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Introduction

In this thesis we shall discuss geometrical methods in the study of normal forms of germs of
biholomorphisms of C

n. Given a germ of biholomorphism f of C
n at a fixed point p, one would

like to study the dynamics of f near the fixed point, i.e., for each point q in a (sufficiently)
small neighbourhood of p, one would like to describe the asymptotic behavior of the sequence
{fk(q)}k≥0 of the iterates of f at q, where f

k is the composition of f with itself k times.
Since such a problem is invariant under translation, we can reduce ourselves to study germs of
biholomorphisms of (Cn

, O) fixing the origin.
Whereas many things are known in the one-dimensional case, for n ≥ 2 such a study is

far from being complete. Locally, f can be written as a convergent power series, that is, using
the standard multi-index notation, we have

f(z) = Λz +
∑

Q∈Nn

|Q|≥2

fQz

Q
,

where Λ is a n × n matrix with complex coefficients, fQ ∈ C
n, and, if Q = (q1, . . . , qn), then

|Q| :=
∑n

j=1 qj and z

Q := z

q1

1 · · · zqn
n . Up to a linear change of the coordinates, we can assume

that Λ is in Jordan normal form, that is

Λ =









λ1

ε2 λ2

. . .
. . .

εn λn









,

where the eigenvalues λ1, . . . , λn ∈ C
∗ are not necessarily distincts, and εj ∈ {0, ε} can be

non-zero only if λj−1 = λj .
Since the dynamics does not change if we change coordinates, a natural idea is to look

for a solution of a normalization problem: given a germ of biholomorphism f of C
n fixing the

origin and with linear part in Jordan normal form, does it exist a local change of coordinates

ϕ of C
n, fixing the origin, such that

ϕ

−1 ◦ f ◦ ϕ = “simple form”?

Moreover, one usually assumes dϕO = Id because the linear part of f already is in (Jordan)
normal form.

Of course, we have to specify what we mean by “simple form”. A natural choice for a
“simple form” is the linear term of our given germ; so in this case we have to deal with the:
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Linearization problem. Let f be a germ of biholomorphism of C
n fixing the origin and with

linear part Λ in Jordan normal form. Does it exist a local change of coordinates ϕ of C
n, fixing

the origin, with dϕO = Id, such that

ϕ

−1 ◦ f ◦ ϕ = Λ?

A way to solve such a problem is to first look for a formal transformation ϕ solving

f ◦ ϕ = ϕ ◦ Λ,

and then to check whether ϕ is convergent.
The answer depends on the set of eigenvalues of Λ, usually called the spectrum of Λ. In

fact it may happen that there exists a multi-index Q = (q1, . . . , qn) ∈ N
n, with |Q| ≥ 2, such

that
λ

Q − λj := λ

q1

1 · · ·λqn
n − λj = 0 (0.2)

for some 1 ≤ j ≤ n; a relation of this kind is called a multiplicative resonance of f , and Q is
called a resonant multi-index. A resonant monomial is a monomial z

Q in the j-th coordinate
such that λ

Q = λj .

Resonances are the formal obstruction to linearization. Indeed, at formal level we have
the following classical result:

Theorem. (Poincaré, 1893 [Po]; Dulac, 1904 [D]) Let f be a germ of biholomorphism of C
n

fixing the origin O with linear part Λ in Jordan normal form. Then there exists a formal

transformation ϕ of C
n, without constant term and with linear part equal to the identity,

conjugating f to a formal power series g ∈ C[[z1, . . . , zn]]n without constant term, with linear

term Λ and containing only resonant monomials.

The formal series g is called a Poincaré-Dulac normal form of f . Hence the second natural
choice for a “simple form” is a Poincaré-Dulac normal form; in this case we say that we have
to deal with the:

Normalization problem. Let f be a germ of biholomorphism of C
n fixing the origin and

with linear part Λ in Jordan normal form. Does it exist a local change of coordinates ϕ of C
n,

fixing the origin, with dϕO = Id, such that

ϕ

−1 ◦ f ◦ ϕ

is a Poincaré-Dulac normal form of f?

Even without resonances, the holomorphic linearization is not guaranteed. One has to
study how the numbers λ

Q − λj approach zero as |Q| → +∞; this is known as the small

divisors problem in this context. Furthermore Poincaré-Dulac normal forms are not unique,
and this makes particularly difficult the study of convergence.

In this thesis we shall use geometrical methods to study the linearization and the normal-
ization problems, discussing both the formal level and convergence issues.

We first deal with the linearization problem in presence of resonances. In particular we find,
under certain arithmetic conditions on the eigenvalues and some restrictions on the resonances,
that a necessary and sufficient condition for holomorphic linearization in presence of resonances
is the existence of a particular f -invariant complex manifold (see Chapter 2 for definitions and
proofs):
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Theorem 1. (Raissy, 2009 [R2]) Let f be a germ of biholomorphism of C
n having the origin O

as a quasi-Brjuno fixed point of order s. Then f is holomorphically linearizable if and only

if it admits an osculating manifold M of codimension s such that f |M is holomorphically

linearizable.

Moreover such a result has as corollaries most of the known linearization results.

Secondly, we explore in our setting the consequences of the general heuristic principle
saying that if a map f commutes with a map g, then some properties of g might be inherited
by f .

For instance, one possible generalization of the linearization problem is to ask when a
given set of m ≥ 2 germs of biholomorphisms f1, . . . , fm of C

n at the same fixed point, which
we may place at the origin, are simultaneously holomorphically linearizable, i.e., there exists a
local holomorphic change of coordinates conjugating fh to its linear part for each h = 1, . . . ,m.

We find that if f1, . . . , fm have diagonalizable linear part and are such that f1 commutes
with fh for any h = 2, . . . ,m, under certain arithmetic conditions on the eigenvalues of (df1)O

and some restrictions on their resonances, f1, . . . , fm are simultaneously holomorphically lin-
earizable if and only if there exists a particular complex manifold invariant under f1, . . . , fm

(see Chapter 3 for definitions and proofs):

Theorem 2. (Raissy, 2009 [R3]) Let f1, . . . , fm be m ≥ 2 germs of biholomorphisms of C
n,

fixing the origin. Assume that f1 has the origin as a quasi-Brjuno fixed point of order s,

with 1 ≤ s ≤ n, and that it commutes with fh for any h = 2, . . . ,m. Then f1, . . . , fm

are simultaneously holomorphically linearizable if and only if there exists a germ of complex

manifold M at O of codimension s, invariant under fh for each h = 1, . . . ,m, which is a simul-

taneous osculating manifold for f1, . . . , fm and such that f1|M , . . . , fm|M are simultaneously

holomorphically linearizable.

Finally we study commutations with a particular kind of linearizable object: torus actions.
We find out in a complete and computable manner what kind of structure a torus action
must have in order to get a Poincaré-Dulac holomorphic normalization, studying the possible
torsion phenomena. In particular, we link the eigenvalues of the linear part of our germ
of biholomorphism to the weight matrix of the action. The link and the structure we find
are more complicated than what one would expect; a detailed study is needed to completely
understand the relations between torus actions, holomorphic Poincaré-Dulac normalizations,
and torsion phenomena. An example of the results we get is (see Chapter 4 for definitions,
proofs and other results):

Theorem 3. (Raissy, 2009 [R4]) Let f be a germ of biholomorphism of C
n fixing the origin O.

Assume that, denoted by λ = {λ1, . . . , λn} the spectrum of the linear part Λ of f , the unique

[ϕ] ∈ (C/Z)n such that λ = e

2πi[ϕ] is of toric degree 1 ≤ r ≤ n and in the impure torsion

case. Then f admits a holomorphic Poincaré-Dulac normalization if and only if there exists a

holomorphic effective action on (Cn
, O) of a torus of dimension r − 1 commuting with f and

such that the columns of the weight matrix of the action are reduced torsion-free toric vectors

associated to [ϕ].

We end our work giving an example of techniques that can be used to construct torus
actions.

The plan of the thesis is as follows.

In Chapter 1 we shall present a survey on local holomorphic discrete dynamics, focusing
our attention on linearization and normalization problems. After fixing the setting and the
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notation, we shall first deal with the one-dimensional case, (mainly following Abate [A5]),
and then with the multi-dimensional case. Among other things, we present a new proof of a
linearization result in presence of resonances, originally proved by Rüssmann [Rü2] under a
slightly different arithmetic hypothesis.

In Chapter 2 we shall prove our linearization result in presence of resonances (Theorem 1)
for a germ f of biholomorphism of C

n fixing the origin O, and we shall also see that most of
the classical linearization results can be obtained as corollaries of our result. The main results
of this chapter are published in [R2].

In Chapter 3 we shall show how commuting with a linearizable germ gives us information
on the germs that can be conjugated to a given one. We shall then deal with the simultaneous
linearization problem, proving Theorem 2. Next we shall prove that commuting with a torus
action yields the existence of a holomorphic linearization or normalization (not yet necessarily
of Poincaré-Dulac type) for a germ of biholomorphism of C

n fixing the origin. The main results
of Section 3.2 and 3.3 are published in [R3], whereas the main results of Section 3.4 and 3.5
are published in [R4].

In Chapter 4 we shall describe in a complete and computable manner what kind of structure
a torus action must have in order to infer a Poincaré-Dulac holomorphic normalization from
the normalization theorem of Chapter 3. To do so, we shall link the eigenvalues of dfO to the
weight matrix of the action, and we shall introduce the new concepts of toric degree and toric
vectors associated to the eigenvalues, needed to study the complicated torsion phenomena one
has to deal with. We end the chapter giving an example of techniques that can be used to
construct torus actions. The main results in this chapter are published in [R4].
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1

Linearization and normalization
in local holomorphic dynamics

In this chapter we shall present a survey on local holomorphic discrete dynamics,
focusing our attention on the linearization and on the normalization problems. After
fixing the setting and the notation, we shall first deal with the one-dimensional case,
(mainly following Abate [A5]), and then with the multi-dimensional case. Among
other things, we present a new proof of a linearization result in presence of resonances,
originally proved by Rüssmann [Rü2] under a slightly different arithmetic hypothesis.

1.1 Motivation

Let us introduce a few notations to formalize some of the concepts discussed in the introduction.

Definition 1.1.1. If M is a complex manifold, and p ∈M , we shall denote by End(M,p) the
set of germs about p of holomorphic self-maps of M fixing p. An element of End(M,p) will
be called a (discrete) holomorphic local dynamical system at p. More generally, if S is a closed
subset of M (e.g., a submanifold), we shall denote by End(M,S) the set of germs about S of
holomorphic self-maps of M fixing S pointwise.

Remark 1.1.1. In this chapter we shall never have the occasion of discussing continuous
holomorphic dynamical systems (i.e., holomorphic foliations). So from now on all dynamical
systems will be discrete, except where explicitly noted otherwise.

Remark 1.1.2. If M = C
n and p = O, the set of germs End(Cn

, O) coincides with the
space CO{z1, . . . , zn}

n of n-uples of converging power series fixing the origin (that is, without
constant term), and thus it is naturally embedded into the space CO[[z1, . . . , zn]]n of n-uples of
formal power series without constant terms. An element Φ ∈ CO[[z1, . . . , zn]]n has an inverse
(with respect to composition) still belonging to CO[[z1, . . . , zn]]n if and only if its linear part is
a linear automorphism of C

n.

An element f ∈ End(M,p) will be usually given by a representative (denoted by the same
symbol) defined on a neighbourhood U of the fixed point p; for instance, U could be the domain
of convergence of the power series defining f as element of CO{z1, . . . , zn}

n.

If z ∈ U , it is not clear (and, in general, not true) whether f(z) would still belong to U or
not. Since we are interested in the dynamics of f , particular attention will be devoted to the
set of points in U which remains in U under the action of f , that is to U ∩ f−1(U). Indeed,
if q ∈ U ∩ f−1(U), we can define f2(q) by setting f2(q) = f

(

f(q)
)

, because f(q) ∈ U . More
generally, we shall use the following definitions:
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Definition 1.1.2. Let f ∈ End(M,p). The second iterate f2 ∈ End(M,p) of f is the germ rep-
resented by the map f ◦f :U∩f−1(U) →M , where (U, f) is a representative of f (and it is clear
that the germ f

2 does not depend on the chosen representative). If k ∈ N, by induction we de-
fine the k-th iterate fk ∈ End(M,p) as the germ represented by f◦fk−1:U∩· · ·∩fk−1(U) →M ,
where again (U, f) is a representative of f .

Remark 1.1.3. Clearly, if we think of f ∈ End(Cn
, O) as given by a n-uple of power series,

then fk is given by the k-th composition of those power series.

To introduce the next concept, we need the notion of germ of a set at p ∈M .

Definition 1.1.3. Set S = {(U,L) | U ⊂ M is an open neighbourhood of p, L ⊆ U and
p ∈ L}. On S we put the usual equivalence relation (U1, L1) ∼ (U2, L2) if there exists an
open neighbourhood W ⊂ U1 ∩ U2 of p such that L1 ∩ W = L2 ∩ W . A germ of set at p

is an equivalence class L ∈ S/ ∼. We shall say that a germ of set L1 at p is contained into
another germ of set L2, and we shall write L1 ⊆ L2, if for any representative (U1, L1) of L1

and representative (U2, L2) of L2 there is an open neighbourhood W ⊂ U1 ∩ U2 of p such that
L1 ∩W ⊆ L2 ∩W .

Clearly, a germ f ∈ End(M,p) acts on germs of sets at p: if (U, f) is a representative of f
and (V,L) is a representative of a germ L of set at p, then f(L) is the germ of set represented
by
(

U ∩ V, f(L∩U)∩U ∩ V
)

; analogously, if (W,f−1) is a representative of f−1, then f−1(L)

is the germ of set represented by
(

W ∩ V, f

−1(L ∩W ) ∩ W ∩ V

)

. It is easy to verify that

the germs f(L) and f

−1(L) do not depend on the representatives chosen, and thus we can
introduce the following

Definition 1.1.4. Let f ∈ End(M,p). A germ of set L at p is (forward) f -invariant if
f(L) ⊆ L. A germ of set L at p is completely f -invariant if f−1(L) = L.

A bit more delicate is the definition of stable set of a germ:

Definition 1.1.5. Let (U, f) be a representative of a germ f ∈ End(M,p). Then the stable

set of f (with respect to U) is the set

K(U,f) =

∞
⋂

k=0

f

−k(U).

If z ∈ K(U,f), the (forward) orbit of z is the set O+(z) = {z, f(z), f2(z), . . .}.

The problem with the notion of stable set in this generality is that even its germ at p
might depend on the chosen representative. What may happen (and actually it happens) is
the following: there might exist two representatives (U1, f) and (U2, f) of the same germ f ,
with U1 ⊂ U2, and points z ∈ U1 as close as we want to p whose orbits escapes from U1 but do
not escape from U2. If this happens, K(U1,f) and K(U2,f) do not agree in any neighbourhood
of p, and thus they define two different germs of stable sets at p. As we shall see, this happens
in the parabolic case.

Another definition of this kind that shall later be useful is the following:

Definition 1.1.6. Let f ∈ End(M,p). We shall say that p is stable for f if there is a
representative (U, f) of f such that p is contained in the interior of K(U,f). In other words,

there is an open neighbourhood W ⊂ U of p such that fk(W ) ⊆ U for all k ∈ N.

We are now able to state the main problems of local holomorphic dynamics. Given a
germ f ∈ End(M,p) we would like to:

(a) describe the invariant germs of sets at p, if any;
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(b) decide whether p is stable for f , and, more generally, compute the stable set of sufficiently
large representatives of f , and describe the orbit of any point in the stable set;

(c) describe the dynamics of f inside any invariant germ; and,

(d) describe the dynamics of f in a neighbourhood of p.

To deal with all these problems, the most efficient way is to replace f by a “dynamically
equivalent” but simpler (e.g., linear) map g. In our context, “dynamically equivalent” means
“locally conjugated”; and we have at least three kinds of conjugacy to consider.

It is clear what it means the composition of two germs in End(M,p), and thus for a germ
to be invertible; more generally, it is clear what we mean by a germ of homeomorphism at p.
Then

Definition 1.1.7. We shall say that two germs f , g ∈ End(M,p) are holomorphically conjugate

[resp., topologically conjugate] if there exists an invertible germ ϕ ∈ End(M,p) [resp., a germ
of homeomorphism ϕ at p] such that g = ϕ ◦ f ◦ϕ−1 as germs. In particular, gk = ϕ ◦ fk ◦ϕ−1

for all k ∈ N, and thus the dynamics of f and g agree.

Remark 1.1.4. Using local coordinates centered at p ∈ M it is easy to show that any
holomorphic local dynamical system at p is holomorphically locally conjugated to a holomorphic
local dynamical system at O ∈ C

n, where n = dimM .

Whenever we have an equivalence relation in a class of objects, there are classification
problems. So a natural question in local holomorphic dynamics is to find a (possibly small)

class F of holomorphic local dynamical systems at O ∈ C
n such that every holomorphic local

dynamical system f at a point in an n-dimensional complex manifold is holomorphically [resp.,

topologically] locally conjugated to a (possibly) unique element of F , called the holomorphic

[resp., topological ] normal form of f .

Unfortunately, the holomorphic classification is often too complicated to be practical; the
family F of normal forms might be uncountable. A possible replacement is looking for invariants
instead of normal forms, i.e., to find a way to associate a (possibly small) class of (possibly

computable) objects, called invariants, to any holomorphic local dynamical system f at O ∈ C
n

so that two holomorphic local dynamical systems at O can be holomorphically conjugated only

if they have the same invariants. The class of invariants is furthermore said complete if two

holomorphic local dynamical systems at O are holomorphically conjugated if and only if they

have the same invariants.

Up to now all the questions we asked made sense for topological local dynamical systems; the
next one instead makes sense only for holomorphic local dynamical systems.

Definition 1.1.8. We shall say that two germs f , g ∈ End(Cn
, O) are formally conjugate if

there exists an invertible formal power series Φ ∈ CO[[z1, . . . , zn]]n such that g = Φ ◦ f ◦ Φ−1

in CO[[z1, . . . , zn]]n.

It is clear that two holomorphically conjugated holomorphic local dynamical systems are
both formally and topologically conjugated too. On the other hand, we shall see examples of
holomorphic local dynamical systems that are topologically locally conjugated without being
neither formally nor holomorphically locally conjugated, and examples of holomorphic local
dynamical systems that are formally conjugated without being neither holomorphically nor
topologically locally conjugated. So the last natural question in local holomorphic dynamics
we shall deal with is to find normal forms and invariants with respect to the relation of formal

conjugacy for holomorphic local dynamical systems at O ∈ C
n.

In this chapter we shall present some of the main results known on these questions, starting
with the one-dimensional situation.
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1.2 One-dimensional case

Let us then start by discussing holomorphic local dynamical systems at 0 ∈ C. As remarked
in the previous section, such a system is locally given by a converging power series f without
constant term:

f(z) = λz + a2z
2 + a3z

3 + · · · ∈ C0{z} .

Definition 1.2.1. Let f ∈ End(C, 0) be without constant term. The number λ = f

′(0) is
called the multiplier of f .

The best linear approximation of f is λz, and we shall see that the local dynamics of f will
be strongly influenced by the value of λ. For this reason we introduce the following definition:

Definition 1.2.2. Let λ ∈ C be the multiplier of f ∈ End(C, 0). Then

– if |λ| < 1 we say that the fixed point 0 is attracting;

– if λ = 0 we say that the fixed point 0 is superattracting;

– if |λ| > 1 we say that the fixed point 0 is repelling;

– if |λ| 6= 0, 1 we say that the fixed point 0 is hyperbolic;

– if λ ∈ S
1 is a root of unity, we say that the fixed point 0 is parabolic (or rationally

indifferent);

– if λ ∈ S
1 is not a root of unity, we say that the fixed point 0 is elliptic (or irrationally

indifferent).

We shall explain in the next four subsections what is known on the dynamics in the various
cases.

1.2.1 Hyperbolic case

The dynamics of one-dimensional holomorphic local dynamical systems with a hyperbolic fixed
point is pretty elementary; so we start with this case.

Assume first that 0 is attracting for the holomorphic local dynamical system f ∈ End(C, 0).
Then we can write f(z) = λz + O(z2), with 0 < |λ| < 1; hence we can find a large con-
stant M > 0, a small constant ε > 0 and 0 < δ < 1 such that if |z| < ε then

|f(z)| ≤ (|λ| +Mε)|z| ≤ δ|z| . (1.2)

In particular, if ∆ε denotes the disk of center 0 and radius ε, we have f(∆ε) ⊂ ∆ε for ε > 0
small enough, and the stable set of f |∆ε

is ∆ε itself (in particular, a one-dimensional attracting
fixed point is always stable). Furthermore,

|fk(z)| ≤ δ

k|z| → 0

as k → +∞, and thus every orbit starting in ∆ε is attracted by the origin, which is the reason
of the name “attracting” for such a fixed point.

Remark 1.2.1. Notice that if 0 is an attracting fixed point for f ∈ End(C, 0) with non-zero
multiplier, then it is a repelling fixed point for the inverse map f−1 ∈ End(C, 0).

If instead 0 is a repelling fixed point, a similar argument (or the remark that 0 is attracting
for f−1) shows that for ε > 0 small enough the stable set of f |∆ε

reduces to the origin only:
all (non-trivial) orbits escape.
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It is also not difficult to find holomorphic and topological normal forms for one-dimensional
holomorphic local dynamical systems with a hyperbolic fixed point, as the following result
shows, which can be considered as the beginning of the theory of holomorphic dynamical
systems:

Theorem 1.2.2. (Kœnigs, 1884 [Kœ]) Let f ∈ End(C, 0) be a one-dimensional holomorphic

local dynamical system with a hyperbolic fixed point at the origin, and let λ ∈ C
∗ \ S

1 be its

multiplier. Then:

(i) f is holomorphically (and hence formally) locally conjugated to its linear part g(z) = λz.

The conjugation ϕ is uniquely determined by the condition ϕ

′(0) = 1.

(ii) Two such holomorphic local dynamical systems are holomorphically conjugated if and

only if they have the same multiplier.

(iii) f is topologically locally conjugated to the map g<(z) = z/2 if |λ| < 1, and to the map

g>(z) = 2z if |λ| > 1.

Proof. Let us assume 0 < |λ| < 1; if |λ| > 1 it will suffice to apply the same argument to f−1.

(i) Choose 0 < δ < 1 such that δ2 < |λ| < δ. Writing f(z) = λz+z2
r(z) for a suitable holo-

morphic germ r, we can clearly find ε > 0 such that |λ|+Mε < δ, where M = max
z∈∆ε

|r(z)|.
Hence we have

|f(z) − λz| ≤M |z|2

and
|fk(z)| ≤ δ

k|z|

for all z ∈ ∆ε and k ∈ N.
Put ϕk = f

k
/λ

k. Then the sequence {ϕk} converges to a holomorphic map ϕ:∆ε → C.
In fact, we have

|ϕk+1(z) − ϕk(z)| =
1

|λ|k+1

∣

∣

f

(

f

k(z)
)

− λf

k(z)
∣

∣ ≤
M

|λ|k+1
|fk(z)|2 ≤

M

|λ|

(

δ

2

|λ|

)k

|z|2

for all z ∈ ∆ε, and so the telescopic series
∑

k(ϕk+1−ϕk) converges uniformly in ∆ε to ϕ−ϕ0.
Since ϕ′

k(0) = 1 for all k ∈ N, we have ϕ′(0) = 1 and so, up to possibly shrinking ε, we
can assume that ϕ is a biholomorphism with its image. Moreover, we have

ϕ

(

f(z)
)

= lim
k→+∞

f

k
(

f(z)
)

λ

k
= λ lim

k→+∞

f

k+1(z)

λ

k+1
= λϕ(z) ,

that is f = ϕ

−1 ◦ g ◦ ϕ, as claimed.
If ψ is another local holomorphic function such that ψ′(0) = 1 and ψ

−1 ◦ g ◦ ψ = f , it
follows that ψ ◦ϕ−1(λz) = λψ ◦ϕ−1(z); comparing the expansion in power series of both sides
we find ψ ◦ ϕ−1 ≡ Id, that is ψ ≡ ϕ, and we are done.

(ii) Since f1 = ϕ

−1 ◦ f2 ◦ ϕ implies f ′
1(0) = f

′
2(0), the multiplier is invariant under holo-

morphic local conjugation, and so two one-dimensional holomorphic local dynamical systems
with a hyperbolic fixed point are holomorphically locally conjugated if and only if they have
the same multiplier.

(iii) Since |λ| < 1 it is easy to build a topological conjugacy between g and g< on ∆ε.
First we choose a homeomorphism χ between the annulus {|λ|ε ≤ |z| ≤ ε} and the annu-
lus {ε/2 ≤ |z| ≤ ε} which is the identity on the outer circle and which is given by χ(z) = z/(2λ)
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on the inner circle. Now we extend χ by induction to a homeomorphism between the an-
nuli {|λ|kε ≤ |z| ≤ |λ|k−1

ε} and {ε/2k ≤ |z| ≤ ε/2k−1} by prescribing

χ(λz) = 1
2χ(z) .

We finally get a homeomorphism χ of ∆ε with itself, such that g = χ

−1 ◦ g< ◦ χ, by put-
ting χ(0) = 0.

Remark 1.2.3. Notice that g<(z) = 1
2z and g>(z) = 2z cannot be topologically conjugated,

because (for instance) for each representative (U, g<) of g< the stable set K(U,g<) is open,
whereas for each representative (V, g>) of g> the stable set K(V,g>) = {0} is not.

Remark 1.2.4. The proof of this theorem is based on two techniques often used in dynamics
to build conjugations. The first one is used in part (i). Suppose that we would like to prove that
two invertible local dynamical systems f , g ∈ End(M,p) are conjugated. Set ϕk = g

−k ◦ fk,
so that

ϕk ◦ f = g

−k ◦ fk+1 = g ◦ ϕk+1 .

Therefore if we can prove that {ϕk} converges to an invertible map ϕ as k → +∞ we
get ϕ ◦ f = g ◦ ϕ, and thus f and g are conjugated, as desired. This is exactly the way
we proved Theorem 1.2.2.(i); and we shall see variations of this technique later on.

To describe the second technique we need a definition.

Definition 1.2.3. Let f :X → X be an open continuous self-map of a topological space X. A
fundamental domain for f is an open subset D ⊂ X such that

(i) f

h(D) ∩ fk(D) = ∅ for every h 6= k ∈ N;

(ii)
⋃

k∈N

f

k(D) = X;

(iii) if z1, z2 ∈ D are so that fh(z1) = f

k(z2) for some h > k ∈ N then h = k + 1 and
z2 = f(z1) ∈ ∂D.

There are other possible definitions of a fundamental domain, but this will work for our aims.

Suppose that we would like to prove that two open continuous maps f1:X1 → X1 and
f2:X2 → X2 are topologically conjugated. Assume we have fundamental domains Dj ⊂ Xj

for fj (with j = 1, 2) and a homeomorphism χ:D1 → D2 such that

χ ◦ f1 = f2 ◦ χ (1.3)

on D1 ∩ f−1
1 (D1). Then we can extend χ to a homeomorphism χ̃:X1 → X2 conjugating f1

and f2 by setting

∀z ∈ X1 χ̃(z) = f

k
2

(

χ(w)
)

, (1.4)

where k = k(z) ∈ N and w = w(z) ∈ D are chosen so that fk
1 (w) = z. The definition of

fundamental domain and (1.3) imply that χ̃ is well-defined. Clearly χ̃ ◦ f1 = f2 ◦ χ̃; and using
the openness of f1 and f2 it is easy to check that χ̃ is a homeomorphism. This is the technique
we used in the proof of Theorem 1.2.2.(iii); and we shall use it again later.

Thus the dynamics in the one-dimensional hyperbolic case is completely clear.
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1.2.2 Superattracting case

The superattracting case can be treated similarly to the hyperbolic case. If the origin 0 is a
superattracting fixed point for f ∈ End(C, 0), we can write

f(z) = arz
r + ar+1z

r+1 + · · ·

with ar 6= 0.

Definition 1.2.4. Let f ∈ End(C, 0) and let 0 be a superattracting point for f . The order (or
local degree) of the superattracting point is the minimal number r ≥ 2 such that the coefficient
of zr in the power series expansion of f is non-zero.

Similarly to the attracting case, we can find a large constant M > 1 such that, for ε > 0
small enough we have

|f(z)| ≤M |z|r

for z ∈ ∆ε := {|z| < ε}, hence the stable set of f |∆ε
still is all of ∆ε, and the orbits converge

(faster than in the attracting case) to the origin. Furthermore, we can prove the following

Theorem 1.2.5. (Böttcher, 1904 [Bö]) Let f ∈ End(C, 0) be a one-dimensional holomorphic

local dynamical system with a superattracting fixed point at the origin, and let r ≥ 2 be its

order. Then:

(i) f is holomorphically (and hence formally) locally conjugated to the map g(z) = z

r, and

the conjugation is unique up to multiplication by an (r − 1)-root of unity;

(ii) two such holomorphic local dynamical systems are holomorphically (or topologically)

conjugated if and only if they have the same order.

Proof. First of all, up to a linear conjugation z 7→ µz with µr−1 = ar we can assume ar = 1.
Now write f(z) = z

r
h1(z) for a suitable holomorphic germ h1 with h1(0) = 1. By induc-

tion, it is easy to see that we can write fk(z) = z

rk

hk(z) for a suitable holomorphic germ hk

with hk(0) = 1. Furthermore, the equalities f ◦ fk−1 = f

k = f

k−1 ◦ f yield

hk−1(z)
r
h1

(

f

k−1(z)
)

= hk(z) = h1(z)
rk−1

hk−1

(

f(z)
)

. (1.5)

Choose 0 < δ < 1. Then we can find 0 < ε < 1 such that Mε < δ, where M = max
z∈∆ε

|h1(z)|;

we can also assume that h1(z) 6= 0 for all z ∈ ∆ε. Since

∀z ∈ ∆ε |f(z)| ≤M |z|r < δ|z|r−1
,

we have f(∆ε) ⊂ ∆ε, as anticipated before.
We also remark that (1.5) implies that each hk is well-defined and never vanishing on ∆ε.

So for every k ≥ 1 we can choose a unique ψk holomorphic in ∆ε such that ψk(z)rk

= hk(z)
on ∆ε and with ψk(0) = 1.

Set ϕk(z) = zψk(z), so that ϕ′
k(0) = 1 and ϕk(z)rk

= f

k(z) on ∆ε; in particular, formally
we have ϕk = g

−k ◦ fk. We claim that the sequence {ϕk} converges to a holomorphic function
ϕ on ∆ε. Indeed, we have

∣

∣

∣

∣

ϕk+1(z)

ϕk(z)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

ψk+1(z)
rk+1

ψk(z)rk+1

∣

∣

∣

∣

∣

1/rk+1

=

∣

∣

∣

∣

hk+1(z)

hk(z)r

∣

∣

∣

∣

1/rk+1

=
∣

∣

h1

(

f

k(z)
)∣

∣

1/rk+1

=
∣

∣1 +O

(

|fk(z)|
)∣

∣

1/rk+1

= 1 +
1

r

k+1
O

(

|fk(z)|
)

= 1 +O

(

1

r

k+1

)

,
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and so the telescopic product
∏

k(ϕk+1/ϕk) converges to ϕ/ϕ1 uniformly in ∆ε.

Since ϕ′
k(0) = 1 for all k ∈ N, we have ϕ′(0) = 1 and so, up to possibly shrinking ε, we

can assume that ϕ is a biholomorphism with its image. Moreover, we have

ϕk

(

f(z)
)rk

= f(z)rk

ψk

(

f(z)
)rk

= z

rk

h1(z)
rk

hk

(

f(z)
)

= z

rk+1

hk+1(z) =
[

ϕk+1(z)
r
]rk

,

and thus ϕk ◦ f = [ϕk+1]
r. Passing to the limit we get f = ϕ

−1 ◦ g ◦ ϕ, as claimed.

If ψ is another germ of biholomorphism of (C, 0) conjugating f with g, then we must
have ψ ◦ϕ−1(zr) = ψ ◦ϕ−1(z)r for all z in a neighbourhood of the origin; comparing the power
series expansions at the origin we get ψ ◦ϕ−1(z) = az with ar−1 = 1, and hence ψ(z) = aϕ(z),
as claimed.

Finally, since the order is the number of preimages of points close to the origin, zr and zs

are locally topologically conjugated if and only if r = s, and hence we have (ii).

Therefore also the one-dimensional local dynamics about a superattracting fixed point is
completely clear; in the next subsection we shall discuss what happens about a parabolic fixed
point.

1.2.3 Parabolic case

Let f ∈ End(C, 0) be a (non-linear) holomorphic local dynamical system with a parabolic
fixed point at the origin. Then we can write

f(z) = e

2iπp/q
z + ar+1z

r+1 + ar+2z
r+2 + · · · , (1.6)

with ar+1 6= 0.

Definition 1.2.5. Let f ∈ End(C, 0) be non-linear and with multiplier λ = e

2iπp/q . The
rational number p/q ∈ Q ∩ [0, 1) is the rotation number of f , and the multiplicity of f at the
fixed point is the minimal number r+1 ≥ 2 such that the coefficient of zr+1 in the power series
expansion of f is non-zero. If p/q = 0 (that is, if the multiplier is 1), we shall say that f is
tangent to the identity.

The first observation is that such a dynamical system is never locally conjugated to its
linear part, not even topologically, unless it is of finite order:

Proposition 1.2.6. Let f ∈ End(C, 0) be a holomorphic local dynamical system with mul-

tiplier λ, and assume that λ = e

2iπp/q is a (primitive) root of the unity of order q. Then f

is holomorphically (or topologically or formally) locally conjugated to g(z) = λz if and only

if f q ≡ Id.

Proof. If ϕ−1 ◦ f ◦ ϕ(z) = e

2πip/q
z then ϕ−1 ◦ f q ◦ ϕ = Id, and hence f q = Id.

Conversely, assume that f q ≡ Id and set

ϕ(z) =
1

q

q−1
∑

j=0

f

j(z)

λ

j
.

Then it is easy to check that ϕ′(0) = 1 and ϕ ◦ f(z) = λϕ(z), and so f is holomorphically (and
topologically and formally) locally conjugated to λz.
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In particular, if f is tangent to the identity then it cannot be locally conjugated to the
identity (unless it was the identity from the beginning, which is not a very interesting case
dynamically speaking). More precisely, the stable set of such an f is never a neighbourhood of
the origin. To understand why, let us first consider a map of the form

f(z) = z(1 + az

r)

for some a 6= 0. Let v ∈ S
1 ⊂ C be such that avr is real and positive. Then for any c > 0 we

have
f(cv) = c(1 + c

r
av

r)v ∈ R
+
v;

moreover, |f(cv)| > |cv|. In other words, the half-line R
+
v is f -invariant and repelled from

the origin, that is K(U,f) ∩ R
+
v = ∅ for any representative (U, f) of f . Conversely, if avr is

real and negative then the segment [0, |a|−1/r ]v is f -invariant and attracted by the origin. So
K(U,f) neither is a neighbourhood of the origin nor reduces to {0}.

This example suggests the following definition:

Definition 1.2.6. Let f ∈ End(C, 0) be tangent to the identity of multiplicity r+1 ≥ 2. Then
a unit vector v ∈ S

1 is an attracting [resp., repelling ] direction for f at the origin if ar+1v
r

is real and negative [resp., positive], where ar+1 is the coefficient of zr+1 in the power series
expansion of f .

Clearly, there are r equally spaced attracting directions, separated by r equally spaced
repelling directions: if ar+1 = |ar+1|e

iα, then v = e

iθ is attracting [resp., repelling] if and only
if

θ =
2k + 1

r

π −
α

r

[

resp., θ =
2k

r

π −
α

r

]

.

Furthermore, a repelling [resp., attracting] direction for f is attracting [resp., repelling] for f−1,
which is defined in a neighbourhood of the origin.

Let (U, f) be a representative of f . To every attracting direction is associated a connected
component of K(U,f) \ {0}.

Definition 1.2.7. Let v ∈ S
1 be an attracting direction for an f ∈ End(C, 0) tangent to

the identity, and let (U, f) be a representative of f . The basin centered at v is the set of
points z ∈ K(U,f) \ {0} such that fk(z) → 0 and f

k(z)/|fk(z)| → v (notice that, up to
shrinking the domain of f , we can assume f(z) 6= 0 for all z ∈ K(U,f) \ {0}). If z belongs to
the basin centered at v, we shall say that the orbit of z tends to 0 tangent to v.

A slightly more specialized (but more useful) object is the following:

Definition 1.2.8. Let f ∈ End(C, 0) be tangent to the identity, and let (U, f) be a represen-
tative of f . An attracting petal centered at an attracting direction v of f is an open simply
connected f -invariant set P ⊆ K(U,f) \ {0} such that a point z ∈ K(U,f) \ {0} belongs to the
basin centered at v if and only if its orbit intersects P . In other words, the orbit of a point
tends to 0 tangent to v if and only if it is eventually contained in P . A repelling petal (centered
at a repelling direction) is an attracting petal for the inverse of f .

It turns out that the basins centered at the attracting directions are exactly the connected
components of K(U,f) \ {0}, as shown in the Leau-Fatou flower theorem:

Theorem 1.2.7. (Leau, 1897 [L]; Fatou, 1919-20 [F1–3]) Let f ∈ End(C, 0) be a holomorphic

local dynamical system tangent to the identity with multiplicity r + 1 ≥ 2 at the fixed point.

Let v+
1 , . . . , v

+
r ∈ S

1 be the r attracting directions of f at the origin, and v

−
1 , . . . , v

−
r ∈ S

1 the

r repelling directions. Then
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(i) for each attracting [resp., repelling] direction v

±
j there exists an attracting [resp., re-

pelling] petal P±
j , so that the union of these 2r petals together with the origin forms a

neighbourhood of the origin. Furthermore, the 2r petals are arranged ciclically so that

two petals intersect if and only if the angle between their central directions is π/r.

(ii) For any representative (U, f) of f , the stable set K(U,f) \ {0} is the (disjoint) union of

the basins centered at the r attracting directions.

(iii) If B is a basin centered at one of the attracting directions, then there is a holomorphic

function ϕ:B → C such that ϕ ◦ f(z) = ϕ(z) + 1 for all z ∈ B. Furthermore, if P is the

corresponding petal constructed in part (i), then ϕ|P is a biholomorphism with an open

subset of the complex plane containing a right half-plane, and so f |P is holomorphically

conjugated to the translation z 7→ z + 1.

Proof. Up to a linear conjugation, we can assume that ar+1 = −1, so that the attracting
directions are the r-th roots of unity. For any δ > 0, the set {z ∈ C | |zr − δ| < δ} has exactly r
connected components, each one symmetric with respect to a different r-th root of unity; it
will turn out that, for δ small enough, these connected components are attracting petals of f ,
even though to get a pointed neighbourhood of the origin we shall need larger petals.

For j = 1, . . . , r let Σj ⊂ C
∗ denote the sector centered about the attractive direction v

+
j

and bounded by two consecutive repelling directions, that is

Σj =

{

z ∈ C
∗

∣

∣

∣

∣

2j − 3

r

π < arg(z) <
2j − 1

r

π

}

.

Notice that each Σj contains a unique connected component Pj,δ of {z ∈ C | |zr − δ| < δ};
moreover, Pj,δ is tangent at the origin to the sector centered about vj of amplitude π/r.

The main technical trick in this proof consists in transfering the setting to a neighbourhood
of infinity in the Riemann sphere P

1(C). Let ψ: C∗ → C
∗ be given by

ψ(z) =
1

rz

r
;

it is a biholomorphism between Σj and C
∗\R

−, with inverse ψ−1(w) = (rw)−1/r, choosing suit-
ably the r-th root. Furthermore, ψ(Pj,δ) is the right half-plane Hδ ={w ∈ C | Re(w)>1/(2rδ)}.

When |w| is so large that ψ−1(w) belongs to the domain of definition of f , the composition
F = ψ ◦ f ◦ ψ−1 makes sense, and we have

F (w) = w + 1 +O(w−1/r) . (1.7)

Thus to study the dynamics of f in a neighbourhood of the origin in Σj it suffices to study the
dynamics of F in a neighbourhood of infinity.

The first observation is that when Re(w) is large enough then

Re(F (w)) > Re(w) +
1

2
;

this implies that for δ small enough Hδ is F -invariant (and thus Pj,δ is f -invariant). Further-
more, by induction one has

∀w ∈ Hδ Re(F k(w)) > Re(w) +
k

2
, (1.8)
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which implies that F k(w) → ∞ in Hδ (and fk(z) → 0 in Pj,δ) as k → ∞.
Now we claim that the argument of wk = F

k(w) tends to zero. Indeed, (1.7) and (1.8)
yield

wk

k

=
w

k

+ 1 +
1

k

k−1
∑

l=0

O(w
−1/r

l ) ;

so Cesaro’s theorem on the averages of a converging sequence implies

wk

k

→ 1 , (1.9)

and thus arg(wk) → 0 as k → ∞. Going back to Pj,δ, this implies that fk(z)/|fk(z)| → vj

for every z ∈ Pj,δ. Since furthermore Pj,δ is centered about v+
j , every orbit converging to 0

tangent to v+
j must intersect Pj,δ, and thus we have proved that Pj,δ is an attracting petal.

Arguing in the same way with f

−1 we get repelling petals; unfortunately, the petals
obtained so far are too small to form a full pointed neighbourhood of the origin. In fact, as
remarked before, each Pj,δ is contained in a sector centered about vj of amplitude π/r; therefore
the repelling and attracting petals obtained in this way do not intersect but are tangent to
each other. We need larger petals.

So our aim is to find an f -invariant subset P+
j of Σj containing Pj,δ and which is tangent

at the origin to a sector centered about v+
j of amplitude strictly greater than π/r. To do so,

first of all remark that there are R, C > 0 such that

|F (w) − w − 1| ≤
C

|w|1/r
(1.10)

as soon as |w| > R. Choose ε ∈ (0, 1) and select δ > 0 so that 4rδ < R

−1 and ε > 2C(4rδ)1/r .
Then |w| > 1/(4rδ) implies

|F (w) − w − 1| < ε/2 .

Set Mε = (1 + ε)/(2rδ) and let

˜

Hε = {w ∈ C | | Im(w)| > −εRe(w) +Mε} ∪Hδ .

If w ∈ ˜

Hε we have |w| > 1/(2rδ) and hence

Re(F (w)) > Re(w) + 1 − ε/2 and | Im(F (w)) − Im(w)| < ε/2 ; (1.11)

it is then easy to check that F ( ˜Hε) ⊂ ˜

Hε and that every orbit starting in ˜

Hε must eventually

enter Hδ. Thus P+
j = ψ

−1( ˜Hε) is as required, and we have proved (i).

To prove (ii) we need a further property of ˜Hε. If w ∈ ˜

Hε, arguing by induction on k ≥ 1
using (1.11) we get

k

(

1 −
ε

2

)

< Re(F k(w)) − Re(w)

and
kε(1 − ε)

2
< | Im(F k(w))| + εRe(F k(w)) −

(

| Im(w)| + εRe(w)
)

.

This implies that for every w0 ∈ ˜

Hε there exists a k0 ≥ 1 so that we cannot have F k0(w) = w0

for any w ∈ ˜

Hε. Coming back to the z-plane, this says that any inverse orbit of f must
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eventually leave P+
j . Thus every (forward) orbit of f must eventually leave any repelling petal.

