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Introduction

In this thesis we shall discuss geometrical methods in the study of normal forms of germs of
biholomorphisms of C™. Given a germ of biholomorphism f of C™ at a fixed point p, one would
like to study the dynamics of f near the fixed point, i.e., for each point ¢ in a (sufficiently)
small neighbourhood of p, one would like to describe the asymptotic behavior of the sequence
{f*(q)}x>0 of the iterates of f at g, where f* is the composition of f with itself & times.
Since such a problem is invariant under translation, we can reduce ourselves to study germs of
biholomorphisms of (C", O) fixing the origin.

Whereas many things are known in the one-dimensional case, for n > 2 such a study is
far from being complete. Locally, f can be written as a convergent power series, that is, using
the standard multi-index notation, we have

Je) =As+ Y for?

Qenn
lQl>2

where A is a n x n matrix with complex coefficients, fo € C", and, if @ = (¢1,...,qn), then
Q| :=>"}_, ¢j and 2@ = 2{" ... 24» Up to a linear change of the coordinates, we can assume
that A is in Jordan normal form, that is

A1

E9 )\2

A= ,
En  An

where the eigenvalues Ai,...,\, € C* are not necessarily distincts, and ¢; € {0,e} can be

non-zero only if \;j_1 = A;.

Since the dynamics does not change if we change coordinates, a natural idea is to look
for a solution of a normalization problem: given a germ of biholomorphism f of C" fixing the
origin and with linear part in Jordan normal form, does it exist a local change of coordinates
@ of C", fixing the origin, such that

¢ 1o foyp= “imple form”?

Moreover, one usually assumes dpo = Id because the linear part of f already is in (Jordan)
normal form.

Of course, we have to specify what we mean by “simple form”. A natural choice for a
“simple form” is the linear term of our given germ; so in this case we have to deal with the:
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Linearization problem. Let f be a germ of biholomorphism of C" fixing the origin and with
linear part A in Jordan normal form. Does it exist a local change of coordinates ¢ of C", fixing
the origin, with dypo = Id, such that

plofop=A?
A way to solve such a problem is to first look for a formal transformation ¢ solving
fop=goA,

and then to check whether ¢ is convergent.

The answer depends on the set of eigenvalues of A, usually called the spectrum of A. In
fact it may happen that there exists a multi-index Q = (¢1,...,q,) € N™, with |Q] > 2, such
that

AQ N = AT NI ) =0 (0.2)

for some 1 < j < n; a relation of this kind is called a multiplicative resonance of f, and @ is
called a resonant multi-index. A resonant monomial is a monomial z? in the j-th coordinate
such that A@ = \;.

Resonances are the formal obstruction to linearization. Indeed, at formal level we have
the following classical result:

Theorem. (Poincaré, 1893 [Pol; Dulac, 1904 [D]) Let f be a germ of biholomorphism of C"
fixing the origin O with linear part A in Jordan normal form. Then there exists a formal
transformation @ of C™, without constant term and with linear part equal to the identity,
conjugating f to a formal power series g € C|z1,...,2,]" without constant term, with linear
term A and containing only resonant monomials.

The formal series ¢ is called a Poincaré-Dulac normal form of f. Hence the second natural
choice for a “simple form” is a Poincaré-Dulac normal form; in this case we say that we have
to deal with the:

Normalization problem. Let f be a germ of biholomorphism of C" fixing the origin and
with linear part A in Jordan normal form. Does it exist a local change of coordinates ¢ of C",
fixing the origin, with dpo = Id, such that

¢ lofop

is a Poincaré-Dulac normal form of f7

Even without resonances, the holomorphic linearization is not guaranteed. One has to
study how the numbers A9 — A; approach zero as |Q| — +oo; this is known as the small
divisors problem in this context. Furthermore Poincaré-Dulac normal forms are not unique,
and this makes particularly difficult the study of convergence.

In this thesis we shall use geometrical methods to study the linearization and the normal-
ization problems, discussing both the formal level and convergence issues.

We first deal with the linearization problem in presence of resonances. In particular we find,
under certain arithmetic conditions on the eigenvalues and some restrictions on the resonances,
that a necessary and sufficient condition for holomorphic linearization in presence of resonances
is the existence of a particular f-invariant complex manifold (see Chapter 2 for definitions and
proofs):



Theorem 1. (Raissy, 2009 [R2]) Let f be a germ of biholomorphism of C"™ having the origin O
as a quasi-Brjuno fixed point of order s. Then f is holomorphically linearizable if and only
if it admits an osculating manifold M of codimension s such that f|y is holomorphically
linearizable.

Moreover such a result has as corollaries most of the known linearization results.

Secondly, we explore in our setting the consequences of the general heuristic principle
saying that if a map f commutes with a map g, then some properties of g might be inherited
by f.

For instance, one possible generalization of the linearization problem is to ask when a
given set of m > 2 germs of biholomorphisms fi, ..., f,, of C" at the same fixed point, which
we may place at the origin, are simultaneously holomorphically linearizable, i.e., there exists a
local holomorphic change of coordinates conjugating f5 to its linear part for each h =1,...,m.

We find that if f1,..., f;, have diagonalizable linear part and are such that f; commutes
with fp, for any h = 2,...,m, under certain arithmetic conditions on the eigenvalues of (df;)o
and some restrictions on their resonances, fi,..., f; are simultaneously holomorphically lin-
earizable if and only if there exists a particular complex manifold invariant under fi,..., fm
(see Chapter 3 for definitions and proofs):

Theorem 2. (Raissy, 2009 [R3]) Let f1,..., fm be m > 2 germs of biholomorphisms of C",
fixing the origin. Assume that fi1 has the origin as a quasi-Brjuno fixed point of order s,
with 1 < s < n, and that it commutes with f; for any h = 2,...,m. Then fi,...,fm
are simultaneously holomorphically linearizable if and only if there exists a germ of complex
manifold M at O of codimension s, invariant under f; for each h = 1, ..., m, which is a simul-
taneous osculating manifold for fy,..., f,, and such that fi|yr,..., fm|m are simultaneously
holomorphically linearizable.

Finally we study commutations with a particular kind of linearizable object: torus actions.
We find out in a complete and computable manner what kind of structure a torus action
must have in order to get a Poincaré-Dulac holomorphic normalization, studying the possible
torsion phenomena. In particular, we link the eigenvalues of the linear part of our germ
of biholomorphism to the weight matrix of the action. The link and the structure we find
are more complicated than what one would expect; a detailed study is needed to completely
understand the relations between torus actions, holomorphic Poincaré-Dulac normalizations,
and torsion phenomena. An example of the results we get is (see Chapter 4 for definitions,
proofs and other results):

Theorem 3. (Raissy, 2009 [R4]) Let f be a germ of biholomorphism of C™ fixing the origin O.
Assume that, denoted by A = {\1,...,\,} the spectrum of the linear part A of f, the unique
[¢] € (C/Z)" such that X = ¢*™l¥] is of toric degree 1 < r < n and in the impure torsion
case. Then f admits a holomorphic Poincaré-Dulac normalization if and only if there exists a
holomorphic effective action on (C™,O) of a torus of dimension r — 1 commuting with f and
such that the columns of the weight matrix of the action are reduced torsion-free toric vectors
associated to [y].

We end our work giving an example of techniques that can be used to construct torus
actions.

The plan of the thesis is as follows.

In Chapter 1 we shall present a survey on local holomorphic discrete dynamics, focusing
our attention on linearization and normalization problems. After fixing the setting and the
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notation, we shall first deal with the one-dimensional case, (mainly following Abate [A5]),
and then with the multi-dimensional case. Among other things, we present a new proof of a
linearization result in presence of resonances, originally proved by Riissmann [Ri2] under a
slightly different arithmetic hypothesis.

In Chapter 2 we shall prove our linearization result in presence of resonances (Theorem 1)
for a germ f of biholomorphism of C" fixing the origin O, and we shall also see that most of
the classical linearization results can be obtained as corollaries of our result. The main results
of this chapter are published in [R2].

In Chapter 3 we shall show how commuting with a linearizable germ gives us information
on the germs that can be conjugated to a given one. We shall then deal with the simultaneous
linearization problem, proving Theorem 2. Next we shall prove that commuting with a torus
action yields the existence of a holomorphic linearization or normalization (not yet necessarily
of Poincaré-Dulac type) for a germ of biholomorphism of C” fixing the origin. The main results
of Section 3.2 and 3.3 are published in [R3], whereas the main results of Section 3.4 and 3.5
are published in [R4].

In Chapter 4 we shall describe in a complete and computable manner what kind of structure
a torus action must have in order to infer a Poincaré-Dulac holomorphic normalization from
the normalization theorem of Chapter 3. To do so, we shall link the eigenvalues of d fp to the
weight matrix of the action, and we shall introduce the new concepts of toric degree and toric
vectors associated to the eigenvalues, needed to study the complicated torsion phenomena one
has to deal with. We end the chapter giving an example of techniques that can be used to
construct torus actions. The main results in this chapter are published in [R4].
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1

Linearization and normalization
in local holomorphic dynamics

In this chapter we shall present a survey on local holomorphic discrete dynamics,
focusing our attention on the linearization and on the normalization problems. After
fixing the setting and the notation, we shall first deal with the one-dimensional case,
(mainly following Abate [A5]), and then with the multi-dimensional case. Among
other things, we present a new proof of a linearization result in presence of resonances,
originally proved by Riissmann [Rii2] under a slightly different arithmetic hypothesis.

1.1 Motivation

Let us introduce a few notations to formalize some of the concepts discussed in the introduction.

Definition 1.1.1. If M is a complex manifold, and p € M, we shall denote by End (M, p) the
set of germs about p of holomorphic self-maps of M fixing p. An element of End(M,p) will
be called a (discrete) holomorphic local dynamical system at p. More generally, if S is a closed
subset of M (e.g., a submanifold), we shall denote by End(M, S) the set of germs about S of
holomorphic self-maps of M fixing S pointwise.

Remark 1.1.1. In this chapter we shall never have the occasion of discussing continuous
holomorphic dynamical systems (i.e., holomorphic foliations). So from now on all dynamical
systems will be discrete, except where explicitly noted otherwise.

Remark 1.1.2. If M = C™ and p = O, the set of germs End(C",O) coincides with the
space Co{z1,...,2,}" of n-uples of converging power series fixing the origin (that is, without
constant term), and thus it is naturally embedded into the space Cp[z1,. .., z,]™ of n-uples of
formal power series without constant terms. An element ® € Cp[z1,...,2,]™ has an inverse
(with respect to composition) still belonging to Co[z1,. .., 2,]™ if and only if its linear part is
a linear automorphism of C™.

An element f € End(M, p) will be usually given by a representative (denoted by the same
symbol) defined on a neighbourhood U of the fixed point p; for instance, U could be the domain
of convergence of the power series defining f as element of Co{z1,..., 2, }".

If z € U, it is not clear (and, in general, not true) whether f(z) would still belong to U or
not. Since we are interested in the dynamics of f, particular attention will be devoted to the
set of points in U which remains in U under the action of f, that is to U N f~1(U). Indeed,
if g € UN f~Y(U), we can define f?(q) by setting f2(¢q) = f(f(q)), because f(q) € U. More

generally, we shall use the following definitions:
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Definition 1.1.2. Let f € End(M,p). The second iterate f> € End(M, p) of f is the germ rep-
resented by the map fof: UNf~1(U) — M, where (U, f) is a representative of f (and it is clear
that the germ f2 does not depend on the chosen representative). If k € N, by induction we de-
fine the k-th iterate f* € End(M, p) as the germ represented by fof*=1:Un---Nf*~1(U) — M,
where again (U, f) is a representative of f.

Remark 1.1.3. Clearly, if we think of f € End(C",O) as given by a n-uple of power series,
then f* is given by the k-th composition of those power series.

To introduce the next concept, we need the notion of germ of a set at p € M.

Definition 1.1.3. Set S = {(U,L) | U C M is an open neighbourhood of p, L C U and
p € L}. On S we put the usual equivalence relation (U, L1) ~ (Us, Lo) if there exists an
open neighbourhood W C U; NUs of p such that L1 N W = Lo NW. A germ of set at p
is an equivalence class L € §/ ~. We shall say that a germ of set L; at p is contained into
another germ of set Lo, and we shall write L; C Ly, if for any representative (Uy, L) of Ly
and representative (Us, Ly) of Ly there is an open neighbourhood W C Uy N U of p such that
LinWCLyNnW.

Clearly, a germ f € End(M, p) acts on germs of sets at p: if (U, f) is a representative of f
and (V, L) is a representative of a germ L of set at p, then f(L) is the germ of set represented
by (Uﬂ V.f(LNU)NUN V); analogously, if (W, f~!) is a representative of f =%, then f~1(L)
is the germ of set represented by (W NV, f~H(LNW)NWnN V). It is easy to verify that
the germs f(L) and f~!(L) do not depend on the representatives chosen, and thus we can
introduce the following
Definition 1.1.4. Let f € End(M,p). A germ of set L at p is (forward) f-invariant if
f(L) C L. A germ of set L at p is completely f-invariant if f~1(L) = L.

A bit more delicate is the definition of stable set of a germ:

Definition 1.1.5. Let (U, f) be a representative of a germ f € End(M,p). Then the stable
set of f (with respect to U) is the set

Kw.p = ﬂ ).
k=0

If z € K, p), the (forward) orbit of z is the set OF(z) = {z, f(2), f*(2),...}.

The problem with the notion of stable set in this generality is that even its germ at p
might depend on the chosen representative. What may happen (and actually it happens) is
the following: there might exist two representatives (Uy, f) and (Us, f) of the same germ f,
with U; C Us, and points z € Uy as close as we want to p whose orbits escapes from U; but do
not escape from Us. If this happens, K, y) and K(y,, sy do not agree in any neighbourhood
of p, and thus they define two different germs of stable sets at p. As we shall see, this happens
in the parabolic case.

Another definition of this kind that shall later be useful is the following:

Definition 1.1.6. Let f € End(M,p). We shall say that p is stable for f if there is a
representative (U, f) of f such that p is contained in the interior of Ky ). In other words,
there is an open neighbourhood W C U of p such that f*(W) C U for all k € N.

We are now able to state the main problems of local holomorphic dynamics. Given a
germ f € End(M,p) we would like to:

(a) describe the invariant germs of sets at p, if any;
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(b) decide whether p is stable for f, and, more generally, compute the stable set of sufficiently
large representatives of f, and describe the orbit of any point in the stable set;

(c) describe the dynamics of f inside any invariant germ; and,
(d) describe the dynamics of f in a neighbourhood of p.

To deal with all these problems, the most efficient way is to replace f by a “dynamically
equivalent” but simpler (e.g., linear) map g. In our context, “dynamically equivalent” means
“locally conjugated”; and we have at least three kinds of conjugacy to consider.

It is clear what it means the composition of two germs in End(M, p), and thus for a germ
to be invertible; more generally, it is clear what we mean by a germ of homeomorphism at p.
Then

Definition 1.1.7. We shall say that two germs f, g € End(M, p) are holomorphically conjugate
[resp., topologically conjugate] if there exists an invertible germ ¢ € End(M,p) [resp., a germ
of homeomorphism ¢ at p] such that g = o fop™! as germs. In particular, g* = po fFop™!
for all k € N, and thus the dynamics of f and ¢ agree.

Remark 1.1.4. Using local coordinates centered at p € M it is easy to show that any
holomorphic local dynamical system at p is holomorphically locally conjugated to a holomorphic
local dynamical system at O € C™, where n = dim M.

Whenever we have an equivalence relation in a class of objects, there are classification

problems. So a natural question in local holomorphic dynamics is to find a (possibly small)
class F of holomorphic local dynamical systems at O € C™ such that every holomorphic local
dynamical system f at a point in an n-dimensional complex manifold is holomorphically [resp.,
topologically| locally conjugated to a (possibly) unique element of F, called the holomorphic
[resp., topological] normal form of f.
Unfortunately, the holomorphic classification is often too complicated to be practical; the
family F of normal forms might be uncountable. A possible replacement is looking for invariants
instead of normal forms, i.e., to find a way to associate a (possibly small) class of (possibly
computable) objects, called invariants, to any holomorphic local dynamical system f at O € C"
so that two holomorphic local dynamical systems at O can be holomorphically conjugated only
if they have the same invariants. The class of invariants is furthermore said complete if two
holomorphic local dynamical systems at O are holomorphically conjugated if and only if they
have the same invariants.

Up to now all the questions we asked made sense for topological local dynamical systems; the
next one instead makes sense only for holomorphic local dynamical systems.

Definition 1.1.8. We shall say that two germs f, g € End(C",O) are formally conjugate if
there exists an invertible formal power series ® € Cp[z1,...,2,]" such that g = ® o fo &~}
in Colz1,...,2zn]"

It is clear that two holomorphically conjugated holomorphic local dynamical systems are
both formally and topologically conjugated too. On the other hand, we shall see examples of
holomorphic local dynamical systems that are topologically locally conjugated without being
neither formally nor holomorphically locally conjugated, and examples of holomorphic local
dynamical systems that are formally conjugated without being neither holomorphically nor
topologically locally conjugated. So the last natural question in local holomorphic dynamics
we shall deal with is to find normal forms and invariants with respect to the relation of formal
conjugacy for holomorphic local dynamical systems at O € C".

In this chapter we shall present some of the main results known on these questions, starting
with the one-dimensional situation.
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1.2 One-dimensional case

Let us then start by discussing holomorphic local dynamical systems at 0 € C. As remarked
in the previous section, such a system is locally given by a converging power series f without
constant term:

f(2) = Az +a92® +azz® + - € Co{z} .

Definition 1.2.1. Let f € End(C,0) be without constant term. The number A = f/(0) is
called the multiplier of f.

The best linear approximation of f is Az, and we shall see that the local dynamics of f will
be strongly influenced by the value of A. For this reason we introduce the following definition:

Definition 1.2.2. Let A € C be the multiplier of f € End(C,0). Then
— if [A| < 1 we say that the fixed point 0 is attracting;
— if A = 0 we say that the fixed point 0 is superattracting;
— if |A] > 1 we say that the fixed point 0 is repelling;
— if |A] # 0, 1 we say that the fixed point 0 is hyperbolic;

—if A € St is a root of unity, we say that the fixed point 0 is parabolic (or rationally
indifferent);

— if A € S! is not a root of unity, we say that the fixed point 0 is elliptic (or irrationally
indifferent).

We shall explain in the next four subsections what is known on the dynamics in the various
cases.

1.2.1 Hyperbolic case

The dynamics of one-dimensional holomorphic local dynamical systems with a hyperbolic fixed
point is pretty elementary; so we start with this case.
Assume first that 0 is attracting for the holomorphic local dynamical system f € End(C,0).

Then we can write f(z) = Az + O(z?), with 0 < |A\] < 1; hence we can find a large con-
stant M > 0, a small constant ¢ > 0 and 0 < § < 1 such that if |z| < e then

[F ()] < (Al + Me)|z] <6z - (1.2)

In particular, if A, denotes the disk of center 0 and radius e, we have f(A.) C A for e > 0
small enough, and the stable set of f|a, is A itself (in particular, a one-dimensional attracting
fixed point is always stable). Furthermore,

|f5(2)] < 6%z — 0

as k — 400, and thus every orbit starting in A, is attracted by the origin, which is the reason
of the name “attracting” for such a fixed point.

Remark 1.2.1. Notice that if 0 is an attracting fixed point for f € End(C,0) with non-zero
multiplier, then it is a repelling fixed point for the inverse map f~! € End(C,0).

If instead 0 is a repelling fixed point, a similar argument (or the remark that 0 is attracting
for f=1) shows that for ¢ > 0 small enough the stable set of f|a. reduces to the origin only:
all (non-trivial) orbits escape.
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It is also not difficult to find holomorphic and topological normal forms for one-dimensional
holomorphic local dynamical systems with a hyperbolic fixed point, as the following result
shows, which can be considered as the beginning of the theory of holomorphic dynamical
systems:

Theorem 1.2.2. (Koenigs, 1884 [Kee|) Let f € End(C,0) be a one-dimensional holomorphic
local dynamical system with a hyperbolic fixed point at the origin, and let A\ € C*\ S! be its
multiplier. Then:

(i) f is holomorphically (and hence formally) locally conjugated to its linear part g(z) = Az.
The conjugation ¢ is uniquely determined by the condition ¢'(0) = 1.
(ii)) Two such holomorphic local dynamical systems are holomorphically conjugated if and
only if they have the same multiplier.
(iii) f is topologically locally conjugated to the map g-(z) = z/2 if |\| < 1, and to the map
g=(2) =2z if |A\| > 1.
Proof. Let us assume 0 < |A| < 1; if [A] > 1 it will suffice to apply the same argument to f~1.

(i) Choose 0 < § < 1 such that 62 < |\| < §. Writing f(z) = Az+2%r(z) for a suitable holo-
morphic germ 7, we can clearly find e > 0 such that [A| + Me < §, where M = max__ |r(2)].
Hence we have

£ (2) = Az < M|z[?
and
IF*(2)] < 6%|z]

for all z € A, and k € N.
Put ¢, = f¥/\*. Then the sequence {¢} converges to a holomorphic map ¢: A, — C.
In fact, we have

g\ k
Prs1(2) — pr(2)] = W%!f(fk@)) RACIEE ;,‘,il PR < ,—]‘f, <%) o

for all z € A., and so the telescopic series > (@r41 — @r) converges uniformly in A. to ¢ — o.
Since ¢}, (0) = 1 for all £ € N, we have ¢'(0) = 1 and so, up to possibly shrinking ¢, we
can assume that ¢ is a biholomorphism with its image. Moreover, we have

o(f(z)) = lim MUO) — )\ lim fH(z2)

k—+o0 Nk k—+oo AkT1 :)\SD(Z),

that is f = ¢! 0 go ¢, as claimed.

If 1/ is another local holomorphic function such that 1'(0) = 1 and ¢y "L ogo = f, it
follows that ¢ o =1 (Az) = A\ o p~1(2); comparing the expansion in power series of both sides
we find 1) o o~! = Id, that is ¥ = ¢, and we are done.

(i) Since f; = ¢! o fy 0 ¢ implies f{(0) = f5(0), the multiplier is invariant under holo-
morphic local conjugation, and so two one-dimensional holomorphic local dynamical systems
with a hyperbolic fixed point are holomorphically locally conjugated if and only if they have
the same multiplier.

(iii) Since |A] < 1 it is easy to build a topological conjugacy between g and g. on A..
First we choose a homeomorphism y between the annulus {|\|e¢ < |z| < ¢} and the annu-
lus {¢/2 < |z| < e} which is the identity on the outer circle and which is given by x(z) = z/(2\)
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on the inner circle. Now we extend x by induction to a homeomorphism between the an-
nuli {|A\[Fe < |z| < |MF71e} and {e/2F < |2| < e/2F~1} by prescribing

X(Az) = 5x(2) -
We finally get a homeomorphism y of A, with itself, such that ¢ = x~! o g o x, by put-
ting x(0) = 0. 0

Remark 1.2.3. Notice that g<(z) = 3z and g~ (z) = 2z cannot be topologically conjugated,
because (for instance) for each representative (U, g<) of g the stable set Ky _) is open,

whereas for each representative (V, g ) of g~ the stable set Ky, ) = {0} is not.

Remark 1.2.4. The proof of this theorem is based on two techniques often used in dynamics
to build conjugations. The first one is used in part (i). Suppose that we would like to prove that
two invertible local dynamical systems f, g € End(M,p) are conjugated. Set o = g~ % o f¥,
so that

prof=g "o =gopp.
Therefore if we can prove that {¢x} converges to an invertible map ¢ as k — +oo we

get po f = goy, and thus f and g are conjugated, as desired. This is exactly the way
we proved Theorem 1.2.2.(i); and we shall see variations of this technique later on.

To describe the second technique we need a definition.

Definition 1.2.3. Let f: X — X be an open continuous self-map of a topological space X. A
fundamental domain for f is an open subset D C X such that

(i) fM(D)n f¥(D) = @ for every h # k € N;
(i) U fMD)=X;
keN
(iii) if z1, 20 € D are so that f"(z1) = f¥(2o) for some h > k € N then h = k + 1 and
29 = f(Zl) € 0D.
There are other possible definitions of a fundamental domain, but this will work for our aims.

Suppose that we would like to prove that two open continuous maps fi: X; — X7 and
f2: X9 — X, are topologically conjugated. Assume we have fundamental domains D; C X;
for f; (with j = 1, 2) and a homeomorphism x: D; — Ds such that

xofi=faox (1.3)

on Dy N f; '(D1). Then we can extend x to a homeomorphism ¥: X; — X, conjugating f,
and f5 by setting

vie X, T2) = f (x(w) | (14)

where k = k(z) € N and w = w(z) € D are chosen so that ff(w) = z. The definition of
fundamental domain and (1.3) imply that Y is well-defined. Clearly x o f; = f o X; and using
the openness of f; and fs it is easy to check that Y is a homeomorphism. This is the technique
we used in the proof of Theorem 1.2.2.(iii); and we shall use it again later.

Thus the dynamics in the one-dimensional hyperbolic case is completely clear.
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1.2.2 Superattracting case

The superattracting case can be treated similarly to the hyperbolic case. If the origin 0 is a
superattracting fixed point for f € End(C,0), we can write

f(2) =ap2" + app1 2"

with a, # 0.

Definition 1.2.4. Let f € End(C,0) and let 0 be a superattracting point for f. The order (or
local degree) of the superattracting point is the minimal number r > 2 such that the coefficient
of z" in the power series expansion of f is non-zero.

Similarly to the attracting case, we can find a large constant M > 1 such that, for € > 0
small enough we have

[f(2)] < MI2"

for z € A, := {|z| < €}, hence the stable set of f|a_ still is all of A., and the orbits converge
(faster than in the attracting case) to the origin. Furthermore, we can prove the following

Theorem 1.2.5. (Bottcher, 1904 [B6]) Let f € End(C,0) be a one-dimensional holomorphic
local dynamical system with a superattracting fixed point at the origin, and let r > 2 be its
order. Then:

r

(i) f is holomorphically (and hence formally) locally conjugated to the map g(z) = z", and

the conjugation is unique up to multiplication by an (r — 1)-root of unity;
(ii)) two such holomorphic local dynamical systems are holomorphically (or topologically)
conjugated if and only if they have the same order.
Proof. First of all, up to a linear conjugation z — pz with " ~! = a, we can assume a, = 1.
Now write f(z) = z"hy(z) for a suitable holomorphic germ hy with hy(0) = 1. By induc-

tion, it is easy to see that we can write f¥(2) = 7 hi(z) for a suitable holomorphic germ hy
with A (0) = 1. Furthermore, the equalities f o f*=1 = fk = fk=1 o f yield

Bt ()R (F1(2)) = hil2) = (=)™ b (£(2)) - (L5)

Choose 0 < § < 1. Then we can find 0 < & < 1 such that Me < §, where M = max_x|h1(2)];

k

we can also assume that hy(z) # 0 for all z € A,. Since
vz €A () < Malr < )27

we have f(A.) C A., as anticipated before.

We also remark that (1.5) implies that each hy, is well-defined and never vanishing on A,.
So for every k > 1 we can choose a unique ) holomorphic in A, such that ¢k(z)7’k = hg(2)
on A, and with ¢ (0) = 1.

Set ¢ (z) = 21 (2), so that ¢} (0) =1 and 0e(2)™ = f¥(2) on A.; in particular, formally
we have o5, = g~ o f¥. We claim that the sequence {¢}} converges to a holomorphic function
@ on A.. Indeed, we have

1/rktt pht1
= ‘th(Z) Y
hk(z)’“

k41

Vrt1(2)"
'I,Z)k; (Z)Tk+1
1

1/pkt1 1
— 1+ o(ff )| =1+ SO @) =1+0 <m> :

‘tpkﬂ(z)
or(2)
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and so the telescopic product [[, (¢r+1/¢k) converges to ¢/¢; uniformly in A..
Since ¢}, (0) = 1 for all £ € N, we have ¢'(0) = 1 and so, up to possibly shrinking ¢, we
can assume that ¢ is a biholomorphism with its image. Moreover, we have

k k k

oe(f(2)" = FE " e (f(2)" = 2" h() hi(£(2)) = 2" s (2) = [ (2)]"

Lo gop, as claimed.

and thus ¢y o f = [pr4+1]". Passing to the limit we get f = ¢~
If ¢ is another germ of biholomorphism of (C,0) conjugating f with g, then we must
have 9o ~1(2") = 1o~ 1(2)" for all z in a neighbourhood of the origin; comparing the power
series expansions at the origin we get 10 ™1 (2) = az with a"~! = 1, and hence ¥(2) = ap(z),
as claimed.
Finally, since the order is the number of preimages of points close to the origin, z" and z°

are locally topologically conjugated if and only if » = s, and hence we have (ii). L]

Therefore also the one-dimensional local dynamics about a superattracting fixed point is
completely clear; in the next subsection we shall discuss what happens about a parabolic fixed
point.

1.2.3 Parabolic case

Let f € End(C,0) be a (non-linear) holomorphic local dynamical system with a parabolic
fixed point at the origin. Then we can write

f(z) :eQiﬂp/qz+ar+1z7’+1+ar+227’+2+...7 (16)

with a,41 # 0.

Definition 1.2.5. Let f € End(C,0) be non-linear and with multiplier A\ = e2"?/4, The
rational number p/q € QN [0,1) is the rotation number of f, and the multiplicity of f at the
fixed point is the minimal number 7+ 1 > 2 such that the coefficient of 2"t in the power series
expansion of f is non-zero. If p/qg = 0 (that is, if the multiplier is 1), we shall say that f is
tangent to the identity.

The first observation is that such a dynamical system is never locally conjugated to its
linear part, not even topologically, unless it is of finite order:

Proposition 1.2.6. Let f € End(C,0) be a holomorphic local dynamical system with mul-
tiplier \, and assume that \ = ¢*7P/4 js a (primitive) root of the unity of order q. Then f
is holomorphically (or topologically or formally) locally conjugated to g(z) = Az if and only
if f4=1d.
Proof. If o= o f o p(z) = e*™/9% then ¢~ o f90 ¢ = Id, and hence f9 = Id.

Conversely, assume that f? = Id and set

Then it is easy to check that ¢’'(0) =1 and po f(z) = Ap(z), and so f is holomorphically (and
topologically and formally) locally conjugated to Az. L]
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In particular, if f is tangent to the identity then it cannot be locally conjugated to the
identity (unless it was the identity from the beginning, which is not a very interesting case
dynamically speaking). More precisely, the stable set of such an f is never a neighbourhood of
the origin. To understand why, let us first consider a map of the form

f(z)=2(1+az")

for some a # 0. Let v € S! C C be such that av” is real and positive. Then for any ¢ > 0 we
have
flev) =c(1+c"av")v € RMo;

moreover, |f(cv)] > |cv|. In other words, the half-line R*v is f-invariant and repelled from
the origin, that is Ky, 5 N R*v = & for any representative (U, f) of f. Conversely, if av” is
real and negative then the segment [0, |a|~*/"]v is f-invariant and attracted by the origin. So
K, 5y neither is a neighbourhood of the origin nor reduces to {0}.
This example suggests the following definition:

Definition 1.2.6. Let f € End(C,0) be tangent to the identity of multiplicity r+1 > 2. Then
a unit vector v € St is an attracting [resp., repelling] direction for f at the origin if a, 0"
is real and negative [resp., positive], where a,, is the coefficient of 2"*! in the power series
expansion of f.

Clearly, there are r equally spaced attracting directions, separated by r equally spaced

repelling directions: if a,;1 = |a,11]e’®, then v = €% is attracting [resp., repelling] if and only
if
2k +1 2k
0= i -2 [resp.,é?:—w—g].
r r r

Furthermore, a repelling [resp., attracting] direction for f is attracting [resp., repelling] for f 1,
which is defined in a neighbourhood of the origin.

Let (U, f) be a representative of f. To every attracting direction is associated a connected
component of K ) \ {0}.

Definition 1.2.7. Let v € S! be an attracting direction for an f € End(C,0) tangent to
the identity, and let (U, f) be a representative of f. The basin centered at v is the set of
points z € K s \ {0} such that f*(z) — 0 and f*(z)/|f*(2)| — v (notice that, up to
shrinking the domain of f, we can assume f(z) # 0 for all z € K 5 \ {0}). If z belongs to
the basin centered at v, we shall say that the orbit of z tends to 0 tangent to v.

A slightly more specialized (but more useful) object is the following:

Definition 1.2.8. Let f € End(C,0) be tangent to the identity, and let (U, f) be a represen-
tative of f. An attracting petal centered at an attracting direction v of f is an open simply
connected f-invariant set P C Ky, 5y \ {0} such that a point z € Ky 5 \ {0} belongs to the
basin centered at v if and only if its orbit intersects P. In other words, the orbit of a point
tends to 0 tangent to v if and only if it is eventually contained in P. A repelling petal (centered
at a repelling direction) is an attracting petal for the inverse of f.

It turns out that the basins centered at the attracting directions are exactly the connected
components of Ky, r) \ {0}, as shown in the Leau-Fatou flower theorem.:

Theorem 1.2.7. (Leau, 1897 [L]; Fatou, 1919-20 [F1-3]) Let f € End(C,0) be a holomorphic
local dynamical system tangent to the identity with multiplicity » + 1 > 2 at the fixed point.
Let vf,..., v} € S' be the r attracting directions of f at the origin, and v] ,...,v. € S' the
r repelling directions. Then
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(i) for each attracting [resp., repelling] direction v;-—L there exists an attracting [resp., re-
pelling] petal Pji, so that the union of these 2r petals together with the origin forms a
neighbourhood of the origin. Furthermore, the 2r petals are arranged ciclically so that
two petals intersect if and only if the angle between their central directions is m/r.

(ii) For any representative (U, f) of f, the stable set Ky 5y \ {0} is the (disjoint) union of
the basins centered at the r attracting directions.

(iii) If B is a basin centered at one of the attracting directions, then there is a holomorphic
function ¢: B — C such that ¢ o f(z) = ¢(2) + 1 for all z € B. Furthermore, if P is the
corresponding petal constructed in part (i), then ¢|p is a biholomorphism with an open
subset of the complex plane containing a right half-plane, and so f|p is holomorphically
conjugated to the translation z — z + 1.

Proof. Up to a linear conjugation, we can assume that a,;1 = —1, so that the attracting
directions are the r-th roots of unity. For any § > 0, the set {z € C | |2" — | < d} has exactly r
connected components, each one symmetric with respect to a different r-th root of unity; it
will turn out that, for § small enough, these connected components are attracting petals of f,
even though to get a pointed neighbourhood of the origin we shall need larger petals.

For j=1,...,r let ¥; C C* denote the sector centered about the attractive direction v;-r
and bounded by two consecutive repelling directions, that is

Ej:{ze(c*

27 —-3 27 —1
J m < arg(z) < J 71'}.
T T

Notice that each ¥; contains a unique connected component P;s of {z € C | 2" — 4| < d};
moreover, P; 5 is tangent at the origin to the sector centered about v; of amplitude 7 /r.

The main technical trick in this proof consists in transfering the setting to a neighbourhood
of infinity in the Riemann sphere P*(C). Let 3: C* — C* be given by

1
rz"’

P(z) =

it is a biholomorphism between ¥; and C*\R~, with inverse ¢)~!(w) = (rw)~!/", choosing suit-
ably the r-th root. Furthermore, ¢(P; 5) is the right half-plane Hs={w € C | Re(w) >1/(2rd)}.

When |w] is so large that ¢ =1 (w) belongs to the domain of definition of f, the composition
F =1 o fo1~! makes sense, and we have

Flw)=w+1+0w ). (1.7)
Thus to study the dynamics of f in a neighbourhood of the origin in ¥; it suffices to study the

dynamics of F' in a neighbourhood of infinity.
The first observation is that when Re(w) is large enough then

Re(F(w)) > Re(w) + % ;

this implies that for ¢ small enough Hj is F-invariant (and thus P;s is f-invariant). Further-
more, by induction one has

Yw € Hjs Re(F*(w)) > Re(w) + = , (1.8)

ro |
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which implies that F*(w) — oo in Hs (and f¥(z) — 0 in P;s) as k — oo.

Now we claim that the argument of wj, = F¥(w) tends to zero. Indeed, (1.7) and (1.8)
yield
k—1

O(w; V") ;

We _Wygyl
k& K

l

I
o

so Cesaro’s theorem on the averages of a converging sequence implies

% 1, (1.9)
and thus arg(wy) — 0 as k — co. Going back to P;s, this implies that f¥(2)/|f*(2)] — v;
for every z € Pjs. Since furthermore P;; is centered about vj, every orbit converging to 0
tangent to vj must intersect P; s, and thus we have proved that P; s is an attracting petal.

Arguing in the same way with f~! we get repelling petals; unfortunately, the petals
obtained so far are too small to form a full pointed neighbourhood of the origin. In fact, as
remarked before, each P; 5 is contained in a sector centered about v; of amplitude 7 /r; therefore
the repelling and attracting petals obtained in this way do not intersect but are tangent to
each other. We need larger petals.

So our aim is to find an f-invariant subset Pj+ of ¥; containing P;; and which is tangent
at the origin to a sector centered about v;-r of amplitude strictly greater than = /r. To do so,
first of all remark that there are R, C' > 0 such that

(1.10)

as soon as |w| > R. Choose ¢ € (0,1) and select § > 0 so that 4r§ < R~ and & > 2C (4r0)/".
Then |w| > 1/(4rd) implies
|F(w) —w—1| <eg/2.

Set M. = (1+¢)/(2rd) and let
H. ={w e C | |Im(w)| > — Re(w) + M.} U Hy .
If w € H. we have |w| > 1/(2r§) and hence
Re(F(w)) > Re(w)+1—¢/2  and | Im(F(w)) — Im(w)| < /2 ; (1.11)

it is then easy to check thatNF (fNI c) C H - and that every orbit starting in H - must eventually
enter Hs. Thus PjJr =¢~1(H.) is as required, and we have proved (i).
To prove (ii) we need a further property of H.. If w € H., arguing by induction on k > 1
using (1.11) we get
k <1 — g) < Re(F*(w)) — Re(w)
and
ke(1—¢)

5 < |Im(F*(w))| + e Re(F*(w)) — (| Im(w)| + e Re(w)) .

This implies that for every wg € H, . there exists a ko > 1 so that we cannot have F'*o(w) = wyq
for any w € H.. Coming back to the z-plane, this says that any inverse orbit of f must
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eventually leave Pj+. Thus every (forward) orbit of f must eventually leave any repelling petal.
So if z € Ky, f) \ {O}, where the stable set is computed working in the neighborhood U of
the origin given by the union of repelling and attracting petals (together with the origin), the
orbit of z must eventually land in an attracting petal, and thus z belongs to a basin centered
at one of the r attracting directions — and (ii) is proved.

To prove (iii), first of all we notice that we have

(1.12)

in H.. Indeed, (1.10) says that if |w| > 1/(2r8) then the function w — F(w) —w — 1 sends the
disk of center w and radius |w|/2 into the disk of center the origin and radius C/(|w|/2)/";
inequality (1.12) then follows from the Cauchy estimates on the derivative.

Now choose wy € Hy, and set @y, (w) = F¥(w) — F*(wg). Given w € H,, as soon as k € N
is so large that F'*(w) € Hs we can apply Lagrange’s theorem to the segment from F*(w) to
F*(w) to get a t;, € [0,1] such that

F(F*(w)) — F*(F*(wy))
FF(w) — F*(wo)

21+1/7"C !
< <
= min{| Re(F*(w))],| Re(F(wo)) [} 7177 = KH/r °

— 1| = |F' (tx F*(w) + (1 = t) F* (wo)) — 1

Pr1(w)
() 1‘

where we used (1.12) and (1.9), and the constant C” is uniform on compact subsets of H. (and
it can be chosen uniform on Hy).

As a consequence, the telescopic product [[, @r+1/@r converges uniformly on compact
subsets of H. (and uniformly on Hy), and thus the sequence ¢ converges, uniformly on compact
subsets, to a holomorphic function @: ﬁ[e — C. Since we have

ok o F(w) = FF Y (w) — F* (w)
= (ZkJrl(w) + F(Fk(wg)) — Fk(U)o)
= Grs1(w) + 1+ O(|1F* (wo)|~V7) ,

it follows that
5o F(w) = Fw) +1

on H.. In particular, © is not constant; being the limit of injective functions, by Hurwitz’s
theorem it is injective.
We now prove that the image of ¢ contains a right half-plane. First of all, we claim that

lim 22 =1, (1.13)
|w|—+oo w
wEHg

Indeed, choose i1 > 0. Since the convergence of the telescopic product is uniform on Hjy, we
can find ky € N such that
‘tﬂ(W) — Py (W)

n
w — W ‘<3
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on Hs. Furthermore, we have

ko + 250" O(IF (w)|71/7) + wo — Fo (wp)

w — Wo

= O(lw™)

Fule) |
w — wo

on Hj; therefore we can find R > 0 such that

Ui

‘ _Plw)
3

- 1‘ <
w — Wy
as soon as |w| > R in Hs. Finally, if R is large enough we also have

Ui
3 )

‘ Bw) co’(w)':‘ B(w)
w — Wo w w — Wo

‘ w

Wo

and (1.13) follows.

