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Abstract. Let OK be the ring of integers of an imaginary quadratic field.

Recently, Zhuchao Ji and Junyi Xie proved that rational maps whose multi-

pliers at all periodic points belong to OK are power maps, Chebyshev maps
or Lattès maps. Their proof relies on a non-archimedean result by Benedetto,

Ingram, Jones and Levy. In this note, we show that one may avoid using this

non-archimedean result by considering a differential equation instead.

Introduction

Let d ≥ 2 be an integer. Let f : Ĉ → Ĉ be a rational map of degree d, where

Ĉ := C∪{∞} is the Riemann sphere. Consider a sequence (zn)n≥0 satisfying z0 ∈ Ĉ
and zn+1 = f(zn) for n ≥ 0. The point z0 is a periodic point of period k if zk = z0

for some minimal k ≥ 1. In that case, the multiplier of f at z0 is the eigenvalue of

Dz0f
◦k : Tz0Ĉ→ Tz0Ĉ.

The rational map f is

• a power map if it is conjugate to z 7→ z±d;
• a Chebyshev map if it is conjugate to ±Td where Td is the unique polynomial

of degree d satisfying Td(z + z−1) = zd + z−d;
• a Lattès map if there exist a torus T = C/Λ, with Λ ⊂ C a lattice of rank 2,

a holomorphic endomorphism L : T → T and a nonconstant holomorphic

map Θ : T→ Ĉ such that the following diagram commutes:

T L //

Θ
��

T

Θ
��

Ĉ
f
// Ĉ.

Power maps, Chebyshev maps and Lattès maps are called finite quotients of affine
maps by Milnor [M] and exceptional maps by Ji and Xie [JX]. In this note, we will
use the second terminology.

As observed by Milnor in [M], if f is exceptional, the multipliers of f at all
periodic points are contained in a discrete subring of C, thus in the ring of integers
of some imaginary quadratic field. Milnor conjectured that the converse is true.
In [H1] the third author proved the conjecture when d = 2 and in [JX] Ji and Xie
proved the conjecture for all d ≥ 2.
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Theorem 1 (Ji-Xie). Assume that OK is the ring of integers of some imaginary

quadratic field and f : Ĉ → Ĉ is a rational map of degree d ≥ 2 whose multipliers
all lie in OK . Then f is a power map, a Chebyshev map or a Lattès map.

In this note, we present their proof with a minor modification for one of the
arguments. More precisely, our main contribution is Proposition 1.

After writing this note, the third author [H2] proved the following stronger result.

Theorem 2 (Huguin). Assume that K is a number field and f : Ĉ → Ĉ is a
rational map of degree d ≥ 2 whose multipliers all lie in K. Then f is a power
map, a Chebyshev map or a Lattès map.

1. Exceptional maps

Ritt [R] gave the following characterization of exceptional maps.

Lemma 1 (Ritt). Assume that f : Ĉ → Ĉ is a rational map of degree d ≥ 2,

φ : C → Ĉ is a nonconstant holomorphic map, α : C → C is an affine map and
τ : C→ C is a nontrivial translation such that

• φ ◦ α = f ◦ φ and
• φ ◦ τ = φ.

Then, f is an exceptional map.

The following generalization is essentially due to Ji and Xie (compare with [JX,
Lemma 2.9]).

Lemma 2. Assume that f : Ĉ→ Ĉ is a rational map of degree d ≥ 2, φ : C→ Ĉ is
a nonconstant holomorphic map and α1 : C → C and α2 : C → C are affine maps
such that

• α1 and α2 do not commute and
• φ ◦ α1 = f ◦ φ = φ ◦ α2.

Then, f is an exceptional rational map.

Proof. First, note that the affine map

τ := α1α
−1
2 α1α2α

−2
1 : C→ C

is a nontrivial translation. Indeed, the differentials of α1 and α2 are linear maps,
thus commute. Therefore, we have Dτ = id : C → C. In addition, τ 6= id since
otherwise

α1α
−1
2 α1α2α

−2
1 = id =⇒ α1α

−1
2 α1α2 = α2

1

=⇒ α−1
2 α1α2 = α1

=⇒ α1α2 = α2α1,

contradicting the fact that α1 and α2 do not commute.
Second, observe that

φ ◦ α1α2 = f ◦ φ ◦ α2 = f◦2 ◦ φ = f ◦ φ ◦ α1 = φ ◦ α2
1,

so that

φ ◦ τ = φ ◦ α1α
−1
2 α1α2α

−2
1 = φ ◦ α2α

−1
2 α1α2α

−2
1 = φ ◦ α2

1α
−2
1 = φ.

The result then follows from Lemma 1. �
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2. Escaping quadratic-like maps

An escaping quadratic-like map is a covering map g : U → V of degree 2 between
open subsets of C, with V simply connected, and U compactly contained in V . If
g : U → V is such a map, then U has two connected components U1 and U2, each
of which is simply connected.