So if z ∈ K(U,f) \ {O}, where the stable set is computed working in the neighborhood U of
the origin given by the union of repelling and attracting petals (together with the origin), the
orbit of z must eventually land in an attracting petal, and thus z belongs to a basin centered
at one of the r attracting directions — and (ii) is proved.

To prove (iii), first of all we notice that we have

|F ′(w) − 1| ≤
21+1/r

C

|w|1+1/r
(1.12)

in ˜

Hε. Indeed, (1.10) says that if |w| > 1/(2rδ) then the function w 7→ F (w)−w− 1 sends the
disk of center w and radius |w|/2 into the disk of center the origin and radius C/(|w|/2)1/r ;
inequality (1.12) then follows from the Cauchy estimates on the derivative.

Now choose w0 ∈ Hδ, and set ϕ̃k(w) = F

k(w) − F

k(w0). Given w ∈ ˜

Hε, as soon as k ∈ N

is so large that F k(w) ∈ Hδ we can apply Lagrange’s theorem to the segment from F

k(w0) to
F

k(w) to get a tk ∈ [0, 1] such that

∣

∣

∣

∣

ϕ̃k+1(w)

ϕ̃k(w)
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

F

(

F

k(w)
)

− F

k
(

F

k(w0)
)

F

k(w) − F

k(w0)
− 1

∣

∣

∣

∣

∣

=
∣

∣

F

′
(

tkF
k(w) + (1 − tk)F k(w0)

)

− 1
∣

∣

≤
21+1/r

C

min{|Re(F k(w))|, |Re(F k(w0))|}1+1/r
≤

C

′

k

1+1/r
,

where we used (1.12) and (1.9), and the constant C ′ is uniform on compact subsets of ˜Hε (and
it can be chosen uniform on Hδ).

As a consequence, the telescopic product
∏

k ϕ̃k+1/ϕ̃k converges uniformly on compact

subsets of ˜Hε (and uniformly onHδ), and thus the sequence ϕ̃k converges, uniformly on compact

subsets, to a holomorphic function ϕ̃: ˜Hε → C. Since we have

ϕ̃k ◦ F (w) = F

k+1(w) − F

k(w0)

= ϕ̃k+1(w) + F

(

F

k(w0)
)

− F

k(w0)

= ϕ̃k+1(w) + 1 +O

(

|F k(w0)|
−1/r

)

,

it follows that
ϕ̃ ◦ F (w) = ϕ̃(w) + 1

on ˜

Hε. In particular, ϕ̃ is not constant; being the limit of injective functions, by Hurwitz’s
theorem it is injective.

We now prove that the image of ϕ̃ contains a right half-plane. First of all, we claim that

lim
|w|→+∞

w∈Hδ

ϕ̃(w)

w

= 1 . (1.13)

Indeed, choose η > 0. Since the convergence of the telescopic product is uniform on Hδ, we
can find k0 ∈ N such that

∣

∣

∣

∣

ϕ̃(w) − ϕ̃k0
(w)

w − w0

∣

∣

∣

∣

<

η

3



1.2.3 Parabolic case 13

on Hδ. Furthermore, we have

∣

∣

∣

∣

ϕ̃k0
(w)

w − w0
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k0 +
∑k0−1

j=0 O(|F j(w)|−1/r) + w0 − F

k0(w0)

w − w0

∣

∣

∣

∣

∣

= O(|w|−1)

on Hδ; therefore we can find R > 0 such that

∣

∣

∣

∣

ϕ̃(w)

w − w0
− 1

∣

∣

∣

∣

<

η

3

as soon as |w| > R in Hδ. Finally, if R is large enough we also have

∣

∣

∣

∣

ϕ̃(w)

w −w0
−
ϕ̃(w)

w

∣

∣

∣

∣

=

∣

∣

∣

∣

ϕ̃(w)

w − w0

∣

∣

∣

∣

∣

∣

∣

∣

w

w0

∣

∣

∣

∣

<

η

3
,

and (1.13) follows.
Equality (1.13) clearly implies that (ϕ̃(w) − w)/(w − w) → 1 as |w| → +∞ in Hδ for

any w ∈ C. But this means that if Re(w) is large enough then the difference between the
variation of the argument of ϕ̃ − w along a suitably small closed circle around w and the
variation of the argument of w−w along the same circle will be less than 2π — and thus it will
be zero. Then the argument principle implies that ϕ̃−w and w−w have the same number of
zeroes inside that circle, and thus w ∈ ϕ̃(Hδ), as required.

So setting ϕ = ϕ̃ ◦ ψ, we have defined a function ϕ with the required properties on P

+
j .

To extend it to the whole basin B it suffices to put

ϕ(z) = ϕ

(

f

k(z)
)

− k , (1.14)

where k ∈ N is the first integer such that fk(z) ∈ P

+
j .

Remark 1.2.8. It is possible to construct petals that cannot be contained in any sector strictly

smaller than Σj . To do so we need an F -invariant subset ̂Hε of C∗ \ R
− containing ˜

Hε and
containing eventually every half-line issuing from the origin (but R

−). For M >> 1 and C > 0

large enough, replace the straight lines bounding ˜Hε on the left of Re(w) = −M by the curves

| Im(w)| =

{

C log |Re(w)| if r = 1,

C|Re(w)|1−1/r if r > 1.

Then it is not too difficult to check that the domain ̂

Hε so obtained is as desired (see [CG]).

So we have a complete description of the dynamics in the neighbourhood of the origin.
Actually, Camacho, using fundamental domains, has pushed this argument even further, ob-
taining a complete topological classification of one-dimensional holomorphic local dynamical
systems tangent to the identity (see also [BH, Theorem 1.7]):

Theorem 1.2.9. (Camacho, 1978 [C]; Shcherbakov, 1982 [S]) Let f ∈ End(C, 0) be a holo-

morphic local dynamical system tangent to the identity with multiplicity r + 1 at the fixed

point. Then f is topologically locally conjugated to the map

g(z) = z − z

r+1
.
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Remark 1.2.10. It is clear from the proof of Camacho [C] that the topological conjugation he
founds is indeed C∞ in a punctured neighbourhood of the origin. We refer to [C] and [Br2] for
a proof, and to [J1] for a more detailed proof. Jenkins in [J1] also proved that if f ∈ End(C, 0)
is a holomorphic local dynamical system tangent to the identity with multiplicity 2, such that
there exists a topological conjugation (conjugating it with g(z) = z− z

2), which is indeed real-
analitic in a punctured neighbourhood of the origin, with real-analytic inverse, then there exists
a holomorphic conjugation between f and g. Finally, Martinet and Ramis [MR] have proved
that if a germ f ∈ End(C, 0), tangent to the identity, is C1-conjugated (in a full neighbourhood
of the origin) to g(z) = z− z

r+1, then it is holomorphically or antiholomorphically conjugated
to it.

The formal classification is simple too, though different (see, e.g., Milnor [Mi]):

Proposition 1.2.11. Let f ∈ End(C, 0) be a holomorphic local dynamical system tangent to

the identity with multiplicity r + 1 at the fixed point. Then f is formally conjugated to the

map

g(z) = z − z

r+1 + βz

2r+1
, (1.15)

where β is a formal (and holomorphic) invariant given by

β =
1

2πi

∫

γ

dz

z − f(z)
, (1.16)

where the integral is taken over a small positive loop γ around the origin.

Proof. An easy computation shows that if f is given by (1.15) then (1.16) holds. Let us now
show that the integral in (1.16) is a holomorphic invariant. Let ϕ be a local biholomorphism
fixing the origin, and set F = ϕ

−1 ◦ f ◦ ϕ. Then

1

2πi

∫

γ

dz

z − f(z)
=

1

2πi

∫

ϕ−1◦γ

ϕ

′(w) dw

ϕ(w) − f

(

ϕ(w)
) =

1

2πi

∫

ϕ−1◦γ

ϕ

′(w) dw

ϕ(w) − ϕ

(

F (w)
)
.

Now, we can clearly find M , M1 > 0 such that

∣

∣

∣

∣

∣

1

w − F (w)
−

ϕ

′(w)

ϕ(w) − ϕ

(

F (w)
)

∣

∣

∣

∣

∣

=
1

∣

∣

ϕ(w) − ϕ

(

F (w)
)∣

∣

∣

∣

∣

∣

∣

ϕ(w) − ϕ

(

F (w)
)

w − F (w)
− ϕ

′(w)

∣

∣

∣

∣

∣

≤M

|w − F (w)|
∣

∣

ϕ(w) − ϕ

(

F (w)
)∣

∣

≤M1 ,

in a neighbourhood of the origin, where the last inequality follows from the fact that ϕ′(0) 6= 0.
This means that the two meromorphic functions 1/

(

w−F (w)
)

and ϕ′(w)/
(

ϕ(w)−ϕ(
(

F (w)
))

differ by a holomorphic function; so they have the same integral along any small loop surround-
ing the origin, and

1

2πi

∫

γ

dz

z − f(z)
=

1

2πi

∫

ϕ−1◦γ

dw

w − F (w)
,

as claimed.
To prove that f is formally conjugated to g, let us first take a local formal change of

coordinates ϕ of the form

ϕ(z) = z + µz

d +Od+1 (1.17)
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with µ 6= 0, and where we are writing Od+1 instead of O(zd+1). Hence ϕ−1(z) = z−µzd+Od+1,
(ϕ−1)′(z) = 1−dµzd−1+Od and (ϕ−1)(j) = Od−j for all j ≥ 2. Then using the Taylor expansion
of ϕ−1 we get

ϕ

−1 ◦ f ◦ ϕ(z) = ϕ

−1





ϕ(z) +
∑

j≥r+1

ajϕ(z)j





= z + (ϕ−1)′
(

ϕ(z)
)

∑

j≥r+1

ajz
j(1 + µz

d−1 +Od)
j +Od+2r

= z + [1 − dµz

d−1 +Od]
∑

j≥r+1

ajz
j(1 + jµz

d−1 +Od) +Od+2r

= z + ar+1z
r+1 + · · · + ar+d−1z

r+d−1

+ [ar+d + (r + 1 − d)µar+1]z
r+d +Or+d+1.

(1.18)

This means that for all d 6= r + 1 we can use a polynomial change of coordinates of the
form ϕ(z) = z+µz

d to remove the term of degree r+d from the Taylor expansion of f without
changing the lower degree terms.

So to conjugate f to g it suffices to use a linear change of coordinates to get ar+1 = −1,
and then apply a sequence of change of coordinates of the form ϕ(z) = z + µz

d to kill all the
terms in the Taylor expansion of f but the term of degree z2r+1.

Finally, formula (1.18) also shows that two maps of the form (1.15) with different β cannot
be formally conjugated, and we are done.

Definition 1.2.9. The number β given by (1.16) is called the index of f at the fixed point.
The iterative residue of f is then defined by

Resit(f) =
r + 1

2
− β .

The iterative residue has been introduced by Écalle [É1], and it behaves nicely under
iteration; for instance, it is possible to prove (see [BH, Proposition 3.10]) that

Resit(fk) =
1

k

Resit(f) .

The holomorphic classification of maps tangent to the identity is much more complicated:
as shown by Écalle [É2–3] and Voronin [Vo] in 1981, it depends on functional invariants. We
shall now try and roughly describe it; see [I2], [M1-2], [Ki], [BH] and the original papers for
details.

Let f ∈ End(C, 0) be tangent to the identity with multiplicity r+ 1 at the fixed point; up
to a linear change of coordinates we can assume that ar+1 = −1. Let P±

j be a set of petals

as in Theorem 1.2.7.(i), ordered so that P+
1 is centered on the positive real semiaxis, and the

others are arranged cyclically counterclockwise. Denote by ϕ+
j [resp., ϕ−

j ] the biholomorphism

conjugating f |P+

j
[resp., f |P−

j
] to the shift z 7→ z + 1 in a right [resp., left] half-plane given by

Theorem 1.2.7.(iii) — applied to f−1 for the repelling petals. If we moreover require that

ϕ

±
j (z) =

1

rz

r
± Resit(f) · log z + o(1) , (1.19)
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then ϕj is uniquely determined.

Put now U

+
j = P

−
j ∩ P+

j+1, U
−
j = P

−
j ∩ P+

j , and S

±
j =

⋃

k∈Z
U

±
j . Using the dynamics as

in (1.14) we can extend ϕ

−
j to S±

j , and ϕ

+
j to S+

j−1 ∪ S
−
j ; put V ±

j = ϕ

−
j (S±

j ), W−
j = ϕ

+
j (S−

j )

and W

+
j = ϕ

+
j+1(S

+
j ). Then let H−

j :V −
j → W

−
J be the restriction of ϕ+

j ◦ (ϕ−
j )−1 to V −

j , and

H

+
j :V +

j →W

+
j the restriction of ϕ+

j+1 ◦ (ϕ−
j )−1 to V +

j .

It is not difficult to see that V ±
j and W±

j are invariant under translation by 1, and that V +
j

and W+
j contain an upper half-plane while V −

j and W−
j contain a lower half-plane. Moreover,

we have H±
j (z+1) = H

±
j (z)+1; therefore using the projection π(z) = exp(2πiz) we can induce

holomorphic maps h±j :π(V ±
j ) → π(W±

j ), where π(V +
j ) and π(W+

j ) are pointed neighbourhood

of the origin, and π(V −
j ) and π(W−

j ) are pointed neighbourhood of ∞ ∈ P
1(C).

It is possible to show that one obtains a holomorphic germ h

+
j ∈ End(C, 0) setting

h

+
j (0) = 0, and that one obtains a holomorphic germ h

−
j ∈ End

(

P
1(C),∞

)

setting h−j (∞) = ∞.

Furthermore, denoting by λ+
j [resp., λ−j ] the multiplier of h+

j at 0 [resp., of h−j at ∞], it turns
out that

r
∏

j=1

(λ+
j λ

−
j ) = exp

[

4π2Resit(f)
]

. (1.20)

Now, if we replace f by a holomorphic local conjugate ˜f = ψ

−1 ◦ f ◦ψ, and denote by ˜h±j
the corresponding germs, it is not difficult to check that (up to a cyclic renumbering of the
petals) there are constants αj , βj ∈ C

∗ such that

˜

h

−
j (z) = αjh

−
j

(

z

βj

)

and ˜

h

+
j (z) = αj+1h

+
j

(

z

βj

)

. (1.21)

This suggests the introduction of an equivalence relation on the set of 2r-uples of holomorphic
germs (h±1 , . . . , h

±
r ).

Definition 1.2.10. Let Mr denote the set of 2r-uples of holomorphic germs h = (h±1 , . . . , h
±
r ),

with h+
j ∈ End(C, 0), h−j ∈ End

(

P
1(C),∞

)

, and whose multipliers satisfy (1.20). We shall say

that h, ˜h ∈ Mr are equivalent if up to a cyclic permutation of the indices we have (1.21) for
suitable αj , βj ∈ C

∗. We denote by Mr the set of all equivalence classes.

The procedure described above allows then to associate to any f ∈ End(C, 0) tangent to
the identity with multiplicity r + 1 an element µf ∈ Mr.

Definition 1.2.11. Let f ∈ End(C, 0) be tangent to the identity. The element µf ∈ Mr given
by this procedure is the sectorial invariant of f .

Then the holomorphic classification proved by Écalle and Voronin is

Theorem 1.2.12. (Écalle, 1981 [É2–3]; Voronin, 1981 [Vo]) Let f , g ∈ End(C, 0) be two

holomorphic local dynamical systems tangent to the identity. Then f and g are holomorphically

locally conjugated if and only if they have the same multiplicity, the same index and the same

sectorial invariant. Furthermore, for any r ≥ 1, β ∈ C and µ ∈ Mr there exists f ∈ End(C, 0)
tangent to the identity with multiplicity r + 1, index β and sectorial invariant µ.

Remark 1.2.13. In particular, holomorphic local dynamical systems tangent to the identity
give examples of local dynamical systems that are topologically conjugated without being
neither holomorphically nor formally conjugated, and of local dynamical systems that are
formally conjugated without being holomorphically conjugated. Particular examples of germs
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in End(C, 0) tangent to the identity that are formally conjugated without being holomorphically
conjugated can be found in [Na] and [Tr].

We would also like to mention the following result of Ribón appeared in the appendix
of [CGBM]. It is known (see [Br2]) that for any germ f ∈ End(C, 0) there exists a unique
formal (not necessarily holomorphic) vector field, called the infinitesimal generator of f , whose
time-one flow coincides with f .

Theorem 1.2.14. (Ribón, 2008 [CGBM]) Let f ∈ End(C, 0) \ {Id} be a germ tangent to

the identity. If there exists a germ of real-analytic foliation F , defined by a 1-form having

an isolated singularity, such that f∗F = F , then the formal infinitesimal generator of f is a

germ of holomorphic vector field singular at the origin. In particular, f is holomorphically

conjugated to the germ g(z) = z − z

r+1, where r + 1 is the multiplicity of f .

Finally, if f ∈ End(C, 0) satisfies λ = e

2πip/q , then f q is tangent to the identity. Therefore
we can apply the previous results to f q and then infer informations about the dynamics of the
original f , because of the following

Lemma 1.2.15. Let f , g ∈ End(C, 0) be two holomorphic local dynamical systems with the

same multiplier e2πip/q ∈ S
1. Then f and g are holomorphically locally conjugated if and only

if f q and gq are.

Proof. One direction is obvious. For the converse, let ϕ be a germ conjugating f q and g

q ; in
particular,

g

q = ϕ

−1 ◦ f q ◦ ϕ = (ϕ−1 ◦ f ◦ ϕ)q
.

So, up to replacing f by ϕ−1 ◦ f ◦ ϕ, we can assume that f q = g

q . Put

ψ =

q−1
∑

k=0

g

q−k ◦ fk =

q
∑

k=1

g

q−k ◦ fk
.

The germ ψ is a local biholomorphism, because ψ′(0) = q 6= 0, and it is easy to check that
ψ ◦ f = g ◦ ψ.

We list here a few results; see [Mi], [Ma], [C], [É2–3], [Vo] and [BH] for proofs and further
details.

Proposition 1.2.16. Let f ∈ End(C, 0) be a holomorphic local dynamical system with mul-

tiplier λ ∈ S
1, and assume that λ is a primitive root of the unity of order q. Assume that

f

q 6≡ Id. Then there exist n ≥ 1 and α ∈ C such that f is formally conjugated to

g(z) = λz − z

nq+1 + αz

2nq+1
.

Definition 1.2.12. The number n is the parabolic multiplicity of f , and α ∈ C is the index

of f ; the iterative residue of f is then given by

Resit(f) =
nq + 1

2
− α .

Proposition 1.2.17. (Camacho, 1978 [C]) Let f ∈ End(C, 0) be a holomorphic local dynami-

cal system with multiplier λ ∈ S
1, and assume that λ is a primitive root of the unity of order q.

Assume that f q 6≡ Id, and has parabolic multiplicity n ≥ 1. Then f is topologically conjugated

to

g(z) = λz − z

nq+1
.
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Theorem 1.2.18. (Leau, 1897 [L]; Fatou, 1919-20 [F1–3]) Let f ∈ End(C, 0) be a holomorphic

local dynamical system with multiplier λ ∈ S
1, and assume that λ is a primitive root of the

unity of order q. Assume that f q 6≡ Id, and let n ≥ 1 be the parabolic multiplicity of f . Then

f

q has multiplicity nq + 1, and f acts on the attracting [resp., repelling] petals of f q as a

permutation composed by n disjoint cycles. Finally, K(U,f) = K(U,fq) for any representatives

(U, f) and (U, f q) of f and f q.

Furthermore, it is possible to define the sectorial invariant of such a holomorphic local dy-
namical system, composed by 2nq germs whose multipliers still satisfy (1.20), and the analogue
of Theorem 1.2.12 holds.

1.2.4 Elliptic case

We are left with the elliptic case:

f(z) = e

2πiθ
z + a2z

2 + · · · ∈ C0{z} , (1.22)

with θ /∈ Q. It turns out that the local dynamics depends mostly on numerical properties
of θ. The main question here is whether such a local dynamical system is holomorphically
conjugated to its linear part. Let us introduce a bit of terminology.

Definition 1.2.13. We shall say that a holomorphic dynamical system of the form (1.22) is
holomorphically linearizable if it is holomorphically locally conjugated to its linear part, the
irrational rotation z 7→ e

2πiθ
z. In this case, we shall say that 0 is a Siegel point for f ; otherwise,

we shall say that it is a Cremer point.

It turns out that for a full measure subset B of θ ∈ [0, 1] \ Q all holomorphic local dy-
namical systems of the form (1.22) are holomorphically linearizable. Conversely, the comple-
ment [0, 1]\B is a Gδ-dense set, and for all θ ∈ [0, 1]\B the quadratic polynomial z 7→ z

2+e2πiθ
z

is not holomorphically linearizable. This is the gist of the results due to Cremer, Siegel, Brjuno
and Yoccoz we shall describe in this section.

The first worthwhile observation in this setting is that it is possible to give a topological
characterization of holomorphically linearizable local dynamical systems. Recall that a point p
is stable for f ∈ End(M,p) if it belongs to the interior of K(U,f), where (U, f) is a representative
of f .

Proposition 1.2.19. Let f ∈ End(C, 0) be a holomorphic local dynamical system with multi-

plier λ ∈ S
1. Then f is holomorphically linearizable if and only if it is topologically linearizable

if and only if 0 is stable for f .

Proof. If f is holomorphically linearizable it is topologically linearizable, and if it is topologi-
cally linearizable (and |λ| = 1) then it is stable. Assume that 0 is stable, and set

ϕk(z) =
1

k

k−1
∑

j=0

f

j(z)

λ

j
,

so that ϕ′
k(0) = 1 and

ϕk ◦ f = λϕk +
λ

k

(

f

k

λ

k
− Id

)

. (1.23)

The stability of 0 implies that there are bounded open sets V ⊂ U containing the origin such
that fk(V ) ⊂ U for all k ∈ N. Since |λ| = 1, it follows that {ϕk} is a uniformly bounded family
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on V , and hence, by Montel’s theorem, it admits a converging subsequence. But (1.23) implies
that a converging subsequence converges to a conjugation between f and the rotation z 7→ λz,
and so f is holomorphically linearizable.

The second important observation is that two elliptic holomorphic local dynamical systems
with the same multiplier are always formally conjugated:

Proposition 1.2.20. Let f ∈ End(C, 0) be a holomorphic local dynamical system of multi-

plier λ = e

2πiθ ∈ S
1 with θ /∈ Q. Then f is formally conjugated to its linear part, by a unique

formal power series tangent to the identity.

Proof. We shall prove that there is a unique formal power series of the form

h(z) = z + h2z
2 + · · · ∈ C0[[z]]

such that h(λz) = f

(

h(z)
)

. Indeed we have

h(λz) − f

(

h(z)
)

=
∑

j≥2











[

(λj − λ)hj − aj

]

z

j − aj

j
∑

ℓ=1

(

j

ℓ

)

z

ℓ+j





∑

k≥2

hkz
k−2





ℓ










=
∑

j≥2

[

(λj − λ)hj − aj − Pj(h2, . . . , hj−1)
]

z

j
,

(1.24)

where Pj is a polynomial in j − 2 variables with coefficients depending on a2, . . . , aj−1. It
follows that the coefficients of h are uniquely determined by induction using the formula

hj =
aj + Pj(h2, . . . , hj−1)

λ

j − λ

. (1.25)

In particular, hj depends only on λ, a2, . . . , aj .

Remark 1.2.21. The same proof shows that any holomorphic local dynamical system with
multiplier λ 6= 0 and not a root of unity is formally conjugated to its linear part.

The formal power series linearizing f is not converging if its coefficients grow too fast.
Thus (1.25) links the radius of convergence of h to the behavior of λj −λ: if the latter becomes
too small, the series defining h does not converge. This is known as the small denominators

problem in this context.
It is then natural to introduce the following quantity:

ωλ(m) = min
1≤k≤m

|λk − λ| ,

for λ ∈ S
1 and m ≥ 1. Clearly, λ is a root of unity if and only if ωλ(m) = 0 for all m greater

or equal to some m0 ≥ 1; furthermore,

lim
m→+∞

ωλ(m) = 0

for all λ ∈ S
1.

The first one to actually prove that there are non-linearizable elliptic holomorphic local
dynamical systems has been Cremer, in 1927 [Cr1]. His more general result is the following:
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Theorem 1.2.22. (Cremer, 1938 [Cr2]) Let λ ∈ S
1 be such that

lim sup
m→+∞

1

m

log
1

ωλ(m)
= +∞ . (1.26)

Then there exists f ∈ End(C, 0) with multiplier λ which is not holomorphically linearizable.

Furthermore, the set of λ ∈ S
1 satisfying (1.26) contains a Gδ-dense set.

Proof. Choose inductively aj ∈ {0, 1} so that |aj + Pj | ≥ 1/2 for all j ≥ 2, where Pj is as
in (1.25). Then

f(z) = λz + a2z
2 + · · · ∈ C0{z} ,

while (1.26) implies that the radius of convergence of the formal linearization h is 0, and thus f
cannot be holomorphically linearizable, as required.

Finally, let C(q0) ⊂ S
1 denote the set of λ = e

2πiθ ∈ S
1 such that

∣

∣

∣

∣

θ −
p

q

∣

∣

∣

∣

<

1

2q!
(1.27)

for some p/q ∈ Q in lowest terms, with q ≥ q0. Then it is not difficult to check that each C(q0) is
a dense open set in S

1, and that all λ ∈ C =
⋂

q0≥1C(q0) satisfy (1.26). Indeed, if λ = e

2πiθ ∈ C

we can find q ∈ N arbitrarily large such that there is p ∈ N so that (1.27) holds. Now, it is
easy to see that

|e2πit − 1| ≤ 2π|t|

for all t ∈ [−1/2, 1/2]. Then, letting p0 be the closest integer to qθ, so that |qθ− p0| ≤ 1/2, we
have

|λq − 1| = |e2πiqθ − e

2πip0 | = |e2πi(qθ−p0) − 1| ≤ 2π|qθ − p0| ≤ 2π|qθ − p| <
2π

2q!−1

for arbitrarily large q, and (1.26) follows.

On the other hand, Siegel in 1942 gave a condition on the multiplier ensuring holomorphic
linearizability:

Theorem 1.2.23. (Siegel, 1942 [Si]) Let λ ∈ S
1 be such that there exists β > 1 and γ > 0 so

that

∀m ≥ 2
1

ωλ(m)
≤ γ m

β
. (1.28)

Then all f ∈ End(C, 0) with multiplier λ are holomorphically linearizable. Furthermore, the

set of λ ∈ S
1 satisfying (1.28) for some β > 1 and γ > 0 is of full Lebesgue measure in S

1.

Remark 1.2.24. If θ ∈ [0, 1) \ Q is algebraic then λ = e

2πiθ satisfies (1.28) for some β > 1
and γ > 0. However, the set of λ ∈ S

1 satisfying (1.28) is much larger, being of full measure.

Remark 1.2.25. It is interesting to notice that for generic (in a topological sense) λ ∈ S
1

there is a non-linearizable holomorphic local dynamical system with multiplier λ, while for
almost all (in a measure-theoretic sense) λ ∈ S

1 every holomorphic local dynamical system
with multiplier λ is holomorphically linearizable.

Theorem 1.2.23 suggests the existence of a number-theoretical condition on λ ensuring
that the origin is a Siegel point for any holomorphic local dynamical system of multiplier λ.
And indeed this is the content of the celebrated Brjuno-Yoccoz theorem:
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Theorem 1.2.26. (Brjuno, 1965 [Brj1–3], Yoccoz, 1988 [Y1–2]) Let λ ∈ S
1. Then the following

statements are equivalent:

(i) the origin is a Siegel point for the quadratic polynomial fλ(z) = λz + z

2;

(ii) the origin is a Siegel point for all f ∈ End(C, 0) with multiplier λ;

(iii) the number λ satisfies Brjuno’s condition

+∞
∑

k=0

1

2k
log

1

ωλ(2k+1)
< +∞ . (1.29)

Brjuno, using majorant series as in Siegel’s proof of Theorem 1.2.23 (see also [He] and
references therein) has proved that condition (iii) implies condition (ii). Yoccoz, using a more
geometric approach based on conformal and quasi-conformal geometry, has proved that (i) is
equivalent to (ii), and that (ii) implies (iii), that is that if λ does not satisfy (1.29) then the
origin is a Cremer point for some f ∈ End(C, 0) with multiplier λ — and hence it is a Cremer
point for the quadratic polynomial fλ(z). See also [P9] for related results.

Remark 1.2.27. Condition (1.29) is usually expressed in a different way. Write λ = e

2πiθ,
and let {pk/qk} be the sequence of rational numbers converging to θ given by the expansion in
continued fractions. Then (1.29) is equivalent to

+∞
∑

k=0

1

qk

log qk+1 < +∞ ,

while (1.28) is equivalent to
qn+1 = O(qβ

n) ,

and (1.26) is equivalent to

lim sup
k→+∞

1

qk

log qk+1 = +∞ .

See [K] for a tractation on continued fractions, [He], [Y2], [Mi] and references therein for other
details on condition (1.29).

Remark 1.2.28. A clear obstruction to the holomorphic linearization of an elliptic germ
f ∈ End(C, 0) with multiplier λ = e

2πiθ ∈ S
1 is the existence of small cycles, that is of

periodic orbits contained in any neighbourhood of the origin. Pérez-Marco [P1], using Yoccoz’s
techniques, has shown that when the series

+∞
∑

k=0

log log qk+1

qk

converges then every germ with multiplier λ is either linearizable or has small cycles, and that
when the series diverges there exists such germs with a Cremer point but without small cycles.

The complete proof of Theorem 1.2.26 is beyond the scope of this chapter. We shall limit
ourselves to describe a proof (adapted from the original one of [Brj1–3]) of the implication
(iii)=⇒(ii), to report two of the easiest results of [Y2], and to illustrate what is the connection
between condition (1.29) and the radius of convergence of the formal linearizing map.

Let us begin with Brjuno’s theorem:
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Theorem 1.2.29. (Brjuno, 1965 [Brj1–3]) Assume that λ = e

2πiθ ∈ S
1 satisfies the Brjuno’s

condition
+∞
∑

k=0

1

2k
log

1

ωλ(2k+1)
< +∞ . (1.30)

Then the origin is a Siegel point for all f ∈ End(C, 0) with multiplier λ.

Proof. We already know, thanks to Proposition 1.2.20, that there exists a unique formal power
series

h(z) = z + z

∑

k≥1

hkz
k

such that h−1 ◦ f ◦ h(z) = λz; we shall prove that h is actually converging. To do so it suffices
to show that

sup
k

1

k

log |hk| <∞ . (1.31)

Writing f(z) = λz + z

̂

f(z) and h(z) = z(1 + ̂h(z)), from h(λz) = f(h(z)) we obtain

λz

(

1 + ̂h(λz)
)

= λz

(

1 + ̂h(z)
)

+ z

(

1 + ̂h(z)
)

̂

f

(

z + z

̂

h(z)
)

,

hence, dividing by λz both sides and simplifying, we get

̂

h(λz) − ̂h(z) = λ

−1
(

1 + ̂h(z)
)

̂

f

(

z + z

̂

h(z)
)

,

thus, for each k ≥ 2, we have

(

λ

k − 1
)

hk = λ

−1
{(

1 + ̂h(z)
)

̂

f

(

z + z

̂

h(z)
)}

k
, (1.32)

where, given a power series g(z), we denote by {g(z)}k the coefficient of zk in its power series
expansion.

It is known (see [SM] pp. 110–113) that there exist constants c1 and c2 such that the power
series of the function c1z(c2 −z)

−1 dominates the Maclaurin series of the holomorphic function
f(z). Let ‖kθ‖ be the distance of kθ from the nearest integer, i.e., ‖kθ‖ = minh∈Z |kθ − h|.
Since the ratio of the length of a chord to the length of the smaller of the two corresponding
arcs is at least 2/π, we obtain

|λk − 1|

2π‖kθ‖
≥

2

π

,

hence

4‖kθ‖ ≤ |λk − 1|.

Therefore, from (1.32) we obtain the estimate

‖kθ‖ |hk| ≤
1

4

{

c1z
(

1 +M(̂h )
)2

c2 − z

(

1 +M(̂h )
)

}

k

,

where M(̂h ) is the power series
∑

k≥1 |hk|z
k.
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Let us now consider the power series g(z) =
∑

k≥1 gkz
k with positive real coefficients

defined recursively by

‖kθ‖ gk =
1

4

{

c1z(1 + g(z))2

c2 − z(1 + g(z))

}

k

. (1.33)

It is not difficult to see by induction that |hk| ≤ gk for each k ≥ 1; hence, to prove (1.31), it
suffices to prove that

sup
k

1

k

log gk <∞ . (1.34)

Multiplying the k-th equation (1.33) by zk and summing over all k, we get

∑

k≥1

‖kθ‖ gkz
k =

1

4

c1z(1 + g(z))2

c2 − z(1 + g(z))
,

hence

c2

∑

k≥1

‖kθ‖ gkz
k =

1

4
c1z(1 + g(z))2 + z(1 + g(z))

∑

k≥1

‖kθ‖ gkz
k
.

Since ‖kθ‖ ≤ 1/2 for any k ∈ Z, last equality yields

∑

k≥1

‖kθ‖ gkz
k ≺

1

2c2
z(1 + g(z))g(z) +

1

4c2
c1z(1 + g(z))2

≺
2 + c1

4c2
z(1 + g(z))2,

where, given two power series φ(z) and ψ(z), φ ≺ ψ means that φk ≤ ψk for each k ≥ 1.
Therefore, setting c3 = (2 + c1)/(4c2), for each k ≥ 1 we have

‖kθ‖ gk ≤ c3

∑

k1+k2+1=k

k1,k2≥0

gk1
gk2

. (1.35)

Let us now define inductively

αk =











1 if k = 0,

c3

∑

k1+k2+1=k

k1,k2≥0

αk1
αk2

if k ≥ 2,

and

δk =







1 if k = 0,

‖kθ‖−1 max
k1+k2+1=k

k1,k2≥0

δk1
δk2

, if k ≥ 2.

Then it is easy to check by induction that

gk ≤ αkδk

for all k. Therefore, to establish (1.34) it suffices to prove analogous estimates for αk and δk.
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To estimate αk, let α(t) =
∑

k≥0 αkt
k. We have

α(t) − 1 =
∑

k≥1

αkt
k = c3t(α(t))2.

This equation has a unique holomorphic solution vanishing at zero

α(t) =
1 −

√
1 − 4c3t

2c3t
,

defined for |t| small enough. Hence,

sup
k

1

k

log αk <∞,

as we wanted.
To estimate δk we have to take care of small denominators. Let {pm/qm} be the sequence

of rational numbers converging to θ given by the expansion in continued fractions. By the
best approximation theorem (see [Ma] pp. 22–23) {‖qmθ‖} is the subsequence of successive
minima of {‖kθ‖} as k varies from 1 to ∞, i.e., q0 = 1, qm < qm+1 and ‖qmθ‖ > ‖qm+1θ‖;
thus for each k < qm+1 we have ‖kθ‖ ≥ ‖qm+1θ‖. We define ‖q−1θ‖ = 1. If k 6= 0, then
‖kθ‖ < ‖q−1θ‖/2 = 1/2.

Let us now introduce the following function on the natural numbers:

Mm(k) =

{

1, if ‖kθ‖ < 1
2‖qmθ‖,

0, if ‖kθ‖ ≥ 1
2
‖qmθ‖.

(1.36)

for k ≥ 1 and m ≥ −1. We have the following lemma.

Lemma 1.2.30. Let Mm(k) be the function defined by (1.36). If Mm(k) = 1 then, for all

0 < l < qm+1, we have Mm(k − l) = 0.

Proof. By definition, there exist m1,m2 ∈ Z such that

‖kθ‖ = |kθ −m1| and ‖(k − l)θ‖ = |(k − l)θ −m2|.

Since we have

|kθ −m1| + |(k − l)θ −m2| ≥ |kθ −m1 − ((k − l)θ −m2)|

= |lθ +m2 −m1|

≥ ‖lθ‖,

we have
‖(k − l)θ‖ ≥ ‖lθ‖ − ‖kθ‖.

By assumption, ‖lθ‖ ≥ ‖qmθ‖ and −‖kθ‖ > −‖qmθ‖/2, hence

‖(k − l)θ‖ > ‖qmθ‖ −
‖qmθ‖

2
=

‖qmθ‖

2
,

and we are done.
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For each k ≥ 2 we associate to δk a specific decomposition of the form

δk = ‖kθ‖−1
δk1

δk2
, (1.37)

with k > k1 ≥ k2, and k = 1 + k1 + k2, and hence, by induction, a specific decomposition of
the form

δk = ‖l0θ‖
−1‖l1θ‖

−1 · · · ‖lhθ‖
−1

, (1.38)

where l0 = k and k > l1 ≥ · · · ≥ lh ≥ 2. For m ≥ 2 let Nm(k) be the number of factors ‖lθ‖−1

in the expression (1.38) of δk satisfying

‖lθ‖ <
1

2
‖qmθ‖.

The next lemma contains the key estimate.

Lemma 1.2.31. For all m ≥ 2 we have

Nm(k) ≤







0, if 0 < k < qm+1 ,

2k

qm+1
− 1, if k ≥ qm+1 .

Proof. We argue by induction on k. Writing δk as in (1.37), it is clear that we have

0 ≤ Nm(k) ≤Mm(k) +Nm(k1) +Nm(k1).

If 0 ≤ l ≤ k < qm+1 we have ‖lθ‖ ≥ ‖qm+1θ‖, and hence Nm(k) = 0.
Assume now k > qm+1, so that 2k/qm+1 − 1 ≥ 1. We have a few cases to consider.

Case 1: Mm(k) = 0. Then

Nm(k) = Nm(k1) +Nm(k2),

and applying the induction hypotheses to each term we get Nm(k) ≤ (2k/qm+1) − 1.

Case 2: Mm(k) = 1. Then

Nm(k) = 1 +Nm(k1) +Nm(k2),

and there are three subcases.

Case 2.1: k1 < qm+1. Then

Nm(k) = 1 ≤
2k

qm+1
− 1,

and we are done.

Case 2.2: k1 ≥ k2 ≥ qm+1. Then we have

Nm(k) ≤ 1 +N(k1) +N(k2) ≤ 1 +
2k1

qm+1
− 1 +

2k2

qm+1
− 1 ≤

2k

qm+1
− 1.

Case 2.3: k1 ≥ qm+1 > k2. Then

Nm(k) = 1 +Nm(k1),
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and we have two different subsubcases.

Case 2.3.1: k1 ≤ k − qm+1. Then

Nm(k) ≤ 1 + 2
k − qm+1

qm+1
− 1 <

2k

qm+1
− 1 ,

and we are done in this case too.

Case 2.3.2: k1 > k−qm+1. Then, by Lemma 1.2.30, Mm(k1) = 0. Therefore case 1 applies
to δk1

and we have
Nm(k) = 1 +Nm(k3) +Nm(k4),

with k > k1 > k3 ≥ k4 and k1 = k3+k4+1. We can repeat the argument for this decomposition,
and we finish unless we run into case 2.3.2 again. However, this loop cannot happen more
than qm+1 − 1 times, and we eventually have to land into a different case. This completes the
induction and the proof.

Let us go back to the proof of Theorem 1.2.29. We have to estimate

1

k

log δk =

q
∑

j=0

1

k

log ‖ljθ‖
−1

.

Hence, by Lemma 1.2.31, letting ν be defined by qν+1 > k ≥ qν, we have

1

k

log δk ≤

ν
∑

m=−1

2
k

qm+1
log
(

2‖qm+1θ‖)
−1
)

< 2k
∑

m≥0

1

qm

log
(

2‖qmθ‖)
−1
)

.

Now, recalling that qm ≥ 2
m−1

2 (see [K] Theorem 12 p. 13) and ‖qmθ‖ ≥ 1/(2qm+1) (it is a
consequence of [K] Theorem 13 p. 15 and the proprieties of the convergents [K] p. 4), we get

1

k

log δk < 2k
∑

m≥0

1

qm

log
(

4qm+1)
)

= 2k



log 4
∑

m≥0

1

qm

+
∑

m≥0

1

qm

log qm+1





< 2k





2 log 4
√

2 − 1
+
∑

m≥0

log qm+1

qm





,

and we are done, since the last series converges by assumption.

The second result we would like to present is Yoccoz’s beautiful proof of the fact that
almost every quadratic polynomial fλ is holomorphically linearizable:

Proposition 1.2.32. The origin is a Siegel point of fλ(z) = λz + z

2 for almost every λ ∈ S
1.

Proof. (Yoccoz [Y2]) The idea is to study the radius of convergence of the inverse of the
linearization of fλ(z) = λz + z

2 when λ ∈ ∆∗. Theorem 1.2.2 says that there is a unique map
ϕλ defined in some neighbourhood of the origin such that ϕ′

λ(0) = 1 and ϕλ ◦ f = λϕλ. Let ρλ

be the radius of convergence of ϕ−1
λ ; we want to prove that ϕλ is defined in a neighbourhood

of the unique critical point −λ/2 of fλ, and that ρλ = |ϕλ(−λ/2)|.
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Let Ωλ ⊂⊂ C be the basin of attraction of the origin, that is the set of z ∈ C whose
orbit converges to the origin. Notice that setting ϕλ(z) = λ

−k
ϕλ

(

fλ(z)
)

we can extend ϕλ

to the whole of Ωλ. Moreover, since the image of ϕ−1
λ is contained in Ωλ, which is bounded,

necessarily ρλ < +∞. Let Uλ = ϕ

−1
λ (∆ρλ

). Since we have

(ϕ′
λ ◦ f)f ′ = λϕ

′
λ (1.39)

and ϕλ is invertible in Uλ, the function f cannot have critical points in Uλ.
If z = ϕ

−1
λ (w) ∈ Uλ, we have f(z) = ϕ

−1
λ (λw) ∈ ϕ

−1
λ (∆|λ|ρλ

) ⊂⊂ Uλ; therefore

f(Uλ) ⊆ f(Uλ) ⊂⊂ Uλ ⊆ Ωλ,

which implies that ∂U ⊂ Ωλ. So ϕλ is defined on ∂Uλ, and clearly |ϕλ(z)| = ρλ for all z ∈ ∂Uλ.
If f had no critical points in ∂Uλ, (1.39) would imply that ϕλ has no critical points

in ∂Uλ. But then ϕλ would be locally invertible in ∂Uλ, and thus ϕ−1
λ would extend across

∂∆ρλ
, impossible. Therefore −λ/2 ∈ ∂Uλ, and |ϕλ(−λ/2)| = ρλ, as claimed.

(Up to here it was classic; let us now start Yoccoz’s argument.) Put η(λ) = ϕλ(−λ/2).
From the proof of Theorem 1.2.2 one easily sees that ϕλ depends holomorphically on λ;
so η:∆∗ → C is holomorphic. Furthermore, since Ωλ ⊆ ∆2, Schwarz’s lemma applied to
ϕ

−1
λ :∆ρλ

→ ∆2 yields

1 = |(ϕ−1
λ )′(0)| ≤ 2/ρλ,

that is ρλ ≤ 2. Thus η is bounded, and thus it extends holomorphically to the origin.
So η:∆ → ∆2 is a bounded holomorphic function not identically zero; Fatou’s theorem on

radial limits of bounded holomorphic functions then implies that

ρ(λ0) := lim sup
r→1−

|η(rλ0)| > 0

for almost every λ0 ∈ S
1. This means that we can find 0 < ρ0 < ρ(λ0) and a sequence {λj} ⊂ ∆

such that λj → λ0 and |η(λj)| > ρ0. This means that ϕ−1
λj

is defined in ∆ρ0
for all j ≥ 1; up

to a subsequence, we can assume that ϕ−1
λj

→ ψ:∆ρ0
→ ∆2. But then we have ψ′(0) = 1 and

fλ0

(

ψ(z)
)

= ψ(λ0z)

in ∆ρ0
, and thus the origin is a Siegel point for fλ0

.

