been proved by Boc-Thaler, Fornæss and Peters in [49] via a one-resonant degenerate polynomial
endomorphism of C2.

Lyubich and Peters completed the classification of invariant Fatou components for moderately
dissipative polynomial automorphisms of C2. More precisely they obtained the following result.

Theorem 5.5 (Lyubich, Peters [176, Theorem 1]). Let P : C2 → C2 be a non-elementary poly-
nomial automorphism of degree d ≥ 2, and let δ = detDP be its Jacobian. Assume that P is
moderately dissipative, that is

|δ| < 1

d2
.

Let Ω be an invariant non-recurrent Fatou component of P with bounded forward orbits. Then
all the orbits in Ω converge to a parabolic point α ∈ ∂Ω with multiplier 1.

Putting this result together with the previous ones, one obtains that for moderately dissipative
polynomial automorphisms of C2 the description of invariant Fatou components is the same as
in dimension 1.

Theorem 5.6 ([38, 39, 125, 253, 176]). Let P : C2 → C2 be non-elementary moderately dissipa-
tive polynomial automorphism of degree d ≥ 2 and let Ω be an invariant Fatou component. Then
one of the following holds:

1. Ω is an attracting basin of some fixed point p in Ω, and Ω is biholomorphic to C2,

2. there exists a properly embedded submanifold Σ of Ω, biholomorphic to a disk or an annulus,
such that H◦n(K)→ Σ for any compact set K in Ω and H|Σ is conjugate to an irrational
rotation,

3. all orbits in Ω converge to a fixed point p ∈ ∂Ω, the eigenvalues of DPp are 1 and λ, with
|λ| < 1, and Ω is biholomorphically equivalent to C2.

Idea of the proof. Consider ΓP the set of all limit functions h : Ω → Ω for the family of the
iterates of P . In the non-recurrent case the image of h is either a single point (rank 0 case) or
a holomorphic curve (rank 1 case). The key point consists in analyzing the rank 1 case, that is
when the image h(Ω) is an analytic curve lying in the boundary of Ω.

First, it is possible to show that the curve h(Ω) is non-singular. Then by analyzing the
natural action of P on ΓP it is possible to prove that ΓP always contains a rank 0 map, and
the image of such a map has to be a fixed point p. One then proves that if there exists a rank
one limit map, then there also exists one whose image lies in the strong stable manifold of the
fixed point p previously constructed. This last situation is ruled out by applying the classical
Denjoy-Carleman-Ahlfors and Wiman Theorems, and this is the only step in the proof where the
stronger assumption on the Jacobian of P is indeed required. Therefore, all orbits in Ω converge
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to a unique fixed point p. Finally, by adapting the classical Fatou’s argument, it is possible to
prove a Snail Lemma stating that the fixed point p is a semi-parabolic point with one multiplier
equal to 1.

5.2 Non-polynomial automorphisms
In this setting, less is known on the classification of invariant Fatou components, already for
attracting Fatou components.

Definition 5.7. Let F be a holomorphic endomorphism of Ck, k ≥ 2. An invariant Fatou
component Ω for F is called attracting if there exists a point p ∈ Ω with limn→∞ F ◦n(z) = p for
all z ∈ Ω.

Note that, in particular, p is a fixed point for F , and Ω is recurrent if p ∈ Ω, non-recurrent
if p ∈ ∂Ω.

It follows from Rosay-Rudin results in [233] and [200, Theorem 2.1] that

Theorem 5.8. Let k ≥ 2 and let F : Ck → Ck be a holomorphic automorphism. Every attracting
recurrent Fatou component Ω of F is biholomorphic to Ck.

In fact it turns out that an attracting recurrent Fatou component is the global basin of
attraction of F at p, which is an attracting fixed point (i.e. all eigenvalues of DFp have modulus
strictly less than 1).

The characterization of non-recurrent attracting Fatou components for non-polynomial au-
tomorphisms of Ck is more delicate, even when considering the two-dimensional case. It follows
from the results obtained by Ueda in [250], that:

Theorem 5.9 (Ueda, [250]). Let F : C2 → C2 be a holomorphic automorphism and let Ω be a
non-recurrent attracting Fatou component with fixed point p ∈ ∂Ω. If the eigenvalues of DPp are
1 and λ, with |λ| < 1, then Ω is biholomorphic to C2.

Hakim [135] gave examples of automorphisms of Ck tangent to the identity at an isolated
fixed point and such that the attracting set of the fixed point (which belongs to the boundary
of such set) is biholomorphic to Ck. Parabolic domains have indeed been often used to build
Fatou-Bieberbach domains, that is proper subsets of Cn biholomorphic to Cn; see, e.g., [255],
[245] and references therein.

In the rest of the chapter we will explain the construction that we obtained with Bracci
and Stensønes of the first family of holomorphic automorphisms of Ck with an invariant, non-
recurrent, attracting Fatou component not biholomorphic to Ck.

5.3 A non-recurrent component biholomorphic to C×(C∗)k−1

As we already recalled in the previous section, from the results obtained by Ueda in [251] and
from [176, Theorem 6] by Lyubich and Peters, it follows that every non-recurrent invariant
attracting Fatou component Ω of a polynomial automorphism of C2 is biholomorphic to C2.

Vivas and Stensønes in [245] produced examples of automorphisms of C3 having attracting
non-recurrent Fatou component biholomorphic to C2 × C∗. However, the question whether
there could exist a holomorphic automorphism of Ck, with k ≥ 2 and having an invariant,
non-recurrent, attracting Fatou component biholomorphic to C × (C∗)k−1 remained open until
recently.
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In collaboration with Bracci and Stensønes, we gave in [64] a positive answer to such a
question.

Theorem 5.10 (Bracci, R., Stensønes, [64]). Let k ≥ 2. There exist holomorphic automorphisms
of Ck having an invariant, non-recurrent, attracting Fatou component biholomorphic to C ×
(C∗)k−1.

Moreover as an immediate corollary of Theorem 5.10 and [251, Proposition 5.1], we obtain
the following result.

Corollary 5.11 (Bracci, R., Stensønes, [64]). Let k ≥ 2. There exists a biholomorphic image of
C× (C∗)k−1 in Ck which is Runge.

The existence of an embedding of C × C∗ as a Runge domain in C2 was a long standing
open question, positively settled by our construction. After a preliminary version of [64] was
circulating, Forstnerič and Wold constructed in [130] other examples of Runge embeddings of
C×C∗ in C2 (which do not arise from basins of attraction of automorphisms) using completely
different techniques.

Notice that, thanks to the results obtained by Serre in [239] (see also [144, Theorem 2.7.11]),
every Runge domain D ⊂ Ck satisfies Hq(D) = 0 for all q ≥ k. Therefore the Fatou component
in Theorem 5.10 has the highest possible admissible non-vanishing cohomological degree.

The proof of Theorem 5.10 is rather involved and in the next subsection we outline it in the
case k = 2. We will explain in the last subsection the modifications needed to deal with the
general case in any dimension.

5.3.1 Idea of the proof of Theorem 5.10 for k = 2

The strategy of the proof consists in three main steps. The first step consists in finding a
holomorphic automorphism F of C2 with a not simply connected, completely F -invariant domain
Ω having a fixed point in its boundary, that we might assume to be the origin, and such that all
orbits of points in Ω converge to the fixed point. The second step consists in proving that such
a domain is biholomorphic to C × C∗. Finally we have to find a holomorphic automorphism F
of C2 satisfying the first two steps and such that Ω is indeed one of its Fatou components.

The final step might seem unnecessary, but this is not the case, as this elementary example
clearly shows: C× C∗ (but also C∗ × C∗) is a completely invariant domain for the holomorphic
automorphism C2 3 (z, w) 7→ ( z2 ,

w
2 ) ∈ C2, but it is clearly not one of its Fatou component.

Step 1. The key point here is to start from a germ of biholomorphism of (C2, O), with an
isolated fixed point at the origin and a special dynamics near the origin:

FN (z, w) =
(
λz
(

1− zw

2

)
, λw

(
1− zw

2

))
, (5.2)

where λ ∈ C, |λ| = 1, is not a root of unity.
This germ is a particular case of one-resonant germ and, as we already recalled in Chapter 3,

the local dynamics of this kind of maps has been studied by Bracci with Zaitsev in [62], and by
Bracci, R. and Zaitsev in [63]. As a consequence of Theorem 3.13, we have the following.

Proposition 5.12. Let FN be a germ of biholomorphism at (0, 0) of the form (5.2). Let β0 ∈
(0, 1/2) and let l ∈ N, l ≥ 4 be such that β0(l+ 1) ≥ 4. Then for every θ0 ∈ (0, π/2) and for any
germ of biholomorphism F at (0, 0) of the form

F (z, w) = FN (z, w) +O(‖(z, w)‖l)



Chapter 5. Fatou components of holomorphic automorphisms 72

there exists R0 > 0 such that the (non-empty) open set

B = {(z, w) ∈ C2 : zw ∈ SR0
, |z| < |zw|β , |w| < |zw|β},

with SR0 a small sector in C with vertex at 0 around the positive real axis and radius R0, is
a uniform local basin of attraction for F , that is F (B) ⊆ B, and limn→∞ F ◦n(z, w) = (0, 0)
uniformly on B.

Setting x = zw, y = w (which are coordinates on B) the domain B looks like {(x, y) ∈ C×C∗ :
x ∈ S, |x|1−β < |y| < |x|β}, and hence B is doubly connected.

In order to obtain a holomorphic automorphism of C2 having the same property of FN , it
suffices to recall the results of Weickert in [259] and Forstnerič in [128], ensuring that for any
large l ∈ N there exists an automorphism F of C2 such that

F (z, w)− FN (z, w) = O(‖(z, w)‖l). (5.3)

Therefore it suffices to take one such holomorphic automorphism F of C2 and to consider

Ω := ∪n∈NF−n(B).

The domain Ω is connected but not simply connected, completely F -invariant, the origin belongs
to the boundary of Ω and by construction all orbits in Ω converge to the origin.

We can also characterize the behaviour of the orbits in Ω (where for a point (z, w) ∈ C2, we
denote (zn, wn) := F ◦n(z, w)):

Ω = {(z, w) ∈ C2 \ {(0, 0)} : lim
n→∞

‖(zn, wn)‖ = 0, |zn| ∼ |wn|},

and moreover, if (z, w) ∈ Ω then |zn| ∼ |wn| ∼ 1√
n
(see [64, Theorem 5.2] for details).

Step 2. We already know that Ω is not simply connected, and so it cannot be biholomorphic
to C2. We prove that Ω is biholomorphic to C× C∗ by constructing a fibration from Ω to C in
such a way that Ω is a line bundle minus the zero section over C.

We first prove the existence of a univalent map Q on B which intertwines F on B with a
simple overshear. The first component ψ of Q is morally the Fatou coordinate of the projection
of F onto the zw-plane, as it was introduced in [63, Proposition 4.3] and satisfies

ψ ◦ F = ψ + 1.

The second component σ is constructed [64, Proposition 3.4] as the local uniform limit on B of
the sequence {σn} defined by

σn(z, w) := λnπ2(F ◦n(z, w)) exp

1

2

n−1∑
j=0

1

ψ(z, w) + j

 ,

where π2 : C2 → C is the projection on the second coordinate, π2(z, w) = w, and satisfies the
functional equation

σ ◦ F = λe−
1

2ψ σ.

Next, using dynamics, we extend in [64, Section 4] such a map to a univalent map G defined
on a domain Ω0 ⊂ Ω, and we use it to prove that Ω is a line bundle minus the zero section
over C. Since all line bundles over C are globally holomorphically trivial, we obtain that Ω is
biholomorphic to C× C∗.
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Step 3. To finish our construction and prove that Ω coincides with the Fatou component V
containing it, we need to assume that the eigenvalue λ satisfies the Brjuno condition (1.5). In
fact, this ensures (see for example [204]) the existence of two F -invariant analytic discs, tangent
to the axes, where F acts as an irrational rotation. In particular, we can choose local coordinates
at (0, 0), which we may assume to be defined on the unit ball B of C2 and B ⊂ B, such that
{z = 0} and {w = 0} are not contained in V ∩ B. Let B∗ := B \ {zw = 0}.

Assume by contradiction that V 6= Ω. Then we can take p0 ∈ Ω, q0 ∈ V \ Ω, and Z a
connected open set containing p0 and q0 and such that Z ⊂ V . Moreover, since {F ◦n} converges
uniformly to the origin on Z, up to replacing F by one of its iterates, we can assume that the
forward F -invariant set W := ∪n∈NF ◦n(Z) satisfies W ⊂ B∗. By construction, for every δ > 0
we can find p ∈ Z ∩ Ω and q ∈ Z ∩ (V \ Ω) such that kW (p, q) ≤ kZ(p, q) < δ, where kW is the
Kobayashi (pseudo)distance of W . By the properties of the Kobayashi distance, for every n ∈ N
we have

kB∗(F
◦n(p), F ◦n(q)) ≤ kW (p, q) < δ.

Also, if (zn, wn) := F ◦n(p), (xn, yn) := F ◦n(q), then

kD∗(zn, xn) < δ, kD∗(wn, yn) < δ,

where D∗ is the punctured unit disc, and therefore by the triangle inequality we have

kD∗(xn, wn) < 2δ.

Since q 6∈ Ω, F ◦n(q) 6∈ B for every n ∈ N, and so we can prove (using [64, Lemma 2.5]) that, up
to passing to a subsequence, we have |xn| 6∼ |yn| and

|yn| ≤ |xn|
1−β
β .

The properties of the Kobayashi distance of D∗ (see [64, Lemma5.6]) imply

kD∗(xn, yn) > log
1− β
β
− δ.

Therefore we have

δ > kD∗(wn, yn) > kD∗(xn, yn)− kD∗(xn, wn) > log
1− β
β
− 3δ,

and so
4δ ≥ log

1− β
β

,

which leads to a contradiction since 1−β
β > 1 is fixed and δ > 0 is arbitrary.

5.3.2 Idea of the proof of Theorem 5.10 for k ≥ 3

The strategy of the proof is the same as is dimension 2, with the following modifications.
In the general case, k ≥ 3, we start with a germ of biholomorphism of Ck at the origin of the

form
FN (z1, . . . , zk) =

(
λ1z1

(
1− z1 · · · zk

k

)
, . . . , λkzk

(
1− z1 · · · zk

k

))
, (5.4)

where:
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(i) each λj ∈ C, |λj | = 1, is not a root of unity for j = 1, . . . , k,

(ii) the k-tuple (λ1, . . . , λk) is one-resonant with index of resonance (1, . . . , 1) ∈ Nk in the sense
of Definition 3.11,

(iii) the k-tuple (λ1, . . . , λk) is admissible in the sense of Pöschel (see [204]), that is we have

+∞∑
n=0

1

2n
log

1

ωj(2n+1)
< +∞ , for j = 1, . . . , k

where ωj(m) = min2≤h≤m min1≤i≤k |λhj − λi| for any m ≥ 2.

Thanks to a result of B. J. Weickert [259] and F. Forstnerič [128], for any large l ∈ N there
exists an automorphism F of Ck such that

F (z1, . . . , zk)− FN (z1, . . . , zk) = O(‖(z1, . . . , zk)‖l). (5.5)

Moreover, thanks to [62, Theorem 1.1], given β ∈ (0, 1
k ) and l ∈ N, l ≥ 4 such that β(l + 1) ≥ 4,

there is R > 0 such that, denoting by SR a small sector in C with vertex at 0 around the positive
real axis and radius R, the set

B := {(z1, . . . , zk) ∈ Ck : u := z1 · · · zk ∈ SR, |zj | < |u|β for j = 1, . . . , k}

is non-empty, forward invariant under F , the origin is on the boundary of B and we have
limn→∞ F ◦n(p) = 0 for all p ∈ B, uniformly on compact sets. Arguing as in dimension 2,
we obtain that for each p ∈ B, we have that limn→∞ nun = 1 and |πj(F ◦n(p))| ∼ n−1/k, for
j = 1, . . . , k, where πj is the projection on the j-th coordinate. Moreover, again thanks to [63,
Proposition 4.3], there exists a local Fatou coordinate ψ : B → C such that ψ ◦ F = ψ + 1.

Here we need k − 1 other local coordinates σ2, . . . , σk. For 2 ≤ j ≤ k, σj : B → C is defined
as the uniform limit on compact sets of the sequence {σj,n}n where

σj,n(z1, . . . , zk) := (λj . . . λk)−nΠj(F
◦n(z1, . . . , zk)) exp

(
k − j + 1

k

n−1∑
m=0

1

ψ(z1, . . . , zk) +m

)
,

and Πj : Ck → C is defined as Πj(z1, . . . , zk) := zj · · · zk. The map σj satisfies the functional
equation

σj ◦ F = λj · · ·λke−
k−j+1
kψ σj .

Let Ω := ∪n≥0F
−n(B). Arguing like in dimension 2, one can prove that Hk−1(Ω,C) 6= 0.

Using the functional equation we can extend ψ to a map g1 : Ω→ C. Moreover, set H := g1(B)
and Ω0 := g−1

1 (H). For j = 2, . . . , k, we can extend σj to Ω0 by setting, for any p ∈ Ω0,

gj(p) = (λj · · ·λk)n exp

(
−k − j + 1

k

n−1∑
m=0

1

g1(p) + j

)
σj(F

◦n(p))

where n ∈ N is so that F ◦n(p) ∈ B. As in dimension 2, the map Ω0 3 p 7→ G(p) :=
(g1(p), . . . , gk(p)) ∈ H × Ck−1 is univalent with image H × (C∗)k−1. In fact, we can use co-
ordinates

(u, y2, . . . , yk) := (z1 · · · zk, z2 · · · zk, . . . , zk),

in B so that we have

B = {u ∈ S(R, θ), |u|1−kβ < |yk| < |u|β , |u|1−jβ < |yj | < |u|β |yj+1| for j = 2, . . . , k − 1}.
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Following the proof of [64, Proposition 4.4], since, for p ∈ Ω0, limn→∞ nun = 1 and |Πj(F
◦n(p))| ∼

n−(k−j+1)/k for j = 2, . . . , k we can show that for any a ∈ H and bk ∈ C∗ there is a point p ∈ Ω0

such that g1(p) = a and gk(p) = bk. Now fix a ∈ H and bk ∈ C∗. Using

|u|1−(k−1)β < |yk−1| < |u|β |yk|

we obtain that C∗ ⊆ gk−1(g−1
1 (a) ∩ g−1

k (bk)), and so on for every j = 2, . . . , k − 2. Therefore
G(Ω0) = H × (C∗)k−1, and as in Step 2 we prove that g1 : Ω→ C is a holomorphic fiber bundle
map with fiber (C∗)k−1. Since the transition functions belong to GLn(C), by [129, Corollary 8.3.3]
we obtain that Ω is biholomorphic to C× (C∗)k−1.