Equality (1.13) clearly implies that (p(w) —w)/(w —w) — 1 as |w| — +oo in Hj for
any w € C. But this means that if Re(w) is large enough then the difference between the
variation of the argument of ¢ — w along a suitably small closed circle around w and the
variation of the argument of w —w along the same circle will be less than 2 — and thus it will
be zero. Then the argument principle implies that ¢ — @ and w — W have the same number of
zeroes inside that circle, and thus w € ¢(Hy), as required.

So setting ¢ = @ o 1), we have defined a function ¢ with the required properties on Pj+.
To extend it to the whole basin B it suffices to put

p(2) = ¢(f*(2) — &, (1.14)
where k € N is the first integer such that f*(z) € Pf. U]

Remark 1.2.8. It is possible to construct petals that cannot I be contained in any sector strictly
smaller than ;. To do so we need an F-invariant subset H. of C* \ R~ containing H. and
containing eventually every half-line issuing from the origin (but R™). For M >> 1 and C > 0
large enough, replace the straight lines bounding H ¢ on the left of Re(w) = —M by the curves

Clog|Re(w)| ifr=1,
[Tin(w)| = ol
C| Re(w)| if r > 1.

Then it is not too difficult to check that the domain H, so obtained is as desired (see [CG]).

So we have a complete description of the dynamics in the neighbourhood of the origin.
Actually, Camacho, using fundamental domains, has pushed this argument even further, ob-
taining a complete topological classification of one-dimensional holomorphic local dynamical
systems tangent to the identity (see also [BH, Theorem 1.7]):

Theorem 1.2.9. (Camacho, 1978 [C]; Shcherbakov, 1982 [S]) Let f € End(C,0) be a holo-
morphic local dynamical system tangent to the identity with multiplicity v + 1 at the fixed
point. Then f is topologically locally conjugated to the map

g(z) =2z — 2"t
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Remark 1.2.10. It is clear from the proof of Camacho [C] that the topological conjugation he
founds is indeed C*° in a punctured neighbourhood of the origin. We refer to [C] and [Br2] for
a proof, and to [J1] for a more detailed proof. Jenkins in [J1] also proved that if f € End(C,0)
is a holomorphic local dynamical system tangent to the identity with multiplicity 2, such that
there exists a topological conjugation (conjugating it with g(z) = z — 2?), which is indeed real-
analitic in a punctured neighbourhood of the origin, with real-analytic inverse, then there exists
a holomorphic conjugation between f and g. Finally, Martinet and Ramis [MR] have proved
that if a germ f € End(C, 0), tangent to the identity, is C'-conjugated (in a full neighbourhood
of the origin) to g(z) = z — 2", then it is holomorphically or antiholomorphically conjugated
to it.

The formal classification is simple too, though different (see, e.g., Milnor [Mi]):

Proposition 1.2.11. Let f € End(C,0) be a holomorphic local dynamical system tangent to
the identity with multiplicity r + 1 at the fixed point. Then f is formally conjugated to the
map

g(z) = 2z — 2" £ g2 (1.15)

where 3 is a formal (and holomorphic) invariant given by

1 dz
B = i L m , (1.16)

where the integral is taken over a small positive loop v around the origin.

Proof. An easy computation shows that if f is given by (1.15) then (1.16) holds. Let us now
show that the integral in (1.16) is a holomorphic invariant. Let ¢ be a local biholomorphism
fixing the origin, and set ' = ¢! o f o ». Then

1A 1 Jwdo 1 2 (w) du
2mi [y z— f(z) 2mi /g;lo,y o(w) — fpw))  2mi /@10,y po(w) — ¢(F(w))

Now, we can clearly find M, M; > 0 such that

I o' (w) _ 1 p(w) —p(F(w) o ()
w—Fw) ) —e(Fw)| |ew)—e(F(w)] w— F(w)
<y fomF@l -

lo(w) — o(F(w))| ~

in a neighbourhood of the origin, where the last inequality follows from the fact that ¢’(0) # 0.
This means that the two meromorphic functions 1/(w — F(w)) and ¢'(w)/(¢(w) — ¢((F(w)))
differ by a holomorphic function; so they have the same integral along any small loop surround-

ing the origin, and
1 / dz 1 / dw
2mi ),z — f(2)  2mi J,m10, w— F(w)’
as claimed.

To prove that f is formally conjugated to g, let us first take a local formal change of
coordinates ¢ of the form

p(2) = 2+ pz’ + Oara (1.17)
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with p # 0, and where we are writing O441 instead of O(24+1). Hence ¢~ 1(2) = 2—puz¢+0g441,
(™1 (2) = 1—duz?14+0,4 and (1)) = O4_; for all j > 2. Then using the Taylor expansion
of o= we get

plofopz) =9 e(z)+ Y ajp(z)

j>r+1
=z+ (¢ ") (¢(2)) Z a; 22 (14 pz 1 4+ 0g) + Ogyar
jzr+l (1.18)
=24 [1 —dpz?1 + 0y Z a; 22 (14 juz?t 4+ Og) + Ograr

j>rtl

=24 a2 g 2T

+[arra+ (r+1=d)pa, ]2+ Oryasr

This means that for all d # r + 1 we can use a polynomial change of coordinates of the
form ¢(z) = z+ pz? to remove the term of degree 7+ d from the Taylor expansion of f without
changing the lower degree terms.

So to conjugate f to g it suffices to use a linear change of coordinates to get a,11 = —1,
and then apply a sequence of change of coordinates of the form ¢(z) = 2 + pz? to kill all the
terms in the Taylor expansion of f but the term of degree z?"*1.

Finally, formula (1.18) also shows that two maps of the form (1.15) with different 3 cannot
be formally conjugated, and we are done. L]

Definition 1.2.9. The number g given by (1.16) is called the index of f at the fixed point.
The iterative residue of f is then defined by

r+1
2

Resit(f) = - 0.

The iterative residue has been introduced by Ecalle [El], and it behaves nicely under
iteration; for instance, it is possible to prove (see [BH, Proposition 3.10]) that

Resit(f*) = %Resit(f) .

The holomorphic classification of maps tangent to the identity is much more complicated:
as shown by Ecalle [E2-3] and Voronin [Vo] in 1981, it depends on functional invariants. We
shall now try and roughly describe it; see [I12], [M1-2], [Ki], [BH] and the original papers for
details.

Let f € End(C,0) be tangent to the identity with multiplicity r + 1 at the fixed point; up
to a linear change of coordinates we can assume that a,;1 = —1. Let PjjE be a set of petals
as in Theorem 1.2.7.(i), ordered so that P;" is centered on the positive real semiaxis, and the
others are arranged cyclically counterclockwise. Denote by goj [resp., go;] the biholomorphism
conjugating f|,+ [resp., f|p-] to the shift z — 2z + 1 in a right [resp., left] half-plane given by

J J

Theorem 1.2.7.(iii) — applied to f~! for the repelling petals. If we moreover require that

oE(z) = % + Resit(f) - log  + o(1) , (1.19)
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then ¢; is uniquely determined.

Put now UjJr =P N P]trl, U =P N PjJr, and Sji = Urez Uji. Using the dynamics as
in (1.14) we can extend ¢; to Sf, and 4,03|r to S;Ll U S ; put VjjE = <pj_(SJ7—L), W = @j(Sj_)
and Wj‘ = go;:l(Sj). Then let H;:V,” — W} be the restriction of goj' o (goj_)’1 to V7, and
H: V¥ — W the restriction of ¢, o (¢ )" to V.

It is not difficult to see that Vji and Wji are invariant under translation by 1, and that VjJr
and WjJr contain an upper half-plane while V;~ and W~ contain a lower half-plane. Moreover,
we have H]-i(z+ 1) = H]i(z) +1; therefore using the projection 7(z) = exp(2miz) we can induce
holomorphic maps hf: ﬂ(‘/ji) — W(Wj-i), where 7T(V;-+) and 7T(Wj+) are pointed neighbourhood
of the origin, and m(V;”) and 7(W;") are pointed neighbourhood of oo € P*(C).

It is possible to show that one obtains a holomorphic germ hj' € End(C,0) setting
h;r(()) = 0, and that one obtains a holomorphic germ h;" € End(P*(C), o0) setting h; (00) = 0.
Furthermore, denoting by )\;r [resp., )\;] the multiplier of h;r at 0 [resp., of h; at o], it turns
out that

T

H(Aj)\;) = exp [4m°Resit(f)] . (1.20)

j=1

Now, if we replace f by a holomorphic local conjugate f: Y~ o f o1, and denote by Ejﬁ
the corresponding germs, it is not difficult to check that (up to a cyclic renumbering of the
petals) there are constants «;, §; € C* such that

%;(z) = ajh; (é) and %j(z) = a1 by (é) . (1.21)

This suggests the introduction of an equivalence relation on the set of 2r-uples of holomorphic
germs (hf[, o hE).

Definition 1.2.10. Let M, denote the set of 2r-uples of holomorphic germs h = (hf, o),
with hj € End(C,0), h; € End(IP’1 (C), oo), and whose multipliers satisfy (1.20). We shall say

that h, h e M, are equivalent if up to a cyclic permutation of the indices we have (1.21) for
suitable «;, 8; € C*. We denote by M, the set of all equivalence classes.

The procedure described above allows then to associate to any f € End(C,0) tangent to
the identity with multiplicity » + 1 an element py € M,.

Definition 1.2.11. Let f € End(C, 0) be tangent to the identity. The element py € M, given
by this procedure is the sectorial invariant of f.

Then the holomorphic classification proved by Ecalle and Voronin is

Theorem 1.2.12. (Ecalle, 1981 [E2-3]; Voronin, 1981 [Vo]) Let f, g € End(C,0) be two
holomorphic local dynamical systems tangent to the identity. Then f and g are holomorphically
locally conjugated if and only if they have the same multiplicity, the same index and the same
sectorial invariant. Furthermore, for any r > 1, § € C and u € M, there exists f € End(C, 0)
tangent to the identity with multiplicity r + 1, index (8 and sectorial invariant p.

Remark 1.2.13. In particular, holomorphic local dynamical systems tangent to the identity
give examples of local dynamical systems that are topologically conjugated without being
neither holomorphically nor formally conjugated, and of local dynamical systems that are
formally conjugated without being holomorphically conjugated. Particular examples of germs
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in End(C, 0) tangent to the identity that are formally conjugated without being holomorphically
conjugated can be found in [Na] and [Tr].

We would also like to mention the following result of Ribén appeared in the appendix
of [CGBM]. It is known (see [Br2]) that for any germ f € End(C,0) there exists a unique
formal (not necessarily holomorphic) vector field, called the infinitesimal generator of f, whose
time-one flow coincides with f.

Theorem 1.2.14. (Ribén, 2008 [CGBM]) Let f € End(C,0) \ {Id} be a germ tangent to
the identity. If there exists a germ of real-analytic foliation F, defined by a 1-form having
an isolated singularity, such that f*F = JF, then the formal infinitesimal generator of f is a
germ of holomorphic vector field singular at the origin. In particular, f is holomorphically
conjugated to the germ g(z) = z — 2"+, where r + 1 is the multiplicity of f.

Finally, if f € End(C, 0) satisfies A\ = ¢>™/4, then f9 is tangent to the identity. Therefore
we can apply the previous results to f¢ and then infer informations about the dynamics of the
original f, because of the following
Lemma 1.2.15. Let f, g € End(C,0) be two holomorphic local dynamical systems with the
same multiplier €*™/4 € S'. Then f and g are holomorphically locally conjugated if and only
if f9 and g? are.

Proof. One direction is obvious. For the converse, let ¢ be a germ conjugating f¢ and ¢9; in
particular,

gl=¢ o flop=(plofop).
So, up to replacing f by ¢! o f o ¢, we can assume that f9 = g9. Put

-1 q

b= g Fof=3 g ok

0 k=1

Q

=
Il

The germ 1 is a local biholomorphism, because ¥'(0) = ¢ # 0, and it is easy to check that
Yo f=goy. O

We list here a few results; see [Mi], [Ma], [C], [E2-3], [Vo] and [BH] for proofs and further
details.

Proposition 1.2.16. Let f € End(C,0) be a holomorphic local dynamical system with mul-
tiplier A\ € S', and assume that \ is a primitive root of the unity of order q. Assume that
f9# 1d. Then there exist n > 1 and a € C such that f is formally conjugated to

g(z) = Az — 2" 4 q2nath

Definition 1.2.12. The number n is the parabolic multiplicity of f, and o € C is the index
of f; the iterative residue of f is then given by

1
Resit(f) = nq;— -«

Proposition 1.2.17. (Camacho, 1978 [C]) Let f € End(C,0) be a holomorphic local dynami-
cal system with multiplier A € S', and assume that X is a primitive root of the unity of order q.
Assume that f9 # 1d, and has parabolic multiplicity n > 1. Then f is topologically conjugated
to

g(z) = Az — 2L
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Theorem 1.2.18. (Leau, 1897 [L]; Fatou, 1919-20 [F1-3]) Let f € End(C,0) be a holomorphic
local dynamical system with multiplier A\ € S', and assume that \ is a primitive root of the
unity of order q. Assume that f¢ #1d, and let n > 1 be the parabolic multiplicity of f. Then
f% has multiplicity nqg + 1, and f acts on the attracting [resp., repelling] petals of f9 as a
permutation composed by n disjoint cycles. Finally, K, 5y = K,fq) for any representatives
(U, f) and (U, f9) of f and f1.

Furthermore, it is possible to define the sectorial invariant of such a holomorphic local dy-

namical system, composed by 2ng germs whose multipliers still satisfy (1.20), and the analogue
of Theorem 1.2.12 holds.

1.2.4 Elliptic case

We are left with the elliptic case:
f(z) = ™2 + a2 + - € Co{2}, (1.22)

with § ¢ Q. It turns out that the local dynamics depends mostly on numerical properties
of . The main question here is whether such a local dynamical system is holomorphically
conjugated to its linear part. Let us introduce a bit of terminology.

Definition 1.2.13. We shall say that a holomorphic dynamical system of the form (1.22) is
holomorphically linearizable if it is holomorphically locally conjugated to its linear part, the
irrational rotation z — €279z, In this case, we shall say that 0 is a Siegel point for f; otherwise,
we shall say that it is a Cremer point.

It turns out that for a full measure subset B of 6 € [0,1] \ Q all holomorphic local dy-
namical systems of the form (1.22) are holomorphically linearizable. Conversely, the comple-
ment [0, 1]\ B is a Gs-dense set, and for all § € [0, 1]\ B the quadratic polynomial z +— 22+
is not holomorphically linearizable. This is the gist of the results due to Cremer, Siegel, Brjuno
and Yoccoz we shall describe in this section.

The first worthwhile observation in this setting is that it is possible to give a topological
characterization of holomorphically linearizable local dynamical systems. Recall that a point p
is stable for f € End(M, p) if it belongs to the interior of Ky, ), where (U, f) is a representative
of f.

Proposition 1.2.19. Let f € End(C,0) be a holomorphic local dynamical system with multi-
plier A\ € S'. Then f is holomorphically linearizable if and only if it is topologically linearizable
if and only if 0 is stable for f.

Proof. If f is holomorphically linearizable it is topologically linearizable, and if it is topologi-
cally linearizable (and |A| = 1) then it is stable. Assume that 0 is stable, and set

_ 1)
Prlz) = ¢ 2N
so that ¢} (0) =1 and
by k
o f=Apk+ P <F - Id> : (1.23)

The stability of 0 implies that there are bounded open sets V' C U containing the origin such
that f¥(V) C U for all k € N. Since |\| = 1, it follows that {(}} is a uniformly bounded family
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on V', and hence, by Montel’s theorem, it admits a converging subsequence. But (1.23) implies
that a converging subsequence converges to a conjugation between f and the rotation z — Az,
and so f is holomorphically linearizable. L]

The second important observation is that two elliptic holomorphic local dynamical systems
with the same multiplier are always formally conjugated:

Proposition 1.2.20. Let f € End(C,0) be a holomorphic local dynamical system of multi-
plier A = 2™ ¢ S! with § ¢ Q. Then f is formally conjugated to its linear part, by a unique
formal power series tangent to the identity.

Proof. We shall prove that there is a unique formal power series of the form
h(z) = 2+ hoz? +--- € Co[7]

such that h(Az) = f(h(2)). Indeed we have

. 4
j .
h(A2) — f(h(z)) = Z (W = Nhj —a;]27 —a; <£> Al DY
§>2 =1 k>2 (1.24)
:Z[(}\j—)\)h]’—aj—Pj(hQ,...,hj_l)]Zj s
Jj=2
where P; is a polynomial in j — 2 variables with coefficients depending on as,...,a;—;. It

follows that the coefficients of h are uniquely determined by induction using the formula

a; +Pj(h2,...,hj_1)
M=\ '

h; = (1.25)

In particular, h; depends only on A, as,...,a;. O

Remark 1.2.21. The same proof shows that any holomorphic local dynamical system with
multiplier A # 0 and not a root of unity is formally conjugated to its linear part.

The formal power series linearizing f is not converging if its coefficients grow too fast.
Thus (1.25) links the radius of convergence of h to the behavior of A7 — \: if the latter becomes
too small, the series defining h does not converge. This is known as the small denominators
problem in this context.

It is then natural to introduce the following quantity:

wx(m) = 12}1€i£1m|)\k —Al,

for A € St and m > 1. Clearly, X is a root of unity if and only if wy(m) = 0 for all m greater
or equal to some mg > 1; furthermore,

lim wy(m)=0
m—-+00

for all A € S!.
The first one to actually prove that there are non-linearizable elliptic holomorphic local
dynamical systems has been Cremer, in 1927 [Crl]. His more general result is the following:
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Theorem 1.2.22. (Cremer, 1938 [Cr2]) Let A\ € S' be such that

1 1
limsup — log ——— = 400 . (1.26)
m——+oo M wx(m)

Then there exists f € End(C,0) with multiplier A which is not holomorphically linearizable.
Furthermore, the set of A\ € St satisfying (1.26) contains a Gs-dense set.
Proof. Choose inductively a; € {0,1} so that |a; + P;| > 1/2 for all j > 2, where P; is as

in (1.25). Then
f(2) = Az +azz® +--- € Co{z},

while (1.26) implies that the radius of convergence of the formal linearization h is 0, and thus f
cannot be holomorphically linearizable, as required.
Finally, let C(go) C S* denote the set of A = > ¢ S! such that

1
‘0—5‘ <sm (1.27)

for some p/q € Q in lowest terms, with ¢ > ¢o. Then it is not difficult to check that each C'(qq) is
a dense open set in S!, and that all A € C = Ngo>1 C(qo) satisfy (1.26). Indeed, if A = e?if ¢ C
we can find ¢ € N arbitrarily large such that there is p € N so that (1.27) holds. Now, it is
easy to see that ‘

le?™ — 1] < 27lt]

for all t € [-1/2,1/2]. Then, letting py be the closest integer to ¢f, so that |¢f — po| < 1/2, we
have

) ) ) 2
‘)\q - 1’ _ ‘627r1q9 . e?ﬂipo’ — ’62m(q97p0) _ 1’ < Qﬂ‘qg _po‘ < 271-’(16 _p’ < 2(]!—711

for arbitrarily large ¢, and (1.26) follows. ]

On the other hand, Siegel in 1942 gave a condition on the multiplier ensuring holomorphic
linearizability:
Theorem 1.2.23. (Siegel, 1942 [Si]) Let A € S' be such that there exists 3 > 1 and v > 0 so
that

Vm > 2 < ~ym”. (1.28)

Then all f € End(C,0) with multiplier A\ are holomorphically linearizable. Furthermore, the
set of \ € St satisfying (1.28) for some 3 > 1 and v > 0 is of full Lebesgue measure in S.

Remark 1.2.24. If § € [0,1) \ Q is algebraic then A = > satisfies (1.28) for some 8 > 1
and v > 0. However, the set of A\ € S! satisfying (1.28) is much larger, being of full measure.

Remark 1.2.25. It is interesting to notice that for generic (in a topological sense) A € S!
there is a non-linearizable holomorphic local dynamical system with multiplier A, while for
almost all (in a measure-theoretic sense) A € S! every holomorphic local dynamical system
with multiplier A is holomorphically linearizable.

Theorem 1.2.23 suggests the existence of a number-theoretical condition on A ensuring
that the origin is a Siegel point for any holomorphic local dynamical system of multiplier A.
And indeed this is the content of the celebrated Brjuno-Yoccoz theorem:
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Theorem 1.2.26. (Brjuno, 1965 [Brj1-3], Yoccoz, 1988 [Y1-2]) Let A € S'. Then the following
statements are equivalent:

(i) the origin is a Siegel point for the quadratic polynomial f(z) = Az + 22;
(ii) the origin is a Siegel point for all f € End(C,0) with multiplier \;

(iii) the number X satisfies Brjuno’s condition

= 1 1
Z log ———~ < +00. (1.29)

— ok wy (2FH1)

Brjuno, using majorant series as in Siegel’s proof of Theorem 1.2.23 (see also [He] and
references therein) has proved that condition (iii) implies condition (ii). Yoccoz, using a more
geometric approach based on conformal and quasi-conformal geometry, has proved that (i) is
equivalent to (ii), and that (ii) implies (iii), that is that if A does not satisfy (1.29) then the
origin is a Cremer point for some f € End(C,0) with multiplier A — and hence it is a Cremer
point for the quadratic polynomial fy(z). See also [P9] for related results.

Remark 1.2.27. Condition (1.29) is usually expressed in a different way. Write A\ = 27
and let {pr/qir} be the sequence of rational numbers converging to 6 given by the expansion in
continued fractions. Then (1.29) is equivalent to

“+o0

1
Z —log qx+1 < 00,
o 1k
while (1.28) is equivalent to
i1 = O(qy) ,

and (1.26) is equivalent to

1
limsup — log qx4+1 = +00 .
k—+oo Gk
See [K] for a tractation on continued fractions, [He], [Y2], [Mi] and references therein for other
details on condition (1.29).

Remark 1.2.28. A clear obstruction to the holomorphic linearization of an elliptic germ
f € End(C,0) with multiplier A\ = €27 ¢ S! is the existence of small cycles, that is of
periodic orbits contained in any neighbourhood of the origin. Pérez-Marco [P1], using Yoccoz’s
techniques, has shown that when the series

+o0
Z loglog gi+1

k=0 dk
converges then every germ with multiplier A is either linearizable or has small cycles, and that
when the series diverges there exists such germs with a Cremer point but without small cycles.

The complete proof of Theorem 1.2.26 is beyond the scope of this chapter. We shall limit
ourselves to describe a proof (adapted from the original one of [Brj1-3|) of the implication
(iii)==-(ii), to report two of the easiest results of [Y2], and to illustrate what is the connection
between condition (1.29) and the radius of convergence of the formal linearizing map.

Let us begin with Brjuno’s theorem:
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Theorem 1.2.29. (Brjuno, 1965 [Brj1-3]) Assume that A\ = €2™% € S! satisfies the Brjuno’s

condition
—+oo

1 1
k=0
Then the origin is a Siegel point for all f € End(C,0) with multiplier \.

Proof. We already know, thanks to Proposition 1.2.20, that there exists a unique formal power
series
h(z) =2+ =z Z hy2*

k>1

such that h=! o f o h(2) = Az; we shall prove that h is actually converging. To do so it suffices
to show that

1
sup — log |hi| < oo . (1.31)
Kk
Writing f(2) = Az + 2f(z) and h(z) = 2(1 + h(2)), from h(Az) = f(h(z)) we obtain
Az <1 +ﬁ()\z)> = Az (1 —|—/ﬁ(z)> +z <1 —i—ﬁ(z)) f(z + zﬁ(z)) ,
hence, dividing by Az both sides and simplifying, we get
h(32) = h(z) = X7 (145()) T (= +2h())

thus, for each k& > 2, we have
(\F = 1)y = A2 {(1 +E(z)) f(z + zﬁ(z)) }k (1.32)

where, given a power series g(z), we denote by {g(2)}x the coefficient of z* in its power series
expansion.

It is known (see [SM] pp. 110-113) that there exist constants ¢; and c¢o such that the power
series of the function c;z(cy — 2) ™! dominates the Maclaurin series of the holomorphic function
f(2). Let ||k0| be the distance of kf from the nearest integer, i.e., ||k0|| = mingez |k0 — h.
Since the ratio of the length of a chord to the length of the smaller of the two corresponding
arcs is at least 2/, we obtain

INE—1] _ 2

7 sz

27| k6| — 7w’
hence

4||k0) < |NF —1].

Therefore, from (1.32) we obtain the estimate

~\ 2
1| ciz(1+M(h
eruwhk\sz{ (Lt MR }

ca —z2(1+ M(h))

where M(h) is the power series Dot B2
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Let us now consider the power series g(z) = szI gr2" with positive real coefficients
defined recursively by
1 ( c12(1+g(2))?
kol g =  { 22O (139
4 lea—z2(1+9(2) )

It is not difficult to see by induction that |hx| < gi for each k& > 1; hence, to prove (1.31), it
suffices to prove that

sup : log g < 00 . (1.34)

Multiplying the k-th equation (1.33) by 2* and summing over all k, we get

S kg g = 1120 +a(2)*
2 1e,—2(1+9()

hence

ca y_ |Ik6]| giz* =—012(1 +9(2))° +2(1+9(2) Y [1k0] 912"

k>1 k>1

Since ||k0| < 1/2 for any k € Z, last equality yields

k690t < go-2(L+ 9(2g() + g-erz(l +9(2)°
k>1

< 2 —|— C1
462

2(1+9(2))%,

where, given two power series ¢(z) and ¥(z), ¢ < ¥ means that ¢, < 1) for each k > 1.
Therefore, setting c3 = (24 ¢1)/(4¢2), for each k > 1 we have

K0l ge < s Y. GriGra- (1.35)
ki+ko+1=k
kq,ko>0
Let us now define inductively
1 if k=0,
ap =< C3 Z ap, o, itk >2,
ky+ko+l=k
kq,ky>0
and
1 if k=0,
5, = -1 .
k KON, max _ 00k, if k> 2.
kl ko >0

Then it is easy to check by induction that
g < gy

for all k. Therefore, to establish (1.34) it suffices to prove analogous estimates for aj and .
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To estimate ay, let a(t) = >, axt. We have

alt)—1= Z ath = cat(a(t))?.

k>1

This equation has a unique holomorphic solution vanishing at zero

1—\/1—403t

t) =
Oé( ) 203t

defined for |t| small enough. Hence,

1
sup — log a, < 00,
E k

as we wanted.

To estimate 5, we have to take care of small denominators. Let {p,, /¢ } be the sequence
of rational numbers converging to 6 given by the expansion in continued fractions. By the
best approximation theorem (see [Ma] pp. 22-23) {||¢0||} is the subsequence of successive
minima of {||kf||} as k varies from 1 to oo, i.e., g9 = 1, ¢m < ¢m+1 and [|gn 8] > [|gm+10];
thus for each k < gy41 we have [[k0]| > |lgm110|. We define ||[g_10| = 1. If k # 0, then
1k0]] < llg-16]1/2 = 1/2.

Let us now introduce the following function on the natural numbers:

1, if k0] < 3llgmf,
M,, (k) = ) 2 (1.36)
0, if [[k0] > 3llgm0|-

for kK > 1 and m > —1. We have the following lemma.

Lemma 1.2.30. Let M,,(k) be the function defined by (1.36). If M,,(k) = 1 then, for all
0 <! < gm+1, we have M,,(k—1) =0.

Proof. By definition, there exist mi, my € Z such that
|kO]| = [k6 —m1| and [[(k —1)0| = [(k —1)0 — ma|.
Since we have

k0 — mi| + |(k — )0 — ma| > k0 —mq — ((k — 1)0 — my)
= ’l@—i-mg—mﬂ

> [li6]],

we have

(k= D)ol = [l26]] — |[£0]l.
By assumption, 10| > ||g0|| and —||k6]| > —||gmB]|/2, hence

gl _ llgmb]
2 2

Ik =Dl > llgm®|| —

and we are done. [l
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For each k£ > 2 we associate to §; a specific decomposition of the form
6k = Hk9||_16k15k2 ’ (137)

with k& > k1 > ko, and kK = 1 + k1 + ko, and hence, by induction, a specific decomposition of
the form
S = llf| = 0O~ - 10h0] (1.38)

where l[g = k and k > [y > -+ > 1, > 2. For m > 2 let N,,(k) be the number of factors |10 ~*
in the expression (1.38) of dj satisfying

1
18] < 3 gl
The next lemma contains the key estimate.

Lemma 1.2.31. For all m > 2 we have

0, ifO <k <qmer,
Np (k) < 2k

dm+1

—1, lfkizqm+1

Proof. We argue by induction on k. Writing J; as in (1.37), it is clear that we have
0 < Np(k) < My (k) + N (k1) + Ny (k1)

If 0 <1<k < qns+1 we have [[l0]| > ||gm+10]|, and hence N,, (k) = 0.
Assume now k > @y,41, so that 2k/g,,+1 — 1 > 1. We have a few cases to consider.

Case 1: My, (k) = 0. Then
Nm(k) = Nm(kl) + Nm(kQ)a

and applying the induction hypotheses to each term we get N,, (k) < (2k/qm+1) — 1.
Case 2: M, (k) = 1. Then

Np (k) =1+ Npp (k1) + N (K2),

and there are three subcases.

Case 2.1: k1 < @¢m+1- Then

2k
Np(k)=1< -1,
dm+1
and we are done.
Case 2.2: k1 > ko > ¢a1. Then we have
2k 2k 2k
Npp(k) ST+ N(ki) + N(ko) <14+ —1 — 14+ —2 —1< — 1L
qm-+1 dm+1 qm-+1

Case 2.3: k1 > qm+1 > ko. Then

N (k) =1+ Ny (k1),
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and we have two different subsubcases.
Case 2.8.1: k1 <k — ¢n+1. Then

k — 2k
qm+1 1<
dm+1 qm+1

and we are done in this case too.

Case 2.83.2: k1 > k—qms1. Then, by Lemma 1.2.30, M,,, (k1) = 0. Therefore case 1 applies
to 0, and we have
Np (k) =14+ Ny (k3) + Ny (kg),

with k > ky > ks > kg and k1 = k3+ks+1. We can repeat the argument for this decomposition,
and we finish unless we run into case 2.3.2 again. However, this loop cannot happen more
than g,+1 — 1 times, and we eventually have to land into a different case. This completes the
induction and the proof. ]

Let us go back to the proof of Theorem 1.2.29. We have to estimate

q

1 1 _
- log o = Z - log |1;0] L
Jj=0
Hence, by Lemma 1.2.31, letting v be defined by ¢,1+1 > k > ¢, we have

1 .
10g5k < Z 2 —1og(2lgn+101)7") < 2k > —log(2llgmfID™)-

m=—1 m>0 m

Now, recalling that g, > 2"7" (see [K] Theorem 12 p. 13) and ||gmf| > 1/(2¢m+1) (it is a
consequence of [K] Theorem 13 p. 15 and the proprieties of the convergents [K] p. 4), we get

1 1
2 log 4, < 2k Z — log(4Qm+1))

m>0 m

=2k | log4 Z — —|— Z —logqu

m>0

2log 4 I
<%k 0og + Z 0g dm+1 ’
\/5_ 1 m>0 am

and we are done, since the last series converges by assumption. L]

The second result we would like to present is Yoccoz’s beautiful proof of the fact that
almost every quadratic polynomial f) is holomorphically linearizable:
Proposition 1.2.32. The origin is a Siegel point of f(z) = Az + 22 for almost every \ € S'.
Proof. (Yoccoz [Y2]) The idea is to study the radius of convergence of the inverse of the
linearization of f)(2) = Az + 2% when X\ € A*. Theorem 1.2.2 says that there is a unique map
¢y defined in some neighbourhood of the origin such that ¢ (0) = 1 and ¢y o f = Apx. Let py
be the radius of convergence of <p>_\1; we want to prove that ¢, is defined in a neighbourhood
of the unique critical point —\/2 of fy, and that py = [pa(—A/2)|.
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Let Q) CC C be the basin of attraction of the origin, that is the set of z € C whose
orbit converges to the origin. Notice that setting ¢x(z) = A", (fr(2)) we can extend ¢y
to the whole of ). Moreover, since the image of <p;1 is contained in €2y, which is bounded,
necessarily py < +o00. Let Uy = ¢ '(A,,). Since we have

(Ph o F)f = Ap) (1.39)

and () is invertible in Uy, the function f cannot have critical points in U).
If z = " (w) € Uy, we have f(2) = ¢ (Aw) € ¢ (Axpy) CC Uy; therefore

F(UX) C F(UN) CCT U S Qy,

which implies that OU C Q. So ¢, is defined on 9Uy, and clearly |¢x(z)| = pa for all z € 9U,,.

If f had no critical points in OU), (1.39) would imply that ¢, has no critical points
in OUy. But then ¢, would be locally invertible in OU,, and thus 30;1 would extend across
0A,,, impossible. Therefore —\/2 € OU,, and |px(—A/2)| = pa, as claimed.

(Up to here it was classic; let us now start Yoccoz’s argument.) Put n(A) = @a(—A/2).
From the proof of Theorem 1.2.2 one easily sees that ¢, depends holomorphically on A;
so n: A* — C is holomorphic. Furthermore, since 5 C Ay, Schwarz’s lemma applied to
Lp;1: A, — Ay yields

1= (951 (0)] < 2/,

that is py < 2. Thus 7 is bounded, and thus it extends holomorphically to the origin.
So n: A — As is a bounded holomorphic function not identically zero; Fatou’s theorem on
radial limits of bounded holomorphic functions then implies that

p(Xo) := limsup |n(rXg)| > 0

r—1-—

for almost every A\g € S'. This means that we can find 0 < py < p(Ao) and a sequence {\;} C A
such that A\; — A and |n(\;)| > po. This means that Lp;jl is defined in A, for all j > 1; up

to a subsequence, we can assume that gpgjl — 1 A,; — Ay, But then we have 9'(0) = 1 and

Fro (¥(2)) = ¥(Xo2)
in A,,, and thus the origin is a Siegel point for f),. L]

The third result we would like to present is the implication (i) = (ii) in Theorem 1.2.26.

The proof depends on the following result of Douady and Hubbard, obtained using the theory
of quasiconformal maps:
Theorem 1.2.33. (Douady-Hubbard, 1985 [DH]) Given A € C*, let f\(z) = Az + 22 be a
quadratic polynomial. Then there exists a universal constant C' > 0 such that for every holo-
morphic function v: Ag|y;2 — C with 1(0) = ¢'(0) = 0 and [¢(2)| < C|A| for all z € Agjyj/2
the function f = fx + 1) is topologically conjugated to f in A|y|.

Then
Theorem 1.2.34. (Yoccoz, 1995 [Y2]) Let A € S! be such that the origin is a Siegel point for
fr(z) = Az + 22. Then the origin is a Siegel point for every f € End(C,0) with multiplier .
Sketch of proof: Write

f(2) = Az +az2® + Z apz® |
k>3
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and let
f92) = Az +az* + Z apz® |
k>3

so that f = f®. If |a| is large enough then the germ

9"(2) = af'(z/a) = Az + 22 +a)y_an(z/a)" = fi(2) + 4°(2)

k>3

is defined on Az, and [¢?(z)| < C for all z € Ag/y, where C is the constant given by
Theorem 1.2.33. It follows that ¢g® is topologically conjugated to f). By assumption, f) is
topologically linearizable; hence g is too. Proposition 1.2.19 then implies that g* is holomor-
phically linearizable, and hence f® is too. Furthermore, it is also possible to show (see, e.g.,
[BH, Lemma 2.3]) that if |a| is large enough, say |a| > R, then the domain of linearization of
g% contains A,., where r > 0 is such that A,, is contained in the domain of linearization of f.

So we have proven the assertion if |az| > R; assume then |az| < R. Since A is not a root
of unity, there exists (Proposition 1.2.20) a unique formal power series h® € C[z] tangent to

the identity such that g® o h%(z) = h%(Az). If we write
h(z) =z + Z hy(a)z"
k>2
then we have
S = Nhe(a)F =D "ar | D hm(a)z™ ]
k>2 1>2 m>1

implying that hg(a) is a polynomial in a of degree k — 1. In particular, by the maximum
principle we have

e{a2)| < ma (o) (1.40)
for all k& > 2. Now, by what we have seen, if |a| = R then h® is convergent in a disk of

radius r(a) > 0, and its image contains a disk of radius r. Applying Schwarz’s lemma to
(h*)~ 1 Ay — Ay we get 7(a) > r. But then

lim sup |hy (a2)|* < max limsup |y (a)|V/* = — <

1 1
- <+
k— 400 la|=R k—too r(a) —r

hence h*? is convergent, and we are done. L]

Finally, we would like to describe the connection between condition (1.29) and lineariza-
tion. From the function theoretical side, given 6 € [0,1) set

r(0) = inf{r(f) | f € End(C,0) has multiplier e**® and it is defined and injective in A},

where 7(f) > 0 is the radius of convergence of the unique formal linearization of f tangent to
the identity.

From the number theoretical side, given an irrational number 6 € [0, 1) let {px/qr} be the
sequence of rational numbers converging to € given by the expansion in continued fractions,

and put
Qnefpn
Gn—10—pn—1’

Bn = (=1)"(qn0 — pn), p-1 =1

oy = — ag =0,
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Definition 1.2.14. The Brjuno function B:[0,1) \ Q — (0, 4o00] is defined by
B(6) = i Bn—1lo =
= ~ n—1 g o .

Then Theorem 1.2.26 is consequence of what we have seen and the following

Theorem 1.2.35. (Yoccoz, 1995 [Y2]) (i) B(#) < +oo if and only if A = €™ satisfies Brjuno’s
condition (1.29);
(ii) there exists a universal constant C' > 0 such that

|logr(6) + B(8)] < C

for all § € [0,1) \ Q such that B(f) < +o0;
(iii) if B(§) = +oc then there exists a non-linearizable f € End(C,0) with multiplier e***.
See [BC] for deep results regarding the Brjuno function.

If 0 is a Siegel point for f € End(C,0), the local dynamics of f is completely clear, and
simple enough. On the other hand, if 0 is a Cremer point of f, then the local dynamics of f is
very complicated and not yet completely understood. Pérez-Marco (in [P2, 4-7]) and Biswas
([Bisl, 2]) have studied the topology and the dynamics of the stable set in this case. Some of
their results are summarized in the following

Theorem 1.2.36. (Pérez-Marco, 1995 [P6, 7]) Assume that 0 is a Cremer point for an elliptic
holomorphic local dynamical system f € End(C,0), and let (U, f) be a representative of f.
Then:

(i) The stable set K (y,5) is compact, connected, full (i.e., C\ Ky, ) is connected), it is not
reduced to {0}, and it is not locally connected at any point distinct from the origin.

(ii) Any point of K ¢y \ {0} is recurrent (that is, a limit point of its orbit).

(iii) There is an orbit in K, ¢y which accumulates at the origin, but no non-trivial orbit
converges to the origin.

Theorem 1.2.37. (Biswas, 2007 [Bis2|) The rotation number and the conformal class of Ky
are a complete set of holomorphic invariants for Cremer points. In other words, two elliptic
non-linearizable holomorphic local dynamical systems f and g are holomorphically locally con-
jugated if and only if they have the same rotation number and there is a biholomorphism of a
neighbourhood of Ky, )y with a neighbourhood of Ky, g).

Remark 1.2.38. So, if A € S! is not a root of unity and does not satisfy Brjuno’s condi-
tion (1.29), we can find fi, fo € End(C,0) with multiplier A such that f; is holomorphically
linearizable while f5 is not. Then f; and fy are formally conjugated without being neither
holomorphically nor topologically locally conjugated.

Remark 1.2.39. Yoccoz [Y2] has proved that if A € S! is not a root of unity and does not
satisfy Brjuno’s condition (1.29) then there is an uncountable family of germs in End(C, O)
with multiplier A which are not holomorphically conjugated to each other nor holomorphically
conjugated to any entire function.

See also [P1, 3] for other results on the dynamics about a Cremer point, and [PY] for
relationships with holomorphic foliations in C2.
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1.3 Multi-dimensional case

Now we start the discussion of local dynamics in several complex variables. In this setting
the theory is much less complete than its one-variable counterpart.