Lemma 3. If f : Ĉ → Ĉ is a rational map of degree d ≥ 2, there exist an integer
n ≥ 1 and open sets U b V ⊂ C, such that the restriction f◦n : U → V is an
escaping quadratic-like map.

We say that such a restriction of f◦n is an escaping quadratic-like map associated
to f .

Proof. Let z1 ∈ C be a repelling periodic point for f of period r ≥ 1 which is not
contained in the forward orbit of a critical point of f . Let V1 ⊂ C be a simply
connected neighborhood of z1 such that the inverse branch h1 of f◦r fixing z1 is
defined on V1 with h1(V1) b V1. Since z1 is in the Julia set of f and since the
iterated preimages of z1 are dense in the Julia set of f which contains no isolated
point, there exist z2 ∈ V1r{z1} and an integer s ≥ 1 such that f◦s(z2) = z1. Let
V ⊂ V1 be a simply connected neighborhood of z1 such that

• h1(V ) b V ,
• the inverse branch h2 of f◦s sending z1 to z2 is defined on V and
• h2(V ) b V1 \ {z1}.

Let m1 ≥ 1 be sufficiently large so that W2 := h◦m1
1 ◦ h2(V ) b V . Let m2 ≥ 1 be

sufficiently large so that W1 := h◦m2
1 (V ) b VrW2. Set

k1 := h◦m2
1 : V →W1 and k2 := h◦m1

1 ◦ h2 : V →W2.

Note that k1 is an inverse branch of f◦n1 with n1 := m2r and k2 is an inverse
branch of f◦n2 with n2 := m1r + s. Set

n := n1n2 = m2r(m1r + s) and U := k◦n2
1 (V ) ∪ k◦n1

2 (V ).

Then, the restriction of f◦n from U to V is an escaping quadratic-like map associ-
ated to f . �

3. Affine escaping quadratic-like maps

An escaping quadratic-like map g : U → V is affine if the restriction of g to each
connected component of U coincides with the restriction of an affine map.

In addition, two escaping quadratic-like maps g1 : U1 → V1 and g2 : U2 → V2

are conjugate if there exists a holomorphic isomorphism φ : V2 → V1 such that the
relation φ ◦ g2 = g1 ◦ φ holds on U2.

Lemma 4. Let f : Ĉ → Ĉ be a rational map of degree d ≥ 2. If an escaping
quadratic-like map associated to f is conjugate to an affine escaping quadratic-like
map, then f is an exceptional map.

Proof. Assume that f◦n : U → V is an escaping quadratic-like map associated to
f , that g : U ′ → V ′ is an affine escaping quadratic-like map and that φ : V ′ → V
conjugates g : U ′ → V ′ to f◦n : U → V , i.e.,

φ ◦ g = f◦n ◦ φ.
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By assumption, U ′ has two connected components U ′1 and U ′2 and the restrictions
of g to U ′1 and U ′2 coincide with the restrictions of affine maps α1 : C → C and
α2 : C→ C to U ′1 and U ′2. The relations φ ◦α1 = f◦n ◦ φ and φ ◦α2 = f◦n ◦ φ hold
on U ′. Since the affine maps α1 : C → C and α2 : C → C are repelling, we may
use any of those two relations to extend φ : V ′ → V to a global meromorphic map

φ̂ : C→ Ĉ. We then have

φ̂ ◦ α1 = f◦n ◦ φ̂ = φ̂ ◦ α2 on C.

The affine maps α1 and α2 have distinct fixed points, respectively in U ′1 and U ′2.
Thus, they do not commute. It follows from Lemma 2 that f◦n is an exceptional
map, and so, f is an exceptional map (a rational map is exceptional if and only if
its iterates are exceptional). �

4. The proof of Theorem 1

It follows from Lemma 3 and Lemma 4 that Theorem 1 is a consequence of the
following result.

Proposition 1. Let OK be the ring of integers of some quadratic imaginary field.
If g is an escaping quadratic-like map whose multipliers at all periodic points belong
to OK , then g is conjugate to an affine escaping quadratic-like map.

The proof will occupy the rest of the note. From now on, we assume that
g : U → V is an escaping quadratic-like map whose multipliers at all periodic
points belong to OK . Let U1 and U2 be the two connected components of U . Set:

g1 := g|U1
, g2 := g|U2

, h1 := g−1
1 : V → U1 and h2 := g−1

2 : V → U2.

Let p1 ∈ U1 be the unique (repelling) fixed point of g1 : U1 → V and let λ1

be its multiplier. Similarly, let p2 ∈ U2 be the unique (repelling) fixed point of
g2 : U2 → V and let λ2 be its multiplier.