To conclude, we assume that the k-tuple (λ1, . . . , λk) is admissible in the sense of Pöschel
[204] (see also Subsection 1.3.1). Therefore we can locally choose coordinates so that the Fatou
component V containing Ω cannot intersect the coordinate axes in a small neighbourhood of the
origin. Hence using the estimates for the Kobayashi distance as done in Step 3, we prove that
V = Ω.
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Chapter 6

Wolff-Denjoy theorems in convex
domains

In this chapter we provide a short introduction to Wolff-Denjoy theorem, and its generalizations
in several complex variables, up to very recent results. A precise and systematic presentation
can be found in [12] and references therein.

The Kobayashi distance is the main tool in describing the dynamics of holomorphic self-maps
of bounded convex domains and we shall recall its definition and main properties in the next
section.

6.1 The Kobayashi distance
Given X and Y two (finite dimensional) complex manifolds, in the following we shall denote by
Hol(X,Y ) the set of all holomorphic maps from X to Y , endowed with the compact-open topology
so that it becomes a metrizable topological space. We shall denote by Aut(X) ⊂ Hol(X,X) the
set of holomorphic automorphisms of X, that is invertible holomorphic self-maps, of X. More
generally, if X and Y are topological spaces we shall denote by C0(X,Y ) the space of continuous
maps from X to Y , again endowed with the compact-open topology.

We shall denote by D = {ζ ∈ C | |ζ| < 1} the unit disk in the complex plane C, by
Bn = {z ∈ Cn | ‖z‖ < 1}, where ‖ · ‖ is the Euclidean norm, the unit ball in the n-dimensional
space Cn, and by Dn ⊂ Cn the unit polydisk in Cn. Furthermore, 〈· , ·〉 will denote the canonical
Hermitian product on Cn.

6.1.1 The Poincaré distance
The model for all invariant distances in complex analysis is the Poincaré distance on the unit
disk of the complex plane.

Definition 6.1. The Poincaré (or hyperbolic) metric on D is the Hermitian metric whose
associated norm is given by

κD(ζ; v) =
1

1− |ζ|2
|v|

for all ζ ∈ D and v ∈ C ' TζD.

The Poincaré metric is a complete Hermitian metric with constant Gaussian curvature −4.

79
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Definition 6.2. The Poincaré (or hyperbolic) distance kD on D is the integrated form of the
Poincaré metric. It is a complete distance, whose expression is

kD(ζ1, ζ2) = 1
2 log

1 +
∣∣∣ ζ1−ζ2

1−ζ1ζ2

∣∣∣
1−

∣∣∣ ζ1−ζ2
1−ζ1ζ2

∣∣∣ .
In particular,

kD(0, ζ) = 1
2 log

1 + |ζ|
1− |ζ|

.

It is useful to remark that the function

t 7→ 1
2 log

1 + t

1− t

is the inverse of the hyperbolic tangent tanh t = (et − e−t)/(et + e−t).
Besides being a metric with constant negative Gaussian curvature, the Poincaré metric

strongly reflects the properties of the holomorphic self-maps of the unit disk. For instance,
the isometries of the Poincaré metric coincide with the holomorphic or anti-holomorphic auto-
morphisms of D (see, e.g., [2, Proposition 1.1.8]).

More importantly, the Schwarz-Pick lemma says that any holomorphic self-map of D is non-
expansive for the Poincaré metric and distance (see, e.g., [2, Theorem 1.1.6]).

Theorem 6.3 (Schwarz-Pick lemma). Let f ∈ Hol(D,D) be a holomorphic self-map of D. Then:

(i)
κD
(
f(ζ); f ′(ζ)v

)
≤ κD(ζ; v) (6.1)

for all ζ ∈ D and v ∈ C. Moreover, equality holds for some ζ ∈ D and v ∈ C∗ if and only
if it holds for all ζ ∈ D and all v ∈ C, if and only if f ∈ Aut(D);

(ii)
kD
(
f(ζ1), f(ζ2)

)
≤ kD(ζ1, ζ2) (6.2)

for all ζ1, ζ2 ∈ D. Moreover, equality holds for some ζ1 6= ζ2 if and only if it holds for all
ζ1, ζ2 ∈ D, if and only if f ∈ Aut(D).

Therefore holomorphic self-maps of the unit disk are 1-Lipschitz, and hence equicontinuous,
with respect to the Poincaré distance.

As an immediate corollary, we can compute the group of automorphisms of D, and thus the
group of isometries of the Poincaré metric (see, e.g., [2, Proposition 1.1.2]):

Corollary 6.4. The group Aut(D) of holomorphic automorphisms of D consists in all the func-
tions γ : D→ D of the form

γ(ζ) = eiθ
ζ − ζ0
1− ζ0ζ

(6.3)

with θ ∈ R and ζ0 ∈ D. In particular, for every ζ1, ζ2 ∈ D there exists γ ∈ Aut(D) such that
γ(ζ1) = 0 and γ(ζ2) ∈ [0, 1).

More generally, given ζ1, ζ2 ∈ D and η ∈ [0, 1), it is not difficult to see that there is γ ∈ Aut(D)
such that γ(ζ1) = η and γ(ζ2) ∈ [0, 1) with γ(ζ2) ≥ η.

A consequence of (6.3) is that all automorphisms of D extends continuously to the boundary.
It is classical to classify the elements of Aut(D) according to the number of fixed points in D.
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Definition 6.5. An automorphism γ ∈ Aut(D) \ {IdD} is called:

(i) elliptic if it has a unique fixed point in D,

(ii) parabolic if it has a unique fixed point in ∂D,

(iii) hyperbolic if it has exactly two fixed points in ∂D.

It is easy to check that these cases are mutually exclusive and exhaustive.

6.1.2 The Kobayashi distance on bounded convex domains
Given x, y ∈ Cn, let

[x, y] = {sx+ (1− s)y ∈ Cn | s ∈ [0, 1]} and (x, y) = {sx+ (1− s)y ∈ Cn | s ∈ (0, 1)}

denote the closed, respectively open, segment connecting x and y. We recall that a set D ⊆ Cn
is convex if [x, y] ⊆ D for all x, y ∈ D; and strictly convex if (x, y) ⊆ D for all x, y ∈ D.

An easy but useful observation is that given D ⊂ Cn a convex domain, we have

(i) (z, w) ⊂ D for all z ∈ D and w ∈ ∂D,

(ii) if x, y ∈ ∂D then either (x, y) ⊂ ∂D or (x, y) ⊂ D.

This suggests the following definition

Definition 6.6. Let D ⊂ Cn be a convex domain. Given x ∈ ∂D, we set

ch(x) = {y ∈ ∂D | [x, y] ⊂ ∂D} ;

we shall say that x is a strictly convex point if ch(x) = {x}. More generally, given F ⊆ ∂D we
set

ch(F ) =
⋃
x∈F

ch(x) .

A similar construction having a more holomorphic character is the following.

Definition 6.7. Let D ⊂ Cn be a convex domain. A complex supporting functional at x ∈ ∂D
is a C-linear map σ : Cn → C such that Reσ(z) < Reσ(x) for all z ∈ D. A complex supporting
hyperplane at x ∈ ∂D is an affine complex hyperplane L ⊂ Cn of the form L = x+ kerσ, where
σ is a complex supporting functional at x (the existence of complex supporting functionals and
hyperplanes is guaranteed by the Hahn-Banach theorem). Given x ∈ ∂D, we shall denote by
Ch(x) the intersection of D with of all complex supporting hyperplanes at x. Clearly, Ch(x) is
a closed convex set containing x; in particular, Ch(x) ⊆ ch(x). If Ch(x) = {x} we say that x is
a strictly C-linearly convex point; and we say that D is strictly C-linearly convex if all points
of ∂D are strictly C-linearly convex. Finally, if F ⊂ ∂D we set

Ch(F ) =
⋃
x∈F

Ch(x) ⊆ ch(F ) .

Note that if ∂D is of class C1 then for each x ∈ ∂D there exists a unique complex supporting
hyperplane at x. Hence Ch(x) coincides with the intersection of the complex supporting hyper-
plane with ∂D, which is smaller than the flat region introduced in [2, p. 277] as the intersection
of ∂D with the real supporting hyperplane. One should however keep in mind that non-smooth
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points can have more than one complex supporting hyperplanes, as it happens for instance in
the polydisk.

The intrinsic complex geometry of convex domains can be described using the intrinsic
Kobayashi distance. We refer to [2, 151, 162] for details and much more on the Kobayashi
(pseudo)distance in complex manifolds; here we shall just recall what is needed for our aims.

If X is a complex manifold, the Lempert function δX : X ×X → R+ of X is

δX(z, w) = inf{kD(ζ, η) | ∃φ : D→ X holomorphic map with φ(ζ) = z and φ(η) = w}

for all z, w ∈ X. In general, the Kobayashi pseudodistance kX : X ×X → R+ of X is the largest
pseudodistance on X bounded from above by δX . We say that X is (Kobayashi) hyperbolic if
kX is an actual distance. When D b Cn is a bounded convex domain in Cn, Lempert [170] has
proved that δD is an actual distance, and thus it coincides with the Kobayashi distance kD of D.

The main property of the Kobayashi (pseudo)distance is that it is contracted by holomorphic
maps: if f : X → Y is a holomorphic map then

kY
(
f(z), f(w)

)
≤ kX(z, w)

for all z, w ∈ X. In particular, biholomorphisms are isometries, and holomorphic self-maps are
kX-nonexpansive.

The Kobayashi distance of convex domains has several interesting properties. For instance,
it coincides with the Carathéodory distance, and it is a complete distance (see, e.g., [2] or [170]);
in particular, kD-bounded subsets of D are relatively compact in D.

Using the definition, it is easy to compute the Kobayashi pseudodistance of a few interesting
manifolds (see, e.g., [2, Proposition 2.3.4, Corollaries 2.3.6, 2.3.7]):

Proposition 6.8. (i) The Poincaré distance is the Kobayashi distance of the unit disk D.

(ii) The Kobayashi distances of Cn and of the complex projective space Pn(C) vanish identically.

(iii) For every z = (z1, . . . , zn), w = (w1, . . . , wn) ∈ Dn we have

kDn(z, w) = max
j=1,...,n

{kD(zj , wj)} .

(iv) The Kobayashi distance of the unit ball Bn ⊂ Cn coincides with the classical Bergman
distance; in particular, if O ∈ Cn is the origin and z ∈ Bn then

kBn(O, z) = 1
2 log

1 + ‖z‖
1− ‖z‖

.

The Kobayashi pseudodistance can be explicitly computed only in few cases. Besides the
cases listed in Proposition 6.8, as far as we know there are formulas for some complex ellipsoids,
bounded symmetric domains, the symmetrized bidisk and a few other scattered examples (see
[12] for references).

6.2 Dynamics on bounded convex domains
Given a holomorphic self-map f of a bounded convex domains, we are again interested in studying
the asymptotic behaviour of the sequence {f◦k} of its iterates. Thanks to the fact that the
Kobayashi distance of a bounded convex domain is contracted by holomorphic self-maps, the
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family of iterates here is always normal and we can therefore describe the asymptotic behaviour
of all orbits.

The model theorem for this theory is the Wolff-Denjoy theorem (for a proof see, e.g., [2,
Theorem 1.3.9]):

Theorem 6.9 (Wolff-Denjoy, [264, 90]). Let f ∈ Hol(D,D) \ {IdD} be a holomorphic self-map
of D different from the identity. Assume that f is not an elliptic automorphism, that is without
fixed points in D. Then the sequence of iterates of f converges, uniformly on compact subsets, to
a constant map τ ∈ D.

When f ∈ Hol(D,D) has a fixed point ζ0 ∈ D, the Wolff-Denjoy theorem is an easy conse-
quence of the Schwarz-Pick lemma. Indeed if f is an automorphism the statement is clear; if it
is not an automorphism, then f is a strict contraction of any Kobayashi ball centered at ζ0, and
thus the orbits must converge to the fixed point ζ0. When f has no fixed points, this argument
fails because there are no f -invariant Kobayashi balls. The key idea here is to replace Kobayashi
balls by a sort of balls centered at points in the boundary, the horocycles, and to prove the
existence of f -invariant horocycles, which completes the proof of the Wolff-Denjoy theorem.

This result leads to the following definition.

Definition 6.10. Let f ∈ Hol(D,D) \ {IdD} be a holomorphic self-map of D different from the
identity and not an elliptic automorphism. Then the point τ ∈ D whose existence is asserted by
Theorem 6.9 is the Wolff point of f .

We can even be slightly more precise, introducing a bit of terminology. Given f : X → X a
self-map of a set X, recall that a fixed point of f is a point x0 ∈ X such that f(x0) = x0. We
shall denote by Fix(f) the set of fixed points of f . More generally, x0 ∈ X is periodic of period
p ≥ 1 if f◦p(x0) = x0 and f◦j(x0) 6= x0 for all j = 1, . . . , p − 1. We say that f is periodic of
period p ≥ 1 if f◦p = IdX , that is if all points are periodic of period p.

Definition 6.11. Let f : X → X be a continuous self-map of a topological space X. We shall
say that a continuous map g : X → X is a limit map of f if there is a subsequence of iterates
of f converging to g (uniformly on compact subsets). We shall denote by Γ(f) ⊂ C0(X,X) the
set of limit maps of f . If IdX ∈ Γ(f) we shall say that f is pseudoperiodic.

Let γθ ∈ Aut(D) be given by γθ(ζ) = e2πiθζ. It is easy to check that γθ is periodic if θ ∈ Q,
and it is pseudoperiodic (but not periodic) if θ ∈ R \ Q. It is easy to check that any elliptic
automorphism of D is biholomorphically conjugated to one of the automorphisms γθ. Therefore
an elliptic automorphism of D is necessarily periodic or pseudoperiodic.

Wolff-Denjoy Theorem 6.9 gives us the following dichotomy. Given f ∈ Hol(D,D) different
from the identity: either f has a fixed point τ ∈ D or Fix(f) = ∅ (in fact, by the Schwarz-Pick
lemma and the structure of the automorphisms of D, the only holomorphic self-map of D with
at least two distinct fixed points is the identity). Therefore:

(a) if Fix(f) = {τ}, then either f is an elliptic automorphism—and hence it is periodic or
pseudoperiodc—or the whole sequence of iterates converges to the constant function τ ;

(b) if Fix(f) = ∅ then there exists a unique point τ ∈ ∂D such that the whole sequence of
iterates converges to the constant function τ .

Hence there is a natural dichotomy between self-maps with fixed points and self-maps without
fixed points.



Chapter 6. Wolff-Denjoy theorems in convex domains 84

Since the discovery of Wolff-Denjoy Theorem, a lot of work has been devoted to obtain similar
statements in more general situations. In one complex variable, there are results in multiply
connected domains, multiply and infinitely connected Riemann surfaces, and even in the settings
of one-parameter semigroups and of random dynamical systems (see, e.g., [35, 139, 168]).

In the next section we will present a (suitable) generalization of the Wolff-Denjoy Theorem
in Cn.

6.3 Wolff-Denjoy theorem
In several complex variables, the first Wolff-Denjoy theorems are due to Hervé [142, 143]. In
particular, in [143] he proved a statement identical to the one above for fixed points free self-
maps of the unit ball Bn ⊂ Cn. Hervé’s theorem has also been generalized in various ways to
open unit balls of complex Hilbert and Banach spaces (see, e.g., [73, 244] and references therein).

Abate showed in [1] how to prove a Wolff-Denjoy theorem for holomorphic self-maps of
smoothly bounded strongly convex domains in Cn. The techniques introduced there have turned
out to be quite effective in other contexts too and in particular they have led to Wolff-Denjoy
theorems in smooth strongly pseudoconvex domains and smooth domains of finite type. The key
idea is to use the Kobayashi distance to define a general notion of multidimensional analogue of
the horocycles, the horospheres.

Definition 6.12. Let D b Cn be a bounded domain. The small horosphere of center x0 ∈ ∂D,
radius R > 0 and pole z0 ∈ D is the set

Ez0(x0, R) =
{
z ∈ D

∣∣ lim sup
w→x0

[kD(z, w)− kD(z0, w)] < 1
2 logR

}
;

the large horosphere of center x0 ∈ ∂D, radius R > 0 and pole z0 ∈ D is the set

Fz0(x0, R) =
{
z ∈ D

∣∣ lim inf
w→x0

[kD(z, w)− kD(z0, w)] < 1
2 logR

}
.

The idea behind this definition is that a Kobayashi ball of center w ∈ D and radius r is the set
of z ∈ D such that kD(z, w) < r, but when we let w go to a point in the boundary kD(z, w) tends
to infinity (at least when D is complete hyperbolic), and so we cannot use it to define all subsets
of D. Therefore we renormalize kD(z, w) by subtracting the distance kD(z0, w) from a reference
point z0, since by the triangular inequality the difference kD(z, w) − kD(z0, w) is bounded by
kD(z0, z), and thus we can consider the lim inf and the lim sup as w tends to x0 ∈ ∂D (in general
the limit does not exist), and the sublevels provide some sort of balls centered at points in the
boundary.

We list in the following lemma a few elementary properties of horospheres, which are an
immediate consequence of the definition (see, e.g., [2, Lemmas 2.4.10 and 2.4.11]).