The third result we would like to present is the implication (i) =⇒ (ii) in Theorem 1.2.26.
The proof depends on the following result of Douady and Hubbard, obtained using the theory
of quasiconformal maps:

Theorem 1.2.33. (Douady-Hubbard, 1985 [DH]) Given λ ∈ C
∗, let fλ(z) = λz + z

2 be a

quadratic polynomial. Then there exists a universal constant C > 0 such that for every holo-

morphic function ψ:∆3|λ|/2 → C with ψ(0) = ψ

′(0) = 0 and |ψ(z)| ≤ C|λ| for all z ∈ ∆3|λ|/2

the function f = fλ + ψ is topologically conjugated to fλ in ∆|λ|.

Then

Theorem 1.2.34. (Yoccoz, 1995 [Y2]) Let λ ∈ S
1 be such that the origin is a Siegel point for

fλ(z) = λz + z

2. Then the origin is a Siegel point for every f ∈ End(C, 0) with multiplier λ.

Sketch of proof : Write

f(z) = λz + a2z
2 +

∑

k≥3

akz
k
,
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and let
f

a(z) = λz + az

2 +
∑

k≥3

akz
k
,

so that f = f

a2 . If |a| is large enough then the germ

g

a(z) = af

a(z/a) = λz + z

2 + a

∑

k≥3

ak(z/a)k = fλ(z) + ψ

a(z)

is defined on ∆3/2 and |ψa(z)| < C for all z ∈ ∆3/2, where C is the constant given by
Theorem 1.2.33. It follows that ga is topologically conjugated to fλ. By assumption, fλ is
topologically linearizable; hence ga is too. Proposition 1.2.19 then implies that ga is holomor-
phically linearizable, and hence fa is too. Furthermore, it is also possible to show (see, e.g.,
[BH, Lemma 2.3]) that if |a| is large enough, say |a| ≥ R, then the domain of linearization of
g

a contains ∆r, where r > 0 is such that ∆2r is contained in the domain of linearization of fλ.
So we have proven the assertion if |a2| ≥ R; assume then |a2| < R. Since λ is not a root

of unity, there exists (Proposition 1.2.20) a unique formal power series ̂ha ∈ C[[z]] tangent to

the identity such that ga ◦ ̂ha(z) = ̂ha(λz). If we write

̂

h

a(z) = z +
∑

k≥2

hk(a)zk

then we have

∑

k≥2

(λk − λ)hk(a)zk =
∑

l≥2

al





∑

m≥1

hm(a)zm





l

,

implying that hk(a) is a polynomial in a of degree k − 1. In particular, by the maximum
principle we have

|hk(a2)| ≤ max
|a|=R

|hk(a)| (1.40)

for all k ≥ 2. Now, by what we have seen, if |a| = R then ̂ha is convergent in a disk of
radius r(a) > 0, and its image contains a disk of radius r. Applying Schwarz’s lemma to

(̂ha)−1:∆r → ∆r(a) we get r(a) ≥ r. But then

lim sup
k→+∞

|hk(a2)|
1/k ≤ max

|a|=R
lim sup
k→+∞

|hk(a)|1/k =
1

r(a)
≤

1

r

< +∞ ;

hence ̂ha2 is convergent, and we are done.

Finally, we would like to describe the connection between condition (1.29) and lineariza-
tion. From the function theoretical side, given θ ∈ [0, 1) set

r(θ) = inf{r(f) | f ∈ End(C, 0) has multiplier e2πiθ and it is defined and injective in ∆},

where r(f) ≥ 0 is the radius of convergence of the unique formal linearization of f tangent to
the identity.

From the number theoretical side, given an irrational number θ ∈ [0, 1) let {pk/qk} be the
sequence of rational numbers converging to θ given by the expansion in continued fractions,
and put

αn = − qnθ−pn

qn−1θ−pn−1

, α0 = θ,

βn = (−1)n(qnθ − pn), β−1 = 1.
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Definition 1.2.14. The Brjuno function B: [0, 1) \ Q → (0,+∞] is defined by

B(θ) =
∞
∑

n=0

βn−1 log
1

αn

.

Then Theorem 1.2.26 is consequence of what we have seen and the following

Theorem 1.2.35. (Yoccoz, 1995 [Y2]) (i) B(θ) < +∞ if and only if λ = e

2πiθ satisfies Brjuno’s

condition (1.29);

(ii) there exists a universal constant C > 0 such that

| log r(θ) +B(θ)| ≤ C

for all θ ∈ [0, 1) \ Q such that B(θ) < +∞;

(iii) if B(θ) = +∞ then there exists a non-linearizable f ∈ End(C, 0) with multiplier e2πiθ.

See [BC] for deep results regarding the Brjuno function.

If 0 is a Siegel point for f ∈ End(C, 0), the local dynamics of f is completely clear, and
simple enough. On the other hand, if 0 is a Cremer point of f , then the local dynamics of f is
very complicated and not yet completely understood. Pérez-Marco (in [P2, 4–7]) and Biswas
([Bis1, 2]) have studied the topology and the dynamics of the stable set in this case. Some of
their results are summarized in the following

Theorem 1.2.36. (Pérez-Marco, 1995 [P6, 7]) Assume that 0 is a Cremer point for an elliptic

holomorphic local dynamical system f ∈ End(C, 0), and let (U, f) be a representative of f .

Then:

(i) The stable set K(U,f) is compact, connected, full (i.e., C \K(U,f) is connected), it is not

reduced to {0}, and it is not locally connected at any point distinct from the origin.

(ii) Any point of K(U,f) \ {0} is recurrent (that is, a limit point of its orbit).

(iii) There is an orbit in K(U,f) which accumulates at the origin, but no non-trivial orbit

converges to the origin.

Theorem 1.2.37. (Biswas, 2007 [Bis2]) The rotation number and the conformal class of K(U,f)

are a complete set of holomorphic invariants for Cremer points. In other words, two elliptic

non-linearizable holomorphic local dynamical systems f and g are holomorphically locally con-

jugated if and only if they have the same rotation number and there is a biholomorphism of a

neighbourhood of K(U,f) with a neighbourhood of K(U,g).

Remark 1.2.38. So, if λ ∈ S
1 is not a root of unity and does not satisfy Brjuno’s condi-

tion (1.29), we can find f1, f2 ∈ End(C, 0) with multiplier λ such that f1 is holomorphically
linearizable while f2 is not. Then f1 and f2 are formally conjugated without being neither
holomorphically nor topologically locally conjugated.

Remark 1.2.39. Yoccoz [Y2] has proved that if λ ∈ S
1 is not a root of unity and does not

satisfy Brjuno’s condition (1.29) then there is an uncountable family of germs in End(C, O)
with multiplier λ which are not holomorphically conjugated to each other nor holomorphically
conjugated to any entire function.

See also [P1, 3] for other results on the dynamics about a Cremer point, and [PY] for
relationships with holomorphic foliations in C

2.
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1.3 Multi-dimensional case

Now we start the discussion of local dynamics in several complex variables. In this setting
the theory is much less complete than its one-variable counterpart.

Definition 1.3.1. Let f ∈ End(Cn
, O) be a holomorphic local dynamical system at O ∈ C

n,
with n ≥ 2. The homogeneous expansion of f is

f(z) = P1(z) + P2(z) + · · · ∈ CO{z1, . . . , zn}
n
,

where Pj is an n-uple of homogeneous polynomials of degree j. In particular, P1 is the differ-
ential dfO of f at the origin, and f is locally invertible if and only if P1 is invertible.

We have seen that in dimension one the multiplier (i.e., the derivative at the origin) plays
a main rôle. When n > 1, a similar rôle is played by the eigenvalues of the differential. We
shall use the following classification.

Definition 1.3.2. Let f ∈ End(Cn
, O) be a holomorphic local dynamical system at O ∈ C

n,
with n ≥ 2. Then:

– if all eigenvalues of dfO have modulus less than 1, we say that the fixed point O is
attracting;

– if all eigenvalues of dfO have modulus greater than 1, we say that the fixed point O is
repelling;

– if all eigenvalues of dfO have modulus different from 1, we say that the fixed point O is
hyperbolic (notice that we allow the eigenvalue zero);

– if O is attracting or repelling, and dfO is invertible, we say that f is in the Poincaré

domain;

– if O is hyperbolic, dfO is invertible, and f is not in the Poincaré domain (and thus not
all eigenvalues of dfO are inside or outside the unit disk) we say that f is in the Siegel

domain;

– if all eigenvalues of dfO are roots of unity, we say that the fixed point O is parabolic; in
particular, if dfO = Id we say that f is tangent to the identity;

– if all eigenvalues of dfO have modulus 1 but none is a root of unity, we say that the
fixed point O is elliptic;

– if dfO = O, we say that the fixed point O is superattracting.

Other cases are clearly possible, but for the aim of this chapter this list is enough.

Remark 1.3.1. A natural way for approaching the multi-dimensional case is to study situa-
tions where one can use more or less directly the one-dimensional theory. For example, it is
possible to study the so-called semi-direct product of germs, namely germs f ∈ End(Cn

, O) of
the form

f(z1, . . . , zn) = (f1(z1), f2(z1, . . . , zn), . . . , fn(z1, . . . , zn)),

or the so-called unfoldings, i.e., germs f ∈ End(Cn
, O) of the form

f(z1, . . . , zn) = (f1(z1, . . . , zn), z2, . . . , zn).

We refer to [J2] for the study of a particular class of semi-direct products, and to [Ri1–2] for
interesting results on unfoldings.
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In the rest of the chapter we shall give a survey of results in the multi-dimensional case to
better understand the contest of our contribution, that will be presented in the next chapters.

1.3.1 Parabolic case

A first natural question in the several complex variables parabolic case is whether a result like
the Leau-Fatou flower theorem holds, and, if so, in which form. To present what is known on this
subject in this section we shall restrict our attention to holomorphic local dynamical systems
tangent to the identity; consequences on dynamical systems with a more general parabolic fixed
point can be deduced taking a suitable iterate (but see also the end of this section for results
valid when the differential at the fixed point is not diagonalizable).

So we are interested in the local dynamics of a holomorphic local dynamical system
f ∈ End(Cn

, O) of the form

f(z) = z + Pν(z) + Pν+1(z) + · · · ∈ CO{z1, . . . , zn}
n
, (1.41)

where Pν is the first non-zero term in the homogeneous expansion of f .

Definition 1.3.3. If f ∈ End(Cn
, O) is of the form (1.41), the number ν ≥ 2 is the order of f .

The two main ingredients in the statement of the Leau-Fatou flower theorem were the at-
tracting directions and the petals. Let us first describe a several variables analogue of attracting
directions.

Definition 1.3.4. Let f ∈ End(Cn
, O) be tangent at the identity and of order ν. A character-

istic direction for f is a non-zero vector v ∈ C
n \ {O} such that Pν(v) = λv for some λ ∈ C. If

Pν(v) = O (that is, λ = 0) we shall say that v is a degenerate characteristic direction; otherwise,
(that is, if λ 6= 0) we shall say that v is non-degenerate. We shall say that f is dicritical if all
directions are characteristic; non-dicritical otherwise.

Remark 1.3.2. It is easy to check that f ∈ End(Cn
, O) of the form (1.41) is dicritical if and

only if Pν ≡ λ Id, where λ: Cn → C is a homogeneous polynomial of degree ν−1. In particular,
generic germs tangent to the identity are non-dicritical.

Remark 1.3.3. There is an equivalent definition of characteristic directions that shall be
useful later on. The n-uple of ν-homogeneous polynomials Pν induces a meromorphic self-map
of P

n−1(C), still denoted by Pν . Then, under the canonical projection C
n\{O} → P

n−1(C) non-
degenerate characteristic directions correspond exactly to fixed points of Pν , and degenerate
characteristic directions correspond exactly to indeterminacy points of Pν . In generic cases,
there is only a finite number of characteristic directions, and using Bezout’s theorem it is easy
to prove (see, e.g., [AT1]) that this number, counting according to a suitable multiplicity, is
given by (νn − 1)/(ν − 1).

Remark 1.3.4. The characteristic directions are complex directions; in particular, it is easy
to check that f and f

−1 have the same characteristic directions. Later on we shall see how
to associate to (most) characteristic directions ν − 1 petals, each one in some sense centered
about a real attracting direction corresponding to the same complex characteristic direction.

The notion of characteristic directions has a dynamical origin.

Definition 1.3.5. We shall say that an orbit {fk(z0)} converges to the origin tangentially

to a direction [v] ∈ P
n−1(C) if fk(z0) → O in C

n and [fk(z0)] → [v] in P
n−1(C), where

[·]: Cn \ {O} → P
n−1(C) denotes the canonical projection.

Then we have the following result (see [Ha2] for a proof)
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Proposition 1.3.5. Let f ∈ End(Cn
, O) be a holomorphic dynamical system tangent to

the identity. If there exists an orbit of f converging to the origin tangentially to a direc-

tion [v] ∈ P
n−1(C), then v is a characteristic direction of f .

Remark 1.3.6. There are examples of germs f ∈ End(C2
, O) tangent to the identity with

orbits converging to the origin without being tangent to any direction: for instance

f(z,w) =
(

z + αzw,w + βw

2 + o(w2)
)

with α, β ∈ C
∗, α 6= β and Re(α/β) = 1 (see [Riv1] and [AT3]).

The several variables analogue of a petal is given by the notion of parabolic curve.

Definition 1.3.6. A parabolic curve for f ∈ End(Cn
, O) tangent to the identity is an injective

holomorphic map ϕ:∆ → C
n \ {O} satisfying the following properties:

(a) ∆ is a simply connected domain in C with 0 ∈ ∂∆;

(b) ϕ is continuous at the origin, and ϕ(0) = O;

(c) ϕ(∆) is f -invariant, and (f |ϕ(∆))
k → O uniformly on compact subsets as k → +∞.

Furthermore, if [ϕ(ζ)] → [v] in P
n−1(C) as ζ → 0 in ∆, we shall say that the parabolic curve

ϕ is tangent to the direction [v] ∈ P
n−1(C).

Then the first main generalization of the Leau-Fatou flower theorem to several complex
variables is due to Écalle and Hakim (see [A5] for a sketch of proof and also Weickert [W]):

Theorem 1.3.7. (Écalle, 1985 [É4]; Hakim, 1998 [Ha2]) Let f ∈ End(Cn
, O) be a holomorphic

local dynamical system tangent to the identity of order ν ≥ 2. Then for any non-degenerate

characteristic direction [v] ∈ P
n−1(C) there exist (at least) ν−1 parabolic curves for f tangent

to [v].

Definition 1.3.7. A set of ν − 1 parabolic curves obtained in this way is a Fatou flower for f
tangent to [v].

Remark 1.3.8. When there is a one-dimensional f -invariant complex submanifold passing
through the origin tangent to a characteristic direction [v], the previous theorem is just a
consequence of the usual one-dimensional theory. But it turns out that in most cases such an
f -invariant complex submanifold does not exist: see [Ha2] for a concrete example, and [É4] for
a general discussion.

We can also have f -invariant complex submanifolds of dimension strictly greater than one
attracted by the origin.

Definition 1.3.8. Given a holomorphic local dynamical system f ∈ End(Cn
, O) tangent to the

identity of order ν ≥ 2, and a non-degenerate characteristic direction [v] ∈ P
n−1(C), the eigen-

values α1, . . . , αn−1 ∈ C of the linear operator 1
ν−1

(d(Pν)[v] − Id):T[v]P
n−1(C) → T[v]P

n−1(C)

are the directors of [v].

Then, using a more elaborate version of her proof of Theorem 1.3.7, Hakim has been able
to prove the following:

Theorem 1.3.9. (Hakim, 1997 [Ha3]) Let f ∈ End(Cn
, O) be a holomorphic local dynam-

ical system tangent to the identity of order ν ≥ 2. Let [v] ∈ P
n−1(C) be a non-degenerate

characteristic direction, with directors α1, . . . , αn−1 ∈ C. Furthermore, assume that, for a

suitable d ≥ 0, we have Re(α1), . . . ,Re(αd) > 0 and Re(αd+1), . . . ,Re(αn−1) ≤ 0. Then:

(i) There exists an f -invariant (d+1)-dimensional complex submanifold M of C
n, with the

origin in its boundary, such that the orbit of every point of M converges to the origin

tangentially to [v];
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(ii) f |M is holomorphically conjugated to the translation

τ(w0, w1, . . . , wd) = (w0 + 1, w1, . . . , wd)

defined on a suitable right half-space in C
d+1.

Remark 1.3.10. In particular, if all the directors of [v] have positive real part, there is an open
domain attracted by the origin. However, the condition given by Theorem 1.3.9 is not necessary
for the existence of such an open domain; see Rivi [Riv1] for an easy example, Ushiki [Us] for
a more elaborate example with an open domain attracted by the origin, and Vivas [V] for a
recent example with a domain attracted by the origin centered in a degenerate characteristic
direction.

In his monumental work [É4] Écalle has given a complete set of formal invariants for
holomorphic local dynamical systems tangent to the identity with at least one non-degenerate
characteristic direction. For instance, he has proved the following

Theorem 1.3.11. (Écalle, 1985 [É4]) Let f ∈ End(Cn
, O) be a holomorphic local dynamical

system tangent to the identity of order ν ≥ 2. Assume that

(a) f has exactly (νn − 1)/(ν − 1) distinct non-degenerate characteristic directions and no

degenerate characteristic directions;

(b) the directors of any non-degenerate characteristic direction are irrational and mutually

independent over Z.

Choose a non-degenerate characteristic direction [v] ∈ P
n−1(C), and let α1, . . . , αn−1 ∈ C

be its directors. Then there exist a unique ρ ∈ C and unique (up to dilations) formal se-

ries R1, . . . , Rn ∈ C[[z1, . . . , zn]], where each Rj contains only monomial of total degree at

least ν + 1 and of partial degree in zj at most ν − 2, such that f is formally conjugated to the

time-1 map of the formal vector field

X =
1

(ν − 1)(1 + ρz

ν−1
n )







[−zν
n +Rn(z)]

∂

∂zn

+
n−1
∑

j=1

[−αjz
ν−1
n zj +Rj(z)]

∂

∂zj







.

Other approaches to the formal classification, at least in dimension 2, are described in [BM]
and in [AT2].

Using his theory of resurgence, and always assuming the existence of at least one non-
degenerate characteristic direction, Écalle has also provided a set of holomorphic invariants
for holomorphic local dynamical systems tangent to the identity, in terms of differential oper-
ators with formal power series as coefficients. Moreover, if the directors of all non-degenerate
characteristic directions are irrational and satisfy a suitable diophantine condition, then these
invariants become a complete set of invariants. See [É5] for a description of his results, and

[É4] for the details.

It is natural to ask what happens when there are no non-degenerate characteristic direc-
tions, which is, for instance, the case for

{

f1(z) = z1 + bz1z2 + z

2
2 ,

f2(z) = z2 − b

2
z1z2 − bz

2
2 + z

3
1 ,

for any b ∈ C
∗, (and it is easy to build similar examples of any order). At present, the theory in

this case is satisfactorily developed for n = 2 only. In particular, in [A2] is proved the following
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Theorem 1.3.12. (Abate, 2001 [A2]) Every holomorphic local dynamical system tangent to

the identity f ∈ End(C2
, O), with an isolated fixed point, admits at least one Fatou flower

tangent to some direction.

Remark 1.3.13. Bracci and Suwa have proved a version of Theorem 1.3.12 for f ∈ End(M,p)
where M is a singular variety with not too bad a singularity at p; see [BrS] for details.

We refer to [A5] for the main ideas in the proof of Theorem 1.3.12, and to the original
article [A2] for the whole proof.

Actually, Abate have proved a slightly more precise result, for which we need the following
definitions.

Let f ∈ End(M,E), where M is a complex n-dimensional manifold and E ⊂ M is a
compact smooth complex hypersurface pointwise fixed by f , and take p ∈ E. Then for every
h ∈ OM,p (where OM is the structure sheaf of M) the germ h ◦ f is well-defined, and we have
h ◦ f − h ∈ IE,p, where IE is the ideal sheaf of E.

Definition 1.3.9. The f -order of vanishing at p of h ∈ OM,p is

νf (h; p) = max{µ ∈ N | h ◦ f − h ∈ Iµ
E,p} ,

and the order of contact νf of f with E is

νf = min{νf (h; p) | h ∈ OM,p} .

In [ABT1] Abate, Bracci and Tovena proved that νf does not depend on p, and that

νf = min
j=1,...,n

νf (zj ; p) ,

where (U, z) is any local chart centered at p ∈ E and z = (z1
, . . . , z

n). In particular, if the local
chart (U, z) is such that E ∩ U = {z1 = 0} (and we shall say that the local chart is adapted to
E) then setting f j = z

j ◦ f we can write

f

j(z) = z

j + (z1)νf
g

j(z) , (1.42)

where at least one among g1
, . . . , g

n does not vanish identically on U ∩ E.

Definition 1.3.10. A map f ∈ End(M,E) is tangential to E if

min
{

νf (h; p) | h ∈ IE,p

}

> νf

for some (and hence any) point p ∈ E.

Choosing a local chart (U, z) adapted to E so that we can express the coordinates of f in
the form (1.42), it turns out that f is tangential if and only if g1|U∩E ≡ 0.

The gj ’s in (1.42) depend in general on the chosen chart; however, in [ABT1] Abate, Bracci
and Tovena proved that setting

Xf =
n
∑

j=1

g

j ∂

∂z

j
⊗ (dz1)⊗νf (1.43)

then Xf |U∩E defines a global section Xf of the bundle TM |E ⊗ (N∗
E)⊗νf , where N∗

E is the
conormal bundle of E into M . The bundle TM |E ⊗ (N∗

E)⊗νf is canonically isomorphic to the
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bundle Hom(N
⊗νf

E , TM |E). Therefore the section Xf induces a morphism still denoted by

Xf :N
⊗νf

E → TM |E .

Definition 1.3.11. The morphism Xf :N
⊗νf

E → TM |E just defined is the canonical morphism

associated to f ∈ End(M,E).

Remark 1.3.14. It is easy to check that f is tangential if and only if the image of Xf is
contained in TE.

Definition 1.3.12. Assume that f ∈ End(M,E) is tangential. We shall say that p ∈ E is a
singular point for f if Xf vanishes at p.

Definition 1.3.13. Let M be the blow-up of C
n at the origin, and f the lift of a non-dicritical

holomorphic local dynamical system fo ∈ End(Cn
, O) tangent to the identity. We shall say

that [v] ∈ P
n−1(C) = E is a singular direction of fo if it is a singular point of f .

Let f ∈ End(M,E), where E is a smooth complex hypersurface in a complex manifold M ,
and assume that f is tangential; let Eo denote the complement in E of the singular points of
f . For simplicity of exposition we shall assume dimM = 2 and dimE = 1; but this part of the
argument works for any n ≥ 2 (even when E has singularities, and it can also be adapted to
non-tangential germs).

Since dimE = 1 = rkNE , the restriction of the canonical morphism Xf to N

⊗νf

Eo is an

isomorphism between N
⊗νf

Eo and TEo. Then in [ABT1] Abate, Bracci and Tovena showed that
it is possible to define a holomorphic connection ∇ on NEo by setting

∇u(s) = π([Xf (ũ), s̃]|S) , (1.44)

where: s is a local section of NEo ; u ∈ TE

o; π:TM |Eo → NEo is the canonical projection; s̃ is
any local section of TM |Eo such that π(s̃|So) = s; ũ is any local section of TM⊗νf such that
Xf

(

π(ũ|Eo)
)

= u; and Xf is locally given by (1.43). In a chart (U, z) adapted to E, a local

generator of NEo is ∂1 = π(∂/∂z1), a local generator of N
⊗νf

Eo is ∂
⊗νf

1 = ∂1 ⊗ · · · ⊗ ∂1, and we
have

Xf (∂
⊗νf

1 ) = g

2|U∩E

∂

∂z

2
;

therefore

∇∂/∂z2∂1 = −
1

g

2

∂g

1

∂z

1

∣

∣

∣

∣

U∩E

∂1 .

In particular, ∇ is a meromorphic connection on NE , with poles in the singular points of f .

Definition 1.3.14. The index ιp(f,E) of f along E at a point p ∈ E is by definition the
opposite of the residue at p of the connection ∇:

ιp(f,E) = −Resp(∇) .

In particular, ιp(f,E) = 0 if p is not a singular point of f .

Remark 1.3.15. If [v] is a non-degenerate characteristic direction of a non-dicritical germ
fo ∈ End(C2

, O) with non-zero director α ∈ C
∗, then it is not difficult to check that

ι[v](f,E) =
1

α

,

where f is the lift of fo to the blow-up of the origin.
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The precise statement is then the following:

Theorem 1.3.16. (Abate, 2001 [A2]) Let E be a (not necessarily compact) Riemann surface

inside a 2-dimensional complex manifold M , and take f ∈ End(M,E) tangential to E. Let

p ∈ E be a singular point of f such that ιp(f,E) /∈ Q
+. Then there exists a Fatou flower for f

at p. In particular, if fo ∈ End(C2
, O) is a non-dicritical holomorphic local dynamical system

tangent to the identity with an isolated fixed point at the origin, and [v] ∈ P
1(C) is a singular

direction such that ι[v]

(

f,P
1(C)

)

/∈ Q
+, where f is the lift of fo to the blow-up of the origin,

then fo has a Fatou flower tangent to [v].

Remark 1.3.17. This latter statement has been generalized in two ways. Degli Innocenti
[DI1] has proved that we can allow E to be singular at p (but irreducible; in the reducible case
one has to impose conditions on the indices of f along all irreducible components of E passing
through p). Molino [Mo], on the other hand, has proved that the statement still holds assuming
only ιp(f,E) 6= 0, at least for f of order 2 (and E smooth at p); it is natural to conjecture that
this should be true for f of any order.

The problem of the validity of something like Theorem 1.3.12 remains open in dimen-
sion n ≥ 3; see [AT1] and [Ro2] for some partial results.

It is also widely open, even in dimension 2, the problem of describing the stable set of
a holomorphic local dynamical system tangent to the identity, as well as the more general
problem of the topological classification of such dynamical systems. Some results in the case
of a dicritical singularity are presented in [BM]; for non-dicritical singularities a promising
approach in dimension 2 is described in [AT3].

Indeed, in [AT3], Abate and Tovena get a complete description of the local dynamics in a
full neighbourhood of the origin for a large class of holomorphic local dynamical systems tangent
to the identity. Since results like Theorem 1.2.9 seem to suggest that generic holomorphic local
dynamical systems tangent to the identity might be topologically conjugated to the time-1 map
of a homogeneous vector field, their approach might eventually lead to a complete topological
description of the dynamics for generic holomorphic local dynamical systems tangent to the
identity in dimension 2.

We end this section with a couple of words on holomorphic local dynamical systems with
a parabolic fixed point where the differential is not diagonalizable. Particular examples are
studied in detail in [CD], [A4] and [GS]. In [A1] it is described a canonical procedure for lifting
an f ∈ End(Cn

, O) whose differential at the origin is not diagonalizable to a map defined in a
suitable iterated blow-up of the origin (obtained blowing-up not only points but more general
submanifolds) with a canonical fixed point where the differential is diagonalizable. Using this
procedure it is for instance possible to prove the following

Corollary 1.3.18. (Abate, 2001 [A2]) Let f ∈ End(C2
, O) be a holomorphic local dynamical

system with dfO = J2, the canonical Jordan matrix associated to the eigenvalue 1, and assume

that the origin is an isolated fixed point. Then f admits at least one parabolic curve tangent

to [1 : 0] at the origin.

1.3.2 Hyperbolic case

Let us now assume that the origin is a hyperbolic fixed point for an f ∈ End(Cn
, O) not

necessarily invertible. We then have a canonical splitting

C
n = E

s ⊕ E

u
,

where Es [resp., Eu] is the direct sum of the generalized eigenspaces associated to the eigenval-
ues of dfO with modulus less [resp., greater] than 1. Then the first main result in this subject
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is the famous stable manifold theorem (originally due to Perron [Pe] and Hadamard [H]; see
[FHY, HK, HPS, Pes, Sh, AM] for proofs in the C∞ category, Wu [Wu] for a proof in the
holomorphic category, and [A3] for a proof in the non-invertible case):

Theorem 1.3.19. Let f ∈ End(Cn
, O) be a holomorphic local dynamical system with a

hyperbolic fixed point at the origin, and let (U, f) be a representative of f . Then:

(i) the stable set K(U,f) is an embedded complex submanifold of (a neighbourhood of the

origin in) C
n, tangent to Es at the origin;

(ii) there is an embedded complex submanifold W(U,f) of (a neighbourhood of the origin

in) C
n, called the unstable set of f , tangent to E

u at the origin, such that f |W(U,f)

is invertible, f−1(W(U,f)) ⊆ W(U,f), and z ∈ W(U,f) if and only if there is a sequence

{z−k}k∈N in the domain of f such that z0 = z and f(z−k) = z−k+1 for all k ≥ 1.
Furthermore, if f is invertible then W(U,f) is the stable set of f−1.

The proof is too involved to be summarized here; it suffices to say that both K(U,f) and
W(U,f) can be recovered, for instance, as fixed points of a suitable contracting operator in an
infinite dimensional space (see the references quoted above for details).

Remark 1.3.20. If the origin is an attracting fixed point, then E

s = C
n, and K(U,f) is

an open neighbourhood of the origin, its basin of attraction. However, as we shall discuss
below, this does not imply that f is holomorphically linearizable, even when it is invertible.
Conversely, if the origin is a repelling fixed point, then E

u = C
n, and K(U,f) = {O}. Again,

not all holomorphic local dynamical systems with a repelling fixed point are holomorphically
linearizable.

If a point in the domain U of a holomorphic local dynamical system with a hyperbolic
fixed point does not belong either to the stable set or to the unstable set, it escapes both in
forward time (that is, its orbit escapes) and in backward time (that is, it is not the end point
of an infinite orbit contained in U). In some sense, we can think of the stable and unstable
sets (or, as they are usually called in this setting, stable and unstable manifolds) as skewed
coordinate planes at the origin, and the orbits outside these coordinate planes follow some sort
of hyperbolic path, entering and leaving any neighbourhood of the origin in finite time.

Actually, this idea of straightening stable and unstable manifolds can be brought to fruition
(at least in the invertible case), and it yields one of the possible proofs (see [HK, Sh, A3] and
references therein) of the Grobman-Hartman theorem:

Theorem 1.3.21. (Grobman, 1959 [Gr1–2]; Hartman, 1960 [Har]) Let f ∈ End(Cn
, O) be a

locally invertible holomorphic local dynamical system with a hyperbolic fixed point. Then f is

topologically locally conjugated to its differential dfO.

Thus, at least from a topological point of view, the local dynamics about an invertible
hyperbolic fixed point is completely clear. This is definitely not the case if the local dynamical
system is not invertible in a neighbourhood of the fixed point. For instance, already Hubbard
and Papadopol [HP] noticed that a Böttcher-type theorem for superattracting points in several
complex variables is just not true: there are holomorphic local dynamical systems with a
superattracting fixed point which are not even topologically locally conjugated to the first non-
vanishing term of their homogeneous expansion. Recently, Favre and Jonsson (see, e.g., [Fa]
and [FJ1, 2]) have begun a very detailed study of superattracting fixed points in C

2, study
that might lead to their topological classification. We shall limit ourselves to quote one result.

Definition 1.3.15. Given f ∈ End(C2
, O), we shall denote by Crit(f) the set of critical points
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of f . Put

Crit∞(f) =
⋃

k≥0

f

−k
(

Crit(f)
)

;

we shall say that f is rigid if (as germ in the origin) Crit∞(f) is f -invariantm and it is either
empty, a smooth curve, or the union of two smooth curves crossing transversally at the origin.
Finally, we shall say that f is dominant if det(df) 6≡ 0.

Rigid germs have been classified by Favre [Fa], which is the reason why next theorem can
be useful for classifying superattracting dynamical systems:

Theorem 1.3.22. (Favre-Jonsson, 2007 [FJ2]) Let f ∈ End(C2
, O) be superattracting and

dominant. Then there exist:

(a) a 2-dimensional complex manifoldM (obtained by blowing-up a finite number of points);

(b) a surjective holomorphic map π:M → C
2 such that the restriction

π|M\E :M \ E → C
2 \ {O}

is a biholomorphism, where E = π

−1(O);

(c) a point p ∈ E; and

(d) a rigid holomorphic germ ˜

f ∈ End(M,p)

so that π ◦ ˜f = f ◦ π.

1.3.3 Resonances and Poincaré-Dulac normal forms

Coming back to local invertible dynamical systems, the holomorphic and even the formal
classification are not as simple as the topological one. As we saw in Section 1.2, one of the main
questions in the study of local holomorphic dynamics is when f is holomorphically linearizable.
The answer to this question depends on the set of eigenvalues of dfO, usually called the spectrum

of dfO, and the main problem is caused by resonances. In the rest, we shall need the following
notation.

Definition 1.3.16. Let p ≥ 2. We denote by Hp the complex vector space of homoge-
neous polynomial endomorphisms of C

n of degree p, and we consider on it the standard ba-
sis Bp = {zQ

ej | |Q| = p, 1 ≤ j ≤ n}. We shall denote by o(k) every holomorphic map of the
form

∑

p≥k+1 hp with hp ∈ Hp.

Let us first see what happens when we conjugate f by a germ of biholomorphism of the

form ψp := I + ̂

ψp with ̂

ψp ∈ Hp and p ≥ 2.

Lemma 1.3.23. Let ψ := I + ̂

ψ be a germ of biholomorphism of C
n with ̂

ψ ∈ Hq, and let

f = Λ + Sq−1 + Hq + o(q) be a germ of biholomorphism with Sq−1 ∈ H1 ⊕ · · · ⊕ Hq−1 and

Hq ∈ Hq. Then

ψ

−1 ◦ f ◦ ψ = Λ + Sq−1 + [Hq + Λ ◦ ̂ψ − ̂

ψ ◦ Λ] + o(q).

Proof. It is useful to note that, for any h ∈ Hs with s ≥ 2 and for any holomorphic map l with
l(O) = O, we have h(l + o(r)) = h ◦ l + o(r + s− 1). Hence, we have

f ◦ ψ = Λ + Λ ◦ ̂ψ + Sq−1 ◦ (I + ̂

ψ) +Hq ◦ (I + ̂

ψ) + o(q)

= Λ + Λ ◦ ̂ψ + Sq−1 +Hq + o(q).
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Moreover, it is easy to verify that ψ−1 = I − ̂

ψ + o(q), so we have

ψ

−1 ◦ f ◦ ψ = Λ + Λ ◦ ̂ψ + Sq−1 +Hq + o(q) − ̂

ψ ◦ (Λ + o(1)) + o(q)

= Λ + Λ ◦ ̂ψ + Sq−1 +Hq − ̂

ψ ◦ Λ + o(q),

and this concludes the proof.

Thus the germ ψq := I + ̂

ψq conjugates f = Λ +Hq + o(q) with Λ + o(q) if and only if ̂ψq

is a solution of the equation Hq = ̂

ψ ◦Λ−Λ ◦ ̂ψ. We have then to study the invertibility of the
linear operators

M

r
Λ:Hr → Hr

defined by
M

r
Λ(h) = h ◦ Λ − Λ ◦ h.

When Λ = Diag(λ1, . . . , λn) it is easy to answer this question. In fact, for each element zQ
ej

of the basis Br we have
M

r
Λ(zQ

ej) = (λQ − λj)z
Q
ej , (1.45)

hence ker(Mr
Λ) = {zQ

ej | λQ − λj = 0, |Q| ≥ 2, 1 ≤ j ≤ n}.

We are then led to give the following definition.

Definition 1.3.17. Let λ ∈ (C∗)n and let j ∈ {1, . . . , n}. We say that a multi-index Q ∈ N
n,

with |Q| ≥ 2, gives a multiplicative resonance relation for λ relative to the j-th coordinate if

λ

Q := λ

q1

1 · · ·λqn
n = λj

and we put
Resj(λ) = {Q ∈ N

n | |Q| ≥ 2, λQ = λj}.

The elements of Resj(λ) are simply called resonant multi-indices.

When n = 1 there is a resonance if and only if the multiplier is a root of unity, or zero;
but if n > 1 resonances may occur in the hyperbolic case and in other cases too.

Resonances are the obstruction to formal linearization. Indeed, as we shall see in a minute,
a computation completely analogous to the one yielding Proposition 1.2.20 shows that the coef-
ficients of a formal linearization have in the denominators quantities of the form λ

k1

1 · · ·λkn
n −λj .

In particular, from the formal point of view, we have the following classical result:

Theorem 1.3.24. Let f be a germ of holomorphic diffeomorphism of C
n fixing the origin O

with no resonances. Then f is formally conjugated to its differential dfO.

We shall see in a minute that Theorem 1.3.24 is a consequence of next Theorem 1.3.25
(see also [Ar] pp. 192–193 for another proof).

In presence of resonances, even the formal classification is not that easy. Let us assume,
for simplicity, that dfO is in Jordan form, that is

P1(z) = (λ1z, ǫ2z1 + λ2z2, . . . , ǫnzn−1 + λnzn) ,

with ǫ1, . . . , ǫn−1 ∈ {0, 1}.

Definition 1.3.18. We shall say that a monomial zQ := z

q1

1 · · · zqn
n in the j-th coordinate of f

is resonant with respect to λ1, . . . λn ∈ C
∗ (or simply (λ1, . . . λn)-resonant) if |Q| =

∑n
j=1 qj ≥ 2

and λQ := λ

q1

1 · · ·λqn
n = λj .
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Then Theorem 1.3.24 can be generalized to:

Theorem 1.3.25. (Poincaré, 1893 [Po]; Dulac, 1904 [D]) Let f ∈ End(Cn
, O) be a lo-

cally invertible holomorphic local dynamical system. Then it is formally conjugated to a

g ∈ CO[[z1, . . . , zn]]n such that dgO is in Jordan normal form, and g has only resonant monomi-

als. Moreover, the resonant part of the formal change of coordinates ψ can be chosen arbitrarily,

but once this is done, ψ and g are uniquely determined.

Proof. There are many ways to prove this result (see [Ar, p. 194] or [IY, p. 53] for other proofs).
We would like to prove that formal solutions ψ and g of

f ◦ ψ = ψ ◦ g (1.46)

exist with the required properties.

Write f(z) = Λz + ̂

f(z), ψ(w) = w+ ̂

ψ(w) and g(z) = Λz + ĝ(z). Then equation (1.46) is
equivalent to

Λ ̂ψ + ̂

f ◦ ψ = ĝ + ̂

ψ ◦ g. (1.47)

Up to a linear change of coordinates, we can suppose that the matrix Λ is in Jordan normal
form with eigenvalues λ1, . . . , λn. Using the standard multi-index notation, i.e., writing

̂

f =
∑

|R|≥2

fRz
R
, fR ∈ C

n
,

where R = (r1, . . . , rn) ∈ N
n,

̂

ψ =
∑

|Q|≥2

ψQw
Q
, ψQ ∈ C

n
,

where Q = (q1, . . . , qn) ∈ N
n, and

ĝ =
∑

|P |≥2

gP z
P
, gP ∈ C

n
,

where P = (p1, . . . , pn) ∈ N
n, the j-th component of equation (1.47) becomes

λj

∑

|Q|≥2

ψQ,jw
Q + εj

∑

|Q|≥2

ψQ,j−1w
Q +

∑

|R|≥2

fR,j





n
∏

k=1





wk +
∑

|P |≥2

ψP,kw
P





rk




=
∑

|Q|≥2

gQ,jw
Q +

∑

|R|≥2

ψR,j





n
∏

k=1





λkwk + εkwk−1 +
∑

|P |≥2

gP,kw
P





rk




,

(1.48)

where εk ∈ {0, ε} and εk can be non-zero only if λk = λk−1. We want to compute the coefficient
of wQ. In the left-hand side we have the components λjψQ,j and εjψQ,j−1 and a term depend-
ing polynomially on f and ψ, in which contribute only the coefficients ψP,k with |P | < |Q|,

because ̂f is of second order. In fact, in the product
(

wk +
∑

|P |≥2 ψP,kw
P
)rk

, ψP,k belongs to

powers of order more than or equal to |P |; the series ̂f has indices |R| ≥ 2, then ψP,kw
P will be

multiplied at least by another ws. In the right-hand side we have gQ,j and, analogously to the
left-hand side, there is a term depending polynomially on ψ and g, in which contribute only
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the coefficients ψR,j with |R| ≤ |Q| and the coefficients gP,k with |P | < |Q|. Moreover R ≤ Q

in the lexicographic order. Indeed, if R > Q then the εk’s will give a contribute in the prod-

uct
(

λkwk + εkwk−1 +
∑

|P |≥2 gP,kw
P
)rk

, so we obtain a multi-index coming after Q; more

precisely, for R = Q we have only λQ
ψQ,j .

Then we have:

λjψQ,j + εjψQ,j−1 + Pol.(fR,j , ψP,k: |P | < |Q|)

= gQ,j + λ

Q
ψQ,j + Pol.(ψR,j , gP,k: |P | < |Q|, R < Q),

(1.49)

hence

(λQ − λj)ψQ,j + gQ,j

= εjψQ,j−1 + Pol.(fR,j , ψP,k: |P | < |Q|) − Pol.(ψR,j , gP,k: |P | < |Q|, R < Q)

= CQ,j ,

so we can recursively solve the conjugacy equation imposing:

gQ,j = 0, ψQ,j = (λQ − λj)
−1
CQ,j , if λQ − λj 6= 0,

gQ,j = CQ,j , ψQ,j whatever, if λQ − λj = 0,

and we are done.

Definition 1.3.19. A formal power series g ∈ CO[[z1, . . . , zn]]n without constant term, and with
linear part Λ in Jordan normal form with eigenvalues λ1, . . . , λn ∈ C

∗, is called in Poincaré-

Dulac normal form if it contains only resonant monomials with respect to λ1, . . . , λn.

Definition 1.3.20. Let f be a germ of biholomorphism of C
n fixing the origin. A series g in

Poincaré-Dulac normal form that can be formally conjugated to f is called a Poincaré-Dulac

(formal) normal form of f .

The problem with Poincaré-Dulac normal forms is that they are not unique. In particular,
one may wonder whether it could be possible to have such a normal form including finitely

many resonant monomials only (as happened, for instance, in Proposition 1.2.11). We shall
see in the next subsection that this is indeed the case when f belongs to the Poincaré domain,
that is when dfO is invertible and O is either attracting or repelling.

Definition 1.3.21. We shall say that f , a germ of biholomorphism of C
n fixing the origin,

is holomorphically normalizable if there exists a local change of coordinates ϕ ∈ End(Cn
, O),

tangent to the identity, conjugating f to one of its Poincaré-Dulac normal forms.

Even if Poincaré-Dulac normal forms associated to a same germ f are not unique, we can
say something on the shape of the formal conjugations between them. We have in fact the
following result.