The sequence of univalent maps ψn : V → C defined by

ψn(z) :=
h◦n1 (z)− p1

h◦n1 (p2)− p1

converges to a univalent map ψ : V → C such that ψ(p1) = 0, ψ(p2) = 1 and
ψ ◦ g1 = λ1 × ψ. Replacing g by ψ ◦ g ◦ ψ−1 if necessary, we may therefore assume
that

p1 = 0, p2 = 1 and g1(z) = λ1z.

We need to prove that g2 is an affine map.

4.1. A special sequence of periodic points. In their proof, Ji and Xie consider
a particular sequence of periodic points of g. This sequence may be defined as
follows. For n ≥ 0, let zn be the unique fixed point of the map h2 ◦ h◦n1 : V → U2.
Then, zn is a periodic point of g of period n+ 1. In particular the multiplier ρn of
g at zn belongs to OK . Note that as n→ +∞, we have that

zn → α := h2(0)

so that

zn = h2

(
zn
λn1

)
= α+

β

λn1
+ o

(
1

λn1

)
with β := αh′2(0).
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Then,

ρn = λn1 g
′
2(zn) = λn1a+ b+ o(1) with a := g′2(α) and b := βg′′2 (α) = α

g′′(α)

g′(α)
.

Lemma 5. We have that ρn = aλn1 + b for n large enough.

Proof. Write ρn = aλn1 + b+ εn with εn → 0 as n→ +∞. We have that

λ1ρn − ρn+1︸ ︷︷ ︸
∈OK

= (λ1 − 1)b+ λ1εn − εn+1︸ ︷︷ ︸
−→

n→+∞
0

.

Thus, (λ1 − 1)b belongs to the closure of OK , i.e., to OK .
Since OK is discrete, we have that λ1ρn − ρn+1 = (λ1 − 1)b for n large enough,

i.e., εn+1 = λ1εn. Since |λ1| > 1 and εn → 0 as n→ +∞, we have that εn = 0 for
n large enough. �

4.2. A differential equation.

Lemma 6. The holomorphic map g2 : U2 → V satisfies the differential equation

(E) ∀z ∈ U2, g′2(z) = a+ b
g2(z)

z
.

Proof. Note that for n large enough, we have that

λn1 g2(zn) = zn and g′2(zn) =
ρn
λn1

= a+
b

λn1
= a+ b

g2(zn)

zn
.

Since the sequence (zn)n≥1 accumulates at h2(0) ∈ U2, the function g2 satisfies the
differential equation (E). �

Remark. Equation (E) is linear and so, may be easily solved. However, we shall
not use the explicit form of the solutions.

Lemma 7. We have that

g′2(α)

λ2
= 1 +

ν

1− λ2
with α := h2(0) and ν := p2

g′′2 (p2)

g′2(p2)
.

Proof. Evaluating Equation (E) at z = p2 = g2(p2), we obtain

λ2 = g′2(p2) = a+ b.

In addition, differentiating Equation (E), we obtain

∀z ∈ U2, g′′2 (z) = b

(
g′2(z)

z
− g2(z)

z2

)
.

Since λ2 = g′2(p2) and a = g′2(α), we have that

ν = p2
g′′2 (p2)

g′2(p2)
=
(
λ2 − g′2(α)

)(
1− 1

λ2

)
.

This last equality may be rewritten in the required form. �
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4.3. Conclusion. For each integer k ≥ 1, consider the escaping quadratic-like map
gk : U1 ∪ h◦k2 (V )→ V defined by

gk(z) =

{
λ1z if z ∈ U1

g◦k2 (z) if z ∈ h◦k2 (V ).

Then, all the periodic points of gk are periodic points of g and their multipliers still
belong to OK . In addition, gk fixes p2 with multiplier λk2 .

According to Lemma 7, we have that

(g◦k2 )′(αk)

λk2
= 1 +

νk
1− λk2

with αk := h◦k2 (0) and νk := p2
(g◦k2 )′′(p2)

(g◦k2 )′(p2)
.

A rather elementary computation (in fact, it is the composition rule for nonlinear-
ities) yields

νk = ν1 + λ2ν1 + λ2
2ν1 + · · ·+ λk−1

2 ν1 =
1− λk2
1− λ2

ν1.

In particular,
νk

1− λk2
=

ν1

1− λ2

does not depend on k ≥ 1. As a consequence, for all k ≥ 1,

g′2(αk+1)

λ2
· (g◦k2 )′(αk)

λk2
=

(g
◦(k+1)
2 )′(αk+1)

λk+1
2

=
(g◦k2 )′(αk)

λk2
.

Thus,
∀k ≥ 1, g′2(αk+1) = λ2.

The sequence (αk)k≥2 accumulates at p2 ∈ U2. So, g′2(z) = λ2 for all z ∈ U2 and
g2 is an affine map as required. This completes the proof of Proposition 1.
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