Lemma 6.13. Let D b Cn be a bounded domain of Cn, and choose z0 ∈ D and x ∈ ∂D. Then:

(i) for every R > 0 we have Ez0(x,R) ⊂ Fz0(x,R);

(ii) for every 0 < R1 < R2 we have Ez0(x,R1) ⊂ Ez0(x,R2) and Fz0(x,R1) ⊂ Fz0(x,R2);

(iii) for every R > 1 we have BD(z0,
1
2 logR) ⊂ Ez0(x,R);

(iv) for every R < 1 we have Fz0(x,R) ∩BD(z0,− 1
2 logR) = ∅;

(v)
⋃
R>0

Ez0(x,R) =
⋃
R>0

Fz0(x,R) = D and
⋂
R>0

Ez0(x,R) =
⋂
R>0

Fz0(x,R) = ∅;
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(vi) if ϕ ∈ Aut(D) ∩ C0(D,D), then for every R > 0

ϕ
(
Ez0(x,R)

)
= Eϕ(z0)

(
ϕ(x), R

)
and ϕ

(
Fz0(x,R)

)
= Fϕ(z0)

(
ϕ(x), R

)
;

(vii) if z1 ∈ D and we set

1
2 logL = lim sup

w→x

[
kD(z1, w)− kD(z0, w)

]
,

then for every R > 0 we have Ez1(x,R) ⊆ Ez0(x, LR) and Fz1(x,R) ⊆ Fz0(x, LR).

It is also easy to check that the horospheres with pole at the origin in Bn (and thus in D)
coincide with the classical horospheres.

Lemma 6.14. If x ∈ ∂Bn and R > 0 then

EO(x,R) = FO(x,R) =

{
z ∈ Bn

∣∣∣∣ |1− 〈z, x〉|21− ‖z‖2
< R

}
.

Thus in Bn small and large horospheres coincide. Furthermore, the horospheres with pole at
the origin are ellipsoids tangent to ∂Bn in x, because an easy computation yields

EO(x,R) =

{
z ∈ Bn

∣∣∣∣ ‖Px(z)− (1− r)x‖2

r2
+
‖z − Px(z)‖2

r
< 1

}
,

where r = R/(1 +R). In particular if τ ∈ ∂D we have

E0(τ,R) =
{
ζ ∈ D

∣∣ |ζ − (1− r)τ |2 < r2
}
,

and so a horocycle is an Euclidean disk internally tangent to ∂D in τ .
Another domain where we can explicitly compute the horospheres is the polydisk; in this case

large and small horospheres are actually different (see, e.g., [2, Proposition 2.4.12]):

Proposition 6.15. Let x ∈ ∂Dn and R > 0. Then

EO(x,R) =

{
z ∈ Dn

∣∣∣∣∣ max
j

{
|xj − zj |2

1− |zj |2

∣∣∣∣ |xj | = 1

}
< R

}
;

FO(x,R) =

{
z ∈ Dn

∣∣∣∣∣ min
j

{
|xj − zj |2

1− |zj |2

∣∣∣∣ |xj | = 1

}
< R

}
.

The key in the proof of the classical Wolff-Denjoy theorem is Wolff’s lemma.

Theorem 6.16 (Wolff’s lemma, [264]). Let f ∈ Hol(D,D) without fixed points. Then there exists
a unique τ ∈ ∂D such that

f
(
E0(τ,R)

)
⊆ E0(τ,R) (6.4)

for all R > 0.

The proof of the Wolff-Denjoy theorem follows easily from Wolff’s lemma. In fact, if f ∈
Hol(D,D) has no fixed points we know that the sequence of iterates is compactly divergent, which
means that the image of any limit h of a converging subsequence is contained in ∂D. By the
maximum principle, the map h must be constant; and by Wolff’s lemma this constant must be
contained in E0(τ,R) ∩ ∂D = {τ}. So every converging subsequence of {f◦k} must converge to
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the constant τ , which is equivalent to saying that the whole sequence of iterates converges to the
constant map τ .

The proof of the Wolff-Denjoy theorem we just briefly described is therefore based on two
ingredients: the existence of a f -invariant horocycle, and the fact that a horocycle touches the
boundary in exactly one point. To generalize such argument to several variables we first need
an analogous of Theorem 6.16 for our multidimensional horopsheres, and then we need to know
how the horospheres touch the boundary.

There exist several multidimensional versions of Wolff’s lemma; we shall state in this chapter
three of them (Theorems 6.18, 6.23 and 6.37). To state the first one we need a definition.

Definition 6.17. Let D ⊂ Cn be a domain in Cn. We say that D has simple boundary if every
ϕ ∈ Hol(D,Cn) such that ϕ(D) ⊆ D and ϕ(D) ∩ ∂D 6= ∅ is constant.

Then Abate proved the following results.

Theorem 6.18 (Abate, [4]). Let D b Cn be a complete hyperbolic bounded domain with simple
boundary, and take f ∈ Hol(D,D) with compactly divergent sequence of iterates. Fix z0 ∈ D.
Then there exists x0 ∈ ∂D such that

f◦k
(
Ez0(x0, R)

)
⊆ Fz0(x0, R)

for all k ∈ N and R > 0.

Theorem 6.19 (Abate, [1]). Let D b Cn be a bounded strongly pseudoconvex domain. Then

Ez0(x0, R) ∩ ∂D = Fz0(x0, R) ∩ ∂D = {x0}

for every z0 ∈ D, x0 ∈ ∂D and R > 0.

Such results enabled him to prove a Wolff-Denjoy theorem for strongly pseudoconvex domains.

Theorem 6.20 (Abate, [4]). Let D b Cn be a strongly pseudoconvex C2 domain. Take f ∈
Hol(D,D) with compactly divergent sequence of iterates. Then {f◦k} converges to a constant
map x0 ∈ ∂D.

6.3.1 Strictly convex domains
The proof of Theorem 6.20 strongly depends on the fact that the boundary of the domain D is
of class at least C2. Recently, Budzyńska [71] (see also [72]) found a way to prove Theorem 6.20
in strictly convex domains without any assumption on the smoothness of the boundary; in this
subsection we shall describe the simplified approach that we found in collaboration with Abate
in [17].

Theorem 6.19 is replaced by the following result.

Proposition 6.21. Let D ⊂ Cn be a hyperbolic convex domain, z0 ∈ D, R > 0 and x ∈ ∂D.
Then we have [x, z] ⊂ Fz0(x,R) for all z ∈ Fz0(x,R). Furthermore,

x ∈
⋂
R>0

Fz0(x,R) ⊆ ch(x) . (6.5)

In particular, if x is a strictly convex point then
⋂
R>0

Fz0(x,R) = {x}.
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We can then prove the following Wolff-Denjoy theorem in strictly convex domains without
any assumption on the regularity of the boundary.

Theorem 6.22 (Budzyńska, [71]; Abate, R., [17]). Let D b Cn be a bounded strictly convex
domain, and take f ∈ Hol(D,D) without fixed points. Then the sequence of iterates {f◦k}
converges to a constant map x ∈ ∂D.

Proof. Fix z0 ∈ D, and let x ∈ ∂D be given by Theorem 6.18, that can be applied because strictly
convex domains are complete hyperbolic and have simple boundary. So, since D is bounded, it
suffices to prove that every converging subsequence of {f◦k} converges to the constant map x.

If {f◦kν} converges to a holomorphic map h ∈ Hol(D,Cn). Clearly, h(D) ⊂ D. Since
the sequence of iterates is compactly divergent, we have h(D) ⊂ ∂D, and since D has simple
boundary, it follows that h ≡ y ∈ ∂D. We thus have to prove that y = x.

Take R > 0, and choose z ∈ Ez0(x,R). Then Theorem 6.18 yields y = h(z) ∈ Fz0(x,R)∩∂D.
Since this holds for all R > 0 we obtain y ∈

⋂
R>0 Fz0(x,R), and Proposition 6.21 yields the

assertion.

6.3.2 Weakly convex domains
The approach leading to Theorem 6.22 actually yields results for weakly convex domains too,
even though in general we cannot expect the convergence to a constant map. In fact, if we
consider f ∈ Hol(D2,D2) given by

f(z, w) =

(
z + 1/2

1 + z/2
, w

)
,

it is easy to check that the sequence of iterates of f converges to the non-constant map h(z, w) =
(1, w).

The first remark is that there is a version of Theorem 6.18 valid in all convex domains, without
the requirement of simple boundary.

Theorem 6.23 (Abate, [1]). Let D b Cn be a bounded convex domain, and take a map f ∈
Hol(D,D) without fixed points. Then there exists x ∈ ∂D such that

f◦k
(
Ez0(x,R)

)
⊂ Fz0(x,R)

for every z0 ∈ D, R > 0 and k ∈ N.

When D has C2 boundary this is enough to obtain a Wolff-Denjoy theorem, thanks to the
following result.

Proposition 6.24 (Abate, R., [17]). Let D b Cn be a bounded convex domain with C2 boundary,
and x ∈ ∂D. Then for every z0 ∈ D and R > 0 we have

Fz0(x,R) ∩ ∂D ⊆ Ch(x) .

In particular, if x is a strictly C-linearly convex point then Fz0(x,R) ∩ ∂D = {x}.

To simplify subsequent statements, let us introduce a definition.

Definition 6.25. Let D ⊂ Cn be a hyperbolic convex domain, and f ∈ Hol(D,D) without fixed
points. The target set of f is defined as

T (f) =
⋃
h

h(D) ⊆ ∂D ,
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where the union is taken with respect to all the holomorphic maps h ∈ Hol(D,Cn) obtained as
limit of a subsequence of iterates of f . We have T (f) ⊆ ∂D because the sequence of iterates
{f◦k} is compactly divergent.

As a consequence of Proposition 6.24 we obtain:

Corollary 6.26 (Abate, R., [17]). Let D b Cn be a C2 bounded convex domain, and f ∈
Hol(D,D) without fixed points. Then there exists x0 ∈ ∂D such that

T (f) ⊆ Ch(x0) .

In particular, if D is strictly C-linearly convex then the sequence of iterates {f◦k} converges to
the constant map x0.

Proof. Let x0 ∈ ∂D be given by Theorem 6.23, and fix z0 ∈ D. Given z ∈ D, choose R > 0 such
that z ∈ Ez0(x0, R). If h ∈ Hol(D,Cn) is the limit of a subsequence of iterates then Theorem 6.23
and Proposition 6.24 yield

h(z) ∈ Fz0(x,R) ∩ ∂D ⊂ Ch(x0) ,

and we are done.

Remark 6.27. In [272], Zimmer has proved Corollary 6.26 for bounded convex domains with
C1,α boundary.

We conjectured that the last statement of the previous Corollary should hold for strictly C-
linearly convex domains without smoothness assumptions on the boundary. Bracci and Gaussier
recently introduced in [55] a prime end-type theory on complete Kobayashi hyperbolic manifolds
using horosphere sequences, which allowed them to introduce a new notion of boundary, the
horosphere boundary, and a topology on the manifold together with its horosphere boundary, the
horosphere topology. In particular they obtained the following Wolff- Denjoy theorem, giving a
partial positive answer to our question.

Proposition 6.28 (Bracci, Gaussier [55, Proposition 8.7]). Let D ⊂ Cn be a bounded convex
domain. Assume that either D is biholomorphic to a strongly convex domain with C3 boundary
or D is C-strictly linearly convex and biholomorphic to a bounded strongly pseudoconvex domain
with C3 boundary. Let f : D → D be holomorphic without fixed points in D. Then there exists
exists p ∈ ∂D such that T (f) = {p}.

They conjectured that in fact this holds for every bounded convex domain D ⊂ Cn whose
boundary does not contain non-constant analytic discs.

Remark 6.29. Bharali and Zimmer introduced and studied in [43] a class of domains, called
Goldilocks domains, defined in terms of a lower bound on how fast the Kobayashi metric grows
and an upper bound on how fast the Kobayashi distance grows as one approaches the boundary.
Strongly pseudoconvex domains and weakly pseudoconvex domains of finite type always satisfy
such condition. They proved that the Kobayashi metric on Goldilocks domains morally behaves
as a negatively curved Riemannian metric and in particular, it satisfies a visibility condition in the
sense of Eberlein and O’Neill. Such behaviour allows them to prove several results on boundary
extension of maps and to establish Wolff-Denjoy theorems for a wide collection of domains.
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Dropping any smoothness or strict convexity condition on the boundary, a useful result is the
following.

Lemma 6.30 (Abate, R., [17]). Let D b Cn be a convex domain. Then for every connected
complex manifold X and every holomorphic map h : X → Cn such that h(X) ⊂ D and h(X) ∩
∂D 6= ∅ we have

h(X) ⊆
⋂
z∈X

Ch
(
h(z)

)
⊆ ∂D .

We can then prove a weak Wolff-Denjoy theorem:

Proposition 6.31 (Abate, R., [17]). Let D b Cn be a bounded convex domain, and f ∈
Hol(D,D) without fixed points. Then there exists x ∈ ∂D such that for any z0 ∈ D we have

T (f) ⊆
⋂
R>0

Ch
(
Fz0(x,R) ∩ ∂D

)
. (6.6)

Proof. Let x ∈ ∂D be given by Theorem 6.23. Choose z0 ∈ D and R > 0, and take z ∈ Ez0(x,R).
Let h ∈ Hol(D,Cn) be obtained as limit of a subsequence of iterates of f . Arguing as usual we
know that h(D) ⊆ ∂D; therefore Theorem 6.23 yields h(z) ∈ Fz0(x,R)∩ ∂D. Then Lemma 6.30
yields

h(D) ⊆ Ch
(
h(z)

)
⊆ Ch

(
Fz0(x,R) ∩ ∂D

)
.

Since z0 and R are arbitrary, we get the assertion.

Using Lemma 6.13 it is easy to check that the intersection in (6.6) is independent of the
choice of z0 ∈ D.

Large horospheres can be too large. For instance, take (τ1, τ2) ∈ ∂D × ∂D. Then Proposi-
tion 6.15 says that the horosphere of center (τ1, τ2) in the bidisk are given by

FO
(
(τ1, τ2), R

)
= E0(τ1, R)× D ∪ D× E0(τ2, R) ,

where E0(τ,R) is the horocycle of center τ ∈ ∂D and radius R > 0 in the unit disk D, and a not
difficult computation shows that

Ch
(
FO
(
(τ1, τ2), R

)
∩ ∂D2

)
= ∂D2 ,

making the statement of Proposition 6.31 irrelevant. So to obtain an effective statement we need
to replace large horospheres with smaller sets.

Small horospheres might be too small; as shown by Frosini [120], there are holomorphic
self-maps of the polydisk with no invariant small horospheres. We thus need another kind
of horospheres, defined by Kapeluszny, Kuczumow and Reich [158], and studied in detail by
Budzyńska [71]. To introduce them we begin with a definition:

Definition 6.32. Let D b Cn be a bounded domain, and z0 ∈ D. A sequence x = {xν} ⊂ D
converging to x ∈ ∂D is a horosphere sequence at x if the limit of kD(z, xν) − kD(z0, xν) as
ν → +∞ exists for all z ∈ D.

It is easy to see that the notion of horosphere sequence does not depend on the point z0.
Moreover, it follows from the following topological lemma that horosphere sequences always
exist.
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Lemma 6.33 (Reich, [213]). Let (X, d) be a separable metric space, and for each ν ∈ N let
aν : X → R be a 1-Lipschitz map, i.e., |aν(x) − aν(y)| ≤ d(x, y) for all x, y ∈ X. If for each
x ∈ X the sequence {aν(x)} is bounded, then there exists a subsequence {aνj} of {aν} such that
limj→∞ aνj (x) exists for each x ∈ X.

Then:

Proposition 6.34 (Budzyńska, Kuczumow, Reich [72]). Let D b Cn be a bounded convex
domain, and x ∈ ∂D. Then every sequence {xν} ⊂ D converging to x contains a subsequence
which is a horosphere sequence at x.

We can then introduce a new kind of horospheres.

Definition 6.35. Let D b Cn be a bounded convex domain. Given z0 ∈ D, let x = {xν} be a
horosphere sequence at x ∈ ∂D, and take R > 0. Then the sequence horosphere Gz0(x,R,x) is
defined as

Gz0(x,R,x) =
{
z ∈ D

∣∣ lim
ν→+∞

[
kD(z, xν)− kD(z0, xν)

]
< 1

2 logR
}
.

The basic properties of sequence horospheres are contained in the following result.

Proposition 6.36 ([158, 71, 72]). Let D b Cn be a bounded convex domain. Fix z0 ∈ D, and
let x = {xν} ⊂ D be a horosphere sequence at x ∈ ∂D. Then:

(i) Ez0(x,R) ⊆ Gz0(x,R,x) ⊆ Fz0(x,R) for all R > 0;

(ii) Gz0(x,R,x) is nonempty and convex for all R > 0;

(iii) Gz0(x,R1,x) ∩D ⊂ Gz0(x,R2,x) for all 0 < R1 < R2;

(iv) BD(z0,
1
2 logR) ⊂ Gz0(x,R,x) for all R > 1;

(v) BD(z0,− 1
2 logR) ∩Gz0(x,R,x) = ∅ for all 0 < R < 1;

(vi)
⋃
R>0

Gz0(x,R,x) = D and
⋂
R>0

Gz0(x,R,x) = ∅.

Note that if x is a horosphere sequence at x ∈ ∂D then it is not difficult to check that the
family {Gz(x, 1,x)}z∈D and the family {Gz0(x,R,x)}R>0 with z0 ∈ D given, coincide.

We then have the following version of Theorem 6.16.

Theorem 6.37 (Budzyńska, [71]; Abate, R., [17]). Let D b Cn be a convex domain, and let
f ∈ Hol(D,D) without fixed points. Then there exist x ∈ ∂D and a horosphere sequence x at x
such that

f
(
Gz0(x,R,x)

)
⊆ Gz0(x,R,x)

for every z0 ∈ D and R > 0.

And we can prove the following Wolff-Denjoy theorem for (not necessarily strictly or smooth)
convex domains.

Theorem 6.38 (Abate, R. [17]). Let D b Cn be a bounded convex domain, and f ∈ Hol(D,D)
without fixed points. Then there exist x ∈ ∂D and a horosphere sequence x at x such that for
any z0 ∈ D we have

T (f) ⊆
⋂
z∈D

Ch
(
Gz(x, 1,x) ∩ ∂D

)
=
⋂
R>0

Ch
(
Gz0(x,R,x) ∩ ∂D

)
.