Definition 1.3.1. Let f € End(C™, O) be a holomorphic local dynamical system at O € C™,
with n > 2. The homogeneous expansion of f is

f)=P(2)+ Py(2)+ - € Co{z1,...,2n}",

where P; is an n-uple of homogeneous polynomials of degree j. In particular, P; is the differ-
ential dfp of f at the origin, and f is locally invertible if and only if P; is invertible.

We have seen that in dimension one the multiplier (i.e., the derivative at the origin) plays
a main role. When n > 1, a similar role is played by the eigenvalues of the differential. We
shall use the following classification.

Definition 1.3.2. Let f € End(C™, O) be a holomorphic local dynamical system at O € C™,
with n > 2. Then:

— if all eigenvalues of dfp have modulus less than 1, we say that the fixed point O is
attracting;

— if all eigenvalues of dfp have modulus greater than 1, we say that the fixed point O is
repelling;

— if all eigenvalues of d fo have modulus different from 1, we say that the fixed point O is
hyperbolic (notice that we allow the eigenvalue zero);

— if O is attracting or repelling, and dfp is invertible, we say that f is in the Poincaré
domain;

— if O is hyperbolic, dfo is invertible, and f is not in the Poincaré domain (and thus not
all eigenvalues of dfo are inside or outside the unit disk) we say that f is in the Siegel
domain;

— if all eigenvalues of d fp are roots of unity, we say that the fixed point O is parabolic; in
particular, if dfo = Id we say that f is tangent to the identity;

— if all eigenvalues of dfo have modulus 1 but none is a root of unity, we say that the
fixed point O is elliptic;

— if dfp = O, we say that the fixed point O is superattracting.
Other cases are clearly possible, but for the aim of this chapter this list is enough.

Remark 1.3.1. A natural way for approaching the multi-dimensional case is to study situa-
tions where one can use more or less directly the one-dimensional theory. For example, it is
possible to study the so-called semi-direct product of germs, namely germs f € End(C",O) of
the form

f(z1,yo oy zn) = (fi(z1), fa(z1y oo vzn)y ooy fu(21, ooy 20))s
or the so-called unfoldings, i.e., germs f € End(C",O) of the form

fziyeoyzn) = (f1(z1,- o0y 20), 22, ooy 2n)-

We refer to [J2] for the study of a particular class of semi-direct products, and to [Ril-2] for
interesting results on unfoldings.
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In the rest of the chapter we shall give a survey of results in the multi-dimensional case to
better understand the contest of our contribution, that will be presented in the next chapters.

1.3.1 Parabolic case

A first natural question in the several complex variables parabolic case is whether a result like
the Leau-Fatou flower theorem holds, and, if so, in which form. To present what is known on this
subject in this section we shall restrict our attention to holomorphic local dynamical systems
tangent to the identity; consequences on dynamical systems with a more general parabolic fixed
point can be deduced taking a suitable iterate (but see also the end of this section for results
valid when the differential at the fixed point is not diagonalizable).

So we are interested in the local dynamics of a holomorphic local dynamical system

f € End(C™, O) of the form
f)=z+P,(2)+P,y1(2)+ - € Co{z1,...,2n}", (1.41)

where P, is the first non-zero term in the homogeneous expansion of f.
Definition 1.3.3. If f € End(C", O) is of the form (1.41), the number v > 2 is the order of f.

The two main ingredients in the statement of the Leau-Fatou flower theorem were the at-
tracting directions and the petals. Let us first describe a several variables analogue of attracting
directions.

Definition 1.3.4. Let f € End(C"™, O) be tangent at the identity and of order v. A character-
istic direction for f is a non-zero vector v € C™ \ {O} such that P,(v) = Av for some A € C. If
P,(v) = O (that is, A = 0) we shall say that v is a degenerate characteristic direction; otherwise,
(that is, if A # 0) we shall say that v is non-degenerate. We shall say that f is dicritical if all
directions are characteristic; non-dicritical otherwise.

Remark 1.3.2. It is easy to check that f € End(C", O) of the form (1.41) is dicritical if and
only if P, = A1d, where \: C" — C is a homogeneous polynomial of degree v — 1. In particular,
generic germs tangent to the identity are non-dicritical.

Remark 1.3.3. There is an equivalent definition of characteristic directions that shall be
useful later on. The n-uple of r-homogeneous polynomials P, induces a meromorphic self-map
of P"~1(C), still denoted by P,. Then, under the canonical projection C*"\{O} — P"~!(C) non-
degenerate characteristic directions correspond exactly to fixed points of P,, and degenerate
characteristic directions correspond exactly to indeterminacy points of P,. In generic cases,
there is only a finite number of characteristic directions, and using Bezout’s theorem it is easy
to prove (see, e.g., [AT1]) that this number, counting according to a suitable multiplicity, is
given by (v —1)/(v —1).

Remark 1.3.4. The characteristic directions are complex directions; in particular, it is easy
to check that f and f~! have the same characteristic directions. Later on we shall see how
to associate to (most) characteristic directions v — 1 petals, each one in some sense centered
about a real attracting direction corresponding to the same complex characteristic direction.

The notion of characteristic directions has a dynamical origin.

Definition 1.3.5. We shall say that an orbit {f*(zy)} converges to the origin tangentially
to a direction [v] € P"7}(C) if f*(z9) — O in C" and [f*(z0)] — [v] in P*~1(C), where
[]:C™ \ {O} — P"~1(C) denotes the canonical projection.

Then we have the following result (see [Ha2] for a proof)
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Proposition 1.3.5. Let f € End(C",0) be a holomorphic dynamical system tangent to
the identity. If there exists an orbit of f converging to the origin tangentially to a direc-
tion [v] € P"~Y(C), then v is a characteristic direction of f.

Remark 1.3.6. There are examples of germs f € End(C?,0) tangent to the identity with
orbits converging to the origin without being tangent to any direction: for instance

f(z,w) = (2 + czw,w + Bw? + o(w?))

with a, € C*, a # ( and Re(a/f) =1 (see [Rivl] and [AT3]).

The several variables analogue of a petal is given by the notion of parabolic curve.
Definition 1.3.6. A parabolic curve for f € End(C", O) tangent to the identity is an injective
holomorphic map ¢: A — C™ \ {O} satisfying the following properties:

(a) A is a simply connected domain in C with 0 € JA;
(b) ¢ is continuous at the origin, and ¢(0) = O;
(¢) p(A) is f-invariant, and (f|,(a))* — O uniformly on compact subsets as k — 4oco.

Furthermore, if [¢(¢)] — [v] in P"71(C) as ¢ — 0 in A, we shall say that the parabolic curve
¢ is tangent to the direction [v] € P"~1(C).

Then the first main generalization of the Leau-Fatou flower theorem to several complex
variables is due to Ecalle and Hakim (see [A5] for a sketch of proof and also Weickert [W]):

Theorem 1.3.7. (Ecalle, 1985 [E4]; Hakim, 1998 [Ha2]) Let f € End(C™, O) be a holomorphic
local dynamical system tangent to the identity of order v > 2. Then for any non-degenerate
characteristic direction [v] € P*"~1(C) there exist (at least) v — 1 parabolic curves for f tangent
to [v].

Definition 1.3.7. A set of v — 1 parabolic curves obtained in this way is a Fatou flower for f
tangent to [v].

Remark 1.3.8. When there is a one-dimensional f-invariant complex submanifold passing
through the origin tangent to a characteristic direction [v], the previous theorem is just a
consequence of the usual one-dimensional theory. But it turns out that in most cases such an
f-invariant complex submanifold does not exist: see [Ha2] for a concrete example, and [E4] for
a general discussion.

We can also have f-invariant complex submanifolds of dimension strictly greater than one
attracted by the origin.

Definition 1.3.8. Given a holomorphic local dynamical system f € End(C", O) tangent to the
identity of order v > 2, and a non-degenerate characteristic direction [v] € P"~1(C), the eigen-
values o, ..., a,_1 € C of the linear operator —1=(d(P, ), — 1d): T}, P"~*(C) — T}, P"~1(C)
are the directors of [v].

Then, using a more elaborate version of her proof of Theorem 1.3.7, Hakim has been able

to prove the following:

Theorem 1.3.9. (Hakim, 1997 [Ha3]) Let f € End(C",O) be a holomorphic local dynam-
ical system tangent to the identity of order v > 2. Let [v] € P"~1(C) be a non-degenerate
characteristic direction, with directors ay,...,a,_1 € C. Furthermore, assume that, for a
suitable d > 0, we have Re(a1),...,Re(aq) > 0 and Re(ag+1), ..., Re(an—1) < 0. Then:

(i) There exists an f-invariant (d+ 1)-dimensional complex submanifold M of C", with the
origin in its boundary, such that the orbit of every point of M converges to the origin
tangentially to [v];
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(ii) f|ar is holomorphically conjugated to the translation
T(wo, wy, ..., wq) = (wo + 1, w1, ..., wy)

defined on a suitable right half-space in C%+1.

Remark 1.3.10. In particular, if all the directors of [v] have positive real part, there is an open
domain attracted by the origin. However, the condition given by Theorem 1.3.9 is not necessary
for the existence of such an open domain; see Rivi [Rivl] for an easy example, Ushiki [Us| for
a more elaborate example with an open domain attracted by the origin, and Vivas [V] for a
recent example with a domain attracted by the origin centered in a degenerate characteristic
direction.

In his monumental work [E4] Ecalle has given a complete set of formal invariants for
holomorphic local dynamical systems tangent to the identity with at least one non-degenerate
characteristic direction. For instance, he has proved the following

Theorem 1.3.11. (Ecalle, 1985 [E4]) Let f € End(C",0) be a holomorphic local dynamical
system tangent to the identity of order v > 2. Assume that

(a) f has exactly (v™ —1)/(v — 1) distinct non-degenerate characteristic directions and no
degenerate characteristic directions;

(b) the directors of any non-degenerate characteristic direction are irrational and mutually
independent over 7.

Choose a non-degenerate characteristic direction [v] € P*"~1(C), and let ay,...,a,_1 € C
be its directors. Then there exist a unique p € C and unique (up to dilations) formal se-
ries Ry,...,R, € C[z,...,%,], where each R; contains only monomial of total degree at
least v + 1 and of partial degree in z; at most v — 2, such that f is formally conjugated to the
time-1 map of the formal vector field

X = ! [—21r + Ry ( i "Z—:l zy 12~—|—R-(z)]i
(=11 +p2Y a = AT,

Other approaches to the formal classification, at least in dimension 2, are described in [BM]
and in [AT?2].

Using his theory of resurgence, and always assuming the existence of at least one non-
degenerate characteristic direction, Ecalle has also provided a set of holomorphic invariants
for holomorphic local dynamical systems tangent to the identity, in terms of differential oper-
ators with formal power series as coefficients. Moreover, if the directors of all non-degenerate
characteristic directions are irrational and satisfy a suitable diophantine condition, then these
invariants become a complete set of invariants. See [E5] for a description of his results, and
[E4] for the details.

It is natural to ask what happens when there are no non-degenerate characteristic direc-
tions, which is, for instance, the case for

{fl(z) =21+ bz120 + Zg,
fo(2) = 20 — %2129 — b22 + 23,

for any b € C*, (and it is easy to build similar examples of any order). At present, the theory in
this case is satisfactorily developed for n = 2 only. In particular, in [A2] is proved the following
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Theorem 1.3.12. (Abate, 2001 [A2]) Every holomorphic local dynamical system tangent to
the identity f € End(C2,O), with an isolated fixed point, admits at least one Fatou flower
tangent to some direction.

Remark 1.3.13. Bracci and Suwa have proved a version of Theorem 1.3.12 for f € End(M, p)
where M is a singular variety with not too bad a singularity at p; see [BrS| for details.

We refer to [A5] for the main ideas in the proof of Theorem 1.3.12, and to the original
article [A2] for the whole proof.

Actually, Abate have proved a slightly more precise result, for which we need the following
definitions.

Let f € End(M, FE), where M is a complex n-dimensional manifold and E C M is a
compact smooth complex hypersurface pointwise fixed by f, and take p € E. Then for every
h € O, (where Oy is the structure sheaf of M) the germ ho f is well-defined, and we have
hof—helg,, where Ig is the ideal sheaf of F.

Definition 1.3.9. The f-order of vanishing at p of h € Oy is
vy(h;p) =max{p € N|hof—heTy,},
and the order of contact vy of f with E is
vy = minfvy (hip) | h € Orrp} -

In [ABT1] Abate, Bracci and Tovena proved that vy does not depend on p, and that

vy = min I/f(Z],p)
7j=1,..,
where (U, 2) is any local chart centered at p € E and z = (z1,...,2"). In particular, if the local

chart (U, 2) is such that ENU = {z! = 0} (and we shall say that the local chart is adapted to
E) then setting f/ = 27 o f we can write

) =2+ ()¢ (2) (1.42)

where at least one among ¢',...,¢" does not vanish identically on U N E.
Definition 1.3.10. A map f € End(M, E) is tangential to E if

min{vy(h;p) | h € Ig,} > vy

for some (and hence any) point p € E.

Choosing a local chart (U, z) adapted to E so that we can express the coordinates of f in
the form (1.42), it turns out that f is tangential if and only if ¢'|yng = 0.

The ¢’’s in (1.42) depend in general on the chosen chart; however, in [ABT1] Abate, Bracci
and Tovena proved that setting

Zg - ® (dz")®vs (1.43)

then X¢|ung defines a global section Xy of the bundle TM|g ® (Nj)®"/, where N}, is the
conormal bundle of E into M. The bundle TM|g @ (N})®"/ is canonically isomorphic to the
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bundle Hom(Ngyf ,TM|g). Therefore the section X; induces a morphism still denoted by
XN — TM|p.

Definition 1.3.11. The morphism X: Ng”f — T'M|g just defined is the canonical morphism
associated to f € End(M, E).

Remark 1.3.14. It is easy to check that f is tangential if and only if the image of X is
contained in TF.

Definition 1.3.12. Assume that f € End(M, E) is tangential. We shall say that p € E is a
singular point for f if X; vanishes at p.

Definition 1.3.13. Let M be the blow-up of C” at the origin, and f the lift of a non-dicritical
holomorphic local dynamical system f, € End(C",O) tangent to the identity. We shall say
that [v] € P"~1(C) = E is a singular direction of f, if it is a singular point of f.

Let f € End(M, E), where E is a smooth complex hypersurface in a complex manifold M,
and assume that f is tangential; let £° denote the complement in E of the singular points of
f. For simplicity of exposition we shall assume dim M = 2 and dim F = 1; but this part of the
argument works for any n > 2 (even when FE has singularities, and it can also be adapted to
non-tangential germs).

Since dim ¥ = 1 = rkNg, the restriction of the canonical morphism X to Ngg fis an

isomorphism between Ng: 7 and TE°. Then in [ABT1] Abate, Bracci and Tovena showed that
it is possible to define a holomorphic connection V on Ngo by setting

Vu(s) = n([Xf(w),s]]s) , (1.44)

where: s is a local section of Ngo; u € TE?; m: T M|go — Ngo is the canonical projection; s is
any local section of TM|g. such that 7(3]so) = s; @ is any local section of TM®¥f such that
Xy(m(ulge)) = u; and Xy is locally given by (1.43). In a chart (U, z) adapted to E, a local
generator of Ngo is 0; = m(0/0z"'), a local generator of NE s 6?”’[ =01 ®---®09;, and we
have

Ruey 2 0 .
Xf(al f) =g ’UOE 82’2 )
therefore Del
1 dg
\% 0 = — — = 01 .
6/622 1 gQ 82’1 UmE 1

In particular, V is a meromorphic connection on Ng, with poles in the singular points of f.

Definition 1.3.14. The index 1,(f, E) of f along E at a point p € E is by definition the
opposite of the residue at p of the connection V:

tp(f, E) = —Resp(V) .

In particular, ¢,(f, E) = 0 if p is not a singular point of f.

Remark 1.3.15. If [v] is a non-degenerate characteristic direction of a non-dicritical germ
fo € End(C?,0) with non-zero director o € C*, then it is not difficult to check that

1
L[M(f,E) = E )

where f is the lift of f, to the blow-up of the origin.
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The precise statement is then the following:

Theorem 1.3.16. (Abate, 2001 [A2]) Let E be a (not necessarily compact) Riemann surface
inside a 2-dimensional complex manifold M, and take f € End(M, E) tangential to E. Let
p € E be a singular point of f such that v,(f, E) ¢ Q. Then there exists a Fatou flower for f
at p. In particular, if f, € End(C?,0) is a non-dicritical holomorphic local dynamical system
tangent to the identity with an isolated fixed point at the origin, and [v] € P!(C) is a singular
direction such that v, (f,IP’l(C)) ¢ QF, where f is the lift of f, to the blow-up of the origin,
then f, has a Fatou flower tangent to [v].

Remark 1.3.17. This latter statement has been generalized in two ways. Degli Innocenti
[DI1] has proved that we can allow E to be singular at p (but irreducible; in the reducible case
one has to impose conditions on the indices of f along all irreducible components of E passing
through p). Molino [Mo], on the other hand, has proved that the statement still holds assuming
only ¢, (f, E) # 0, at least for f of order 2 (and E smooth at p); it is natural to conjecture that
this should be true for f of any order.

The problem of the validity of something like Theorem 1.3.12 remains open in dimen-
sion n > 3; see [AT1] and [Ro2] for some partial results.

It is also widely open, even in dimension 2, the problem of describing the stable set of
a holomorphic local dynamical system tangent to the identity, as well as the more general
problem of the topological classification of such dynamical systems. Some results in the case
of a dicritical singularity are presented in [BM]; for non-dicritical singularities a promising
approach in dimension 2 is described in [AT3].

Indeed, in [AT3], Abate and Tovena get a complete description of the local dynamics in a
full neighbourhood of the origin for a large class of holomorphic local dynamical systems tangent
to the identity. Since results like Theorem 1.2.9 seem to suggest that generic holomorphic local
dynamical systems tangent to the identity might be topologically conjugated to the time-1 map
of a homogeneous vector field, their approach might eventually lead to a complete topological
description of the dynamics for generic holomorphic local dynamical systems tangent to the
identity in dimension 2.

We end this section with a couple of words on holomorphic local dynamical systems with
a parabolic fixed point where the differential is not diagonalizable. Particular examples are
studied in detail in [CD], [A4] and [GS]. In [A1] it is described a canonical procedure for lifting
an f € End(C", O) whose differential at the origin is not diagonalizable to a map defined in a
suitable iterated blow-up of the origin (obtained blowing-up not only points but more general
submanifolds) with a canonical fixed point where the differential is diagonalizable. Using this
procedure it is for instance possible to prove the following

Corollary 1.3.18. (Abate, 2001 [A2]) Let f € End(C?,O) be a holomorphic local dynamical
system with dfo = Jo, the canonical Jordan matrix associated to the eigenvalue 1, and assume
that the origin is an isolated fixed point. Then f admits at least one parabolic curve tangent
to [1: 0] at the origin.

1.3.2 Hyperbolic case

Let us now assume that the origin is a hyperbolic fixed point for an f € End(C",0O) not
necessarily invertible. We then have a canonical splitting

C"=E®E",

where E* [resp., E"] is the direct sum of the generalized eigenspaces associated to the eigenval-
ues of dfo with modulus less [resp., greater]| than 1. Then the first main result in this subject
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is the famous stable manifold theorem (originally due to Perron [Pe] and Hadamard [H]; see
[FHY, HK, HPS, Pes, Sh, AM] for proofs in the C'*° category, Wu [Wu] for a proof in the
holomorphic category, and [A3] for a proof in the non-invertible case):

Theorem 1.3.19. Let f € End(C",O) be a holomorphic local dynamical system with a
hyperbolic fixed point at the origin, and let (U, f) be a representative of f. Then:

(i) the stable set Ky, ) is an embedded complex submanifold of (a neighbourhood of the
origin in) C", tangent to E* at the origin;

(i) there is an embedded complex submanifold Wy, sy of (a neighbourhood of the origin
in) C™, called the unstable set of f, tangent to E" at the origin, such that f‘W(U,n
is invertible, f~*(Ww.)) € Ww,p), and z € Wy, p) if and only if there is a sequence
{#_k}ren in the domain of f such that zy = z and f(z_) = z_g41 for all k > 1.
Furthermore, if f is invertible then Wy, ) is the stable set of fL

The proof is too involved to be summarized here; it suffices to say that both Ky sy and
W, ) can be recovered, for instance, as fixed points of a suitable contracting operator in an
infinite dimensional space (see the references quoted above for details).

Remark 1.3.20. If the origin is an attracting fixed point, then E* = C", and Ky is
an open neighbourhood of the origin, its basin of attraction. However, as we shall discuss
below, this does not imply that f is holomorphically linearizable, even when it is invertible.
Conversely, if the origin is a repelling fixed point, then E* = C", and K(y,5) = {O}. Again,
not all holomorphic local dynamical systems with a repelling fixed point are holomorphically
linearizable.

If a point in the domain U of a holomorphic local dynamical system with a hyperbolic
fixed point does not belong either to the stable set or to the unstable set, it escapes both in
forward time (that is, its orbit escapes) and in backward time (that is, it is not the end point
of an infinite orbit contained in U). In some sense, we can think of the stable and unstable
sets (or, as they are usually called in this setting, stable and unstable manifolds) as skewed
coordinate planes at the origin, and the orbits outside these coordinate planes follow some sort
of hyperbolic path, entering and leaving any neighbourhood of the origin in finite time.

Actually, this idea of straightening stable and unstable manifolds can be brought to fruition
(at least in the invertible case), and it yields one of the possible proofs (see [HK, Sh, A3] and
references therein) of the Grobman-Hartman theorem:

Theorem 1.3.21. (Grobman, 1959 [Grl-2]; Hartman, 1960 [Har]) Let f € End(C",0) be a
locally invertible holomorphic local dynamical system with a hyperbolic fixed point. Then f is
topologically locally conjugated to its differential d fo.

Thus, at least from a topological point of view, the local dynamics about an invertible
hyperbolic fixed point is completely clear. This is definitely not the case if the local dynamical
system is not invertible in a neighbourhood of the fixed point. For instance, already Hubbard
and Papadopol [HP] noticed that a Bottcher-type theorem for superattracting points in several
complex variables is just not true: there are holomorphic local dynamical systems with a
superattracting fixed point which are not even topologically locally conjugated to the first non-
vanishing term of their homogeneous expansion. Recently, Favre and Jonsson (see, e.g., [Fa]
and [FJ1, 2]) have begun a very detailed study of superattracting fixed points in C?, study
that might lead to their topological classification. We shall limit ourselves to quote one result.

Definition 1.3.15. Given f € End(C?,0), we shall denote by Crit(f) the set of critical points
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of f. Put
Crit™(f U [k (Crit(f
k>0
we shall say that f is rigid if (as germ in the origin) Crit®™(f) is f-invariantm and it is either
empty, a smooth curve, or the union of two smooth curves crossing transversally at the origin.
Finally, we shall say that f is dominant if det(df) # 0.

Rigid germs have been classified by Favre [Fa], which is the reason why next theorem can
be useful for classifying superattracting dynamical systems:

Theorem 1.3.22. (Favre-Jonsson, 2007 [FJ2]) Let f € End(C? O) be superattracting and
dominant. Then there exist:

(a) a 2-dimensional complex manifold M (obtained by blowing-up a finite number of points);

(b) a surjective holomorphic map m: M — C? such that the restriction
Tlang M\ E — C2\ {0}

is a biholomorphism, where E = m=1(0);
(c) a point p € E; and
(d) a rigid holomorphic germ fe End(M, p)
S0 thatﬂof:fow.

1.3.3 Resonances and Poincaré-Dulac normal forms

Coming back to local invertible dynamical systems, the holomorphic and even the formal
classification are not as simple as the topological one. As we saw in Section 1.2, one of the main
questions in the study of local holomorphic dynamics is when f is holomorphically linearizable.
The answer to this question depends on the set of eigenvalues of d fp, usually called the spectrum
of dfp, and the main problem is caused by resonances. In the rest, we shall need the following
notation.

Definition 1.3.16. Let p > 2. We denote by HP the complex vector space of homoge-
neous polynomial endomorphisms of C" of degree p, and we consider on it the standard ba-
sis BP = {z%¢; | |Q| = p,1 < j < n}. We shall denote by o(k) every holomorphic map of the
form »° -y hp with by, € HP.

Let us first see what happens when we conjugate f by a germ of biholomorphism of the
form v, :== I + 1, with ¢, € H? and p > 2.
Lemma 1.3.23. Let ¢ := I + QZ be a germ of biholomorphism of C"™ with 1; € H4, and let
f =AM+ S,-1+ Hy+ o(q) be a germ of biholomorphism with S;_; € H' & --- ® HI™! and
H, € H9. Then

_1ofo¢:A—|—Sq,1 +[Hq+AO’lZ}\—’lZ}\OA]+O(q).
Proof. 1t is useful to note that, for any h € H® with s > 2 and for any holomorphic map ! with
[(O) = O, we have h(l + o(r)) = hol+ o(r +s—1). Hence, we have

fop=A+Aop+ S, 10(I+9)+H,o(I+15)+o(q)
:A+Ao$+Sq,1 + H, + o(q).
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Moreover, it is easy to verify that ¢=! = I — 1Z + o(q), so we have
Yl ofory=A+ Ao+ S, 1+ Hy+o(g) — 1o (A+o(1) +o(g)
= A+ Ao+ S, 1+ Hy— oA+ o(qg),
and this concludes the proof. L]

Thus the germ v, := I + 1//1\(] conjugates f = A+ H, + o(q) with A + o(q) if and only if z/p\q
is a solution of the equation H, = 9o A — Ao. We have then to study the invertibility of the
linear operators

My:H" —H"
defined by
My(h) =hoA—Aoh.
When A = Diag(Aq,...,A,) it is easy to answer this question. In fact, for each element zer

of the basis B” we have
M (%) = (A9 = Aj)2%;, (1.45)
hence ker(M}) = {2%¢; | \¢ —); =0,|Q| > 2,1 < j <n}
We are then led to give the following definition.

Definition 1.3.17. Let A € (C*)"” and let j € {1,...,n}. We say that a multi-index @ € N,
with |Q| > 2, gives a multiplicative resonance relation for \ relative to the j-th coordinate if

A9 = NN = )

and we put
Res;(A) = {Q e N" [ Q] > 2,A% = \;}.
The elements of Res; () are simply called resonant multi-indices.
When n = 1 there is a resonance if and only if the multiplier is a root of unity, or zero;
but if n > 1 resonances may occur in the hyperbolic case and in other cases too.

Resonances are the obstruction to formal linearization. Indeed, as we shall see in a minute,
a computation completely analogous to the one yielding Proposition 1.2.20 shows that the coef-
ficients of a formal linearization have in the denominators quantities of the form AF ... \kn —Aj.
In particular, from the formal point of view, we have the following classical result:
Theorem 1.3.24. Let f be a germ of holomorphic diffeomorphism of C™ fixing the origin O
with no resonances. Then f is formally conjugated to its differential d fo.

We shall see in a minute that Theorem 1.3.24 is a consequence of next Theorem 1.3.25
(see also [Ar]| pp. 192-193 for another proof).

In presence of resonances, even the formal classification is not that easy. Let us assume,
for simplicity, that dfo is in Jordan form, that is

Pi(z) = (Mz,€221 + Nozoy .oy €n2n—1 + Anzn) »

with e1,...,€6,-1 € {0,1}.

Definition 1.3.18. We shall say that a monomial z% := z{* - - - 28 in the j-th coordinate of f
is resonant with respect to Ay, ... A, € C* (or simply (A1, ... \,)-resonant) if Q| = D77, ¢; > 2
and A9 := A NI = )
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Then Theorem 1.3.24 can be generalized to:
Theorem 1.3.25. (Poincaré, 1893 [Po]; Dulac, 1904 [D]) Let f € End(C",O) be a lo-
cally invertible holomorphic local dynamical system. Then it is formally conjugated to a
g € Colz,...,2,]" such that dgo is in Jordan normal form, and g has only resonant monomi-
als. Moreover, the resonant part of the formal change of coordinates 1 can be chosen arbitrarily,
but once this is done, ¥ and g are uniquely determined.
Proof. There are many ways to prove this result (see [Ar, p. 194] or [IY, p. 53] for other proofs).
We would like to prove that formal solutions v and g of

fotp=1oyg (1.46)

exist with the required properties.
Write f(z) = Az + f(2), ¥(w) = w+ ¢¥(w) and g(z) = Az + g(z). Then equation (1.46) is
equivalent to

Ap+ Foy=G+dog. (1.47)
Up to a linear change of coordinates, we can suppose that the matrix A is in Jordan normal
form with eigenvalues Aq,...,\,. Using the standard multi-index notation, i.e., writing

F=> fre®, frecn,

|R|>2

where R = (ry,...,r,) € N,

where Q = (q1,...,q,) € N", and

where P = (p1,...,pn) € N, the j-th component of equation (1.47) becomes

Tk
n

)‘jz b w? +¢e; Z Yo j-1w® + Z IR H wy, + Z Yprw’

Q=2 Q=2 |RI>2 k=1 |P>2
e (1.48)
n
= Z 9q.;w + Z VR, H AWy + Egwr—1 + Z gprw” )
1Q|>2 |R|>2 k=1 |P|>2

where €5, € {0,e} and €, can be non-zero only if Ay, = Ay_;. We want to compute the coefficient
of w®. In the left-hand side we have the components Ajg,; and €1 j—1 and a term depend-
ing polynomially on f and ¢, in which contribute only the coefficients ¢ pj with |P| < |Q|,

~ Tk
because f is of second order. In fact, in the product (wk + Z\P\>2 ¢P7kwp> , Yp,, belongs to

powers of order more than or equal to | P|; the series f has indices |R| > 2, then ¢p yw? will be
multiplied at least by another w,. In the right-hand side we have g ; and, analogously to the
left-hand side, there is a term depending polynomially on @ and g, in which contribute only
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the coefficients g ; with |R| < |Q| and the coefficients gpj with |P| < |Q|. Moreover R < Q
in the lexicographic order. Indeed, if R > @ then the ¢;’s will give a contribute in the prod-

Tk
uct <)\kwk + epwr_1 + Z\P\zz gp7k.’u)P> , S0 we obtain a multi-index coming after ); more

precisely, for R = Q we have only A% ;.
Then we have:

Njbg i + 0.1 + Pol.(frj, ¥pk: |P| < |Q))

Q (1.49)
= 9Q,j +A ,l/}Q,J + POl'(,l/}R,j7gP,k: ’P’ < ‘Q’?R < Q)7
hence
(A9 = \)q.j + 9a.5
= €j¥q,j—1 + PoL.(frj, ¥pr: |P| <|Q[) — Pol.(¢R,j,9pk: | P| < |Q[, R < Q)
- CQ:j’
so we can recursively solve the conjugacy equation imposing:
900 =0,  ¥q; =A% =XN)"Cqy, ifA?—);#0,
90.; = Cq,j, vq,; whatever, if \Q — A =0,
and we are done. ]
Definition 1.3.19. A formal power series g € Cp[z1, ..., 2,]™ without constant term, and with
linear part A in Jordan normal form with eigenvalues Aq,..., A\, € C*, is called in Poincaré-
Dulac normal form if it contains only resonant monomials with respect to A1, ..., A,.

Definition 1.3.20. Let f be a germ of biholomorphism of C" fixing the origin. A series g in
Poincaré-Dulac normal form that can be formally conjugated to f is called a Poincaré-Dulac
(formal) normal form of f.

The problem with Poincaré-Dulac normal forms is that they are not unique. In particular,
one may wonder whether it could be possible to have such a normal form including finitely
many resonant monomials only (as happened, for instance, in Proposition 1.2.11). We shall
see in the next subsection that this is indeed the case when f belongs to the Poincaré domain,
that is when d fo is invertible and O is either attracting or repelling.

Definition 1.3.21. We shall say that f, a germ of biholomorphism of C” fixing the origin,
is holomorphically normalizable if there exists a local change of coordinates ¢ € End(C",0),
tangent to the identity, conjugating f to one of its Poincaré-Dulac normal forms.

Even if Poincaré-Dulac normal forms associated to a same germ f are not unique, we can
say something on the shape of the formal conjugations between them. We have in fact the
following result.

Proposition 1.3.26. Let f and g be two germs of biholomorphism of C" fixing the origin,
with the same linear term A and in Poincaré-Dulac normal form. If there exists ¢ a formal
transformation of C™, with no constant term and tangent to the identity, conjugating f and g,
then ¢ contains only monomials that are resonant with respect to the eigenvalues of A.

Proof. Since f and g are in Poincaré-Dulac normal form, A is in Jordan normal form. Let
A1, ..., Ap be the eigenvalues of A. We shall prove that a formal solution ¢ = I + @ of

fop=ypoyg (1.50)



42  Jasmin Raissy — Geometrical methods in the normalization of germs of biholomorphisms

contains only monomials that are resonant with respect to A1,...,\,. Using the standard
multi-index notation, for each j € {1,...,n} we can write

Fi(2) = Njzj+ ez + 5 170(2) = Nz + gz 25 Y foi2,
QEN;
AR=1

95(2) = Njzj + 521 + 5055 (2) = Nz gjzm1 + 25 > 90.42%,

QEN;
AQR=1
and
pi(2) = <1 + @5 (2) + ¢} res(2)> =zi+2z > 90;2%+z Y vqi,
QENj QEN]'
AQ=1 AQ#£1
where

and ¢; € {0,1} can be non-zero only if A; = A;_;. With these notations, the j-th coordinate
of the left-hand side of (1.50) becomes

(fop)i(2) = Njwj (2) + €505-1(2) +93(2) D fa H@k

QEN;
AR =1

=Xz (14 ¢57(2) + 97 (2))

o5z (1+@(2) + 9175(2))

r res r e
+Zj (1+(pres( +<P] es )ZfQJ H<1+(p +‘~Pk es(z)) 7

QEN; k=1
AQ:A]-

(1.51)

3

while the right-hand side of the j-th coordinate of (1.50) becomes

(pog);(z) = g;(2) + g;(= ngﬂgk )" + g5 (2 ZwQ;Hgk

QEN; QEN;
AQ=1 AQ;&l

=Nz +€525— 1+z]g;es( z)

n qk
+ ()\ij + €521 + ng§eS(Z))Z ©Q.j= Q H <)\k + 514: ! + g};es(z)> (1'52)

QEN; k=1
AQ=1

n
+ ()\ij + €j2j71 + ng;es(z))z (,OQ] Q H ()\k + e’:‘k

QEN]' k=1
AQ#1

1 qr
+mﬁ@0.

Furthermore, notice that if P and @ are two multi-indices such that A = A\? = 1, then we
have A*P+8Q =1 for every a, 3 € Z.

We want to prove that g ; = 0 for each multi-index @ € N; so that A\? # 1. Let
us assume by contradiction that this is not true, and let @ be the first (with respect to the
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lexicographic order) multi-index in N := U?:1 Nj; so that AQ # 1 and ©5.5 # 0. Let j be the
minimal in {1,...,n} such that @ € Nj, and let us compute the coefficient of the monomial
2@%¢i in (1.51) and (1.52). In (1.51) we only have )\jgoaj because, since f — A is of second order

and resonant, other contributions could come only from coefficients ¢ pj with |P| < @\ and
AP #£ 1, but there are no such coefficients thanks to the minimality of Q and j. In (1.52) we can
argue analogously, but we have also to take care of the monomials divisible by ez(zk_l/zk)th,

with AP = 1; in this last case, if €, # 0, we obtain a multi-index P — hej, + hej_1, and again
AP—hexther—1 — 1 because A\, = Ary1. Then in (1.52) we only have )\QJrejgpéj. Hence, we
have _
Q+e; _ Y\ \ipo —
(A ’ A])SDQJ 0

yielding
$5.5 =Y

because A@ # 1 and \; # 0, contradicting the hypothesis. L]

Remark 1.3.27. It is clear from the proof that Proposition 1.3.26 holds also in the formal
category, i.e., for f,g € Co[z1,...,2,] formal power series in Poincaré-Dulac normal form.

It should be remarked that, in the hyperbolic case, the problem of formal linearization is
equivalent to the problem of smooth linearization. This has been proved by Sternberg [St1-2]
and Chaperon [Ch]:

Theorem 1.3.28. (Sternberg, 1957 [St1-2]; Chaperon, 1986 [Ch]) Let f, g € End(C",O) be
two holomorphic local dynamical systems, and assume that f is locally invertible and with a
hyperbolic fixed point at the origin. Then f and g are formally conjugated if and only if they
are smoothly locally conjugated. In particular, f is smoothly linearizable if and only if it is
formally linearizable. Thus if there are no resonances then f is smoothly linearizable.

1.3.4 Attracting/Repelling case

If a germ f € End(C™,0) is in the Poincaré domain, that is the origin is an attracting or
a repelling fixed point, then the holomorphic classification is clear. Since, as in the one-
dimensional case, if the origin is a repelling fixed point for f then it is an attracting fixed point
for =1, it suffices to study the attracting case.

The attracting [resp. repelling] case was first studied by Poincaré [Po]; Fatou [F4] and
Bieberbach [Bi] used this case to construct the first examples of proper open subsets of C" (with
n > 2) biholomorphic to the whole of C™, a phenomenon that cannot occur in one variable. A
very clear exposition of this case was given, using a functional approach, by Rosay and Rudin
in the appendix of [RR]. Recently, Berteloot in [B] provided a very beautiful exposition of this
functional approach to the problem, that we shall present in this subsection.

In the rest of this subsection we shall use the following notation. Let B, be the euclidian
ball of C" centered at the origin and with radius r. If f: B, — C" is a holomorphic map
fixing the origin and || - || is a fixed norm on C", we put || f||, = sup.¢p, || f(2)| for any p <.
Recall that HP is the complex vector space of homogeneous polynomial endomorphisms of C™
of degree p, we consider on it the standard basis BP = {2%¢;,|Q| = p,1 < j < n}, and we
denote by o(k) every holomorphic map of the form sz i1 hp with by, € HP.

We shall need the following lemma.
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Lemma 1.3.29. Let kK > 1 and let h = Zka H,, be holomorphic on B,.. Then:
(i) for any p > k and for any z € B,. we have

i < (L)

(ii) for any p < r and for any z € B, we have

Il < P (o) e

Proof. For all 0 < ||z|| < p < r and 6 € [0, 27| we have

q
—ipb EARTANE P i(g—p)0
‘ h('ouzne >_Z<Hzll> ) (1:53)

9=k
Integrating (1.53) over [0, 27|, we get (i). Furthermore (ii) follows immediately from (i). [

Theorem 1.3.30. (Poincaré, 1893 [Po]) Let g be a germ of biholomorphism of C" fixing the
origin, with linear part A such that alz|| < ||Az|| < Al|z||, where 0 < a < A < 1, and let
f: B, — C" be a holomorphic map such that

f=g9+> Hm

m>k
where H,,, € H™. Then, if k > log(a)/log(A), the sequence {g~? o fP}, converges to a germ
of biholomorphism ¢ such that (O) = O, dpo =1d and p~t o fop =g.

Proof. Up to shrinking r, we may assume that f(B,) C B, and g(B,) C B, for any p < r. Let
0<a <a<A<A <1landO0<ry<r besuch that (4)¥/a’ < 1 and

- _ 1
Vz,w € By, lg™"(2) =g~ (w)]| < —llz = wll, (1.54)

vz € By, lg()ll < A"|l=]|. (1.55)

Fix € > 0 such that v := (A’ +¢)*/a’ < 1. Thanks to Lemma 1.3.29, there exists a constant
Co > 0 such that || f(z) — g(2)|| < Colz||* on B,,. Hence, by (1.54) and (1.55), it follows that
lg™ 0 £(2) — 21l < Crllzl* and [f(2)]| < (4" £ Collz|[*=) 2] on By,. Taking ry < ro small
enough, we have

vz € By, lg™" o f(2) = 2l < Cull=]*, (1.56)

vz € By, IF () < (A" + )]l (1.57)

Up to taking a smaller r{, we may also assume that rq Zp>0 P < rg and Clrffl <1
Now we shall prove inductively over p that for any z € B,, we have

D)p llg=®FD 0 frH(z) — g7P o fPz] < C1y”|2]|*,
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(i) lg™ o [P < (L7 4+ +97)r
The assertions (i)g and (i) are, respectively, (1.56) and (1.57). Let us now assume that
(i)p and (ii), hold. Applying (i), to f(z), and using (1.57), since B,, is stable under f, we get

Vz € By lg” " o fPHE(2) — g7P o Pz < CiyP(A o)z " (1.58)

Since we have
CiP (A" +e)F|12]F = o/ Ciy? T 2|*
< a,(clrl)k717p+1""l

1
S 7p+ 1,

by (1.58) and (ii), we get (ii)p+1. Now, from (ii), and (ii),+1 we get that g7 o fPT1(2) and
g~ P+ o fP+2(2) are in B,,, thus (i),+1 follows from (1.54) and (1.58).