Proposition 1.3.26. Let f and g be two germs of biholomorphism of C
n fixing the origin,

with the same linear term Λ and in Poincaré-Dulac normal form. If there exists ϕ a formal

transformation of C
n, with no constant term and tangent to the identity, conjugating f and g,

then ϕ contains only monomials that are resonant with respect to the eigenvalues of Λ.

Proof. Since f and g are in Poincaré-Dulac normal form, Λ is in Jordan normal form. Let
λ1, . . . , λn be the eigenvalues of Λ. We shall prove that a formal solution ϕ = I + ϕ̂ of

f ◦ ϕ = ϕ ◦ g (1.50)
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contains only monomials that are resonant with respect to λ1, . . . , λn. Using the standard
multi-index notation, for each j ∈ {1, . . . , n} we can write

fj(z) = λjzj + εjzj−1 + zjf
res
j (z) = λjzj + εjzj−1 + zj

∑

Q∈Nj

λQ=1

fQ,jz
Q
,

gj(z) = λjzj + εjzj−1 + zjg
res
j (z) = λjzj + εjzj−1 + zj

∑

Q∈Nj

λQ=1

gQ,jz
Q
,

and

ϕj(z) = zj

(

1 + ϕ

res
j (z) + ϕ

6=res
j (z)

)

= zj + zj

∑

Q∈Nj

λQ=1

ϕQ,jz
Q + zj

∑

Q∈Nj

λQ 6=1

ϕQ,jz
Q
,

where
Nj := {Q ∈ Z

n | |Q| ≥ 1, qj ≥ −1, qh ≥ 0 for all h 6= j},

and εj ∈ {0, 1} can be non-zero only if λj = λj−1. With these notations, the j-th coordinate
of the left-hand side of (1.50) becomes

(f ◦ ϕ)j(z) = λjϕj(z) + εjϕj−1(z) + ϕj(z)
∑

Q∈Nj

λQ=1

fQ,j

n
∏

k=1

ϕk(z)qk

= λjzj

(

1 + ϕ

res
j (z) + ϕ

6=res
j (z)

)

+ εjzj−1

(

1 + ϕ

res
j−1(z) + ϕ

6=res
j−1 (z)

)

+ zj

(

1 + ϕ

res
j (z) + ϕ

6=res
j (z)

)

∑

Q∈Nj

λQ=λj

fQ,jz
Q

n
∏

k=1

(

1 + ϕ

res
k (z) + ϕ

6=res
k (z)

)qk

,

(1.51)

while the right-hand side of the j-th coordinate of (1.50) becomes

(ϕ ◦ g)j(z) = gj(z) + gj(z)
∑

Q∈Nj

λQ=1

ϕQ,j

n
∏

k=1

gk(z)qk + gj(z)
∑

Q∈Nj

λQ 6=1

ϕQ,j

n
∏

k=1

gk(z)qk

= λjzj + εjzj−1 + zjg
res
j (z)

+
(

λjzj + εjzj−1 + zjg
res
j (z)

)

∑

Q∈Nj

λQ=1

ϕQ,jz
Q

n
∏

k=1

(

λk + εk

zk−1

zk

+ g

res
k (z)

)qk

+
(

λjzj + εjzj−1 + zjg
res
j (z)

)

∑

Q∈Nj

λQ 6=1

ϕQ,jz
Q

n
∏

k=1

(

λk + εk

zk−1

zk

+ g

res
k (z)

)qk

.

(1.52)

Furthermore, notice that if P and Q are two multi-indices such that λP = λ

Q = 1, then we
have λαP+βQ = 1 for every α, β ∈ Z.

We want to prove that ϕQ,j = 0 for each multi-index Q ∈ Nj so that λQ 6= 1. Let

us assume by contradiction that this is not true, and let ˜Q be the first (with respect to the
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lexicographic order) multi-index in N :=
⋃n

j=1Nj so that λQ̃ 6= 1 and ϕ

Q̃,j
6= 0. Let j be the

minimal in {1, . . . , n} such that ˜Q ∈ Nj , and let us compute the coefficient of the monomial

z

Q̃+ej in (1.51) and (1.52). In (1.51) we only have λjϕQ̃,j
because, since f−Λ is of second order

and resonant, other contributions could come only from coefficients ψP,k with |P | < | ˜Q| and

λ

P 6= 1, but there are no such coefficients thanks to the minimality of ˜Q and j. In (1.52) we can
argue analogously, but we have also to take care of the monomials divisible by εh

k(zk−1/zk)h
z

P ,
with λ

P = 1; in this last case, if εk 6= 0, we obtain a multi-index P − hek + hek−1, and again

λ

P−hek+hek−1 = 1 because λk = λk+1. Then in (1.52) we only have λQ̃+ej
ϕ

Q̃,j
. Hence, we

have

(λQ̃+ej − λj)ϕQ̃,j
= 0

yielding

ϕ

Q̃,j
= 0

because λQ̃ 6= 1 and λj 6= 0, contradicting the hypothesis.

Remark 1.3.27. It is clear from the proof that Proposition 1.3.26 holds also in the formal
category, i.e., for f, g ∈ CO[[z1, . . . , zn]] formal power series in Poincaré-Dulac normal form.

It should be remarked that, in the hyperbolic case, the problem of formal linearization is
equivalent to the problem of smooth linearization. This has been proved by Sternberg [St1–2]
and Chaperon [Ch]:

Theorem 1.3.28. (Sternberg, 1957 [St1–2]; Chaperon, 1986 [Ch]) Let f , g ∈ End(Cn
, O) be

two holomorphic local dynamical systems, and assume that f is locally invertible and with a

hyperbolic fixed point at the origin. Then f and g are formally conjugated if and only if they

are smoothly locally conjugated. In particular, f is smoothly linearizable if and only if it is

formally linearizable. Thus if there are no resonances then f is smoothly linearizable.

1.3.4 Attracting/Repelling case

If a germ f ∈ End(Cn
, O) is in the Poincaré domain, that is the origin is an attracting or

a repelling fixed point, then the holomorphic classification is clear. Since, as in the one-
dimensional case, if the origin is a repelling fixed point for f then it is an attracting fixed point
for f−1, it suffices to study the attracting case.

The attracting [resp. repelling] case was first studied by Poincaré [Po]; Fatou [F4] and
Bieberbach [Bi] used this case to construct the first examples of proper open subsets of C

n (with
n ≥ 2) biholomorphic to the whole of C

n, a phenomenon that cannot occur in one variable. A
very clear exposition of this case was given, using a functional approach, by Rosay and Rudin
in the appendix of [RR]. Recently, Berteloot in [B] provided a very beautiful exposition of this
functional approach to the problem, that we shall present in this subsection.

In the rest of this subsection we shall use the following notation. Let Br be the euclidian
ball of C

n centered at the origin and with radius r. If f :Br → C
n is a holomorphic map

fixing the origin and ‖ · ‖ is a fixed norm on C
n, we put ‖f‖ρ = supz∈Bρ

‖f(z)‖ for any ρ ≤ r.
Recall that Hp is the complex vector space of homogeneous polynomial endomorphisms of C

n

of degree p, we consider on it the standard basis Bp = {zQ
ej , |Q| = p, 1 ≤ j ≤ n}, and we

denote by o(k) every holomorphic map of the form
∑

p≥k+1 hp with hp ∈ Hp.

We shall need the following lemma.
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Lemma 1.3.29. Let k ≥ 1 and let h =
∑

p≥k Hp be holomorphic on Br. Then:

(i) for any p ≥ k and for any z ∈ Br we have

‖Hp(z)‖ ≤

(

‖z‖

r

)p

‖h‖r ;

(ii) for any ρ < r and for any z ∈ Bρ we have

‖h(z)‖ ≤
‖h(z)‖r

r

k

(

1 −
ρ

r

)−1

‖z‖k
.

Proof. For all 0 < ‖z‖ ≤ ρ < r and θ ∈ [0, 2π] we have

e

−ipθ
h

(

ρ

z

‖z‖
e

iθ

)

=
∑

q≥k

(

ρ

‖z‖

)q

e

i(q−p)θ
Hq(z). (1.53)

Integrating (1.53) over [0, 2π], we get (i). Furthermore (ii) follows immediately from (i).

Theorem 1.3.30. (Poincaré, 1893 [Po]) Let g be a germ of biholomorphism of C
n fixing the

origin, with linear part Λ such that a‖z‖ ≤ ‖Λz‖ ≤ A‖z‖, where 0 < a ≤ A < 1, and let

f :Br → C
n be a holomorphic map such that

f = g +
∑

m≥k

Hm

where Hm ∈ Hm. Then, if k > log(a)/ log(A), the sequence {g−p ◦ fp}p converges to a germ

of biholomorphism ϕ such that ϕ(O) = O, dϕO = Id and ϕ−1 ◦ f ◦ ϕ = g.

Proof. Up to shrinking r, we may assume that f(Bρ) ⊂ Bρ and g(Bρ) ⊂ Bρ for any ρ ≤ r. Let
0 < a

′
< a ≤ A < A

′
< 1 and 0 < r0 < r be such that (A′)k

/a

′
< 1 and

∀z,w ∈ Br0
‖g−1(z) − g

−1(w)‖ ≤
1

a

′
‖z − w‖, (1.54)

∀z ∈ Br0
‖g(z)‖ ≤ A

′‖z‖. (1.55)

Fix ε ≥ 0 such that γ := (A′ + ε)k
/a

′
< 1. Thanks to Lemma 1.3.29, there exists a constant

C0 > 0 such that ‖f(z) − g(z)‖ ≤ C0‖z‖
k on Br0

. Hence, by (1.54) and (1.55), it follows that
‖g−1 ◦ f(z) − z‖ ≤ C1‖z‖

k and ‖f(z)‖ ≤ (A′ + C0‖z‖
k−1)‖z‖ on Br0

. Taking r1 < r0 small
enough, we have

∀z ∈ Br1
‖g−1 ◦ f(z) − z‖ ≤ C1‖z‖

k
, (1.56)

∀z ∈ Br1
‖f(z)‖ ≤ (A′ + ε)‖z‖. (1.57)

Up to taking a smaller r1, we may also assume that r1
∑

p≥0 γ
p
< r0 and C1r

k−1
1 ≤ 1.

Now we shall prove inductively over p that for any z ∈ Br1
we have

(i)p ‖g−(p+1) ◦ fp+1(z) − g

−p ◦ fp
z‖ ≤ C1γ

p‖z‖k,
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(ii)p ‖g−p ◦ fp+1(z)‖ ≤ (1 + γ + · · · + γ

p)r1.

The assertions (i)0 and (ii)0 are, respectively, (1.56) and (1.57). Let us now assume that
(i)p and (ii)p hold. Applying (i)p to f(z), and using (1.57), since Br1

is stable under f , we get

∀z ∈ Br1
‖g−(p+1) ◦ fp+2(z) − g

−p ◦ fp+1
z‖ ≤ C1γ

p(A′ + ε)ε‖z‖k
. (1.58)

Since we have
C1γ

p(A′ + ε)k‖z‖k = a

′
C1γ

p+1‖z‖k

≤ a

′(C1r1)
k−1

γ

p+1
r1

≤ γ

p+1
r1,

by (1.58) and (ii)p we get (ii)p+1. Now, from (ii)p and (ii)p+1 we get that g−p ◦ fp+1(z) and

g

−(p+1) ◦ fp+2(z) are in Br0
, thus (i)p+1 follows from (1.54) and (1.58).

Thanks to (i)p, the sequence {g−p ◦ fp}p converges uniformly on Br1
, and its limit ϕ

verifies ϕ(O) = O and dϕO = lim d(g−p ◦ fp)O = Id. Since we have

(g−p ◦ fp) ◦ f = g ◦ (g−(p+1) ◦ fp+1),

passing at the limit in both sides we get ϕ ◦ f = g ◦ ϕ and we are done.

We want to prove that every germ of biholomorphism in the Poincaré domain is holomor-
phically normalizable.

The first thing to notice is that, in the attracting (and hence in the repelling) case, there
can be only finitely many resonances.

Lemma 1.3.31. Let λ = (λ1, . . . , λn) ∈ (C∗)n. If |λj | < 1 for all j ∈ {1, . . . , n}, then

card(
⋃n

j=1 Resj(λ)) < +∞. If moreover 0 < |λ1| ≤ · · · ≤ |λn| < 1, then Q ∈ Resj(λ) only if it

is of the form Q = (0, . . . , 0, qj+1, . . . , qn), and

|Q| ≤

[

log |λ1|

log |λn|

]

,

where [·] denotes the integer part.

Proof. Up to reordering the coordinates, we may assume that

0 < |λ1| ≤ · · · ≤ |λn| < 1.

Hence |λ1| ≤ |λj | ≤ |λj |
q1+...+qj |λn|

|Q|−(q1+...+qj) ≤ |λj |
q1+...+qj , for any multi-index Q with

|Q| ≥ 2, and we have the thesis.

Theorem 1.3.32. (Poincaré, 1893 [Po]; Dulac, 1904 [D]) Let f be a germ of biholomorphism

of C
n in the Poincaré domain. Then f is locally holomorphically conjugated to one of its

Poincaré-Dulac normal forms. Moreover, if the spectrum of dfO is non-resonant, then f is

holomorphically linearizable.

Proof. It suffices to prove the statement for f having the origin as an attracting fixed point.
Up to linear changes of the coordinates we may assume that the linear term Λ of f is

in Jordan normal form. Denote by D the diagonal of Λ, i.e., D := Diag(λ1, . . . , λn), where
λ1, . . . , λn is the spectrum of dfO.
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Up to reordering the coordinates, we may assume 0 < |λ1| ≤ . . . ≤ |λn| < 1. Denote by
c0(D) the quantity (log |λ1|)/(log |λn|) and take k a positive integer such that k > c0(D).

Let us first assume that there are no resonances. We have to distinguish between two
cases: Λ diagonal and Λ not diagonal.

Assume first that Λ = D. Since we have no resonances, the operators Mr
D:Hr → Hr,

defined by M

r
D(h) = h ◦ D − D ◦ h, are invertible for each r ≥ 2, and Lemma 1.3.23 ap-

plied to f gives us a germ of biholomorphism ψ2 tangent to the identity at O and such that
ψ

−1
2 ◦f ◦ψ2 = Λ+o(2). Applying recursively 1.3.23 to ψ−1

2 ◦f ◦ψ2 for q ≤ k times, we get a germ

of biholomorphism tangent to the identity ϕ := ψ2◦· · ·◦ψk such that ˜f := ϕ

−1◦f ◦ϕ = Λ+o(k).

Since k > c0(D), we can apply Theorem 1.3.30 to ˜

f and we get that ˜f is holomorphically
linearizable, and therefore also f is. (Here the crucial fact is that c0(D) only depends on

Λ = dfO = d ˜fO).
Let us now consider the case in which Λ 6= D. We want to reduce ourselves to the previous

case conjugating Λ to a matrix sufficiently close to D. Let us then consider the matrix

Sε :=





ε

. . .

ε

n





with ε > 0. Then the germ fε = S

−1
ε ◦f ◦Sε = Λε+H2,ε+o(2), where Λε = S

−1
ε ◦Λ◦Sε, is close

to D for ε small enough, because Λε coincides with the sum of D and a strictly upper triangular
matrix with coefficients ti,j = o(εj−i). If ε is small enough, the operators M2

Λε
, . . . ,M

k
Λε

are
invertible and k > c0(Λε). Hence we apply to fε the same procedure we used with f , and we
get a germ of biholomorphism ϕε tangent to the identity and such that ϕ−1

ε ◦fε◦ϕε = Λε+o(k).

Hence ˜fε := (Sε ◦ ϕε ◦ S
−1
ε )−1 ◦ f ◦ (Sε ◦ ϕε ◦ S

−1
ε ) = Λ + o(k) and by Theorem 1.3.30 applied

to ˜fε we have the assertion.

Let us now pass to the case in which there are resonances, thus ker(Mr
D) is non trivial for

some r between 2 and n0 = [(log |λ1|)/(log |λn|)]. For those values, ker(Mr
D) has a basis given

by the resonant monomials z
pj+1

j+1 · · · zpn
n ej , and the sum of an element of

⊕

ker(Mr
D) and Λ

(which is upper triangular) defines a polynomial triangular automorphism of C
n:

(λ1z1 + P1(z2, . . . , zn), λ2z2 + P2(z3, . . . , zn), . . . , λn−1zn−1 + Pn−1(zn), λnzn).

Let us fix an integer k > c0(D) = [(log |λ1|)/(log |λn|)]. For any r ≥ 2, let Hr = ker(Mr
D)⊕Xr

be the decomposition of Hr, where Xr is the sum of the eigenspaces of Mr
D distinct from the

kernel. We denote by πr the projection on ker(Mr
D) with respect to that decomposition, and by

̂

hr := π

r(hr). Fix k0 ≥ 2, since πr +M

r
D is invertible for any r ≥ 2, πr +M

r
Λ will be invertible

for 2 ≤ r ≤ k0 provided that Λ is sufficiently close to D. Let us assume for a moment that
such a condition is satisfied and that k > c0(Λ). We apply Lemma 1.3.23 to f = Λ+H2 + o(2)

with h = h2, where h2 is the unique element of H2 such that ̂h2 +M

2
Λ(h2) = H2. This gives

us a germ of biholomorphism ψ2 tangent to the identity such that

ψ

−1
2 ◦ f ◦ ψ2 = Λ + ̂h2 + ˜

H3 + o(3).

We apply Lemma 1.3.23 to ψ−1
2 ◦f ◦ψ2 with S2 = ̂h2 and h = h3 such that ̂h3 +M

3
Λ(h3) = ˜

H3,
obtaining a germ of biholomorphism ψ3 tangent to the identity such that

ψ

−1
3 ◦ ψ−1

2 ◦ f ◦ ψ2 ◦ ψ3 = Λ + ̂h2 + ̂h3 + ˜

H4 + o(4).
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Continuing with this procedure, we construct a germ of biholomorphism ψ fixing the origin,
tangent to the identity and such that

ψ

−1 ◦ f ◦ ψ = Λ + ̂h2 + · · · + ̂hn0
+ o(k).

Since g := Λ + ̂h2 + · · · + ̂hn0
is a triangular automorphism of C

n, we can now apply Theorem
1.3.30 to ψ−1 ◦ f ◦ ψ and deduce that f is locally holomorphically conjugated to g via a germ
of biholomorphism tangent to the identity at the origin.

If Λ is not close enough to D, we can replace f with S

−1
ε ◦ f ◦ Sε, with ε > 0 small

enough, as we did before. As before, S−1
ε ◦ f ◦ Sε is locally holomorphically conjugated to a

triangular automorphism of C
n with linear part S−1

ε ◦Λ◦Sε. Hence f is locally holomorphically
conjugated to a triangular automorphism of C

n with linear part Λ.

Reich [Re2] describes holomorphic normal forms when dfO belongs to the Poincaré domain

and there are resonances (see also [ÉV]).

1.4 Holomorphic linearization

We saw in the previous subsection that each non-resonant germ which is in the Poincaré
domain can be holomorphically linearized. Poincaré proved something more, in fact, in [Po],
using majorant series, he proved the following

Theorem 1.4.1. (Poincaré, 1893 [Po]) Let f ∈ End(Cn
, O) be a locally invertible holomorphic

local dynamical system in the Poincaré domain. Then f is holomorphically linearizable if

and only if it is formally linearizable. In particular, if there are no resonances then f is

holomorphically linearizable.

Proof. If f is holomorphically linearizable, obviously it is also formally linearizable. If f is
formally linearizable then it is holomorphically conjugated to its linear term up to order k for
any positive integer k, and hence by Theorem 1.3.30 it is holomorphically linearizable.

Even when there are no resonances, or more generally, when we know a priori that a given
germ is formally linearizable, not so much is known about the convergence of the linearizations
in the cases different from the Poincaré domain. A first result in this sense is the natural
generalization of Theorem 1.2.23:

Theorem 1.4.2. Let λ = (λ1, . . . , λn) ∈ (C∗)n be a non-resonant vector such that there exists

β > 1 and γ > 0 so that

∀Q ∈ N
n
, |Q| ≥ 2

1

|λQ − λj |
≤ γ |Q|β . (1.59)

Then all f ∈ End(Cn
, 0) such that dfO is diagonalizable and has spectrum {λ1, . . . , λn} are

holomorphically linearizable.

As in one variable, (1.59) is a particular case of a more general condition, the multi-
dimensional Brjuno condition. In the next subsection we shall introduced this condition and
we shall show how to use it to prove convergence (and thus, in particular, Theorem 1.4.2).

1.4.1 Brjuno’s result

When dfO belongs to the Siegel domain, even without resonances, the formal linearization
might diverge. To describe the known results, let us introduce the following definition:
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Definition 1.4.1. For λ1, . . . , λn ∈ C and m ≥ 2 set

ωλ1,...,λn
(m) = min

{

|λk1

1 · · ·λkn
n − λj |

∣

∣

k1, . . . , kn ∈ N, 2 ≤

n
∑

h=1

kh ≤ m, 1 ≤ j ≤ n

}

. (1.60)

If λ1, . . . , λn are the eigenvalues of dfO, we shall write ωf (m) for ωλ1,...,λn
(m).

It is clear that ωf (m) 6= 0 for all m ≥ 2 if and only if there are no resonances. It is also
not difficult to prove that if f belongs to the Siegel domain then

lim
m→+∞

ωf(m) = 0 ,

which is the reason why, even without resonances, the formal linearization might be diverging,
exactly as in the one-dimensional case.

Definition 1.4.2. Let n ≥ 2 and let λ1, . . . , λn ∈ C
∗ be not necessarily distinct. We say that λ

satisfies the Brjuno condition if there exists a strictly increasing sequence of integers {pν}ν≥0

with p0 = 1 such that
∑

ν≥0

p

−1
ν logωλ1,...,λn

(pν+1)
−1

<∞. (1.61)

Lemma 1.4.3. (Brjuno, 1971 [Brj3]) Let ω: N → (0,+∞) be a monotone non-increasing

function. Then there exists a strictly increasing sequence of integers {pν}ν≥0 with p0 = 1 such

that
∑

ν≥0

p

−1
ν logω(pν+1)

−1
<∞ (1.62)

if and only if
∑

ν≥0

1

2ν
log ω(2ν+1)−1

<∞. (1.63)

Proof. We claim that for any increasing sequence {pν}ν≥0, we have

∑

ν≥0

1

2ν
logω(2ν+1)−1

< 4
∑

ν≥1

p

−1
ν log ω(pν+1)

−1
. (1.64)

In fact, for every ν we can find k and l satisfying the inequalities

2k
< pν ≤ 2k+1

< · · · < 2k+l
< pν+1 ≤ 2k+l+1

,

implying
log ω(2k+1)−1

< · · · < logω(2k+l)−1
< log ω(pν+1)

−1
.

Hence we have
k+l−1
∑

j=k

1

2j
log ω(2j+1)−1

<

1

2k
log ω(pν+1)

−1
∑

j≥0

1

2j

= 4
1

2k+1
logω(pν+1)

−1

≤ 4
1

pν

logω(pν+1)
−1
.

Decomposing the series in the left-hand side of (1.64) into corresponding pieces, and applying
to each of them the last estimate, we get the claim. This shows that if (1.62) holds for a strictly
increasing sequence of integers {pν}ν≥0 with p0 = 1, then also (1.63) holds.

The other direction is clear.
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Remark 1.4.4. It is clear from the proof that we get the same assertion even if in (1.63)
we replace 2 by an arbitrary natural number a > 1. We refer to [Brj3] pp. 222–224 for other
relations between the Brjuno condition and other similar arithmetic conditions.

As far as I know, the best positive result in the non-resonant case is due to Brjuno [Brj2–3],
and is a natural generalization of its one-dimensional counterpart:

Theorem 1.4.5. (Brjuno, 1971 [Brj2–3]) Let f be a germ of biholomorphism of C
n fixing the

origin, such that dfO is diagonalizable. Assume moreover that the spectrum of dfO has no

resonances and it satisfies the Brjuno condition. Then f is holomorphically linearizable.

We shall see in Subsection 1.5.1 that it is instead possible to generalize Theorem 1.2.22
proving that if λ1, . . . , λn ∈ C have no resonances and

lim sup
m→+∞

1

m

log
1

ωλ1,...,λn
(m)

= +∞,

then there exists a germ of biholomorphism of (Cn
, O), fixing the origin, with differential

dfO = Diag(λ1, . . . , λn), and not holomorphically linearizable.

Remark 1.4.6. It should be remarked that, contrarily to the one-dimensional case, it is not
yet known whether the Brjuno condition is necessary for the holomorphic linearizability of all
holomorphic local dynamical systems with a given linear part belonging to the Siegel domain.
However, it is easy to check that if λ ∈ S

1 does not satisfy the one-dimensional Brjuno condition
then any f ∈ End(Cn

, O) of the form

f(z) =
(

λz1 + z

2
1 , g(z)

)

is not holomorphically linearizable: indeed, if ϕ ∈ End(Cn
, O) is a holomorphic linearization

of f , then ψ(ζ) = ϕ(ζ,O) is a holomorphic linearization of the quadratic polynomial λζ + ζ

2,
against Theorem 1.2.26.

We shall see in the next subsections possible generalizations of Brjuno’s Theorem 1.4.5. We
would also like to mention here that in [DG] are discussed results in the spirit of Theorem 1.4.5
without assuming that the differential is diagonalizable.

1.4.2 Linearization under the reduced Brjuno condition

Another approach to this kind of problems was given by Rüssmann in [Rü1], an I.H.E.S. preprint
which is no longer available, and it was finally published in [Rü2]. Rüssmann introduced the
following condition, that we shall call Rüssmann condition.

Definition 1.4.3. Let n ≥ 2 and let λ1, . . . , λn ∈ C∗ be not necessarily distinct. We say
that λ = (λ1, . . . , λn) satisfies the Rüssmann condition if there exists a function Ω: N → R such
that:

(i) k ≤ Ω(k) ≤ Ω(k + 1) for all k ∈ N,

(ii)
∑

k≥1

1
k2 log Ω(k) ≤ +∞, and

(iii) |λQ − λj | ≥
1

Ω(|Q|) for all j = 1, . . . n and for each multi-index Q ∈ N with |Q| ≥ 2 not

giving a resonance relative to j.

Rüssmann proves that, in dimension 1, his condition is equivalent to Brjuno condition (see
Lemma 8.2 of [Rü2]), and he also proves the following result.
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Lemma 1.4.7. (Rüssmann, 2002 [Rü2]) Let Ω: N → (0,+∞) be a monotone non decreasing

function, and let {sν} be defined by sν := 2q+ν , with q ∈ N. Then

∑

ν≥0

1

sν

log Ω(sν+1) ≤
∑

k≥2q+1

1

k

2
log Ω(k).

Proof. For each a, b integers with 0 < a < b we have

1

a

−
1

b

=

b−1
∑

k=a

(

1

k

−
1

k + 1

)

=

b−1
∑

k=a

1

k(k + 1)
≤

b−1
∑

k=a

1

k

2
,

hence we have

1

2p+1
=

1

2p
−

1

2p+1
≤

2p+1
−1

∑

k=2p

1

k

2

for any p ≥ 0.
Since Ω is non decreasing, we obtain

1

2p+1
log Ω(2p) ≤

2p+1
−1

∑

k=2p

1

k

2
log Ω(k),

hence
∑

ν≥0

1

2q+ν+1
log Ω(2q+ν+2) ≤

∑

ν≥0

2q+ν+2
−1

∑

k=2q+ν+1

1

k

2
log Ω(k) =

∑

k≥2q+1

1

k

2
log Ω(k),

and we are done.

Rüssmann proved the following generalization of Brjuno’s Theorem 1.4.5 (the statement
is slightly different from the original one presented in [Rü2] but perfectly equivalent).

Theorem 1.4.8. (Rüssmann, 2002 [Rü2]) Let f be a germ of biholomorphism of C
n fixing

the origin and such that dfO is diagonalizable. If f is formally linearizable and the spectrum

of dfO satisfies the Rüssmann condition, then it is holomorphically linearizable.

We refer to the article [Rü2] for the original proof of Rüssmann and we limit ourselves
to briefly recall here the main ideas of it. To prove this result, Rüssmann first studies the
process of Poincaré-Dulac formal normalization carrying on the functional iterative process we
saw in Lemma 1.3.23, without assuming anything on the diagonalizability of dfO. He then
proves that the set of Poincaré-Dulac formal normal forms of a formally linearizable germ of
biholomorphism f with linear part Λ reduces to Λ. He constructs a formal iteration process
for a zero of the operator F(ϕ) = f ◦ ϕ − ϕ ◦ Λ, and then, assuming Λ diagonal, he gives
estimates for each iteration step, proving that, under what we called the Rüssmann condition,
the process converges to a holomorphic linearization.

We would also like to mention here the articles of Zehnder [Z1–3] where one can find the
modified Newton method used by Rüssmann.

Notice that, when there are no resonances, the function ωf (m) defined in 1.4.1 satisfies

|λQ − λj | ≥ ωf (|Q|)
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for each multi-index Q ∈ N with |Q| ≥ 2.
Let us then define:

Definition 1.4.4. Let n ≥ 2 and let λ1, . . . , λn ∈ C
∗ be not necessarily distinct. For m ≥ 2

set
ω̃λ1,...,λn

(m) = min
2≤|K|≤m

K 6∈Resj(λ)

min
1≤j≤n

|λK − λj |,

where Resj(λ) is the set of multi-indices K ∈ N
n, with |K| ≥ 2, giving a resonance relation

for λ = (λ1, . . . , λn) relative to 1 ≤ j ≤ n, i.e., λK − λj = 0. If λ1, . . . , λn are the eigenvalues
of dfO, we shall write ω̃f (m) for ω̃λ1,...,λn

(m).

Definition 1.4.5. Let n ≥ 2 and let λ = (λ1, . . . , λn) ∈ (C∗)n. We say that λ satisfies

the reduced Brjuno condition if there exists a strictly increasing sequence of integers {pν}ν≥0

with p0 = 1 such that
∑

ν≥0

p

−1
ν log ω̃λ1,...,λn

(pν+1)
−1

<∞.

We have the following relation between the Rüssmann and the reduced Brjuno condition.

Lemma 1.4.9. Let n ≥ 2 and let λ = (λ1, . . . , λn) ∈ (C∗)n. If λ satisfies Rüssmann condition,

then it also satisfies the reduced Brjuno condition.

Proof. The function ω̃λ1,...λn
(m) defined in Definition 1.4.4 satisfies

ω̃λ1,...λn
(m)−1 ≤ ω̃λ1,...λn

(m+ 1)−1

for all m ∈ N, and
|λQ − λj | ≥ ω̃λ1,...λn

(|Q|)

for each j = 1, . . . n and each multi-index Q ∈ N with |Q| ≥ 2 not giving a resonance relative
to j. Furthermore, by its definition, it is clear that any other function Ω: N → R such that
k ≤ Ω(k) ≤ Ω(k + 1) for all k ∈ N, and satisfying, for any j = 1, . . . n,

|λQ − λj | ≥
1

Ω(|Q|)

for each multi-index Q ∈ N with |Q| ≥ 2 not giving a resonance relative to j, is such that

ω̃λ1,...λn
(m)−1 ≤ Ω(m)

for all m ∈ N. Hence

∑

ν≥0

p

−1
ν log ω̃λ1,...,λn

(pν+1)
−1

<

∑

ν≥0

p

−1
ν log Ω(pν+1)

for any strictly increasing sequence of integers {pν}ν≥0 with p0 = 1. Since λ satisfies Rüssmann
condition, thanks to Lemma 1.4.7, there exists a function Ω as above such that

∑

ν≥0

1

sν

log Ω(sν+1) < +∞,

with {sν} be defined by sν := 2q+ν , with q ∈ N, and we are done.
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We do not know whether the Rüssmann condition is equivalent to the reduced Brjuno
condition in the multi-dimensional case. As we said, Rüssmann is able to prove that this is
true in dimension one, but to do so he strongly uses the one-dimensional characterization of
these conditions via continued fraction.

We shall give a direct proof of an analogue of Rüssmann Theorem under a slightly different
(and more natural) assumption, using explicit computation with the power series expansion
and then proving convergence via majorant series. To do so, we first prove that when a germ
is formally linearizable, then the linear form is its unique Poincaré-Dulac normal form.

Proposition 1.4.10. Let f be a germ of biholomorphism of C
n fixing the origin. If f is

formally linearizable, and f is formally conjugated to a formal Poincaré-Dulac normal form g,

then g is linear.

Proof. Let Λ be the linear term of f . Up to linear conjugacy, we may assume that Λ is in Jordan
normal form. If the eigenvalues λ1, . . . , λn of Λ have no resonances, then there is nothing to
prove. Let us then assume that we have resonances, and let us assume by contradiction that
g 6≡ Λ. Since f is formally linearizable and it is also formally conjugated to g, also g is
formally linearizable. Thanks to Proposition 1.3.26, any formal linearization ψ of g tangent to
the identity contains only (λ1, . . . , λn)-resonant monomials; hence, writing g = Λ + g

res and
ψ = I + ψ

res, the conjugacy equation g ◦ ψ = ψ ◦ Λ becomes

Λ + Λψres + g

res ◦ (I + ψ

res) = (Λ + g

res) ◦ (I + ψ

res)

= (I + ψ

res) ◦ Λ

= Λ + ψ

res ◦ Λ

= Λ + Λψres
,

because ψres ◦ Λ = Λψres. Hence there must be

g

res ◦ ψ ≡ 0,

and composing on the right with ψ−1 we get gres ≡ 0, contradicting the hypotheses.

Remark 1.4.11. As a consequence of the previous result, we get that any formal normaliza-

tion given by the Poincaré-Dulac procedure applied to a formally linerizable germ f is indeed a

formal linearization of the germ. In particular, we have uniqueness of the Poincaré-Dulac nor-

mal form (which is linear and hence holomorphic), but not of the formal linearizations. Hence a

formally linearizable germ f is formally linearizable via a formal transformation ϕ = Id+ϕ̂ con-

taining only non-resonant monomials. In fact, thanks to the proof of Poincaré-Dulac Theorem
1.3.25, we can consider the formal normalization obtained with the Poincaré-Dulac procedure
and imposing ϕQ,j = 0 for all Q and j such that λQ = λj ; and this formal transformation ϕ,
by Proposition 1.4.10, conjugates f to its linear part.

Now we have all the ingredients needed to prove the following result.

Theorem 1.4.12. Let f be a germ of biholomorphism of C
n fixing the origin and such that

dfO is diagonalizable. If f is formally linearizable and the spectrum of dfO satisfies the reduced

Brjuno condition, then f is holomorphically linearizable.

Proof. Up to linear changes of the coordinates, we may assume that the linear term Λ of f is
diagonal, i.e., Λ = Diag(λ1, . . . , λn). From the conjugacy equation

f ◦ ϕ = ϕ ◦ Λ, (1.65)
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writing f(z) = Λz+
∑

|L|≥2 fLz
L, and ϕ(w) = w+

∑

|Q|≥2 ϕQw
Q, where fL and ϕQ belong to

C
n, we have that coefficients of ϕ have to verify

∑

|Q|≥2

AQϕQw
Q =

∑

|L|≥2

fL





∑

|M |≥1

ϕMw

M





L

, (1.66)

where
AQ = λ

Q
In − Λ.

The matrices AQ are not invertible only when Q ∈
⋃n

j=1 Resj(λ), but, thanks Remark 1.4.11,

we can set ϕQ,j = 0 for all Q ∈ Resj(λ); hence we just have to consider Q 6∈
⋂n

j=1 Resj(λ),
and, to prove the convergence of the formal conjugation ϕ in a neighbourhood of the origin, it
suffices to show that

sup
Q

1

|Q|
log ‖ϕQ‖ <∞, (1.67)

for |Q| ≥ 2 and Q 6∈ ∩n
j=1Resj(λ).

Since f is holomorphic in a neighbourhood of the origin, there exists a positive number ρ
such that ‖fL‖ ≤ ρ

|L| for |L| ≥ 2. The functional equation (1.65) remains valid under the linear
change of coordinates f(z) 7→ σf(z/σ), ϕ(w) 7→ σϕ(w/σ) with σ = max{1, ρ2}. Therefore we
may assume that

∀|L| ≥ 2 ‖fL‖ ≤ 1.

It follows from (1.66) that for any multi-index Q ∈ N
n \
⋂n

j=1 Resj(λ) with |Q| ≥ 2 we have

‖ϕQ‖ ≤ ε

−1
Q

∑

Q1+···+Qν=Q

ν≥2

‖ϕQ1
‖ · · · ‖ϕQν

‖, (1.68)

where
εQ = min

1≤j≤n

Q6∈Resj(λ)

|λQ − λj |.

We can define, inductively, for m ≥ 2

αm =
∑

m1+···+mν=m

ν≥2

αm1
· · ·αmν

,

and
δQ = ε

−1
Q max

Q1+···+Qν=Q

ν≥2

δQ1
· · · δQν

,

for Q ∈ N
n \
⋂n

j=1 Resj(λ) with |Q| ≥ 2, with α1 = 1 and δE = 1, where E is any integer vector

with |E| = 1. Then, by induction, we have that

‖ϕQ‖ ≤ α|Q|δQ,

for every Q ∈ N
n \
⋂n

j=1 Resj(λ) with |Q| ≥ 2. Therefore, to establish (1.67) it suffices to prove
analogous estimates for αm and δQ.



54 Jasmin Raissy – Geometrical methods in the normalization of germs of biholomorphisms

It is easy to estimate αm. Let α =
∑

m≥1 αmt
m. We have

α− t =
∑

m≥2

αmt
m

=
∑

m≥2





∑

h≥1

αht
h





m

=
α

2

1 − α

.

This equation has a unique holomorphic solution vanishing at zero

α =
t+ 1

4

(

1 −

√

1 −
8t

(1 + t)2

)

,

defined for |t| small enough. Hence,

sup
m

1

m

log αm <∞,

as we want.

To estimate δQ we have to take care of small divisors. First of all, for each multi-
index Q 6∈

⋂n
j=1 Resj(λ) with |Q| ≥ 2 we can associate to δQ a decomposition of the form

δQ = ε

−1
L0
ε

−1
L1

· · · ε−1
Lp
, (1.69)

where L0 = Q, |Q| > |L1| ≥ · · · ≥ |Lp| ≥ 2 and Lj 6∈
⋂n

j=1 Resj(λ) for all j = 1, . . . , p
and p ≥ 1. In fact, we choose a decomposition Q = Q1+· · ·+Qν such that the maximum in the
expression of δQ is achieved; obviously, Qj does not belong to

⋂n
j=1 Resj(λ) for all j = 1, . . . , ν.

We can then express δQ in terms of ε−1
Qj

and δQ′
j

with |Q′
j | < |Qj |. Carrying on this process,

we eventually arrive at a decomposition of the form (1.69). Furthermore, for each multi-index
Q 6∈

⋂n
j=1 Resj(λ) with |Q| ≥ 2, we can choose an index iQ so that

εQ = |λQ − λiQ
|.

The rest of the proof follows closely [Brj2–3]. For the benefit of the reader, we report here
the main steps.

For m ≥ 2 and 1 ≤ j ≤ n, we can define

N

j
m(Q)

to be the number of factors ε−1
L in the expression (1.69) of δQ, satisfying

εL < θ ω̃f (m), and iL = j,

where ω̃f (m) is defined in Definition 1.4.4, and in this notation can be expressed as

ω̃f(m) = min
2≤|Q|≤m

Q6∈∩n
j=1

Resj(λ)

εQ,
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and θ is the positive real number satisfying

4θ = min
1≤h≤n

|λh| ≤ 1.

The last inequality can always be satisfied by replacing f by f

−1 if necessary. Moreover we
also have ω̃f (m) ≤ 2.

Notice that ω̃f(m) is non-increasing with respect to m and under our assumptions ω̃f (m)
tends to zero as m goes to infinity. Following [Brj2–3], we have the key estimate.

Lemma 1.4.13. For m ≥ 2, 1 ≤ j ≤ n and Q 6∈
⋂n

j=1 Resj(λ),we have

N

j
m(Q) ≤







0, if |Q| ≤ m,

2|Q|

m

− 1, if |Q| > m.

Proof. The proof is done by induction on |Q|. Since we fix m and j throughout the proof, we
write N instead of N j

m.
For |Q| ≤ m,

εQ ≥ ω̃f (|Q|) ≥ ω̃f (m) > θ ω̃f (m),

hence N(Q) = 0.
Assume now that |Q| > m. Then 2|Q|/m − 1 ≥ 1. Write

δQ = ε

−1
Q δQ1

· · · δQν
, Q = Q1 + · · · +Qν , ν ≥ 2,

with |Q| > |Q1| ≥ · · · ≥ |Qν |; note that Q − Q1 does not belong to
⋂n

j=1 Resj(λ), otherwise

the other Qh’s would be in
⋂n

j=1 Resj(λ). We have to consider the following different cases.

Case 1: εQ ≥ θ ω̃f (m) and iQ arbitrary, or εQ < θ ω̃f (m) and iQ 6= j. Then

N(Q) = N(Q1) + · · · +N(Qν),

and applying the induction hypotheses to each term we get N(Q) ≤ (2|Q|/m) − 1.

Case 2: εQ < θ ω̃f (m) and iQ = j. Then

N(Q) = 1 +N(Q1) + · · · +N(Qν),

and there are three different subcases.
Case 2.1: |Q1| ≤ m. Then

N(Q) = 1 <
2|Q|

m

− 1,

as we want.
Case 2.2: |Q1| ≥ |Q2| > m. Then there is ν′ such that 2 ≤ ν

′ ≤ ν and |Qν′ | > m ≥ |Qν′+1|,
and we have

N(Q) = 1 +N(Q1) + · · · +N(Qν′) ≤ 1 +
2|Q|

m

− ν

′ ≤
2|Q|

m

− 1.

Case 2.3: |Q1| > m ≥ |Q2|. Then

N(Q) = 1 +N(Q1),
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and there are again three different subcases.
Case 2.3.1: iQ1

6= j. Then N(Q1) = 0 and we are done.
Case 2.3.2: |Q1| ≤ |Q| −m and iQ1

= j. Then

N(Q) ≤ 1 + 2
|Q| −m

m

− 1 <
2|Q|

m

− 1.

Case 2.3.3: |Q1| > |Q|−m and iQ1
= j. The crucial remark is that ε−1

Q1
gives no contribute

to N(Q1), as shown in the next lemma.

Lemma 1.4.14. If Q > Q1 with respect to the lexicographic order, Q, Q1 and Q−Q1 are not

in
⋂n

j=1 Resj(λ), iQ = iQ1
= j and

εQ < θ ω̃f (m) and εQ1
< θ ω̃f (m),

then |Q−Q1| = |Q| − |Q1| ≥ m.

Proof. Before we proceed with the proof, notice that the equality |Q − Q1| = |Q| − |Q1| is
obvious since Q > Q1.

Since we are supposing εQ1
= |λQ1 − λj | < θ ω̃f (m), we have

|λQ1 | > |λj | − θ ω̃f(m)

≥ 4θ − 2θ = 2θ.

Let us suppose by contradiction |Q−Q1| = |Q| − |Q1| < m. By assumption, it follows that

2θ ω̃f (m) > εQ + εQ1

= |λQ − λj | + |λQ1 − λj |

≥ |λQ − λ

Q1 |

≥ |λQ1 | |λQ−Q1 − 1|

≥ 2θ ω̃f(|Q−Q1| + 1)

≥ 2θ ω̃f(m),

which is impossible.