Proof. The equality of the intersections is a consequence of the fact that the family {Gz(x, 1,x)}z∈D
and the family {Gz0(x,R,x)}R>0 with z0 ∈ D given, coincide. Then the assertion follows from
Theorem 6.37 and Lemma 6.30 as in the proof of Proposition 6.31.
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The Polydisk

In order to show that Theorem 6.38 is actually a better statement than Proposition 6.31 let us
consider the case of the polydisk.

Sequence horospheres can be computed as follows.

Lemma 6.39. Let x = {xν} ⊂ Dn be a horosphere sequence converging to ξ = (ξ1, . . . , ξn) ∈
∂Dn. Then for every 1 ≤ j ≤ n such that |ξj | = 1 the limit

αj := lim
ν→+∞

min
h

{
1− |(xν)h|2

1− |(xν)j |2

}
≤ 1 (6.7)

exists, and we have

GO(ξ,R,x) =

{
z ∈ Dn

∣∣∣∣ max
j

{
αj
|ξj − zj |2

1− |zj |2

∣∣∣∣ |ξj | = 1

}
< R

}
=

n∏
j=1

Ej ,

where
Ej =

{
D if |ξj | < 1,
E0(ξj , R/αj) if |ξj | = 1.

An elementary computation shows that

Ch(ξ) =
⋂
|ξj |=1

{η ∈ ∂Dn | ηj = ξj}

for all ξ ∈ ∂Dn. As a consequence,

Ch
(
GO(ξ,R,x) ∩ ∂Dn

)
=

n⋃
j=1

D× · · · × Cj(ξ)× · · · × D ,

where
Cj(ξ) =

{
{ξj} if |ξj | = 1,
∂D if |ξj | < 1.

Notice that the right-hand sides do not depend either on R or on the horosphere sequence x, but
only on ξ.

Therefore Theorem 6.38 in the polydisk takes the following form.

Corollary 6.40. Let f ∈ Hol(Dn,Dn) be without fixed points. Then there exists ξ ∈ ∂Dn such
that

T (f) ⊆
n⋃
j=1

D× · · · × Cj(ξ)× · · · × D . (6.8)

Roughly speaking, this is the best one can do, in the sense that while it might be true (for
instance in the bidisk; see Theorem 6.41 below) that the image of a limit point of the sequence of
iterates of f is always contained in just one of the sets appearing in the right-hand side of (6.8),
it is impossible to determine a priori in which one it is contained on the basis of the point ξ
only; it is necessary to know something more about the map f . Indeed, Hervé has proved the
following result.

Theorem 6.41 (Hervé, [142]). Let F = (f, g) : D2 → D2 be a holomorphic self-map of the bidisk,
and write fw = f(·, w) and gz = g(z, ·). Assume that F has no fixed points in D2. Then one and
only one of the following cases occurs:
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(i) if g(z, w) ≡ w (respectively, f(z, w) ≡ z) then the sequence of iterates of F converges
uniformly on compact sets to h(z, w) = (σ,w), where σ is the common Wolff point of the
fw’s (respectively, to h(z, w) = (z, τ), where τ is the common Wolff point of the gz’s);

(ii) if Fix(fw) = ∅ for all w ∈ D and Fix(gz) = {y(z)} ⊂ D for all z ∈ D (respectively, if
Fix(fw) = {x(w)} and Fix(gz) = ∅) then T (F ) ⊆ {σ} × D, where σ ∈ ∂D is the common
Wolff point of the fw’s (respectively, T (F ) ⊆ D× {τ}, where τ is the common Wolff point
of the gz’s);

(iii) if Fix(fw) = ∅ for all w ∈ D and Fix(gz) = ∅ for all z ∈ D then either T (F ) ⊆ {σ} × D or
T (F ) ⊆ D× {τ}, where σ ∈ ∂D is the common Wolff point of the fw’s, and τ ∈ ∂D is the
common Wolff point of the gz;

(iv) if Fix(fw) = {x(w)} ⊂ D for all w ∈ D and Fix(gz) = {y(z)} ⊂ D for all z ∈ D then there
are σ, τ ∈ ∂D such that the sequence of iterates converges to the constant map (σ, τ).

All four cases can occur: see [142] for the relevant examples.



Chapter 7

Backward iteration in strongly
convex domains

The iteration theory of a non-invertible self-map f : X → X of a set X is usually devoted to the
study of the behaviour of forward orbits of the system, as we have seen in the previous chapter.

It is a natural interesting question to investigate instead the behaviour of backward orbits.

Definition 7.1. Let f : X → X be a self-map of a set X. A backward orbit (or backward
iteration sequence) for f is a sequence {xk}k∈N ⊂ X so that f(xk+1) = xk for all k ∈ N.

In collaboration with Abate, in [16] we studied such question in the context of holomorphic
self-maps of bounded strongly convex domains as we shall explain in this chapter.

7.1 Backward iteration in D and in Bn

Backward orbits for holomorphic self-maps of the unit disk D ⊂ C have been first studied by
Poggi-Corradini. In fact he introduced backward orbits in [201] to study intertwining linear
models for holomorphic self-maps of the unit disk at boundary fixed points in the sense of non-
tangential limits for which the boundary dilatation coefficient is strictly greater than 1, called
boundary regular repelling fixed points. They were further studied by Bracci in [52] and finally a
detailed study was performed by Poggi-Corradini in [202].

In general, if {zk} is a backward orbit, the sequence d(zk, zk+1) is increasing, where d is the
Kobayashi distance. Therefore, in order to have convergence, one needs to impose an upper
bound on the so-called hyperbolic step, that is

d(zk, zk+1) ≤ a, (7.1)

for all k and for a fixed a < 1.
This condition is nontrivial as there exist maps admitting backward orbits with unbounded

Kobayashi steps, as shown by Poggi-Corradini.
Poggi-Corradini proved that, unless f is a non-Euclidean rotation of D, a backward orbit

satisfying (7.1) must converge to a point in the boundary of D, which is a repelling or parabolic
fixed point of the map f , in the sense of non-tangential limits.

Theorem 7.2 (Poggi-Corradini, [202]). Let f : D→ D be a holomorphic self-map of D which is
not an elliptic automorphism. Let {zk} be a backward orbit for f with bounded Kobayashi step
dk = d(zk, zk+1) ↑ a < 1. Then:

93
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(i) there is a point q ∈ ∂D such that zk → q as n tends to infinity, and q is a fixed point for f
with a well-defined multiplier f ′(q) = α <∞;

(ii) if q 6= τ , where τ is the Denjoy-Wolff point, then α > 1, the sequence zk tends to q along a
non-tangential direction, and we call q a boundary repelling fixed point;

(iii) if q = τ , then f is necessarily of parabolic type and zk tends to q tangentially.

Ostapyuk studied in [187] backward orbits for holomorphic self-maps of the unit ball Bn ⊂ Cn
generalizing to this setting the results obtained by Poggi-Corradini.

She too considered backward orbits with bounded Kobayashi step, but this time using the
Bergmann distance of the unit ball. In order to state her results, we need to recall the following
classification for holomorphic self-maps of the unit ball. To avoid repetitions, we will give in the
next section the precise definition of boundary dilation in the more general setting of strongly
convex domains. Roughly speaking, the boundary dilation of a self-map f of the unit ball at a
boundary fixed point is the derivative of the normal component of f along the normal direction
to the boundary of the ball at the fixed point.

A self-map of the unit ball is therefore called:

• hyperbolic if it has no fixed points inside the ball and the Wolff-Denjoy point in the boundary
has boundary dilation strictly less than one;

• attracting-elliptic if its sequence of iterates converges to a unique fixed point inside the ball.

Ostapyuk showed that a backward orbit with bounded Kobayashi step for a hyperbolic or
attracting-elliptic holomorphic self-map of the ball necessarily converges, staying inside a Korányi
region (see also Definition 7.12), to an a priori chosen repelling fixed point in the boundary of
the ball and, conversely, that every boundary repelling fixed point, isolated in a suitable sense,
is the limit of a backward iteration sequence with bounded Kobayashi step.

Theorem 7.3 (Ostapyuk, [187]). Let f : Bn → Bn be a holomorphic self-map of Bn of hyperbolic
or attracting-elliptic type with Wolff-Denjoy point τ . Let {zk} be a backward orbit for f with
bounded Kobayashi step dBn(zk, zk+1) ≤ a < 1. Then:

1. there is a point q ∈ ∂Bn, q 6= τ , such that zk → q as n tends to infinity,

2. {zk} stays in a Korányi region with vertex q,

3. for all R > 0 we have
f (EO(q,R)) ⊆ EO(q, αR),

with α ≥ 1
c , where c < 1 is a constant that depends on f and where EO(x,R) is the

horosphere of center x ∈ ∂Bn, radius R > 0 and pole at the origin O.

Finally, using backward iteration sequences, Ostapyuk also studied seminormal forms for
holomorphic self-maps of the unit ball near a boundary repelling fixed point under suitable
assumptions (see [187, Theorems 1.15, 1.16]).

7.2 Backward iteration in strongly convex domains
In [16] we extended Poggi-Corradini’s results to backward orbits in general bounded strongly
convex domains in Cn with C2 boundary. To do so, we systematically used the geometric
properties of the Kobayashi distance of strongly convex domains. It is interesting to notice that
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the better geometric understanding given by this tool (and the impossibility of using the kind of
explicit computations done in [187] for the ball) yields proofs that are both simpler and clearer
than the previous ones, even for the ball and the unit disk.

While checking our paper [16] for this manuscript, we found a gap in one of the proofs, that
we have been able to fix, as we shall show in the rest of this chapter. To precisely state our result
and give the correct proof we need to fist recall some results on the dynamics of holomorphic
self-maps of bounded strongly convex domains, giving a more precise description in this setting
than the one that we provided in the previous chapter.

7.2.1 Dynamics of holomorphic self-maps of bounded strongly convex
domains

We already recalled in the previous chapter the definition and the main properties of the
Kobayashi distance. As we remarked, the main property of the Kobayashi (pseudo)distance
is that it is contracted by holomorphic maps and in particular, the Kobayashi distance is invari-
ant under biholomorphisms. In this chapter we will need some more properties of the Kobayashi
distance.

Definition 7.4. A complex geodesic in a hyperbolic manifold X is a holomorphic map ϕ : D→ X
which is an isometry with respect to the Kobayashi distance of D and the Kobayashi distance of X.

Lempert’s theory (see [170] and [2, Chapter 2.6]) of complex geodesics in strongly convex
domains is one of the main tools for the study of the geometric function theory of strongly convex
domains. In particular, we have the following facts, summarizing the main results obtained by
Lempert [170] and Royden-Wong [234] on complex geodesics in strongly convex domains.

Theorem 7.5 ([2, Theorem 2.6.19 and Corollary 2.6.30]). Let D b Cn be a bounded convex
domain. Then for every pair of distinct points z, w ∈ D there exists a complex geodesic ϕ : D→ D
such that ϕ(0) = z and ϕ(r) = w, where 0 < r < 1 is such that kD(0, r) = kD(z, w); furthermore,
if D is strongly convex then ϕ is unique. Moreover a holomorphic map ϕ ∈ Hol(D, D) is a
complex geodesic if and only if kD

(
ϕ(ζ1), ϕ(ζ2)

)
= kD(ζ1, ζ2) for a pair of distinct points ζ1,

ζ2 ∈ D.

Proposition 7.6 ([2, Proposition 2.6.22]). Let D b Cn be a bounded convex domain. Then every
complex geodesic ϕ ∈ Hol(D, D) admits a left inverse, that is a holomorphic map p̃ϕ : D → D
such that p̃ϕ ◦ ϕ = IdD. The map pϕ = ϕ ◦ p̃ϕ is then a holomorphic retraction of D onto the
image of ϕ.

Theorem 7.7 ([2, Theorem 2.6.29]). Let D b Cn be a bounded strongly convex with C2 boundary.
Then every complex geodesics ϕ extend continuously (actually, 1

2 -Hölder) to the boundary of D,
and the image of ϕ is transversal to ∂D.

Theorem 7.8 ([2, Theorem 2.6.45]). Let D b Cn be a bounded strongly convex with C2 boundary.
Then for every z ∈ D and τ ∈ ∂D there is a complex geodesic ϕ ∈ Hol(D, D) with ϕ(0) = z
and ϕ(1) = τ . Moreover for every pair of distinct points σ, τ ∈ ∂D there is a complex geodesic
ϕ ∈ Hol(D, D) such that ϕ(−1) = σ and ϕ(1) = τ .

The statement of [2, Theorem 2.6.45] requires D with C3 boundary, but the proof of the
existence works assuming just C2 smoothness.

Now let D b Cn be a bounded strongly convex domain with C2 boundary, and f ∈ Hol(D,D)
a holomorphic self-map ofD. As we saw in the previous chapter, if the set Fix(f) of fixed points of
f in D is not empty, then the sequence {f◦k} of iterates of f is relatively compact in Hol(D,D),
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and there exists a submanifold D0 ⊆ D, the limit manifold of f , such that every limit of a
subsequence of iterates is of the form γ ◦ ρ, where ρ : D → D0 is a holomorphic retraction, and γ
is a biholomorphism of D0; furthermore, f |D0

is a biholomorphism of D0, and Fix(f) ⊆ D0 (see
[1] or [2, Theorem 2.1.29]).

Definition 7.9. Let D b Cn be a bounded strongly convex domain with C2 boundary. A holo-
morphic map f ∈ Hol(D,D) is

• elliptic if Fix(f) 6= ∅,

• strongly elliptic if its limit manifold reduces to a single point, the Wolff point of the strongly
elliptic map.

We say that a point p ∈ Fix(f) is attracting if all the eigenvalues of dfp have modulus strictly
less than 1.

We also have an equivalent characterization of strongly elliptic maps.

Lemma 7.10 ([16, Lemma 1.1]). Let D b Cn be a bounded strongly convex domain with C2

boundary, and f ∈ Hol(D,D). Then the following facts are equivalent:

(i) f is strongly elliptic;

(ii) the sequence of iterates of f converges to a point p ∈ D;

(iii) f has an attracting fixed point p ∈ D;

(iv) there exists p ∈ Fix(f) such that kD
(
p, f(z)

)
< kD(p, z) for all z ∈ D \ {p}.

As pointed out in the previous chapter, in the study of the dynamics of self-maps without
fixed points, a crucial rôle is played by the horospheres defined in Definition 6.12, a generalization
of the classical notion of horocycle.

It is a non-trivial fact (see [2, Theorem 2.6.47] or [57]) that for a bounded strongly convex
domain with C2 boundary D b Cn the limit

lim
w→τ

[kD(z, w)− kD(p, w)]

exists for every τ ∈ ∂D and p ∈ D and we can therefore define hτ,p : D → R+ as

1
2 log hτ,p(z) = lim

w→τ
[kD(z, w)− kD(p, w)] .

Then, with this notation, the horosphere of center τ ∈ ∂D, radius R > 0 and pole p ∈ D is the
set

Ep(τ,R) = {z ∈ D | hτ,p(z) < R} .

We shall need the following fact.

Lemma 7.11 ([2, Lemma 2.7.16]). Let D b Cn be a bounded strongly convex domain with C2

boundary, and ϕ ∈ Hol(D, D) a complex geodesic. Put p = ϕ(0) and τ = ϕ(1). Then

p̃ϕ
(
Ep(τ,R)

)
= ED

0 (1, R)

for any R > 0, where ED
0 (1, R) is the horosphere of center 1, pole 0 and radius R in D.
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An easy remark is that changing the pole amounts to multiplying the radius by a fixed
constant, that is given τ ∈ ∂D we have

hτ,q =
1

hτ,p(q)
hτ,p

for all p, q ∈ D, and in particular for all R > 0 we have

Eq(τ,R) = Ep
(
τ, hτ,p(q)R

)
.

We can introduce K-regions in a similar way.

Definition 7.12. Let D b Cn be a bounded strongly convex domain with C2 boundary. The
K-region Kp(τ,M) of center τ ∈ ∂D, amplitude M > 0 and pole p ∈ D is the set

Kp(τ,M) = {z ∈ D | 1
2 log hτ,p(z) + kD(p, z) < logM} .

It is well-known (see [2, 4]) that the K-regions with pole at the origin in the unit disk coincide
with the classical Stolz regions, and that the K-regions with pole at the origin in the unit ball
Bn ⊂ Cn coincide with the usual Korányi approach regions.

Remark 7.13. In strongly convex domains K-regions are comparable to Stein admissible ap-
proach regions A(τ,M) of vertex τ ∈ ∂D and aperture M > 1:

A(τ,M) = {z ∈ D | ‖z − τ‖2 < Md(z, ∂D), |〈z − τ, nτ 〉| < Md(z, ∂D)} , (7.2)

where nτ is the outer unit normal vector to ∂D at τ . Here comparable means that for every
τ ∈ ∂D there exists a neighbourhood U ⊂ Cn of τ such that for any M > 1 and p ∈ D there are
M1, M2 > 1 such that

A(τ,M1) ∩ U ⊆ Kp(τ,M) ∩ U ⊆ A(τ,M2) ∩ U ;

see, e.g., [2, Propositions 2.7.4, 2.7.6 and p. 380]. Moreover, changing the pole does not change
much the K-regions, because for each p, q ∈ D there is L > 0 such that

Kp(τ,M/L) ⊆ Kq(τ,M) ⊆ Kp(τ,ML) (7.3)

for every M > 0 (see [2, Lemma 2.7.2]).

Definition 7.14. Let D b Cn be a bounded strongly convex domain with C2 boundary. Given
τ ∈ ∂D, we shall say that a function F : D → Cn has K-limit ` ∈ Cn at τ if F (z)→ ` as z → τ
inside any K-region centered at τ .

Notice that the choice of the pole is immaterial because of (7.3). Since K-regions in strongly
convex domains are comparable to Stein admissible regions, the notion of K-limit is equivalent
to Stein admissible limit, and thus it is the right generalization to several variables of the one-
dimensional notion of non-tangential limit (in particular, the existence of aK-limit always implies
the existence of a non-tangential limit). Finally, the intersection of a horosphere (or K-region)
of center τ ∈ ∂D and pole p ∈ D with the image of a complex geodesic ϕ with ϕ(0) = p and
ϕ(1) = τ is the image via ϕ of the horosphere (or K-region) of center 1 and pole 0 in the unit
disk ([2, Proposition 2.7.8 and Lemma 2.7.16]).