Thanks to (i), the sequence {g™? o fP}, converges uniformly on B,,, and its limit ¢
verifies ¢(O) = O and dpp = limd (g~ o fP)o = Id. Since we have

(9P o fP)of=go(g W o frth),
passing at the limit in both sides we get ¢ o f = g o ¢ and we are done. ]

We want to prove that every germ of biholomorphism in the Poincaré domain is holomor-
phically normalizable.

The first thing to notice is that, in the attracting (and hence in the repelling) case, there
can be only finitely many resonances.

Lemma 1.3.31. Let A = (A1,...,\,) € (C)". If |N\;| < 1 for all j € {1,...,n}, then
card(JJj_; Res;(\)) < +oo. If moreover 0 < [Ai| < --- <|)\,| < 1, then Q € Res;()) only if it
is of the form @Q = (0,...,0,¢;41,...,¢y), and

Q| < [log|)\1|}

log | Ay

where [-] denotes the integer part.

Proof. Up to reordering the coordinates, we may assume that
0< M| <-- <Al <1,

Hence |A;] < |Aj| < |Aj|0t4a |\, |lQI=(arttai) < |\j|21+F45 | for any multi-index Q with
|Q| > 2, and we have the thesis. U]

Theorem 1.3.32. (Poincaré, 1893 [Po|; Dulac, 1904 [D]) Let f be a germ of biholomorphism
of C" in the Poincaré domain. Then f is locally holomorphically conjugated to one of its
Poincaré-Dulac normal forms. Moreover, if the spectrum of dfp is non-resonant, then f is
holomorphically linearizable.

Proof. It suffices to prove the statement for f having the origin as an attracting fixed point.

Up to linear changes of the coordinates we may assume that the linear term A of f is
in Jordan normal form. Denote by D the diagonal of A, i.e., D := Diag(A1,...,\,), where
A1y ...y Ap is the spectrum of d fo.
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Up to reordering the coordinates, we may assume 0 < |A;| < ... < |\,] < 1. Denote by
co(D) the quantity (log|A1])/(log|\,|) and take k a positive integer such that k& > co(D).

Let us first assume that there are no resonances. We have to distinguish between two
cases: A diagonal and A not diagonal.

Assume first that A = D. Since we have no resonances, the operators Mp:H" — H",
defined by M}, (h) = ho D — D o h, are invertible for each » > 2, and Lemma 1.3.23 ap-
plied to f gives us a germ of biholomorphism 5 tangent to the identity at O and such that
¢;1 o fotps = A+o0(2). Applying recursively 1.3.23 to 1/)51 o foihs for ¢ < k times, we get a germ
of biholomorphism tangent to the identity ¢ := 10- - -0t such that f:: o lofop = A+o(k).
Since k > ¢o(D), we can apply Theorem 1.3.30 to f and we get that ]7 is holomorphically
linearizable, and therefore also f is. (Here the crucial fact is that cyo(D) only depends on
A =dfo =dfo).

Let us now consider the case in which A # D. We want to reduce ourselves to the previous
case conjugating A to a matrix sufficiently close to D. Let us then consider the matrix

€
Se =

eTL

with € > 0. Then the germ f. = S;'ofoS. = Ac+ Ha . +0(2), where A, = S-1oAoS,, is close
to D for & small enough, because A, coincides with the sum of D and a strictly upper triangular
matrix with coefficients t; ; = o(e77%). 1If € is small enough, the operators Mga, e M}fs are
invertible and k > ¢o(A:). Hence we apply to f. the same procedure we used with f, and we
get a germ of biholomorphism ¢, tangent to the identity and such that ¢-to f.op. = A.+o(k).
Hence f. := (S. 0. o S-1)"to fo(Scop. 0S5 1) = A+ o(k) and by Theorem 1.3.30 applied
to jA’; we have the assertion.

Let us now pass to the case in which there are resonances, thus ker(M7,) is non trivial for
some 7 between 2 and ng = [(log |A\1])/(log |\, ])]. For those values, ker(M7,)) has a basis given
by the resonant monomials z?ﬁll .-+ 2zPre;, and the sum of an element of @ ker(M},) and A
(which is upper triangular) defines a polynomial triangular automorphism of C™:

()\12'1 + P1(227 cee 7zn)7 Aozg + P2(237 cee 7Zn)a cee 7)‘n712n71 + Pnfl(zn% )\nzn)

Let us fix an integer k > ¢o(D) = [(log |A1])/(log |An|)]. For any r > 2, let H" = ker(M},)) & X"
be the decomposition of H", where X" is the sum of the eigenspaces of M7, distinct from the
kernel. We denote by 7" the projection on ker(M7,) with respect to that decomposition, and by
/ﬂr := 7" (h,). Fix ko > 2, since 7" + M7}, is invertible for any r > 2, 7" + M} will be invertible
for 2 < r < kg provided that A is sufficiently close to D. Let us assume for a moment that
such a condition is satisfied and that & > c¢o(A). We apply Lemma 1.3.23 to f = A+ Hy 4 0(2)

with h = hg, where hs is the unique element of H? such that /ﬁg + M3 (hy) = H,. This gives
us a germ of biholomorphism 5 tangent to the identity such that

Wyl o fothy=A+hy+ Hs+ o(3).

We apply Lemma 1.3.23 to 5 ' o f o1py with Sy = ho and h = hs3 such that Eg + M3 (h3) = Hs,
obtaining a germ of biholomorphism %3 tangent to the identity such that

Y3t oty o fouy oty = A+ ha+hs + Hy+ o(4).
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Continuing with this procedure, we construct a germ of biholomorphism 1 fixing the origin,
tangent to the identity and such that

~

v lofop=A+hyt e+, + o(k).

Since g := A + /ﬁg + -+ /ﬁno is a triangular automorphism of C", we can now apply Theorem
1.3.30 to 1~ o f o1 and deduce that f is locally holomorphically conjugated to g via a germ
of biholomorphism tangent to the identity at the origin.

If A is not close enough to D, we can replace f with S-'o f o S., with &€ > 0 small
enough, as we did before. As before, S-! o f o S. is locally holomorphically conjugated to a
triangular automorphism of C™ with linear part S-'oAoS.. Hence f is locally holomorphically
conjugated to a triangular automorphism of C" with linear part A. L]

Reich [Re2] describes holomorphic normal forms when d fo belongs to the Poincaré domain
and there are resonances (see also [EV]).

1.4 Holomorphic linearization

We saw in the previous subsection that each non-resonant germ which is in the Poincaré
domain can be holomorphically linearized. Poincaré proved something more, in fact, in [Po],
using majorant series, he proved the following

Theorem 1.4.1. (Poincaré, 1893 [Po]) Let f € End(C", O) be a locally invertible holomorphic
local dynamical system in the Poincaré domain. Then f is holomorphically linearizable if
and only if it is formally linearizable. In particular, if there are no resonances then f is
holomorphically linearizable.

Proof. If f is holomorphically linearizable, obviously it is also formally linearizable. If f is
formally linearizable then it is holomorphically conjugated to its linear term up to order k for
any positive integer k, and hence by Theorem 1.3.30 it is holomorphically linearizable. L]

Even when there are no resonances, or more generally, when we know a priori that a given
germ is formally linearizable, not so much is known about the convergence of the linearizations
in the cases different from the Poincaré domain. A first result in this sense is the natural
generalization of Theorem 1.2.23:

Theorem 1.4.2. Let A = (A1,...,\,) € (C*)" be a non-resonant vector such that there exists
B> 1 and vy > 0 so that

1
n >2 — < 8. 1.

Then all f € End(C",0) such that dfo is diagonalizable and has spectrum {\1,...,\,} are
holomorphically linearizable.

As in one variable, (1.59) is a particular case of a more general condition, the multi-
dimensional Brjuno condition. In the next subsection we shall introduced this condition and
we shall show how to use it to prove convergence (and thus, in particular, Theorem 1.4.2).

1.4.1 Brjuno’s result

When d fo belongs to the Siegel domain, even without resonances, the formal linearization
might diverge. To describe the known results, let us introduce the following definition:
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Definition 1.4.1. For Aq,..., A\, € C and m > 2 set

Wx,....x, (M) = min {Wfl X N Rk €N 2 Zkh <m,1<j< n} . (1.60)
h=1
If A1,..., A\, are the eigenvalues of dfp, we shall write wy(m) for wy, . i, (m).

It is clear that wy(m) # 0 for all m > 2 if and only if there are no resonances. It is also
not difficult to prove that if f belongs to the Siegel domain then

li =0
im wp(m) =0,

which is the reason why, even without resonances, the formal linearization might be diverging,
exactly as in the one-dimensional case.

Definition 1.4.2. Let n > 2 and let A1, ..., A, € C* be not necessarily distinct. We say that A
satisfies the Brjuno condition if there exists a strictly increasing sequence of integers {pl,},,zo
with pg = 1 such that

Zp,jllogw,\h...’)\n(pyﬂ)*l < 00. (1.61)
v>0

Lemma 1.4.3. (Brjuno, 1971 [Brj3]) Let w:N — (0,400) be a monotone non-increasing
function. Then there exists a strictly increasing sequence of integers {p, },.o with po = 1 such
that B

Zp;l logw(pys1)~t < 00 (1.62)
v>0
if and only if
1
Z o7 logw(2™) ™! < 0. (1.63)
v>0

Proof. We claim that for any increasing sequence {p,,},,zg, we have

1
Z 2—ylogw(2l’+1)71 < 42]9;1 logw(p,1)~ " (1.64)
v>0 v>1

In fact, for every v we can find k and [ satisfying the inequalities
2k <pv < 2k+1 << 2k+l < DPv+1 < 2k+l+1’

implying
logw(2*) ™1 < - < logw(2M) ™! < logw(pyy1) ™t

Hence we have

k+1—1 1 1
j+1y—1 -1

Z glogw(? )< 2—klogw(pu+1) %

i=k j=20

1 _
=4 ST logw(pyq1)™*

1
<4 — logw(pwrl)_l.

Decomposing the series in the left-hand side of (1.64) into corresponding pieces, and applying
to each of them the last estimate, we get the claim. This shows that if (1.62) holds for a strictly
increasing sequence of integers {p, },. o with pg = 1, then also (1.63) holds.

The other direction is clear. - U]
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Remark 1.4.4. It is clear from the proof that we get the same assertion even if in (1.63)
we replace 2 by an arbitrary natural number a > 1. We refer to [Brj3| pp. 222-224 for other
relations between the Brjuno condition and other similar arithmetic conditions.

As far as I know, the best positive result in the non-resonant case is due to Brjuno [Brj2-3],
and is a natural generalization of its one-dimensional counterpart:

Theorem 1.4.5. (Brjuno, 1971 [Brj2-3|) Let f be a germ of biholomorphism of C™ fixing the
origin, such that dfo is diagonalizable. Assume moreover that the spectrum of dfo has no
resonances and it satisfies the Brjuno condition. Then f is holomorphically linearizable.

We shall see in Subsection 1.5.1 that it is instead possible to generalize Theorem 1.2.22
proving that if Ay,..., A, € C have no resonances and

. 1 1
limsup — log ————— = +o0,
m——+oo M w)\l,...,)\n (m)

then there exists a germ of biholomorphism of (C™,0), fixing the origin, with differential
dfo = Diag(\1,...,\n), and not holomorphically linearizable.

Remark 1.4.6. It should be remarked that, contrarily to the one-dimensional case, it is not
yet known whether the Brjuno condition is necessary for the holomorphic linearizability of all
holomorphic local dynamical systems with a given linear part belonging to the Siegel domain.
However, it is easy to check that if A € S* does not satisfy the one-dimensional Brjuno condition
then any f € End(C", O) of the form

f(z) = (A1 + 27, 9(2))

is not holomorphically linearizable: indeed, if ¢ € End(C",O) is a holomorphic linearization
of f, then ¥(¢) = (¢, 0) is a holomorphic linearization of the quadratic polynomial \{ + (2,
against Theorem 1.2.26.

We shall see in the next subsections possible generalizations of Brjuno’s Theorem 1.4.5. We

would also like to mention here that in [DG] are discussed results in the spirit of Theorem 1.4.5
without assuming that the differential is diagonalizable.

1.4.2 Linearization under the reduced Brjuno condition

Another approach to this kind of problems was given by Riissmann in [Riil], an I.H.E.S. preprint
which is no longer available, and it was finally published in [Ri2]. Riissmann introduced the
following condition, that we shall call Riissmann condition.

Definition 1.4.3. Let n > 2 and let Aq,..., )\, € C* be not necessarily distinct. We say
that A = (A1,..., \,) satisfies the Rissmann condition if there exists a function Q: N — R such
that:
(i) k<Qk) <Qk+1)foral keN,
(i) Y 7z logQ(k) < +o0, and
k>1
(iii) A9 —N;| > m for all j =1,...n and for each multi-index @ € N with |Q| > 2 not
giving a resonance relative to j.

Riissmann proves that, in dimension 1, his condition is equivalent to Brjuno condition (see
Lemma 8.2 of [Rii2]), and he also proves the following result.
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Lemma 1.4.7. (Rissmann, 2002 [Rii2]) Let Q:N — (0,400) be a monotone non decreasing
function, and let {s,} be defined by s, := 29" with ¢ € N. Then

1 1
Zs—logﬂ(sy+1)§ Z ﬁlOgQ(k’)-

v>0 Y k>2a+1

Proof. For each a, b integers with 0 < a < b we have

hence we have

2Pt
optl — 9p  optl = K2
k=2p
for any p > 0.
Since €} is non decreasing, we obtain
2rptl_g 1
2p+1 logQ(27) < > -3 log Q(k),
k=2p
hence
1 Wy 1
+1/+2 _
Y SorerT 108 (2 <> 23 log (k) = > 25 log Q(k),
v>0 v>0 k=29+v+1 k>2a+1
and we are done. OJ

Riissmann proved the following generalization of Brjuno’s Theorem 1.4.5 (the statement
is slightly different from the original one presented in [Rii2] but perfectly equivalent).

Theorem 1.4.8. (Rissmann, 2002 [Rii2]) Let f be a germ of biholomorphism of C™ fixing
the origin and such that dfo is diagonalizable. If f is formally linearizable and the spectrum
of dfo satisfies the Riissmann condition, then it is holomorphically linearizable.

We refer to the article [Rii2] for the original proof of Riissmann and we limit ourselves
to briefly recall here the main ideas of it. To prove this result, Riissmann first studies the
process of Poincaré-Dulac formal normalization carrying on the functional iterative process we
saw in Lemma 1.3.23, without assuming anything on the diagonalizability of dfo. He then
proves that the set of Poincaré-Dulac formal normal forms of a formally linearizable germ of
biholomorphism f with linear part A reduces to A. He constructs a formal iteration process
for a zero of the operator F(¢) = f o — ¢ oA, and then, assuming A diagonal, he gives
estimates for each iteration step, proving that, under what we called the Riissmann condition,
the process converges to a holomorphic linearization.

We would also like to mention here the articles of Zehnder [Z1-3] where one can find the
modified Newton method used by Riissmann.

Notice that, when there are no resonances, the function wy(m) defined in 1.4.1 satisfies

A9 =X > wr(1Q)
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for each multi-index @ € N with |Q| > 2.
Let us then define:

Definition 1.4.4. Let n > 2 and let Aq,..., A, € C* be not necessarily distinct. For m > 2
set

~ . . K
w m)= min min AT —X\;
Mo hn (1) 2<|K|<m 1<j<n| il
KQR.eSj()\) -

where Res;()) is the set of multi-indices K € N”, with |K| > 2, giving a resonance relation
for A = (A,..., \,) relative to 1 < j < n, ie., A\ — Aj = 0. If \,..., A, are the eigenvalues
of dfo, we shall write w¢(m) for Wy, .., (m).

Definition 1.4.5. Let n > 2 and let A\ = (Aq,...,\,) € (C*)". We say that \ satisfies
the reduced Brjuno condition if there exists a strictly increasing sequence of integers {p, }.,. o
with pg = 1 such that -

> o py M og@n, ., (Ps1) T < oo
v>0
We have the following relation between the Riissmann and the reduced Brjuno condition.

Lemma 1.4.9. Let n > 2 and let A = (\1,...,\,) € (C*)™. If X satisfies Riissmann condition,
then it also satisfies the reduced Brjuno condition.

Proof. The function wy, ., (m) defined in Definition 1.4.4 satisfies

Dayprn (M) <@y, (m 1)

for all m € N, and
A9 =\ = @y, (1Q))

for each j = 1,...n and each multi-index @ € N with |Q| > 2 not giving a resonance relative
to j. Furthermore, by its definition, it is clear that any other function 2: N — R such that
E<Q(k) <Q(k+1) for all k € N, and satisfying, for any j =1,...n,

1
Q)

for each multi-index @ € N with |@| > 2 not giving a resonance relative to j, is such that

A9 — A >

Dy, (M)~ < Q(m)

for all m € N. Hence

Zp,jl logwx, ... A (p,,+1)71 < Zp;jl log Q(py+1)
v>0 v>0

for any strictly increasing sequence of integers {p, },. o with py = 1. Since \ satisfies Riissmann
condition, thanks to Lemma 1.4.7, there exists a function {2 as above such that

1
Z - lOgQ(Su-‘rl) < +o00,

v>0 Y

with {s,} be defined by s, := 297" with ¢ € N, and we are done. L]
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We do not know whether the Riissmann condition is equivalent to the reduced Brjuno
condition in the multi-dimensional case. As we said, Riissmann is able to prove that this is
true in dimension one, but to do so he strongly uses the one-dimensional characterization of
these conditions via continued fraction.

We shall give a direct proof of an analogue of Riissmann Theorem under a slightly different
(and more natural) assumption, using explicit computation with the power series expansion
and then proving convergence via majorant series. To do so, we first prove that when a germ
is formally linearizable, then the linear form is its unique Poincaré-Dulac normal form.

Proposition 1.4.10. Let f be a germ of biholomorphism of C" fixing the origin. If f is
formally linearizable, and f is formally conjugated to a formal Poincaré-Dulac normal form g,
then g is linear.

Proof. Let A be the linear term of f. Up to linear conjugacy, we may assume that A is in Jordan
normal form. If the eigenvalues Aq,..., A, of A have no resonances, then there is nothing to
prove. Let us then assume that we have resonances, and let us assume by contradiction that
g # A. Since f is formally linearizable and it is also formally conjugated to g, also g is
formally linearizable. Thanks to Proposition 1.3.26, any formal linearization 1 of g tangent to

the identity contains only (Aq,..., A, )-resonant monomials; hence, writing g = A + ¢"** and
1 = I + 9™ the conjugacy equation g o 1) =1 o A becomes
A+A¢T€S _|_gres o (I+¢T€S) — (A+gres) o (I+¢T€S)

_ (I + ¢res) oA

— A + wres o A

— A+A¢T€S,
because ¥ o A = Ay™*. Hence there must be

)

and composing on the right with =1 we get ¢*** = 0, contradicting the hypotheses. L]

Remark 1.4.11. As a consequence of the previous result, we get that any formal normaliza-
tion given by the Poincaré-Dulac procedure applied to a formally linerizable germ f is indeed a
formal linearization of the germ. In particular, we have uniqueness of the Poincaré-Dulac nor-
mal form (which is linear and hence holomorphic), but not of the formal linearizations. Hence a
formally linearizable germ f is formally linearizable via a formal transformation ¢ = Id +@ con-
taining only non-resonant monomials. In fact, thanks to the proof of Poincaré-Dulac Theorem
1.3.25, we can consider the formal normalization obtained with the Poincaré-Dulac procedure
and imposing ¢g ; = 0 for all @ and j such that A? = )\;; and this formal transformation ¢,
by Proposition 1.4.10, conjugates f to its linear part.

Now we have all the ingredients needed to prove the following result.

Theorem 1.4.12. Let f be a germ of biholomorphism of C™ fixing the origin and such that
dfo is diagonalizable. If f is formally linearizable and the spectrum of d fo satisfies the reduced
Brjuno condition, then f is holomorphically linearizable.

Proof. Up to linear changes of the coordinates, we may assume that the linear term A of f is
diagonal, i.e., A = Diag(\1,...,\,). From the conjugacy equation

fop=poA, (1.65)
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writing f(2) = Az +37 750 frz%, and p(w) = w+ >olQ|>2 pow?, where f1, and g belong to
C", we have that coefficients of ¢ have to verify

L
Z Agpou® = Z fr Z onw™ | (1.66)
|Q>2 |L|>2 |M|>1

where

Ag = \°I, — A.

The matrices Ag are not invertible only when @ € U?zl Res;(A), but, thanks Remark 1.4.11,
we can set pg ; = 0 for all @ € Res;(\); hence we just have to consider @ ¢ ﬂ?zl Res;(A),
and, to prove the convergence of the formal conjugation ¢ in a neighbourhood of the origin, it

suffices to show that 1
sup — log [|pg|| < oo, (1.67)

Q Q|
for [Q] > 2 and Q & NY_;Res;(N).

Since f is holomorphic in a neighbourhood of the origin, there exists a positive number p
such that || fr.|| < p!*! for |L| > 2. The functional equation (1.65) remains valid under the linear
change of coordinates f(z2) — o f(z/0), ¢(w) — op(w/o) with ¢ = max{1, p*}. Therefore we
may assume that

V|L| > 2 Ifll < 1.

It follows from (1.66) that for any multi-index @ € N™ \ ()7_, Res;()) with |Q| > 2 we have

leall <egt - leallleq. (1.68)

Q1++Qu=qQ
v>2
where
g = min |A9 — )|

1<j<n
QQRes]v()\)

We can define, inductively, for m > 2

Oy = E Ay - Oy,

my+-tmy=m
v>2

and

85 = et Sh. -0
Q= €q Q1+m§2?{u:Q Q1 Qu>
v>2

for Q € N”\ﬂ?zl Res;(\) with |Q] > 2, with oy = 1 and g = 1, where E is any integer vector
with |E| = 1. Then, by induction, we have that

leqll < agdq,

for every @ € N"\(;_; Res;()) with |Q] > 2. Therefore, to establish (1.67) it suffices to prove
analogous estimates for a,,, and dq.
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It is easy to estimate a,. Let a =) -, a,t™. We have

a—t= Zamtm

m>2
m
=2 | 2wt
m>2 \ h>1
a?
Cl-a

This equation has a unique holomorphic solution vanishing at zero

t+1 8t
= (1= /1 —
Ty ( (1+n2>’

defined for |t| small enough. Hence,
sup — log o, < 00,
m m

as we want.

To estimate dgp we have to take care of small divisors. First of all, for each multi-
index @ ¢ ﬂ?zl Res; (M) with |Q] > 2 we can associate to dg a decomposition of the form

0q = €L,€, ~E, (1.69)

where Ly = Q, |Q| > [Li| > --- > [Lp| > 2 and L; ¢ (j_; Res;(A) for all j = 1,...,p
and p > 1. In fact, we choose a decomposition Q) = @1+ - -+ @, such that the maximum in the
expression of d¢ is achieved; obviously, @); does not belong to ﬂ?zl Resj(A) forall j =1,...,v.

We can then express d¢g in terms of eéj and 6Q; with |Q}] < |Q;]. Carrying on this process,
we eventually arrive at a decomposition of the form (1.69). Furthermore, for each multi-index
Q¢ ﬂ?zl Res;(A\) with |@Q] > 2, we can choose an index i so that

e = A9 = N\ |-

The rest of the proof follows closely [Brj2-3]. For the benefit of the reader, we report here

the main steps.
For m > 2 and 1 < j <n, we can define

N;L(Q)
to be the number of factors 521 in the expression (1.69) of d¢, satisfying
er <fws(m), and iy =j,
where w¢(m) is defined in Definition 1.4.4, and in this notation can be expressed as

we(m) = min €
7(m) 2<|Q[<m @
QQO;":chsj(A)
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and 6 is the positive real number satisfying

40 = min |\,] < 1.
1<h<n

The last inequality can always be satisfied by replacing f by f~! if necessary. Moreover we
also have wys(m) < 2.

Notice that w¢(m) is non-increasing with respect to m and under our assumptions wy(m)
tends to zero as m goes to infinity. Following [Brj2-3|, we have the key estimate.

Lemma 1.4.13. Form >2,1<j<nand Q ¢ ﬂ?zl Res;(\),we have

0, it |Q <m,

J
Nn(@) < % -1, if |Q] >m.

Proof. The proof is done by induction on |@Q|. Since we fix m and j throughout the proof, we
write N instead of N7,.
For |Q] <m,
e 2 wr(|Q) = ws(m) > 0ws(m),

hence N(Q) = 0.
Assume now that |Q| > m. Then 2|Q|/m — 1 > 1. Write

60 =65'00,6g,, Q=Q1+ +Q, v=2,

with |Q] > |Q1] > -+ > |Q,[; note that @ — Q1 does not belong to (7_, Res;(A), otherwise
the other Q;’s would be in ﬂ?zl Res;(A). We have to consider the following different cases.

Case 1: eqg > O wy¢(m) and ig arbitrary, or e < wys(m) and ig # j. Then

N(Q) = N(@1) +--- + N(Qv),

and applying the induction hypotheses to each term we get N(Q) < (2|Q|/m) — 1.
Case 2: eqg < Owy¢(m) and ig = j. Then

N(@Q) =1+ N(@Q1)+--+N(Qv),

and there are three different subcases.
Case 2.1: |Q1] < m. Then

as we want.
Case 2.2:|Q1| > |Q2| > m. Then there is v/ such that 2 < v/ < v and |Q,/| > m > |Qur11],
and we have

2
N@) =1+ N(@Q)+--+N@Qu) <1+ —=—v'<—-= -1
Case 2.3: |Q1] > m > |Q2|. Then

N(Q) =1+ N(Q),
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and there are again three different subcases.
Case 2.3.1:ig, # j. Then N(Q1) = 0 and we are done.
Case 2.3.2: |Q1] < |Q] —m and i, = j. Then

- 2
Q-m , _2Ql
m m

N@Q) <1+2 1.

Case 2.3.3:|Q1] > |Q|—m and ig, = j. The crucial remark is that eéi gives no contribute
to N(Q1), as shown in the next lemma.

Lemma 1.4.14. If Q > ()1 with respect to the lexicographic order, ), Q1 and Q — Q)1 are not
in ﬂ?zl Res; (M), iq = ig, = j and
eg <Ows(m) and eq, <BOwr(m),

then |Q — Q1 = Q| — Q1] = m.
Proof. Before we proceed with the proof, notice that the equality |Q — Q1| = |Q| — |Q1] is
obvious since @ > Q1.

Since we are supposing e, = |[A?! — \;| < & (m), we have

IADH| > [A;] = 0D (m)
> 40 — 20 = 20.

Let us suppose by contradiction |Q — Q1| = |Q| — |Q1| < m. By assumption, it follows that

200f(m) >eq +eq,
= AD = N[+ A9 = )]
= [AY =A%
> A9 A9 -1
>200(1Q — Q1 +1)
> 205 (m),

which is impossible. L]

Using Lemma 1.4.14, case 1 applies to dg, and we have

N(@Q)=1+N(Q1,)+ - +N(Q,,),

where [Q| > [Q1| > |Q1,| > -+ > |Qy,, | and Q1 = Q1, + -+ Q1, . We can do the analysis of
case 2 again for this decomposition, and we finish unless we run into case 2.3.2 again. However,
this loop cannot happen more than m+ 1 times and we have to finally run into a different case.
This completes the induction and the proof of Lemma 1.4.13. L]

Since the spectrum of dfo satisfies the reduced Brjuno condition, there exists a strictly
increasing sequence {p, }, >0 of integers with py = 1 and such that

Zp,jl log @ (pyy1) ' < oo (1.70)
v>0
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We have to estimate
1

p 1 n
gy lo8da = ;0@10@;6;, Q & {7 Res; (V).

j=1
By Lemma 1.4.13,
card {0 < j < p: 0@f(pos1) Ser; <ODs(p)} < N, (Q) + - N (Q)
_ 21[Q
Py

for v > 1. It is also easy to see from the definition of dg that the number of factors 82],1 is
bounded by 2|Q| — 1. In particular,

~ 2
card {0 < j <p:0ws(p1) <er,} <2n|Q| = M
0
Then,
1 , 1~ -
@logaQszanyllogw YO (py+1) )
v>0

(1.71)

=20 (> p,  log&p(puya) " +log(671) D py!
v>0 v>0

Since ws(m) tends to zero monotonically as m goes to infinity, we can choose some 7 such
that 1 > wy¢(m) for all m > m, and we get

_ 1 _ ~ _
Z Pt < Tog &7 (7)1 Z P, log@p(pyy1)

Bt ~ logw¢(m =

where v verifies the inequalities p,,—1 < ™ < p,,. Thus both series in parentheses in (1.71)
converge thanks to (1.70). Therefore

1 log dp <
sup —— log o)
o 1@ °°°

and this concludes the proof. L]

As a corollary, when there are no resonances, we obtain Brjuno’s Theorem 1.4.5.

Recently, again using majorant series, Rong [Rol] proved the following result in the case
in which the spectrum of the differential at the origin of a given germ of biholomorphism fixing
the origin contains 1 and A;’s with |A;| = 1, but the \;’s are not roots of unity.

Theorem 1.4.15. (Rong, 2008 [Rol]) Let f be a germ of holomorphic diffeomorphism of C",
fixing the origin with dfo = Diag(As, I,), where Ay = Diag(\1,...,\s) with \; = €7,
§; € R\ Q. Assume that there is M a pointwise fixed complex manifold through O of codimen-
sion s. Choose local coordinates (x,y) centered in O such that M = {x = 0}. For any p € M,

write df, = <As£y) IO> Assume that As(y) = A, for all p € M. If the \;’s satisfy the
Brjuno condition, then there exists a local holomorphic change of coordinates 1) such that

fov=1oA,
where A is the linear part of f.

We shall extend and generalize these results in Chapter 2.
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1.5 Non linearizable germs

There are germs of biholomorphisms of C" fixing the origin and not linearizable, even formally.
In fact let us consider again (1.48), let @ be the first resonant multi-index with respect to the
lexicographic order and let j be the minimal in {1,...,n} such that ) € Res;(\). Hence

(A9 — Al + 95, = Pol(frj Ypw: |P] < |Q))

and, thanks to the minimality of é and j, all the coefficients in the right-hand side are uniquely
determined by f and A, hence if Pol.(fr ;,¥px: |P| < |Q]) # 0 (and it can well happen), then

95 # 0 and f is not formally linearizable because we can never delete the term ffg; 2@ of f.
Even without resonances, the holomorphic linearization is not guaranteed. It is not difficult
to construct examples of germs of biholomorphisms that are not holomorphically linearizable
using the known results of the one-dimensional case, as in Remark 1.4.6.

However it is also possible to give other kinds of examples. We shall see in the next
two subsection two families of examples of germs that are formally but not holomorphically
linearizable.

1.5.1 Cremer-like example

It is not difficult to prove that if f belongs to the Siegel domain then

li =0
im wp(m) =0,

which is the reason why, even without resonances, the formal linearization might be diverging,
exactly as in the one-dimensional case. As far as I know, the best negative result in this setting

is due to Brjuno [Brj2-3|, and is a natural generalization of its one-dimensional counterpart,
Theorem 1.2.22:

Theorem 1.5.1. Let Aq,..., A\, € C be without resonances and such that
1

1
limsup — log —————— = +00.
m——+oo m wA17--'7A’n, (m)

Then there exists f € End(C", O), with dfo = Diag(A1, ..., A,), not holomorphically lineariz-
able.

Proof. Let A = Diag(A1,...,A,). We want to define f = A + f recursively in such a way
that its unique formal linearization ¢ = Id+@ is divergent. Using the conjugacy equation
fow=poA we know that for each multi-index @ with |Q| > 2 we have

(AT — A)pg = fq + Polynomial(fp, pr with P < Q,|R| < |Q|) (1.72)
where we are using the same notation used in the proof of Theorem 1.4.12, and, since there

are no resonances, A9 — A is invertible for every multi-index @ with |Q| > 2. Using (1.72) we
inductively choose fg € {0,1}" such that

Ifq + Polynomial(fp, pr with P < Q,|R| <|Q|)[| >

(NN
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hence we have

sup L log ool > sup = log XL AIT
Q1>2 Q| Q2 Q) 2
> sup Llog;
10>2 Q7 wap,x (1Q)
— —|—oo’
and we are done. ]

1.5.2 Yoccoz’s example

As already remarked, it is not known whether the Brjuno condition is still necessary for holo-
morphic linearizability. However, another result in the spirit of Theorem 1.5.1 is the following;:
Theorem 1.5.2. (Yoccoz, 1995 [Y2]) Let A € GL(n,C) be an invertible matrix such that its
eigenvalues have no resonances and such that its Jordan normal form contains a non-trivial
block associated to an eigenvalue of modulus one. Then there exists f € End(C™, O) with
dfo = A which is not holomorphically linearizable.

To prove this result we need a couple of preliminary results. The first one is due to Yoccoz,
and is the following:
Proposition 1.5.3. (Yoccoz, 1995 [Y2]) Let m be the unique maximal ideal of C{z1,z2}. Let
A € St. Then for t € C* the operator Ay ,;:m? — m? defined by

Ay (g(21,22)) = g(A (21 + t22), Az2) — Ag(21, 22) (1.73)

where g € m?, is not invertible.

Remark 1.5.4. It is clear that (1.73) defines also a formal operator A\)\7t on the square of the
unique maximal ideal m of C[z1, 23], which is invertible if and only if A is not a root of unity.
Moreover it is well known that Ay ; is invertible if [A| # 1.

To prove Proposition 1.5.3 when A is not a root of unity, Yoccoz first constructs explicitly
the formal solution of (1.73) (which exists thanks to the previous remark) and then he proves
that, for ¢ # 0, it is divergent at the origin. We refer to [Y2] pp. 79-82 for the complete proof.

The second ingredient we need is due to II’'yashenko [I1]. He proved it in the setting of
normalization of germs of vector fields, but it works with the same proof for normalization of
germs of biholomorphisms. We report here the statement and the proof in our setting.

Definition 1.5.1. A vector A € (C*)" is called quasi-resonant if the series

>
AQ =)
Q=2

1<j<n

diverges for every z # 0.

Theorem 1.5.5. (II’'yashenko, 1979 [I1]) Let A € (C*)™ be a quasi-resonant vector and let f
be a germ of holomorphic mapping of C™ fixing the origin, without linear term, and such that
its coefficients can be estimated from below in modulus by some geometric progression. Then
the unique linearization ; of f; = A + tf, where A = Diag(A1,...,\,), diverges for almost all
t € C with respect to the Lebesgue measure.
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Proof. It follows from the hypotheses that the solution of the cohomological equation
PoA—AP=F (1.74)

diverges. In fact, using the multi-index notation for each component j, from

fi) =" fo2°
Q[>2

we get @;(z) = Z\QIZ2 )\Z;;Q—jsz@, and the coefficients of this series are not majorized by any
geometric progression.

We shall need the following preliminary results:
Lemma 1.5.6. (I'yashenko, 1979 [I1]) Let ¢, = Id +@; be a formal power series linearizing
ft. Then (21); =3 0152 PQ.i (t)z% and pq ;(t) is a polynomial in t of degree at most |Q|, for
each component j.

Proof. We argue by induction on s = |Q|. The series p; satisfies
GroA— AP, =tf o (Id+3),

hence we have

{Bi}2 0 A= MBi}2 = t{f}o,

where we denote by {¢;}s and by {f}s respectively the homogeneous components of degree
sin z of 3, and f; since A is linear, we obtain that deg,({¢q,;(t)}2) = 1. Assume now that
deg,({pq,;(t)}r) < r for all r < s. We prove that degt({fo (Id+@)}s) < s — 1. We remark
that the s-jet of f o (Id4+®;) depends only on the (s — 1)-jet of the series @;. A monomial
of degree s in z in the power series expansion of fo (Id+@;) either contains a factor of the
form ¢ j(t)z%, or else more than one such factor. In the first case, we have |[K| < s — 1 by
the above remark, and using the induction hypothesis deg,(¢k ;(t)) < s — 1; in the second
case, again using the induction hypothesis, the degree in ¢ of the coefficient multiplying the
monomial considered is at least 2 less than the degree of the monomial in z, i.e., it is again less
than s — 1. The assertion follows then from the equality

{BroA—ABi}e = t{f o (Id+3)},
and we are done. [l

The second ingredient we need is due to Nadirashvili, and we refer to the original article
[N] for a proof:
Lemma 1.5.7. (Nadirashvili, 1976 [N]) Let ps(t) be a polynomial of degree s, let E be a set of
positive Lebesgue plane measure in a disk Kr of radius R, and assume that there exists ¢ > 0
such that |ps|g| < ¢°. Then there exist C' depending only on u = Lebs(E) and R such that
Pslkrl < (Cg)*.

Now we have all we need to finish the proof of Theorem 1.5.5.

Assume that the series @; converges for all ¢ in a set M C C of positive measure. Then
for each t € M the function ¢(t) = inf{g € R | ¢/ > |px ; ()|} is well-defined and finite.
This function is measurable, since ¢ ;(t) are polynomials in ¢. Then there exists ¢ such that
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the set £ = {t € M | q(t) < ¢} has positive measure. By Lemma 1.5.7, there exist C' and R
such that | ;(t)] < (Cg)'¥l on a disk Kr = {|t| < R}. Hence, by the Cauchy estimates,
@1 converges in the polydisk {|z;| < (Cq)™',|t| < R} as a power series in z and ¢; hence, the
function ¢ = ( %@) |,—o is holomorphic in a neighbourhood of zero. We have

0 . . 0 - -
5(% oA —Ap,) = E(tf o (Id+@;));
thus . . 5
(Groa-a%e)| | = Foudspilis +15(Fo 14+20) o
and hence R
Yol — A= fo(ld+pp), (1.75)

where @y = %%h:o, and thus it is holomorphic. But @y has to solve pgo A — Apy = 0, hence
©o =0 and (1.75) becomes

Yol —Ap=F.

This means that v is a convergent solution of (1.74) contradicting the fact that any solution
of (1.74) diverges. 0]

With this two ingredient the proof of Theorem 1.5.2 is almost immediate.
Proof of Theorem 1.5.2. 1t suffices to prove it for n = 2 and

AA
()
Let B:m? — m? be the operator defined by
B(g)=goA—Aoy.

Writing, g = (g1, g2), the second component of B(g) is exactly equal to Ay 1(g2); then, thanks to
Proposition 1.5.3, B is not surjective. Applying Theorem 1.5.5, we get that if h = (hy, hy) € m?
does not belong to the image of B, then the germ of biholomorphism f; = A + th is not
linearizable for almost all ¢ € C, and we are done. ]

1.5.3 Pérez-Marco’s results

In [P8] and [P9] Pérez-Marco develops the idea, originally due to II’'yashenko [I1], of using
deformations and potential theory to study holomorphic small divisor problems.

As we recalled in the previous subsection, in the framework of the theory of linearization
of holomorphic systems of differential equations, II’yashenko studied linear deformations of
a system and used the polynomial dependence of the new formal linearization to study the
divergence of the series. He also introduced the idea of using potential theory since he applied
Lemma 1.5.7, due to Nadirashvili [N], to control the norm of a polynomial on an arbitrary
bounded domain through its norm on a set of positive measure.

We saw in the previous subsection that a variation of the argument of II’yashenko [I1] has
been used by J.-C. Yoccoz [Y2] in order to show that the quadratic polynomial is the worst
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linearizable holomorphic germ. Also, Herman [He] used potential theory (in parameter space)
for studying small divisor problems.

The general principle suggested by this kind of results could be stated as follows:

There is either total convergence for all parameter values or general divergence except

for a very small exceptional set of parameter values.

The exceptional set E in Pérez-Marco’s work [P9] is a pluripolar set: for each point of F
there is a neighborhood U and a plurisubharmonic function u such that the points of U N E
belong to the —oo level set of u. Of course these sets have zero Lebesgue measure, but are
indeed “much smaller” (there exist smooth arcs which are not pluripolar). In one dimension a
pluripolar set has zero logarithmic capacity, and hence zero Hausdorff dimension.

Pérez-Marco proves the following result (we refer to the original article [P9] for a proof).

Theorem 1.5.8. (Pérez-Marco, 2001 [P9]) Let n,m > 1 and d > 0. Let us consider a family
{@1}1enm of germs of holomorphic maps ¢r: (C™,0) — (C™,O) of order larger or equal to 2
(ie., ¢1(z) = O(||z||?)) indicized over multi-indices I = (iy,...,i,) € N™ with 0 < |I| < d.