Using Lemma 1.4.14, case 1 applies to δQ1
and we have

N(Q) = 1 +N(Q11
) + · · · +N(Q1ν1

),

where |Q| > |Q1| > |Q11
| ≥ · · · ≥ |Q1ν1

| and Q1 = Q11
+ · · ·+Q1ν1

. We can do the analysis of
case 2 again for this decomposition, and we finish unless we run into case 2.3.2 again. However,
this loop cannot happen more than m+1 times and we have to finally run into a different case.
This completes the induction and the proof of Lemma 1.4.13.

Since the spectrum of dfO satisfies the reduced Brjuno condition, there exists a strictly
increasing sequence {pν}ν≥0 of integers with p0 = 1 and such that

∑

ν≥0

p

−1
ν log ω̃f (pν+1)

−1
<∞. (1.70)
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We have to estimate

1

|Q|
log δQ =

p
∑

j=0

1

|Q|
log ε−1

Lj
, Q 6∈

n
⋂

j=1

Resj(λ).

By Lemma 1.4.13,

card
{

0 ≤ j ≤ p : θ ω̃f (pν+1) ≤ εLj
< θ ω̃f (pν)

}

≤ N

1
pν

(Q) + · · ·Nn
pν

(Q)

≤
2n|Q|

pν

for ν ≥ 1. It is also easy to see from the definition of δQ that the number of factors ε−1
Lj

is

bounded by 2|Q| − 1. In particular,

card
{

0 ≤ j ≤ p : θ ω̃f (p1) ≤ εLj

}

≤ 2n|Q| =
2n|Q|

p0
.

Then,
1

|Q|
log δQ ≤ 2n

∑

ν≥0

p

−1
ν log(θ−1

ω̃f(pν+1)
−1)

= 2n





∑

ν≥0

p

−1
ν log ω̃f (pν+1)

−1 + log(θ−1)
∑

ν≥0

p

−1
ν





.

(1.71)

Since ω̃f (m) tends to zero monotonically as m goes to infinity, we can choose some m such
that 1 > ω̃f(m) for all m > m, and we get

∑

ν≥ν0

p

−1
ν ≤

1

log ω̃f(m)−1

∑

ν≥ν0

p

−1
ν log ω̃f (pν+1)

−1
,

where ν0 verifies the inequalities pν0−1 ≤ m < pν0
. Thus both series in parentheses in (1.71)

converge thanks to (1.70). Therefore

sup
Q

1

|Q|
log δQ <∞

and this concludes the proof.

As a corollary, when there are no resonances, we obtain Brjuno’s Theorem 1.4.5.

Recently, again using majorant series, Rong [Ro1] proved the following result in the case
in which the spectrum of the differential at the origin of a given germ of biholomorphism fixing
the origin contains 1 and λj ’s with |λj | = 1, but the λj ’s are not roots of unity.

Theorem 1.4.15. (Rong, 2008 [Ro1]) Let f be a germ of holomorphic diffeomorphism of C
n,

fixing the origin with dfO = Diag(Λs, Ir), where Λs = Diag(λ1, . . . , λs) with λj = e

2πiθj ,

θj ∈ R\Q. Assume that there is M a pointwise fixed complex manifold through O of codimen-

sion s. Choose local coordinates (x, y) centered in O such that M = {x = 0}. For any p ∈M ,

write dfp =

(

Λs(y) O

⋆ Ir

)

. Assume that Λs(y) ≡ Λs for all p ∈ M . If the λj ’s satisfy the

Brjuno condition, then there exists a local holomorphic change of coordinates ψ such that

f ◦ ψ = ψ ◦ Λ,

where Λ is the linear part of f .

We shall extend and generalize these results in Chapter 2.
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1.5 Non linearizable germs

There are germs of biholomorphisms of C
n fixing the origin and not linearizable, even formally.

In fact let us consider again (1.48), let ˜Q be the first resonant multi-index with respect to the

lexicographic order and let j be the minimal in {1, . . . , n} such that ˜Q ∈ Resj(λ). Hence

(λQ̃ − λj)ψQ̃,j
+ g

Q̃,j
= Pol.(fR,j , ψP,k: |P | < |Q|)

and, thanks to the minimality of ˜Q and j, all the coefficients in the right-hand side are uniquely
determined by f and Λ, hence if Pol.(fR,j , ψP,k: |P | < |Q|) 6= 0 (and it can well happen), then

g

Q̃,j
6= 0 and f is not formally linearizable because we can never delete the term f

Q̃,j
z

Q̃ of f .

Even without resonances, the holomorphic linearization is not guaranteed. It is not difficult
to construct examples of germs of biholomorphisms that are not holomorphically linearizable
using the known results of the one-dimensional case, as in Remark 1.4.6.

However it is also possible to give other kinds of examples. We shall see in the next
two subsection two families of examples of germs that are formally but not holomorphically
linearizable.

1.5.1 Cremer-like example

It is not difficult to prove that if f belongs to the Siegel domain then

lim
m→+∞

ωf(m) = 0 ,

which is the reason why, even without resonances, the formal linearization might be diverging,
exactly as in the one-dimensional case. As far as I know, the best negative result in this setting
is due to Brjuno [Brj2–3], and is a natural generalization of its one-dimensional counterpart,
Theorem 1.2.22:

Theorem 1.5.1. Let λ1, . . . , λn ∈ C be without resonances and such that

lim sup
m→+∞

1

m

log
1

ωλ1,...,λn
(m)

= +∞ .

Then there exists f ∈ End(Cn
, O), with dfO = Diag(λ1, . . . , λn), not holomorphically lineariz-

able.

Proof. Let Λ = Diag(λ1, . . . , λn). We want to define f = Λ + ̂

f recursively in such a way
that its unique formal linearization ϕ = Id+ϕ̂ is divergent. Using the conjugacy equation
f ◦ ϕ = ϕ ◦ Λ we know that for each multi-index Q with |Q| ≥ 2 we have

(λQ
I − Λ)ϕQ = fQ + Polynomial(fP , ϕR with P < Q, |R| < |Q|) (1.72)

where we are using the same notation used in the proof of Theorem 1.4.12, and, since there
are no resonances, λQ

I −Λ is invertible for every multi-index Q with |Q| ≥ 2. Using (1.72) we
inductively choose fQ ∈ {0, 1}n such that

‖fQ + Polynomial(fP , ϕR with P < Q, |R| < |Q|)‖ ≥
1

2
,
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hence we have

sup
|Q|≥2

1

|Q|
log ‖ϕQ‖ ≥ sup

|Q|≥2

1

|Q|
log

‖λQ
I − Λ‖−1

2

≥ sup
|Q|≥2

1

|Q|
log

1

ωλ1,...,λn
(|Q|)

= +∞,

and we are done.

1.5.2 Yoccoz’s example

As already remarked, it is not known whether the Brjuno condition is still necessary for holo-
morphic linearizability. However, another result in the spirit of Theorem 1.5.1 is the following:

Theorem 1.5.2. (Yoccoz, 1995 [Y2]) Let A ∈ GL(n,C) be an invertible matrix such that its

eigenvalues have no resonances and such that its Jordan normal form contains a non-trivial

block associated to an eigenvalue of modulus one. Then there exists f ∈ End(Cn
, O) with

dfO = A which is not holomorphically linearizable.

To prove this result we need a couple of preliminary results. The first one is due to Yoccoz,
and is the following:

Proposition 1.5.3. (Yoccoz, 1995 [Y2]) Let m be the unique maximal ideal of C{z1, z2}. Let

λ ∈ S
1. Then for t ∈ C

∗ the operator Aλ,t:m
2 → m

2 defined by

Aλ,t(g(z1, z2)) = g(λ(z1 + tz2), λz2) − λg(z1, z2) (1.73)

where g ∈ m
2, is not invertible.

Remark 1.5.4. It is clear that (1.73) defines also a formal operator ̂Aλ,t on the square of the
unique maximal ideal m̂ of C[[z1, z2]], which is invertible if and only if λ is not a root of unity.
Moreover it is well known that Aλ,t is invertible if |λ| 6= 1.

To prove Proposition 1.5.3 when λ is not a root of unity, Yoccoz first constructs explicitly
the formal solution of (1.73) (which exists thanks to the previous remark) and then he proves
that, for t 6= 0, it is divergent at the origin. We refer to [Y2] pp. 79–82 for the complete proof.

The second ingredient we need is due to Il’yashenko [I1]. He proved it in the setting of
normalization of germs of vector fields, but it works with the same proof for normalization of
germs of biholomorphisms. We report here the statement and the proof in our setting.

Definition 1.5.1. A vector λ ∈ (C∗)n is called quasi-resonant if the series

∑

|Q|≥2

1≤j≤n

z

Q
ej

λ

Q − λj

diverges for every z 6= 0.

Theorem 1.5.5. (Il’yashenko, 1979 [I1]) Let λ ∈ (C∗)n be a quasi-resonant vector and let ̂f

be a germ of holomorphic mapping of C
n fixing the origin, without linear term, and such that

its coefficients can be estimated from below in modulus by some geometric progression. Then

the unique linearization ϕt of ft = Λ + t

̂

f , where Λ = Diag(λ1, . . . , λn), diverges for almost all

t ∈ C with respect to the Lebesgue measure.
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Proof. It follows from the hypotheses that the solution of the cohomological equation

ϕ̂ ◦ Λ − Λϕ̂ = ̂

f (1.74)

diverges. In fact, using the multi-index notation for each component j, from

̂

fj(z) =
∑

|Q|≥2

fQ,jz
Q

we get ϕ̂j(z) =
∑

|Q|≥2
fQ,j

λQ−λj
z

Q, and the coefficients of this series are not majorized by any

geometric progression.

We shall need the following preliminary results:

Lemma 1.5.6. (Il’yashenko, 1979 [I1]) Let ϕt = Id +ϕ̂t be a formal power series linearizing

ft. Then (ϕ̂t)j =
∑

|Q|≥2 ϕQ,j(t)z
Q and ϕQ,j(t) is a polynomial in t of degree at most |Q|, for

each component j.

Proof. We argue by induction on s = |Q|. The series ϕ̂t satisfies

ϕ̂t ◦ Λ − Λϕ̂t = t

̂

f ◦ (Id +ϕ̂t),

hence we have
{ϕ̂t}2 ◦ Λ − Λ{ϕ̂t}2 = t{ ̂f}2,

where we denote by {ϕ̂t}s and by { ̂f}s respectively the homogeneous components of degree

s in z of ϕ̂t and ̂

f ; since Λ is linear, we obtain that degt({ϕQ,j(t)}2) = 1. Assume now that

degt({ϕQ,j(t)}r) < r for all r < s. We prove that degt({
̂

f ◦ (Id +ϕ̂t)}s) ≤ s − 1. We remark

that the s-jet of ̂f ◦ (Id +ϕ̂t) depends only on the (s − 1)-jet of the series ϕ̂t. A monomial

of degree s in z in the power series expansion of ̂f ◦ (Id +ϕ̂t) either contains a factor of the
form ϕK,j(t)z

K , or else more than one such factor. In the first case, we have |K| ≤ s − 1 by
the above remark, and using the induction hypothesis degt(ϕK,j(t)) ≤ s − 1; in the second
case, again using the induction hypothesis, the degree in t of the coefficient multiplying the
monomial considered is at least 2 less than the degree of the monomial in z, i.e., it is again less
than s− 1. The assertion follows then from the equality

{ϕ̂t ◦ Λ − Λϕ̂t}s = t{ ̂f ◦ (Id +ϕ̂t)}s,

and we are done.

The second ingredient we need is due to Nadirashvili, and we refer to the original article
[N] for a proof:

Lemma 1.5.7. (Nadirashvili, 1976 [N]) Let ps(t) be a polynomial of degree s, let E be a set of

positive Lebesgue plane measure in a disk KR of radius R, and assume that there exists q > 0
such that |ps|E | < q

s. Then there exist C depending only on µ = Leb2(E) and R such that

|ps|KR
| < (Cq)s.

Now we have all we need to finish the proof of Theorem 1.5.5.

Assume that the series ϕ̂t converges for all t in a set M ⊂ C of positive measure. Then
for each t ∈ M the function q(t) = inf{q ∈ R | q|K|

> |ϕK,j(t)|} is well-defined and finite.
This function is measurable, since ϕK,j(t) are polynomials in t. Then there exists q such that
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the set E = {t ∈ M | q(t) < q} has positive measure. By Lemma 1.5.7, there exist C and R

such that |ϕK,j(t)| < (Cq)|K| on a disk KR = {|t| < R}. Hence, by the Cauchy estimates,
ϕ̂t converges in the polydisk {|zj | < (Cq)−1

, |t| < R} as a power series in z and t; hence, the

function ψ =
(

∂
∂t
ϕ̂t

)

|t=0 is holomorphic in a neighbourhood of zero. We have

∂

∂t

(ϕ̂t ◦ Λ − Λϕ̂t) =
∂

∂t

(t ̂f ◦ (Id +ϕ̂t));

thus
(

∂ϕ̂t

∂t

◦ Λ − Λ
∂ϕ̂t

∂t

)∣

∣

∣

∣

t=0

= ̂

f ◦ (Id +ϕ̂t) |t=0 + t

∂

∂t

( ̂f ◦ (Id +ϕ̂t)) |t=0 ,

and hence
ψ ◦ Λ − Λψ = ̂

f ◦ (Id +ϕ̂0), (1.75)

where ϕ̂0 = ∂ϕ̂t

∂t
|t=0, and thus it is holomorphic. But ϕ̂0 has to solve ϕ̂0 ◦ Λ − Λϕ̂0 = 0, hence

ϕ̂0 ≡ 0 and (1.75) becomes

ψ ◦ Λ − Λψ = ̂

f.

This means that ψ is a convergent solution of (1.74) contradicting the fact that any solution
of (1.74) diverges.

With this two ingredient the proof of Theorem 1.5.2 is almost immediate.

Proof of Theorem 1.5.2. It suffices to prove it for n = 2 and

A =

(

λ λ

0 λ

)

.

Let B:m2 → m
2 be the operator defined by

B(g) = g ◦ A−A ◦ g.

Writing, g = (g1, g2), the second component of B(g) is exactly equal to Aλ,1(g2); then, thanks to
Proposition 1.5.3, B is not surjective. Applying Theorem 1.5.5, we get that if h = (h1, h2) ∈ m

2

does not belong to the image of B, then the germ of biholomorphism ft = A + th is not
linearizable for almost all t ∈ C, and we are done.

1.5.3 Pérez-Marco’s results

In [P8] and [P9] Pérez-Marco develops the idea, originally due to Il’yashenko [I1], of using
deformations and potential theory to study holomorphic small divisor problems.

As we recalled in the previous subsection, in the framework of the theory of linearization
of holomorphic systems of differential equations, Il’yashenko studied linear deformations of
a system and used the polynomial dependence of the new formal linearization to study the
divergence of the series. He also introduced the idea of using potential theory since he applied
Lemma 1.5.7, due to Nadirashvili [N], to control the norm of a polynomial on an arbitrary
bounded domain through its norm on a set of positive measure.

We saw in the previous subsection that a variation of the argument of Il’yashenko [I1] has
been used by J.-C. Yoccoz [Y2] in order to show that the quadratic polynomial is the worst
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linearizable holomorphic germ. Also, Herman [He] used potential theory (in parameter space)
for studying small divisor problems.

The general principle suggested by this kind of results could be stated as follows:
There is either total convergence for all parameter values or general divergence except

for a very small exceptional set of parameter values.

The exceptional set E in Pérez-Marco’s work [P9] is a pluripolar set: for each point of E
there is a neighborhood U and a plurisubharmonic function u such that the points of U ∩ E
belong to the −∞ level set of u. Of course these sets have zero Lebesgue measure, but are
indeed “much smaller” (there exist smooth arcs which are not pluripolar). In one dimension a
pluripolar set has zero logarithmic capacity, and hence zero Hausdorff dimension.

Pérez-Marco proves the following result (we refer to the original article [P9] for a proof).

Theorem 1.5.8. (Pérez-Marco, 2001 [P9]) Let n,m ≥ 1 and d ≥ 0. Let us consider a family

{ϕI}I∈Nm of germs of holomorphic maps ϕI : (C
n
, O) → (Cn

, O) of order larger or equal to 2
(i.e., ϕI(z) = O(‖z‖2)) indicized over multi-indices I = (i1, . . . , im) ∈ N

m with 0 ≤ |I| ≤ d.

For t = (t1, . . . , tm) ∈ C
m we consider the holomorphic family of germs of biholomorphisms of

C
n

ft(z) = Az +
∑

I∈Nm

0≤|I|≤d

t

I
ϕI(z)

where A ∈ GLn(C) is a fixed linear map, A = dfO , with non-resonant eigenvalues. Then all

maps ft, with t ∈ C
m are formally linearizable, and we have the following dichotomy: either

(i) The holomorphic family (ft)t∈Cm is holomorphically linearizable. Moreover, the radius

R(ht) of convergence of the linearization ht is bounded from below on compact sets,

more precisely, for some C0 > 0, and any t ∈ C
m,

R(ht) ≥
C0

1 + ‖t‖d
; or

(ii) ft is not holomophically linearizable, except for an exceptional pluri-polar set E ⊂ C
m

of values of t.

In [P8] Pérez-Marco proves a similar result in the setting of the problem of holomorphic
linearization in the presence of resonances.

1.6 Partial linearization results

Another way to generalize Brjuno’s Theorem 1.4.5 is to look for partial linearization results,
e.g., studying the linearization problem along submanifolds.

1.6.1 Pöschel’s result

Pöschel [Pö] shows how to modify (1.60) and (1.61) to get partial linearization results along
submanifolds. To do so, he uses a notion of partial Brjuno condition which is explained in the
following definitions:

Definition 1.6.1. Let n ≥ 2 and let λ1, . . . , λn ∈ C
∗ be not necessarily distinct. Fix 1 ≤ s ≤ n

and let λ = (λ1, . . . , λs). For any m ≥ 2 put

ωs(m) = min
2≤|K|≤m

min
1≤j≤n

|λK − λj |,
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where λK = λ

k1

1 · · ·λks
s .

Definition 1.6.2. Let n ≥ 2 and let λ1, . . . , λn ∈ C
∗ be not necessarily distinct. Fix 1 ≤ s ≤ n.

We say that λ = (λ1, . . . , λn) satisfies the partial Brjuno condition of order s if there exists a
strictly increasing sequence of integers {pν}ν≥0 with p0 = 1 such that

∑

ν≥0

p

−1
ν log ωs(pν+1)

−1
<∞.

It is clear that ωs(m) 6= 0 for all m ≥ 2 if and only if there are no resonant multi-indices Q
of the form Q = (q1, . . . qs, 0, . . . , 0).

Remark 1.6.1. For s = n the partial Brjuno condition of order s is nothing but the usual
Brjuno condition introduced in [Brj2–3] (see also [M] pp. 25–37 for the one-dimensional case).
When s < n, the partial Brjuno condition of order s is indeed weaker than the Brjuno condition.
Let us consider for example n = 2 and let λ, µ ∈ C

∗ be distinct. To check whether the pair (λ, µ)
satisfies the partial Brjuno condition of order 1, we have to consider only the terms |λk − λ|
and |λk −µ| for k ≥ 2, whereas to check the full Brjuno condition we have to consider also the
terms |µh − λ|, |µh − µ| for h ≥ 2, and |λk

µ

h − λ|, |λk
µ

h − µ| for k, h ≥ 1.

Remark 1.6.2. A n-tuple λ = (λ1, . . . , λs, 1, . . . , 1) ∈ (C∗)n satisfies the partial Brjuno con-
dition of order s if and only if (λ1, . . . , λs) satisfies the Brjuno condition.

We assume that the differential dfO is diagonalizable. Then, possibly after a linear change
of coordinates, we can write

f(z) = Λz + ̂

f(z),

where Λ = Diag(λ1, . . . , λn), and ̂

f vanishes up to first order at O ∈ C
n.

The linear map z 7→ Λz has a very simple structure. For instance, for any subset λ1, . . . , λs

of eigenvalues with 1 ≤ s ≤ n, the direct sum of the corresponding eigenspaces obviously is an
invariant manifold on which this map acts linearly with these eigenvalues.

We have the following result of Pöschel [Pö] that generalizes the one of Brjuno [Brj2–3]:

Theorem 1.6.3. (Pöschel, 1986 [Pö]) Let f be a germ of holomorphic diffeomorphism of C
n fix-

ing the origin O. If there exists a positive integer 1 ≤ s ≤ n such that the eigenvalues λ1, . . . , λn

of dfO satisfy the partial Brjuno condition of order s, then there exists locally a complex an-

alytic f -invariant manifold M of dimension s, tangent to the eigenspace of λ1, . . . , λs at the

origin, on which the mapping is holomorphically linearizable.

The proof of this result is similar to the one of Theorem 1.4.12 and the reader can also
find it in the original article [Pö]. In the next chapter we shall present a generalization of this
result to get a complete linearization result also in presence of resonances.

1.6.2 Other results

We also have the following partial linearization result obtained by Nishimura in [Ni] which
generalizes the one of Reich [Re2] (the statement is slightly different from the original one
presented in [Ni] but perfectly equivalent):

Theorem 1.6.4. (Nishimura, 1983 [Ni]) Let f be a germ of holomorphic diffeomorphism

of C
n, fixing the origin O. Assume that Y is a complex manifold through O of codimension s

pointwise fixed by f . In coordinates z = (x, y) in which Y = {x = 0} we can write f in the

form
x

′
i =

∑s
k=1Cik(y)xk + f

1
i (x, y) for i = 1, . . . , s,

y

′
j = yj + f

2
j (x, y) for j = 1, . . . , r,
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with ordx(f1
i ) ≥ 2 and ordx(f2

j ) ≥ 1. If for each point p ∈ Y the eigenvalues {λ1(p), . . . , λs(p)}

of the matrix C(p) =
(

Cjk(p)
)

have modulus less than 1 and have no resonances, then there

exists a unique holomorphic change of coordinates ψ, defined in a neighbourhood of Y , tangent

to the identity such that

f ◦ ψ = ψ ◦ L, (1.76)

where L is the germ
x

′
i =

∑s
k=1Cik(y)xk for i = 1, . . . , s,

y

′
j = yj for j = 1, . . . , r.

We refer to the original article [Ni] for the proof, which, also in this case is done by proving
that the unique formal solution ψ of (1.76) is indeed majored by a convergent series, and hence
is convergent.

Another kind of partial linearization results, namely “linearization modulo an ideal”, can
be found in [Sto].

1.7 Holomorphic normalization

As we saw in Section 1.5, there are germs f ∈ End(Cn
, O) not holomorphically linearizable.

However, by Poincaré-Dulac Theorem 1.3.25 every germ f ∈ End(Cn
, O) can be formally

normalized; hence it is natural to ask whether a germ is holomorphically normalizable. We
saw that in the attracting [resp. repelling] case this is always the case, but the problem with
Poincaré-Dulac normal forms is that, as we saw, they are not unique, and the problem of finding
canonical formal normal forms when f belongs to the Siegel domain is still open, except for
very few cases (see [J2] and [Ri1] for example). Furthermore, even if Écalle in his monumental

work [É4] provides completes sets of invariants characterizing the conjugacy classes of germs
in End(Cn

, O), those invariants are not so easily computable and it remains somehow difficult
to use them in studying particular cases.

A case that has received some attention is the so-called semi-attractive case

Definition 1.7.1. A holomorphic local dynamical system f ∈ End(Cn
, O) is said semi-

attractive if the eigenvalues of dfO are either equal to 1 or with modulus strictly less than 1.

The dynamics of semi-attractive dynamical systems has been studied by Fatou [F5],
Nishimura [Ni], Ueda [U1–2], Hakim [H1] and Rivi [Riv1–2]. Their results more or less say
that the eigenvalue 1 yields the existence of a “parabolic manifold” M — in the sense of The-
orem 1.3.9.(ii) — of a suitable dimension, while the eigenvalues with modulus less than one
ensure, roughly speaking, that the orbits of points in the normal bundle of M close enough
to M are attracted to it. For instance, Rivi proved the following

Theorem 1.7.1. (Rivi, 1999 [Riv1–2]) Let f ∈ End(Cn
, O) be a holomorphic local dynamical

system. Assume that 1 is an eigenvalue of (algebraic and geometric) multiplicity q ≥ 1 of dfO,

and that the other eigenvalues of dfO have modulus less than 1. Then:

(i) We can choose local coordinates (z,w) ∈ C
q × C

n−q such that f expressed in these

coordinates becomes
{

f1(z,w) = A(w)z + P2,w(z) + P3,w(z) + · · · ,

f2(z,w) = G(w) +B(z,w)z,

where: A(w) is a q×q matrix with entries holomorphic in w and A(O) = Iq; the Pj,w are

q-uples of homogeneous polynomials in z of degree j whose coefficients are holomorphic
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in w; G is a holomorphic self-map of C
n−q such that G(O) = O and the eigenvalues

of dGO are the eigenvalues of dfO with modulus strictly less than 1; and B(z,w) is

an (n − q) × q matrix of holomorphic functions vanishing at the origin. In particular,

f1(z,O) is tangent to the identity.

(ii) If v ∈ C
q ⊂ C

m is a non-degenerate characteristic direction for f1(z,O), and the latter

map has order ν, then there exist ν − 1 disjoint f -invariant (n − q + 1)-dimensional

complex submanifolds Mj of C
n, with the origin in their boundary, such that the orbit

of every point of Mj converges to the origin tangentially to Cv⊕E, where E ⊂ C
n is the

subspace generated by the generalized eigenspaces associated to the eigenvalues of dfO

with modulus less than one.

Rivi also has results in the spirit of Theorem 1.3.9, and results when the algebraic and
geometric multiplicities of the eigenvalue 1 differ; see [Riv1, 2] for details.

Building on work done by Canille Martins [CM] in dimension 2, and using Theorem 1.2.9
and general results on normally hyperbolic dynamical systems due to Palis and Takens [PT],
Di Giuseppe has obtained the topological classification when the eigenvalue 1 has multiplicity
1 and the other eigenvalues are not resonant:

Theorem 1.7.2. (Di Giuseppe, 2004 [Di]) Let f ∈ End(Cn
, O) be a holomorphic local dy-

namical system such that dfO has eigenvalues λ1, λ2, . . . , λn ∈ C, where λ1 is a primitive

q-root of unity, and |λj | 6= 0, 1 for j = 2, . . . , n. Assume moreover that λr2

2 · · ·λrn

n 6= 1 for all

multi-indices (r2, . . . , rn) ∈ N
n−1 such that r2 + · · · + rn ≥ 2. Then f is topologically locally

conjugated either to dfO or to the map

z 7→ (λ1z1 + z

kq+1
1 , λ2z2, . . . , λnzn)

for a suitable k ∈ N
∗.

We end this chapter by recalling results by Bracci and Molino, and by Rong. Assume
that f ∈ End(C2

, O) is a holomorphic local dynamical system such that the eigenvalues of dfO

are 1 and e

2πiθ 6= 1. If e2πiθ satisfies the Brjuno condition, Pöschel [Pö], in Theorem 1.6.3,
proved the existence of a 1-dimensional f -invariant holomorphic disk containing the origin
where f is conjugated to the irrational rotation of angle θ. On the other hand, Bracci and
Molino give sufficient conditions (depending on f but not on e

2πiθ, expressed in terms of two
new holomorphic invariants, and satisfied by generic maps) for the existence of parabolic curves
tangent to the eigenspace of the eigenvalue 1; see [BrM] for details, and [Ro3] for generalizations
to n ≥ 3.
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2

Linearization in presence of resonances

The main purpose of this chapter is to prove a linearization result in presence of
resonances for a germ f of biholomorphism of C

n fixing the origin O, with dfO diago-
nalizable. We shall prove that, under certain arithmetic conditions on the eigenvalues
of dfO and some restrictions on the resonances, f is locally holomorphically lineariz-
able if and only if there exists a particular f -invariant complex manifold, and we shall
also see that most of the classical linearization results can be obtained as corollaries
of our result. The main results of this chapter are published in [R2].

2.1 Definitions and notations

In this chapter we shall prove a linearization result in presence of resonances for a germ
of biholomorphism f ∈ End(Cn, O). To do that we shall need a restriction on the resonances
and a property for the germ to first prove a formal linearization result, and then we shall need
a condition on the eigenvalues of dfO assuring convergence.

The restriction on the admitted resonances is the following:

Definition 2.1.1. Let 1 ≤ s ≤ n. We say that λ = (λ1, . . . , λs, µ1, . . . , µr) ∈ (C∗)n has only

level s resonances if there are only two kinds of resonances:

(a) λ
Q = λh ⇐⇒ Q ∈ ˜

K1,

where

˜

K1 =

{

Q ∈ N
n : |Q| ≥ 2,

s
∑

p=1

qp = 1 and µ

qs+1

1 · · ·µqn
r = 1

}

,

and

(b) λ
Q = µj ⇐⇒ Q ∈ ˜

K2,

where

˜

K2 = {Q ∈ N
n : |Q| ≥ 2, q1 = · · · = qs = 0 and ∃j ∈ {1, . . . , r} s.t. µ

qs+1

1 · · · µqn
r = µj}.

Example 2.1.1. When s < n, if (λ1, . . . , λs) has no resonances, it is not difficult to verify
that λ = (λ1, . . . , λs, 1, . . . , 1) has only level s resonances.

Remark 2.1.2. It is obvious that if the set ˜K2 is empty (which implies that the set ˜K1 is

empty as well), there are no resonances. If ˜K1 6= ∅, having only level s resonances implies
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that the sets {λ1, . . . , λs} and {µ1, . . . , µr} are disjoint. If ˜K1 = ∅ but ˜K2 6= ∅, then the
sets {λ1, . . . , λs} and {µ1, . . . , µr} may intersect only in elements not involved in resonances,
i.e., we can have λl = µm for some l and m only if for every multi-index (qs+1, . . . , qn),
we have µ

qs+1

1 · · · µqn
r 6= µm, and for any resonance µ

qs+1

1 · · ·µqn
r = µj with j 6= m, we

have qs+m = 0.

Example 2.1.3. Let γ ≥ 1 and let µ3 be a (γ + 1)-th primitive root of unity. Let µ1, µ2 be
two complex numbers of modulus different from 1 and such that

µ

α
1µ

β
2 = µ3

with α, β ∈ N \ {0}. Then we have

µ

α
1µ

β
2µ

γ
3 = 1.

We can choose µ1, µ2 such that the only resonant multi-indices for the triple (µ1, µ2, µ3)
are (α, β, 0), (α − 1, β, γ) and (α, β − 1, γ). Then, if we consider λ such that (λ, µ1, µ2, µ3)
has only level 1 resonances, the admitted resonances are the following:

˜

K1 = {(1, α, β, γ)},

˜

K2 = {(0, α, β, 0), (0, α − 1, β, γ), (0, α, β − 1, γ)}.

Example 2.1.4. Let us consider (µ1, µ2, µ3, µ4) ∈ (C∗)4 with only one resonance, for ex-
ample µp1µ

q
2 = µ3 with p, q ≥ 1, and such that (λ, µ1, µ2, µ3, µ4) has only level 1 resonances

with λ = µ4. Then
˜

K1 = ∅,

˜

K2 = {(0, p, q, 0, 0)}.

Recall that if n ≥ 2 and we take λ1, . . . , λn ∈ C
∗ not necessarily distinct, for any m ≥ 2

we put
ω̃λ1,...,λn

(m) = min
2≤|Q|≤m

Q6∈Resj(λ)

min
1≤j≤n

|λQ − λj |,

where Resj(λ) is the set of multi-indices Q ∈ N
n giving a resonance relation for λ = (λ1, . . . , λn)

relative to 1 ≤ j ≤ n, i.e., λQ−λj = 0. We also said that λ satisfies the reduced Brjuno condition

if there exists a strictly increasing sequence of integers {pν}ν≥0 with p0 = 1 such that

∑

ν≥0

p

−1
ν log ω̃λ1,...,λn

(pν+1)
−1

<∞.

If λ1, . . . , λn are the eigenvalues of dfO, we write ω̃f (m) for ω̃λ1,...,λn
(m).

We saw in Section 1.4.2 that the reduced Brjuno condition plays a main rôle in the study
of convergence in the linearization problem; hence it is natural to introduce the following new
case in the classification we presented in Definition 1.3.2.

Definition 2.1.2. Let f be a germ of biholomorphism of C
n fixing the origin O and let s ∈ N,

with 1 ≤ s ≤ n. The origin O is called a quasi-Brjuno fixed point of order s if dfO is diagonal-
izable and, denoting by λ the spectrum of dfO, we have:

(i) λ has only level s resonances;

(ii) λ satisfies the reduced Brjuno condition.
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We say that the origin is a quasi-Brjuno fixed point if there exists 1 ≤ s ≤ n such that it is a
quasi-Brjuno fixed point of order s.

Note that we are not assuming anything on the modulus of the eigenvalues of dfO (and,
in this sense, this case is transversal to the other ones). In fact, as we saw in the proof of

Theorem 1.4.12, we need to estimate the divisors |λQ − λj | as Q varies in the non-resonant
multi-indices and j varies in the coordinates.

Since we assume that the differential dfO is diagonalizable, possibly after a linear change
of coordinates, we can write

f(z) = Λz + ̂

f(z),

where Λ = Diag(λ1, . . . , λn), and ̂

f vanishes up to first order at O ∈ C
n.

As we remarked in Section 1.6.1, the linear map z 7→ Λz has a very simple structure.
For instance, for any subset λ1, . . . , λs of eigenvalues with 1 ≤ s ≤ n, the direct sum of the
corresponding eigenspaces obviously is an invariant manifold on which this map acts linearly
with these eigenvalues.

In this chapter we would like to extend Pöschel Theorem 1.6.3 to get a complete lineariza-
tion in a neighbourhood of the origin. In fact, as we shall see in the next section, a germ with
a quasi-Brjuno fixed point satisfies the hypotheses of Pöschel Theorem 1.6.3, and we shall see
in Sections 2.4 and 2.5 how to get a complete holomorphic linearization, adding a particular
invariant manifold that will be introduced in Section 2.3.

In the rest of the chapter we shall denote by ‖ · ‖ the norm ‖ · ‖∞; but we could also
had used the norm ‖ · ‖2 thanks to the equivalence of such norms. We shall also need the
following notation: if g: Cn → C is a holomorphic function with g(O) = 0 (or a formal power
series without constant term), and z = (x, y) ∈ C

n with x ∈ C
s and y ∈ C

n−s, we shall denote
by ordx(g) the maximum positive integer m such that g belongs to the ideal (x1, · · · , xs)

m.

2.2 Quasi-Brjuno condition vs partial Brjuno condition

As announced in this section we shall explain the relations between the quasi-Brjuno condition
and the partial Brjuno condition.

Recall that if n ≥ 2, we take λ1, . . . , λn ∈ C
∗ not necessarily distinct, we fix 1 ≤ s ≤ n,

and, letting λ = (λ1, . . . , λs), for any m ≥ 2 we put

ωs(m) = min
2≤|K|≤m

min
1≤j≤n

|λK − λj |,

where λK = λ

k1

1 · · ·λks
s . We then said that λ = (λ1, . . . , λn) satisfies the partial Brjuno con-

dition of order s if there exists a strictly increasing sequence of integers {pν}ν≥0 with p0 = 1
such that

∑

ν≥0

p

−1
ν log ωs(pν+1)

−1
<∞.

Notice that whereas it is always possible to introduce the reduced Brjuno condition, the
partial Brjuno condition makes sense only when there are no resonant multi-indices Q ∈ N

n,
with |Q| ≥ 2 and qs+1 = . . . = qn = 0. Anyway, when we have only level s resonance, we can
deal with these two condition at the same time.
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Remark 2.2.1. If λ has only level s resonances, then we have

ω̃λ1,...,λn
(m) = min

2≤|Q|≤m
min

{

min
1≤j≤n

q1+···+qs≥2

|λQ − λj |, min
1≤j≤n−s

q1+···+qs=1

|λQ − λs+j |

}

,

therefore

ω̃λ1,...,λn
(m) = min







ωs(m), min
2≤|Q|≤m

(qs+1,...,qn) 6=O

{

min
1≤j≤n

q1+···+qs≥2

|λQ − λj |, min
1≤j≤n−s

q1+···+qs=1

|λQ − λs+j |

}







,

so it is obvious that, since ω̃λ1,...,λn
(m) ≤ ωs(m) for every m ≥ 2, the reduced Brjuno condition

implies the partial Brjuno condition of order s. A partial converse is the following

Lemma 2.2.2. Let n ≥ 2 and let λ1, . . . , λn ∈ C
∗ be not necessarily distinct. Let 1 ≤ s ≤ n be

such that λ = (λ1, . . . , λn) has only level s resonances. Then, if there exists a strictly increasing

sequence of integers {pν}ν≥0 with p0 = 1 such that
∑

ν≥0

p

−1
ν log ωs(pν+1)

−1
<∞,

(i.e., λ satisfies the partial Brjuno condition of order s), and there exist k ∈ N and α ≥ 1 such

that

pν > k ⇒ ω̃λ1,...,λn
(pν − k) ≥ ωs(pν)

α
,

then λ satisfies the reduced Brjuno condition.

Proof. Let q0 = p0 and qj = pν0+j − k for j ≥ 1, where ν0 is the minimum index such
that pν > k for all ν ≥ ν0. Then we have
∑

ν≥0

q

−1
ν log ω̃λ1,...,λn

(qν+1)
−1 ≤ α

∑

ν≥0

q

−1
ν log ωs(qν+1 + k)−1

= αp

−1
0 log ωs(pν0+1)

−1 + α

∑

ν≥ν0+2

pν

pν − k

p

−1
ν logωs(pν+1)

−1

≤ 2α
∑

ν≥0

p

−1
ν logωs(pν+1)

−1

<∞,

and we are done.

Remark 2.2.3. Suppose that λ has only level s resonances. Recall that a sequence {am} is
said to be Diophantine of exponent τ > 1 if there exist γ, γ′ > 0 so that γ′m−β ≥ am ≥ γm

−β

(see also [Car], [G] and [St3]). Then if ω̃λ1,...,λn
(m) is Diophantine of exponent β > 1, and

if ωs(m) is Diophantine of exponent ε > 1, there always exist α ≥ 1 and δ > 0 for which

ω̃λ1,...,λn
(m) ≥ γm

−β ≥ δm

−εα ≥ ωs(m)α,

and thus the hypothesis of Lemma 2.2.2 is satisfied with k = 0.
More in general, if we have

∀m ≥ k + 2 ω̃λ1,...,λn
(m− k) ≥ ωs(m)α

for some k ∈ N and α ≥ 1, the hypothesis of Lemma 2.2.2 is obviously satisfied. For example
if λ1, . . . , λs ∈ R are positive and λs+1, . . . , λn ∈ {−1,+1} then it is easy to verify that

∀m ≥ 3 ω̃λ1,...,λn
(m− 1) ≥ ωs(m).

Furthermore, if λs+1 = · · · = λn = 1 then ω̃λ1,...,λn
(m) = ωs(m), and so in this case the partial

Brjuno condition of order s coincides with the reduced Brjuno condition.
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2.3 Osculating manifolds

In this section we shall introduce a particular kind of invariant manifolds for germs of biholo-
morphisms that give us information on the properties of such germs, and that will be used in
proving our linearization result.

Let f be a germ of biholomorphism of C
n at a point which we may assume without loss

of generality to be the origin O, and let M be an f -invariant complex manifold through O

of codimension s, with 1 ≤ s ≤ n. In this situation, the differential df acts on the normal
bundle NM = TC

n
/TM .

Definition 2.3.1. Let f be a germ of biholomorphism of C
n fixing the origin O, and

let 1 ≤ s ≤ n. We will say that f admits an osculating manifold M of codimension s if
there is a germ of f -invariant complex manifold M at O of codimension s such that the normal
bundle NM of M admits a holomorphic flat (1, 0)-connection that commutes with df |NM

.

It is obvious that locally every holomorphic bundle admits a holomorphic flat (1, 0)-
connection (it suffices to take the trivial connection on a trivialization). Moreover, it is easy to
prove the following result, which has exactly the same proof as in the smooth case (adopting
for instance the argument in [BCS] pp. 272–274).

Proposition 2.3.1. Let π:E → M be a holomorphic vector bundle on a complex mani-

fold M and let ∇ be a holomorphic flat (1, 0)-connection. Then there are a local holomorphic

coordinate system about O and a local holomorphic frame of E in which all the connection

coefficients Γijk are zero.

In the particular case of the normal bundle we have the following useful result.

Lemma 2.3.2. Let M ⊂ C
n be a complex manifold of codimension s, 1 ≤ s ≤ n and let NM

be its normal bundle. Fix p ∈ M . Take a local holomorphic frame in a neighbourhood of p.

Then for every local holomorphic frame {V1, . . . , Vs} of NM we can find local holomorphic

coordinates (U, z) with z = (x, y), adapted to M (i.e., M ∩U = {x = 0}) such that, on U ∩M ,

Vj = π

(

∂

∂xj

)

for every j = 1, . . . , s, where π:TC
n → NM is the canonical projection.

Proof. Let us choose local holomorphic coordinates z̃ = (x̃, ỹ) centered at p adapted to M .
Then for every point (0, ỹ) ∈M there exists a non-singular matrix A(ỹ) = (aij(ỹ)), depending
holomorphically on ỹ, such that

Vj(ỹ) =
s
∑

i=1

aij(ỹ)π

(

∂

∂x̃i

)∣

∣

∣

∣

(0,ỹ)

.

Therefore, using the coordinates

xi =

s
∑

i=1

aij(ỹ)x̃i for i = 1, . . . , s,

yj = ỹj for j = 1, . . . , r,

we obtain the assertion.



72 Jasmin Raissy – Geometrical methods in the normalization of germs of biholomorphisms

Definition 2.3.2. Let f be a germ of biholomorphism of C
n fixing the origin O, and let M

be a germ of f -invariant complex manifold at O of codimension s, with 1 ≤ s ≤ n. We say
that a holomorphic flat (1, 0)-connection ∇ of the normal bundle NM of M is f -invariant if it
commutes with df |NM

.

Theorem 2.3.3. Let f be a germ of biholomorphism of C
n fixing the origin O, let M be a

germ of f -invariant complex manifold through O of codimension s, with 1 ≤ s ≤ n, and let ∇
be a holomorphic flat (1, 0)-connection of the normal bundle NM . Then ∇ is f -invariant if and

only if there exist local holomorphic coordinates z = (x, y) about O adapted to M in which f

has the form
x

′
i = λixi + εixi+1 + f

1
i (x, y) for i = 1, . . . , s,

y

′
j = µjyj + εs+jyj+1 + f

2
j (x, y) for j = 1, . . . , r = n− s,

(2.2)

where εi, εs+j ∈ {0, 1}, and

ordx(f
1
i ) ≥ 2,

for any i = 1, . . . , s.

Proof. If there exist local holomorphic coordinates z = (x, y) aboutO adapted toM , in which f
has the form (2.2) with ordx(f

1
i ) ≥ 2 for any i = 1, . . . , s, then it is obvious to verify that the

trivial holomorphic flat (1, 0)-connection is f -invariant.
Conversely, let ∇ be a holomorphic flat f -invariant (1, 0)-connection of the normal bun-

dle NM . Thanks to Proposition 2.3.1 and to Lemma 2.3.2 we can find local holomorphic
coordinates z = (x, y) adapted to M , in which all the connection coefficients Γijk with respect

to the local holomorphic frame {π( ∂
∂x1

), . . . , π( ∂
∂xs

)} of NM are zero. We may assume without

loss of generality, (up to linear changes of the coordinates we can assume that the linear part
of f is in Jordan normal form), that in such coordinates f has the form

x

′
i = λixi + εixi+1 + f

1
i (x, y) for i = 1, . . . , s,

y

′
j = µjyj + εs+jyj+1 + f

2
j (x, y) for j = 1, . . . , r,

where εi, εs+j ∈ {0, 1}. Moreover, since M = {x = 0} is f -invariant, we have

ordx(f
1
i ) ≥ 1.