The good generalization of the one-variable notion of angular derivative is given by the dilation
coefficient (see [2, Section 1.2.1 and Theorem 2.7.14])
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Definition 7.15. Let D b Cn be a bounded strongly convex domain with C2 boundary, f ∈
Hol(D,D), and let σ ∈ ∂D. The dilation coefficient βσ,p ∈ (0,+∞] of f at σ ∈ ∂D with
pole p ∈ D is given by

1
2 log βσ,p = lim inf

z→σ

[
kD(p, z)− kD

(
p, f(z)

)]
.

Furthermore, σ ∈ ∂D is called a boundary fixed point of f if f has K-limit σ at σ.

Since

kD(p, z)− kD
(
p, f(z)

)
≥ kD

(
f(p), f(z)

)
− kD

(
p, f(z)

)
≥ −kD

(
p, f(p)

)
,

the dilation coefficient cannot be zero. We also recall the following useful formulas for computing
the dilation coefficient obtained in [2, Lemma 2.7.22]:

1
2 log βσ,p = lim

t→1

[
kD
(
p, ϕ(t)

)
− kD

(
p, f
(
ϕ(t)

))]
= lim
t→1

[
kD
(
p, ϕ(t)

)
− kD

(
p, pϕ ◦ f

(
ϕ(t)

))]
,

(7.4)

where ϕ ∈ Hol(D, D) is a complex geodesic with ϕ(0) = p and ϕ(1) = σ, and pϕ = ϕ ◦ p̃ϕ is the
holomorphic retraction associated to ϕ.

When σ is a boundary fixed point then the dilation coefficient does not depend on the pole
(see for example [16, Lemma 1.3]) and we shall then simply denote by βσ the dilation coefficient
at a boundary fixed point.

Definition 7.16. Let σ ∈ ∂D be a boundary fixed point for a self-map f ∈ Hol(D,D) of a
bounded strongly convex domain with C2 boundary D b Cn. We shall say that σ is

• attracting if 0 < βσ < 1,

• parabolic if βσ = 1,

• repelling if βσ > 1.

We can now quote the general version of Julia’s lemma proved by Abate (see [2, Theo-
rem 2.4.16 and Proposition 2.7.15]) that we shall need in this chapter.

Proposition 7.17 (Abate, [2]). Let D b Cn be a bounded strongly convex domain with C2

boundary, and f ∈ Hol(D,D). Let σ ∈ ∂D and p ∈ D be such that the dilation coefficient βσ,p
is finite. Then there exists a unique τ ∈ ∂D such that for all R > 0 we have

f
(
Ep(σ,R)

)
⊆ Ep

(
τ, βσ,pR

)
,

and f has K-limit τ at σ. Moreover, if there is a sequence {wν} ⊂ D converging to σ ∈ ∂D so
that {f(wν)} converges to τ1 ∈ ∂D then τ = τ1.

Finally, we recall the several variable version of the Wolff-Denjoy theorem given in [A1] (see
also the previous chapter and [A2, Theorems 2.4.19 and 2.4.23]).

Theorem 7.18 (Abate, [1]). Let D b Cn be a bounded strongly convex domain with C2 boundary,
and f ∈ Hol(D,D) without fixed points. Then there exists a unique τ ∈ ∂D such that the sequence
of iterates of f converges to τ .

Definition 7.19. Let D b Cn be a bounded strongly convex domain with C2 boundary, and
f ∈ Hol(D,D) without fixed points. The point τ ∈ ∂D introduced in the previous theorem is the
Wolff point of f .
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The dilation coefficient can also be used to characterize the Wolff point of f ∈ Hol(D,D)
without fixed points in D defined above.

Proposition 7.20 (Abate, R. [16, Proposition 1.6]). Let D b Cn be a bounded strongly convex
domain with C2 boundary, and f ∈ Hol(D,D) without fixed points in D. Then the following
assertions are equivalent for a point τ ∈ ∂D:

(i) τ is a boundary fixed point with 0 < βτ ≤ 1;

(ii) f
(
Ep(τ,R)

)
⊆ Ep(τ,R) for all R > 0 and any (and hence all) p ∈ D;

(iii) τ is the Wolff point of f .

Definition 7.21. Let D b Cn be a bounded strongly convex domain with C2 boundary, and
f ∈ Hol(D,D) without fixed points and with Wolff point τ ∈ ∂D. We shall say that f is
hyperbolic if 0 < βτ < 1 and parabolic if βτ = 1.

Before turning our attention to backward orbits, a final remark is needed. Since the Kobayashi
distance kD is weakly contracted by holomorphic maps, forward orbits always have bounded
Kobayashi step, that is the Kobayashi distance kD

(
f◦k+1(z), f◦k(z)

)
between two consecutive

elements of the orbit is bounded by a constant independent of n (but depending on the orbit).
We can then give the following definition.

Definition 7.22. Let X be a Kobayashi hyperbolic manifold. We say that a sequence {zk} ⊂ X
has bounded Kobayashi step if

a = sup
k
kX(zk+1, zk) < +∞ .

The number a is the Kobayashi step of the sequence.

Summing up, if f ∈ Hol(D,D) is strongly elliptic, hyperbolic or parabolic, then all forward
orbits have bounded Kobayashi step and converge to the Wolff point τ ∈ D (for the sake of
uniformity, we are calling Wolff point the unique fixed point of a strongly elliptic map too),
which is a (possibly boundary) fixed point.

7.2.2 Backward iteration in strongly convex domains
The main result in [16] states that backward orbits with bounded Kobayashi step for a hyperbolic
or strongly elliptic self-map of a bounded strongly convex domain in Cn with C2 boundary always
converge to a boundary fixed point, where a boundary fixed point is a point σ ∈ ∂D such that f
has K-limit σ at σ. Moreover if such boundary fixed point σ does not coincide with the Wolff
point, then it is repelling, that is the boundary dilation βσ of f at σ is larger than 1. More
precisely, we prove the following result.

Theorem 7.23 (Abate, R. [16, Theorem 0.1]). Let D b Cn be a bounded strongly convex domain
with C2 boundary. Let f ∈ Hol(D,D) be either hyperbolic or strongly elliptic, with Wolff point
τ ∈ D. Let {zk} ⊂ D be a backward orbit for f with bounded Kobayashi step. Then:

(i) the sequence {zk} converges to a boundary fixed point σ ∈ ∂D;

(ii) if σ 6= τ then σ is repelling;

(iii) σ 6= τ if and only if {zk} goes to σ inside a K-region, that is, there exists M > 0 so that
zk ∈ Kp(σ,M) eventually, where p is any point in D.
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Remark 7.24. If f is strongly elliptic then clearly σ 6= τ . We conjecture that σ 6= τ in the
hyperbolic case too.

Remark 7.25. The original statement of [16, Theorem 0.1] included also the parabolic case. We
were not yet able to completely fix the proof in the parabolic case; thus the behavior of backward
orbits for a parabolic self-map is still unknown, even (as far as we know) in the unit ball of Cn
(see [187]).

Proof. We begin with a first general lemma, saying that if a backward orbit with bounded
Kobayashi step converges to a boundary point, then this point necessarily is a boundary fixed
point.

Lemma 7.26 ([16, Lemma 2.3]). Let D b Cn be a bounded strongly convex domain with C2

boundary, and let f ∈ Hol(D,D). Let {zk} ⊂ D be a backward orbit for f with bounded Kobayashi
step a = 1

2 logα converging to σ ∈ ∂D. Then σ is a boundary fixed point of f and βσ ≤ α.

Proof. Fix p ∈ D. First of all we have

1
2 log βσ,p = lim inf

w→σ

[
kD(w, p)− kD

(
f(w), p

)]
≤ lim inf

k→+∞
[kD(zk+1, p)− kD

(
zk, p

)
]

≤ lim inf
k→+∞

kD(zk+1, zk)

≤ a = 1
2 logα .

(7.5)

Since zk → σ and f(zk) = zk−1 → σ as k → +∞, Proposition 7.17 yields the assertion.

The rest of the proof is divided into two cases according to whether f is hyperbolic or strongly
elliptic.
Hyperbolic case. In this case, we first prove that any backward orbit has to accumulate to the
boundary of the domain D.

Lemma 7.27 ([16, Lemma 2.1]). Let D b Cn be a bounded strongly convex domain with C2

boundary. Let {zk} ⊂ D be a backward orbit for hyperbolic or parabolic self-map f ∈ Hol(D,D).
Then zk → ∂D as k → +∞.

Proof. Assume, by contradiction, that the sequence does not converge to ∂D. Then there exists
a subsequence {zkn} converging to w0 ∈ D, that is, such that

kD(w0, zkn)→ 0 as kn → +∞ .

Therefore
kD
(
f◦kn(w0), f◦kn(zkn)

)
≤ kD(w0, zkn)→ 0 as kn → +∞ .

But, on the other hand, f◦kn(zkn) = z0 for all kn; moreover, f◦kn(w0)→ τ as kn → +∞, where
τ ∈ ∂D is the Wolff point of f , and so

lim
kn→∞

kD
(
f◦kn(w0), f◦kn(zkn)

)
= +∞ ,

because kD is complete, giving us a contradiction.

In order to prove the convergence of the whole sequence towards a point σ ∈ ∂D, which is a
boundary fixed point, we first need the following estimate.
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Lemma 7.28 ([16, Lemma 2.6]). Let D b Cn be a bounded strongly convex domain with C2

boundary, and fix p ∈ D. Let f ∈ Hol(D,D) be hyperbolic or parabolic with Wolff point τ ∈ ∂D
and dilation coefficient 0 < βτ ≤ 1. Let {zk} ⊂ D be a backward orbit for f . Then for every
k ∈ N we have

hτ,p(zk) ≥
(

1

βτ

)k
hτ,p(z0) .

Proof. Put tk = hτ,p(zk). By definition, zk ∈ ∂Ep(τ, tk). By Proposition 7.17, if zk+1 ∈ Ep(τ,R)
then zk ∈ Ep(τ, βτR). Since zk /∈ Ep(τ, tk), we have that zk+1 /∈ Ep(τ, β−1

τ tk), that is

tk+1 ≥
1

βτ
tk , (7.6)

and the assertion follows by induction.

This estimate allows us to prove part (i) in the hyperbolic case.

Lemma 7.29 ([16, Remark 2.1]). Let D b Cn be a bounded strongly convex domain with C2

boundary. Let f ∈ Hol(D,D) be hyperbolic with Wolff point τ ∈ ∂D and let {zk} ⊂ D be a
backward orbit for f with bounded Kobayashi step a > 0. Then {zk} converges to a boundary
fixed point σ ∈ ∂D.

Proof. First of all, that [21, Lemma 2.4 and Remark 3] yield a constant C1 > 0 such that

‖zk − zk+1‖2 + |〈zk − zk+1, zk〉| ≤
C2

1

1− â2
d(zk, ∂D), (7.7)

and so
‖zk − zk+1‖ ≤

C1√
1− â2

√
d(zk, ∂D) ≤ C1

1− â
√
d(zk, ∂D) , (7.8)

where â = tanh a ∈ (0, 1). On the other hand, given p ∈ D the triangular inequality and the
upper estimate [2, Theorem 2.3.51] on the boundary behaviour of the Kobayashi distance yield
a constant C2 > 0 such that

1
2 log hτ,p(zk) ≤ kD(p, zk) ≤ C2 − 1

2 log d(zk, ∂D) ,

that is

d(zk, ∂D) ≤ e2C2

hτ,p(zk)
, (7.9)

and thus

‖zk − zk+1‖ ≤
C

1− â

√
1

hτ,p(zk)
, (7.10)

for a suitable C > 0. Therefore using (7.6) we obtain that for every k,m ≥ 0 we have

‖zk − zk+m‖ ≤
k+m−1∑
j=k

‖zj − zj+1‖ ≤
C

1− â
1√

hτ,p(zk)

m−1∑
j=0

βj/2τ

≤ C

1− â
1

1− β1/2
τ

1√
hτ,p(zk)

,

(7.11)

Since hp.τ (zk) → +∞ as k → +∞ by Lemma 7.28 it follows that {zk} is a Cauchy sequence
in Cn, converging to a point σ, necessarily belonging to ∂D by Lemma 7.27. The proof is then
completed thanks to Lemma 7.26.
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The following lemma allows us to control the dilation coefficient at the limit of a backward
orbit, giving in particular part (ii) of Theorem 7.23 in the hyperbolic case.

Lemma 7.30 ([16, Lemma 2.4]). Let D b Cn be a bounded strongly convex domain with C2

boundary. Let f ∈ Hol(D,D) be hyperbolic or parabolic with Wolff point τ ∈ ∂D and dilation co-
efficient 0 < βτ ≤ 1. Let σ ∈ ∂D\{τ} be a boundary fixed point with finite dilation coefficient βσ.
Then

βσ ≥
1

βτ
≥ 1 .

In particular, if f is hyperbolic then σ is repelling.

Proof. Let ϕ : D → D be a complex geodesic such that ϕ(−1) = σ and ϕ(1) = τ , and set
p = ϕ(0). Proposition 7.17 yields

p ∈ Ep(σ, 1) =⇒ f(p) ∈ Ep(σ, βσ)

and
p ∈ Ep(τ, 1) =⇒ f(p) ∈ Ep(τ, βτ ) .

Hence Ep(σ, βσ) ∩ Ep(τ, βτ ) 6= ∅.
Let p̃ϕ : D → D be the left-inverse of ϕ. Then using Lemma 7.11 we get

∅ 6= p̃ϕ

(
Ep(σ, βσ) ∩ Ep(τ, βτ )

)
⊆ p̃ϕ(Ep(σ, βσ)) ∩ p̃ϕ(Ep(τ, βτ )) = ED

0 (−1, βσ) ∩ ED
0 (1, βτ ) .

Now, ED
0 (1, βτ ) is an Euclidean disk of radius βτ/(βτ + 1) tangent to ∂D in 1, and ED

0 (−1, βσ)
is an Euclidean disk of radius βσ/(βσ + 1) tangent to ∂D in −1. So these disks intersect if and
only if

1− 2βτ
βτ + 1

≤ −1 +
2βσ
βσ + 1

,

which is equivalent to βσβτ ≥ 1, as claimed.

We can now prove the first half of Theorem 7.23.(iii) for the hyperbolic case.

Lemma 7.31. Let D b Cn be a bounded strongly convex domain with C2 boundary. Let f ∈
Hol(D,D) be hyperbolic with Wolff point τ ∈ ∂D and dilation coefficient 0 < βτ < 1, and let
{zk} ⊂ D be a backward orbit with bounded Kobayashi step a = 1

2 logα converging to σ ∈ ∂D\{τ}.
Then for every p ∈ D there exists M > 0 such that zk ∈ Kp(σ,M) eventually.

Proof. Fix p ∈ D. By Remark 7.13 it suffices to prove that there exists M > 1 such that {zk}
converges to σ inside an admissible approach region A(σ,M).

Set again tk := hτ,p(zk). Thanks to (7.6), we have

1

tk+m
≤ βkτ

1

tk

for all k, m ≥ 0. Moreover, thanks to [2, Corollary 2.3.55], since σ 6= τ , there exists ε > 0 and
K > 0 such that for any w ∈ D ∩B(τ, ε) and k such that zk ∈ D ∩B(σ, ε) we have

kD(zk, w) ≥ − 1
2 log d(zk, ∂D)− 1

2 log d(w, ∂D) +K.

On the other hand, [2, Theorem 2.3.51] yields c1 ∈ R such that

kD(w, p) ≤ c1 − 1
2 log d(w, ∂D)
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for any w ∈ D. So for w ∈ D ∩B(τ, ε) and k sufficiently large we have

kD(zk, w)− kD(w, p) ≥ − 1
2 log d(zk, ∂D)− 1

2 log d(w, ∂D) + 1
2 log d(w, ∂D)− c1 +K,

which implies

tk = hτ,p(zk) = lim
w→τ

[kD(zk, w)− kD(p, w)] ≥ − 1
2 log d(zk, ∂D) +K − c1,

that is
1

tk
≤ C̃1d(zk, ∂D), (7.12)

for some C̃1 > 0.
Therefore, thanks to (7.11), for all m ≥ 0 and k large enough we have

‖zk − zk+m‖ ≤
C

1− â
1√
tk

∞∑
j=0

βj/2τ ≤ C

1− â
1

1− β1/2
τ

1√
tk

≤ CC̃1

1− â
1

1− β1/2
τ

√
d(zk, ∂D)

(7.13)

for some C > 0, and letting m tend to infinity we obtain that for k sufficiently large, there is
M1 > 1 such that

‖zk − σ‖ ≤M1

√
d(zk, ∂D). (7.14)

On the other hand, up to translating the domain, without loss of generality we can assume
that D contains the origin. In particular, D being bounded and strongly convex we can replace
nσ by σ in the definition of A(σ,M). Therefore, to conclude the proof it suffices to prove that
there exists M2 > 1 such that

|〈zk − σ, σ〉| ≤M2d(zk, ∂D)

for k large enough. Now

|〈zj − zj+1, zj − σ〉| ≤ ‖zj − zj+1‖‖zj − σ‖,

and so, thanks to (7.7) and (7.14), for k large enough and m ≥ 0 we have

|〈zk − zk+m, σ〉| ≤
k+m−1∑
j=k

|〈zj − zj+1, σ〉|

≤
k+m−1∑
j=k

(
|〈zj − zj+1, zj − σ〉|+ |〈zj − zj+1, zj〉|

)

≤
k+m−1∑
j=k

(
‖zj − zj+1‖‖zj − σ‖+

C2
1

1− â2
d(zj , ∂D)

)

≤
k+m−1∑
j=k

(
M1C1

1− â
d(zj , ∂D) +

C2
1

1− â2
d(zj , ∂D)

)

≤ C ′
k+m−1∑
j=k

d(zj , ∂D),

(7.15)



Chapter 7. Backward iteration in strongly convex domains 104

for some C ′ > 0. Arguing as in (7.11) and (7.13), using (7.9) and (7.12) we obtain

|〈zk − zk+m, σ〉| ≤M2d(zk, ∂D)

for m ≥ 0, k large enough and for some M2 > 1. Letting m tend to infinity we finally have

|〈zk − σ, σ〉| ≤M2d(zk, ∂D).