For t = (t1,...,tm) € C™ we consider the holomorphic family of germs of biholomorphisms of
(CTL
fi(z) = Az + Z thor(2)
IeN™
o<lr|<d

where A € GL,,(C) is a fixed linear map, A = dfo , with non-resonant eigenvalues. Then all
maps f;, with t € C™ are formally linearizable, and we have the following dichotomy: either
(i) The holomorphic family (f)tecm is holomorphically linearizable. Moreover, the radius
R(hy) of convergence of the linearization h; is bounded from below on compact sets,
more precisely, for some Cy > 0, and any t € C™,

Co
hy) > ———;
R(h¢) > 1+H75Hd’or

(ii) fi is not holomophically linearizable, except for an exceptional pluri-polar set E C C™
of values of t.

In [P8] Pérez-Marco proves a similar result in the setting of the problem of holomorphic
linearization in the presence of resonances.

1.6 Partial linearization results

Another way to generalize Brjuno’s Theorem 1.4.5 is to look for partial linearization results,
e.g., studying the linearization problem along submanifolds.

1.6.1 Poschel’s result

Poschel [P6] shows how to modify (1.60) and (1.61) to get partial linearization results along
submanifolds. To do so, he uses a notion of partial Brjuno condition which is explained in the
following definitions:

Definition 1.6.1. Let n > 2 and let Ay, ..., A, € C* be not necessarily distinct. Fix1 <s<n
and let A = (\1,...,As). For any m > 2 put

ws(m) = 2<|K|<m 1232 A% = Al
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where A = \F.oo ks
Definition 1.6.2. Let n > 2 and let A, ..., A, € C* be not necessarily distinct. Fix 1 < s < n.

We say that A = (\1,...,\,) satisfies the partial Brjuno condition of order s if there exists a
strictly increasing sequence of integers {p, },.o with po = 1 such that

Zp,jl log ws(pyr1) ™t < 0.
v>0

It is clear that ws(m) # 0 for all m > 2 if and only if there are no resonant multi-indices @
of the form @ = (q1,...¢s,0,...,0).

Remark 1.6.1. For s = n the partial Brjuno condition of order s is nothing but the usual
Brjuno condition introduced in [Brj2-3] (see also [M] pp. 25-37 for the one-dimensional case).
When s < n, the partial Brjuno condition of order s is indeed weaker than the Brjuno condition.
Let us consider for example n = 2 and let A, u € C* be distinct. To check whether the pair (A, u)
satisfies the partial Brjuno condition of order 1, we have to consider only the terms |A\¥ — )|
and |A\* — p| for k > 2, whereas to check the full Brjuno condition we have to consider also the
terms [u" — \|, [u" — p| for h > 2, and |Meph — |, (NP — pf for kb > 1.

Remark 1.6.2. A n-tuple A = (A1,..., A5, 1,...,1) € (C*)™ satisfies the partial Brjuno con-
dition of order s if and only if (A1,..., \s) satisfies the Brjuno condition.

We assume that the differential d fo is diagonalizable. Then, possibly after a linear change
of coordinates, we can write

f(z) = Az + f(2),
where A = Diag(\1,...,\,), and fvanishes up to first order at O € C".
The linear map z — Az has a very simple structure. For instance, for any subset Aq,..., A,
of eigenvalues with 1 < s < n, the direct sum of the corresponding eigenspaces obviously is an
invariant manifold on which this map acts linearly with these eigenvalues.

We have the following result of Poschel [P6] that generalizes the one of Brjuno [Brj2-3]:

Theorem 1.6.3. (Poschel, 1986 [P4]) Let f be a germ of holomorphic diffeomorphism of C™ fix-
ing the origin O. If there exists a positive integer 1 < s < n such that the eigenvalues \1, ..., \,
of dfop satisfy the partial Brjuno condition of order s, then there exists locally a complex an-
alytic f-invariant manifold M of dimension s, tangent to the eigenspace of A1,...,\s at the
origin, on which the mapping is holomorphically linearizable.

The proof of this result is similar to the one of Theorem 1.4.12 and the reader can also
find it in the original article [P6]. In the next chapter we shall present a generalization of this
result to get a complete linearization result also in presence of resonances.

1.6.2 Other results

We also have the following partial linearization result obtained by Nishimura in [Ni] which
generalizes the one of Reich [Re2] (the statement is slightly different from the original one
presented in [Ni] but perfectly equivalent):

Theorem 1.6.4. (Nishimura, 1983 [Ni]) Let f be a germ of holomorphic diffeomorphism
of C", fixing the origin O. Assume that Y is a complex manifold through O of codimension s
pointwise fixed by f. In coordinates z = (x,y) in which Y = {x = 0} we can write f in the
form

=30 Ci(y)zy + fH(z,y) fori=1,...,s,

y; = v; + f1(2,y) forj=1,...,r,

!
i
/
J
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with ord,(f}) > 2 and ordm(f]?) > 1. If for each point p € Y the eigenvalues {\1(p),...,As(p)}
of the matrix C(p) = (Cjx(p)) have modulus less than 1 and have no resonances, then there
exists a unique holomorphic change of coordinates 1, defined in a neighbourhood of Y, tangent
to the identity such that

few=vel (1.76)
where L is the germ
=3 i1 Car(ay, fori=1,...,s,
=Y forj=1,...,r.

!
7
yj

We refer to the original article [Ni] for the proof, which, also in this case is done by proving
that the unique formal solution v of (1.76) is indeed majored by a convergent series, and hence

is convergent.

Another kind of partial linearization results, namely “linearization modulo an ideal”, can
be found in [Sto].

1.7 Holomorphic normalization

As we saw in Section 1.5, there are germs f € End(C",O) not holomorphically linearizable.
However, by Poincaré-Dulac Theorem 1.3.25 every germ f € End(C"™,0) can be formally
normalized; hence it is natural to ask whether a germ is holomorphically normalizable. We
saw that in the attracting [resp. repelling] case this is always the case, but the problem with
Poincaré-Dulac normal forms is that, as we saw, they are not unique, and the problem of finding
canonical formal normal forms when f belongs to the Siegel domain is still open, except for
very few cases (see [J2] and [Ril] for example). Furthermore, even if Ecalle in his monumental
work [E4] provides completes sets of invariants characterizing the conjugacy classes of germs
in End(C", O), those invariants are not so easily computable and it remains somehow difficult
to use them in studying particular cases.

A case that has received some attention is the so-called semi-attractive case

Definition 1.7.1. A holomorphic local dynamical system f € End(C",0) is said semi-
attractive if the eigenvalues of d fp are either equal to 1 or with modulus strictly less than 1.

The dynamics of semi-attractive dynamical systems has been studied by Fatou [F5],
Nishimura [Ni], Ueda [U1-2], Hakim [H1] and Rivi [Rivl-2]. Their results more or less say
that the eigenvalue 1 yields the existence of a “parabolic manifold” M — in the sense of The-
orem 1.3.9.(ii) — of a suitable dimension, while the eigenvalues with modulus less than one
ensure, roughly speaking, that the orbits of points in the normal bundle of M close enough
to M are attracted to it. For instance, Rivi proved the following

Theorem 1.7.1. (Rivi, 1999 [Rivl-2]) Let f € End(C"™, O) be a holomorphic local dynamical
system. Assume that 1 is an eigenvalue of (algebraic and geometric) multiplicity ¢ > 1 of d fo,
and that the other eigenvalues of d fo have modulus less than 1. Then:

(i) We can choose local coordinates (z,w) € C? x C"~9 such that f expressed in these
coordinates becomes
{ f1(z,w) = A(w)z + Pa oy (2) + P w(2) + -,
fo(z,w) = G(w) + B(z,w)z,

where: A(w) is a ¢ x ¢ matrix with entries holomorphic in w and A(O) = I,; the P; ,, are
q-uples of homogeneous polynomials in z of degree j whose coefficients are holomorphic
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in w; G is a holomorphic self-map of C"~? such that G(O) = O and the eigenvalues
of dGo are the eigenvalues of dfo with modulus strictly less than 1; and B(z,w) is
an (n — q) X q matrix of holomorphic functions vanishing at the origin. In particular,
f1(z,0) is tangent to the identity.

(ii) If v € C7 C C™ is a non-degenerate characteristic direction for fi(z,0), and the latter
map has order v, then there exist v — 1 disjoint f-invariant (n — q + 1)-dimensional
complex submanifolds M; of C", with the origin in their boundary, such that the orbit
of every point of M; converges to the origin tangentially to Cv @ E, where F C C" is the
subspace generated by the generalized eigenspaces associated to the eigenvalues of d fp
with modulus less than one.

Rivi also has results in the spirit of Theorem 1.3.9, and results when the algebraic and
geometric multiplicities of the eigenvalue 1 differ; see [Rivl, 2] for details.

Building on work done by Canille Martins [CM] in dimension 2, and using Theorem 1.2.9
and general results on normally hyperbolic dynamical systems due to Palis and Takens [PT],
Di Giuseppe has obtained the topological classification when the eigenvalue 1 has multiplicity
1 and the other eigenvalues are not resonant:

Theorem 1.7.2. (Di Giuseppe, 2004 [Di]) Let f € End(C™,O) be a holomorphic local dy-
namical system such that dfo has eigenvalues \i, Ao,..., A\, € C, where A\ is a primitive
g-root of unity, and |\;| # 0, 1 for j = 2,...,n. Assume moreover that A5 --- A" £ 1 for all
multi-indices (rg,...,r,) € N*~1 such that ro + --- + 7, > 2. Then f is topologically locally
conjugated either to dfo or to the map

kq+1
Z (}\121+21q ,)\22’2,...,)\”2”)

for a suitable k € N*.

We end this chapter by recalling results by Bracci and Molino, and by Rong. Assume
that f € End(C?,0) is a holomorphic local dynamical system such that the eigenvalues of d fo
are 1 and e?™ £ 1. If ¢2™ satisfies the Brjuno condition, Péschel [P6], in Theorem 1.6.3,
proved the existence of a 1-dimensional f-invariant holomorphic disk containing the origin
where f is conjugated to the irrational rotation of angle #. On the other hand, Bracci and
Molino give sufficient conditions (depending on f but not on e2™%_ expressed in terms of two
new holomorphic invariants, and satisfied by generic maps) for the existence of parabolic curves
tangent to the eigenspace of the eigenvalue 1; see [BrM] for details, and [Ro3] for generalizations
ton > 3.
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2

Linearization in presence of resonances

The main purpose of this chapter is to prove a linearization result in presence of
resonances for a germ f of biholomorphism of C" fixing the origin O, with d fo diago-
nalizable. We shall prove that, under certain arithmetic conditions on the eigenvalues
of dfo and some restrictions on the resonances, f is locally holomorphically lineariz-
able if and only if there exists a particular f-invariant complex manifold, and we shall
also see that most of the classical linearization results can be obtained as corollaries
of our result. The main results of this chapter are published in [R2].

2.1 Definitions and notations

In this chapter we shall prove a linearization result in presence of resonances for a germ
of biholomorphism f € End(C",O). To do that we shall need a restriction on the resonances
and a property for the germ to first prove a formal linearization result, and then we shall need
a condition on the eigenvalues of dfp assuring convergence.

The restriction on the admitted resonances is the following;:

Definition 2.1.1. Let 1 < s < n. We say that A = (A1,..., A5, 41, , i) € (C*)™ has only
level s resonances if there are only two kinds of resonances:

(a) A¢ =)\, <= QeKk,

where

S
= {QGN”:!Q\ >2,> gy =1 and pf* - pdn :1},

p=1
and
(b) A =y = QeK,,
where
Ry ={QeN" |Q>2q = =qu=0and 3j € {1,...,r} st ple* - p = i},
Example 2.1.1. When s < n, if (A1,...,As) has no resonances, it is not difficult to verify

that A = (Ay,...,As,1,...,1) has only level s resonances.

Remark 2.1.2. It is obvious that if the set K» is empty (which implies that the set K, is
empty as well), there are no resonances. If K; # &, having only level s resonances implies
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that the sets {A1,...,As} and {u1,...,u} are disjoint. If K; = & but Ky # @, then the

sets {A1,...,As} and {u1,...,u,} may intersect only in elements not involved in resonances,
i.e., we can have \; = p,, for some [ and m only if for every multi-index (gs41,.-.,¢n),
we have p{*™ .- pd» # pp,, and for any resonance p{™---pdn = p; with j # m, we

have g+ = 0.

Example 2.1.3. Let v > 1 and let pg be a (v + 1)-th primitive root of unity. Let puq, s be
two complex numbers of modulus different from 1 and such that

,U(f,“g = M3
with «, 8 € N\ {0}. Then we have
pSuspy = 1.
We can choose pi,ps such that the only resonant multi-indices for the triple (1, s, us3)

are (o, 3,0), (o« — 1,8,v) and (a, B — 1,7). Then, if we consider A such that (\, p1, po, ps3)
has only level 1 resonances, the admitted resonances are the following:

I?l = {(1,04,@7)},
K2 = {(0,0é,ﬁ,O), (O’Q - Lﬁ’r}/)a (Oaaaﬁ - 1’7)}
Example 2.1.4. Let us consider (1, o, i3, a) € (C*)* with only one resonance, for ex-

ample pfpd = ps with p,¢ > 1, and such that (X, u1, po, i3, pta) has only level 1 resonances
with A = py4. Then

K, =2,
KQ = {(07p7 q, 07 O)}
Recall that if n > 2 and we take Aq,..., A, € C* not necessarily distinct, for any m > 2
we put
~ _ . . Q .
Oxred () = min © min (A% — A,
Q#Res; (A)
where Res; () is the set of multi-indices () € N™ giving a resonance relation for A = (A1,...,\,)

relative to 1 < 5 < n,i.e., )\Q—)\j = 0. We also said that A satisfies the reduced Brjuno condition
if there exists a strictly increasing sequence of integers {p, },. o with po = 1 such that

Zpljl 10g@x, ..., (Pog1) ™ < o0,
v>0

If A\1,..., A\, are the eigenvalues of dfp, we write Wy(m) for @y, x,(m).

We saw in Section 1.4.2 that the reduced Brjuno condition plays a main réle in the study
of convergence in the linearization problem; hence it is natural to introduce the following new
case in the classification we presented in Definition 1.3.2.

Definition 2.1.2. Let f be a germ of biholomorphism of C™ fixing the origin O and let s € N,
with 1 < s < n. The origin O is called a quasi-Brjuno fized point of order s if dfp is diagonal-
izable and, denoting by A the spectrum of dfp, we have:

(i) A has only level s resonances;

(ii) X satisfies the reduced Brjuno condition.
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We say that the origin is a quasi-Brjuno fized point if there exists 1 < s < n such that it is a
quasi-Brjuno fixed point of order s.

Note that we are not assuming anything on the modulus of the eigenvalues of dfo (and,
in this sense, this case is transversal to the other ones). In fact, as we saw in the proof of
Theorem 1.4.12, we need to estimate the divisors \)\Q — Aj| as @ varies in the non-resonant
multi-indices and j varies in the coordinates.

Since we assume that the differential dfo is diagonalizable, possibly after a linear change
of coordinates, we can write

-~

f(z) = Az + f(2),

where A = Diag(\1,...,\,), and fvanishes up to first order at O € C".

As we remarked in Section 1.6.1, the linear map z — Az has a very simple structure.
For instance, for any subset Aj,..., s of eigenvalues with 1 < s < n, the direct sum of the
corresponding eigenspaces obviously is an invariant manifold on which this map acts linearly
with these eigenvalues.

In this chapter we would like to extend Poschel Theorem 1.6.3 to get a complete lineariza-
tion in a neighbourhood of the origin. In fact, as we shall see in the next section, a germ with
a quasi-Brjuno fixed point satisfies the hypotheses of Péschel Theorem 1.6.3, and we shall see
in Sections 2.4 and 2.5 how to get a complete holomorphic linearization, adding a particular
invariant manifold that will be introduced in Section 2.3.

In the rest of the chapter we shall denote by || - || the norm || - ||o; but we could also
had used the norm || - ||2 thanks to the equivalence of such norms. We shall also need the
following notation: if g: C™ — C is a holomorphic function with g(O) = 0 (or a formal power
series without constant term), and z = (z,y) € C" with 2 € C® and y € C"~*, we shall denote
by ord,(g) the maximum positive integer m such that g belongs to the ideal (x1,---,zs)™.

2.2 Quasi-Brjuno condition vs partial Brjuno condition

As announced in this section we shall explain the relations between the quasi-Brjuno condition
and the partial Brjuno condition.

Recall that if n > 2, we take Aq,..., A\, € C* not necessarily distinct, we fix 1 < s < n,
and, letting A = (A1,...,As), for any m > 2 we put

ws(m)= min min A\* -\,
2<|K|<m 1<j<n

where A\ = )\’fl - Aks . We then said that A = (\y,...,\,) satisfies the partial Brjuno con-
dition of order s if there exists a strictly increasing sequence of integers {p,},.o with pg = 1
such that -

> M ogws(puga) ™! < oo,
v>0

Notice that whereas it is always possible to introduce the reduced Brjuno condition, the
partial Brjuno condition makes sense only when there are no resonant multi-indices @) € N",
with |Q| > 2 and ¢s11 = ... = ¢, = 0. Anyway, when we have only level s resonance, we can
deal with these two condition at the same time.
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Remark 2.2.1. If A has only level s resonances, then we have

Wry,...n, (M) = min min min |)\Q — A, min |)\Q — Aot 9o
2<|Q|<m 1<j<n 1<j<n—s
q1+-+gs=2 a1+ +as=1

therefore

2<|QI<m 1<j<n 1<j<n-—s
(@s415- an)#O g1+ +as>2 q1+-+as=1

W, (M) = min < ws(m), min { min \)\Q —Aj|,  min ])\Q — )\sﬂ-\} ,

so it is obvious that, since Wy, .. x, (m) < ws(m) for every m > 2, the reduced Brjuno condition
implies the partial Brjuno condition of order s. A partial converse is the following

Lemma 2.2.2. Let n > 2 and let Ay, ..., )\, € C* be not necessarily distinct. Let 1 < s <n be
such that A = (A1, ..., \,,) has only level s resonances. Then, if there exists a strictly increasing
sequence of integers {p, },.o with pg = 1 such that

> py M ogws(pua) ™t < oo,
v>0

(i.e., A satisfies the partial Brjuno condition of order s), and there exist k € N and o > 1 such
that

P>k =0x (00— k) > ws(py)?,
then A satisfies the reduced Brjuno condition.

Proof. Let qo = po and ¢; = py,+; — k for j > 1, where vy is the minimum index such
that p, > k for all v > vy. Then we have

> g og@n, an(qun) Tt <@y g logws(gun + k)7

v>0 v>0

_ _ P _ _

= apy ! log WS(pVo-i-l) ! +a Z i kp” ! log WS(pV-H) !

v>vp+2 Pv

<20 p, logw,(pys1)
v>0

< o0,

and we are done. [l

Remark 2.2.3. Suppose that A has only level s resonances. Recall that a sequence {a,,} is
said to be Diophantine of exponent T > 1 if there exist v, 4' > 0 so that v'm=" > a,, > ym™°
(see also [Car], [G] and [St3]). Then if @y, . a,(m) is Diophantine of exponent 5 > 1, and
if ws(m) is Diophantine of exponent € > 1, there always exist & > 1 and 6 > 0 for which
Dy n, (M) > Am™P > 6m™ > w,(m)*,
and thus the hypothesis of Lemma 2.2.2 is satisfied with & = 0.
More in general, if we have

Ym >k + 2 Oryon, (M — k) > ws(m)®
for some k£ € N and « > 1, the hypothesis of Lemma 2.2.2 is obviously satisfied. For example
if A\1,...,As € R are positive and As11,...,A, € {—1,4+1} then it is easy to verify that

VYm >3 Oxy o, (M —1) > ws(m).
Furthermore, if Ag41 = --- = A\, = 1 then Wy, ., (m) = ws(m), and so in this case the partial
Brjuno condition of order s coincides with the reduced Brjuno condition.
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2.3 Osculating manifolds

In this section we shall introduce a particular kind of invariant manifolds for germs of biholo-
morphisms that give us information on the properties of such germs, and that will be used in
proving our linearization result.

Let f be a germ of biholomorphism of C" at a point which we may assume without loss
of generality to be the origin O, and let M be an f-invariant complex manifold through O
of codimension s, with 1 < s < n. In this situation, the differential df acts on the normal
bundle Ny, = TC"/TM.

Definition 2.3.1. Let f be a germ of biholomorphism of C™ fixing the origin O, and
let 1 < s < n. We will say that f admits an osculating manifold M of codimension s if
there is a germ of f-invariant complex manifold M at O of codimension s such that the normal
bundle Njs of M admits a holomorphic flat (1,0)-connection that commutes with df|y,,

It is obvious that locally every holomorphic bundle admits a holomorphic flat (1,0)-
connection (it suffices to take the trivial connection on a trivialization). Moreover, it is easy to
prove the following result, which has exactly the same proof as in the smooth case (adopting
for instance the argument in [BCS| pp. 272-274).

Proposition 2.3.1. Let m: ¥ — M be a holomorphic vector bundle on a complex mani-
fold M and let V be a holomorphic flat (1,0)-connection. Then there are a local holomorphic
coordinate system about O and a local holomorphic frame of E in which all the connection
coefficients I’; i are zero.

In the particular case of the normal bundle we have the following useful result.

Lemma 2.3.2. Let M C C" be a complex manifold of codimension s, 1 < s <n and let Ny,
be its normal bundle. Fix p € M. Take a local holomorphic frame in a neighbourhood of p.
Then for every local holomorphic frame {Vi,...,Vi} of Ny we can find local holomorphic
coordinates (U, z) with z = (z,y), adapted to M (i.e., MNU = {z = 0}) such that, on UNM,

0
Vj‘”(a@)

for every j =1,...,s, where m:TC" — N, is the canonical projection.

Proof. Let us choose local holomorphic coordinates Z = (&,7) centered at p adapted to M.
Then for every point (0,7) € M there exists a non-singular matrix A(g) = (a;;(y)), depending
holomorphically on ¢, such that

V;(§) = ii;az‘j (y)m <a§z>

(0,9)

Therefore, using the coordinates

S

wl:ZaU(g)il fOI“iZl,...,S,
i=1

Y = Uj forj=1,...,r,

we obtain the assertion. [l
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Definition 2.3.2. Let f be a germ of biholomorphism of C" fixing the origin O, and let M
be a germ of f-invariant complex manifold at O of codimension s, with 1 < s < n. We say
that a holomorphic flat (1,0)-connection V of the normal bundle Ny, of M is f-invariant if it
commutes with df|y,,.
Theorem 2.3.3. Let f be a germ of biholomorphism of C" fixing the origin O, let M be a
germ of f-invariant complex manifold through O of codimension s, with 1 < s < n, and let V
be a holomorphic flat (1,0)-connection of the normal bundle Ny;. Then V is f-invariant if and
only if there exist local holomorphic coordinates z = (z,y) about O adapted to M in which f
has the form

T =Nz +eixinr + fH(z,y) fori=1,...,s,

Yi = 1y +esriyi + fi(vy) forj=1,...,r=n—s,

where €;,e54; € {0,1}, and

(2.2)

ord, () > 2,
foranyi=1,...,s.
Proof. If there exist local holomorphic coordinates z = (z,y) about O adapted to M, in which f
has the form (2.2) with ord, (f}) > 2 for any i = 1,..., s, then it is obvious to verify that the
trivial holomorphic flat (1,0)-connection is f-invariant.
Conversely, let V be a holomorphic flat f-invariant (1,0)-connection of the normal bun-

dle Nj;. Thanks to Proposition 2.3.1 and to Lemma 2.3.2 we can find local holomorphic
coordinates z = (z,y) adapted to M, in which all the connection coefficients I, with respect

to the local holomorphic frame {71(8%1), ...,m(5%)} of Ny are zero. We may assume without

loss of generality, (up to linear changes of the coordinates we can assume that the linear part
of f is in Jordan normal form), that in such coordinates f has the form

Tt = N + gy + fH (2, y) fori=1,...,s,
Yy = 1iyj + €srYi + fi(xy) forj=1,...,r,
where ¢;,e54; € {0,1}. Moreover, since M = { = 0} is f-invariant, we have
ord, (f}) > 1.

Thanks to the f-invariance of V we have

0 0
vdf% (df|NM7T <a—$]>> = df|NMv%7T <8—:c]>

forany j=1,...,sand k=1,...,r. Now the right-hand side vanishes, because in the chosen

coordinates we have VBLT(' 8%) = 0. So, using Leibniz formula, we obtain
Y J

0
0=Varge(147 (57;))
F J

_ y Of 9
_vdf%<z (Ah(;h] + endn j+1 + p j( )| orr

h=1

- Z()\h5hg+5h5h ;+1+gf o, y)> Va2 ”( > de (afh )>7T<3%h>
=Y i (Hhow) ().

h=1

(2.3)



2.3 Osculating manifolds 73

Therefore we obtain

9 (of, _

for every j,h=1,...,sand k= 1,...r, and, since df is invertible, this implies

o (off B
o (00 =0

for every j,h=1,...,sand k=1,...r, that is
ord, (fi) > 2

for every h = 1,...,s, and this concludes the proof. ]

As a corollay of the previous result we obtain the following characterization of osculating
manifolds.
Corollary 2.3.4. Let f be a germ of biholomorphism of C™ fixing the origin O, and let
1 < s < n. Then f admits an osculating manifold M of codimension s such that f|y is
holomorphically linearizable if and only if there exist local holomorphic coordinates z = (z,y)
about O adapted to M in which f has the form

rh = N + givinr + fH(x,y) fori=1,...,s,

, (2.4)
Y = 1y 4 esriyin + f(xy) forj=1,...,r,
where ¢;,e54; € {0,1}, and
ord, (f}) > 2, (2.5)
ord, (f7) > 1, '

foranyi=1,...,sand j=1,...,r.
Proof. One direction is clear. Conversely, thanks to Theorem 2.3.3, the fact that M is osculat-
ing, is equivalent to the existence of local holomorphic coordinates z = (x,y) about O adapted
to M, in which f has the form (2.4) with ord,(f!) > 2 for any i =1,...,s.

Furthermore, f|y; is linearizable; therefore there exists a local holomorphic change of
coordinate, tangent to the identity, and of the form

T =,
y=2(y),
conjugating f to f of the form (2.4) satisfying (2.5), as we wanted. ]

Then we could say that, if we write f as in (2.2), the hypothesis of f-invariance is equivalent
to ord, (f}) > 1; f|a linearized is equivalent to ord,( sz) > 1; osculating means that f} has no
terms of order 1 in , that is, f} =", , zprb* (2, y).

Notice that in Theorem 2.3.3 and in Corollary 2.3.4, up to linear changes of coordinates,
we can always assume ¢;,¢; € {0,¢} instead of ¢;,¢; € {0,1} for every € > 0 small enough.

In the next section, we shall first prove a formal linearization result, and so we need the
formal analogue of Definition 2.3.1. We define a formal complex manifold M of codimension s
by means of an ideal of formal complex power series generated by s power series g1, ..., gs such
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that their differentials at the origin dg,...dgs are linearly independent (see also [BER] and
[BMR]). Denote by TC" the formal tangent bundle of C™, that is the space of all formal vector
fields with complex coefficients. Then the formal tangent bundle TM to M is well-defined as
the set of formal vector fields of TCn Vanishing on the ideal of formal power series generated
by g1,.-.,9s- The formal normal bundle Nus of M is then the quotlent T(C"/TM A formal
connection on the formal normal bundle is a formal map V:TM x Ny, M= N A which satisfies

the usual properties of a connection but in the formal category. Thus the following definitions
make sense.

Definition 2.3.3. Let f be a formal invertible transformation of C” without constant term,
and let M be an f-invariant formal complex manifold of codimension s, with 1 < s < n. We
say that a formal flat (1,0)-connection V of the formal normal bundle @ of M is f-invariant
if it commutes with df] oy

Definition 2.3.4. Let 1 < s < n, and let f be a formal invertible transformation of C" without
constant term. We will say that f admits a formal osculating manifold M of codimension s
if there is an f-invariant formal complex manifold M of codimension s such that the formal
normal bundle m of M admits a formal flat f-invariant (1,0)-connection.

Then, for the formal normal bundle we can prove the formal analogue of Proposition 2.3.1
(using a formal solution of the parallel transport equation that can be easily computed) and
Lemma 2.3.2. We then have the following results, whose proofs are the formal rewritings of
the ones of Theorem 2.3.3 and Corollary 2.3.4, and hence we omit to report them here.
Theorem 2.3.5. Let f be a formal invertible transformation of C" without constant term,
let M be an f-invariant formal complex manifold through O of codimension s, with 1 < s < n,
and let V be a formal flat (1,0)-connection of the formal normal bundle Ny Then V is f-
invariant if and only if there exist local formal coordinates z = (x,y) about O adapted to M
in which f has the form

z = Nw; + g + [ (@, y) fori=1,...,s,

, (2.6)
y; = KjY; +€s+jyj+1 + fJQ(Can) fOI"] = 1,' < T

where €;,e54; € {0,1}, and
Ordx(fil) 2 25

foranyi=1,...,s.

Corollary 2.3.6. Let 1 < s <n, and let f be a formal invertible transformation of C" without
constant term. Then f admits a formal osculating manifold M of codimension s such that f|as
is formally linearizable if and only if there exist local formal coordinates z = (x,y) about O
adapted to M in which f has the form

z = Nw; + g + [ (@, y) fori=1,...,s,

| (2.7)
Y = 1y + esriyin + f(xy) forj=1,...,r,
where ¢;,e54; € {0,1}, and
ord, () > 2, (2.8)
ordx(fjg) >1 '

)

foranyi=1,...,sand j=1,...,r
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2.4 Formal linearization

As announced at the beginning of the chapter, we first prove a formal linearization result.

Theorem 2.4.1. Let f be a formal invertible transformation of C" without constant term
such that d fo is diagonalizable and the spectrum of d fo has only level s resonances, 1 < s < n.
Then f is formally linearizable if and only if it admits an osculating formal manifold of codi-
mension s such that f|yr is formally linearizable.

Proof. If f is formally linearizable the assertion is obvious.
Conversely, using Corollary 2.3.6, we can choose formal local coordinates

(,y) = (X1, s sy Y1y - oo Yr)
such that, writing (2/,y") = f(x,y), f is of the form

;:)‘zxz‘i'le(x’y) fOT’izl,...,S,

y; =

where
ordy (f, il)
ord, ( ff)

Denote by A the diagonal matrix Diag(A1, ..., As, 1, .., ). We would like to prove that a
formal solution 1 of

> 2,
> 1.

forp=1poA (2.9)

exists of the form
zp =u; + ¥l (u,v) fori=1,...,s,

Yj :vj—i—i/}?(u,v) forj=1,...,r,

where (u,v) = (uy,...,us,v1,...,v,) and 9} and ¢]2 are formal power series with

ord,, (1/%1 )

2,
ord,, (¢]2) 1

(AVARVS

Write f(z) = Az + f(z) and ¢Y(w) = w + {Z)\(w), where z = (x,y) and w = (u,v). Then
equation (2.9) is equivalent to

Yol —Ap=for. (2.10)

To obtain a formal solution, we first write

{b\(w) = Z ¢QwQ, ¢Q € (Cn,
|Q|>2

where Q = (q1,...,qn), and

f2)=3 fuzt, frecn,

|L|>2
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where L = (Iy,...,l,). Denoting A= (A1, ey Ay i1y ey i) = (5\1, ..., An), equation (2.10)
becomes

L
> Aquou? = > fu| D vauw™ ], (2.11)
Q1>2 |L|>2 |M|>1
where B
Ag = AL, — A.

The matrices Agp might not be invertible for some choice of @ due to the presence of res-
onances. We can write Ag = Diag(Aa,,Aé) and recall that having only level s resonances
means that det(Aé?) = 0 if and only if

Q€ Ky,
and det(Aé) = 0 if and only if
Q € K.
Moreover, from the hypotheses of the Theorem we have that fi = 0 for L in K;UK, and f2 = 0
for L in K5, where
Ky={LeN':|L| >2,L=(0,...,0,;,0,...,0,l541,...,0ln),li=1and i € {1,...,s}}
Ko={LeN":|L|>2,L=(0,...,0,l551,...,ln)}
Notice that K; C K; and Ko C Ko. For each jin {1,...,s}, let us denote by K{ the set
{LeN":[L| >2,L =(0,...,0,05,0,...,0,l511,...,1n),l; = 1}, so that K; = Uj_; K{. We
look for a solution of (2.9) with 1/1%2 =0 for Q € K; U K5 and 1/1% =0 for Q € Ks.

To do so, let us write (2.11) in a more explicit way: for i =1,...,s
L
Z (A - Ai)¢ég,in = Z fi,z‘ Z o™ | (2.12)
IQ|>2 |L|>2 |M|>1
QEK1UKy LZK|{UKo
and for j =1,.
DD SECCIIMICENN RNC RIS
p=1 1Q|>2 1QI>2
Qek? QEK UKy
L L
S
DD IRFEID DRI R D DR i3 I DR
p=1 |L|>2 |M|>1 IL|>2 |M|>1
Ler LZK{ UKo
(2.13)

Now, it is obvious that there are no terms w® with Q € K, in either side of (2.12) and of
(2.13), and we can obtain terms w? with @ € K in (2.13) only from terms with L € K;. In
fact, if L € K then

L

Z yw™ | = <uh+2upuq9ﬁq(u,v)> H ZUPHP u,v) otd

p,q Jj=1

lot1 In
=upv o+ E upugXP?(u,v)
P,

=wl + Z Uptg P (u,v).

p,q
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Therefore for j = 1,...,r, we have
L
S
DD CCRIBITIEED S S I SRORT
p=1 1QI>2 p=1 |L]>2 |M|>1
Qek? Lek?
S ID 3P (S et
p=1 |L[>2
Lek?
from which we conclude that for Q € K¥ and j =1,...,r we have
Wy = f3509 ) (2.14)
The remaining ¢ with @ € K; U Ky are easily determined by recursion, as usual. L]

2.5 Holomorphic linearization

Now we can prove the main result of this chapter.

Theorem 2.5.1. Let f be a germ of a biholomorphism of C" having the origin O as a quasi-
Brjuno fixed point of order s, with 1 < s < n. Then f is holomorphically linearizable if and
only if it admits an osculating manifold M of codimension s such that f|y; is holomorphically
linearizable.

Proof. If f is linearizable the assertion is obvious.

Conversely, we already know, thanks to the previous result, that f is formally linearizable,
(notice that, thanks to Corollary 2.3.4, the changes of coordinates needed before finding v are
holomorphic because now M is a complex manifold). Since the spectrum of dfo satisfies the
reduced Brjuno condition, the thesis follows from our Theorem 1.4.12, but we report here the
proof in this particular case for the sake of completeness.

To prove the convergence of the formal conjugation 1 in a neighbourhood of the origin it
suffices to show that

sup 15, 1og gl < o (2.15)

\Q!

Since f is holomorphic in a neighbourhood of the origin, there exists a positive number p such
that ||fz] < p!* for |[L] > 2. The functional equation (2.9) remains valid under the linear
change of coordinates f(z) +— o f(z/0), ¥(w) — oyp(w/o) with o = max{1, p?}. Hence we may
assume that

vIL| > 2 TAES®

It follows from (2.11) and (2.14) that

ot D, el vl Q=2 Q¢K UK,
Yol < crripee (2.16)

5517 ‘Q’ 227 QeKh



78  Jasmin Raissy — Geometrical methods in the normalization of germs of biholomorphisms

where - -
in A9 — )\ KUK
1I§n1ll£n‘ 1‘7 Q ¢ 1 2
€Q = ~
in |\?— K.
12227«’ pnl, Q€ Ky

We can define, inductively, for j > 2

and for |Q| > 2
—1
gQ Q1+m§§V:Q 5Q1 e 5Qu7 Q g K1 U K27
bp = -
¢ eél’ Q € Kla
0, Q € Ko,

with @y = 1 and dg = 1, where E is any integer vector with |E| = 1. Then, by induction, we
have that

Vi@l = 1 [Yell < «qlde-

Therefore, to establish (2.15), it suffices to prove analogous estimates for o;; and d¢.

It is easy to estimate o;. Let o = Zj>1 a;t!. We have

a—t:Zajtj

§>2
J
=D | D ant"
j=2 \h=>1
a2
Cl-«

This equation has a unique holomorphic solution vanishing at zero

t+1 8t
O‘:T<1_\/1_m>’

defined for |t| small enough. Hence,
sup — log a; < o0,
i J

as we want.

To estimate dp we have to take care of small divisors. First of all, for each QQ ¢ K»
with |@Q] > 2 we can associate to dg a decomposition of the form

dg = 62016211 e 623, (2.17)
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where Lo = Q, |Q| > |[L1| > -+ > |Ly| > 2 and L; ¢ K, for all j = 1,...,p and p > 1.
If @ € K, it is obvious by the definition of ég. If Q@ & K; U Ks, choose a decomposi-
tion @ = Q1 + --- + @, such that the maximum in the expression of dg is achieved. Ob-
viously, (); doesn’t belong to Ky for all j =1,...,v. We can then express dg in terms of 652}
and 5Q; with |Q}] < |Q;]. Carrying on this process, we eventually arrive at a decomposition
of the form (2.17). Furthermore,

EQ:’XQ_S‘ZQ’7 ‘Q’227Q¢K27

the index i being chosen in some definite way (of course, if Q) € K thenig € {s+1,...,n}).
We can define '
N'ﬂn(Q)’ m Z 27 j e {1’ A 7”}’

to be the number of factors 621 in é¢g, (L = Lo,...,L,) satisfying
er <fws(m), and iy =j,
where 6 is the positive real number satisfying

460 = min |\y| < 1.
1<h<n

The last inequality can always be satisfied by replacing f by f~! if necessary. Then we also
have ws(m) < 2, and in this notation ws(m) can be expressed as
wr(m) = ,uin eg, m > 2.
QEK2
Notice that w¢(m) is non-increasing with respect to m and under our assumptions wy(m)
tends to zero as m goes to infinity.

Lemma 2.5.2. Form >2,1<j<nand Q ¢ K,

, 0, Q <m,
NL(@) <9 21Q
m

» Q> m.

Proof. The proof is done by induction. Since we fix m and j throughout the proof, we write N
instead of NJ,.
For [Q] < m,
eq > w(lQ[) = wy(m) > Gws(m),

hence N(Q) = 0.

Assume now that |Q| > m. Then 2|Q|/m—1 > 1. If Q € K; then, by definition, g = 6651,
so N(Q) can only be equal to 0 or 1 and we are done.

Let us suppose Q ¢ K; U Ky. Write

6 =25'00, - 6g,, Q=Q1+ +Q, v=2,

with |Q] > |Q1] > -+ > |Q.|, and consider the following different cases. Note that Q—Q; ¢ Ko,
otherwise the other @@;,’s would be in Ks.
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Case 1: eqg > @ wy(m) and iq arbitrary, or eg < §ws(m) and ig # j. Then

N(Q) = N(Q1) + -+ + N(Qu),
and applying the induction hypotheses to each term we get N(Q) < (2|Q|/m) — 1.
Case 2: eqg < Owy¢(m) and ig = j. Then
N(@Q) =1+ N(Q1)+ -+ N(Qy),

and there are three different cases.
Case 2.1: |Q1] < m. Then

as we want.
Case 2.2:|Q1| > |Q2| > m. Then there is v/ such that 2 < v/ <wvand |Q,/| > m > |Qur11],
and we have

N(Q>:1+N<Q1>+---+N<Qy/>s1+@—u'g

Case 2.3: |Q1] > m > |Q2|. Then
N(Q) =1+ N(Q),

2l

m

1.

and there are three different cases.
Case 2.3.1:ig, # j. Then N(Q1) = 0 and we are done.
Case 2.3.2: |Q1] <|Q| —m and ig, = j. Then

N(Q)§1+2@‘T_m—1<¥—1.

Case 2.3.3:1Q1| > |Q|—m and i, = j. The crucial remark is that Ea gives no contribute
to N(Q1), as shown in the next lemma.
Lemma 2.5.3. If Q) > Q1 with respect to the lexicographic order, @, ()1 and Q — @)1 are not
in Ko, ig =i, = j and
eg <Ows(m) and eq, <Owr(m),
then |Q — Q1 = |Q| — |Q1] = m.
Proof. Before we proceed with the proof, notice that the equality |Q — Q1| = |Q| — |Q1] is

obvious since Q) > Q1. N
Since we are supposing e, = |[A9! — ;| < 8@ (m), we have

X9 > N = 035 (m)
> 40 — 20 = 20.
Let us suppose by contradiction |@Q — Q1| = |Q| — |Q1| < m. By assumption, it follows that
200f(m) >eq +eq,
=A@ = 3|+ 29 = ]
> A -2
> 3 FO- 1]
> 25,0 - Qul + 1)
> 20wyp(m),
which is impossible. L]
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Using Lemma 2.5.3, case 1 applies to dg, and we have

N(Q) =1+ N(Q1,) +---+N(Q1,),

Y1

where [Q| > [Q1| > |Q1,| > --- > |Qy,, | and Q1 = Q1, + -+ Q1, . We can do the analysis of
case 2 again for this decomposition, and we finish unless we run into case 2.3.3 again. However,
this loop cannot happen more than m+ 1 times and we have to finally run into a different case.
This completes the induction and the proof of Lemma 2.5.2. L]

Since the origin is a quasi-Brjuno fixed point of order s, there exists a strictly increasing
sequence {p, },>¢ of integers with pg = 1 and such that

S by log By (pusa) ! < oo. (2.18)
v>0
Since g = 0 for Q € K3, we have to estimate only
L logo ZP: L loge! QéEK
—logdg =Y —loge; -, 2.
Q¢ T &R

By Lemma 2.5.2,

card {0 < < p:05y(ponn) < er, <O(p)} < Nj(Q) 4N (@)
_ 20lQ)
bv

for v > 1. It is also easy to see from the definition of dg that the number of factors 62; is
bounded by 2|@Q| — 1. In particular,

2
card {O <j<p:0ws(p1) < Elj} <2n|Q| = %.