Thanks to the f -invariance of ∇ we have

∇df ∂
∂yk

(

df |NM
π

(

∂

∂xj

))

= df |NM
∇ ∂

∂yk

π

(

∂

∂xj

)

for any j = 1, . . . , s and k = 1, . . . , r. Now the right-hand side vanishes, because in the chosen

coordinates we have ∇ ∂
∂yk

π

(

∂
∂xj

)

= 0. So, using Leibniz formula, we obtain

0 = ∇df ∂
∂yk

(

dfπ

(

∂

∂xj

))

= ∇df ∂
∂yk

(

s
∑

h=1

(

λhδhj + εhδh,j+1 +
∂f

1
h

∂xj

(0, y)

)

π

(

∂

∂xh

)

)

=

s
∑

h=1

(

λhδhj+εhδh,j+1+
∂f

1
h

∂xj

(0, y)

)

∇df ∂
∂yk

π

(

∂

∂xh

)

+

s
∑

h=1

df
∂

∂yk

(

∂f

1
h

∂xj

(0, y)

)

π

(

∂

∂xh

)

=

s
∑

h=1

df
∂

∂yk

(

∂f

1
h

∂xj

(0, y)

)

π

(

∂

∂xh

)

.

(2.3)
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Therefore we obtain

df
∂

∂yk

(

∂f

1
h

∂xj

(0, y)

)

= 0

for every j, h = 1, . . . , s and k = 1, . . . r, and, since df is invertible, this implies

∂

∂yk

(

∂f

1
h

∂xj

(0, y)

)

= 0

for every j, h = 1, . . . , s and k = 1, . . . r, that is

ordx(f
1
h) ≥ 2

for every h = 1, . . . , s, and this concludes the proof.

As a corollay of the previous result we obtain the following characterization of osculating
manifolds.

Corollary 2.3.4. Let f be a germ of biholomorphism of C
n fixing the origin O, and let

1 ≤ s ≤ n. Then f admits an osculating manifold M of codimension s such that f |M is

holomorphically linearizable if and only if there exist local holomorphic coordinates z = (x, y)
about O adapted to M in which f has the form

x

′
i = λixi + εixi+1 + f

1
i (x, y) for i = 1, . . . , s,

y

′
j = µjyj + εs+jyj+1 + f

2
j (x, y) for j = 1, . . . , r,

(2.4)

where εi, εs+j ∈ {0, 1}, and

ordx(f
1
i ) ≥ 2,

ordx(f
2
j ) ≥ 1,

(2.5)

for any i = 1, . . . , s and j = 1, . . . , r.

Proof. One direction is clear. Conversely, thanks to Theorem 2.3.3, the fact that M is osculat-
ing, is equivalent to the existence of local holomorphic coordinates z = (x, y) about O adapted
to M , in which f has the form (2.4) with ordx(f

1
i ) ≥ 2 for any i = 1, . . . , s.

Furthermore, f |M is linearizable; therefore there exists a local holomorphic change of
coordinate, tangent to the identity, and of the form

x̃ = x,

ỹ = Φ(y),

conjugating f to f̃ of the form (2.4) satisfying (2.5), as we wanted.

Then we could say that, if we write f as in (2.2), the hypothesis of f -invariance is equivalent
to ordx(f

1
i ) ≥ 1; f |M linearized is equivalent to ordx(f

2
j ) ≥ 1; osculating means that f1

i has no

terms of order 1 in x, that is, f1
i =

∑

h,k xhxkθ
hk
i (x, y).

Notice that in Theorem 2.3.3 and in Corollary 2.3.4, up to linear changes of coordinates,
we can always assume εi, εj ∈ {0, ε} instead of εi, εj ∈ {0, 1} for every ε > 0 small enough.

In the next section, we shall first prove a formal linearization result, and so we need the
formal analogue of Definition 2.3.1. We define a formal complex manifold M of codimension s

by means of an ideal of formal complex power series generated by s power series g1, . . . , gs such
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that their differentials at the origin dg1, . . . dgs are linearly independent (see also [BER] and

[BMR]). Denote by ̂

TCn the formal tangent bundle of C
n, that is the space of all formal vector

fields with complex coefficients. Then the formal tangent bundle ̂TM to M is well-defined as

the set of formal vector fields of ̂TCn vanishing on the ideal of formal power series generated

by g1, . . . , gs. The formal normal bundle ̂NM of M is then the quotient ̂TCn/̂TM . A formal

connection on the formal normal bundle is a formal map ̂∇: ̂TM × ̂

NM → ̂

NM which satisfies
the usual properties of a connection but in the formal category. Thus the following definitions
make sense.

Definition 2.3.3. Let f be a formal invertible transformation of C
n without constant term,

and let M be an f -invariant formal complex manifold of codimension s, with 1 ≤ s ≤ n. We

say that a formal flat (1, 0)-connection ̂∇ of the formal normal bundle ̂NM of M is f -invariant

if it commutes with df |
N̂M

.

Definition 2.3.4. Let 1 ≤ s ≤ n, and let f be a formal invertible transformation of C
n without

constant term. We will say that f admits a formal osculating manifold M of codimension s

if there is an f -invariant formal complex manifold M of codimension s such that the formal

normal bundle ̂NM of M admits a formal flat f -invariant (1, 0)-connection.

Then, for the formal normal bundle we can prove the formal analogue of Proposition 2.3.1
(using a formal solution of the parallel transport equation that can be easily computed) and
Lemma 2.3.2. We then have the following results, whose proofs are the formal rewritings of
the ones of Theorem 2.3.3 and Corollary 2.3.4, and hence we omit to report them here.

Theorem 2.3.5. Let f be a formal invertible transformation of C
n without constant term,

let M be an f -invariant formal complex manifold through O of codimension s, with 1 ≤ s ≤ n,

and let ̂∇ be a formal flat (1, 0)-connection of the formal normal bundle ̂NM . Then ̂∇ is f -

invariant if and only if there exist local formal coordinates z = (x, y) about O adapted to M

in which f has the form

x

′
i = λixi + εixi+1 + f

1
i (x, y) for i = 1, . . . , s,

y

′
j = µjyj + εs+jyj+1 + f

2
j (x, y) for j = 1, . . . , r,

(2.6)

where εi, εs+j ∈ {0, 1}, and

ordx(f
1
i ) ≥ 2,

for any i = 1, . . . , s.

Corollary 2.3.6. Let 1 ≤ s ≤ n, and let f be a formal invertible transformation of C
n without

constant term. Then f admits a formal osculating manifold M of codimension s such that f |M
is formally linearizable if and only if there exist local formal coordinates z = (x, y) about O

adapted to M in which f has the form

x

′
i = λixi + εixi+1 + f

1
i (x, y) for i = 1, . . . , s,

y

′
j = µjyj + εs+jyj+1 + f

2
j (x, y) for j = 1, . . . , r,

(2.7)

where εi, εs+j ∈ {0, 1}, and

ordx(f
1
i ) ≥ 2,

ordx(f
2
j ) ≥ 1,

(2.8)

for any i = 1, . . . , s and j = 1, . . . , r.
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2.4 Formal linearization

As announced at the beginning of the chapter, we first prove a formal linearization result.

Theorem 2.4.1. Let f be a formal invertible transformation of C
n without constant term

such that dfO is diagonalizable and the spectrum of dfO has only level s resonances, 1 ≤ s ≤ n.

Then f is formally linearizable if and only if it admits an osculating formal manifold of codi-

mension s such that f |M is formally linearizable.

Proof. If f is formally linearizable the assertion is obvious.
Conversely, using Corollary 2.3.6, we can choose formal local coordinates

(x, y) = (x1, . . . , xs, y1, . . . , yr)

such that, writing (x′, y′) = f(x, y), f is of the form

x

′
i = λixi + f

1
i (x, y) for i = 1, . . . , s,

y

′
j = µjyj + f

2
j (x, y) for j = 1, . . . , r,

where
ordx(f

1
i ) ≥ 2,

ordx(f
2
j ) ≥ 1.

Denote by Λ the diagonal matrix Diag(λ1, . . . , λs, µ1, . . . , µr). We would like to prove that a
formal solution ψ of

f ◦ ψ = ψ ◦ Λ (2.9)

exists of the form
xi = ui + ψ

1
i (u, v) for i = 1, . . . , s,

yj = vj + ψ

2
j (u, v) for j = 1, . . . , r,

where (u, v) = (u1, . . . , us, v1, . . . , vr) and ψ1
i and ψ2

j are formal power series with

ordu(ψ
1
i ) ≥ 2,

ordu(ψ
2
j ) ≥ 1.

Write f(z) = Λz + ̂

f(z) and ψ(w) = w + ̂

ψ(w), where z = (x, y) and w = (u, v). Then
equation (2.9) is equivalent to

̂

ψ ◦ Λ − Λ ̂ψ = ̂

f ◦ ψ. (2.10)

To obtain a formal solution, we first write

̂

ψ(w) =
∑

|Q|≥2

ψQw
Q
, ψQ ∈ C

n
,

where Q = (q1, . . . , qn), and

̂

f(z) =
∑

|L|≥2

fLz
L
, fL ∈ C

n
,
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where L = (l1, . . . , ln). Denoting ˜λ = (λ1, . . . , λs, µ1, . . . , µr) = (λ̃1, . . . , λ̃n), equation (2.10)
becomes

∑

|Q|≥2

AQψQw
Q =

∑

|L|≥2

fL





∑

|M |≥1

ψMw
M





L

, (2.11)

where
AQ = ˜λQIn − Λ.

The matrices AQ might not be invertible for some choice of Q due to the presence of res-
onances. We can write AQ = Diag(A1

Q, A
2
Q) and recall that having only level s resonances

means that det(A1
Q) = 0 if and only if

Q ∈ ˜

K1,

and det(A2
Q) = 0 if and only if

Q ∈ ˜

K2.

Moreover, from the hypotheses of the Theorem we have that f1
L = 0 for L in K1∪K2 and f2

L = 0
for L in K2, where

K1 = {L ∈ N
n : |L| ≥ 2, L = (0, . . . , 0, li, 0, . . . , 0, ls+1, . . . , ln), li = 1 and i ∈ {1, . . . , s}}

K2 = {L ∈ N
n : |L| ≥ 2, L = (0, . . . , 0, ls+1, . . . , ln)}.

Notice that ˜K1 ⊆ K1 and ˜

K2 ⊆ K2. For each j in {1, . . . , s}, let us denote by K

j
1 the set

{L ∈ N
n : |L| ≥ 2, L = (0, . . . , 0, lj , 0, . . . , 0, ls+1, . . . , ln), lj = 1}, so that K1 = ∪sj=1K

j
1 . We

look for a solution of (2.9) with ψ1
Q = 0 for Q ∈ K1 ∪K2 and ψ2

Q = 0 for Q ∈ K2.

To do so, let us write (2.11) in a more explicit way: for i = 1, . . . , s

∑

|Q|≥2

Q6∈K1∪K2

(˜λQ − λi)ψ
1
Q,iw

Q =
∑

|L|≥2

L6∈K1∪K2

f

1
L,i





∑

|M |≥1

ψMw
M





L

, (2.12)

and for j = 1, . . . , r
s
∑

p=1

∑

|Q|≥2

Q∈K
p

1

(˜λQ − µj)ψ
2
Q,jw

Q +
∑

|Q|≥2

Q6∈K1∪K2

(˜λQ − µj)ψ
2
Q,jw

Q

=
s
∑

p=1

∑

|L|≥2

L∈K
p

1

f

2
L,j





∑

|M |≥1

ψMw
M





L

+
∑

|L|≥2

L6∈K1∪K2

f

2
L,j





∑

|M |≥1

ψMw
M





L

.

(2.13)
Now, it is obvious that there are no terms wQ with Q ∈ K2 in either side of (2.12) and of

(2.13), and we can obtain terms wQ with Q ∈ K1 in (2.13) only from terms with L ∈ K1. In
fact, if L ∈ K

h
1 then





∑

|M |≥1

ψMw
M





L

=

(

uh +
∑

p,q

upuqθ
pq
h (u, v)

)





r
∏

j=1

(

vj +
∑

p

upθ
p
j (u, v)

)ls+j





= uhv
ls+1

1 · · · vlnr +
∑

p,q

upuqχ
pq(u, v)

= w

L +
∑

p,q

upuqχ
pq(u, v).
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Therefore for j = 1, . . . , r, we have

s
∑

p=1

∑

|Q|≥2

Q∈K
p

1

(˜λQ − µj)ψ
2
Q,jw

Q =

s
∑

p=1

∑

|L|≥2

L∈K
p

1

f

2
L,j





∑

|M |≥1

ψMw
M





L

=
s
∑

p=1

∑

|L|≥2

L∈K
p

1

f

2
L,j





w

L +
∑

a,b

uaubχ
ab(u, v)





from which we conclude that for Q ∈ K

p
1 and j = 1, . . . , r we have

ψ

2
Q,j = f

2
Q,j(

˜

λ

Q − µj)
−1
. (2.14)

The remaining ψQ with Q 6∈ K1 ∪K2 are easily determined by recursion, as usual.

2.5 Holomorphic linearization

Now we can prove the main result of this chapter.

Theorem 2.5.1. Let f be a germ of a biholomorphism of C
n having the origin O as a quasi-

Brjuno fixed point of order s, with 1 ≤ s ≤ n. Then f is holomorphically linearizable if and

only if it admits an osculating manifold M of codimension s such that f |M is holomorphically

linearizable.

Proof. If f is linearizable the assertion is obvious.
Conversely, we already know, thanks to the previous result, that f is formally linearizable,

(notice that, thanks to Corollary 2.3.4, the changes of coordinates needed before finding ψ are
holomorphic because now M is a complex manifold). Since the spectrum of dfO satisfies the
reduced Brjuno condition, the thesis follows from our Theorem 1.4.12, but we report here the
proof in this particular case for the sake of completeness.

To prove the convergence of the formal conjugation ψ in a neighbourhood of the origin it
suffices to show that

sup
Q

1

|Q|
log ‖ψQ‖ <∞. (2.15)

Since f is holomorphic in a neighbourhood of the origin, there exists a positive number ρ such
that ‖fL‖ ≤ ρ

|L| for |L| ≥ 2. The functional equation (2.9) remains valid under the linear
change of coordinates f(z) 7→ σf(z/σ), ψ(w) 7→ σψ(w/σ) with σ = max{1, ρ2}. Hence we may
assume that

∀|L| ≥ 2 ‖fL‖ ≤ 1.

It follows from (2.11) and (2.14) that

‖ψQ‖ ≤











ε

−1
Q

∑

Q1+···+Qν=Q

ν≥2

‖ψQ1
‖ · · · ‖ψQν

‖, |Q| ≥ 2, Q 6∈ K1 ∪K2,

ε

−1
Q , |Q| ≥ 2, Q ∈ K1,

(2.16)
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where

εQ =











min
1≤i≤n

|˜λQ − λ̃i|, Q 6∈ K1 ∪K2,

min
1≤h≤r

|˜λQ − µh|, Q ∈ K1.

We can define, inductively, for j ≥ 2

αj =
∑

j1+···+jν=j

ν≥2

αj1 · · ·αjν ,

and for |Q| ≥ 2

δQ =















ε

−1
Q max

Q1+···+Qν=Q

ν≥2

δQ1
· · · δQν

, Q 6∈ K1 ∪K2,

ε

−1
Q , Q ∈ K1,

0, Q ∈ K2,

with α1 = 1 and δE = 1, where E is any integer vector with |E| = 1. Then, by induction, we
have that

∀|Q| ≥ 1 ‖ψQ‖ ≤ α|Q|δQ.

Therefore, to establish (2.15), it suffices to prove analogous estimates for αj and δQ.

It is easy to estimate αj . Let α =
∑

j≥1 αjt
j . We have

α− t =
∑

j≥2

αjt
j

=
∑

j≥2





∑

h≥1

αht
h





j

=
α

2

1 − α

.

This equation has a unique holomorphic solution vanishing at zero

α =
t+ 1

4

(

1 −

√

1 −
8t

(1 + t)2

)

,

defined for |t| small enough. Hence,

sup
j

1

j

log αj <∞,

as we want.

To estimate δQ we have to take care of small divisors. First of all, for each Q 6∈ K2

with |Q| ≥ 2 we can associate to δQ a decomposition of the form

δQ = ε

−1
L0
ε

−1
L1

· · · ε−1
Lp
, (2.17)
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where L0 = Q, |Q| > |L1| ≥ · · · ≥ |Lp| ≥ 2 and Lj 6∈ K2 for all j = 1, . . . , p and p ≥ 1.
If Q ∈ K1 it is obvious by the definition of δQ. If Q 6∈ K1 ∪ K2, choose a decomposi-
tion Q = Q1 + · · · + Qν such that the maximum in the expression of δQ is achieved. Ob-

viously, Qj doesn’t belong to K2 for all j = 1, . . . , ν. We can then express δQ in terms of ε−1
Qj

and δQ′
j

with |Q′
j | < |Qj |. Carrying on this process, we eventually arrive at a decomposition

of the form (2.17). Furthermore,

εQ = |˜λQ − λ̃iQ |, |Q| ≥ 2, Q 6∈ K2,

the index iQ being chosen in some definite way (of course, if Q ∈ K1 then iQ ∈ {s+ 1, . . . , n}).
We can define

N

j
m(Q), m ≥ 2, j ∈ {1, . . . , n},

to be the number of factors ε−1
L in δQ, (L = L0, . . . , Lq) satisfying

εL < θ ω̃f (m), and iL = j,

where θ is the positive real number satisfying

4θ = min
1≤h≤n

|λ̃h| ≤ 1.

The last inequality can always be satisfied by replacing f by f

−1 if necessary. Then we also
have ω̃f(m) ≤ 2, and in this notation ω̃f (m) can be expressed as

ω̃f (m) = min
2≤|Q|≤m

Q6∈K2

εQ, m ≥ 2.

Notice that ω̃f(m) is non-increasing with respect to m and under our assumptions ω̃f (m)
tends to zero as m goes to infinity.

Lemma 2.5.2. For m ≥ 2, 1 ≤ j ≤ n and Q 6∈ K2,

N

j
m(Q) ≤







0, |Q| ≤ m,

2|Q|

m

− 1, |Q| > m.

Proof. The proof is done by induction. Since we fix m and j throughout the proof, we write N
instead of N j

m.
For |Q| ≤ m,

εQ ≥ ω̃f (|Q|) ≥ ω̃f (m) > θ ω̃f (m),

hence N(Q) = 0.
Assume now that |Q| > m. Then 2|Q|/m−1 ≥ 1. If Q ∈ K1 then, by definition, δQ = ε

−1
Q ,

so N(Q) can only be equal to 0 or 1 and we are done.
Let us suppose Q 6∈ K1 ∪K2. Write

δQ = ε

−1
Q δQ1

· · · δQν
, Q = Q1 + · · · +Qν , ν ≥ 2,

with |Q| > |Q1| ≥ · · · ≥ |Qν |, and consider the following different cases. Note thatQ−Q1 6∈ K2,
otherwise the other Qh’s would be in K2.



80 Jasmin Raissy – Geometrical methods in the normalization of germs of biholomorphisms

Case 1: εQ ≥ θ ω̃f (m) and iQ arbitrary, or εQ < θ ω̃f (m) and iQ 6= j. Then

N(Q) = N(Q1) + · · · +N(Qν),

and applying the induction hypotheses to each term we get N(Q) ≤ (2|Q|/m) − 1.

Case 2: εQ < θ ω̃f (m) and iQ = j. Then

N(Q) = 1 +N(Q1) + · · · +N(Qν),

and there are three different cases.
Case 2.1: |Q1| ≤ m. Then

N(Q) = 1 <
2|Q|

m

− 1,

as we want.
Case 2.2: |Q1| ≥ |Q2| > m. Then there is ν′ such that 2 ≤ ν

′ ≤ ν and |Qν′ | > m ≥ |Qν′+1|,
and we have

N(Q) = 1 +N(Q1) + · · · +N(Qν′) ≤ 1 +
2|Q|

m

− ν

′ ≤
2|Q|

m

− 1.

Case 2.3: |Q1| > m ≥ |Q2|. Then

N(Q) = 1 +N(Q1),

and there are three different cases.
Case 2.3.1: iQ1

6= j. Then N(Q1) = 0 and we are done.
Case 2.3.2: |Q1| ≤ |Q| −m and iQ1

= j. Then

N(Q) ≤ 1 + 2
|Q| −m

m

− 1 <
2|Q|

m

− 1.

Case 2.3.3: |Q1| > |Q|−m and iQ1
= j. The crucial remark is that ε−1

Q1
gives no contribute

to N(Q1), as shown in the next lemma.

Lemma 2.5.3. If Q > Q1 with respect to the lexicographic order, Q, Q1 and Q−Q1 are not

in K2, iQ = iQ1
= j and

εQ < θ ω̃f (m) and εQ1
< θ ω̃f (m),

then |Q−Q1| = |Q| − |Q1| ≥ m.

Proof. Before we proceed with the proof, notice that the equality |Q − Q1| = |Q| − |Q1| is
obvious since Q > Q1.

Since we are supposing εQ1
= |˜λQ1 − λ̃j | < θ ω̃f (m), we have

|˜λQ1 | > |λ̃j | − θ ω̃f(m)

≥ 4θ − 2θ = 2θ.

Let us suppose by contradiction |Q−Q1| = |Q| − |Q1| < m. By assumption, it follows that

2θ ω̃f (m) > εQ + εQ1

= |˜λQ − λ̃j | + |˜λQ1 − λ̃j |

≥ |˜λQ − ˜λQ1 |

≥ |˜λQ1 | |˜λQ−Q1 − 1|

≥ 2θ ω̃f(|Q−Q1| + 1)

≥ 2θ ω̃f(m),

which is impossible.
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Using Lemma 2.5.3, case 1 applies to δQ1
and we have

N(Q) = 1 +N(Q11
) + · · · +N(Q1ν1

),

where |Q| > |Q1| > |Q11
| ≥ · · · ≥ |Q1ν1

| and Q1 = Q11
+ · · ·+Q1ν1

. We can do the analysis of
case 2 again for this decomposition, and we finish unless we run into case 2.3.3 again. However,
this loop cannot happen more than m+1 times and we have to finally run into a different case.
This completes the induction and the proof of Lemma 2.5.2.

Since the origin is a quasi-Brjuno fixed point of order s, there exists a strictly increasing
sequence {pν}ν≥0 of integers with p0 = 1 and such that

∑

ν≥0

p

−1
ν log ω̃f (pν+1)

−1
<∞. (2.18)

Since δQ = 0 for Q ∈ K2, we have to estimate only

1

|Q|
log δQ =

p
∑

j=0

1

|Q|
log ε−1

Lj
, Q 6∈ K2.

By Lemma 2.5.2,

card
{

0 ≤ j ≤ p : θ ω̃f (pν+1) ≤ εLj
< θ ω̃f (pν)

}

≤ N

1
pν

(Q) + · · ·Nn
pν

(Q)

≤
2n|Q|

pν

for ν ≥ 1. It is also easy to see from the definition of δQ that the number of factors ε−1
Lj

is

bounded by 2|Q| − 1. In particular,

card
{

0 ≤ j ≤ p : θ ω̃f(p1) ≤ εlj

}

≤ 2n|Q| =
2n|Q|

p0
.

Then,
1

|Q|
log δQ ≤ 2n

∑

ν≥0

p

−1
ν log(θ−1

ω̃f(pν+1)
−1)

= 2n





∑

ν≥0

p

−1
ν log ω̃f (pν+1)

−1 + log(θ−1)
∑

ν≥0

p

−1
ν





.

(2.19)

Since ω̃f (m) tends to zero monotonically as m goes to infinity, we can choose some m such
that 1 > ω̃f(m) for all m > m, and we get

∑

ν≥ν0

p

−1
ν ≤

1

log ω̃f(m)−1

∑

ν≥ν0

p

−1
ν log ω̃f (pν+1)

−1
,

where ν0 verifies the inequalities pν0−1 ≤ m < pν0 . Thus both series in parentheses in (2.19)
converge thanks to (2.18). Therefore

sup
Q

1

|Q|
log δQ <∞

and this concludes the proof.
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2.6 Necessity of the hypotheses

Roughly speaking, we have seen that having only level s resonances and the existence of the
osculating manifold on which f is holomorphically linearizable take cares of the resonances in
the µj ’s and give the formal linearization. Under these hypotheses the partial Brjuno condition
of order s holds, so we have a partial holomorphic linearization given by Pöschel Theorem 1.6.3,
and the reduced Brjuno condition glues the formal linearization and the partial holomorphic
linearization so to get a global holomorphic linearization.

We shall now discuss the hypotheses of Theorem 2.5.1.
Remark 2.6.1. Notice that the osculating hypothesis on the f -invariant manifold is necessary.

In fact, let us take a look at the following example in C
2. Let f be given by

x

′ = λ(1 + y)x+ x

2

y

′ = y

with (λ, 1) satisfying the Brjuno condition of order 1 (in particular λ is not a root of unity). This
germ is not linearizable. In fact, let gy(x) = λ(1+y)x+x2, so we can write f(x, y) = (gy(x), y).
A linearization for f is a germ of biholomorphism ψ = (ψ1, ψ2) fixing the origin, tangent to
the identity, and such that

(

gψ2(x,y)(ψ1(x, y)), ψ2(x, y)
)

=
(

ψ1(λx, y), ψ2(λx, y)
)

.

This last equality implies ψ2 ≡ ψ2(y) and gψ2(y)(ψ1(x, y)) = ψ1(λx, y). Composing on the right

with ψ−1
2 and setting hy(x) = ψ1(x, ψ

−1
2 (y)), we have

gy

(

hy(x)
)

= hy(λx). (2.20)

From (2.20) we deduce that hy(0) ∈ Fix(gy) = {0, 1 − λ(1 + y)}. Now, h0(0) = 0; hence, by
continuity hy(0) = 0 for |y| small enough, and so g

′
y(0)h

′
y(0) = λh

′
y(0) for |y| small enough.

But h′0(0) = 1 6= 0; therefore λ(1 + y) = g

′
y(0) = λ for |y| small enough, which is impossible.

Since f is not linearizable it cannot admit an osculating invariant manifold of codimension 1,
even if, obviously, the manifold {x = 0} is f -invariant, and f is linear there.

Remark 2.6.2. The reduced Brjuno condition and the hypothesis f holomorphically lineariz-

able on the osculating manifold are necessary. Consider the following example in C
n for n ≥ 2.

Let f be a biholomorphism of C
n, fixing the origin, given by

x

′
i = λixi + f

i
i (x, y) for i = 1, . . . , n − 1,

y

′ = µy + y

2
,

(2.21)

with ordx(f
1
i ) ≥ 2 for every i = 1, . . . , n − 1, (λ1, . . . , λn−1, µ) non resonant, and µ = e

2πθ

with θ ∈ R \ Q not a Brjuno number. Then M = {x = 0} is an osculating manifold of codi-
mension n − 1, but (λ1, . . . , λn−1, µ) does not satisfy the reduced Brjuno condition (which,
since we have no resonances, coincides with the usual Brjuno condition). Furthermore, thanks
to Yoccoz’s Theorem [Y2], f |M is not holomorphically linearizable. This germ is not holo-
morphically linearizable. In fact, assume by contradiction that ψ is a holomorphic lineariza-

tion. Then ˜

M = ψ(M) = {ψ−1
1 (x̃, ỹ) = 0, . . . , ψ−1

n−1(x̃, ỹ) = 0} is an osculating manifold of

codimension n − 1 for f̃(x̃, ỹ) = ψ ◦ f ◦ ψ−1 ≡ Diag(λ1, . . . , λn−1, µ)(x̃, ỹ). Thanks to the
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implicit function Theorem there exist n − 1 holomorphic functions χ1(ỹ), . . . , χn−1(ỹ), such

that M̃ = {x̃1 = χ1(ỹ), . . . , x̃n−1 = χn−1(ỹ)}. The f̃ -invariance of ˜M yields

λiχi(ỹ) = χ(µỹ) for i = 1, . . . , n− 1,

and this is equivalent, writing χi(ỹ) =
∑

m≥1 χ
i
mỹ

m, to

∑

m≥1

λiχ
i
mỹ

m =
∑

m≥1

χ

i
mµ

m
ỹ

m
,

which implies χim ≡ 0 for every i = 1, . . . , n − 1 and m ≥ 0, because (λ1, . . . , λn−1, µ) is not

resonant. Then ˜M = {x̃ = 0} and, since f̃ |
M̃

is linear, we have a holomorphic linearization

of f |M , contradiction.

2.7 Final remarks

We can obtain many of the result recalled in Chapter 1 as corollaries of our Theorems. If there
are no resonances Theorem 2.4.1 with s = n yields Theorem 1.3.24. If there are no resonances
and the origin is an attracting [resp., repelling] fixed point then Theorem 2.5.1 with s = n

yields Theorem 1.4.1 because the Brjuno condition is automatically satisfied.

Our result can be also compared with Theorem 1.6.4 obtained by Nishimura in [Ni]. The
hypotheses of Nishimura are slightly different from ours, and, in fact, he does not prove a
true linearization theorem. However, his result becomes a linearization result when C(y) is a
constant matrix, which is equivalent to requiring that Y is an osculating fixed manifold. In
this situation our result can be seen as a generalization of Theorem 1.6.4 in the case of dfO
diagonalizable. In fact while he needs an osculating fixed manifold and a strong hypothesis
on the modulus of the eigenvalues, we only need an osculating manifold on which our germ is
holomorphically linearizable and the origin as a quasi-Brjuno fixed point of order s.

Also Theorem 1.4.15 obtained by Rong in [Ro1] can be seen as a particular case of
Theorem 2.5.1. In fact, if we are in the hypotheses of Rong, our hypotheses are automat-
ically verified: M is an osculating fixed manifold thanks to the hypothesis Λs(y) ≡ Λs for
all p ∈ M , and the hypotheses on the eigenvalues follow immediately from the fact that a n-
tuple λ = (λ1, . . . , λs, 1, . . . , 1) ∈ (C∗)n satisfies the partial Brjuno condition of order s if and
only if (λ1, . . . , λs) satisfies the Brjuno condition, and from Remark 2.2.3.

A similar topic is studied in [Sto]. However, his results are not comparable with ours,
because his notion of “linearization modulo an ideal” is not suitable for producing a full lin-
earization result except when there are no resonances at all, whereas in our result we explicitly
admit some resonances.

What it is new in our result is that we are not assuming anything on the modulus of the
eigenvalues, so we are really dealing with the mixed case. In fact we are allowing cases in which
there are some eigenvalues with modulus greater than 1, some eigenvalues with modulus 1, and
the remaining eigenvalues with modulus less than 1. Finally, our Theorem applies in cases not
covered by the previous results, as shown by Remark 2.2.3.

An application to global holomorphic dynamics of a particular case of Theorem 2.5.1 is
given by Bedford and Kim in [BK].
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3

Commuting with a linearizable object

In this chapter we shall show how commuting with a linearizable germ gives us infor-
mation on the germs that can be conjugated to a given one. We shall then deal with
the simultaneous linearization problem, proving that, given f1, . . . , fm, (with m ≥ 2)
germs of biholomorphisms of C

n fixing the origin, with (df1)O diagonalizable and such
that f1 commutes with fh for any h = 2, . . . ,m, under certain arithmetic conditions
on the eigenvalues of (df1)O and some restrictions on their resonances, f1, . . . , fm

are simultaneously holomorphically linearizable if and only if there exists a particular
complex manifold invariant under f1, . . . , fm. Then we shall see that if a germ of
biholomorphism of C

n, fixing the origin, commutes with a torus action, then we get
the existence of a holomorphic linearization or of a holomorphic normalization of f .

The main results of Section 3.2 and 3.3 are published in [R3], whereas the main
results of Section 3.4 and 3.5 are published in [R4].

3.1 Commuting with a linearizable germ

A general heuristic principle says that if a map f commutes with a map g, then some properties
of g might be inherited by f . Here we shall explore this heuristic principle in our setting. Our
first result is:

Theorem 3.1.1. Let f and g be two commuting germs of biholomorphisms of C
n fixing the ori-

gin, such that g is holomorphically linearizable and dgO is diagonalizable. Let µ = (µ1, . . . , µn)
be the spectrum of dgO. Then f is holomorphically conjugated to a germ containing only µ-

resonant monomials.

Proof. From the hypotheses there exists a germ of biholomorphism ψ of C
n fixing the origin

and such that ψ−1 ◦ g ◦ ψ = B is linear. Since dgO = B and it is diagonalizable, there exists
a linear map R such that R−1

BR = Diag(µ1, . . . , µn). Then, since f̃ := R

−1
ψ

−1 ◦ f ◦ ψR
commutes with M := Diag(µ1, . . . , µn) we get the thesis. In fact, writing

f̃j(z) =

n
∑

p=1

ajpzp +
∑

|Q|≥2

f̃Q,jz
Q
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for each coordinate j ∈ {1, . . . , n}, we have

f̃j(µ1z1, . . . , µnzn) =

n
∑

p=1

ajpµpzp +
∑

|Q|≥2

f̃Q,jµ
Q
z

Q

= µj





n
∑

p=1

ajpzp +
∑

|Q|≥2

f̃Q,jz
Q





= µj f̃j(z1, . . . , zn)

if and only if

ajp(µp − µj) = 0 and f̃Q,j(µ
Q − µj) = 0,

which imply the thesis.

We shall use the previous result to catch as more information as we can on the linearization
and on the normalization problems.

One possible generalization of the linearization problem is to ask when a given set of m ≥ 2
germs of biholomorphisms f1, . . . , fm of C

n at the same fixed point, which we may place at
the origin, are simultaneously holomorphically linearizable, i.e., there exists a local holomorphic
change of coordinates conjugating fh to its linear part for each h = 1, . . . ,m.

In Chapter 2 we found, under certain arithmetic conditions on the eigenvalues and some
restrictions on the resonances, a necessary and sufficient condition for holomorphic linearization.
In the next two sections we shall use that result to find a necessary and sufficient condition for
holomorphic simultaneous linearization.

A similar topic is studied in [Sto]. However, his results are not comparable with ours,
because his notion of “linearization modulo an ideal” is not suitable for producing a full lin-
earization result, except when there are no resonances at all, whereas in our result we explicitly
admit some resonances.

We shall need some notations and definition that we introduded in the previous chapters;
thus we recall them here for the benefit of the reader.

Let 1 ≤ s ≤ n. We say that λ = (λ1, . . . , λs, µ1, . . . , µr) ∈ (C∗)n has only level s resonances

if there are only two kinds of resonances:

(a) λ
Q = λh ⇐⇒ Q ∈ ˜

K1,

where

˜

K1 =

{

Q ∈ N
n
∣

∣

∣
|Q| ≥ 2,

s
∑

p=1

qp = 1 and µ

qs+1

1 · · ·µqn
r = 1

}

;

and

(b) λ
Q = µj ⇐⇒ Q ∈ ˜

K2,

where

˜

K2 =
{

Q ∈ N
n
∣

∣

∣
|Q| ≥ 2, q1 = · · · = qs = 0 and ∃j ∈ {1, . . . , r} s.t. µ

qs+1

1 · · · µqn
r = µj

}

.



3.2 Simultaneous osculating manifold 87

Let n ≥ 2 and let λ1, . . . , λn ∈ C
∗ be not necessarily distinct. For any m ≥ 2 put

ω̃(m) = min
2≤|Q|≤m

Q6∈Resj(λ)

min
1≤j≤n

|λQ − λj |,

where Resj(λ) is the set of multi-indices Q ∈ N
n, with |Q| ≥ 2, giving a resonance relation

for λ = (λ1, . . . , λn) relative to 1 ≤ j ≤ n, i.e., such that λQ − λj = 0. We say that λ satisfies

the reduced Brjuno condition if there exists a strictly increasing sequence of integers {pν}ν≥0

with p0 = 1 such that
∑

ν≥0

p

−1
ν log ω̃(pν+1)

−1
<∞.

Let f be a germ of biholomorphism of C
n fixing the origin O and let s ∈ N, with 1 ≤ s ≤ n.

The origin O is called a quasi-Brjuno fixed point of order s if dfO is diagonalizable and, denoting
by λ the spectrum of dfO, we have:

(i) λ has only level s resonances;

(ii) λ satisfies the reduced Brjuno condition.

We say that f has the origin as a quasi-Brjuno fixed point if there exists 1 ≤ s ≤ n such that
it is a quasi-Brjuno fixed point of order s.

In the previous chapter we saw that the osculating condition was necessary and sufficient to
extend a holomorphic linearization from an invariant submanifold to a whole neighbourhood of
the origin for a germ f1 of biholomorphism with a quasi-Brjuno fixed point. Using that result,
we shall first prove a simultaneous linearization result. Later on in this chapter we shall restrict
ourselves to study commutations with a particular kind of linearizable object: torus actions.

We recall the following notation from the previous chapter: if g: Cn → C is a holomorphic
function with g(O) = 0, and z = (x, y) ∈ C

n with x ∈ C
s and y ∈ C

n−s, we shall denote
by ordx(g) the maximum positive integer m such that g belongs to the ideal 〈x1, · · · , xs〉

m.
Furthermore, we shall say that the local coordinates z = (x, y) are adapted to the complex
submanifold M if in those coordinates M is given by {x = 0}.

3.2 Simultaneous osculating manifold

We introduced osculating manifolds in the previous chapter. A germ f of biholomorphism of C
n

fixing the origin O admits an osculating manifold M of codimension 1 ≤ s ≤ n if there is a germ
of f -invariant complex manifold M at O of codimension s such that the normal bundle NM

of M admits a holomorphic flat (1, 0)-connection that commutes with df |NM
. Next definition

is the natural extension of this object to the case of simultaneous linearization.

Definition 3.2.1. Let f1, . . . , fm be m germs of biholomorphisms of C
n, fixing the origin,

with m ≥ 2, and let M be a germ of complex manifold at O of codimension 1 ≤ s ≤ n,
and fh-invariant for each h = 1, . . . ,m. We say that M is a simultaneous osculating manifold

for f1, . . . , fm if there exists a holomorphic flat (1, 0)-connection ∇ of the normal bundle NM

of M in C
n commuting with dfh|NM

for each h = 1, . . . ,m.

We shall need the following characterization of simultaneous osculating manifolds.

Proposition 3.2.1. Let f1, . . . , fm be m germs of biholomorphisms of C
n, fixing the origin,

with m ≥ 2, and let M be a germ of complex manifold at O of codimension 1 ≤ s ≤ n, and fh-

invariant for each h = 1, . . . ,m. Then M is a simultaneous osculating manifold for f1, . . . , fm
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if and only if there exist local holomorphic coordinates z = (x, y) about O adapted to M in

which fh has the form

x

′
i =

s
∑

p=1

a

(h)
i,p xp + ̂

f

(h)
i (x, y) for i = 1, . . . , s,

y

′
j = f

(h)
j (x, y) for j = 1, . . . , r = n− s,

(3.2)

with

ordx( ̂f
(h)
i ) ≥ 2,

for any i = 1, . . . , s and h = 1, . . . ,m.

Proof. If there exist local holomorphic coordinates z = (x, y) aboutO adapted toM in which fh

has the form (3.2) with ordx( ̂f
(h)
i ) ≥ 2 for any i = 1, . . . , s and h = 1, . . . ,m, then it is

obvious to verify that the trivial holomorphic flat (1, 0)-connection commutes with dfh|NM
for

each h = 1, . . . ,m.
Conversely, let ∇ be a holomorphic flat (1, 0)-connection of the normal bundle NM com-

muting with dfh|NM
for each h = 1, . . . ,m. It suffices to choose local holomorphic coordi-

nates z = (x, y) adapted to M in which all the connection coefficients Γi
jk with respect to

the local holomorphic frame {π( ∂
∂x1

), . . . , π( ∂
∂xs

)} of NM are zero (see Proposition 2.3.1 and

Lemma 2.3.2), and then the assertion follows immediately from the proof of Theorem 2.3.3. In
fact, in such coordinates, since M = {x = 0} is fh-invariant, fh has the form

x

′
i =

s
∑

p=1

a

(h)
i,p xp + ̂

f

(h)
i (x, y) for i = 1, . . . , s,

y

′
j = f

(h)
j (x, y) for j = 1, . . . , r = n− s,

with
ordx( ̂f

(h)
i ) ≥ 1.

Thanks to the hypotheses we have

∇dfh
∂

∂yk

(

dfh|NM
π

(

∂

∂xj

))

= dfh|NM
∇ ∂

∂yk

π

(

∂

∂xj

)

for any j = 1, . . . , s and h = 1, . . . , r. Now the right-hand side vanishes, because in the chosen

coordinates we have ∇ ∂
∂yk

π

(

∂
∂xj

)

= 0. So, using Leibniz formula, we obtain

0 = ∇dfh
∂

∂yk

(

dfh|NM
π

(

∂

∂xj

))

= ∇dfh
∂

∂yk

(

s
∑

i=1

(

s
∑

p=1

a

(h)
i,p δpj +

∂

̂

f

(h)
i

∂xj

(0, y)

)

π

(

∂

∂xi

)

)

=

s
∑

i=1

(

s
∑

p=1

a

(h)
i,p δpj +

∂

̂

f

(h)
i

∂xj

(0, y)

)

∇dfh
∂

∂yk

π

(

∂

∂xi

)

+

s
∑

i=1

dfh

∂

∂yk

(

∂

̂

f

(h)
i

∂xj

(0, y)

)

π

(

∂

∂xi

)

=

s
∑

i=1

dfh

∂

∂yk

(

∂

̂

f

(h)
i

∂xj

(0, y)

)

π

(

∂

∂xi

)

.

(3.3)
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Therefore we obtain

dfh

∂

∂yk

(

∂

̂

f

(h)
i

∂xj

(0, y)

)

= 0

for every j, i = 1, . . . , s and k = 1, . . . r, and, since dfh is invertible, this implies

∂

∂yk

(

∂

̂

f

(h)
i

∂xj

(0, y)

)

= 0

for every j, i = 1, . . . , s and k = 1, . . . r, that is

ordx( ̂f
(h)
i ) ≥ 2

for every i = 1, . . . , s, and this concludes the proof.

Similarly to Corollary 2.3.4, we have the following result.

Corollary 3.2.2. Let f1, . . . , fm be m germs of biholomorphisms of C
n, fixing the origin,

with m ≥ 2, and let M be a germ of complex manifold at O of codimension 1 ≤ s ≤ n, and fh-

invariant for each h = 1, . . . ,m. Then M is a simultaneous osculating manifold for f1, . . . , fm

such that f1|M , . . . , fm|M are simultaneously holomorphically linearizable if and only if there

exist local holomorphic coordinates z = (x, y) about O adapted to M in which fh has the form

x

′
i =

s
∑

p=1

a

(h)
i,p xh + ̂

f

(h)
, 1

i

(x, y) for i = 1, . . . , s,

y

′
j = f

(h)lin
j (x, y) + ̂

f

(h),2
j (x, y) for j = 1, . . . , r = n− s,

(3.4)

where f
(h)lin
j (x, y) is linear and

ordx( ̂f
(h),1
i ) ≥ 2,

ordx( ̂f
(h),2
j ) ≥ 1,

(3.5)

for any i = 1, . . . , s, j = 1, . . . , r and h = 1, . . . ,m.