It then suffices to take M = max{M1,M2} to conclude the proof.

The following lemma completes the proof of Theorem 7.23.(iii):

Lemma 7.32. Let D b Cn be a bounded strongly convex domain with C2 boundary. Let f ∈
Hol(D,D) be hyperbolic with Wolff point τ ∈ ∂D and dilation coefficient 0 < βτ < 1, and let
{zk} ⊂ D be a backward orbit with bounded Kobayashi step a = 1

2 logα converging to σ ∈ ∂D\{τ}
inside a K-region. Then σ 6= τ .

Proof. Assume, by contradiction, that σ = τ . Fix p ∈ D, and let M > 1 be such that zk ∈
Kp(τ,M). Given ε > 0, [2, Lemma 2.7.1] yields r > 0 such that if kD(zk, p) ≥ r then zk ∈
Ep(τ, ε), that is hτ,p(zk) < ε. Since kD(zk, p) → +∞, it follows that hτ,p(zk) → 0 as k → +∞.
But Lemma 7.28 implies that hτ,p(zk)→ +∞, contradicting our hypotheses.

Strongly elliptic case. Also in this case, we start by proving by contradiction that any
backward orbit has to accumulate to the boundary of the domain D.

Lemma 7.33. Let D b Cn be a bounded strongly convex domain with C2 boundary. Let f ∈
Hol(D,D) be strongly elliptic with Wolff point p ∈ D, and let {zk} ⊂ D be a backward orbit with
bounded Kobayashi step a = 1

2 logα. Then zk → ∂D as k → +∞.

Proof. Define `k > 0 by setting 1
2 log `k = kD(zk, p). Since f is strongly elliptic, we have

kD(zk, p) < kD(zk+1, p) ,

and thus the sequence {`k} is strictly increasing. Assume, by contradiction, that it has a finite
limit `∞. This means that every limit point z∞ of the sequence {zk} satisfies kD(z∞, p) =
1
2 log `∞. But f(z∞) is a limit point of the sequence {f(zk)} = {zk−1} and thus we again have
kD
(
f(z∞), p

)
= 1

2 log `∞, which is impossible by Lemma 7.10 because f is strongly elliptic.
Therefore `∞ = +∞, which means that zk → ∂D.

This allows us to prove the following key result.

Lemma 7.34. Let D b Cn be a bounded strongly convex domain with C2 boundary. Let f ∈
Hol(D,D) be strongly elliptic with Wolff point p ∈ D. Let {zk} ⊂ D be a backward orbit with
bounded Kobayashi step. Then there exists a constant 0 < c < 1 such that

kD(zk, p)− kD(zk+1, p) ≤ 1
2 log c < 0

for all k ∈ N.

Proof. Assume, by contradiction, that for every 0 < c < 1 there is k(c) ∈ N such that

kD(zk(c), p)− kD(zk(c)+1, p) >
1
2 log c ,

that is
kD(zk(c)+1, p)− kD

(
f(zk(c)+1, p

)
< − 1

2 log c .
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Consider the sequences {zk(1− 1
j )+1} and {zk(1− 1

j ) = f(zk(1− 1
j )+1)}. Thanks to Lemma 7.33, we

know that both these sequences accumulate on ∂D; therefore, by extracting subsequences, we
can find a subsequence {zkj} such that zkj → σ1 ∈ ∂D, f(zkj )→ σ2 ∈ ∂D as j → +∞ and

lim
j→+∞

[
kD(zkj , p)− kD

(
f(zkj ), p

)]
≤ 0 .

If σ1 6= σ2, then [2, Corollary 2.3.55], together with the fact that {zk} has bounded Kobayashi
step, lead to a contradiction since for k large enough there is K ∈ R such that

a ≥ kD
(
zkj , f(zkj )

)
≥ − 1

2 log d(zkj , ∂D)− 1
2 log d

(
f(zkj ), ∂D

)
+K

whereas the right-hand side tends to infinity. Therefore, σ1 = σ2 and we have

lim inf
z→σ1

[
kD(z, p)− kD

(
f(z), p

)]
≤ 0 .

Then we can apply Proposition 7.17, obtaining that σ1 is a boundary fixed point and that for
any R > 0 we have f

(
Ep(σ1, R)

)
⊆ Ep(σ1, R). We can then choose R < 1 so that p /∈ Ep(σ1, R),

and let w ∈ Ep(σ1, R) be a point closest to p with respect to the Kobayashi distance. Since
f(w) ∈ Ep(σ1, R) this means that kD

(
f(w), p

)
≥ kD(w, p), which is impossible because w 6= p

and f is strongly elliptic.

This estimate allows us to prove that the whole backward orbit converges to a boundary fixed
point σ ∈ ∂D, which is obviously different from the Wolff point p ∈ D.

Lemma 7.35 ([16, Remark 2.2]). Let D b Cn be a bounded strongly convex domain with C2

boundary. Let f ∈ Hol(D,D) be strongly elliptic with Wolff point p ∈ D, and let {zk} ⊂ D be
a backward orbit with bounded Kobayashi step a = 1

2 logα. Then {zk} converges to a boundary
fixed point σ ∈ ∂D with βσ ≤ α.

Proof. Without loss of generality, we can assume that z0 6= p. We consider sk > 0 defined by
setting − 1

2 log sk = kD(zk, p). Taking the constant 0 < c < 1 given by the Lemma 7.34, we
therefore have

− 1
2 log sk + 1

2 log sk+1 ≤ 1
2 log c ,

that is
sk+1 ≤ csk . (7.16)

Therefore sk+m ≤ cmsk for every k,m ∈ N, and using again (7.7) and [2, Theorem 2.3.51] as in
the proof of Lemma 7.29, for all j ∈ N we obtain

‖zj − zj+1‖ ≤
C

1− â
√
sj

for a suitable C > 0, where â = tanh a. Arguing exactly as in (7.11) we then obtain that

‖zk − zk+m‖ ≤
C

1− â
1

1− c1/2
√
sk, (7.17)

for any m ≥ 0 and k large enough. So {zk} is a Cauchy sequence in Cn converging to a
point σ ∈ ∂D by Lemma 7.34, and the assertion follows from Lemma 7.26.

The following general result proves Theorem 7.23.(ii) in the strongly elliptic case.
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Lemma 7.36. Let D b Cn be a bounded strongly convex domain with C2 boundary. Let f ∈
Hol(D,D) be strongly elliptic with Wolff point p ∈ D. If σ ∈ ∂D is a boundary fixed point then
βσ > 1.

Proof. Since p is a fixed point of f , we already know that
1
2 log βσ = lim inf

z→σ

[
kD(z, p)− kD

(
f(z), p

)]
≥ 0 .

Assume, by contradiction, that βσ = 1. Then Proposition 7.17 yields f
(
Ep(σ,R)

)
⊆ Ep(σ,R)

for any R > 0 because σ is a boundary fixed point. Choose R < 1 so that p /∈ Ep(σ,R),
and let w ∈ Ep(σ1, R) be a point closest to p with respect to the Kobayashi distance. Since
f(w) ∈ Ep(σ1, R) this means that kD

(
f(w), p

)
≥ kD(w, p), which is impossible because w 6= p

and f is strongly elliptic.

We conclude by proving Theorem 7.23.(iii) in the strongly elliptic case.

Lemma 7.37. Let D b Cn be a bounded strongly convex domain with C2 boundary.Let f ∈
Hol(D,D) be strongly elliptic, with Wolff point p ∈ D. Let {zk} ⊂ D be a backward orbit for f
with bounded Kobayashi step converging to σ ∈ ∂D. Then for every q ∈ D there exists M > 0
such that zk ∈ Kq(σ,M) eventually.

Proof. It suffices again to prove that there exists M > 1 such that {zk} converges to σ inside an
admissible approach region A(σ,M).

Without loss of generality, we can assume that z0 6= p. We consider again sk > 0 defined by
setting − 1

2 log sk = kD(zk, p). Thanks to (7.16), there is a constant 0 < c < 1 such that

sk+m ≤ cmsk (7.18)

for all k,m ≥ 0.
Now, [2, Theorem 2.3.51, Theorem 2.3.52] yield constants C̃1, C̃2 > 0 such that

C̃1d(zj , ∂D) ≤ sj ≤ C̃2d(zj , ∂D) (7.19)

for all j ∈ N, and so plugging this in (7.17) we have

‖zk − zk+m‖ ≤
C

1− â
1

1− c
√
sk ≤

C

1− â
1

1− c

√
C̃2

√
d(zk, ∂D)

for any m ≥ 0 and k large enough, and letting m tend to infinity we obtain

‖zk − σ‖ ≤M1

√
d(zk, ∂D), (7.20)

for some M1 > 1.
On the other hand, up to translating the domain, without loss of generality we can assume

that D contains the origin. In particular, D being bounded and strongly convex we can replace
nσ by σ in the definition of A(σ,M). Therefore, to conclude the proof it suffices to prove that
there exists M2 > 1 such that

|〈zk − σ, σ〉| ≤M2d(zk, ∂D)

for k large enough. This follows by arguing as in the proof of Lemma 7.31 using sk instead of
tk, thanks to (7.18) and (7.19). Then taking M = max{M1,M2} we conclude the proof.

This concludes the proof of the Theorem 7.23 in both cases.

Abate and Bracci used this result in [13] where they also adapted our proof to obtain a
similar result about existence and convergence of backward orbits for holomorphic self-maps of
rotational elliptic holomorphic self-maps.
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7.2.3 Existence of backward orbits with bounded Kobayashi step
To show that our theorem is not empty we proved the existence of backward orbits with bounded
Kobayashi step. Given D b Cn a bounded strongly convex domain with C2 boundary and
f ∈ Hol(D,D), a boundary fixed point σ ∈ ∂D with dilation coefficient βσ is said isolated if
there is a neighbourhood U ⊂ Cn of σ in Cn such that U ∩ ∂D contains no other boundary fixed
point of f with dilation coefficient at most βσ.

In [16, Section 3] we constructed backward orbits with bounded Kobayashi step converging
to isolated boundary fixed points. More precisely we proved the following result.

Theorem 7.38 (Abate, R. [16, Theorem 3.3]). Let D b Cn be a bounded strongly convex domain
with C2 boundary. Let f ∈ Hol(D,D) be either hyperbolic, parabolic, or strongly elliptic, with
Wolff point τ ∈ D. Let σ ∈ ∂D \ {τ} be an isolated repelling boundary fixed point for f with
dilation coefficient βσ > 1. Then there is a backward orbit with Kobayashi step bounded by
1
2 log βσ converging to σ.

The construction is done by slightly adapting an argument due to Poggi-Corradini (see [201,
187]) and we refer to [16, Section 3.] for the details.

Notice that in general, contrary to the unit disk case, as an example of Ostapyuk shows,
boundary regular repelling fixed points in the unit ball are not isolated. In the recent preprint
[31], Arosio and Guerini proved that for f : Bn → Bn a holomorphic self-map of the unit ball
in Cn if σ ∈ ∂Bn is a boundary repelling fixed point with dilation βσ > 1, then there exists a
backward orbit converging to σ with step 1

2 log βσ. Moreover, they proved that any two backward
orbits converging at the same boundary repelling fixed point stay at finite distance, and deduced
as a consequence the existence of a unique canonical pre-model in this case.

However the behaviour near non-isolated boundary regular repelling fixed points in general
strongly convex bounded domain with C2 boundary is still unknown.





Chapter 8

The Julia-Wolff-Carathéodory
Theorem and its generalizations

This chapter is a short introduction to the Julia-Wolff-Carathéodory theorem, and its gener-
alizations in several complex variables, up to very recent results for infinitesimal generators of
semigroups. A very precise and systematic presentation, providing clear proofs, of various as-
pects of the problem of generalizing the classical Julia-Wolff-Carathéodory theorem to several
complex variables can be found in [9].

8.1 The classical Julia-Wolff-Carathéodory theorem
One of the classical result in one-dimensional complex analysis is Fatou’s theorem:

Theorem 8.1 (Fatou [112]). Let f : D → D be a holomorphic self-map of the unit disk D ⊂ C.
Then f admits non-tangential limit at almost every point of ∂D.

This result however does not give any precise information about the behaviour at a specific
point σ of the boundary. Of course, to obtain a more precise statement in this case some
hypotheses on f are needed. In fact, as it was found by Julia ([155]) in 1920, the right hypothesis
is to assume that f(ζ) approaches the boundary of D at least as fast as ζ, in a weak sense. More
precisely, we have the classical Julia’s lemma:

Theorem 8.2 (Julia [155]). Let f : D→ D be a bounded holomorphic function such that

lim inf
ζ→σ

1− |f(ζ)|
1− |ζ|

= α < +∞ (8.1)

for some σ ∈ ∂D. Then f has non-tangential limit τ ∈ ∂D at σ. Moreover, for all ζ ∈ D one has

|τ − f(ζ)|2

1− |f(ζ)|2
≤ α |σ − ζ|

2

1− |ζ|2
. (8.2)

The latter statement admits an interesting geometrical interpretation. Recall that the horo-
cycle E(σ,R) contained in D of center σ ∈ ∂D and radius R > 0 is the set

E(σ,R) =

{
ζ ∈ D

∣∣∣∣ |σ − ζ|21− |ζ|2
< R

}
.
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Geometrically, E(σ,R) is an euclidean disk of radius R/(R + 1) internally tangent to ∂D at σ.
Therefore (8.2) becomes f

(
E(σ,R)

)
⊆ E(τ, αR) for all R > 0, and the existence of the non-

tangential limit more or less follows from (8.2) and from the fact that horocycles touch the
boundary in exactly one point.

As we remarked in Chapter 6, a horocycle can be thought of as the limit of Poincaré disks of
fixed euclidean radius and centers going to the boundary; so it makes sense to think of horocycles
as Poincaré disks centered at the boundary, and of Julia’s lemma as a Schwarz-Pick lemma at the
boundary. This suggests that α might be considered as a sort of dilation coefficient: f expands
horocycles by a ratio of α. If σ were an internal point and E(σ,R) an infinitesimal euclidean
disk actually centered at σ, one then would be tempted to say that α is (the absolute value of)
the derivative of f at σ. This is exactly the content of the classical Julia-Wolff-Carathéodory
theorem:

Theorem 8.3 (Julia-Wolff-Carathéodory). Let f : D → D be a bounded holomorphic function
such that

lim inf
ζ→σ

1− |f(ζ)|
1− |ζ|

= α < +∞

for some σ ∈ ∂D, and let τ ∈ ∂D be the non-tangential limit of f at σ. Then both the incremental
ratio

(
τ − f(ζ)

)/
(σ − ζ) and the derivative f ′(ζ) have non-tangential limit ασ̄τ at σ.

So condition (8.1) forces the existence of the non-tangential limit of both f and its derivative
at σ. This is the result of the work of several people: Julia [156], Wolff [264], Carathéodory [82],
Landau and Valiron [165], Nevanlinna [185] and others. We refer, for example, to [79] and [2] for
proofs, history and applications.

8.2 Generalizations to several variables
It was first remarked by Korányi and Stein ([163, 164, 246]) in extending Fatou’s theorem to
several complex variables, that the notion of non-tangential limit is not the right one to consider
for domains in Cn. In fact, it turns out that two notions are needed, and to introduce them it is
useful to investigate the notion of non-tangential limit in the unit disk D.

The non-tangential limit can be defined in two equivalent ways. A function f : D → C
is said to have non-tangential limit L ∈ C at σ ∈ ∂D if f

(
γ(t)

)
→ L as t → 1− for every

curve γ : [0, 1) → D such that γ(t) converges to σ non-tangentially as t → 1−. In C, this is
equivalent to having that f(ζ)→ L as ζ → σ staying inside any Stolz region K(σ,M) of vertex σ
and amplitude M > 1, where

K(σ,M) =

{
ζ ∈ D

∣∣∣∣ |σ − ζ|1− |ζ|
< M

}
,

since Stolz regions are angle-shaped nearby the vertex σ, and the angle is going to π asM → +∞.
These two approaches lead to different notions in several variables.

In the unit ball Bn ⊂ Cn the natural generalization of a Stolz region is the Korányi region
K(p,M) of vertex p ∈ ∂Bn and amplitude M > 1 given by

K(p,M) =

{
z ∈ Bn

∣∣∣∣ |1− 〈z, p〉|1− ‖z‖
< M

}
,

where ‖·‖ denote the euclidean norm and 〈· , ·〉 the canonical hermitian product. Then a function
f : Bn → C has K-limit (or admissible limit) L ∈ C at p ∈ ∂Bn, and we write

K-lim
z→p

f(z)
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if f(z) → L as z → p staying inside any Korányi region K(σ,M). A Korányi region K(p,M)
approaches the boundary non-tangentially along the normal direction at p but tangentially along
the complex tangential directions at p. Therefore, having K-limit is stronger than having non-
tangential limit. However, as first noticed by Korányi and Stein, for holomorphic functions of
several complex variables one is often able to prove the existence of K-limits. For instance, the
best generalization of Julia’s lemma to Bn is the following result (proved by Hervé [143] in terms
of non-tangential limits and by Rudin [235] in general):

Theorem 8.4 (Rudin [235]). Let f : Bn → Bm be a holomorphic map such that

lim inf
z→p

1− ‖f(z)‖
1− ‖z‖

= α < +∞ ,

for some p ∈ ∂Bn. Then f admits K-limit q ∈ ∂Bm at p, and furthermore for all z ∈ Bn one has

|1− 〈f(z), q〉|2

1− ‖f(z)‖2
≤ α |1− 〈z, p〉|

2

1− ‖z‖2
.

We defined Korányi regions for more general domains in Cn than the unit ball, using the
Kobayashi distance, in Definition 7.12. For the sake of completeness we recall here that given
D b Cn a complete hyperbolic domain and denoting by kD its Kobayashi distance, a K-region
of vertex x ∈ ∂D, amplitude M > 1, and pole z0 ∈ D is the set

KD,z0(x,M) =

{
z ∈ D | lim sup

w→x
[kD(z, w)− kD(z0, w)] + kD(z0, z) < logM

}
.