Then,
1

gy o8 de < 2n > i og(07 B (pusa) )

v>0
(2.19)

=2n | Y p, log@y(pusa) " +1log(07) > p,t
v>0 v>0

Since wy(m) tends to zero monotonically as m goes to infinity, we can choose some m such
that 1 > wy¢(m) for all m > m, and we get

1
e L — “Llogw -1
Z P, = logﬁf(m)—l Z by g f(pl/Jrl) )
v>vg v>vg
where v verifies the inequalities p,,—1 < m < p,,. Thus both series in parentheses in (2.19)

converge thanks to (2.18). Therefore

1 log dp <
sup —— log 00
o 1@ °°°

and this concludes the proof. L]
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2.6 Necessity of the hypotheses

Roughly speaking, we have seen that having only level s resonances and the existence of the
osculating manifold on which f is holomorphically linearizable take cares of the resonances in
the ;s and give the formal linearization. Under these hypotheses the partial Brjuno condition
of order s holds, so we have a partial holomorphic linearization given by P6schel Theorem 1.6.3,
and the reduced Brjuno condition glues the formal linearization and the partial holomorphic
linearization so to get a global holomorphic linearization.
We shall now discuss the hypotheses of Theorem 2.5.1.

Remark 2.6.1. Notice that the osculating hypothesis on the f-invariant manifold is necessary.
In fact, let us take a look at the following example in C2. Let f be given by

' = A1+y)z +2°
y =y

with (A, 1) satisfying the Brjuno condition of order 1 (in particular A is not a root of unity). This
germ is not linearizable. In fact, let g,(z) = A(1+y)z +22, so we can write f(x,y) = (g,(z),y).
A linearization for f is a germ of biholomorphism ¢ = (¢1,15) fixing the origin, tangent to
the identity, and such that

(ng(x,y) (¢1 (1’, y))7 1/}2 (.%', y)) = (wl ()\.%', y)7 1/}2()‘1.7 y)) .

This last equality implies 12 = 12 (y) and gy, (y) (¥1(2,y)) = ¥1(Az,y). Composing on the right
with ¢, ! and setting h, (x) = 11 (2,5 ' (y)), we have

9y (hy(2)) = hy(Az). (2.20)

From (2.20) we deduce that h,(0) € Fix(g,) = {0,1 — A(1 +y)}. Now, ho(0) = 0; hence, by
continuity h,(0) = 0 for |y| small enough, and so g, (0)h;, (0) = Ah;(0) for |y| small enough.
But hg(0) = 1 # 0; therefore A(1+y) = g,,(0) = A for |y| small enough, which is impossible.
Since f is not linearizable it cannot admit an osculating invariant manifold of codimension 1,
even if, obviously, the manifold {x = 0} is f-invariant, and f is linear there.

Remark 2.6.2. The reduced Brjuno condition and the hypothesis f holomorphically lineariz-
able on the osculating manifold are necessary. Consider the following example in C" for n > 2.
Let f be a biholomorphism of C”, fixing the origin, given by

zh = N + fi(x, fori=1,...,n—1,
IZ 1 Qfl( y) (2.21)
Yy =py+y,

with ord,(f}) > 2 for every i = 1,...,n — 1, (A1,...,A\n_1, ) non resonant, and pu = e*>v?
with # € R\ Q not a Brjuno number. Then M = {z = 0} is an osculating manifold of codi-
mension n — 1, but (Ay,..., A1, 1) does not satisfy the reduced Brjuno condition (which,
since we have no resonances, coincides with the usual Brjuno condition). Furthermore, thanks
to Yoccoz’s Theorem [Y2], f|as is not holomorphically linearizable. This germ is not holo-
morphically linearizable. In fact, assume by contradiction that ¢ is a holomorphic lineariza-
tion. Then M = (M) = {¢;'(Z,9) = 0,...,¢,*,(#,§) = 0} is an osculating manifold of

codimension n — 1 for f(Z,§) = ¥ o foy~! = Diag(A1,..., A\n_1,4)(Z,9). Thanks to the
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implicit function Theorem there exist n — 1 holomorphic functions x1(%),. .., xn-1(g), such
that M = {1 = x1(9),-- -+ %n—1 = Xn-1(§)}. The f-invariance of M yields

and this is equivalent, writing x;(3) = Y_,.; X59™, to

D AT =D Xl

m2>1 m>1

which implies x?, = 0 for every i = 1,...,n — 1 and m > 0, because (A1,...,\,_1,/) is not
resonant. Then M = {Z = 0} and, since f|;; is linear, we have a holomorphic linearization
of f|as, contradiction.

2.7 Final remarks

We can obtain many of the result recalled in Chapter 1 as corollaries of our Theorems. If there
are no resonances Theorem 2.4.1 with s = n yields Theorem 1.3.24. If there are no resonances
and the origin is an attracting [resp., repelling] fixed point then Theorem 2.5.1 with s = n
yields Theorem 1.4.1 because the Brjuno condition is automatically satisfied.

Our result can be also compared with Theorem 1.6.4 obtained by Nishimura in [Ni]. The
hypotheses of Nishimura are slightly different from ours, and, in fact, he does not prove a
true linearization theorem. However, his result becomes a linearization result when C(y) is a
constant matrix, which is equivalent to requiring that Y is an osculating fixed manifold. In
this situation our result can be seen as a generalization of Theorem 1.6.4 in the case of dfp
diagonalizable. In fact while he needs an osculating fixed manifold and a strong hypothesis
on the modulus of the eigenvalues, we only need an osculating manifold on which our germ is
holomorphically linearizable and the origin as a quasi-Brjuno fixed point of order s.

Also Theorem 1.4.15 obtained by Rong in [Rol] can be seen as a particular case of
Theorem 2.5.1. In fact, if we are in the hypotheses of Rong, our hypotheses are automat-
ically verified: M is an osculating fixed manifold thanks to the hypothesis As(y) = Ag for
all p € M, and the hypotheses on the eigenvalues follow immediately from the fact that a n-
tuple A = (A1,...,As, 1,...,1) € (C*)™ satisfies the partial Brjuno condition of order s if and
only if (A1,...,As) satisfies the Brjuno condition, and from Remark 2.2.3.

A similar topic is studied in [Sto]. However, his results are not comparable with ours,
because his notion of “linearization modulo an ideal” is not suitable for producing a full lin-
earization result except when there are no resonances at all, whereas in our result we explicitly
admit some resonances.

What it is new in our result is that we are not assuming anything on the modulus of the
eigenvalues, so we are really dealing with the mixed case. In fact we are allowing cases in which
there are some eigenvalues with modulus greater than 1, some eigenvalues with modulus 1, and
the remaining eigenvalues with modulus less than 1. Finally, our Theorem applies in cases not
covered by the previous results, as shown by Remark 2.2.3.

An application to global holomorphic dynamics of a particular case of Theorem 2.5.1 is
given by Bedford and Kim in [BK].
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3

Commuting with a linearizable object

In this chapter we shall show how commuting with a linearizable germ gives us infor-
mation on the germs that can be conjugated to a given one. We shall then deal with
the simultaneous linearization problem, proving that, given f1,..., f;,, (with m > 2)
germs of biholomorphisms of C™ fixing the origin, with (d f;)o diagonalizable and such
that f; commutes with f;, for any h = 2,...,m, under certain arithmetic conditions
on the eigenvalues of (df;)o and some restrictions on their resonances, fi,..., fm
are simultaneously holomorphically linearizable if and only if there exists a particular
complex manifold invariant under fi,..., f;,,. Then we shall see that if a germ of
biholomorphism of C", fixing the origin, commutes with a torus action, then we get
the existence of a holomorphic linearization or of a holomorphic normalization of f.

The main results of Section 3.2 and 3.3 are published in [R3], whereas the main
results of Section 3.4 and 3.5 are published in [R4].

3.1 Commuting with a linearizable germ

A general heuristic principle says that if a map f commutes with a map g, then some properties
of g might be inherited by f. Here we shall explore this heuristic principle in our setting. Our
first result is:

Theorem 3.1.1. Let f and g be two commuting germs of biholomorphisms of C™ fixing the ori-
gin, such that g is holomorphically linearizable and dgo is diagonalizable. Let p = (u1,. .., tn)
be the spectrum of dgo. Then f is holomorphically conjugated to a germ containing only p-
resonant monomials.

Proof. From the hypotheses there exists a germ of biholomorphism ¢ of C™ fixing the origin
and such that ¥~ o go 4 = B is linear. Since dgo = B and it is diagonalizable, there exists
a linear map R such that R~!BR = Diag(j1,...,n). Then, since f := R~ o f o YR
commutes with M := Diag(p1, ..., uy) we get the thesis. In fact, writing

Fi(2) =D ajpm+ > fou2%
p=1

Q=2
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for each coordinate j € {1,...,n}, we have

n
fj(:ulzla s nunzn) = Zajpﬂpzp + Z fQ,j,U'QZQ
p=1

Q=2
n
=i [ D azm + Y fos?
p=1 Q=2

:pjfj(zl,...,zn)

if and only if
ajp(pp — p) =0 and  fo ;(u? — ;) =0,
which imply the thesis. L

We shall use the previous result to catch as more information as we can on the linearization
and on the normalization problems.

One possible generalization of the linearization problem is to ask when a given set of m > 2
germs of biholomorphisms f1,..., f,, of C" at the same fixed point, which we may place at
the origin, are simultaneously holomorphically linearizable, i.e., there exists a local holomorphic
change of coordinates conjugating fj to its linear part for each h =1,...,m.

In Chapter 2 we found, under certain arithmetic conditions on the eigenvalues and some
restrictions on the resonances, a necessary and sufficient condition for holomorphic linearization.
In the next two sections we shall use that result to find a necessary and sufficient condition for
holomorphic simultaneous linearization.

A similar topic is studied in [Sto]. However, his results are not comparable with ours,
because his notion of “linearization modulo an ideal” is not suitable for producing a full lin-
earization result, except when there are no resonances at all, whereas in our result we explicitly
admit some resonances.

We shall need some notations and definition that we introduded in the previous chapters;
thus we recall them here for the benefit of the reader.

Let 1 < s <mn. Wesay that A = (A1, ..., As, 41, ..., ) € (C*)™ has only level s resonances
if there are only two kinds of resonances:

(a) A=)\, = Qek;,
where
Ky = {QGN” Q122 ap=1 and pi" - pl =1};
p=1
and
(b) A =y = QeK,,
where

I?Q:{QGN”

Q| >2,1=--=¢qs=0and Jj € {1,...,7} s.t. u‘f”l---,ug":,uj}.
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Let n > 2 and let Aq,..., A, € C* be not necessarily distinct. For any m > 2 put
H(m)= min min |\ -\,
2<|QI<m 1<j<n
Q&Res; (M)

where Res;()) is the set of multi-indices @ € N", with |Q| > 2, giving a resonance relation
for A= (A1,...,\,) relative to 1 < j < n, i.e., such that A9 — \; = 0. We say that X\ satisfies
the reduced Brjuno condition if there exists a strictly increasing sequence of integers {p, }.- 0
with pg = 1 such that -

Zp,jl log @(pyy1)~* < oo.
v>0

Let f be a germ of biholomorphism of C” fixing the origin O and let s € N, with 1 < s < n.
The origin O is called a quasi-Brjuno fixed point of order s if d fo is diagonalizable and, denoting
by A the spectrum of dfp, we have:

(i) A has only level s resonances;
(ii) A satisfies the reduced Brjuno condition.

We say that f has the origin as a quasi-Brjuno fized point if there exists 1 < s < n such that
it is a quasi-Brjuno fixed point of order s.

In the previous chapter we saw that the osculating condition was necessary and sufficient to
extend a holomorphic linearization from an invariant submanifold to a whole neighbourhood of
the origin for a germ f; of biholomorphism with a quasi-Brjuno fixed point. Using that result,
we shall first prove a simultaneous linearization result. Later on in this chapter we shall restrict
ourselves to study commutations with a particular kind of linearizable object: torus actions.

We recall the following notation from the previous chapter: if g: C" — C is a holomorphic
function with g(O) = 0, and z = (z,y) € C" with x € C® and y € C"*, we shall denote
by ord,(g) the maximum positive integer m such that g belongs to the ideal (z1,---,x4)™.
Furthermore, we shall say that the local coordinates z = (z,y) are adapted to the complex
submanifold M if in those coordinates M is given by {x = 0}.

3.2 Simultaneous osculating manifold

We introduced osculating manifolds in the previous chapter. A germ f of biholomorphism of C”
fixing the origin O admits an osculating manifold M of codimension 1 < s < n if there is a germ
of f-invariant complex manifold M at O of codimension s such that the normal bundle Ny,
of M admits a holomorphic flat (1,0)-connection that commutes with df|y,,. Next definition
is the natural extension of this object to the case of simultaneous linearization.

Definition 3.2.1. Let fi,..., f;n be m germs of biholomorphisms of C", fixing the origin,
with m > 2, and let M be a germ of complex manifold at O of codimension 1 < s < n,
and fp-invariant for each h = 1,...,m. We say that M is a simultaneous osculating manifold
for fi,..., fm if there exists a holomorphic flat (1,0)-connection V of the normal bundle N,
of M in C™ commuting with dfs|y,, for each h=1,...,m.

We shall need the following characterization of simultaneous osculating manifolds.

Proposition 3.2.1. Let f,..., frn be m germs of biholomorphisms of C™, fixing the origin,
with m > 2, and let M be a germ of complex manifold at O of codimension 1 < s < n, and fp-
invariant for each h = 1,...,m. Then M is a simultaneous osculating manifold for fi,..., fm
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if and only if there exist local holomorphic coordinates z = (x,y) about O adapted to M in
which fy, has the form

:U—Za(h) i :Uy) fori=1,...,s,
(3.2)
_ (h) for i — 1 o
y; = ;" (z,y) orj=1,...,r=n-s,
with
ordm(ﬁ(h)) > 2,
foranyi=1,...,sand h=1,...,m

Proof. If there exist local holomorphic coordinates z = (z,y) about O adapted to M in which f,

has the form (3.2) with ord, (f( )) > 2 forany ¢ = 1,...,s and h = 1,...,m, then it is
obvious to verify that the trivial holomorphic flat (1,0)-connection commutes with d fj|n,, for
each h=1,...,m

Conversely, let V be a holomorphic flat (1,0)-connection of the normal bundle Nj; com-

muting with dfy|y,, for each h = 1,...,m. It suffices to choose local holomorphic coordi-
nates z = (z,y) adapted to M in Wthh all the connection coefficients I %, with respect to
the local holomorphic frame {W(B_acl)’ e ,W(%)} of Njs are zero (see Proposition 2.3.1 and

Lemma 2.3.2), and then the assertion follows immediately from the proof of Theorem 2.3.3. In
fact, in such coordinates, since M = {x = 0} is fj-invariant, f;, has the form

) —Za(h) f(h)xy) fori=1,...,s,

yj:f](h)(x,y) forj=1,...,r=n—s,

with
ord, (f}h) ) > 1.

Thanks to the hypotheses we have

0 0
Vandy (A0 (57) ) =i ¥ ()

forany j=1,...,sand h =1,...,7. Now the right-hand side vanishes, because in the chosen
coordinates we have Vaa s (82 ) = 0. So, using Leibniz formula, we obtain
Yk J

0
0= Tunge (807 (557
s (s 2(h)
_ (h) af; 9
= Va2 <Z <Z Qi p Opj + or; (O,y)> ™ (ax))

8f 0\ =, 0 (05" 0
_Z<Z (h)5 (O y)>v n%”(ami)Jerfha_yk( oz, (O,y)>ﬂ<axi>
ey 0 (0 7
= izzldfha—yk ( oz, (0,y)> T <8CCZ> '
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Therefore we obtain

o (of™
dfha—yk < oz, (0,y9) ) =0

for every j, i =1,...,sand k= 1,...7, and, since df} is invertible, this implies

o (of™
aye \ o, 0,9) | =0

for every j, i =1,...,sand k=1,...r, that is

ordm(f}h)) > 2

for every ¢ = 1,...,s, and this concludes the proof. L]

Similarly to Corollary 2.3.4, we have the following result.

Corollary 3.2.2. Let fi1,..., fm be m germs of biholomorphisms of C", fixing the origin,
with m > 2, and let M be a germ of complex manifold at O of codimension 1 < s < n, and fp-
invariant for each h = 1,...,m. Then M is a simultaneous osculating manifold for fi,..., fm
such that fi|nr,. .., fm|m are simultaneously holomorphically linearizable if and only if there
exist local holomorphic coordinates z = (x,y) about O adapted to M in which fj, has the form

S
xQ:Zag;)xh—i—ﬁh),l(x,y) fori=1,...,s,
p=1 i (34)

h)lin h),2 .
y;.:f;) (:U,y)%—j:() (x,y) forj=1,...,r=n—s,

where f;h)lin(x, y) is linear and
ordx(ﬁ»(h)’l)

=2 (3.5)
ord, (fi"?) > 1, '

foranyi=1,...,s,7=1,...,rand h=1,...,m.

Proof. One direction is clear.
Conversely, thanks to Proposition 3.2.1, the fact that M is a simultaneous osculating man-

ifold for fi,..., fi, is equivalent to the existence of local holomorphic coordinates z = (z,y)
about O adapted to M, in which f;, has the form (3.4) with ordm(ﬂh)’l) >2foranyi=1,...,s
and h = 1,...,m. Furthermore, fi|p,..., fm|n are simultaneously holomorphically lineariz-

able; therefore there exists a local holomorphic change of coordinate, tangent to the identity,
and of the form

T =ux,

y=2(y),
conjugating fi, to fy of the form (3.4) satisfying (3.5), for each h = 1,...,m, as we wanted. [J

Remark 3.2.3. It is possible to give the formal analogous of Definition 3.2.1, and then to
prove a formal analogous of Proposition 3.2.1 and Corollary 3.2.2, exactly as in the previous
chapter.
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3.3 Simultaneous linearization in presence of resonances

As announced we shall use Theorem 2.5.1 we proved in the previous chapter. We report
here the statement for the sake of completeness.

Theorem 3.3.1. (Raissy, 2009 [R2]) Let f be a germ of a biholomorphism of C" having the
origin O as a quasi-Brjuno fixed point of order s. Then f is holomorphically linearizable if and
only if it admits an osculating manifold M of codimension s such that f|y; is holomorphically
linearizable.

We can now state and prove our simultaneous linearization result.

Theorem 3.3.2. Let f1,..., fm be m > 2 germs of biholomorphisms of C", fixing the origin.
Assume that fi has the origin as a quasi-Brjuno fixed point of order s, with 1 < s < n, and
that it commutes with f, for any h = 2,...,m. Then fy,..., f,, are simultaneously holo-
morphically linearizable if and only if there exists a germ of complex manifold M at O of
codimension s, invariant under fy for each h = 1,...,m, which is a simultaneous osculat-
ing manifold for f1,..., fm and such that fi|n,..., fm|ym are simultaneously holomorphically
linearizable.

Proof. Let M be a germ of complex manifold at O of codimension s, invariant under f
for each h = 1,...,m which is a simultaneous osculating manifold for fi,..., f,, and such
that fi|ar, ..., fm|a are simultaneously holomorphically linearizable. Thanks to the hypotheses
we can choose local holomorphic coordinates

(2,y) = (1, s s, Y1y - oo, Yr)
such that f; is of the form
Th= Az + fi(l)’l(m,y) fori=1,...,s,

1),2 .
vy =gy + £y (wy) forj=1,...r=n—s,

and, for h = 2,...,m, each fj is of the form
T = Zagz,)xp + M ey fori=1,...,s,
p=1
h)lin h),2 ‘
o= @ y) + [P () forj=1,..r=n—s,
where f](h)hn(x, y) is linear, and for each k =1,...,m

ordm(fi(k)’l) > 2,
ordz(f;k)’g) > 1,

that is o1 o1 o o
[ (s y) = Z foi 29 ye fori=1,...,s,
lQI>2
1Q[>2
k 2 k 2 ’ 7 .
f;) (z,y) = Z féz 29y forj=1,...,7
lQI>2

Q=1
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where Q = (Q',Q") € N* x N" = N" and |Q| = Zp 1 4p-

Thanks to Theorem 3.3.1 and its proof, we know that f; is holomorphically linearizable
via a linearization v of the form

z; = u; + P (u,v) fori=1,...,s,
Yj :vj—i—w?(u,v) for j=1,...,m,

where (u,v) = (uy,...,us,v1,...,0,) and
ord, (¢;) > 2,
ord, (¥7) > 1,
that is

Z Q,Z)égviuQ/vQ” fori=1,...,s,

Q=2
1Q"1>2

¢2uv Z?/)QJ RIA forj=1,...,r
EEY

Since ¢~ o f1 09 = Diag(Ai1,..., Al.s, fi11,- - -, f1,r) commutes with f, = ¥~ o f, 01 for
eachh=2,...,m,and (A1 1,..., 1,5, 41,1, -, H1,) has only level s resonances, it is immediate
to verify that f; has the form

u—Za up + Z U (h)’ (v) fori=1,...,s,

1<Ii<n
A1, 172,

_ ¢(h)lin 7(h),2 .
U;‘_fj (u,v)+fj (v) forj=1,...,r

Moreover, since fj, 0¥ = 1) o f,, we have

|Q[=>2 Q=2
1Q71>2 1Q/>2

_ Z Ulf(h) 1

1<i<n
A=A (3.6)

q1 qs

+Z ¢QZ Za(h)up+ Z ulﬂ(ﬁ)’l(v) (h)up+ Z uzfl(h)l

1Q|>2 1<i<n p=1 1<i<n
Q! >2 AL1=A1,1 ALI=A,s

x (FONR (g, 0) 4 f)2())@"

Sl S b u v Y FEN v ) (v + 0P (w,0)
2
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fori=1,...,s, and
h h ,
Z()Z w? Q Q +Zc() Zwb,quUQ
q=1 Q|>2 1Q|>2
1Q/>1 Q' >2
+ 3 LS (u,0)? (v + P (u,0) @
QI>2
1Q/>1
T 3.7
q1 s
5 (Sl 5 w0 St 5 i
lQ|=2 1<i<n 1<i<n
1Q7|>1 A 1=2A11 Mo,
(h)lin ~(h),2 Q//
x (f; (uw,0) 4+ f1%(0))
forj=1,...,r

Now, it is not difficult to verify that there are no terms of the form u? vQ" with |Q'| =1
in the left-hand side of (3.6), whereas in the right-hand side terms of this form are given only

by the sum of the ulfl(};)’l(v); therefore it must be
Z(h),1, \
l(,z) (’U) = 0’

for all pairs [, i. Similarly, there are no terms of the form u? v?" with Q' = O in the left-hand
side of (3.7), whereas, again, in the right-hand side terms of this form are given by f;hm(v)
only; so

f](h)’z(v) =0 forj=1,...,r

This proves that fh is linear for every h = 2,...,m, that is ¢ is a simultaneous holomorphic
linearization for fi,..., fi.

The other direction is clear. In fact, if f; commutes with fo, ..., f,,, and f1,..., f, are lin-
ear, then the eigenspace of f; relative to the eigenvalues f1 1, ..., 11, is a simultaneous osculat-
ing manifold for fi,..., fn, (and fi|a, ..., fm|s are linear), where (A1 1,. .., A1 gy fh1,15 -+ f41,r)
is the spectrum of fi. L]

Corollary 3.3.3. Let f1,...,fm be m > 2 germs of commuting biholomorphisms of C",
fixing the origin. Assume that fi1 has the origin as a quasi-Brjuno fixed point of order s,
with 1 < s < n. Then fi,..., f, are simultaneously holomorphically linearizable if and only
if there exists a germ of complex manifold M at O of codimension s, invariant under fy
for each h = 1,...,m which is a simultaneous osculating manifold for fi,..., f,, and such
that fi|a, ..., fm|m are simultaneously holomorphically linearizable.

As a final corollary, taking s = n in Theorem 3.3.2, one gets

Corollary 3.3.4. Let f1,..., fin be m > 2 germs of biholomorphisms of C", fixing the origin.
Assume that f, has the origin as a Brjuno fixed point, and that it commutes with f; for
any h=2,...,m. Then fi,..., fn are simultaneously holomorphically linearizable.
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3.4 Torus actions

As announced in Section 3.1, we shall now focus our attention on a particular object: torus
actions. Holomorphic torus actions are holomorphically linearizable thanks to Bochner linea-
rization theorem (which is usually proved in the real-analytic setting but also holds, with the
same proof, in the holomorphic setting; see [R1]).

Theorem 3.4.1. (Bochner, 1945 [Bo|) Let A be a local holomorphic action of a compact Lie

group on (M, p), where M is a holomorphic manifold and p € M. Then the action is holomor-
phically linearizable via a local holomorphic change of coordinates tangent to the identity.

Let A: T"x M — M be a torus action on a complex manifold M, with a fixed point pg € M
(that is A(z,po) = Az(po) = po for all z € T"). The differential d(Ay)py: Tp, M — T,y M is
then well-defined, and thus we have a linear torus action on 7,,, M. A linear torus action can
be thought of as a Lie group homomorphism A:T" — Aut(7},, M), that is as a representation
of T" on the vector space V = T,, M.

Characters and weights of T" are well known. All characters of T* = S* = R/Z are of the
form

Xo(x) = exp(2mixh)

with 6 € Z: hence the character group of T! is isomorphic to Z. Since T" = T! x --- x T, the
characters of T" are obtained multiplying characters of T', that is they are of the form

Xo(z) = exp <27m' Zxk0k> ,

k=1

with @ = (,...,0") € (Z")*, where the * denotes the dual. In particular, § should be thought
of as a row vector. The weights of T" are then the differential of the characters computed at
the identity element, and thus are given by

r

we(v) = 2mi Z v, 0"

k=1

with 6 € (Z")* and v € R". If we write 6; = (6], ...,6%) € (Z")*, then the matrix representation
of the linear action A in the eigenvector basis is given by

A(z) = diag (o, (z)) = diag <exp <27m' Z x;ﬁf)) .

k=1

We have then associated to our torus action a matrix © = (65) € M, x,(Z), whose columns
do not depend on the particular coordinates chosen to express the torus action, but can be
uniquely (up to order) recovered by the action itself.

Definition 3.4.1. The matrix © just defined is called the weight matriz of the torus action.

Definition 3.4.2. Let § € C™ and let j € {1,...,n}. We say that a multi-index @ € N",
with |Q] = Y"1 _; an > 2, gives an additive resonance relation for 0 relative to the j-th coordinate
if

(@,0) =Y anbn =10;
h=1
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and we put
Res) () = {Q e N" | Q| > 2,(Q,6) = 6;}.

Recall that, given A € (C*)™ and let j € {1,...,n}, we say that a multi-index @ € N",
with |Q] > 2, gives a multiplicative resonance relation for \ relative to the j-th coordinate if

and we put

Res;(A) = {Q e N | |Q| > 2,A% = \;}.

Remark 3.4.2. Given [p] € (C/Z)"™, where [-]:C" — (C/Z)™ is the standard projection, the
set
{QeN"[|Q>2,(Q,¢) —p; € Z}.

does not depend on the specific representative ¢ € C™ but only on the class [¢], and so it is
well defined the set Res;([¢]) as

Res;([¢]) ={Q e N" [ |Q] =2 2,[{Q,¢) — ¢;] = [0]}.

Remark 3.4.3. Notice that given A\ € (C*)", we can always find a unique [p] € (C/Z)™ such
that A = e2™¥l ie., \; = €?™[%i] for every j = 1,...,n. Then Res;(\) = Res;([¢]), thus
justifying the definitions and the terminology.

3.5 Commuting with torus actions

In this section we shall describe the relations between the existence of torus actions with
certain properties and the possibility of conjugating a given germ of biholomorphism to another
of a particular form.

Definition 3.5.1. Let 6V, ... (") € Z". We say that a monomial z%e;, with @ € N, |Q] > 1
and j € {1,...,n}, is ©-resonant, where O is the n X r matrix whose columns are 6, .. 0,
if

(Q.0%) = 6"

for every k = 1,...,r. In other words, z,e; is ©-resonant if G;Lk) = Hj(k), forall k=1,...,r,
and 2%, with |Q| > 2 is O-resonant, if

QER,;(0) = ﬂ Res] (0%). (3.8)
k=1

We say that © has no resonances if R;(©) = @ for every j =1,...,n.

Definition 3.5.2. Let (1), ...,0(") € Z™ and let T be a linear map of C". We say that the
matrix ©, with columns 6V, ... 0 is compatible with T if and only if we can write T in
Jordan form with all monomials ©-resonant. In other words, a matrix 7" = (¢;;) in Jordan form
is compatible with © if and only if Hj(k) = 95-?1 forall k=1,...,r when t; ;41 # 0, that is in a
Jordan block of dimension at least 2.

Theorem 3.5.1. Let f be a germ of biholomorphism of C™ fixing the origin O. Then f
commutes with a holomorphic effective action on (C",O) of a torus of dimension 1 < r < n
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with weight matrix © € M, «,(Z) if and only there exists a local holomorphic change of
coordinates conjugating f to a germ with linear part in Jordan normal form and containing
only ©-resonant monomials.

Proof. Let us suppose that the linear part of f is in Jordan normal form and f contains
only ©-resonant monomials. Then we claim that f commutes with the linear effective torus
action

A:T" x (C™,0) — (C,0),

defined by ‘ "
A(z, z) = Diag <e2mzk:1 2k, > 2.

In fact in these hypotheses the j-th coordinate of f is

Nz ezt > feie®

|QI>2
QER,;(O)

where €; € {0,1} can be different from 0 only if A\; = A;_1, the set R;(0) is defined in (3.8)
and the assumption that €;2;_1e; is ©-resonant implies Hj(k_)l = Gj(k) for k=1,...,rife; #0.

Then for every z € T" we have

; r (k) ; r (k) ; T (k)
fj(A($,Z)) :)\jBQMZkzlxkej Zj—{—ejBQMZkzlzkej*lzj—l"‘ Z vajBQMZk:lxk(Q,e >ZQ

|QI>2
QER;(O)

2 T 9<k) 2 T 9(,k> o T 9(,k>
= \je i) e Y zj +€5€ i ey Tk Zj—1+ E fo.e€ i) sy ThE; Q

QI>2
QER;(O)

200 Sz, 0% E
—e Zk:l J )\ij +ejzi1+ fQJZQ

|QI>2
QER;(O)

= 20 (1(2)
= Az, f(2));-

Conversely, let us suppose that f commutes with a holomorphic effective action on (C™, O)
of a torus of dimension 1 < r < n with weight matrix ©. Then, by Bochner linearization theo-
rem 3.4.1, there exists a tangent to the identity holomorphic change of variables v linearizing
the torus action. Furthermore, up to a linear change of coordinates we can assume that in the
new coordinates the action is given by

. L (k)
A(m, Z) = Diag <627” Zk:l vk 0; > Z,

and that f (still commuting with the torus action) has linear part in Jordan normal form
compatible with ©, and thus its j-th coordinate is

)\ij +€j2j71 + Z fQJ‘ZQ
|QI>2
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where €; € {0,1} can be different from 0 only if \;_; = A; and 6,_; = 6;. For every z € T,
we have

. r (k) . r (k) . s (k)
Fi(A@, 2)) = N 2aa O gt 2 S 4 3T g e 2 Q022
QI>2

and

. T (k)
A(x’f(z))j = 627” Zkzl kaj )\ij + €521 + Z fQJ‘ZQ

|QI>2
Then f;(A(z,2)) = A(x, f(z)); if and only if

fq.i

. . g k
<€2m 22:1 ik (Q,0)) — 627” 22:1 I’“GJ(' >> =

for every z € T", j =1,---,n, Q € N* with |Q| > 2, i.e., fg ; can be non-zero only when
S (@00 0y ez vreT,
k=1

which is equivalent to
Q00 -6} =0

for every k =1,...,r, meaning that f contains only ©-resonant monomials. L]

As a consequence of this result we have

Corollary 3.5.2. Let f be a germ of biholomorphism of C" fixing the origin O. Then f
is holomorphically linearizable if and only if it commutes with a holomorphic effective action
on (C",0) of a torus of dimension 1 < r < n with weight matrix © having no resonances.

Proof. If f is linear and in Jordan normal form, then it commutes with any linear action of T*!
with compatible weight matrix ©; so it suffices to choose © with R1(0) =... =R, (0) = 2.
Conversely, if f commutes with a holomorphic effective action on (C™,O) of a torus of
dimension 1 < r < n with weight matrix ©, then, by the previous result, © is compatible with
the linear part of f and there exists a local holomorphic change of coordinates such that f is
conjugated to a germ with the same linear part and containing only ©-resonant monomials.
But each R;(©) is empty; hence there are no ©-resonant monomials of degree at least 2, and
thus f is holomorphically linearizable. L]

The last corollary shows that it is possible to characterize the holomorphic linearization
problem using Theorem 3.5.1. It is then natural to also try and use it to prove holomorphic
normalization results. To do that, we need to find a link between a weight matrix ©, with its
additive resonances, and the spectrum of d fp, with its multiplicative resonances. We shall see
in the next chapter how to do that and the (surprising) answers we found.
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Torus Actions vs Normalization

In this final chapter we shall find out in a complete and computable manner what kind
of structure a torus action must have in order to give a Poincaré-Dulac holomorphic
normalization for a germ f of biholomorphism of C™ fixing the origin. In particular, we
shall link the eigenvalues of d fo to the weight matrix of the action. The link and the
structure we found are more complicated than what one would expect; a detailed study
was needed to completely understand the relations between torus actions, holomorphic
Poincaré-Dulac normalizations, and torsion phenomena. We end the chapter giving
an example of techniques that can be used to construct torus actions.
The main results in this chapter are published in [R4].

4.1 Preliminaries

In this chapter we want to discuss and solve the following problem: to find out in a clear (and
possibly computable) manner what kind of structure a torus action must have in order to get a
Poincaré-Dulac holomorphic normalization from the results we proved in the previous chapter.
In particular, to do so we need to link in a clever way the eigenvalues of dfo to the weight
matrix of the action.

Before we go on, let us recall here, for the sake of completeness, notations, definitions and
results that we shall use.

We have associated to any torus action A:T" x (C",0) — (C",0) fixing the origin a
matrix © = (9;“) € M, «r(Z), called the weight matriz of the torus action, whose columns
do not depend on the particular coordinates chosen to express the torus action, but can be
uniquely (up to order) recovered by the action itself.

We said that a monomial 2@e;, with Q € N, |Q| > 1 and j € {1,...,n}, is O-resonant if

(Q,00) = 61"
for every k = 1,...,r, where 81, ... (") € Z" are the columns of ©. In other words, zpe; is

O-resonant if 9}(3«) = 9§k), for all k=1,...,7, and 2%¢;, with |Q| > 2 is O-resonant if

QER,;(0) = ﬂ ResT (0%), (4.2)
k=1

where for each k=1,...,r

Res;r(a(k)) —{QeN"[|Q|>2 (Q,G(k)> _ 9](.k)}
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is the set of the multi-indices giving an additive resonance for 6% relative to the j-th compo-
nent.

Then we said that © has no resonances if R;(©) = @ for every j =1,...,n.

Moreover, © is compatible with a linear map T of C" if and only if we can write T in
Jordan form with all monomials ©-resonant. In other words, a matrix 7' = (¢;;) in Jordan
form is compatible with © if and only if Hj(k) = 9§Ij31 for all kK =1,...,r when ¢; ;41 # 0, that
is in a Jordan block of dimension at least 2.

As announced we shall use Theorem 3.5.1 we proved in the previous chapter. We report
here the statement for the sake of completeness.

Theorem 4.1.1. (Raissy, 2009 [R4]) Let f be a germ of biholomorphism of C" fixing the
origin O. Then f commutes with a holomorphic effective action on (C™,O) of a torus of
dimension 1 < r < n with weight matrix © € M,«.(Z) if and only there exists a local
holomorphic change of coordinates conjugating f to a germ with linear part in Jordan normal
form and containing only ©-resonant monomials.
Remark 4.1.2. As we noticed in the previous chapter, given A € (C*)", we can always find a
unique [p] € (C/Z)" such that A = e?™?] je., \; = e2™l¥il for every j = 1,...,n. Then we
have

Res;(A) = Res;([¢]) :={Q € N" | |Q[ = 2,[(Q, ) — ¢;] = [0]},
and to find a link between torus actions and holomorphic Poicaré-Dulac normalization we need
to find when it is possible to translate the multiplicative resonances of [p] into additive ones.

4.2 Toric degree

We want to study the relations between the resonances of the eigenvalues of the differen-
tial dfo of a germ of biholomorphism of C™ fixing the origin, and the weight matrices of torus
actions to understand in which cases Theorem 4.1.1 gives us a Poincaré-Dulac holomorphic
normalization. Thanks to Remark 4.1.2 we have to deal with vectors of (C/Z)™. A concept
that turns out to be crucial for this study is that of toric degree.

Definition 4.2.1. Let [¢] = ([¢1],...,[pn]) € (C/Z)™. The toric degree of [¢] is the mini-
mum 7 € N such that there exist a,...,a, € C and 81, ... 0" € Z" such that

o] = [Z akﬂ(’“)] : (4.3)
k=1

The r-tuple 8, ..., 0" is called a r-tuple of toric vectors associated to [¢], and the num-
bers ay,...,a, € C are toric coefficients of the toric r-tuple.

Remark 4.2.1. Note that the toric degree is necessarily at most n, since
n
[p] = [Z tﬂkek] .
k=1

We did not say the toric coefficients because we have the following result.

Lemma 4.2.2. Let [¢] € (C/Z)™ be of toric degree 1 < r < n and let 6V, ... 0 be a r-tuple
of toric vectors associated to [p] with toric coefficients aq,...,a, € C. Then fy,...,5, € C

satisfy
o] = [Z M“‘”]
k=1
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if and only if

ap — [
© : ez
ar — By
where © is the n x r matrix whose columns are 6V, ... ().

Proof. We have
k=1 k=1

if and only if
> apd® =" g™ e zn,
k=1 k=1

that is

a1 — 51
© : ISR
Qp — ﬁr
which is the assertion. [l

Thanks to Remark 4.1.2 the following definition makes sense.

Definition 4.2.2. Let f be a germ of biholomorphism of C" fixing the origin and denote
by A = {A1,..., A\, } the spectrum of dfp. The toric degree of f is the toric degree of the
unique [p] € (C/Z)" such that \ = ¢>il¢] |

Toric r-tuples and toric coefficients have to satisfy certain arithmetic properties, as the
following result shows.

Lemma 4.2.3. Let [¢] € (C/Z)™ be of toric degree 1 < r < n and let 6V, ... 0 be a r-tuple
of toric vectors associated to [p] with toric coefficients oy, ..., € C. Then:

(i) ai,...,q, is a set of rationally independent complex numbers;

(ii) every r-tuple of toric vectors associated to [p] is a set of Q-linearly independent vectors.
Proof. (i) Let us suppose by contradiction that aq,...,«, € C are rationally dependent. Then
there exists (c1,...,¢,) € Z" \ {O} such that

crag + -+ cra = 0.
Up to reordering we may assume ¢; # 0. Then
1
ay = —0—(02042 +- oy,
1

and hence

o] = Zake(k)
[k=1

1

= |- (e2op +o 4+ cran )0 4+ 0@ . 4 Oc,ﬁ(’")]

&

2200 — es) o O (00 - crg(l))] ,
1

s
C1

and this contradicts the definition of toric degree.

(ii) The proof is analogous to the previous one. L]
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Remark 4.2.4. Given [p] € (C/Z)", of toric degree 1 < r < n, if 61 ... 0" is a r-tuple of

toric vectors associated to [p], the n x r matrix © whose columns are #(1), ... #(") has maximal
rank r.