Proof. One direction is clear.
Conversely, thanks to Proposition 3.2.1, the fact that M is a simultaneous osculating man-

ifold for f1, . . . , fm is equivalent to the existence of local holomorphic coordinates z = (x, y)

about O adapted to M , in which fh has the form (3.4) with ordx( ̂f
(h),1
i ) ≥ 2 for any i = 1, . . . , s

and h = 1, . . . ,m. Furthermore, f1|M , . . . , fm|M are simultaneously holomorphically lineariz-
able; therefore there exists a local holomorphic change of coordinate, tangent to the identity,
and of the form

x̃ = x,

ỹ = Φ(y),

conjugating fh to f̃h of the form (3.4) satisfying (3.5), for each h = 1, . . . ,m, as we wanted.

Remark 3.2.3. It is possible to give the formal analogous of Definition 3.2.1, and then to
prove a formal analogous of Proposition 3.2.1 and Corollary 3.2.2, exactly as in the previous
chapter.
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3.3 Simultaneous linearization in presence of resonances

As announced we shall use Theorem 2.5.1 we proved in the previous chapter. We report
here the statement for the sake of completeness.

Theorem 3.3.1. (Raissy, 2009 [R2]) Let f be a germ of a biholomorphism of C
n having the

origin O as a quasi-Brjuno fixed point of order s. Then f is holomorphically linearizable if and

only if it admits an osculating manifold M of codimension s such that f |M is holomorphically

linearizable.

We can now state and prove our simultaneous linearization result.

Theorem 3.3.2. Let f1, . . . , fm be m ≥ 2 germs of biholomorphisms of C
n, fixing the origin.

Assume that f1 has the origin as a quasi-Brjuno fixed point of order s, with 1 ≤ s ≤ n, and

that it commutes with fh for any h = 2, . . . ,m. Then f1, . . . , fm are simultaneously holo-

morphically linearizable if and only if there exists a germ of complex manifold M at O of

codimension s, invariant under fh for each h = 1, . . . ,m, which is a simultaneous osculat-

ing manifold for f1, . . . , fm and such that f1|M , . . . , fm|M are simultaneously holomorphically

linearizable.

Proof. Let M be a germ of complex manifold at O of codimension s, invariant under fh

for each h = 1, . . . ,m which is a simultaneous osculating manifold for f1, . . . , fm and such
that f1|M , . . . , fm|M are simultaneously holomorphically linearizable. Thanks to the hypotheses
we can choose local holomorphic coordinates

(x, y) = (x1, . . . , xs, y1, . . . , yr)

such that f1 is of the form

x

′
i = λ1,ixi + f

(1),1
i (x, y) for i = 1, . . . , s,

y

′
j = µ1,jyj + f

(1),2
j (x, y) for j = 1, . . . , r = n− s,

and, for h = 2, . . . ,m, each fh is of the form

x

′
i =

s
∑

p=1

a

(h)
i,p xp + f

(h),1
i (x, y) for i = 1, . . . , s,

y

′
j = f

(h)lin
j (x, y) + f

(h),2
j (x, y) for j = 1, . . . , r = n− s,

where f
(h)lin
j (x, y) is linear, and for each k = 1, . . . ,m

ordx(f
(k),1
i ) ≥ 2,

ordx(f
(k),2
j ) ≥ 1,

that is
f

(k),1
i (x, y) =

∑

|Q|≥2

|Q′|≥2

f

(k),1
Q,i x

Q′

y

Q′′

for i = 1, . . . , s,

f

(k),2
j (x, y) =

∑

|Q|≥2

|Q′|≥1

f

(k),2
Q,j x

Q′

y

Q′′

for j = 1, . . . , r,
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where Q = (Q′
, Q

′′) ∈ N
s × N

r = N
n and |Q| =

∑n
p=1 qp.

Thanks to Theorem 3.3.1 and its proof, we know that f1 is holomorphically linearizable
via a linearization ψ of the form

xi = ui + ψ

1
i (u, v) for i = 1, . . . , s,

yj = vj + ψ

2
j (u, v) for j = 1, . . . , r,

where (u, v) = (u1, . . . , us, v1, . . . , vr) and

ordu(ψ1
i ) ≥ 2,

ordu(ψ2
j ) ≥ 1,

that is

ψ

1
i (u, v) =

∑

|Q|≥2

|Q′|≥2

ψ

1
Q,iu

Q′

v

Q′′

for i = 1, . . . , s,

ψ

2
j (u, v) =

∑

|Q|≥2

|Q′|≥1

ψ

2
Q,ju

Q′

v

Q′′

for j = 1, . . . , r.

Since ψ−1 ◦ f1 ◦ ψ = Diag(λ1,1, . . . , λ1,s, µ1,1, . . . , µ1,r) commutes with f̃h = ψ

−1 ◦ fh ◦ ψ for
each h = 2, . . . ,m, and (λ1,1, . . . , λ1,s, µ1,1, . . . , µ1,r) has only level s resonances, it is immediate

to verify that f̃h has the form

u

′
i =

s
∑

p=1

a

(h)
i,p up +

∑

1≤l≤n

λ
1,l=λ1,i

ulf̃
(h),1
l,i (v) for i = 1, . . . , s,

v

′
j = f

(h)lin
j (u, v) + f̃

(h),2
j (v) for j = 1, . . . , r.

Moreover, since fh ◦ ψ = ψ ◦ f̃h, we have

s
∑

p=1

a

(h)
i,p

∑

|Q|≥2

|Q′|≥2

ψ

1
Q,pu

Q′

v

Q′′

+
∑

|Q|≥2

|Q′|≥2

f

(h),1
Q,i (u+ ψ

1(u, v))Q′

(v + ψ

2(u, v))Q′′

=
∑

1≤l≤n

λ
1,l=λ1,i

ulf̃
(h),1
l,i (v)

+
∑

|Q|≥2

|Q′|≥2

ψ

1
Q,i







s
∑

p=1

a

(h)
1,pup +

∑

1≤l≤n

λ
1,l=λ1,1

ulf̃
(h),1
l,1 (v)







q1

· · ·







s
∑

p=1

a

(h)
s,pup +

∑

1≤l≤n

λ
1,l=λ1,s

ulf̃
(h),1
l,s (v)







qs

× (f (h)lin(u, v) + f̃

(h),2(v))Q′′

(3.6)
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for i = 1, . . . , s, and

r
∑

q=1

b

(h)
j,q

∑

|Q|≥2

|Q′|≥1

ψ

2
Q,qu

Q′

v

Q′′

+
s
∑

p=1

c

(h)
j,p

∑

|Q|≥2

|Q′|≥2

ψ

1
Q,pu

Q′

v

Q′′

+
∑

|Q|≥2

|Q′|≥1

f

(h),2
Q,j (u+ ψ

1(u, v))Q′

(v + ψ

2(u, v))Q′′

= f̃

(h),2
j (v)

+
∑

|Q|≥2

|Q′|≥1

ψ

2
Q,j







s
∑

p=1

a

(h)
1,pup +

∑

1≤l≤n

λ
1,l=λ1,1

ulf̃
(h),1
l,1 (v)







q1

· · ·







s
∑

p=1

a

(h)
s,pup +

∑

1≤l≤n

λ
1,l=λ1,s

ulf̃
(h),1
l,s (v)







qs

× (f
(h)lin
j (u, v) + f̃

(h),2(v))Q′′

(3.7)

for j = 1, . . . , r.

Now, it is not difficult to verify that there are no terms of the form u

Q′

v

Q′′

with |Q′| = 1
in the left-hand side of (3.6), whereas in the right-hand side terms of this form are given only

by the sum of the ulf̃
(h),1
l,i (v); therefore it must be

f̃

(h),1
l,i (v) ≡ 0,

for all pairs l, i. Similarly, there are no terms of the form u

Q′

v

Q′′

with Q′ = O in the left-hand

side of (3.7), whereas, again, in the right-hand side terms of this form are given by f̃

(h),2
j (v)

only; so

f̃

(h),2
j (v) ≡ 0 for j = 1, . . . , r.

This proves that f̃h is linear for every h = 2, . . . ,m, that is ψ is a simultaneous holomorphic
linearization for f1, . . . , fm.

The other direction is clear. In fact, if f1 commutes with f2, . . . , fm and f1, . . . , fm are lin-
ear, then the eigenspace of f1 relative to the eigenvalues µ1,1, . . . , µ1,r is a simultaneous osculat-
ing manifold for f1, . . . , fm (and f1|M , . . . , fm|M are linear), where (λ1,1, . . . , λ1,s, µ1,1, . . . , µ1,r)
is the spectrum of f1.

Corollary 3.3.3. Let f1, . . . , fm be m ≥ 2 germs of commuting biholomorphisms of C
n,

fixing the origin. Assume that f1 has the origin as a quasi-Brjuno fixed point of order s,

with 1 ≤ s ≤ n. Then f1, . . . , fm are simultaneously holomorphically linearizable if and only

if there exists a germ of complex manifold M at O of codimension s, invariant under fh

for each h = 1, . . . ,m which is a simultaneous osculating manifold for f1, . . . , fm and such

that f1|M , . . . , fm|M are simultaneously holomorphically linearizable.

As a final corollary, taking s = n in Theorem 3.3.2, one gets

Corollary 3.3.4. Let f1, . . . , fm be m ≥ 2 germs of biholomorphisms of C
n, fixing the origin.

Assume that f1 has the origin as a Brjuno fixed point, and that it commutes with fh for

any h = 2, . . . ,m. Then f1, . . . , fm are simultaneously holomorphically linearizable.



3.4 Torus actions 93

3.4 Torus actions

As announced in Section 3.1, we shall now focus our attention on a particular object: torus
actions. Holomorphic torus actions are holomorphically linearizable thanks to Bochner linea-
rization theorem (which is usually proved in the real-analytic setting but also holds, with the
same proof, in the holomorphic setting; see [R1]).

Theorem 3.4.1. (Bochner, 1945 [Bo]) Let A be a local holomorphic action of a compact Lie

group on (M,p), where M is a holomorphic manifold and p ∈M . Then the action is holomor-

phically linearizable via a local holomorphic change of coordinates tangent to the identity.

Let A: Tr×M →M be a torus action on a complex manifold M , with a fixed point p0 ∈M

(that is A(x, p0) = Ax(p0) = p0 for all x ∈ T
r). The differential d(Ax)p0

:Tp0
M → Tp0

M is
then well-defined, and thus we have a linear torus action on Tp0

M . A linear torus action can
be thought of as a Lie group homomorphism A: Tr → Aut(Tp0

M), that is as a representation
of T

r on the vector space V = Tp0
M .

Characters and weights of T
r are well known. All characters of T

1 = S
1 = R/Z are of the

form

χθ(x) = exp(2πixθ)

with θ ∈ Z; hence the character group of T
1 is isomorphic to Z. Since T

r = T
1 × · · · × T

1, the
characters of T

r are obtained multiplying characters of T
1, that is they are of the form

χθ(x) = exp

(

2πi

r
∑

k=1

xkθ
k

)

,

with θ = (θ1
, . . . , θ

r) ∈ (Zr)∗, where the ∗ denotes the dual. In particular, θ should be thought
of as a row vector. The weights of T

r are then the differential of the characters computed at
the identity element, and thus are given by

wθ(v) = 2πi
r
∑

k=1

vkθ
k

with θ ∈ (Zr)∗ and v ∈ R
r. If we write θj = (θ1

j , . . . , θ
r
j ) ∈ (Zr)∗, then the matrix representation

of the linear action A in the eigenvector basis is given by

A(x) = diag
(

χθj
(x)
)

= diag

(

exp

(

2πi
r
∑

k=1

xkθ
k
j

))

.

We have then associated to our torus action a matrix Θ = (θk
j ) ∈ Mn×r(Z), whose columns

do not depend on the particular coordinates chosen to express the torus action, but can be
uniquely (up to order) recovered by the action itself.

Definition 3.4.1. The matrix Θ just defined is called the weight matrix of the torus action.

Definition 3.4.2. Let θ ∈ C
n and let j ∈ {1, . . . , n}. We say that a multi-index Q ∈ N

n,
with |Q| =

∑n
h=1 qh ≥ 2, gives an additive resonance relation for θ relative to the j-th coordinate

if

〈Q, θ〉 =

n
∑

h=1

qhθh = θj
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and we put
Res+j (θ) = {Q ∈ N

n | |Q| ≥ 2, 〈Q, θ〉 = θj}.

Recall that, given λ ∈ (C∗)n and let j ∈ {1, . . . , n}, we say that a multi-index Q ∈ N
n,

with |Q| ≥ 2, gives a multiplicative resonance relation for λ relative to the j-th coordinate if

λ

Q = λ

q1

1 · · · λqn
n = λj

and we put
Resj(λ) = {Q ∈ N

n | |Q| ≥ 2, λQ = λj}.

Remark 3.4.2. Given [ϕ] ∈ (C/Z)n, where [ · ]: Cn → (C/Z)n is the standard projection, the
set

{Q ∈ N
n | |Q| ≥ 2, 〈Q,ϕ〉 − ϕj ∈ Z}.

does not depend on the specific representative ϕ ∈ C
n but only on the class [ϕ], and so it is

well defined the set Resj([ϕ]) as

Resj([ϕ]) = {Q ∈ N
n | |Q| ≥ 2, [〈Q,ϕ〉 − ϕj ] = [0]}.

Remark 3.4.3. Notice that given λ ∈ (C∗)n, we can always find a unique [ϕ] ∈ (C/Z)n such
that λ = e

2πi[ϕ], i.e., λj = e

2πi[ϕj ] for every j = 1, . . . , n. Then Resj(λ) = Resj([ϕ]), thus
justifying the definitions and the terminology.

3.5 Commuting with torus actions

In this section we shall describe the relations between the existence of torus actions with
certain properties and the possibility of conjugating a given germ of biholomorphism to another
of a particular form.

Definition 3.5.1. Let θ(1)
, . . . , θ

(r) ∈ Z
n. We say that a monomial zQ

ej , with Q ∈ N
n, |Q| ≥ 1

and j ∈ {1, . . . , n}, is Θ-resonant, where Θ is the n×r matrix whose columns are θ(1)
, . . . , θ

(r),
if

〈Q, θ(k)〉 = θ

(k)
j

for every k = 1, . . . , r. In other words, zhej is Θ-resonant if θ
(k)
h = θ

(k)
j , for all k = 1, . . . , r,

and zQ
ej , with |Q| ≥ 2 is Θ-resonant, if

Q ∈ Rj(Θ) =

r
⋂

k=1

Res+j (θ(k)). (3.8)

We say that Θ has no resonances if Rj(Θ) = ∅ for every j = 1, . . . , n.

Definition 3.5.2. Let θ(1)
, . . . , θ

(r) ∈ Z
n and let T be a linear map of C

n. We say that the
matrix Θ, with columns θ(1)

, . . . , θ

(r), is compatible with T if and only if we can write T in
Jordan form with all monomials Θ-resonant. In other words, a matrix T = (tij) in Jordan form

is compatible with Θ if and only if θ
(k)
j = θ

(k)
j+1 for all k = 1, . . . , r when tj,j+1 6= 0, that is in a

Jordan block of dimension at least 2.

Theorem 3.5.1. Let f be a germ of biholomorphism of C
n fixing the origin O. Then f

commutes with a holomorphic effective action on (Cn
, O) of a torus of dimension 1 ≤ r ≤ n
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with weight matrix Θ ∈ Mn×r(Z) if and only there exists a local holomorphic change of

coordinates conjugating f to a germ with linear part in Jordan normal form and containing

only Θ-resonant monomials.

Proof. Let us suppose that the linear part of f is in Jordan normal form and f contains
only Θ-resonant monomials. Then we claim that f commutes with the linear effective torus
action

A: Tr × (Cn
, O) → (Cn

, O),

defined by

A(x, z) = Diag
(

e

2πi
∑

r

k=1
xkθ

(k)

j

)

z.

In fact in these hypotheses the j-th coordinate of f is

λjzj + εjzj−1 +
∑

|Q|≥2

Q∈Rj(Θ)

fQ,jz
Q

where εj ∈ {0, 1} can be different from 0 only if λj = λj−1, the set Rj(Θ) is defined in (3.8)

and the assumption that εjzj−1ej is Θ-resonant implies θ
(k)
j−1 = θ

(k)
j for k = 1, . . . , r if εj 6= 0.

Then for every x ∈ T
r we have

fj(A(x, z)) = λje
2πi
∑

r

k=1
xkθ

(k)

j
zj + εje

2πi
∑

r

k=1
xkθ

(k)

j−1
zj−1 +

∑

|Q|≥2

Q∈Rj(Θ)

fQ,je
2πi
∑

r

k=1
xk〈Q,θ(k)

〉
z

Q

= λje
2πi
∑

r

k=1
xkθ

(k)

j
zj + εje

2πi
∑

r

k=1
xkθ

(k)

j
zj−1 +

∑

|Q|≥2

Q∈Rj(Θ)

fQ,je
2πi
∑

r

k=1
xkθ

(k)

j
z

Q

= e

2πi
∑

r

k=1
xkθ

(k)

j






λjzj + εjzj−1 +

∑

|Q|≥2

Q∈Rj(Θ)

fQ,jz
Q







= e

2πi
∑

r

k=1
xkθ

(k)

j (fj(z))

= A(x, f(z))j .

Conversely, let us suppose that f commutes with a holomorphic effective action on (Cn
, O)

of a torus of dimension 1 ≤ r ≤ n with weight matrix Θ. Then, by Bochner linearization theo-
rem 3.4.1, there exists a tangent to the identity holomorphic change of variables ψ linearizing
the torus action. Furthermore, up to a linear change of coordinates we can assume that in the
new coordinates the action is given by

A(x, z) = Diag
(

e

2πi
∑

r

k=1
xkθ

(k)

j

)

z,

and that f (still commuting with the torus action) has linear part in Jordan normal form
compatible with Θ, and thus its j-th coordinate is

λjzj + εjzj−1 +
∑

|Q|≥2

fQ,jz
Q
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where εj ∈ {0, 1} can be different from 0 only if λj−1 = λj and θj−1 = θj . For every x ∈ T
r,

we have

fj(A(x, z)) = λje
2πi
∑

r

k=1
xkθ

(k)

j
zj + εje

2πi
∑

r

k=1
xkθ

(k)

j−1
zj−1 +

∑

|Q|≥2

fQ,je
2πi
∑

r

k=1
xk〈Q,θ(k)

〉
z

Q
,

and

A(x, f(z))j = e

2πi
∑

r

k=1
xkθ

(k)

j





λjzj + εjzj−1 +
∑

|Q|≥2

fQ,jz
Q





.

Then fj(A(x, z)) = A(x, f(z))j if and only if

fQ,j

(

e

2πi
∑

r

k=1
xk〈Q,θ(k)

〉 − e

2πi
∑

r

k=1
xkθ

(k)

j

)

= 0

for every x ∈ T
r, j = 1, · · · , n, Q ∈ N

n with |Q| ≥ 2, i.e., fQ,j can be non-zero only when

r
∑

k=1

xk(〈Q, θ(k)〉 − θ

(k)
j ) ∈ Z ∀x ∈ T

r
,

which is equivalent to

〈Q, θ(k)〉 − θ

(k)
j = 0

for every k = 1, . . . , r, meaning that f contains only Θ-resonant monomials.

As a consequence of this result we have

Corollary 3.5.2. Let f be a germ of biholomorphism of C
n fixing the origin O. Then f

is holomorphically linearizable if and only if it commutes with a holomorphic effective action

on (Cn
, O) of a torus of dimension 1 ≤ r ≤ n with weight matrix Θ having no resonances.

Proof. If f is linear and in Jordan normal form, then it commutes with any linear action of T
1

with compatible weight matrix Θ; so it suffices to choose Θ with R1(Θ) = . . . = Rn(Θ) = ∅.
Conversely, if f commutes with a holomorphic effective action on (Cn

, O) of a torus of
dimension 1 ≤ r ≤ n with weight matrix Θ, then, by the previous result, Θ is compatible with
the linear part of f and there exists a local holomorphic change of coordinates such that f is
conjugated to a germ with the same linear part and containing only Θ-resonant monomials.
But each Rj(Θ) is empty; hence there are no Θ-resonant monomials of degree at least 2, and
thus f is holomorphically linearizable.

The last corollary shows that it is possible to characterize the holomorphic linearization
problem using Theorem 3.5.1. It is then natural to also try and use it to prove holomorphic
normalization results. To do that, we need to find a link between a weight matrix Θ, with its
additive resonances, and the spectrum of dfO, with its multiplicative resonances. We shall see
in the next chapter how to do that and the (surprising) answers we found.



4

Torus Actions vs Normalization

In this final chapter we shall find out in a complete and computable manner what kind
of structure a torus action must have in order to give a Poincaré-Dulac holomorphic
normalization for a germ f of biholomorphism of C

n fixing the origin. In particular, we
shall link the eigenvalues of dfO to the weight matrix of the action. The link and the
structure we found are more complicated than what one would expect; a detailed study
was needed to completely understand the relations between torus actions, holomorphic
Poincaré-Dulac normalizations, and torsion phenomena. We end the chapter giving
an example of techniques that can be used to construct torus actions.

The main results in this chapter are published in [R4].

4.1 Preliminaries

In this chapter we want to discuss and solve the following problem: to find out in a clear (and
possibly computable) manner what kind of structure a torus action must have in order to get a
Poincaré-Dulac holomorphic normalization from the results we proved in the previous chapter.
In particular, to do so we need to link in a clever way the eigenvalues of dfO to the weight
matrix of the action.

Before we go on, let us recall here, for the sake of completeness, notations, definitions and
results that we shall use.

We have associated to any torus action A: Tr × (Cn
, O) → (Cn

, O) fixing the origin a
matrix Θ = (θk

j ) ∈ Mn×r(Z), called the weight matrix of the torus action, whose columns
do not depend on the particular coordinates chosen to express the torus action, but can be
uniquely (up to order) recovered by the action itself.

We said that a monomial zQ
ej , with Q ∈ N

n, |Q| ≥ 1 and j ∈ {1, . . . , n}, is Θ-resonant if

〈Q, θ(k)〉 = θ

(k)
j

for every k = 1, . . . , r, where θ(1)
, . . . , θ

(r) ∈ Z
n are the columns of Θ. In other words, zhej is

Θ-resonant if θ
(k)
h = θ

(k)
j , for all k = 1, . . . , r, and z

Q
ej , with |Q| ≥ 2 is Θ-resonant if

Q ∈ Rj(Θ) =
r
⋂

k=1

Res+j (θ(k)), (4.2)

where for each k = 1, . . . , r

Res+j (θ(k)) = {Q ∈ N
n | |Q| ≥ 2, 〈Q, θ(k)〉 = θ

(k)
j }
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is the set of the multi-indices giving an additive resonance for θ(k) relative to the j-th compo-
nent.

Then we said that Θ has no resonances if Rj(Θ) = ∅ for every j = 1, . . . , n.
Moreover, Θ is compatible with a linear map T of Cn if and only if we can write T in

Jordan form with all monomials Θ-resonant. In other words, a matrix T = (tij) in Jordan

form is compatible with Θ if and only if θ
(k)
j = θ

(k)
j+1 for all k = 1, . . . , r when tj,j+1 6= 0, that

is in a Jordan block of dimension at least 2.

As announced we shall use Theorem 3.5.1 we proved in the previous chapter. We report
here the statement for the sake of completeness.

Theorem 4.1.1. (Raissy, 2009 [R4]) Let f be a germ of biholomorphism of C
n fixing the

origin O. Then f commutes with a holomorphic effective action on (Cn
, O) of a torus of

dimension 1 ≤ r ≤ n with weight matrix Θ ∈ Mn×r(Z) if and only there exists a local

holomorphic change of coordinates conjugating f to a germ with linear part in Jordan normal

form and containing only Θ-resonant monomials.

Remark 4.1.2. As we noticed in the previous chapter, given λ ∈ (C∗)n, we can always find a
unique [ϕ] ∈ (C/Z)n such that λ = e

2πi[ϕ], i.e., λj = e

2πi[ϕj ] for every j = 1, . . . , n. Then we
have

Resj(λ) = Resj([ϕ]) := {Q ∈ N
n | |Q| ≥ 2, [〈Q,ϕ〉 − ϕj ] = [0]},

and to find a link between torus actions and holomorphic Poicaré-Dulac normalization we need
to find when it is possible to translate the multiplicative resonances of [ϕ] into additive ones.

4.2 Toric degree

We want to study the relations between the resonances of the eigenvalues of the differen-
tial dfO of a germ of biholomorphism of C

n fixing the origin, and the weight matrices of torus
actions to understand in which cases Theorem 4.1.1 gives us a Poincaré-Dulac holomorphic
normalization. Thanks to Remark 4.1.2 we have to deal with vectors of (C/Z)n. A concept
that turns out to be crucial for this study is that of toric degree.

Definition 4.2.1. Let [ϕ] = ([ϕ1], . . . , [ϕn]) ∈ (C/Z)n. The toric degree of [ϕ] is the mini-
mum r ∈ N such that there exist α1, . . . , αr ∈ C and θ(1)

, . . . , θ

(r) ∈ Z
n such that

[ϕ] =

[

r
∑

k=1

αkθ
(k)

]

. (4.3)

The r-tuple θ(1)
, . . . , θ

(r) is called a r-tuple of toric vectors associated to [ϕ], and the num-
bers α1, . . . , αr ∈ C are toric coefficients of the toric r-tuple.

Remark 4.2.1. Note that the toric degree is necessarily at most n, since

[ϕ] =

[

n
∑

k=1

ϕkek

]

.

We did not say the toric coefficients because we have the following result.

Lemma 4.2.2. Let [ϕ] ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n and let θ(1)
, . . . , θ

(r) be a r-tuple

of toric vectors associated to [ϕ] with toric coefficients α1, . . . , αr ∈ C. Then β1, . . . , βr ∈ C

satisfy

[ϕ] =

[

r
∑

k=1

βkθ
(k)

]
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if and only if

Θ







α1 − β1
...

αr − βr






∈ Z

n

where Θ is the n× r matrix whose columns are θ(1)
, . . . , θ

(r).

Proof. We have
[

r
∑

k=1

αkθ
(k)

]

=

[

r
∑

k=1

βkθ
(k)

]

if and only if
r
∑

k=1

αkθ
(k) −

r
∑

k=1

βkθ
(k) ∈ Z

n
,

that is

Θ







α1 − β1
...

αr − βr






∈ Z

n
,

which is the assertion.

Thanks to Remark 4.1.2 the following definition makes sense.

Definition 4.2.2. Let f be a germ of biholomorphism of C
n fixing the origin and denote

by λ = {λ1, . . . , λn} the spectrum of dfO. The toric degree of f is the toric degree of the
unique [ϕ] ∈ (C/Z)n such that λ = e

2πi[ϕ] .

Toric r-tuples and toric coefficients have to satisfy certain arithmetic properties, as the
following result shows.

Lemma 4.2.3. Let [ϕ] ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n and let θ(1)
, . . . , θ

(r) be a r-tuple

of toric vectors associated to [ϕ] with toric coefficients α1, . . . , αr ∈ C. Then:

(i) α1, . . . , αr is a set of rationally independent complex numbers;

(ii) every r-tuple of toric vectors associated to [ϕ] is a set of Q-linearly independent vectors.

Proof. (i) Let us suppose by contradiction that α1, . . . , αr ∈ C are rationally dependent. Then
there exists (c1, . . . , cr) ∈ Z

r \ {O} such that

c1α1 + · · · + crαr = 0.

Up to reordering we may assume c1 6= 0. Then

α1 = −
1

c1
(c2α2 + · · · + crαr),

and hence

[ϕ] =

[

r
∑

k=1

αkθ
(k)

]

=

[

−
1

c1
(c2α2 + · · · + crαr)θ(1) + α2θ

(2) + · · · + αrθ
(r)

]

=

[

α2

c1
(c1θ

(2) − c2θ
(1)) + · · · +

αr

c1
(c1θ

(r) − crθ
(1))

]

,

and this contradicts the definition of toric degree.

(ii) The proof is analogous to the previous one.
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Remark 4.2.4. Given [ϕ] ∈ (C/Z)n, of toric degree 1 ≤ r ≤ n, if θ(1)
, . . . , θ

(r) is a r-tuple of
toric vectors associated to [ϕ], the n×r matrix Θ whose columns are θ(1)

, . . . , θ

(r), has maximal
rank r.

Remark 4.2.5. Note that, if [ϕ] ∈ (C/Z)n has toric degree 1 ≤ r ≤ n, and θ

(1)
, . . . , θ

(r) is
a r-tuple of toric vectors associated to [ϕ], up to change the toric coefficients α1, . . . , αr, we

can always assume θ
(k)
1 , . . . , θ

(k)
n coprime for each 1 ≤ k ≤ r. In fact, if dk ∈ Z is the greatest

common divisor of θ
(k)
1 , . . . , θ

(k)
n , then

[ϕ] =

[

r
∑

k=1

αkθ
(k)

]

=

[

r
∑

k=1

dkαk
˜

θ

(k)

]

,

where

˜

θ

(k) =







θ

(k)
1 /dk

...
θ

(k)
n /dk







for k = 1, . . . , r.

Remark 4.2.6. Given [ϕ] ∈ (C/Z)n, of toric degree 1 ≤ r ≤ n, the r-tuple of toric vectors

associated to [ϕ] is not necessarily unique. Let us consider, for example

[ϕ] =





3
√

2 + 4i
2
√

2 + 6i
−
√

2 + 2i





.

The toric degree cannot be 1, since it is immediate to verify that ϕ cannot be written as the
product of a complex number times an integer vector. The toric degree is in fact 2, since we
have

[ϕ] =





√
2





3
2
−1



+ 2i





2
3
1









.

However we can also write [ϕ] as

[ϕ] =





−3
√

2 + 16i

6





0
1
1



+
3
√

2 + 4i

6





6
5
−1









.

Note that, in both cases, the toric coefficients are rationally independent with 1.

Example 4.2.7. The vector of (C/Z)2

[ϕ] =

[

(1 + 6
√

2)/6
(1 − 2

√
2)/2

]

,

has toric degree 2, since we have

[ϕ] =

[

1 + 6
√

2

6

(

1
0

)

+
1 − 2

√
2

2

(

0
1

)

]

,
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and it is not difficult to verify that it cannot have toric degree 1. We can also write [ϕ] as

[ϕ] =

[

1

6

(

1
3

)

+
√

2

(

1
−1

)]

.

Note that this time, in both cases, the toric coefficients are rationally dependent with 1.

We shall prove that, given [ϕ] ∈ (C/Z)n of toric degree 1 ≤ r ≤ n, even when the r-tuple
of toric vectors associated to [ϕ] is not unique, we can always say whether the toric coefficients
are rationally independent with 1 or not, so this will be an intrinsic property of the vector.
Before proving this, we shall need the following result that gives us a way to find a more useful
toric r-tuple when the toric coefficients are rationally dependent with 1.

Remark 4.2.8. Note that α ∈ C is rationally dependent with 1 if and only if it belongs to Q.

Lemma 4.2.9. Let [ϕ] ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n, and let θ(1)
, . . . , θ

(r) be a r-

tuple of toric vectors associated to [ϕ] with toric coefficients α1, . . . , αr ∈ C rationally dependent

with 1. Then there exists a r-tuple of toric vectors η(1)
, . . . , η

(r) associated to [ϕ] with toric

coefficients β1, . . . , βr ∈ C such that β1 = 1/m with m ∈ N\{0, 1} and m, η
(1)
1 , . . . , η

(1)
n coprime.

Moreover β2, . . . , βr are rationally independent with 1.

Proof. If r = 1, then α is rationally dependent with 1 if and only if it belongs to Q, i.e.,

[ϕ] =

[

p

q

θ

]

where we may assume without loss of generality p and q coprime and q, θ1, . . . , θn coprime.
Then

[ϕ] =

[

1

q

η

]

where η = p · θ ∈ Z
n and we are done.

Let us suppose now r ≥ 2. Since α1, . . . , αr are (rationally independent and) rationally
dependent with 1, we can consider the minimum positive integer m0 ∈ N \ {0} so that there
exists (m1, . . . ,mr) ∈ Zr \ {O} such that

m1α1 + · · · +mrαr = m0.

Thanks to the minimality of m0, we have that m1, . . . ,mr,m0 are coprime. Up to reordering
we may assume m1 6= 0. Then

α1 =
m0

m1
−

(

m2

m1
α2 + · · · +

mr

m1
αr

)

=
m

′
0

m

′
1

−

(

m2

m1
α2 + · · · +

mr

m1
αr

)

,

where m0

m1

=
m′

0

m′
1

with (m′
0,m

′
1) = 1 and m′

1 ∈ N \ {0, 1}. Let d be the greatest common divisor

of m′
1 and the components of θ(1), and consider

˜

θ

(1) =
1

d

θ

(1)
, m̃1 =

m

′
1

d

.
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Hence

[ϕ] =

[

m

′
0

m

′
1

θ

(1) +
r
∑

k=2

αk

m1
(m1θ

(k) −mkθ
(1))

]

=

[

m

′
0

m̃1

˜

θ

(1) +
r
∑

k=2

αk

m1
(m1θ

(k) −mkθ
(1))

]

=

[

1

m̃1
m

′
0
˜

θ

(1) +
r
∑

k=2

αk

m1
(m1θ

(k) −mkθ
(1))

]

=

[

r
∑

k=1

βkη
(k)

]

,

where

β1 =
1

m̃1
, β2 =

α2

m1
, . . . , βr =

αr

m1
,

and

η

(1) = m

′
0
˜

θ

(1)
, η

(2) = m1θ
(2) −m2θ

(1)
, . . . , η

(r) = m1θ
(r) −mrθ

(1)
.

Notice that m̃1 is necessarily greater than 1, because otherwise the toric degree of [ϕ] would
be less than r.

Now, if β2, . . . , βr were rationally dependent with 1, then we would have an integer vector
(k2, . . . , kr) ∈ Z

r−1 \ {O} such that

k2β2 + · · · + krβr = k ∈ Z \ {0},

then

−k m̃1 ·
1

m̃1
+ k2β2 + · · · + krβr = 0,

contradicting Lemma 4.2.3. This concludes the proof.

Definition 4.2.3. Let [ϕ] = ([ϕ1], . . . , [ϕn]) ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n. We say
that a r-tuple η(1)

, . . . , η

(r) of toric vectors associated to [ϕ] with toric coefficients β1, . . . , βr

rationally dependent with 1 is reduced if β1 = 1/m with m ∈ N \ {0, 1} and m, η

(1)
1 , . . . , η

(1)
n

coprime. In this case the toric vectors η(2)
, . . . , η

(r) are called reduced torsion-free toric vectors

associated to [ϕ].

Now we can prove that the rational independence with 1 of the coefficients of toric r-tuples
associated to a given vector [ϕ] ∈ (C/Z)n of toric degree 1 ≤ r ≤ n is an intrinsic property
of [ϕ].

Proposition 4.2.10. Let [ϕ] ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n, and let θ(1)
, . . . , θ

(r)

be a r-tuple of toric vectors associated to [ϕ], with toric coefficients α1, . . . , αr ∈ C rationally

independent with 1. Then every other r-tuple of toric vectors associated to [ϕ] has toric

coefficients rationally independent with 1.

Proof. Let us assume by contradiction that there exists a r-tuple η(1)
, . . . , η

(r) of toric vec-
tors associated to [ϕ] with toric coefficients β1, . . . , βr rationally dependent with 1. Thanks
to Lemma 4.2.9, we may assume without loss of generality β1 = 1/m with m ∈ N \ {0, 1}
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and m, η

(1)
1 , . . . , η

(1)
n coprime. Let N be the matrix with columns η(1)

, . . . , η

(r), and let Θ be

the matrix with columns θ(1)
, . . . , θ

(r). We have

[ϕ] =






N ·







β1
...
βr












=



Θ ·





α1
...
αr









,

that is, there exists an integer vector k ∈ Z
n such that

N ·







β1
...
βr






= Θ ·





α1
...
αr



+ k.

Since N has maximal rank r, the linear map N : Qr → Q
n is injective and, for every U ⊆ Q

n

such that Q
n = Im(N) ⊕ U , there is a linear map LU : Qn → Q

r such that ker(LU ) = U

and LUN = Id; hence there is a linear map ˜LU : Zn → Z
r that ˜LUN = h Id, with h ∈ Z \ {0}.

Then

h







β1
...
βr






= ˜

LUΘ ·





α1
...
αr



+ ˜

LUk.

Moreover, we can choose U so that the first row of ˜LUΘ is not identically zero. In fact, the first

row of ˜LUΘ is identically zero if and only if the first vector e1 of the standard basis belongs

to ker(ΘT
˜

L

T
U ), and hence it is orthogonal to Im(˜LUΘ), because for any u ∈ Q

r we have

0 = 〈u,ΘT
˜

L

T
Ue1〉 = 〈Θu, ˜LT

Ue1〉 = 〈˜LUΘu, e1〉.

In particular Im(Θ) ∩ U 6= {O}; otherwise ˜LU |Im(Θ) would be injective, thus Im(˜LUΘ) = Q
r,

and e1 could not be orthogonal to Im(˜LUΘ). Now, it is a well-known fact of linear algebra that
given two subspaces V,W of a vector space T having the same dimension there exists a sub-
space U such that T = V⊕U = W⊕U . Hence choosing U so that Q

n = Im(N)⊕U = Im(Θ)⊕U ,

we have Im(Θ) ∩ U = {O}, and thus the first row of ˜LUΘ is not identically zero.
Then

h

1

m

= (˜LUΘ)1 ·





α1
...
αr



+ (˜LUk)1

and this gives us a contradiction since α1, . . . , αr are rationally independent with 1 by assump-
tion.

We have then two cases to deal with: the rationally independent with 1 case, and the
rationally dependent with 1 case.

Definition 4.2.4. Let [ϕ] ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n. We say that [ϕ] is in
the torsion-free case, or simply [ϕ] is torsion-free, if its r-tuples of toric vectors have toric
coefficients rationally independent with 1.

A notion of torsion-free germ of biholomorphism was firstly introduced by Écalle in [É6].
We shall show in the next section that our notion is equivalent to his; our approach however
gives more information on the normalization problem.
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We end this section with a couple of results showing how to compute the toric degree,
starting with toric degree 1.

Proposition 4.2.11. Let [ϕ] ∈ (C/Z)n. Then:

(i) [ϕ] has toric degree 1 with rational toric coefficient if and only if it belongs to (Q/Z)n;

(ii) [ϕ] has toric degree 1 with toric coefficient in C \ Q if and only if [ϕ] 6∈ (Q/Z)n, and

there exists θ ∈ Z
n \ {O}, with θk = 0 if [ϕk] = [0], such that there is j0 ∈ {1, . . . , n} so

that

(a) [ϕj0 ] 6∈ (Q/Z)n and

θk[ϕj0 ] − θj0 [ϕk] = [0] (4.4)

for any k so that [ϕk] 6= [0]; and

(b) for any representatives ϕk of [ϕk], the integer vector ϕj0θ − θj0ϕ belongs to the

subspace SpanZ{
˜

θ,−θj0e1, . . . ,
̂−θj0ej0 , . . . ,−θj0en}, where ˜θ = θ − θj0ej0 .

Proof. (i) If α = p/q ∈ Q then

[ϕ] =

[

p

q

θ

]

,

hence [ϕ] ∈ (Q/Z)n.
Conversely, if [ϕj ] = [pj/qj ] with pj/qj ∈ Q for j = 1, . . . , n, then, considering q = q1 · · · qn

we get

[ϕ] =







p1q2···qn

q

...
pnq1···qn−1

q






=

[

1

q

θ

]

,

and we are done.

(ii) If

[ϕ] =





α





θ1
...
θn









,

with α ∈ C \ Q and θ ∈ Z
n \ {O} then it is immediate to verify that [ϕ] 6∈ (Q/Z)n, and θ

satisfies (a). By assumption, once we choose arbitrarily representatives ϕk of [ϕk], we can
write ϕk = αθk +mk for suitable mk ∈ Z. Then

θkϕj − θjϕk = θk(αθj +mj) − θj(αθk +mk) = θkmj − θjmk,

for any j and k, thus (b) is verified.
Conversely, let θ ∈ Z

n \ {O} satisfy the hypotheses. By assumption [ϕ] 6∈ (Q/Z)n and
there is j0 ∈ {1, . . . , n} such that [ϕj0 ] 6∈ (Q/Z)n satisfies (a) and (b); for the sake of simplicity,
we may assume, without loss of generality, j0 = 1. Let us choose a representative ϕ of [ϕ] and
set

θjϕ1 − θ1ϕj = kj ∈ Z

for j = 2, . . . , n. Condition (b) means that we can find m1, . . . ,mn ∈ Z so that





θ2 −θ1
...

. . .

θn −θ1



 ·





m1
...
mn



 =





k2
...
kn





, (4.5)
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that is
kj = θjm1 − θ1mj .

Now we put

α =
ϕ1 −m1

θ1
/∈ Q.

Then [ϕ] = [αθ]; indeed

αθj =
θj(ϕ1 −m1)

θ1
=
θjϕ1 − kj − θ1mj

θ1
= ϕj −mj .

Remark 4.2.12. Condition (b) of the previous Proposition is necessary. In fact, if we just
assume that condition (a) holds, then it is always possible to solve (4.5) in Q, but this does
not imply that it is solvable in Z. For example the vector

[ϕ] =





(2i + 1)/3
i

(11 + 10i)/6





has toric degree 2, but if we consider

θ =





2
3
5





we get condition (a) for j = 1. Moreover, choosing ((2i+4)/3, i, (11+10i)/6) as representative
of [ϕ], we get

(

k2

k3

)

=

(

1
−2

)

and it is not difficult to verify that

(

3 −2 0
5 0 −2

)

·





m1

m2

m3



 =

(

1
−2

)

has no solution (m1,m2,m3) ∈ Z
3.

Example 4.2.13. The vector of (C/Z)3

[ϕ1] =





(
√

2 + i)/6
(
√

2 + i)/3
5(
√

2 + i)/6





has toric degree 1, since it can be written as

[ϕ1] =





√
2 + i

6





1
2
5









.

In general, to compute the toric degree of a vector one starts from the trivial representation
of Remark 4.2.1, and then uses (the proof of) Lemma 4.2.3 to obtain rationally independent
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toric coefficients and toric vectors. Then the toric degree is computed as follows (see also
Proposition 4.3.5)

Proposition 4.2.14. Let α1, . . . , αr be 1 ≤ r ≤ n rationally independent complex numbers

and let θ(1)
, . . . , θ

(r) ∈ Z
n be Q-linearly independent integer vectors. Then:

(i) if α1, . . . , αr are rationally independent with 1, then [ϕ] =
[
∑r

k=1 αkθ
(k)
]

has toric

degree r;

(ii) if α1, . . . , αr are rationally dependent with 1, then [ϕ] =
[
∑r

k=1 αkθ
(k)
]

has toric de-

gree r − 1 or r.