This definition clearly depends on the pole z0. However, this dependence is not too relevant since
changing the pole corresponds to shifting amplitudes. Since K-regions are a natural generaliza-
tion of Korányi regions they allow us to generalize the notion of K-limit. A function f : D → Cm
has K-limit L at x ∈ ∂D if f(z) → L as z → p staying inside any K-region of vertex x. The
best generalization of Julia’s lemma in this setting is then the following, due to Abate:

Theorem 8.5 (Abate [3]). Let D b Cn be a complete hyperbolic domain and let z0 ∈ D. Let
f : D → D be a holomorphic function and let x ∈ ∂D be such that

lim inf
z→x

[kD(z0, z)− kD(0, f(z))] < +∞ .

Then f admits K-limit τ ∈ ∂D at x.

In order to obtain a complete generalization of the Julia-Wolff-Carathéodory for Bn, Rudin
introduced a different notion of limit, still stronger than non-tangential limit but weaker than
K-limit. This notion is closely related to the other characterization of non-tangential limit in
one variable we mentioned at the beginning of this section.

A crucial one-variable result relating limits along curves and non-tangential limits is Lindelöf ’s
theorem. Given σ ∈ ∂D, a σ-curve is a continuous curve γ : [0, 1) → D such that γ(t) → σ as
t → 1−. Then Lindelöf [172] proved that if a bounded holomorphic function f : D → C admits
limit L ∈ C along a given σ-curve then it admits limit L along all non-tangential σ-curves —
and thus it has non-tangential limit L at σ.

In generalizing this result to several complex variables, Čirka [84] realized that for a bounded
holomorphic function the existence of the limit along a (suitable) p-curve (where p ∈ ∂Bn) implies
not only the existence of the non-tangential limit, but also the existence of the limit along any
curve belonging to a larger class of curves, including some tangential ones — but it does not
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in general imply the existence of the K-limit. To describe the version (due to Rudin [235]) of
Čirka’s result we shall state here, let us introduce a bit of terminology.

Let p ∈ ∂Bn. As before, a p-curve is a continuous curve γ : [0, 1)→ Bn such that γ(t)→ p as
t→ 1−. A p-curve is special if

lim
t→1−

‖γ(t)− 〈γ(t), p〉p‖2

1− |〈γ(t), p〉|2
= 0 . (8.3)

Given M > 1, a special curve is M -restricted if

|1− 〈γ(t), p〉|
1− |〈γ(t), p〉|

< M

for all t ∈ [0, 1). We also say that γ is restricted if it is M -restricted for some M > 1. In other
words, γ is restricted if and only if t 7→ 〈γ(t), p〉 goes to 1 non-tangentially in D.

It is not difficult to see that non-tangential curves are special and restricted; on the other hand,
a special restricted curve approaches the boundary non-tangentially along the normal direction,
but it can approach the boundary tangentially along complex tangential directions. Furthermore,
a special M -restricted p-curve is eventually contained in any K(p,M ′) with M ′ > M , and
conversely a special p-curve eventually contained in K(p,M) is M -restricted. However, K(p,M)
can contain p-curves that are restricted but not special: for these curves the limit in (8.3) might
be a strictly positive number.

With these definitions in place, we shall say that a function f : Bn → C has restricted K-limit
(or hypoadmissible limit) L ∈ C at p ∈ ∂Bn, and we shall write

K ′-lim
z→p

f(z) = L ,

if f
(
γ(t)

)
→ L as t → 1− for any special restricted p-curve γ : [0, 1) → Bn. It is clear that the

existence of the K-limit implies the existence of the restricted K-limit, that in turns implies the
existence of the non-tangential limit; but none of these implications can be reversed (see, e.g.,
[235] for examples in the ball).

Finally, we say that a function f : Bn → C is K-bounded at p ∈ ∂Bn if it is bounded in
any Korányi region K(p,M), where the bound can depend on M > 1. Then Rudin’s version of
Čirka’s generalization of Lindelöf’s theorem is the following:

Theorem 8.6 (Rudin [235]). Let f : Bn → C be a holomorphic function K-bounded at p ∈ ∂Bn.
Assume there is a special restricted p-curve γo : [0, 1) → Bn such that f

(
γo(t)

)
→ L ∈ C

as t→ 1−. Then f has restricted K-limit L at p.

As before, it is possible to generalize this approach to a domain D ⊂ Cn different from the
ball. A very precise and systematic presentation, providing clear proofs, details and examples, of
various aspects of the problem of generalization of the classical Julia-Wolff-Carathéodory theorem
to domains in several complex variables can be found in [9].

For the sake of simplicity we state here only the definitions needed to state Abate’s version
of Lindelöf’s theorem in this setting. Given a point x ∈ ∂D, a x-curve is again a continuous
curve γ : [0, 1) → D so that limt→1− γ(t) = x. A projection device at x ∈ ∂D is the data
of: a neighbourhood U of x in Cn, a holomorphic embedded disk ϕx : D → D ∩ U , such that
limζ→1 ϕx(ζ) = x, a family P of x-curves in D ∩ U , and a device associating to every x-curve
γ ∈ P a 1-curve γ̃x in D, or equivalently a x-curve γx = ϕx ◦ γ̃x in ϕx(D). If D is equipped with a
projection device at x ∈ ∂D, then a curve γ ∈ P is special if limt→1− kD∩U (γ(t), γx(t)) = 0, and
it is restricted if γx is a non-tangential 1-curve in D. A function f : D → C has restricted K-limit
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L ∈ C at x if limt→1− f(γ(t)) = L for all special restricted x-curves. A projection device is good
if: for any M > 1 there is a M ′ > 1 so that ϕx(K(1,M)) ⊂ KD∩U,z0(x,M ′), and for any special
restricted x-curve γ there exists M1 = M1(γ) such that limt→1− kKD∩U,z0 (x,M1)(γ(t), γx(t)) = 0.
Good projection devices exist, and several examples can be found for example in [9]. Finally,
we say that a function f : D → C is K-bounded at p ∈ ∂Bn if it is bounded in any K-region
KD,z0(x,M), where the bound can depend on M > 1.

With these definitions we can state the generalization of Lindelöf principle given by Abate.

Theorem 8.7 (Abate [9]). Let D ⊂ Cn be a domain equipped with a good projection device at
x ∈ ∂D. Let f : D → D be a holomorphic function K-bounded at x. Assume there is a special
restricted x-curve γo : [0, 1)→ D such that f

(
γo(t)

)
→ L ∈ C as t→ 1−. Then f has restricted

K-limit L at x.

We can now deal with the generalization of the Julia-Wolff-Carathéodory theorem to several
complex variables. With respect to the one-dimensional case there is an obvious difference:
instead of only one derivative one has to deal with a whole (Jacobian) matrix of them, and there
is no reason they should all behave in the same way. And indeed they do not, as shown in
Rudin’s version of the Julia-Wolff-Carathéodory theorem for the unit ball:

Theorem 8.8 (Rudin [235]). Let f : Bn → Bm be a holomorphic map such that

lim inf
z→p

1− ‖f(z)‖
1− ‖z‖

= α < +∞ ,

for some p ∈ ∂Bn. Then f admitsK-limit q ∈ ∂Bm at p. Furthermore, if we set fq(z) =
〈
f(z), p

〉
q

and denote by dfz the differential of f at z, we have:

(i) the function
[
1−

〈
f(z), q

〉]/
[1− 〈z, p〉] is K-bounded and has restricted K-limit α at p;

(ii) the map [f(z)− fq(z)/[1− 〈z, p〉]1/2 is K-bounded and has restricted K-limit O at p;

(iii) the function
〈
dfz(p), q

〉
is K-bounded and has restricted K-limit α at p;

(iv) the map [1− 〈z, p〉]1/2d(f − fq)z(p) is K-bounded and has restricted K-limit O at p;

(v) if v is any vector orthogonal to p, the function
〈
dfz(v), q

〉/
[1− 〈z, p〉]1/2 is K-bounded and

has restricted K-limit 0 at p;

(vi) if v is any vector orthogonal to p, the map d(f − fq)z(v) is K-bounded at p.

In the last twenty years this theorem (as well as Theorems 8.4 and 8.6) has been extended
to domains much more general than the unit ball: for instance, strongly pseudoconvex domains
[2, 3, 5], convex domains of finite type [22], and polydisks [7] and [25], (see also [9] and references
therein).

We end this section with the general version of the Julia-Wolff-Carathódory theorem ob-
tained by Abate in [9] for a complete hyperbolic domain D in Cn. To formulate it, we need to
introduce a couple more definitions. A projection device at x ∈ ∂D is geometrical if there is a
holomorphic function p̃x : D ∩ U → D such that p̃x ◦ ϕx = IdD and γ̃x = p̃x ◦ γ for all γ ∈ P. A
geometrical projection device at x is bounded if d(z, ∂D)/|1 − p̃x(z)| is bounded in D ∩ U , and
|1 − p̃x(z)|/d(z, ∂D) is K-bounded in D ∩ U . The statement is then the following, where κD
denotes the Kobayashi metric.
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Theorem 8.9 (Abate [9]). Let D ⊂ Cn be a complete hyperbolic domain equipped with a
bounded geometrical projection device at x ∈ ∂D. Let f : D → D be a holomorphic function
such that

lim inf
z→x

[kD(z0, z)− kD(0, f(z))] =
1

2
log β < +∞ .

Then for every v ∈ Cn and every s ≥ 0 such that d(z, ∂D)sκD(z; v) is K-bounded at x the
function

d(z, ∂D)s−1 ∂f

∂v
(8.4)

is K-bounded at x. Moreover, if s > inf{s ≥ 0 | d(z, ∂D)sκD(z; v) is K-bounded at x}, then
(8.4) has vanishing K-limit at x.

Depending on more specific properties of the projection device, it is indeed possible to deduce
the existence of restricted K-limits, see [9, Section 5].

Further generalizations of Julia-Wolff-Carathéodory theorem have been obtained in infinite-
dimensional Banach and Hilbert spaces, and we refer to [103, 105, 107, 128, 178, 249, 261, 262,
263, 271] and references therein, and very recently also in the non-commutative setting [41].

8.3 Julia-Wolff-Carathéodory theorem for infinitesimal gen-
erators

We conclude this chapter focusing on a different kind of generalization in several complex vari-
ables: infinitesimal generators of one-parameter semigroups of holomorphic self-maps of Bn.

We consider Hol(Bn,Bn), the space of holomorphic self-maps of Bn, endowed with the usual
compact-open topology. A one-parameter semigroup of holomorphic self-maps of Bn is a continu-
ous semigroup homomorphism Φ: R+ → Hol(Bn,Bn). In other words, writing ϕt instead of Φ(t),
we have ϕ0 = IdBn , the map t 7→ ϕt is continuous, and the semigroup property ϕt ◦ ϕs = ϕt+s
holds. An introduction to the theory of one-parameter semigroups of holomorphic maps can be
found in [2, 215, 242].

One-parameter semigroups can be seen as the flow of a vector field (see, e.g., [6]). Given a one-
parameter semigroup Φ, it is possible to prove that there exists a holomorphic map G : Bn → Cn,
the infinitesimal generator of the semigroup, such that

∂Φ

∂t
= G ◦ Φ . (8.5)

It should be kept in mind, when reading the literature on this subject, that in some papers (e.g.,
in [107, 214]) there is a change of sign with respect to our definition, due to the fact that the
infinitesimal generator is defined there as the solution of the equation

∂Φ

∂t
+G ◦ Φ = O .

A Julia’s lemma for infinitesimal generators was proved by Elin, Reich and Shoikhet in [107]
in 2008, assuming that the radial limit of the generator at a point p ∈ ∂Bn vanishes:

Theorem 8.10 (Elin, Reich, Shoikhet [107, Theorem p. 403]). Let G : Bn → Cn be the in-
finitesimal generator on Bn of a one-parameter semigroup Φ = {ϕt}, and let p ∈ ∂Bn be such
that

lim
t→1−

G(tp) = O . (8.6)

Then the following assertions are equivalent:
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(I) α = lim inft→1− Re 〈G(tp),p〉
t−1 < +∞;

(II) β = 2 supz∈Bn Re
[
〈G(z),z〉
1−‖z‖2 −

〈G(z),p〉
1−〈z,p〉

]
< +∞;

(III) there exists γ ∈ R such that for all z ∈ Bn we have |1−〈ϕt(z),p〉|
2

1−‖ϕt(z)‖2 ≤ e
γt |1−〈z,p〉|2

1−‖z‖2 .

Furthermore, if any of these assertions holds then α = β = inf γ, and we have

lim
t→1−

〈G(tp), p〉
t− 1

= β . (8.7)

If (8.6) and any (and hence all) of the equivalent conditions (I)–(III) holds, p ∈ ∂Bn is called
a boundary regular null point of G with dilation β ∈ R.

This result suggested that a Julia-Wolff-Carathéodory theorem could hold for infinitesimal
generators along the line of Rudin’s Theorem 8.8. A first partial generalization has been achieved
by Bracci and Shoikhet in [60]. In collaboration with Abate, in [18] we have been able to give a
full generalization of Julia-Wolff-Carathéodory theorem for infinitesimal generators, proving the
following result.

Theorem 8.11 (Abate, R. [18]). Let G : Bn → Cn be an infinitesimal generator on Bn of a
one-parameter semigroup, and let p ∈ ∂Bn. Assume that

〈G(z), p〉
〈z, p〉 − 1

is K-bounded at p (8.8)

and
G(z)− 〈G(z), p〉p

(〈z, p〉 − 1)γ
is K-bounded at p for some 0 < γ < 1/2. (8.9)

Then p ∈ ∂Bn is a boundary regular null point for G. Furthermore, if β is the dilation of G at p
then:

(i) the function 〈G(z), p〉
/

(〈z, p〉 − 1) (is K-bounded and) has restricted K-limit β at p;

(ii) if v is a vector orthogonal to p, the function 〈G(z), v〉/(〈z, p〉 − 1)γ is K-bounded and has
restricted K-limit 0 at p;

(iii) the function 〈dGz(p), p〉 is K-bounded and has restricted K-limit β at p;

(iv) if v is a vector orthogonal to p, the function (〈z, p〉 − 1)1−γ〈dGz(p), v〉 is K-bounded and
has restricted K-limit 0 at p;

(v) if v is a vector orthogonal to p, the function 〈dGz(v), p〉
/

(〈z, p〉 − 1)γ is K-bounded and
has restricted K-limit 0 at p.

(vi) if v1 and v2 are vectors orthogonal to p the function (〈z, p〉 − 1)1/2−γ〈dGz(v1), v2〉 is K-
bounded at p.

Idea of the proof. Statement (i) follows immediately from our hypotheses, thanks to Theorems 8.6
and 8.10. Statement (iii) follows by standard arguments, and (iv) follows from (ii), again by stan-
dard arguments.

The main point is the proof of part (ii). By Theorem 8.6, it suffices to compute the limit
along a special restricted curve. We use the curve

σ(t) = tp+ e−iθε(1− t)1−γv
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which is always restricted, and it is special if and only if γ < 1/2. We then plug (i) and this
curve into Theorem 8.10.(II), and we then let ε→ 0+, using θ to get rid of the real part.

Statement (v) follows from (i), (ii) and by Theorem 8.10 using somewhat delicate arguments
involving a curve of the form

γ(t) =
(
t+ ic(1− t)

)
p+ η(t)v ,

where 1− t < |η(t)|2 < 1− |t+ ic(1− t)|2, and the argument of η(t) is chosen suitably.

A first difference with respect to Theorem 8.8 is that we have to assume (8.8) and (8.9) as
separate hypotheses, whereas they appear as part of Theorem 8.8.(i) and (ii). Indeed, when
dealing with holomorphic maps, conditions (8.8) and (8.9) are a consequence of the equivalent of
condition (I) in Theorem 8.10, but in that setting the proof relies in the fact that there we have
holomorphic self-maps of the ball. In our context, (8.9) is not a consequence of Theorem 8.10.(I),
as shown in [18, Example 1.2]; and it also seems that (8.8) is stronger than Theorem 8.10.(I).

A second difference is the exponent γ < 1/2. Bracci and Shoikhet proved Theorem 8.11 with
γ = 1/2 but they couldn’t prove the statements about restricted K-limits in cases (ii), (iv) and
(v). This is due to an obstruction, which is not just a technical problem, but an inevitable feature
of the theory. As mentioned in the sketch of the proof, in showing the existence of restricted
K-limits, the curves one would like to use for obtaining the exponent 1/2 in the statements are
restricted but not special, in the sense that the limit in (8.3) is a strictly positive (though finite)
number. Actually the exponent 1/2 might not be the right one to consider in the setting of
infinitesimal generators, as shown in [18, Example 1.2].

An exact analogue of Theorem 8.8 with γ = 1/2 can be recovered assuming a slightly stronger
hypothesis on the infinitesimal generator. In fact, under the assumptions (8.8) and (8.9) we have〈

G
(
σ(t)

)
, p
〉

〈σ(t), p〉 − 1
= β + o(1) (8.10)

as t → 1− for any special restricted p-curve σ : [0, 1) → Bn. Following ideas introduced in
[109, 104, 106] in the context of the unit disk, we would like to have〈

G
(
σ(t)

)
, p
〉

〈σ(t), p〉 − 1
= β + o

(
(1− t)α

)
(8.11)

for some α > 0 and any special restricted p-curve σ : [0, 1)→ Bn such that 〈σ(t), p〉 ≡ t. If there
is α > 0 such that (8.11) is satisfied, p is said to be a Hölder boundary null point. Using this
notion we obtain the following result.

Theorem 8.12 (Abate, R. [18]). Let G : Bn → Cn be the infinitesimal generator on Bn of a
one-parameter semigroup, and let p ∈ ∂Bn. Assume that

〈G(z), p〉
〈z, p〉 − 1

and
G(z)− 〈G(z), p〉p

(〈z, p〉 − 1)1/2

are K-bounded at p, and that p is a Hölder boundary null point. Then the statement of Theo-
rem 8.11 holds with γ = 1/2.

Examples of infinitesimal generators with a Hölder boundary null point and satisfying the
hypotheses of Theorem 8.12 are provided in [18].



Perspectives

I will formulate here some questions related to the works presented in this manuscript.