Remark 4.2.5. Note that, if [¢] € (C/Z)" has toric degree 1 < r < n, and 81, ... 0 is
a r-tuple of toric vectors associated to [p], up to change the toric coefficients ag, ..., a;., we
can always assume Hgk), e ,Hr(f") coprime for each 1 < k < r. In fact, if di € Z is the greatest
common divisor of Hgk), . ,07(1]6), then

[p] = [i akg(k)] = [i dkakg(k)] ;

where )
0, /d
o — |
quk)/dk
fork=1,...,r.

Remark 4.2.6. Given [¢] € (C/Z)", of toric degree 1 < r < n, the r-tuple of toric vectors
associated to [p] is not necessarily unique. Let us consider, for example

3v2 + 44
o] = | 22+ 6i
—V2+2i

The toric degree cannot be 1, since it is immediate to verify that ¢ cannot be written as the
product of a complex number times an integer vector. The toric degree is in fact 2, since we

3 2
= |v2| 2 | +2i(3
-1 1

However we can also write [p] as

—3V2 + 16 ? ENCERY

W= =% (! |2

Note that, in both cases, the toric coeflicients are rationally independent with 1.
Example 4.2.7. The vector of (C/Z)?

1+6+2)/6
[p] = [21_2\/5%2},

has toric degree 2, since we have

[p] =

SR ()t ()
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and it is not difficult to verify that it cannot have toric degree 1. We can also write [¢] as

=[5 () ()]

Note that this time, in both cases, the toric coefficients are rationally dependent with 1.

We shall prove that, given [p] € (C/Z)" of toric degree 1 < r < n, even when the r-tuple
of toric vectors associated to [p] is not unique, we can always say whether the toric coefficients
are rationally independent with 1 or not, so this will be an intrinsic property of the vector.
Before proving this, we shall need the following result that gives us a way to find a more useful
toric r-tuple when the toric coeflicients are rationally dependent with 1.

Remark 4.2.8. Note that o € C is rationally dependent with 1 if and only if it belongs to Q.

Lemma 4.2.9. Let [¢] € (C/Z)" be of toric degree 1 < r < n, and let 6V, ... 0) be a r-
tuple of toric vectors associated to [p| with toric coefficients o, . .., «, € C rationally dependent
with 1. Then there exists a r-tuple of toric vectors nV), ..., n") associated to [¢] with toric

coefficients 31, ..., 3, € C such that 8; = 1/m with m € N\{0, 1} and m, 77%1), . ,77%1) coprime.
Moreover (s, ..., [, are rationally independent with 1.

Proof. If r =1, then « is rationally dependent with 1 if and only if it belongs to Q, i.e.,

el = %o

q
where we may assume without loss of generality p and ¢ coprime and ¢,64,...,60, coprime.
Then
A= |2
pl=|=-n
q

where n = p- 6 € Z" and we are done.

Let us suppose now r > 2. Since ay,...,q, are (rationally independent and) rationally
dependent with 1, we can consider the minimum positive integer mg € N\ {0} so that there
exists (my,...,m,) € Z" \ {O} such that

miay + -+ mpea,. = my.

Thanks to the minimality of mg, we have that mq,...,m,, mo are coprime. Up to reordering
we may assume mq # 0. Then

mo mo m
o =— — <—a2+---+mrozr>

mq mq 1
my mo m
:_?_ —as+ -+ —La, |,
my 1 1
where ¢ = %? with (m{,m}]) =1 and m{ € N\ {0,1}. Let d be the greatest common divisor

of m) and the components of #(1), and consider

g =L m =T
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Hence )
Moy NS o) (1)
[p] = m—,19 + Z m—l(m19 —my0")
L k=2
-, .
= %90) +)° %(mle@) - mk9<1>)]
L k=21
_ g Z (10,6 — 6D
_7%1 ’ =2 '
= Zﬁkn(k) ;
k=1
where
1 «Q Q
ﬁl - ~_7ﬁ2 = _27"'7ﬁ7' =
miq miq miq
and

1D = b G0 5 = 8@ — iy ™ = 00—, 60

Notice that m; is necessarily greater than 1, because otherwise the toric degree of [¢] would
be less than 7.

Now, if Bs, ..., 3, were rationally dependent with 1, then we would have an integer vector
(ka,...,k.) € Z=1\ {O} such that

k2ﬁ2+"'+krﬁr:kez\{0}7

then
- 1
—kmy - — +kofo + -+ k.3, =0,
my
contradicting Lemma 4.2.3. This concludes the proof. L]
Definition 4.2.3. Let [¢] = ([¢1],...,[pn]) € (C/Z)™ be of toric degree 1 < r < n. We say
that a r-tuple (M, ... . n(") of toric vectors associated to [p] with toric coefficients £y, ..., [,
rationally dependent with 1 is reduced if f; = 1/m with m € N\ {0,1} and m,ngl), . ,ng)
coprime. In this case the toric vectors n(®, ... n(") are called reduced torsion-free toric vectors

associated to [p].

Now we can prove that the rational independence with 1 of the coefficients of toric r-tuples
associated to a given vector [¢] € (C/Z)™ of toric degree 1 < r < n is an intrinsic property
of [¢].

Proposition 4.2.10. Let [p] € (C/Z)" be of toric degree 1 < r < n, and let 6V, ... (")
be a r-tuple of toric vectors associated to [p], with toric coefficients a, ..., € C rationally
independent with 1. Then every other r-tuple of toric vectors associated to [¢| has toric
coefficients rationally independent with 1.

Proof. Let us assume by contradiction that there exists a r-tuple (™, ... n(") of toric vec-
tors associated to [p] with toric coefficients fi,..., 3, rationally dependent with 1. Thanks
to Lemma 4.2.9, we may assume without loss of generality 8; = 1/m with m € N\ {0,1}



4.2 Toric degree 103

and m,ngl), e ,77,(11) coprime. Let N be the matrix with columns n™,... . ») and let © be
the matrix with columns 6V, . .., (). We have
B aq
=N =191 ]|
/BT‘ a'f‘
that is, there exists an integer vector k € Z" such that
b1 aq
N-| - ]=06-| "1 |+k
/37‘ a'f‘

Since N has maximal rank r, the linear map N:Q" — Q" is injective and, for every U C Q"
such that Q™ = Im(N) @ U, there is a linear map Ly: Q"™ — Q" such that ker(Ly) = U
and Ly N = Id; hence there is a linear map Ly:Z™ — Z" that Ly N = h1d, with h € Z \ {0}.
Then

B a1

| o | =Lye-| ¢ | +Lvk
ﬁ?” aT
Moreover, we can choose U so that the first row of Lyy© is not identically zero. In fact, the first

row of EU@ is identically zero if and only if the first vector e; of the standard basis belongs
to ker(©TLT), and hence it is orthogonal to Im(Ly©), because for any u € Q" we have

0= (u,07L¥e;) = (Ou, LY er) = (LyOu, eq).

In particular Im(©) N U # {O}; otherwise EU|Im(@) would be injective, thus Im(Ly©) = Q",
and e; could not be orthogonal to Im(EUG). Now, it is a well-known fact of linear algebra that
given two subspaces V, W of a vector space T having the same dimension there exists a sub-
space U such that T'= VU = WaU. Hence choosing U so that Q" = Im(N)®U = Im(0)aU,
we have Im(©) N U = {0}, and thus the first row of Ly is not identically zero.

Then
1 o
h—=LyO)1-| + | +(Luvk)
m
o
and this gives us a contradiction since a4, ..., a, are rationally independent with 1 by assump-
tion. ]

We have then two cases to deal with: the rationally independent with 1 case, and the
rationally dependent with 1 case.

Definition 4.2.4. Let [p] € (C/Z)™ be of toric degree 1 < r < n. We say that [p] is in
the torsion-free case, or simply [¢] is torsion-free, if its r-tuples of toric vectors have toric
coefficients rationally independent with 1.

A notion of torsion-free germ of biholomorphism was firstly introduced by Ecalle in [E6]
We shall show in the next section that our notion is equivalent to his; our approach however
gives more information on the normalization problem.
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We end this section with a couple of results showing how to compute the toric degree,
starting with toric degree 1.

Proposition 4.2.11. Let [¢] € (C/Z)™. Then:
(i) [p] has toric degree 1 with rational toric coefficient if and only if it belongs to (Q/Z)™;
(ii) [p] has toric degree 1 with toric coefficient in C\ Q if and only if [¢| ¢ (Q/Z)"™, and
there exists § € Z" \ {O}, with 6, = 0 if [py] = [0], such that there is jo € {1,...,n} so
that
(a) [vjo] & (Q/Z)" and
Ok[jo] — 05 [r] = [0] (4.4)
for any k so that [¢x] # [0]; and
(b) for any representatives gy, of [py], the integer vector ¢;,0 — 0 ¢ belongs to the

— ~

subspace Spany {0, —0j€1,...,—0j,€jo, ..., =0 en}, where 6 =0 — 0; e, .

Proof. (i) If a = p/q € Q then

hence [p] € (Q/Z)™.
Conversely, if [¢;] = [p;/q;] with p;/q; € Q for j =1,...,n, then, considering ¢ = q1 - - - q»,
we get

P14g2---gn
q
1
W=| = H,
Pnd1l-"dn—1 q
q
and we are done.
(ii) If
01
ol = |a| : :
O

with o € C\ Q and 6 € Z" \ {O} then it is immediate to verify that [¢] € (Q/Z)", and 6
satisfies (a). By assumption, once we choose arbitrarily representatives ¢y of [¢x], we can
write o = afy + my, for suitable my € Z. Then

Hk(pj — Hj(pk = Gk(oﬁj + mj) — Hj(aﬁk + mk) = kaj — Hjmk,

for any j and k, thus (b) is verified.

Conversely, let 6 € Z" \ {O} satisfy the hypotheses. By assumption [¢] ¢ (Q/Z)™ and
there is jo € {1,...,n} such that [p, ] € (Q/Z)" satisfies (a) and (b); for the sake of simplicity,
we may assume, without loss of generality, jo = 1. Let us choose a representative ¢ of [p] and
set

9]‘@1 — 9130]‘ == ]Cj €7

for j =2,...,n. Condition (b) means that we can find my,...,m, € Z so that

(92 —61 mi kQ

Hn —91 mpy kn
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that is
]Cj = Hjml — 91mj.
Now we put

Y1 — My
o= -

Then [¢] = [af]; indeed

9'(@1—7721) 9@1—](5—917’)1
ab; = -2 o = 9]1 L =p; —mj.

O

Remark 4.2.12. Condition (b) of the previous Proposition is necessary. In fact, if we just
assume that condition (a) holds, then it is always possible to solve (4.5) in Q, but this does
not imply that it is solvable in Z. For example the vector

(2i4+1)/3
[¢] = i
(11 + 107)/6

has toric degree 2, but if we consider
2
=13
5

we get condition (a) for j = 1. Moreover, choosing ((2:+4)/3,4,(11+10i)/6) as representative

of [ip], we get
()=(%)

and it is not difficult to verify that

has no solution (my,ms, m3) € Z3.
Example 4.2.13. The vector of (C/Z)3

(V2+41)/6
[p1]=| (V2+1i)/3
5(v/2+1)/6

has toric degree 1, since it can be written as

V2 +i ;
6 \5

[p1] =

In general, to compute the toric degree of a vector one starts from the trivial representation
of Remark 4.2.1, and then uses (the proof of) Lemma 4.2.3 to obtain rationally independent
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toric coefficients and toric vectors. Then the toric degree is computed as follows (see also
Proposition 4.3.5)

Proposition 4.2.14. Let ay,...,qa, be 1 < r < n rationally independent complex numbers
and let 9 ... (") € Z" be Q-linearly independent integer vectors. Then:

(i) if oq,...,q, are rationally independent with 1, then [¢] = [Y ), akﬁ(k)] has toric
degree r;

(ii) if eu,. .., are rationally dependent with 1, then [p] = [>;_; ax8®)] has toric de-
greer —1lorr.

Proof. (i) Let ai,...,q, be rationally independent with 1. The toric degree of [¢] is not
greater than r. Let us suppose by contradiction that [¢] has toric degree s < r. Then there
exist M, ..., n®) € Z" and f4,..., B, € C rationally independent such that

|- ]
k=1 k=1

Let N be the matrix with columns nV, ..., 7®), and © the matrix with columns 6V, ..., 6.

We have
B aq
l=|N-{ ]| =19{ |
ﬁS aT
that is there exists an integer vector k € Z" such that
B aq
N-| - |=06-| ' |+k
BS aT

Since © has maximal rank r, the linear map ©: Q" — Q" is injective and, for every U C Q" such
that Q" = Im(©)@U, there is a linear map Ly: Q™ — Q" such that ker(Ly) = U and Ly© = 1d;
hence there is a linear map Ly: Z™ — Z" such that Ly© = h1d, with h € Z\ {0}. Then

B ay
IuyN-| ¢ | —Luk=n| :
ﬁs a'f’
Now, dim(ker(LyN)T) > 1. In particular, there exists & € Z" \ {O} such that (LyN)T¢ = O,
that is ¢ Ly N = O; therefore

aq
Z>-"Luk=h" | 1| =higa),
Oy
which is an absurdum, because ag, ..., a,, 1 are rationally independent.
(ii) Now we have aq, ..., q, rationally dependent with 1, and, arguing as in the proof of
Lemma 4.2.9, we can suppose, without loss of generality, «; = 1/m and «q, ..., «, rationally

independent with 1. If m divides 9%1), ., 0% then (0] = [>h—o 0% has toric degree r — 1
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thanks to (i). Otherwise, we may assume, without loss of generality, m, 9%1), e ,97(11) coprime.
The toric degree of [p] is not greater than r. Let us suppose that [p] has toric degree s < r.
Then there exist nV, ..., n®®) € Z" and 1, ..., s € C such that

o] - [E]
k=1 k=1
thus we have
[me] = [Z an -m9<’“>] = [Z Bre - mn(k)] :
k=2 k=1

and, since aw, ..., a, are rationally independent with 1, by (i) we get s =r — 1. ]

Remark 4.2.15. Note that both cases in (ii) can occur. In fact, it is not difficult to verify
that
1/2 )
(o] = | V2| = [561 +V2e + ie3]
i

has toric degree 3. However, if we consider,

el = |5 1]+ 1 +% 1),
1 3 1
then \/_/
2/2 1 /0
2
2] = (V2+1i)/2 = g 1 +% 1],
(—2+3v2+1i)/2 3 1

so the toric degree is 2. Proposition 4.3.5 will show how to distinguish between the two cases
of Proposition 4.2.14.(ii).

4.3 Torsion

In [E6], Ecalle introduced the following notion.
Definition 4.3.1. Let A € (C*)". The torsion of A is the natural integer 7 such that

%QMZ:(%TZ'Q)Q (2miZ) EP ((logX))Z) | . (4.6)

1<j<n

Translated in our notation, (4.6) becomes

1
“z2=0n |z Z
~2=Q P ez].

1<j<n

where ¢ is a representative of the unique [¢] € (C/Z)™ such that X\ = exp(2mi[y]).
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The torsion is well-defined, as the following result shows (and whose proof describes how
to explicitly compute the torsion).

Proposition 4.3.1. The torsion of a n-tuple (A1,...,\,) € (C*)" is a well-defined natural
integer. Furthermore, writing \ = e*™¢] if [¢] is torsion-free, then T = 1; otherwise T divides
the denominator of the first toric coefficient in a reduced representation of [p].

Proof. Let [p] € (C/Z)™ be the unique vector such that A\ = exp(2mi[p]), let 1 < r < n
be its toric degree and let #1), ... 0 be a r-tuple of toric vectors associated to [¢] with
coefficients ay, ..., a.

Our aim is to determine the structure of the set

R=Qn Zé@jz :

j=1
that is of the set of rational numbers x that can be expressed in the form
Q3x=mog+mip1+---+mup,

with mg,...,m, € Z. Write, as usual,
k=1
with h; € Z. Then

z = (mo +mihy + -+ mphy) +ma Y b by Y apP

k=1 k=1
T
=m+ Y ap(M,6%),
k=1

where m € Z and M € Z"™ are generic. If «q,...,q, are rationally independent with 1, it
follows that 2 € Q if and only if (M,0M)) = ... = (M,0")) = 0, and thus R = Z and 7 = 1.

If aq,...,a, are not rationally independent with 1, let us use instead the reduced repre-
sentation, with 5 = 1/m, the remaining coefficients f3s,. .., 3, rationally independent with 1,

and with n™, ... n(") as toric vectors. We get

1 T
-+ —(M.nM M. n(F)y
z=m+ (M7 >+k§26k< )

Therefore = € Q if and only if (M,n®) = ... = (M,n() = 0, and moreover in that case

" 1
m

Now, the set
S = {(Mﬂ?(l)> | M e Z",(M,n(2)> R <M777(r)> =0}
is an ideal of Z; therefore S = ¢Z for some g € N. It follows that

i 1
R=zelr-70L7-_7
m m m

where ¢ and m are coprime, and ¢/m = ¢/m. Hence 7 = m, and we are done. L]
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Remark 4.3.2. Note that, in the previous proof, S # {O}, i.e., ¢ # 0. Indeed, S = {O} if

and only if the kernel in Z" of the linear form (7)) contains the intersection of the kernels

in Z™ of the linear forms (n®)”, ..., (n0)T. Tt is easy to see that this implies that the

kernel in Q" of the linear form (n™)7 contains the intersection of the kernels in Q" of the

linear forms (n®)HT ... (n))T. But this implies that the linear form (n™)7 is a Q-linear

combination of (n®)T,... ()T and so n™,...,n(") are Q-linearly dependent, impossible.
The next result explains the terminology of Definition 4.2.4.

Theorem 4.3.3. Let A = ¢2™l¥l ¢ (C*). Then [¢] is torsion-free if and only if the torsion of
As 1.

Proof. If [p] is torsion-free, then the toric coefficients of a toric r-tuple associated to [p] are
rationally independent with 1, and the torsion 7 is 1, by Proposition 4.3.1.

Conversely, let (M), ... n(") be a reduced r-tuple of toric vectors associated to [p] with
toric coefficients 1/m, fa, ..., 3. Let us assume by contradiction that the torsion 7 of [¢] is 1.
From the proof of Proposition 4.3.1 it is clear that we have 7 = 1 if and only if (P,n())) € mZ,
for any P € Z" such that (P,n*)) =0 for k = 2,...,7.

Since n, ..., n(") are a toric r-tuple, we may assume, without loss of generality, that the
matrix A of M,,x,(Z) with columns 7®,...,n(") e,.,... e, is invertible in M, ,(Q). Denote
by N’ the matrix in M, _1)x(r—1)(Z)

2
MR
N’ = ; :

2 r

777(~—)1 777(n—)1

and by N the matrix in M, _r41)xr—1)(%)

WCRNNRC
N" = ; ;
NG

Then )
N 0]
A= <NN In—r—i—l)
and det(A) = det(N’) # 0.

We claim that, up to pass to another toric r-tuple 7V, n® ... (", we may assume
that m = det(N’) and V) € {0}7~! x Z"~"+1. In fact, n*) = A~ lep_y for k = 2,...,7,
with A=! € M, x,(Q). Hence P € Z" is such that (P,n*)) = 0 for k = 2,...,r if and only
if (ATPe;)=0for j=1,...,7 —1, that is ATP € {0}"~! x Z"~"*1. Now, we have

N/T NIIT P/
T _ r—1 n—r+1
A P—< 0 Inr+1><P">E{O} X 7

if and only if

_ 'TN—=1 n711T p11
P = ( (N )P,,N P ) with P” € z" " and (N'T)"'N"TP" c 77",
that is
P" ez and (N'T)TN"TP" € det(N")Z" 1
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where (N'1)T € M(,_1)x(r—1)(Z) and (N'T)TN’ = det(N')I,_y. In particular, since we are
assuming

Py =0 for k=2,...,r = (P,nV) e mZ, (4.7)
we get

(ATP, A_ln(1)> = <<g,> ,A_ln(1)> € mZ

for any P” € det(N")Z"~"+1. Then there exist qi,...,q—1 € Q and (M) € {0}~ x Zr—"+1
such that

A1) = e m_ 1)
n qier + -+ gr_16r—1 + det(N’)n )
that is
m
77(1) — Q177(2) + -4 %"7177(74) + det( )’\(1)
thus we get

] = %n(” + Z 61&7(’”]

1 m Qk 1
_ A<1> < ) (k)
mdet +Z " ]

1 ~
_ (1) |
dev(v) ! +sz’“” ]

Note that ﬁg, e ,BT are rationally independent with 1.

Now we can assume that (4.7) holds with m = det(N’) and n() € {0}"~1 x Z"—"+1,
We claim that there exist 72,...,7, € C* such that [¢] = [>_;_, vn¥], i.e., [¢] has toric de-
gree 7 — 1, contradicting the hypotheses. We can have [¢] = [>"_, ven®] with 7o, ..., 7, € C*,
if there exists 6’ € Z"~! such that

V2 B2
. — : + N/—la/
Tr By
and @ € Z"1 is a solution
T 777(~1)
N"N'"*t : =] : mod mZ" ", (4.8)
LTr—1 7’]»21)

In fact, since N”N'~1 = (1/m)N" N’'*, this implies

1 1 O O
En(l) ~m <77//(1)> = <N//N/—16/> ) (4.9)
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modulo Z, where n”"(1) = (777(,1), .. ,77,(11)), hence

. B2
o] = | =0+ N | ;
m
i Br
i 72
O N’ . _
= (N//N/—19/> + <N”> : — N’ 1(9/
| Yr
0 Ny [ 0
= <N//N/—19/> + (N”) - <N//N/—19/>
L Tr
[ V2
| Vr

Now we prove that, if (4.7) holds with m = det(N’) and (") € {0}"~! x Z"~"*+1 then
there exists a solution 6’ € Z"~1 of (4.8). In fact, if P” ¢ mZ" ! is a multi-index such
that P"TN"N't € mZ ', then by (4.7) we have P"Ty"() € mZ, where we use the same
notation of (4.9); thus, since up to reorder the indices we may assume that the last coordinate
of P" is not in mZ, we can substitute P"T N N'*2 = P"Tp/() to the last equation of (4.8),
and we have to solve a system with one equation less. We iterate this procedure for a set of
generators of a complement of mZ"~"*! in the lattice of P until, up to reordering, we get

T 777(~1)
B = : mod mZ"
1
Tr—1 77£+)h—1

where 1 < h <n—r+1, B€ Myy(,-1)(Z) is the matrix of the first h rows of N”N"*, and
for any R ¢ mZ", we have RT B ¢ mZ"~", that is B has maximal rank modulo m.
If h =1, then we have

bizy+ -+ b 1xpq = 7751) mod mZ. (4.10)

If by,...,b,—1,m are coprime it is obvious that (4.10) is solvable. If the greatest common
divisor of by,...,b,_1,m is p > 1, then m = qp and q(by,...,b.—1) € mZ"~1, hence, by (4.7),

we must have 77%1) € pZ too, thus

is solvable.
Let us now suppose 1 < h < n —r + 1. Since B has maximal rank modulo m, there
exists BY in M(,_1yxp(Z) such that BT B = dI,_;, modulo mZ where d # m. Thus we have

€1 nﬁl)
d = Bt mod mZ".
Tr—1 nf’?h*l
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If d and m are coprime, we are done. Otherwise, let p be greatest common divisor of d and m,
and let ¢ = m/p. Since B*B = dI,_; modulo mZ, we have ¢B*B = O modulo mZ, thus,
since we are assuming that for any R & mZ", we have RT B ¢ mZ"~!, it has to be ¢BT = O
modulo mZ, that is BT = pé modulo mZ. Therefore we have

d z1 7751)
~ m
- : =B : mod —Z",
p\ - o p
Tr—1 77r(=+)h—1
which is solvable, as we wanted. O

Example 4.3.4. Let us consider the vector

o= [ () ()] e

of toric degree 2. We have
(P,n®) =p1—6py =0

6
pe(®)z

Res{ (1) = {(6h+1,h) | he N\ {0}} and Resf(n®)={(6h,h+1)|heN\{0}},

if and only if

hence

and

((6h,h),nM)) € 9Z,

that is
S = 97,

and the torsion is clearly 2. Moreover, we have

A= (10222 )

Using the torsion 7 of a vector, we obtain a complete criterion to compute the toric degree
of a vector, as next result shows.

Proposition 4.3.5. Let [¢] € (C/Z)"™ and let T be its torsion. If

=[]
k=2

€ (C/7.)?.

with ") & mZ™, then [¢] has toric degree r if and only if the torsion of [¢] is T > 1, the
coefficients (3, ..., [3, are rationally independent with 1, and the integer vectors n"), ... n()
are Q-linearly independent.

Proof. Tt follows from Lemma 4.2.9, Proposition 4.3.1 and from the proof of Theorem 4.3.3.
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4.4 Poincaré-Dulac normal form in the torsion-free case

In the torsion-free case, it is not difficult to show that we can compute the resonances
of [¢], which are multiplicative, using the additive resonances of one of its associated r-tuples
of toric vectors;

Lemma 4.4.1. Let [p] € (C/Z)™ be of toric degree 1 < r < n and torsion-free. Then for
any r-tuple of toric vectors, 01, ... (") associated to [p] we have

Res; ([]) = () Res; (6%)
k=1

forevery j=1,...,n.
Proof. We have

(Q,0) —¢s] = [Z a <<Q, o)) — 9§’“>] (4.11)

k=1
and, since aq, ..., q, are rationally independent with 1, the right-hand side of (4.11) vanishes
if and only if (Q,0*)) — Hj(k) =0 forevery k=1,...,r. L]

Example 4.4.2. Let us consider the torsion-free vector

3 2
= (V2| 2 | +2i|3]]| e(C/z),
—1 1

of toric degree 2. Then
(P,6W) =3p; +2py — p3 =0
(P,0®) = 2p; + 3ps + p3 = 0

for some P € Z", if and only if

Hence in this case
Res ([¢]) = Ress([¢]) =@ and Resy([¢]) = {(1,0,1)}.
Example 4.4.3. Let us consider the vector
3 2
= |v2| 2 | +2i| =3 || e(C/z).

-1 1

Again, [¢] has toric degree 2 and it is torsion-free. In this case, we have

(P,0W)Y = 3p; +2py —p3 =0
(P,0®) = 2p; — 3py +p3 =0
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for some P € Z", if and only if

Hence
Resi ([¢]) = {(g+ 1,5¢,13q) | ¢ € N\ {0}}

={
Resy([¢]) = {(¢,5¢ +1,13¢) | ¢ € N\ {0}}
Resz([]) = {(¢,5¢,13¢ + 1) | g € N\ {0}}.

We have the following immediate corollary of Lemma 4.4.1.

Corollary 4.4.4. Let A € (C*)" and let [¢] € (C/Z)" be such that A = e*™I¥l. If [¢] is
torsion-free and has toric degree 1 < r < n, then for every r-tuple 01, ... (") of toric vectors
associated to [p] we have

Res; () = ﬂ Resj(ﬁ(k))
k=1

forevery j=1,...,n.
Lemma 4.4.5. Let [¢] € (C/Z)™ be of toric degree 1 < r < n and torsion-free. Then for any r-
tuple of toric vectors, 81, ... 0 associated to [p] we have 9§k) = Hi(Lk) whenever [p;] = [¢n],
forevery k=1,...,r.

Proof. If [p;] = [pn], then

@10+ 0,07 = [0+ )]

J
hence there exists m € 7Z, such that

a <9§1> _ 9}@) Tta, (gj(r) _ 92”) =m,

and, since Hj(-k) — Hf(lk) € Zfor k=1,...,r, the assertion follows from the rational independence
with 1 of aq, ..., ;. L]

Definition 4.4.1. Let f be a germ of biholomorphism of C” fixing the origin. We say that f
is torsion-free if, denoted by A = {A1,...,\,} the spectrum of dfp, the unique [p] € (C/Z)"
such that \ = e*™¢ is torsion-free.

We have then the following complete description of Poincaré-Dulac holomorphic normal-
ization in the torsion-free case.

Theorem 4.4.6. Let f be a germ of biholomorphism of C™ fixing the origin O, of toric
degree 1 < r < n and in the torsion-free case. Then f admits a holomorphic Poincaré-Dulac
normalization if and only if there exists a holomorphic effective action on (C™, O) of a torus of
dimension r commuting with f and such that the columns of the weight matrix of the action
are a r-tuple of toric vectors associated to f.

Proof. 1t follows from Theorem 4.1.1, Lemma 4.4.5 and Corollary 4.4.4. L]
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4.5 Poincaré-Dulac normal form in presence of torsion

The torsion case is more delicate and difficult to deal with. First, the next lemma yields a
subdivision in more subcases, all realizable (we have examples for all of them) and, surprisingly,
having very different behaviours; we have cases similar to the torsion-free case (even if we have
torsion!), and cases that are indeed different. In particular, considering iterates of f to reduce
to the torsion-free case hides very interesting phenomena, and it does not allow to see that
some torsion cases can be directly studied.

Let us consider [¢] € C/Z, of toric degree 1 < 7 < n and let ), ... (") be a r-tuple
of toric vectors associated to [p] with toric coefficients ayq, ..., «, rationally dependent with 1.
We shall put
D(ag,...,ap) ={M € Z" | may + -+ m,a, € Z},

and .
Adm(0W,...,07) = | ] Adm;(6™, ..., 00)),
j=1

where
Adm;(0WY,....0) ={M €Z" | 3Q € N",|Q| > 2s.t. my = (Q—e;,0 ) VE = 1,...,7}U{0},

for all j € {1,...,n}.

Even if, in this case, it is not always true that we can compute the resonances of [p] as
intersection of additive resonances, we can say many things on the resonant multi-indices using
reduced r-tuples associated to [¢].

Lemma 4.5.1. Let [¢] € (C/Z)"™ be of toric degree 1 < r < n and let nV,... n") be a
reduced r-tuple of toric vectors associated to [p] with toric coefficients 1/m, 3, ..., 3.. Then

(i) D(1/m,Bs,...,0.) ={(hm,0,...,0) | he Z} CZ";

(ii) we have

D(1/m, B, Br) N Adm(y™, ....5") # {0}
if and only there exist @ € N™, with |Q| > 2 and j € {1,...,n} such that

(Q—ej,nM)yemz\ {0} and Qe ﬂRes (n*));

k=2

(iii) we have

Res;([¢]) = {Q e N" [ Q| > 2,(Q — e;,n'V) € mZ} N (1) Res} (n™)),
k=2

for any j € {1,...,n}. In particular,
ﬂ Res (n™)) D Res;( ﬂ Res (n*)y, (4.12)

for all j € {1,...,n}.
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iv) |¢;] = |pn] implies that m divides 77(1) — n(l), and that n(k) = n(k) forany k=2,...,r.
J J h J h

Proof. (i) One inclusion is obvious. Conversely, let M € D(1/m, (s,...,[3.); then

1
m1E+m2B2+"'+m7‘BTEZ-

Since (s, ..., [, are rationally independent with 1, this implies mo = -+ = m,. = 0, thus we
must have my/m € Z, and we are done.

(ii) Tt is immediate from the definitions of D(1/m, B, ..., 3,) and Adm(n™,... n(") and
from (i).

(iii) It is immediate from (ii) and from
[<Q’ QD> - ij] = [%<Q AR 77(1)> + Z Bk <Q e U(k)>] : (413)
k=2

(iv) If [j] = [pn], then
1 r 1 r
4 Bk | = [l o 4 ).

¢ 1 c7
1 1 2 2
m <77]( ) "7}(L )> B2 <77]( ) "7}(L )> e ﬂr (77](-7") "7}(:)> )

(k) _ n}(Lk) € Z for k=1,...,r, the assertion follows as in (i). ]

and, since 7;

Remark 4.5.2. Note that, given [¢] € (C/Z)" of toric degree 1 < r < n, if n(M ... 7 is
a reduced r-tuple of toric vectors associated to [p] with toric coefficients 1/m, (s, ..., 3, and
such that [p;] = [¢4] for some distinct coordinates j and h, but 77](-1) # n}(ll), then, since m

divides 77](-1) — 77}(3), we have

Ly 1 oy 1 /a @),
poosl/ B +E<77j — )

thus
1 T
— | 5D (k)
[¢] [mn +Y Ben ]
k=2
where, 775,1) = nél) for any p # j, h and ﬁj(l) = ﬁ}(ll), that is (1) = () — (n](l) —n}(ll))ej, obtaining
a reduced r-tuple compatible with the structure of \.

Even in the torsion case, toric r-tuples associated to a same vector [¢] have to verify certain
properties on the resonances, as next result shows.

Lemma 4.5.3. Let [¢] € (C/Z)"™ be of toric degree 1 < r < n and in the torsion case.

Let n®M ... 0" be a reduced r-tuple of toric vectors associated to [p] with toric coeffi-
cients 1/m, fa,..., 0, and let €V ... £ be a reduced r-tuple of toric vectors associated
to [¢]| with toric coefficients 1/m,~a,...,7,. Then we have

T T

[ Resf (1) = (] Res} (¢™),

k=2 k=2
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forallj=1,...,n
Proof. We have

1 d 1 .
o] = [—n(” +> 08 77(’“)] = [:5(1) +> 5(’“)] :

Then
el =[S | = | et
k=2 k=2
and, by Proposition 4.2.14, [mm] has toric degree r — 1 and is torsion-free, because fo, ..., (3,
and s, ...,7, are rationally independent with 1. Therefore, by Lemma 4.4.1, we have
T
ﬂ Res (n™)) = Res; ([mime]) = ﬂ Res;r(f(k)),
k=2
for any j = 1,...,n, and we are done. ]

As Theorem 4.3.3 shows, it is not possible that (P,n")) € mZ for any P € Z" such
that (P,n®)) =0 for k = 2,...,r. However, it is possible that

Res;( ] ﬂ Res (k )

for all j € {1,...,n}, as next example shows.

Example 4.5.4. Let us consider the vector
0 0
|1 ]o0 0 5 4
=301 *tv2| o |+V3]5]] €@/,
1 1 0

of toric degree 3. In this case D(1/3,v/2,v/3) = {(3h,0,0) | h € Z}. We have
(Pn?) = =12p1 +ps =0

if and only if

P e

1
0
0 Z @ 62Z @ 632,

12

and
(P,n®) = 5py + 2p3 = 0

if and only if
0

Pe _52 7D e1Z ® esZ.

0
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We have
Resi (n®) = {(a1, 42,03, 12(q1 — 1)) | a1, 42,03 € N, 13q1 + g2 + g3 > 14}
Resy (1®) = {(q1, 92,93, 1201) | ¢1, 42,93 € N, 13¢1 + g2 + g3 > 2}
Resj (n®) = Resy (n')
Resf (1) = {(a1,42, 03,121 + 1) | 41,42, 03 € N, 13q1 + g2 + g3 > 1},
and
Res{ (n®) = {(¢1,0,0,q4) | q1,94 € N, q1 + g4 > 2}
Res3 (1) = {(¢1,1,0,q4) | ¢1, 94 € N, g1 + g4 > 1}
Rest (n®) = {(¢1,0,1,04) | q1,94 € N, g1 + g2 > 1}

Resj{(n(?’)) Res (n (3))

Moreover for each multi-index of the form (p,0,0,12p) with p > 1, we get

p
< 8 ,n<1)> =12p € 37Z.

12p

Then it is easy to verify that
Res;([¢]) = Res (n®)n Res (n®),

forj=1,...,4.

Remark 4.5.5. This last example shows that, even in the torsion case, there are vectors [¢]
of (C/Z)" such that, for any j, Res;([¢]) can be written as intersection of sets of additive
resonances.

We have then the following definition.
Definition 4.5.1. Let [¢] € (C/Z)™ be of toric degree 1 < r < n and in the torsion case.

We say that [p] is in the impure torsion case if, given V), ... (") a reduced r-tuple of toric
vectors associated to [¢] with toric coefficients 1/m, 3, ..., 3., we have

Res; (¢ ﬂ Res (n*), (4.14)
for all j € {1,...,n}. Otherwise we say that [¢] is in the pure torsion case.

The next result shows that the impure torsion case is well-defined, i.e., it does not depend
on the chosen toric r-tuple.

Lemma 4.5.6. Let [¢] € (C/Z)"™ be of toric degree 1 < r < n and in the torsion case.
Let nW,....n") be a reduced r-tuple of toric vectors associated to [¢] with toric coeffi-
cients 1/m, Ba,...,[B,. If

Res; (¢ ﬂ Res (n*), (4.15)

for all j € {1,...,n}, then (4.15) holds for any other reduced toric r-tuple associated to [p].
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Proof. Let €M), ... ¢ be another reduced r-tuple of toric vectors associated to [¢] with toric
coefficients 1/m, s, ..., Since nM, ..., n(" is in the impure torsion case, we have

Res;([¢]) = ﬂ Resj(n(k)),
k=2

but, thanks to Lemma 4.5.3, we have

() Resi (1) = () Res (€%,
k=2 k=2

for any j = 1,...,n, that is €1 ... £ satisfy (4.15). L]

Definition 4.5.2. Let f be a germ of biholomorphism of C” fixing the origin. We say that f
is in the impure torsion case [resp., in the pure torsion case] if, denoting with A = {\1,..., \,}
the spectrum of dfo, the unique [¢] € (C/Z)" such that A = €2™¢] is in the impure torsion
case [resp., in the pure torsion case].

Theorem 4.5.7. Let f be a germ of biholomorphism of C™ fixing the origin O of toric
degree 1 < r < n and in the impure torsion case. Then it admits a holomorphic Poincaré-
Dulac normalization if and only if there exists a holomorphic effective action on (C™,O) of a
torus of dimension r — 1 commuting with f, and such that the columns of the weight matrix
of the action are reduced torsion-free toric vectors associated to f.

Proof. It follows from Theorem 4.1.1, Lemma 4.5.1 (iv) and Lemma 4.5.6. U

The next examples show that, in case of pure torsion more cases are possible.

Example 4.5.8. Let us consider the vector

=5 (5)+v2(5)] e @

of toric degree 2. In this case D(1/6,v/2) = {(6h,0) | h € Z}. We have

<Pa77(2)> =p1 +6p2 =0

—6
pe()a

if and only if

hence
Rest(1®) = and Resi(n®) = {(6,0)}.
Since
<(67 _1)777(1)> =3 g 6Z7
we have

D(1/6,v2) N Adm; (", 5*) = {0}

for 7 = 1,2, so we have

Res; ([¢]) = (] Res} (n) = 2,
k=1
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for 7 = 1,2. Moreover, it is evident that the torsion is 2.

Example 4.5.9. Let us consider the vector

- [+ ()] e e

of toric degree 2. In this case D(1/7,v/2) = {(7h,0) | h € Z}. We have
Res{ (V) =@ and Resj(n'V) = {(3,0)},
and
Res{ (n®) = {(6h+1,h) | h € N\ {0}} and Resj(n®)={(6h,h+1)|heN\{0}}

then
Res{ (M) NResf (1) =2 and Resf (V) NResf (n?) = &

However, we have

((6h,h),nV)) € 9Z;
hence we have
ResT (n®) D Res([¢]) = {(42h +1,7h) | h € N\ {0}} D Res] (™) N Res; ()
Resy (1'?) D Resy([¢]) = {(42h,7h +1) | h € N\ {0}} D Ress (n'V)) N Res] (n®).

Moreover, it is not difficult to verify that the torsion is 7.

In the pure torsion case, one could ask whether, given a toric r-tuple n*, ... n(") associ-
ated to [p] such that

ﬂ Res (n™®)) > Res;( ﬂ Res (n*)), (4.16)

for some j € {1,...,n}, then this is true for any other toric r-tuple associated to [p]. This is
not always true, as next example shows.

Example 4.5.10. Let us consider the vector

1 1 0

|11 6 0 4

=131 +v2|o|+V3| 1| @D,
1 0 5

of toric degree 3. In this case D(1/3,v/2,v/3) = {(3h,0,0) | h € Z}. We have

Resj(n(l)) =g

for j=1,...,4,
Resi (n?) = {(1,0,p,q) | p,g € N,p+¢q > 1}
Res§ (n®) = {(6,0,p,q) | p,q € N}U{(0,1,p,q) | p,g €N,p+¢q > 1}
Rest (n®) = {(0,0,p,q) | p.g € N,p+q > 2}
Res{ (n®) = Resi (n®),
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and ResT (n®) = {(h,k,5q,q) | h,k,q € N,h + k + 6¢ > 2}
Res§ (n¥) = Rest (n®)
Res3 (n®) = {(h,k,5¢ 4+ 1,q) | h,k,q € N,h +k +6¢ > 1}
Resf (1) = {(h,k,5(¢ —1),q) | h,k,q e N,h + k +6¢ > T}

Then we have
ﬂ Res (k)
for j =1,...,4, but it is not difficult to verify that
Ress([¢]) = {(0,1,5¢,9) | e N*} #@ and Res;([¢g]) = Res} (n®) NResT () j=1,3,4,
Then, since
Resy (n®) N Resy (n'®) = {(6,0,5¢,9) | ¢ € N}U{(0,1,5¢,q) | ¢ € N*} # Ress([¢]),

we are in the pure torsion case, but we cannot write all the resonances of [¢] as intersection of
the additive resonances of 7V, n® and n(®). However, we can write

1 1 0
1 -2 6 0

[p] = 3 1 +v2 0 +3 1 )
-5 0 5

and it is not difficult to verify that, in this representation, we have

Res; ([¢ ﬂ Res (™),

forj=1,...,4.
Example 4.5.11. If [p] € (C/Z)? is given by Example 4.5.9, we saw that we can write it in

the form .
] = [;n(” + 677‘2)}

so that
Res (n*) D Res;([¢]) D Res] (")) N Rest (n®), (4.17)

for all j. Furthermore, it is easy to check that [¢] does not admit any reduced representation

1
] = [—fm + véﬂ
Tq
such that for all j we have
Res;([¢]) = Resj(él)) N Resj(f(g)). (4.18)

We are then led to the following
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Definition 4.5.3. Let [p] € (C/Z)™ be of toric degree 1 < r < n and in the pure torsion case.
We say that [p] can be simplified if it admits a reduced r-tuple of toric vectors n*), ... 7
such that

Res; (¢ ﬂ Res (n*), (4.19)

for all j = 1,...,n. The r-tuple nM, ... 1" is said a simple reduced r-tuple associated to [p)].

Definition 4.5.4. Let f be a germ of biholomorphism of C” fixing the origin in the pure
torsion case. We say that f can be simplified if, denoting with A = {A\1,..., A\,,} the spectrum
of dfo, the unique [¢] € (C/Z)" such that A = ¢>[¥] can be simplified.

Theorem 4.5.12. Let f be a germ of biholomorphism of C™ fixing the origin O of toric
degree 1 < r <n and in the pure torsion case, such that it can be simplified. Then:

(i) if dfo is diagonalizable, f admits a holomorphic Poincaré-Dulac normalization if and
only if there exists a holomorphic effective action on (C™,O) of a torus of dimension r
commuting with f and such that the columns of the weight matrix © of the action are
a simple reduced r-tuple of toric vectors associated to f;

(ii) ifdfo is not diagonalizable and there exists a simple reduced r-tuple of toric vectors asso-
ciated to [p] such that its vectors are the columns of a matrix © compatible with dfo, f
admits a holomorphic Poincaré-Dulac normalization if and only if there exists a holo-
morphic effective action on (C",O) of a torus of dimension r commuting with f and
with weight matrix ©.

Proof. It follows from Theorem 4.1.1. ]

Remark 4.5.13. Note that we cannot get rid of the compatibility hypothesis in the case of
d fo non diagonalizable, because if we change a simple reduced toric r-tuple as in Remark 4.5.2,
it is not true that we obtain another simple reduced r-tuple. In fact, if [p] € (C/Z)™ has toric
degree 1 < r < n,and n, ..., n") is a simple reduced r-tuple of toric vectors associated to [¢]
with toric coefficients 1/m, 32, ..., 3,, but we have [p;] = [pp] for some distinct coordinates j

and h, and 77( ) 77(1) then for every P € Res;([¢]), the equality

1 '
1 (k)
—i] 4—2§;Bkn ]

[p] =

with 7 = n() — (77](1) — n}(Ll))ej, only implies

(1) _ (1)
B (5 —pp) €7

and there well can be resonant multi-indices with p;, # 1.
In case of pure torsion that cannot be simplified, we have the following results.

Proposition 4.5.14. Let f be a germ of biholomorphism of C™ fixing the origin O of toric
degree 1 < r < n and in the pure torsion case, such that it cannot be simplified. If there exists
a holomorphic effective action on (C™,O) of a torus of dimension r commuting with f and
such that the columns of the weight matrix of the action are a reduced r-tuple of toric vectors
associated to f, then f admits a holomorphic Poincaré-Dulac normalization.

Proof. It follows from Theorem 4.1.1 and Lemma 4.5.1. ]
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Proposition 4.5.15. Let f be a germ of biholomorphism of C™ fixing the origin O of toric
degree 1 < r < n and in the pure torsion case, such that it cannot be simplified. If f admits
a holomorphic Poincaré-Dulac normalization, then it commutes with a holomorphic effective
action on (C",0) of a torus of dimension r — 1, such that the columns of the weight matrix of
the action are reduced torsion-free toric vectors associated to f.

Proof. It follows from Theorem 4.1.1 and Lemma 4.5.1. ]

We end this section describing an algorithm to decide when a vector [g] can be simplified.

We want to know when, given [¢] in the torsion case,

1 T
— | =@ (k)
[¢] [Tpn + ) Ben ]
k=2
of toric degree 7, torsion 7 > 2, and such that there is j € {1,...,n} so that
ﬂ Res (n™®)) C Res;( ﬂ Res (n®)), (4.20)

there is another reduced representation
o] = lié” ¥ fjm“”]
™4 k=2
such that for any 7 =1,...,n we have
Res; ([¢ ﬂ Res (™). (4.21)

We know that there must be H € Z" \ {O} such that

— (1)+Zﬂkn(’“) -~ (1)+27k5(k)+H

Since

ﬂ Res (n*)) = ﬂ Resj(f(k)),
k=2

for any j = 1,...,n, we have that

1 1
7__p<77(1)’P - 6j> = 7__q<£(1)’P - ej> + <HaP - ej>
for any P € (0,_, Res; (™). Now, if (€M) P —e;) = 0 it must be (nV), P —¢;) € 7pZ. On
the contrary, if <77(1) P —e;) € TpZ, then we would like to find H such that (M) P —¢;) =0
that is, for any j =1,...,n,

1
— " P—ej) = (H.P —¢))
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for any P € (\,_yResf (n™) with (n™), P — ¢;) € 7pZ. In fact, if such a vector exists, then,
setting ¢ = p, €M =) —7pH, v, = B, and ) =€) for k =2,...,7, we get

p k=2
and for any P € Res;([p]) we have P € (), _, Resj(f(k)), and
<£(1)’P_ ej> = <77(1)aP - 6j> - <H’P_ ej> =0,

that is (4.21).

We then have to study the structure of the intersection of a submodule of Z™ with N”. It
turns out that such a structure is the following. We thank Jean Ecalle for suggesting the gist
of the following argument.

Let A C Z™ be a sub-module of Z™ where n € N*, and let us denote by AT the set ANN™.
For any vector A = (ay,...,a,) € A, we denote by

1 aq an,
red(A :—A:(—,...,—) 4.2
(A)=—a=(2,. .= (422)
where « is the greatest common divisor of ay,...,a,. The support of a vector A € Z" is the

set

supp(A) ={j € {1,...,n}|a; #0} C{1,...,n}.
Using the support we can then define a partial order on A* as follows: we say that A C B
if supp(A) C supp(B), or the supports are equal and A < B in the usual lexicographic order.

Definition 4.5.5. Let A C Z" be any sub-module of Z", where n € N*, and let AT be the
set ANN". For any A, B € AT we define

A/B =red(qA — pB) (4.23)
where

5

== min 2.

q  jesupp(B) \ by
Obviously, if supp(B) C supp(A4), then A/B € AT and A/B C A.

Definition 4.5.6. Let A C Z" be any sub-module of Z", where n € N*, and let A" be the
set ANN". An element M of AT is said minimal if it is minimal with respect to the partial
order C. An element C of A" is said cominimal if for any minimal element M of AT we

have C — M ¢ AT.
Minimal elements have to satisfy certain properties.

Lemma 4.5.16. Let A C Z" be any sub-module of Z", where n € N*, and let A" be the
set ANN". Two minimal elements of AT have distinct supports.

Proof. Let M and P be two distinct minimal elements of A" and suppose by contradiction
that supp(M) = supp(P). Then A = M/P and B = P/M both have supports strictly
contained in the ones of M and P contradicting their minimality with respect to C. L]
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Corollary 4.5.17. Let A C Z" be any sub-module of Z", where n € N*, and let AT be the
set ANN". Then A" contains only a finite number of minimal elements.
Minimal elements are a sort of generators of AT in a sense that next result clarifies.

Lemma 4.5.18. Let A C Z" be any sub-module of Z", where n € N*, and let A" be the
set ANN". Then every element A of A* can be written in the form

A= %(alMl + o+ agMy) (4.24)
where aq,...,aq € N, My,..., My are the minimal elements, and § = 6(A") € N* depends
only on AT.

Proof. If A is non minimal, then there exists a minimal element M; C A, and there ex-
ist 71,01 € Q" such that
A=y Mj + 61 A,

where

Ay = A/M;

19

and supp(A;) C supp(A). If A; is not minimal, we can iterate this procedure getting
Ay = v Mj, + 02 A2,

with supp(As) C supp(A;) C supp(A4). The chain supp(A4) D supp(A4;) D supp(A4sz) D --- has
to end because AT C N", then we eventually arrive to a decomposition of the form (4.24).
Now § = §(A™) cannot be greater than the least common multiple of all | det(M*)| where M*
varies in the square submatrices of order equal to the rank of the matrix having as columns all
the minimal elements M, ..., My of AT. J

The cominimal elements are finite too.

Lemma 4.5.19. Let A C Z" be any sub-module of Z", where n € N*, and let A" be the
set ANN". Then A" contains only a finite number of cominimal elements.

Proof. Let us assume by contradiction that there is an infinite sequence of distinct cominimal
elements {C;}. Thanks to Lemma 4.5.18, for each j > 1, we have

d
1
Ci=5 > ik M
k=1
where 7, € N. Then there is an infinite subsequence {C}} such that all the correspond-
ing (7.1, --,7;.4) belong to a same class (73, ...,75) modulo §Z¢. Hence there is an infinite

subsequence {Cj~} such that at least one component v;» j, diverges as j” tends to infinity,
and such that the other components v, with & # kg do not decrease. Then there exist at
least two cominimal elements C';, < Cj, such that

d

Cj, —Cj, = ZﬁkMk‘
k=1

with 1
Vi = g (r)/jmk - r)/jl,k) eN

meaning that C, is not cominimal against the assumption. L]
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For each element of AT, we want to find a decomposition with natural coefficients into
linear combination of a finite number of elements of A*. This is possible using minimal and
cominimal elements, as shown in next result.

Proposition 4.5.20. Let A C Z" be any sub-module of Z", where n € N*, and let A" be the
set ANN™. Then for any A € AT there exist l,...,lg € N such that

d
A= S, (4.25)
7j=1
or
d
A=Ch+ ) 1M, (4.26)
j=1
for some h € {1,... e}, where My, ..., My are the minimal elements of A*, and Cj,...,C,

are the cominimal elements of At .

Proof. If A is non cominimal, there exists a minimal element M;, < A; thusif A; = A — M,

is not cominimal, we iterate the procedure. The chain A > A; > A3 > --- has to end with a
zero, i.e., we get a decomposition of the form (4.25), or with a cominimal element, i.e., we get
a decomposition of the form (4.26). U

Remark 4.5.21. Note that it can happen that the number of minimal elements of AT is
not equal to the maximum number of Q-linearly independent elements of A*. In fact, if we
consider the submodule A of Z* orthogonal to (1,—1,—1,1)7, and A*, such a maximum is
clearly 3, but we have four minimal elements

O = O =
— -0 O

1 0
1 1
0O)’tof’
0 1

and we need all of them (and no cominimal) to ensure (4.25) and (4.26).

Returning to our problem, if now we consider
A={Q¢€ z" [ (Q.n™) =0, for k=2,...,7},

it is easy to verify that
T
ﬂ Resj(n(k)) =Bj U Bj
k=2
where
Bf ={PeN"|P=Q+e¢;,Qec A",|Q| > 1}

and

Bj:{PGNn|P:Q+6jaQ€AthZOa fOI‘h?é]', QJ:_1’|Q|21}

Notice that @) € B;r if and only if we have

H*, Q) = n](k) fork=2,...,r (4.27)
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where @ = (q17' s qi—15G541y - - - 7qn) € Nn_l and ﬁ(k) - (ng)a cee 777J(‘Ii)1,773(‘i)1a cee 7777(1k))7 i'e'7 Q\

is a solution in N"~! of the linear system with integer coefficients (4.27). Moreover, since A
is a submodule of Z™, Proposition 4.5.20 applies to AT. Let 9 = {Mj,..., My} be the set
of minimal elements of A™ and let € = {C,...,C.} be the set of cominimal elements of A"
(recall that they all are different from O, hence their modulus is at least 1). We can thus
consider the subsets {M7,..., M.} C M and {C],...,C}} C € of the minimal and cominimal
elements R of A% such that (n™"), R) € 7pZ. Then [¢] can be simplified if and only if there
exists H € Z" such that

1
(H, M) = %(n(”,MiL%
for1<h<s,
1
<H’Cll> = %(n(l)acl,%

for 1 <1 <t, and such that, for any j = 1,...,n, we have

(B.Q) by =— (@@ - 1)

for every solution @ € N™ of (4.27), with |Q] > 1, such that (@,ﬁ(l)> € Tpnj(l)Z.

4.6 Construction of torus actions

In this last section we shall see some conditions assuring the existence of the torus actions we
need.

It is possible to introduce formal Poincaré-Dulac normal forms and the normalization
problem for germs of holomorphic vector field of (C™,O) with a singular point at the origin,
i.e., for local continuous dynamical systems. We refer to [Ar| pp. 180-191 for a more detailed
exposition, and shall restrict ourselves to recall here the main facts that we shall need in the
following.

Let X € X,, be a germ of holomorphic vector field of (C™,O) singular at the origin, in
Poincaré-Dulac normal form, i.e.,

X = Xdia + Xnil + Xres

where, denoting with 0; the partial derivative 9/0z;,
n
ydia _ Z (szJaJ’
j=1
XM ig a linear nilpotent vector field singular at the origin such that
[Xdia Xnil] =0

X7 is a holomorphic vector field singular at the origin with no linear part and such that

[Xdia,’Xres] =0.
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In particular
[Xdia’Xnil + Xres] =0.

A germ of holomorphic vector field X of (C™, O) singular at the origin is in Poincaré-Dulac
normal form up to order k if

X = Xdia+Xnil —|—j€,

where X4 and X! are as above, and Xisa holomorphic vector field singular at the origin
with no linear part and such that

(X4, X] = O(l|=]1*).

Recall that the flows of two commuting vector fields also commute (see [Le] Prop. 18.5).
We have
exp(X4®) = Diag(e®?,...,e%")z.

and, in general for a linear vector field X' = > i—1 (k=1 anjzn) 9;, we have
exp(X1n) = ez,

where A is the matrix (ap;). If Y is a holomorphic vector field singular at the origin with no
linear part, then we have

k
exp(tY)z = 3 %Yk(z). (4.28)
k>0

In fact, defining K;(z) = z + tY(z), we get Ko(2) = z and ZK;(z)li=0 = Y (z), then we
have exp(tY)z = limy, oo (Ki/m)™, (see [AMR] Theorem 4.1.26), that is (4.28). Moreover,
if V,W are two commuting vector fields, we have

k k
exp(t(V+W)) = Z % Z % = exp(tV) exp(tW).

k>0 ' k>0

Then we have the following result.

Proposition 4.6.1. Let X be a germ of holomorphic vector field of (C",O), singular at
the origin, and in Poincaré-Dulac normal form. Then its flow is a germ of biholomorphism
of (C™,0) in Poincaré-Dulac normal form.

Proof. The flow of X™! 4 X7 is unipotent, then the linear part of the flow of X is Az with A
triangular matrix with diagonal Diag(e®*,... e%"), and the flow of X has to commute with
the flow of Xdia, ]

In [Zul], Zung found that to find a Poincaré-Dulac holomorphic normalization for a germ
of holomorphic vector field is the same as to find (and linearize) a suitable torus action which
preserves the vector field. To deal with this problem he introduced the notion of toric degree
of a vector field. The following definition is a reformulation of Zung’s original one, clearer and
more suitable to our needs.

Definition 4.6.1. The toric degree of a germ of holomorphic vector field X of (C",O)
singular at the origin is the minimum r € N such that the diagonalized semi-simple part



4.6 Construction of torus actions 129

Xdia — Z?Zl ©;2;0; of the linear term of X can be written as linear combination with com-
plex coefficients of r diagonal vector fields with integer coefficients, i.e.,

Xdia _ iakzk,

where aq,...,q, € C* and Z;, = Z] 1 p] 2]3 with p*) € Z". The r-tuple Z, ..., Zy is called
a r-tuple of toric vector fields associated to X, and the numbers a,...,a, € C are a r-tuple
of toric coefficients of the toric r-tuple.

In particular, we have
p=> ap®
k=1

and, similarly to the case of germs of biholomorphisms, toric r-tuples of vector fields and their
toric coefficients have to satisfy certain arithmetic properties, as the following result shows.

Lemma 4.6.2. Let X4 = Z?Zl ©;2;0; be a germ of semi-simple linear holomorphic vector
field of (C™,0) singular at the origin, of toric degree r, and let Zy,...,Z, be a r-tuple of

toric vector fields associated to X4 with toric coefficients a1, ..., o, and Zj, = Z? 1 pgk)z] 0;.
Then:
(i) a1,...,q, is a set of rationally independent complex numbers;

(ii)) Zi,...,Z, is a set of Q-linearly independent vectors;

(iii) for every j =1,...,n we have
Res ﬂ Res (k)
(iv) we have p( ) = pg ) whenever w; = ¢p, forevery k =1,...,r.
Proof. (i) Let us suppose by contradiction that asq,...,«, € C are rationally dependent. Then

there exists (c1,...,¢.) € Z" \ {O} such that
crag + -+ crap = 0.

Up to reordering we may assume ¢; # 0. Then

1
ar = ——(caag + -+ + cra),
€1

and hence

Xdia — ZT: Oéka

1
=——(o+ - tea)h taZ+ -+,

C1
@ Q.
= —2(0122 —cZy) + -+ —(c1Zy — e Zh),
C1 4]

and this contradicts the definition of toric degree.
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(ii) The proof is analogous to the previous one.
(iii) Let @ be in N™ with |Q| > 2 and le 1 < j < n. We have

Q9) =25 = Y ax ((Q.p") = p) (4:29)
k=1
and, since aj,...,a, are rationally independent, the right-hand side of (4.29) vanishes if and

only if (Q, p™*)) — pgk) =0 forevery k=1,...,r.
(iv) If ¢; = ¢p, then

arp}) + ot = anpl) o+ arp),

hence

o <p§1> B pg)) 4o ta, (pgr) B pg)) =0,
and, since pék) — pgk) € Z for k=1,...,r, the assertion follows from the rational independence
of ay,...,a,. O

Lemma 4.6.3. Let X4 = Z?Zl ©;2;0; be a germ of semi-simple linear holomorphic vector
field of (C",0) singular at the origin. Then X% has toric degree 1 if and only if, chosen a
non-zero eigenvalue of its linear part, all the other eigenvalues are rational multiplies of it. In
particular we have uniqueness of the toric vector field associated to X% up to multiplication
by a non-zero integer.

Proof. Up to reorderings we may assume ¢; # 0. The vector field X% has toric degree 1 if

and only if there exist a non zero complex number « and a diagonal vector field with integer
coefficients ¥ = Z?zl m;z;0; such that X4# = Y, that is

pj=am; Vji=1,...,n,

which is equivalent to

P M i1, n,
®1 m1

and, since m;/m; € Q for each j = 1,...,n, this concludes the proof. L]

We shall use the following definitions, that are a generalization of the one of [Zul].

Definition 4.6.2. Let 1 < m < n. A set of m integrable vector fields of (C",0) is a
set X1,...,X,, of germs of holomorphic vector fields of (C",O) singular at the origin, and
such that:

(i) Xi,...,X,, commute pairwise and are linearly independent, i.e., X1 A -+ A X, Z 0;

(ii) there exist n — m germs of holomorphic functions g1,...,gn—m in (C",O) which are
common first integrals of Xi,...,X,,, i.e., X;(gx) = 0 for any j and k, and they are
functionally independent almost everywhere, i.e., dg1 A -+ Adgn_m # 0.

The minimal [resp. maximal] order of the set is the minimum [resp. maximum] of the
orders of vanishing at the origin of the vector fields in the set; when all the vector fields have
the same order of vanishing at the origin we simply call it the order of the set.
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Definition 4.6.3. A germ of holomorphic vector field X of (C",0O) singular at the origin is
said integrable if there exists a positive integer 1 < m < n such that X belongs to a set of m
integrable vector fields.

Theorem 4.6.4. (Zung, 2002 [Zul]) Let X be a germ of holomorphic vector field of (C™, O)
singular at the origin with non-nilpotent linear part which is integrable. Then X admits a
holomorphic Poincaré-Dulac normalization.

As a corollary of Proposition 4.6.1, we obtain

Corollary 4.6.5. The flow of a germ of integrable holomorphic vector field of (C™,O) sin-
gular at the origin and with non-nilpotent linear part admits a holomorphic Poincaré-Dulac
normalization.

Moreover we have the following result
Theorem 4.6.6. (Zung, 2002 [Zul]) Let 1 < m < n. Every set of m integrable vector fields
of order of vanishing at the origin 1 and with non-nilpotent linear parts admits a simultaneous
holomorphic Poincaré-Dulac normalization.

Thus we have the following corollary

Corollary 4.6.7. Let 1 < m < n. The flows of a set of m integrable vector fields of order
of vanishing at the origin 1 with non-nilpotent linear parts admit a simultaneous holomorphic
Poincaré-Dulac normalization.

Remark 4.6.8. Theorem 4.6.6 means that we can conjugate X1, ..., X,, to a m-tuple of vector
fields containing only monomials belonging to the intersection of the additive resonances of the
eigenvalues of the linear terms of Xy,..., X,,.

Now, we introduce an analogous for germs of biholomorphisms of the notion of integrability
we described above.

Definition 4.6.4. A germ of biholomorphism f of (C™, O) fixing the origin commutes with a
set of integrable vector fields if there exists a positive integer 1 < m < n, such that there exists
a set of m germs of holomorphic integrable vector fields X1, ..., X, such that

df(X;) = Xjof

for each j =1,...,m.
Remark 4.6.9. A germ of biholomorphism f of (C™ O) commutes with a vector field X
according to the previous definition if and only if it commutes with the flow generated by X.

In the following we shall need the following results of Zung [Zul] that we report here with
their proof, since we are using a different (but equivalent) definition for the toric degree. Next
result also shows that the vector field case is similar to the torsion-free case but simpler.

Lemma 4.6.10. Let X = X9 + X be a germ of holomorphic vector field of (C™,O) singular
at the origin, with X41* = Z?:1 ©;2j0; of toric degree r, in Poincaré-Dulac normal form up
to order k > 1 and let Z1,...,Z, be a toric r-tuple of vector fields associated to X. Then

(i) if Y is a germ of holomorphic vector field of (C™,O) commuting with X, then we
have [Z,Y] = O(||z||¥) for each h = 1,...,7;

(ii) if g is a germ of holomorphic function of (C",0) such that X(g) = 0, then we have
Zn(g) = O(||2||*) for every h=1,...,r.

Moreover, if X is in Poincaré-Dulac normal form, Y commutes with X and X(g) =0, then' Y
commutes with each Zy, and Z,(g) =0 for any h=1,...,r.
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Proof. (i) Let Y be a germ of holomorphic vector field of (C",0) commuting with X. Then
we have

where 7, is the projection on the space of k-jets of holomorphic vector field of (C™,O) and it
verifies

w0 (X, Y]) = [m (0, mi (V). (4.31)

Since X is in Poincaré-Dulac normal form up to order k, the vector field 7 (X 4?) is semi-simple;
thus thanks to the uniqueness of the Jordan-Chevalley decomposition in finite-dimensional vec-
tor spaces, the semi-simple part of ad (7 (X)) coincides with ad(m (X 91)), and hence 7 (X %)
coincides with the semi-simple part of the vector field 7 (X). Furthermore, the semi-simple
part if ad(m (X)) is well-known to be a polynomial in ad (7 (X)), hence, by equations (4.30)
and (4.31), we have
0 = [m,(X)4, m,(Y)]
= [m(X4), m.(Y)]
= Wk([Xdia7 Y])?
that is (X2 Y] = O(||z||¥), which means that all the monomials of Y of degree I < k — 1 are
resonant, and we get the thesis by Lemma 4.6.2.
Moreover, if X is in Poincaré-Dulac normal form and it commutes with Y, we have

[Xda y] = O(||z||¥) for every positive k, hence Y commutes with X2 and therefore with
each Z,,.

(ii) Each germ of holomorphic vector field of (C™, O) singular at the origin is a derivation
on the space Cp{z1,...,2,} of germs holomorphic function of (C™,0), hence it acts linearly
on Co{z1,...,2n}. Let g € Co{z1,...,2,} be such that X(g) =0 . Then we have

pr(X(g)) =0,

where py, is the projection of Co{z1,. .., 2, } over the space of k-jets J* of germs of holomorphic
functions of (C", 0); as above we have

pr(X(9)) = m(X)(pr(9))-

In fact, if X =3, p X; p0;, for any monomial foz? of g we have

pr(XE0) =D Y. Xjpgoq 29T
i=1|Q+P—c,|<k

n
=Y D Xirgey 29T,

j=1 |PI<k,IQI<k
[Q+P—ec;|<k

(4.32)

where in the last equality we used that |Q + P —e;| < k yields |P| < k e |Q| < k; moreover,
if az® is a monomial with |Q| < k and a € C, we have

n
(X)) (az9) = Z Z X;paqj 29t (4.33)
j=1 |PISk|QI<k
|Q+P—cyl<k
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Since each monomial of pi(g) is of the form goz@ with |Q| < k, by (4.32) and (4.33) we
)-

get pr(X(9)) = mu(X)(pr(9)
It follows that
0 = 7, (X))

(
_ 7_l_k()(dia»)(
= pe(X T (9)),
that is X42(g) = O(||z||*¥), thus, for any h = 1,...,n, we have Z;,(g) = O(||z||*).

If, moreover, X is in Poincaré-Dulac normal form and X (g) = 0, then for any positive k,
we have X42(g) = O(||z||*), implying X412(g) = 0. Hence, writing g = 21Q[30 ggz%, we get

SRS
o o
—~~
Q@ Y
~— —
~— ~—

h=1 (4.34)

Since, we have

@150
—Zp %Y ng]
210
=y ngQZp
Q>0 Jj=1

with M), € Z, equation (4.34) becomes

-
o= (o)
h=1
and we get the thesis from the rational independence of aq, ..., . L]

Lemma 4.6.11. (Zung, 2005 [Zu2]) Let (¢4) be a sequence of positive numbers converging
to 0 and let S be a complex analytic subset of C" containing the origin, of complex codi-
mension d > 1. Then any bounded holomorphic function defined on U = UZO:1 Uy, where Uy
is the set {z € C" : ||z|| < &g, d(2,8) > ||z||}, admits a holomorphic extension to a whole
neighbourhood of the origin in C™.

Theorem 4.6.12. Let f be a germ of biholomorphism of (C",O) fixing the origin. Let f
commute with a set of n integrable holomorphic vector fields X1, ..., X, of minimal order 1
such that X; has non-nilpotent linear part for some j € {1,...,m}. Then f commutes with
a holomorphic effective action on (C™,0) of a torus of dimension equal to the toric degree r
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of X; and such that the columns of the weight matrix of the action are a r-tuple of toric vectors
associated to Xj;.

Proof. Let £ > 1 be the maximal order of the set X1,...X,,. Up to reordering we may assume
j = 1. Let us fix a holomorphic system of coordinates z = (z1,..., 2,) in a neighbourhood of
the origin of C" in which X is in Poincaré-Dulac normal form up to order D € N, with D > 2/
sufficiently large. Let

n

ZD = Ziijjaj

Jj=1

be a toric vector field associated to X;. Since [X1,X,] = 0 for h = 2,...,n, from Lemma
4.6.10, we have
(27, X;] = O(||2]|"), (4.35)

for j = 1,...,n. Thanks to the hypotheses, there exist a?,... a?:C" — C holomorphic

functions such that .
=> a}(2)X;(2)
j=1

then (4.35) implies, since the maximal order of the set X! ... X, is ¢, that

[a® (2) — P (0)|| = O(]|2| P~2*).

Now we normalize X; up to order D + 1 via a holomorphic, tangent to the identity, change of
coordinate w = ©P*1(2) in a neighbourhood of O (we can always do it, up to shrinking the
neighbourhood, and P+ — Id will be of order D + 1). Setting

D 1
zZP+ Zwﬂwﬂa

as before, from Lemma 4.6.10, we have
(2P, X](w) = O([Jw||PF), (4.36)

for j =1,...,n, and there exist aD . ,aP*1:C" — C holomorphic functions such that

ZD+1 ZaD+1 )7

with
Ha?“( a?T0)|| = O(J|w|[P~2442).

In the new coordinates, writing P! = Id +@P*!, we have

- owy 0O
D D+1 k
Z (U)) ]Zl (ZPJ?U] + ZPJ(P] Z 8Zj 8wk

= (iprwr + Yi(w)) Jwn
k=1
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where 9y (w) = O(||w||P+1). Moreover, the ZP are defined in a uniform neighbourhood of the
origin because they are obtained by polynomial changes of variables. We also have

2°(w) = 3 aP(w)X; (w)

with

a7 (w) — a7 (0)]] = O(||w|P~#*). (4.37)

Then, since ZP*! coincides with Z” up to order D,

12°7 (w) = ZP(w)|| = Z(af“(w) — aj (w)X; (w)
- G}
= ]Zl—wkm)a—w
= O([[w]”*)
thus
a7 (w) = af (w)]| = O(||w] P71 (4.38)

for j=1,...,n. Then af(O) = a,;(0) does not depend on D for any j =1,...,n. Set

Z = Z a; (O)X]
j=1
The holomorphic vector field Z is 2w-periodic because, from (4.37), it is arbitrarily close to a
2m-periodic vector field. Then we have
Af(2)=df | D a;(0)X;

j=1

= > a4,(0)ds (X))

=> a;(0)X; 0 f
j=1
=Zof.

It is evident that we can apply the same procedure to any toric vector field associated to Xy,
hence we get r 2m-periodic germs of holomorphic vector fields, which are linearly independent,
commute pairwise and with f, and such that their linear parts form a r-tuple of toric vectors
associated to the linear semi-simple part of X7, implying the thesis. L]
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Theorem 4.6.13. Let f be a germ of biholomorphism of (C™,O) fixing the origin and com-
muting with a set of integrable holomorphic vector fields X1, ..., X,, such that X; has non-
nilpotent linear part for some j € {1,...,m}. Then f commutes with a holomorphic effective
action on (C™,0) of a torus of dimension equal to the toric degree r of X; and such that the
columns of the weight matrix of the action are a r-tuple of toric vectors associated to X;.

Proof. Up to reordering we may assume j = 1. We dealt with the case n = m in Theorem
4.6.12. Let us now consider the case 1 < m < n.

Let us fix a holomorphic system of coordinates z = (z1,...,2,) in a neighbourhood of
the origin of C", a standard Hermitian metric in C™ and a positive sufficiently small num-
ber g9. Let S be the singular locus of the n-tuple of vector fields X,...,X,, and of the
functions g1, ..., gn_m, i.e.,

{zeC":|z]| <ep, XKs A AXp(2) =0 U{z € C" : ||2]| <0, dg1 A -+ Adgn—m(z) = 0}.

Thanks to the hypotheses, S is a complex analytic set of complex codimension at least 1; then
it is possible to write it locally as the zero locus of a finite number of complex holomorphic
functions, S = {h; = 0,...,h; = 0}, and, using Lojasiewicz inequalities (see [Lo] pp. 242-
245), there exist a positive integer N > 0 and a positive constant C' > 0 such that, for any z
with [|z]| < o we have the following Lojasiewicz inequalities

X1 A A X (2)] > Cd(z, )"

(4.39)
[dgi A -+ Adgn—m(2)|| > Cd(z,S)V,
where the norms are the standard norms on the considered spaces and the distance is the
Euclidean distance.

For each positive integer d and small positive number £(d) (which shall be chosen later in
function of d with limg_,o €(d) = 0), let us define the following open subset of C"

Uaey = {2 € C" : |12]| < e(d), d(z,8) > |1]}.

We will define a holomorphic vector field Z in Uy (4, periodic with period 27, and in such
a way that, for any two positive distinct integers di, da, the vector field Z defined in Uy, .(4,)
coincides, in the intersection Uy, c(a,) N U4y c(d5), With the one defined in Uy, (4,)-

Up to holomorphic, tangent to the identity, changes of coordinates, we may assume X; to
be in Poincaré-Dulac normal form up to order D(d) € N, with D(d) = 4d¢N + 2 > 2¢, where
¢ > 1 is the maximal order of the set Xi,...,X,,, (in particular lim;_,o, D(d) = 4+00). Let

n

Zd = Z ’iijjaj

Jj=1

be a toric vector field associated to X;. Since [X1,Xp] = 0 for h = 2,...,n, from Lemma
4.6.10, we have
27, X;] = O(||[|”),

for any j =1,...,m, and

Z%(g)(z) = O(||2II"'")

where g = (g1, ..., 9n—m) is the (n — m)-tuple of common first integrals of Xi,..., X,,.
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Let y be an arbitrary point in Uy.(4). Then, thanks to inequalities (4.39) and to the
definition of Uy .(qy, we have

X0 A= A X ()l 2 Clly| ™

(4.40)
[dg1 A+ Adgn—m(y)| = C [ly]|*".

Let us denote by I'%(t,y) = I'“(t) the closed curve, t € [0,2x], which is the orbit of the
periodic vector field Z¢ starting at y. Then we have I'¢(0) = y and, for £(d) small enough, we
have 1|ly|| < [|[T4(t)|| < 2||y|| for any ¢ in [0, 27]. Then, for any x in I'* we have

X2 A A X (@) > o 1™

(4.41)
ldgs A+ A dgn—m ()| > o lyll™

Since Z¢ commutes with X1,..., X,, up to order D(d) and g is a first integral of Z% up
to order D(d), for (d) small, we have the following inequalities

Ig(z) — g)| < lly||”*

4.42
15, 2@ < [9lP@ ¥i=1,....m (4.42)

for any x belonging to 'Y, where D;(d) = dN + 3, (which is larger than dN + 2 and veri-
fies D1(d) < D(d) — 1 = 4dN + 1 for every d). In fact

Ig(z) — gy < CillZ%g)(y)|| < Cally||PP < ||y|/P*

and, for any 7 = 1,...,m, we have
11X, 2)(@)|| < Calj|| 7D < 2P @ Cyly|| 7D < |y || P

The inequalities (4.41) and (4.42) imply the following facts:

a) For any point y the regular part of the level set L, = g~*(g(y)) has complex dimen-
sion m, and its tangent space at each point is spanned by Xi,..., X,,. Moreover, the regular
part of L, has an affine flat structure given by the vector fields Xi,...,X,,, because they
commute.

b) The curve I'* can be projected orthogonally on a smooth closed curve fd(t) lying on L,
and close to I'? in the C'-topology: the distance between I'? and I'? in the C'-topology is
bounded from above by [jy||P2(¥), where Dy(d) = dN + 1.

¢) We can write d'%(t)/dt in the form >ty Re(d? (1) X; (T(t))), and the holomorphic
functions a’(t) are almost constant, in the sense that

Ja? (t) — a2 (0)]] < [ly[|P*,

for t € [0,27], where D3(d) is positive, for example D3(d) = Ds(d) — 1 = dN. This fol-
lows from the almost commutativity of X1,...,X,, with Z¢ and from the fact that, thanks
to b), we have ||d[?(¢)/dt — Re(Zd(fz(t)))H < |ly||P>@D. In fact, since X1,...,X,, commute,
in a suitable system of coordinates z1,..., 2z, we may assume that each X; coincides with 0;
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for j =1,...,m. Writing Z¢ in the form Z?Zl ¢j(2)0; in these coordinates, since Z¢ almost
commutes with Xq,..., X, and it is almost tangent to the level sets, the functions (3,...,n,
are almost constant along the chosen orbit of Z¢, whereas (41, ..,(, are almost zero. Pro-
jecting on the level set those functions remain almost constant.

d) Arguing analogously to what we did in the proof of Theorem 4.6.12, there exist complex
numbers a',...,a™ such that |la? — af(0)||] < |y||P3@ and the time-27w flow of the vector
field 2211 a’X; in L, fixes y. Then the real vector field Re(zgnzl a’ X;) has a periodic orbit

of period 27 passing through v, and this orbit is C''-close to fd(t, Y).

e) Thanks to the affine flat structure of L,, the numbers a,...,a™ are well-defined,
i.e., unique, and they do not depend, at least locally, on the choice of y in L,. We can
consider al,...,a™ as functions of y: a'(y),...,a™(y). These functions are holomorphic, due

to the holomorphic implicit function theorem, constant on the connected components in Uy . (q)
of the level sets of g, and they are uniformly bounded in Uy .4y by a constant, provided that (d)
is small enough.

Let us now define the vector field Z as follows
m )
Z(y)=>_ o ()X, (y).
j=1

Then Z is a holomorphic vector field in Uy .4y with the following properties:

(a) Z is uniformly bounded by a constant, and it is periodic with period 27, at least in an
open subset of Uy .(q)-

(b) If Z is a vector field defined as above for Uy .4y, and Z’ is another vector field defined
as above but for Uy .(4), with d # d’, then Z and Z’ coincide in Uy c(q) N Ug c(ary- In fact, the
vector field Z commutes with Z’ on Ud,e(a) "Ua e(ary by construction, and Z — Z' is tangent to
the level sets of g in Uy . () NUq (@) and it is a constant vector field with respect to the affine
flat structure on each level set. Moreover Z — Z' is periodic of period 27 on the considered
intersection; but the coefficients of Z — Z’, when they are written as a linear combination
of X1,...,X,,, are bounded from above by Hy||min(D3(d)’D3(d,)), therefore Z — Z’ is too small
to be 2m-periodic unless it is zero. Thus Z = 2’ in Uy (q) N Ugr c(ar)-

We have then defined a bounded holomorphic vector field Z on the open set

o0
U= U Ud,e(d)s
d=1

which is constant on each L, with respect to the affine flat structure. Moreover Z is 2m-periodic,
and there exist a1, ..., a,, holomorphic functions constant on the connected components of each
level set, such that

m

Z = ZCL]‘X]'

j=1
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in U. Then

df(2)=df | ) a;X;
j=1

(ajo f)df(X;)

I
,MS

<
Il
_

I
NE

(ajo f)(Xjof)

<.
Il
_

=Zof.

Applying Lemma 4.6.11, there exists a holomorphic vector field, defined in a whole neighbour-
hood of the origin, coinciding with Z on U.
It is evident that we can apply the same procedure to any toric vector field associated

to Xi1. Hence get r germs of holomorphic 27-periodic vector fields Z1,..., Z, which are lin-
early independent, commute pairwise and with each X, and thus they generate a T" action
preserving Xi,...,X,,. Moreover for each k = 1,...,r, there exist ai,...,anm r germs of

holomorphic functions of (C",O), constant on the connected components of each level set
L, = g *(g(y)), where we denote by g = (g1,...,9n—m) the (n — m)-tuple of common first
integrals of X1,...,X,,, such that

m
Zk = Z aj,ka,

Jj=1

for each Kk =1,...,r. Then, for each k =1,...,r, we have

df(Zr) =df [ D a;rX;
j=1

(ajro f)df(X;)

<
Il
_

[
NE

(ajreo f)(Xjof)

<.
Il
_

Zk o f
Thus the torus action commutes with f as we wanted, and this concludes the proof. L]

Corollary 4.6.14. Let f be a germ of biholomorphism of (C™,O) fixing the origin and
commuting with a set X1, ..., X,, of m integrable holomorphic vector fields of order of vanishing
at the origin 1, with non-nilpotent linear parts. Then f is holomorphically conjugated to a
germ containing only monomials belonging to the intersection of the additive resonances of the
eigenvalues of the linear terms of Xq,..., X,,.

Proof. It follows from the previous proof that, for each X;, we can find r holomorphic periodic
vector fields, such that their linear terms form a r-tuple of toric vector fields associated to
X, which commute pairwise, are linearly independent, and they commute with f. Then the
assertion follows from Corollary 4.6.7 and Theorem 4.1.1. L]
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Then we also have the following

Corollay 4.6.15. Let f be a germ of biholomorphism of (C",0) fixing the origin and com-
muting with a set X1,...,X,, of m integrable holomorphic vector fields of order of vanishing
at the origin 1, with non-nilpotent linear parts, and such that the intersection of the addi-
tive resonances of the eigenvalues of the linear terms of Xi,...,X,, is equal or contained in
the set of resonances of the spectrum of dfp. Then f admits a holomorphic Poincaré-Dulac
normalization.
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