Local Dynamics

Arithmetic conditions for holomorphic normalization
Holomorphic Linearization

Yoccoz proved the optimality of the Brjuno condition in dimension 1 for the class of quadratic
polynomials, as we recalled in Theorem 1.13. In higher dimension it is still unknown whether the
Brjuno condition is optimal for some classes of non-resonant polynomials. A first issue is to find
the correct class to study. For instance, it is straightforward that if we consider direct products
germs in two variables, that is F : (C2, O)→ (C2, O) of the form F (z, w) = (f1(z), f2(w)), then
we can directly apply Yoccoz’s result separately to each component. Therefore we obtain that a
quadratic polynomial map

(z, w) 7→ (λ1z + z2, λ2w + w2), (8.12)

with |λj | = 1 for j = 1, 2, is holomorphically linearizable if and only if each λj satisfies the one-
dimensional Brjuno condition (1.5). This is always satisfied if (λ1, λ2) satisfies the reduced Brjuno
condition given in Definition 1.45, thanks to the fact that ωλj (m) ≥ ω̃λ1,λ2(m) for each m ≥ 2.
However the contrary is not true in general and, more importantly, it is not known whether there
is any relation between the holomorphic linearizability of the quadratic polynomial (8.12) and
that of a germ of biholomorphism of (C2, O) with differential at the origin equal to Diag(λ1, λ2).
It therefore seems more reasonable to start such investigation on a richer class, like that given
by skew-products as defined in (4.1).

Holomorphic Normalization

In [66, 67], Brjuno was able to prove results ensuring the existence of a holomorphic normaliza-
tion for resonant germs of holomorphic vector fields of Cn with a singular point at the origin,
under a condition on the formal normal forms, called condition A, and an adapted arithmetical
condition on the spectrum of the linear term of the vector field, analog to our reduced Brjuno
condition defined in Definition 1.45. It is a natural interesting question to investigate the possi-
bility of generalizing such results, or of finding analogous ones, to the case of germs of resonant
biholomorphisms. One key fact to be kept in mind will be the differences between germs of vector
fields and germs of biholomorphisms found in [208].

Another interesting and promising approach to the problem of holomorphic normalization is
given by the use of Écalle’s arborification theory. Recently, Fauvet, Menous and Sauzin revisited
in [110] the linearization problem for non-resonant holomorphic diffeomorphisms in dimension
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1 and, using a part of Écalle’s arborification theory, they obtained explicit formulas, indexed
by forests, for the linearizing function. This allowed them to recover Yoccoz’s bound for the
convergence radius of the linearizing function under the Brjuno condition. It seems to be possible
to use the same method to obtain explicit formulas for the linearizing map of non-resonant
biholomorphisms in higher dimension and to use them to find a bound on the convergence
radius as well, again under the Brjuno condition. Together with Fauvet, we think that such
techniques can be used to obtain explicit formulas for the normalizations of resonant germs of
biholomorphisms and to study their convergence under the reduced Brjuno condition.

Tangent to the identity germs
A first natural question related to the results presented in Section 2.3 is whether they can be
generalized in dimension 3 and higher, and in which way. In fact, in dimension n ≥ 3 the
existence of a parabolic curve for a tangent to the identity germ F : (Cn, O)→ (Cn, O) having a
formal invariant curve Γ with F |Γ 6≡ Id might not always be possible. For instance, Abate and
Tovena found in [23] examples of tangent to the identity germs in C3 without parabolic curves
asymptotic to formal separatrices. It is still reasonable to expect that the examples in [23] are
somehow exceptional and to investigate on the existence of parabolic submanifolds of dimension
s < n or parabolic domains. The further natural general case to consider is that of a germ of
biholomorphism of (Cn, O) with n ≥ 3 having a formal invariant curve Γ under the necessary
hypotheses for the existence of orbits converging to the origin asymptotically to Γ.

A more general open problem is to completely describe the local dynamics of a tangent to
the identity germ in dimension n ≥ 2 in a punctured neighbourhood of the fixed point, possibly
using characteristic directions, directors, indices and/or other invariants.

This could also shed some light on the other natural, still open, question in higher dimension
concerning the topological classification of tangent to the identity germs. More precisely we would
like to know whether an analog of Theorem 1.19 holds. A first class of germs to be considered
could be that of non-dicritical tangent to the identity germ such that all characteristic directions
are non-degenerate.

Resonant germs
The study of the local dynamics of resonant non-linearizable and non-tangent to the identity
germs of biholomorphisms started only recently as we recalled in Chapter 3. The new phenomena
that can occur in this setting, like the existence of elliptic germs having attracting basins with a
parabolic-like dynamics, naturally lead to the question of classifying all possible behaviours that
can occur in the resonant non-linearizable case.

A first class to study is that of degenerate multi-resonant germs of weighted order k0. Such
class splits into two subcases: either the parabolic shadow is a tangent to the identity germ of
multiplicity k0 +h > k0 at the origin or it is the identity. In the first case, we need to understand
the information that this gives on the local dynamics of germs in normal form, while in the
second one the dynamics for normal forms can be readily described. In both cases the further
question is whether we can infer on the local dynamics of general germs not in normal form.

The resonant setting where the resonances are not finitely generated, that is the germ is not
multi-resonant, has not been attacked yet. A good starting point could be to investigate the
local dynamics of germs in normal forms using the notions of minimal and cominimal elements
introduced in [208].
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Formally linearizable germs

Another class of germs of biholomorphisms whose local dynamics is still not understood is that
of formally but not holomorphically linearizable germs. More precisely, also due to the lack of
knowledge in the description of the dynamics of tangent to the identity germs, we do not know
whether Pérez-Marco’s Theorem 1.21 can be fully generalized in higher dimension, nor whether
other new phenomena might occur.

A first generalization of Perez-Marco’s hedgehogs has been recently given in C2 by Firsova,
Lyubich, Radu and Tanase in [118] and Lyubich, Radu and Tanase in [177]. In their construction
only one of the eigenvalues can have modulus equal to 1. A natural open question is whether
a hedgehog always exists in this setting if all eigenvalues have modulus 1 but are not roots of
unity.

Global Dynamics

Parabolic invariant fiber for skew-products in C2

In the presentation we gave in Chapter 4 of the dynamics for a polynomial skew-product
F (z, w) = (f(z, w), g(w)) in C2 near an invariant fiber, we did not provide a full description
for the case of a parabolic invariant fiber.

It is evident that in the case of a polynomial skew-product with a parabolic invariant fiber,
Question 1 as formulated in Section 4.1 makes no sense. In fact, since the fixed point c for the
polynomial g(w) lies on the boundary of the Fatou component Bg,c for g, the Fatou components
of the polynomial fc(z) := f(z, c) cannot be obtained as intersections of Fatou components of F
with the parabolic invariant fiber {w = c}.

We can however weaken the definition of bulging by saying that a Fatou component Ωfc of
the polynomial fc bulges if there exists a Fatou component Ω for F such that Ω∩{w = c} = Ωfc ,
that is Ωfc ⊂ ∂Ω. Then the question whether all Fatou components of fc bulge makes sense
and we can start addressing it by using the results of Ueda in [251], for the attracting Fatou
components, and the results we obtained with López-Hernanz, Ribón and Sanz-Sánchez in [174]
for the Siegel and the parabolic components. Understanding the dynamics near a parabolic Fatou
component for fc might also give non-trivial examples of tangent to the identity germs where
the local dynamics in a full neighbourhood of the origin is understood.

Coming back to the results we obtained in [33] on the existence of wandering domains, there
still are several questions to consider: how prevalent is this behaviour in the parameter space?
Is it a very special phenomenon, or is it typical? Can the orbit of the critical locus of the map
somehow detect that there is a wandering domain? How many wandering orbits does such a
map typically have? Can we determine if a given map admits a wandering domain? How does
the wandering domain affect the global dynamics of the map? Are there other new phenomena,
absent in dimension one, that are present when a map F : C2 → C2 has a wandering domain? Is
it possible to find a Hénon map with a wandering domain?

Parabolic implosion in higher dimension
One essential ingredient of the construction of polynomial map with a wandering domain that
we obtained in [33] involves adapting parabolic implosion to higher dimension in the setting of
skew-products. Parabolic implosion is a phenomenon observed by Douady and Hubbard in their
original study of quadratic polynomials and the Mandelbrot set, as we briefly recall here.
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Let fc : C→ C be the quadratic family fc : z 7→ z2 + c, parametrized by c ∈ C. Let Kc be the
filled Julia set of fc, that is, the set of all points in C having bounded orbit under fc. The set of
all parameters c ∈ C such that Kc is connected is the Mandelbrot set, denoted byM. There is a
dense set of parameters in the boundary ofM called parabolic parameters. These are values of
c such that the polynomial fc has a parabolic cycle and the cusp ofM, at c = 1/4, is one such
parameter. Douady showed that Kc moves discontinuously, with respect to the Hausdorff metric,
when c is a parabolic parameter, due to the phenomenon called of parabolic implosion [93]. In
complex dimension one, there is an established Lavaurs theory about parabolic implosion.

In [40], Bedford, Smillie and Ueda established an analogous result for Hénon maps. Their work
lay the foundations for semi-parabolic implosion in dimension two, that is, parabolic implosion
with an eigenvalue of modulus strictly less than 1. In [44], Bianchi then adapted the Bedford,
Smillie and Ueda strategies for a perturbation of a class of holomorphic endomorphisms tangent
to identity, and he established a two-dimensional Lavaurs theorem for such a class, but the
general case remains open. Understanding the situation in cases such as skew-products is a good
starting point for studying the question of a general theory for parabolic implosion in dimension
two.

Fatou components for automorphisms in Ck

The results presented in Chapter 5, and in particular the results we obtained in [64], naturally lead
to the question of classifying the kind of possible topological types for periodic Fatou components
of holomorphic automorphisms of Ck, for k ≥ 2.

Hénon maps

Several precise questions have been formulated by Eric Bedford in [36] concerning Fatou compo-
nents of conservative Hénon maps, that is maps of the form (5.1) with |δ| = 1. We will mention
here the questions that we think we can address using some of the results and techniques pre-
sented in this manuscript.

Given an invariant Fatou component Ω for a conservative Hénon map H, one can consider
the set G of all limits of convergent subsequences of iterates of H. It can be shown that G is
a compact Lie group, and Bedford and Smillie proved in [38] that the connected component G0

of the identity is isomorphic to a (real) torus of rank 1 or 2. Therefore Ω is invariant under a
nontrivial torus of rotations, and we can call it a rotation domain. The rank of the torus is called
the rank of the rotation domain.

Bedford asked whether a rotation domain always necessarily contains a fixed point. He then
specified his question according to the rank of the rotation domain.

In the rank 1 case, he asked whether the (abstract) torus action on Ω is equivalent to a more
familiar circle action. More precisely, given Ω a rank 1 rotation domain, can one find a (p, q)-
domain D ⊂ C2, that is a connected open set D ⊂ C2 such that (eipθz, eiqθw) ∈ D whenever
(z, w) ∈ D and θ ∈ R, and a biholomorphism Φ: Ω → D conjugating the Hénon map H to a
linear map L = Diag(αp, αq) with α ∈ S1? Moreover, can the case pq < 0 occur?

In the rank 2 case, the results in [34] imply that the G-action on Ω can be conjugated to
the standard linear action on C2, that is there are a Reinhardt domain1 D ⊂ C2, a linear map
L = Diag(α1, α2), with |α1| = |α2| = 1 and a biholomorphisms Φ: Ω → D conjugating H to L.
This statement leaves open the following question: on which Reinhardt domains can arise as rank
2 rotation domains? Since Ω is polynomially convex, the Reinhardt domain D is topologically
equivalent to either a ball (in which case it contains a fixed point) or to the product of a disk

1We recall that D ⊂ C2 is a Reinhardt domain if (eiθz, eiφw) ∈ D whenever (z, w) ∈ D and θ, φ ∈ R.
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times an annulus (in which case it contains an invariant annulus inside one of the coordinate
axes), and in this last case Ω is called exotic. We can therefore ask whether there are Hénon
maps with exotic rotation domains, and whether Ω can be a Siegel bidisk, that is biholomorphic
to the bidisk D2, or a Siegel ball, that is biholomorphic to the standard unit ball B2.

Post-critically finite maps
Among the questions that are well-understood in dimension 1 and whose analogues in higher
dimension remain opens, we cite here the study of the global dynamics of post-critically finite
endomorphisms of Pk(C).

Recall that Fatou and Julia established that the global dynamics of a rational map f : P1(C)→
P1(C) is governed by the forward orbits of the critical points of f . For example, if f has an
attracting or a parabolic cycle, then a critical point is necessarily attracted to it. As another
example, if f is a polynomial map, then the filled Julia set of f is connected if and only if it
contains all (finite) critical points of f .

A rational map f of degree d ≥ 2 has 2d − 2 critical points, counted with multiplicity. The
postcritical set of f is the set

Pf :=
⋃
n>0

f◦n(Cf ) where Cf is the set of critical points of f.

A rational function is then called postcritically finite (or PCF for short) if its postcritical set Pf
is finite. If f is PCF, then every periodic cycle of f is either repelling, or superattracting (that
is, the cycle contains a critical point). In other words, the dynamics of a PCF rational map is
tame.

In higher dimension, a holomorphic endomorphism of Pk(C) is called post-critically finite if
its post-critical set, that is the union of all forward images of its critical set, is algebraic. In [122],
Fornæss and Sibony studied the dynamics of two specific examples of PCF endomorphisms of
P2(C). They then considered in [124] more general PCF endomorphisms of Pk(C) and studied
the case of dimension k = 2. In particular, they notably proved that if the complement in P2(C)
of the postcritical set of a PCF endomorphism F is Kobayashi hyperbolic, then the only Fatou
components of F are basins of superattracting cycles. Rong further generalized such result,
proving in [222] that, still in dimension k = 2, the Fatou set of a PCF endomorphism is reduced
to the union of basins of superattracting cycles. Another important more recent contribution is
due to Astorg in [32]. However, it is still unknown whether it is possible to fully generalize this
result for any k ≥ 2. In a joint project with X. Buff and our Ph.D student Van Tu Le, we intend
to prove that the eigenvalues of the differential of a PCF endomorphism of Pk(C) at a fixed point
are either zero or of modulus strictly larger than 1. It is not difficult to show that the modulus
of such eigenvalues are either zero or larger than or equal to 1. The non-trivial part is to exclude
the case of modulus 1.

Dynamics in convex domains

Backward orbits and pre-models
Given a holomorphic self-map f : Bn → Bn of the unit ball of Cn, backward orbits with bounded
Kobayashi step, boundary repelling fixed points and pre-models are deeply related. We recall
that a pre-model for f is a triple (Λ, h, ϕ), where Λ is a complex manifold called the base space,
h : Λ → Bn is a holomorphic mapping called the intertwining mapping and ϕ : Λ → Λ is an
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automorphism, such that the following diagram commutes:

Λ
ϕ //

h
��

Λ

h
��

Bn
f // Bn.

A pre-model (Λ, h, ϕ) is called associated with the boundary repelling point ζ if for some (and
hence for any) x ∈ Λ we have limn→∞ h(ϕ−n(x)) = ζ.

Poggi-Corradini in [201] (see also the results obtained by Bracci in [52]) showed in the unit
disk D ⊂ C that given a boundary repelling fixed point ζ one can find a backward orbit with step
equal to log βζ , where βζ is the dilation coefficient at ζ, converging to ζ. He then used such orbit
to obtain an essentially unique pre-model (D, h, τ) associated with ζ, where τ is a hyperbolic
automorphism of the disk with dilation βζ at its repelling point.

This result was partially generalized by Ostapuyk [187] in the unit ball Bn. She proved that
given an isolated boundary repelling fixed point ζ one obtains with a similar method a pre-model
(D, h, τ) associated with ζ, where τ is a hyperbolic automorphism of the disk with dilation βζ at
its repelling point. Such pre-model is one-dimensional and has no uniqueness property. It is then
natural to ask, as in [187, Question 8], whether it is possible to describe the structure of the stable
subset S(ζ), that is the subset of starting points of backward orbits with bounded Kobayashi
step converging to ζ, and whether one can find a preferred pre-model associated with ζ.

Recently Arosio gave in [28, 29] a partial answer to such questions, using the theory of
canonical pre-models he developed together with Bracci in [30]. More precisely, he showed that
every backward orbit (zl) with bounded Kobayashi step converging to ζ gives rise in a natural
way to a canonical pre-model (Bk, `, τ) associated with ζ, where 1 ≤ k ≤ n, and where τ is a
hyperbolic automorphism of the ball Bk with dilation µ ≥ βζ at its repelling point. Moreover
the canonical pre-model satisfies a universal property which can be roughly stated as follows:
(Bk, `, τ) is the “best possible” pre-model among all pre-models (Λ, h, ϕ) such that for some (and
hence for any) x ∈ Λ the backward orbit h(ϕ−l(x)) stays at a finite Kobayashi distance from the
given backward orbit (zl).

Arosio and Guerini then proved in [31] that to every boundary repelling fixed point ζ is
associated exactly one canonical pre-model which is the “best possible” among all pre-models
associated with ζ and which has dilation βζ . Their construction is based on two key results.
They first proved that for f : Bn → Bn a holomorphic self-map of the unit ball in Cn, if σ ∈ ∂Bn
is a boundary repelling fixed point with dilation βσ > 1, then there exists a backward orbit
converging to σ with step 1

2 log βσ. Then, they proved that any two backward orbits converging
at the same boundary repelling fixed point stay at finite distance.

It is natural to ask whether it is possible to generalize the above mentioned results to bounded
strongly convex domains with C2 boundary.

Julia-Wolff-Carathéodory theorem for infinitesimal generators
In Section 8.3 we presented the generalization of Julia-Wolff-Carathéodory Theorem for infinites-
imal generators of one-parameter semigroups of holomorphic self-maps of the unit ball in Cn
obtained in [18]. In collaboration with Abate we think that it is possible to generalize our results
to bounded strongly convex domains in Cn with some smoothness assumptions on the boundary.
In order to obtain such generalization it should be possible to use pluripotential tools and in
particular the pluricomplex Poisson kernel (see also [54, 58]) and Lempert’s theory of complex
geodesics in strongly convex domains.
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