Proof. (i) Let α1, . . . , αr be rationally independent with 1. The toric degree of [ϕ] is not
greater than r. Let us suppose by contradiction that [ϕ] has toric degree s < r. Then there
exist η(1)

, . . . , η

(s) ∈ Z
n and β1, . . . , βs ∈ C rationally independent such that

[

r
∑

k=1

αkθ
(k)

]

=

[

s
∑

k=1

βkη
(k)

]

.

Let N be the matrix with columns η(1)
, . . . , η

(s), and Θ the matrix with columns θ(1)
, . . . , θ

(r).
We have

[ϕ] =






N ·







β1
...
βs












=



Θ ·





α1
...
αr









,

that is there exists an integer vector k ∈ Z
n such that

N ·







β1
...
βs






= Θ ·





α1
...
αr



+ k.

Since Θ has maximal rank r, the linear map Θ: Qr → Q
n is injective and, for every U ⊆ Q

n such
that Q

n = Im(Θ)⊕U , there is a linear map LU : Qn → Q
r such that ker(LU ) = U and LUΘ = Id;

hence there is a linear map ˜LU : Zn → Z
r such that ˜LUΘ = h Id, with h ∈ Z \ {0}. Then

˜

LUN ·







β1
...
βs






− ˜LUk = h





α1
...
αr





.

Now, dim(ker(˜LUN)T ) ≥ 1. In particular, there exists ξ ∈ Z
r \ {O} such that (˜LUN)T

ξ = O,

that is ξT
˜

LUN = O; therefore

Z ∋ −ξT
˜

LUk = hξ

T





α1
...
αr



 = h〈ξ, α〉,

which is an absurdum, because α1, . . . , αr, 1 are rationally independent.

(ii) Now we have α1, . . . , αr rationally dependent with 1, and, arguing as in the proof of
Lemma 4.2.9, we can suppose, without loss of generality, α1 = 1/m and α2, . . . , αr rationally

independent with 1. If m divides θ
(1)
1 , . . . , θ

(1)
n , then [ϕ] = [

∑r
k=2 αkθ

(k)] has toric degree r− 1
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thanks to (i). Otherwise, we may assume, without loss of generality, m, θ
(1)
1 , . . . , θ

(1)
n coprime.

The toric degree of [ϕ] is not greater than r. Let us suppose that [ϕ] has toric degree s < r.
Then there exist η(1)

, . . . , η

(s) ∈ Z
n and β1, . . . , βs ∈ C such that

[

r
∑

k=1

αkθ
(k)

]

=

[

s
∑

k=1

βkη
(k)

]

,

thus we have

[mϕ] =

[

r
∑

k=2

αk ·mθ(k)

]

=

[

s
∑

k=1

βk ·mη(k)

]

,

and, since α2, . . . , αr are rationally independent with 1, by (i) we get s = r − 1.

Remark 4.2.15. Note that both cases in (ii) can occur. In fact, it is not difficult to verify
that

[ϕ1] =





1/2√
2
i



 =

[

1

2
e1 +

√
2e2 + ie3

]

has toric degree 3. However, if we consider,

[ϕ2] =





1

2





1
1
1



+

√
2 − 1

2





1
1
3



+
i

2





0
1
1









,

then

[ϕ2] =





√
2/2

(
√

2 + i)/2
(−2 + 3

√
2 + i)/2



 =





√
2

2





1
1
3



+
i

2





0
1
1









,

so the toric degree is 2. Proposition 4.3.5 will show how to distinguish between the two cases
of Proposition 4.2.14.(ii).

4.3 Torsion

In [É6], Écalle introduced the following notion.

Definition 4.3.1. Let λ ∈ (C∗)n. The torsion of λ is the natural integer τ such that

1

τ

2πiZ = (2πiQ) ∩



(2πiZ)
⊕

1≤j≤n

((log λj)Z)





. (4.6)

Translated in our notation, (4.6) becomes

1

τ

Z = Q ∩



Z

⊕

1≤j≤n

ϕjZ





,

where ϕ is a representative of the unique [ϕ] ∈ (C/Z)n such that λ = exp(2πi[ϕ]).
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The torsion is well-defined, as the following result shows (and whose proof describes how
to explicitly compute the torsion).

Proposition 4.3.1. The torsion of a n-tuple (λ1, . . . , λn) ∈ (C∗)n is a well-defined natural

integer. Furthermore, writing λ = e

2πi[ϕ], if [ϕ] is torsion-free, then τ = 1; otherwise τ divides

the denominator of the first toric coefficient in a reduced representation of [ϕ].

Proof. Let [ϕ] ∈ (C/Z)n be the unique vector such that λ = exp(2πi[ϕ]), let 1 ≤ r ≤ n

be its toric degree and let θ(1)
, . . . , θ

(r) be a r-tuple of toric vectors associated to [ϕ] with
coefficients α1, . . . , αr.

Our aim is to determine the structure of the set

R = Q ∩



Z

n
⊕

j=1

ϕjZ





,

that is of the set of rational numbers x that can be expressed in the form

Q ∋ x = m0 +m1ϕ1 + · · · +mnϕn

with m0, . . . ,mn ∈ Z. Write, as usual,

ϕj = hj +
r
∑

k=1

αkθ
(k)
j ,

with hj ∈ Z. Then

x = (m0 +m1h1 + · · · +mnhn) +m1

r
∑

k=1

αkθ
(k)
1 + · · · +mn

r
∑

k=1

αkθ
(k)
n

= m̃+
r
∑

k=1

αk〈M,θ

(k)〉,

where m̃ ∈ Z and M ∈ Z
n are generic. If α1, . . . , αr are rationally independent with 1, it

follows that x ∈ Q if and only if 〈M,θ

(1)〉 = · · · = 〈M,θ

(r)〉 = 0, and thus R = Z and τ = 1.
If α1, . . . , αr are not rationally independent with 1, let us use instead the reduced repre-

sentation, with β1 = 1/m, the remaining coefficients β2, . . . , βr rationally independent with 1,
and with η

(1)
, . . . , η

(r) as toric vectors. We get

x = m̃+
1

m

〈M,η

(1)〉 +
r
∑

k=2

βk〈M,η

(k)〉.

Therefore x ∈ Q if and only if 〈M,η

(2)〉 = · · · = 〈M,η

(r)〉 = 0, and moreover in that case

x = m̃+
1

m

〈M,η

(1)〉.

Now, the set
S = {〈M,η

(1)〉 |M ∈ Z
n
, 〈M,η

(2)〉 = · · · = 〈M,η

(r)〉 = 0}

is an ideal of Z; therefore S = qZ for some q ∈ N. It follows that

R = Z ⊕
q

m

Z = Z ⊕
q̃

m̃

Z =
1

m̃

Z,

where q̃ and m̃ are coprime, and q/m = q̃/m̃. Hence τ = m̃, and we are done.
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Remark 4.3.2. Note that, in the previous proof, S 6= {O}, i.e., q 6= 0. Indeed, S = {O} if
and only if the kernel in Z

n of the linear form (η(1))T contains the intersection of the kernels
in Z

n of the linear forms (η(2))T
, . . . , (η(r))T . It is easy to see that this implies that the

kernel in Q
n of the linear form (η(1))T contains the intersection of the kernels in Q

n of the
linear forms (η(2))T

, . . . , (η(r))T . But this implies that the linear form (η(1))T is a Q-linear
combination of (η(2))T

, . . . , (η(r))T , and so η(1)
, . . . , η

(r) are Q-linearly dependent, impossible.

The next result explains the terminology of Definition 4.2.4.

Theorem 4.3.3. Let λ = e

2πi[ϕ] ∈ (C∗)n. Then [ϕ] is torsion-free if and only if the torsion of

λ is 1.

Proof. If [ϕ] is torsion-free, then the toric coefficients of a toric r-tuple associated to [ϕ] are
rationally independent with 1, and the torsion τ is 1, by Proposition 4.3.1.

Conversely, let η(1)
, . . . , η

(r) be a reduced r-tuple of toric vectors associated to [ϕ] with
toric coefficients 1/m, β2, . . . , βr. Let us assume by contradiction that the torsion τ of [ϕ] is 1.
From the proof of Proposition 4.3.1 it is clear that we have τ = 1 if and only if 〈P, η(1)〉 ∈ mZ,
for any P ∈ Z

n such that 〈P, η(k)〉 = 0 for k = 2, . . . , r.
Since η(1)

, . . . , η

(r) are a toric r-tuple, we may assume, without loss of generality, that the
matrix A of Mn×n(Z) with columns η(2)

, . . . , η

(r)
, er, . . . , en is invertible in Mn×n(Q). Denote

by N ′ the matrix in M(r−1)×(r−1)(Z)

N

′ =







η

(2)
1 . . . η

(r)
1

...
...

η

(2)
r−1 . . . η

(r)
r−1






,

and by N ′′ the matrix in M(n−r+1)×(r−1)(Z)

N

′′ =







η

(2)
r . . . η

(r)
r

...
...

η

(2)
n . . . η

(r)
n






.

Then

A =

(

N

′
O

N

′′
In−r+1

)

and det(A) = det(N ′) 6= 0.
We claim that, up to pass to another toric r-tuple η̂

(1)
, η

(2)
, . . . , η

(r), we may assume
that m = det(N ′) and η̂

(1) ∈ {0}r−1 × Z
n−r+1. In fact, η(k) = A

−1
ek−1 for k = 2, . . . , r,

with A

−1 ∈ Mn×n(Q). Hence P ∈ Z
n is such that 〈P, η(k)〉 = 0 for k = 2, . . . , r if and only

if 〈AT
P, ej〉 = 0 for j = 1, . . . , r − 1, that is AT

P ∈ {0}r−1 × Z
n−r+1. Now, we have

A

T
P =

(

N

′T
N

′′T

O In−r+1

)(

P

′

P

′′

)

∈ {0}r−1 × Z
n−r+1

if and only if

P =

(

−(N ′T )−1
N

′′T
P

′′

P

′′

)

with P

′′ ∈ Z
n−r+1 and (N ′T )−1

N

′′T
P

′′ ∈ Z
r−1

,

that is
P

′′ ∈ Z
n−r+1 and (N ′+)T

N

′′T
P

′′ ∈ det(N ′)Zr−1
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where (N ′+)T ∈ M(r−1)×(r−1)(Z) and (N ′+)T
N

′ = det(N ′)Ir−1. In particular, since we are
assuming

〈P, η(k)〉 = 0 for k = 2, . . . , r =⇒ 〈P, η(1)〉 ∈ mZ, (4.7)

we get

〈AT
P,A

−1
η

(1)〉 =

〈(

O

P

′′

)

, A

−1
η

(1)

〉

∈ mZ

for any P

′′ ∈ det(N ′)Zn−r+1. Then there exist q1, . . . , qr−1 ∈ Q and η̂

(1) ∈ {0}r−1 × Z
n−r+1

such that

A

−1
η

(1) = q1e1 + · · · + qr−1er−1 +
m

det(N ′)
η̂

(1)
,

that is

η

(1) = q1η
(2) + · · · + qr−1η

(r) +
m

det(N ′)
η̂

(1)
,

thus we get

[ϕ] =

[

1

m

η

(1) +

r
∑

k=2

βkη
(k)

]

=

[

1

m

m

det(N ′)
η̂

(1) +

r
∑

k=2

(

βk +
qk−1

m

)

η

(k)

]

=

[

1

det(N ′)
η̂

(1) +
r
∑

k=2

˜

βkη
(k)

]

.

Note that ˜β2, . . . ,
˜

βr are rationally independent with 1.

Now we can assume that (4.7) holds with m = det(N ′) and η

(1) ∈ {0}r−1 × Z
n−r+1.

We claim that there exist γ2, . . . , γr ∈ C
∗ such that [ϕ] = [

∑r
k=2 γkη

(k)], i.e., [ϕ] has toric de-

gree r−1, contradicting the hypotheses. We can have [ϕ] = [
∑r

k=2 γkη
(k)] with γ2, . . . , γr ∈ C

∗,
if there exists θ′ ∈ Z

r−1 such that







γ2
...
γr






=







β2
...
βr






+N

′−1
θ

′
,

and θ

′ ∈ Z
r−1 is a solution

N

′′
N

′+





x1
...

xr−1



 ≡







η

(1)
r

...
η

(1)
n






mod mZ

n−r+1
. (4.8)

In fact, since N ′′
N

′−1 = (1/m)N ′′
N

′+, this implies

1

m

η

(1) =
1

m

(

O

η

′′(1)

)

≡

(

O

N

′′
N

′−1
θ

′

)

, (4.9)
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modulo Z, where η′′(1) = (η
(1)
r , . . . , η

(1)
n ), hence

[ϕ] =







1

m

η

(1) +N







β2
...
βr













=







(

O

N

′′
N

′−1
θ

′

)

+

(

N

′

N

′′

)













γ2
...
γr






−N

′−1
θ

′













=







(

O

N

′′
N

′−1
θ

′

)

+

(

N

′

N

′′

)







γ2
...
γr






−

(

θ

′

N

′′
N

′−1
θ

′

)







=






N







γ2
...
γr












.

Now we prove that, if (4.7) holds with m = det(N ′) and η

(1) ∈ {0}r−1 × Z
n−r+1, then

there exists a solution θ

′ ∈ Z
r−1 of (4.8). In fact, if P ′′ 6∈ mZ

n−r+1 is a multi-index such
that P ′′T

N

′′
N

′+ ∈ mZ
r−1, then by (4.7) we have P ′′T

η

′′(1) ∈ mZ, where we use the same
notation of (4.9); thus, since up to reorder the indices we may assume that the last coordinate
of P ′′ is not in mZ, we can substitute P ′′T

N

′′
N

′+
x ≡ P

′′T
η

′′(1) to the last equation of (4.8),
and we have to solve a system with one equation less. We iterate this procedure for a set of
generators of a complement of mZ

n−r+1 in the lattice of P ′′ until, up to reordering, we get

B





x1
...

xr−1



 ≡







η

(1)
r

...
η

(1)
r+h−1






mod mZ

h

where 1 ≤ h ≤ n − r + 1, B ∈ Mh×(r−1)(Z) is the matrix of the first h rows of N ′′
N

′′+, and

for any R 6∈ mZ
h, we have RT

B 6∈ mZ
r−1, that is B has maximal rank modulo m.

If h = 1, then we have

b1x1 + · · · + br−1xr−1 ≡ η

(1)
1 mod mZ. (4.10)

If b1, . . . , br−1,m are coprime it is obvious that (4.10) is solvable. If the greatest common
divisor of b1, . . . , br−1,m is p > 1, then m = qp and q(b1, . . . , br−1) ∈ mZ

r−1, hence, by (4.7),

we must have η
(1)
1 ∈ pZ too, thus

b1

p

x1 + · · · +
br−1

p

xr−1 ≡
η

(1)
1

p

mod
m

p

Z

is solvable.
Let us now suppose 1 < h ≤ n − r + 1. Since B has maximal rank modulo m, there

exists B+ in M(r−1)×h(Z) such that B+
B ≡ dIr−1, modulo mZ where d 6= m. Thus we have

d





x1
...

xr−1



 ≡ B

+







η

(1)
r

...
η

(1)
r+h−1






mod mZ

h
.
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If d and m are coprime, we are done. Otherwise, let p be greatest common divisor of d and m,
and let q = m/p. Since B+

B ≡ dIr−1 modulo mZ, we have qB+
B ≡ O modulo mZ, thus,

since we are assuming that for any R 6∈ mZ
h, we have RT

B 6∈ mZ
r−1, it has to be qB+ ≡ O

modulo mZ, that is B+ ≡ p

˜

B modulo mZ. Therefore we have

d

p





x1
...

xr−1



 ≡ ˜

B







η

(1)
r

...
η

(1)
r+h−1






mod

m

p

Z
h
,

which is solvable, as we wanted.

Example 4.3.4. Let us consider the vector

[ϕ] =

[

1

6

(

1
3

)

+
√

2

(

1
−6

)]

∈ (C/Z)2,

of toric degree 2. We have
〈P, η(2)〉 = p1 − 6p2 = 0

if and only if

P ∈

(

6
1

)

Z,

hence

Res+1 (η(2)) = {(6h + 1, h) | h ∈ N \ {0}} and Res+2 (η(2)) = {(6h, h + 1) | h ∈ N \ {0}},

and
〈(6h, h), η(1)〉 ∈ 9Z,

that is
S = 9Z,

and the torsion is clearly 2. Moreover, we have

[ϕ] =

[

1

2

(

1
1

)

+
3
√

2 − 1

3

(

1
−6

)

]

∈ (C/Z)2.

Using the torsion τ of a vector, we obtain a complete criterion to compute the toric degree
of a vector, as next result shows.

Proposition 4.3.5. Let [ϕ] ∈ (C/Z)n and let τ be its torsion. If

[ϕ] =

[

1

m

η

(1) +

r
∑

k=2

βkη
(k)

]

,

with η

(1) 6∈ mZ
n, then [ϕ] has toric degree r if and only if the torsion of [ϕ] is τ > 1, the

coefficients β2, . . . , βr are rationally independent with 1, and the integer vectors η(1)
, . . . , η

(r)

are Q-linearly independent.

Proof. It follows from Lemma 4.2.9, Proposition 4.3.1 and from the proof of Theorem 4.3.3.
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4.4 Poincaré-Dulac normal form in the torsion-free case

In the torsion-free case, it is not difficult to show that we can compute the resonances
of [ϕ], which are multiplicative, using the additive resonances of one of its associated r-tuples
of toric vectors;

Lemma 4.4.1. Let [ϕ] ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n and torsion-free. Then for

any r-tuple of toric vectors, θ(1)
, . . . , θ

(r), associated to [ϕ] we have

Resj([ϕ]) =

r
⋂

k=1

Res+j (θ(k))

for every j = 1, . . . , n.

Proof. We have

[〈Q,ϕ〉 − ϕj ] =

[

r
∑

k=1

αk

(

〈Q, θ(k)〉 − θ

(k)
j

)

]

(4.11)

and, since α1, . . . , αr are rationally independent with 1, the right-hand side of (4.11) vanishes

if and only if 〈Q, θ(k)〉 − θ

(k)
j = 0 for every k = 1, . . . , r.

Example 4.4.2. Let us consider the torsion-free vector

[ϕ] =





√
2





3
2
−1



+ 2i





2
3
1







 ∈ (C/Z)3,

of toric degree 2. Then
{

〈P, θ(1)〉 = 3p1 + 2p2 − p3 = 0

〈P, θ(2)〉 = 2p1 + 3p2 + p3 = 0

for some P ∈ Z
n, if and only if

P ∈





1
−1
1



Z.

Hence in this case

Res1([ϕ]) = Res3([ϕ]) = ∅ and Res2([ϕ]) = {(1, 0, 1)}.

Example 4.4.3. Let us consider the vector

[ϕ] =





√
2





3
2
−1



+ 2i





2
−3
1







 ∈ (C/Z)3.

Again, [ϕ] has toric degree 2 and it is torsion-free. In this case, we have

{

〈P, θ(1)〉 = 3p1 + 2p2 − p3 = 0

〈P, θ(2)〉 = 2p1 − 3p2 + p3 = 0
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for some P ∈ Z
n, if and only if

P ∈





1
5
13



Z.

Hence
Res1([ϕ]) = {(q + 1, 5q, 13q) | q ∈ N \ {0}}

Res2([ϕ]) = {(q, 5q + 1, 13q) | q ∈ N \ {0}}

Res3([ϕ]) = {(q, 5q, 13q + 1) | q ∈ N \ {0}} .

We have the following immediate corollary of Lemma 4.4.1.

Corollary 4.4.4. Let λ ∈ (C∗)n and let [ϕ] ∈ (C/Z)n be such that λ = e

2πi[ϕ]. If [ϕ] is

torsion-free and has toric degree 1 ≤ r ≤ n, then for every r-tuple θ(1)
, . . . , θ

(r) of toric vectors

associated to [ϕ] we have

Resj(λ) =

r
⋂

k=1

Res+j (θ(k))

for every j = 1, . . . , n.

Lemma 4.4.5. Let [ϕ] ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n and torsion-free. Then for any r-

tuple of toric vectors, θ(1)
, . . . , θ

(r), associated to [ϕ] we have θ
(k)
j = θ

(k)
h whenever [ϕj ] = [ϕh],

for every k = 1, . . . , r.

Proof. If [ϕj ] = [ϕh], then

[

α1θ
(1)
j + · · · + αrθ

(r)
j

]

=
[

α1θ
(1)
h + · · · + αrθ

(r)
h

]

;

hence there exists m ∈ Z, such that

α1

(

θ

(1)
j − θ

(1)
h

)

+ · · · + αr

(

θ

(r)
j − θ

(r)
h

)

= m,

and, since θ
(k)
j − θ

(k)
h ∈ Z for k = 1, . . . , r, the assertion follows from the rational independence

with 1 of α1, . . . , αr.

Definition 4.4.1. Let f be a germ of biholomorphism of C
n fixing the origin. We say that f

is torsion-free if, denoted by λ = {λ1, . . . , λn} the spectrum of dfO, the unique [ϕ] ∈ (C/Z)n

such that λ = e

2πi[ϕ] is torsion-free.

We have then the following complete description of Poincaré-Dulac holomorphic normal-
ization in the torsion-free case.

Theorem 4.4.6. Let f be a germ of biholomorphism of C
n fixing the origin O, of toric

degree 1 ≤ r ≤ n and in the torsion-free case. Then f admits a holomorphic Poincaré-Dulac

normalization if and only if there exists a holomorphic effective action on (Cn
, O) of a torus of

dimension r commuting with f and such that the columns of the weight matrix of the action

are a r-tuple of toric vectors associated to f .

Proof. It follows from Theorem 4.1.1, Lemma 4.4.5 and Corollary 4.4.4.
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4.5 Poincaré-Dulac normal form in presence of torsion

The torsion case is more delicate and difficult to deal with. First, the next lemma yields a
subdivision in more subcases, all realizable (we have examples for all of them) and, surprisingly,
having very different behaviours; we have cases similar to the torsion-free case (even if we have
torsion!), and cases that are indeed different. In particular, considering iterates of f to reduce
to the torsion-free case hides very interesting phenomena, and it does not allow to see that
some torsion cases can be directly studied.

Let us consider [ϕ] ∈ C/Z, of toric degree 1 ≤ r ≤ n and let θ(1)
, . . . , θ

(r) be a r-tuple
of toric vectors associated to [ϕ] with toric coefficients α1, . . . , αr rationally dependent with 1.
We shall put

D(α1, . . . , αr) = {M ∈ Z
r | m1α1 + · · · +mrαr ∈ Z},

and

Adm(θ(1)
, . . . , θ

(r)) =

n
⋃

j=1

Admj(θ(1)
, . . . , θ

(r)),

where

Admj(θ(1)
, . . . , θ

(r)) = {M ∈ Z
r | ∃Q ∈ N

n
, |Q| ≥ 2 s.t. mk = 〈Q−ej , θ

(k)〉 ∀k = 1, . . . , r}∪{O},

for all j ∈ {1, . . . , n}.

Even if, in this case, it is not always true that we can compute the resonances of [ϕ] as
intersection of additive resonances, we can say many things on the resonant multi-indices using
reduced r-tuples associated to [ϕ].

Lemma 4.5.1. Let [ϕ] ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n and let η(1)
, . . . , η

(r) be a

reduced r-tuple of toric vectors associated to [ϕ] with toric coefficients 1/m, β2, . . . , βr. Then

(i) D(1/m, β2, . . . , βr) = {(hm, 0, . . . , 0) | h ∈ Z} ⊂ Z
r;

(ii) we have

D(1/m, β2, . . . , βr) ∩ Adm(η(1)
, . . . , η

(r)) 6= {O}

if and only there exist Q ∈ N
n, with |Q| ≥ 2 and j ∈ {1, . . . , n} such that

〈Q− ej , η
(1)〉 ∈ mZ \ {0} and Q ∈

r
⋂

k=2

Res+
j (η(k));

(iii) we have

Resj([ϕ]) = {Q ∈ N
n | |Q| ≥ 2, 〈Q− ej , η

(1)〉 ∈ mZ} ∩
r
⋂

k=2

Res+j (η(k)),

for any j ∈ {1, . . . , n}. In particular,

r
⋂

k=2

Res+
j (η(k)) ⊇ Resj([ϕ]) ⊇

r
⋂

k=1

Res+j (η(k)), (4.12)

for all j ∈ {1, . . . , n}.
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(iv) [ϕj ] = [ϕh] implies that m divides η
(1)
j − η

(1)
h , and that η

(k)
j = η

(k)
h for any k = 2, . . . , r.

Proof. (i) One inclusion is obvious. Conversely, let M ∈ D(1/m, β2, . . . , βr); then

m1
1

m

+m2β2 + · · · +mrβr ∈ Z.

Since β2, . . . , βr are rationally independent with 1, this implies m2 = · · · = mr = 0, thus we
must have m1/m ∈ Z, and we are done.

(ii) It is immediate from the definitions of D(1/m, β2, . . . , βr) and Adm(η(1)
, . . . , η

(r)) and
from (i).

(iii) It is immediate from (ii) and from

[〈Q,ϕ〉 − ϕj ] =

[

1

m

〈Q− ej , η
(1)〉 +

r
∑

k=2

βk〈Q− ej , η
(k)〉

]

. (4.13)

(iv) If [ϕj ] = [ϕh], then

[

1

m

η

(1)
j + β2η

(2)
j + · · · + βrη

(r)
j

]

=

[

1

m

η

(1)
h + β2η

(2)
h + · · · + βrη

(r)
h

]

,

hence
1

m

(

η

(1)
j − η

(1)
h

)

+ β2

(

η

(2)
j − η

(2)
h

)

· · · + βr

(

η

(r)
j − η

(r)
h

)

∈ Z,

and, since η
(k)
j − η

(k)
h ∈ Z for k = 1, . . . , r, the assertion follows as in (i).

Remark 4.5.2. Note that, given [ϕ] ∈ (C/Z)n of toric degree 1 ≤ r ≤ n, if η(1)
, . . . , η

(r) is
a reduced r-tuple of toric vectors associated to [ϕ] with toric coefficients 1/m, β2, . . . , βr, and

such that [ϕj ] = [ϕh] for some distinct coordinates j and h, but η
(1)
j 6= η

(1)
h , then, since m

divides η
(1)
j − η

(1)
h , we have

1

m

η

(1)
j =

1

m

η

(1)
h +

1

m

(

η

(1)
j − η

(1)
h

)

;

thus

[ϕ] =

[

1

m

η̃

(1) +
r
∑

k=2

βkη
(k)

]

where, η̃
(1)
p = η

(1)
p for any p 6= j, h and η̃

(1)
j = η̃

(1)
h , that is η̃(1) = η

(1)− (η
(1)
j −η

(1)
h )ej , obtaining

a reduced r-tuple compatible with the structure of λ.

Even in the torsion case, toric r-tuples associated to a same vector [ϕ] have to verify certain
properties on the resonances, as next result shows.

Lemma 4.5.3. Let [ϕ] ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n and in the torsion case.

Let η

(1)
, . . . , η

(r) be a reduced r-tuple of toric vectors associated to [ϕ] with toric coeffi-

cients 1/m, β2, . . . , βr and let ξ(1), . . . , ξ(r) be a reduced r-tuple of toric vectors associated

to [ϕ] with toric coefficients 1/m̃, γ2, . . . , γr. Then we have

r
⋂

k=2

Res+j (η(k)) =

r
⋂

k=2

Res+j (ξ(k)),
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for all j = 1, . . . , n.

Proof. We have

[ϕ] =

[

1

m

η

(1) +
r
∑

k=2

βkη
(k)

]

=

[

1

m̃

ξ

(1) +
r
∑

k=2

γkξ
(k)

]

.

Then

[mm̃ϕ] =

[

r
∑

k=2

mm̃βkη
(k)

]

=

[

r
∑

k=2

mm̃γkξ
(k)

]

,

and, by Proposition 4.2.14, [mm̃ϕ] has toric degree r−1 and is torsion-free, because β2, . . . , βr

and γ2, . . . , γr are rationally independent with 1. Therefore, by Lemma 4.4.1, we have

r
⋂

k=2

Res+
j (η(k)) = Resj([mm̃ϕ]) =

r
⋂

k=2

Res+j (ξ(k)),

for any j = 1, . . . , n, and we are done.

As Theorem 4.3.3 shows, it is not possible that 〈P, η(1)〉 ∈ mZ for any P ∈ Z
n such

that 〈P, η(k)〉 = 0 for k = 2, . . . , r. However, it is possible that

Resj([ϕ]) =
r
⋂

k=2

Res+
j (η(k))

for all j ∈ {1, . . . , n}, as next example shows.

Example 4.5.4. Let us consider the vector

[ϕ] =







1

3







0
0
1
1






+

√
2







−12
0
0
1






+

√
3







0
5
2
0












∈ (C/Z)4,

of toric degree 3. In this case D(1/3,
√

2,
√

3) = {(3h, 0, 0) | h ∈ Z}. We have

〈P, η(2)〉 = −12p1 + p4 = 0

if and only if

P ∈







1
0
0
12






Z ⊕ e2Z ⊕ e3Z,

and
〈P, η(3)〉 = 5p2 + 2p3 = 0

if and only if

P ∈







0
−2
5
0






Z ⊕ e1Z ⊕ e4Z.
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We have

Res+1 (η(2)) = {(q1, q2, q3, 12(q1 − 1)) | q1, q2, q3 ∈ N, 13q1 + q2 + q3 ≥ 14}

Res+2 (η(2)) = {(q1, q2, q3, 12q1) | q1, q2, q3 ∈ N, 13q1 + q2 + q3 ≥ 2}

Res+3 (η(2)) = Res+2 (η(2))

Res+4 (η(2)) = {(q1, q2, q3, 12q1 + 1) | q1, q2, q3 ∈ N, 13q1 + q2 + q3 ≥ 1} ,

and
Res+1 (η(3)) = {(q1, 0, 0, q4) | q1, q4 ∈ N, q1 + q4 ≥ 2}

Res+2 (η(3)) = {(q1, 1, 0, q4) | q1, q4 ∈ N, q1 + q4 ≥ 1}

Res+3 (η(3)) = {(q1, 0, 1, q4) | q1, q4 ∈ N, q1 + q4 ≥ 1}

Res+4 (η(3)) = Res+
1 (η(3)).

Moreover for each multi-index of the form (p, 0, 0, 12p) with p ≥ 1, we get

〈







p

0
0

12p






, η

(1)

〉

= 12p ∈ 3 Z.

Then it is easy to verify that

Resj([ϕ]) = Res+
j (η(2)) ∩ Res+j (η(3)),

for j = 1, . . . , 4.

Remark 4.5.5. This last example shows that, even in the torsion case, there are vectors [ϕ]
of (C/Z)n such that, for any j, Resj([ϕ]) can be written as intersection of sets of additive
resonances.

We have then the following definition.

Definition 4.5.1. Let [ϕ] ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n and in the torsion case.
We say that [ϕ] is in the impure torsion case if, given η

(1)
, . . . , η

(r) a reduced r-tuple of toric
vectors associated to [ϕ] with toric coefficients 1/m, β2, . . . , βr, we have

Resj([ϕ]) =

r
⋂

k=2

Res+j (η(k)), (4.14)

for all j ∈ {1, . . . , n}. Otherwise we say that [ϕ] is in the pure torsion case.

The next result shows that the impure torsion case is well-defined, i.e., it does not depend
on the chosen toric r-tuple.

Lemma 4.5.6. Let [ϕ] ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n and in the torsion case.

Let η

(1)
, . . . , η

(r) be a reduced r-tuple of toric vectors associated to [ϕ] with toric coeffi-

cients 1/m, β2, . . . , βr. If

Resj([ϕ]) =
r
⋂

k=2

Res+j (η(k)), (4.15)

for all j ∈ {1, . . . , n}, then (4.15) holds for any other reduced toric r-tuple associated to [ϕ].
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Proof. Let ξ(1), . . . , ξ(r) be another reduced r-tuple of toric vectors associated to [ϕ] with toric
coefficients 1/m̃, γ2, . . . , γr. Since η(1)

, . . . , η

(r) is in the impure torsion case, we have

Resj([ϕ]) =

r
⋂

k=2

Res+j (η(k)),

but, thanks to Lemma 4.5.3, we have

r
⋂

k=2

Res+j (η(k)) =
r
⋂

k=2

Res+j (ξ(k)),

for any j = 1, . . . , n, that is ξ(1), . . . , ξ(r) satisfy (4.15).

Definition 4.5.2. Let f be a germ of biholomorphism of C
n fixing the origin. We say that f

is in the impure torsion case [resp., in the pure torsion case] if, denoting with λ = {λ1, . . . , λn}
the spectrum of dfO, the unique [ϕ] ∈ (C/Z)n such that λ = e

2πi[ϕ] is in the impure torsion
case [resp., in the pure torsion case].

Theorem 4.5.7. Let f be a germ of biholomorphism of C
n fixing the origin O of toric

degree 1 ≤ r ≤ n and in the impure torsion case. Then it admits a holomorphic Poincaré-

Dulac normalization if and only if there exists a holomorphic effective action on (Cn
, O) of a

torus of dimension r − 1 commuting with f , and such that the columns of the weight matrix

of the action are reduced torsion-free toric vectors associated to f .

Proof. It follows from Theorem 4.1.1, Lemma 4.5.1 (iv) and Lemma 4.5.6.

The next examples show that, in case of pure torsion more cases are possible.

Example 4.5.8. Let us consider the vector

[ϕ] =

[

1

6

(

1
3

)

+
√

2

(

1
6

)]

∈ (C/Z)2,

of toric degree 2. In this case D(1/6,
√

2) = {(6h, 0) | h ∈ Z}. We have

〈P, η(2)〉 = p1 + 6p2 = 0

if and only if

P ∈

(

−6
1

)

Z;

hence
Res+1 (η(2)) = ∅ and Res+2 (η(2)) = {(6, 0)}.

Since
〈(6,−1), η(1)〉 = 3 6∈ 6Z,

we have
D(1/6,

√
2) ∩ Admj(η(1)

, η

(2)) = {O}

for j = 1, 2, so we have

Resj([ϕ]) =

r
⋂

k=1

Res+j (η(k)) = ∅,
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for j = 1, 2. Moreover, it is evident that the torsion is 2.

Example 4.5.9. Let us consider the vector

[ϕ] =

[

1

7

(

1
3

)

+
√

2

(

1
−6

)]

∈ (C/Z)2,

of toric degree 2. In this case D(1/7,
√

2) = {(7h, 0) | h ∈ Z}. We have

Res+1 (η(1)) = ∅ and Res+2 (η(1)) = {(3, 0)},

and

Res+1 (η(2)) = {(6h + 1, h) | h ∈ N \ {0}} and Res+2 (η(2)) = {(6h, h + 1) | h ∈ N \ {0}};

then
Res+1 (η(1)) ∩ Res+1 (η(2)) = ∅ and Res+2 (η(1)) ∩ Res+2 (η(2)) = ∅.

However, we have
〈(6h, h), η(1)〉 ∈ 9Z;

hence we have

Res+1 (η(2)) ⊃ Res1([ϕ]) = {(42h + 1, 7h) | h ∈ N \ {0}} ⊃ Res+
1 (η(1)) ∩ Res+1 (η(2))

Res+2 (η(2)) ⊃ Res2([ϕ]) = {(42h, 7h + 1) | h ∈ N \ {0}} ⊃ Res+
2 (η(1)) ∩ Res+2 (η(2)).

Moreover, it is not difficult to verify that the torsion is 7.

In the pure torsion case, one could ask whether, given a toric r-tuple η(1)
, . . . , η

(r) associ-
ated to [ϕ] such that

r
⋂

k=2

Res+j (η(k)) ⊃ Resj([ϕ]) ⊃
r
⋂

k=1

Res+j (η(k)), (4.16)

for some j ∈ {1, . . . , n}, then this is true for any other toric r-tuple associated to [ϕ]. This is
not always true, as next example shows.

Example 4.5.10. Let us consider the vector

[ϕ] =







1

3







1
1
1
1






+

√
2







1
6
0
0






+

√
3







0
0
−1
5












∈ (C/Z)4,

of toric degree 3. In this case D(1/3,
√

2,
√

3) = {(3h, 0, 0) | h ∈ Z}. We have

Res+
j (η(1)) = ∅,

for j = 1, . . . , 4,

Res+1 (η(2)) = {(1, 0, p, q) | p, q ∈ N, p+ q ≥ 1}

Res+2 (η(2)) = {(6, 0, p, q) | p, q ∈ N} ∪ {(0, 1, p, q) | p, q ∈ N, p+ q ≥ 1}

Res+3 (η(2)) = {(0, 0, p, q) | p, q ∈ N, p+ q ≥ 2}

Res+4 (η(2)) = Res+3 (η(2)),
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and
Res+1 (η(3)) = {(h, k, 5q, q) | h, k, q ∈ N, h+ k + 6q ≥ 2}

Res+2 (η(3)) = Res+1 (η(3))

Res+3 (η(3)) = {(h, k, 5q + 1, q) | h, k, q ∈ N, h+ k + 6q ≥ 1}

Res+4 (η(3)) = {(h, k, 5(q − 1), q) | h, k, q ∈ N, h+ k + 6q ≥ 7} .

Then we have
3
⋂

k=1

Res+j (η(k)) = ∅,

for j = 1, . . . , 4, but it is not difficult to verify that

Res2([ϕ]) = {(0, 1, 5q, q) | q ∈ N
∗} 6= ∅ and Resj([ϕ]) = Res+

j (η(2))∩Res+j (η(3)) j = 1, 3, 4.

Then, since

Res+2 (η(2)) ∩ Res+2 (η(3)) = {(6, 0, 5q, q) | q ∈ N} ∪ {(0, 1, 5q, q) | q ∈ N
∗} 6= Res2([ϕ]),

we are in the pure torsion case, but we cannot write all the resonances of [ϕ] as intersection of
the additive resonances of η(1), η(2) and η

(3). However, we can write

[ϕ] =







1

3







1
−2
1
−5






+

√
2







1
6
0
0






+

√
3







0
0
−1
5












,

and it is not difficult to verify that, in this representation, we have

Resj([ϕ]) =

3
⋂

k=1

Res+j (ξ(k)),

for j = 1, . . . , 4.

Example 4.5.11. If [ϕ] ∈ (C/Z)2 is given by Example 4.5.9, we saw that we can write it in
the form

[ϕ] =

[

1

τ

η

(1) + βη

(2)

]

so that
Res+

j (η(2)) ⊃ Resj([ϕ]) ⊃ Res+j (η(1)) ∩ Res+
j (η(2)), (4.17)

for all j. Furthermore, it is easy to check that [ϕ] does not admit any reduced representation

[ϕ] =

[

1

τq

ξ

(1) + γξ

(2)

]

such that for all j we have

Resj([ϕ]) = Res+j (ξ(1)) ∩ Res+j (ξ(2)). (4.18)

We are then led to the following
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Definition 4.5.3. Let [ϕ] ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n and in the pure torsion case.
We say that [ϕ] can be simplified if it admits a reduced r-tuple of toric vectors η(1)

, . . . , η

(r)

such that

Resj([ϕ]) =

r
⋂

k=1

Res+j (η(k)), (4.19)

for all j = 1, . . . , n. The r-tuple η(1)
, . . . , η

(r) is said a simple reduced r-tuple associated to [ϕ].

Definition 4.5.4. Let f be a germ of biholomorphism of C
n fixing the origin in the pure

torsion case. We say that f can be simplified if, denoting with λ = {λ1, . . . , λn} the spectrum
of dfO, the unique [ϕ] ∈ (C/Z)n such that λ = e

2πi[ϕ] can be simplified.

Theorem 4.5.12. Let f be a germ of biholomorphism of C
n fixing the origin O of toric

degree 1 ≤ r ≤ n and in the pure torsion case, such that it can be simplified. Then:

(i) if dfO is diagonalizable, f admits a holomorphic Poincaré-Dulac normalization if and

only if there exists a holomorphic effective action on (Cn
, O) of a torus of dimension r

commuting with f and such that the columns of the weight matrix Θ of the action are

a simple reduced r-tuple of toric vectors associated to f ;

(ii) if dfO is not diagonalizable and there exists a simple reduced r-tuple of toric vectors asso-

ciated to [ϕ] such that its vectors are the columns of a matrix Θ compatible with dfO, f

admits a holomorphic Poincaré-Dulac normalization if and only if there exists a holo-

morphic effective action on (Cn
, O) of a torus of dimension r commuting with f and

with weight matrix Θ.

Proof. It follows from Theorem 4.1.1.

Remark 4.5.13. Note that we cannot get rid of the compatibility hypothesis in the case of
dfO non diagonalizable, because if we change a simple reduced toric r-tuple as in Remark 4.5.2,
it is not true that we obtain another simple reduced r-tuple. In fact, if [ϕ] ∈ (C/Z)n has toric
degree 1 ≤ r ≤ n, and η(1)

, . . . , η

(r) is a simple reduced r-tuple of toric vectors associated to [ϕ]
with toric coefficients 1/m, β2, . . . , βr, but we have [ϕj ] = [ϕh] for some distinct coordinates j

and h, and η
(1)
j 6= η

(1)
h , then for every P ∈ Resl([ϕ]), the equality

[ϕ] =

[

1

m

η̃

(1) +
r
∑

k=2

βkη
(k)

]

with η̃

(1) = η

(1) − (η
(1)
j − η

(1)
h )ej , only implies

η

(1)
j − η

(1)
h

m

(δlh − ph) ∈ Z

and there well can be resonant multi-indices with ph 6= 1.

In case of pure torsion that cannot be simplified, we have the following results.

Proposition 4.5.14. Let f be a germ of biholomorphism of C
n fixing the origin O of toric

degree 1 ≤ r ≤ n and in the pure torsion case, such that it cannot be simplified. If there exists

a holomorphic effective action on (Cn
, O) of a torus of dimension r commuting with f and

such that the columns of the weight matrix of the action are a reduced r-tuple of toric vectors

associated to f , then f admits a holomorphic Poincaré-Dulac normalization.

Proof. It follows from Theorem 4.1.1 and Lemma 4.5.1.
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Proposition 4.5.15. Let f be a germ of biholomorphism of C
n fixing the origin O of toric

degree 1 ≤ r ≤ n and in the pure torsion case, such that it cannot be simplified. If f admits

a holomorphic Poincaré-Dulac normalization, then it commutes with a holomorphic effective

action on (Cn
, O) of a torus of dimension r− 1, such that the columns of the weight matrix of

the action are reduced torsion-free toric vectors associated to f .

Proof. It follows from Theorem 4.1.1 and Lemma 4.5.1.

We end this section describing an algorithm to decide when a vector [ϕ] can be simplified.

We want to know when, given [ϕ] in the torsion case,

[ϕ] =

[

1

τp

η

(1) +

r
∑

k=2

βkη
(k)

]

of toric degree r, torsion τ ≥ 2, and such that there is j ∈ {1, . . . , n} so that

r
⋂

k=1

Res+j (η(k)) ⊂ Resj([ϕ]) ⊂
r
⋂

k=2

Res+j (η(k)), (4.20)

there is another reduced representation

[ϕ] =

[

1

τq

ξ

(1) +

r
∑

k=2

γkξ
(k)

]

such that for any j = 1, . . . , n we have

Resj([ϕ]) =
r
⋂

k=1

Res+j (ξ(k)). (4.21)

We know that there must be H ∈ Z
n \ {O} such that

1

τp

η

(1) +

r
∑

k=2

βkη
(k) =

1

τq

ξ

(1) +

r
∑

k=2

γkξ
(k) +H.

Since
r
⋂

k=2

Res+j (η(k)) =

r
⋂

k=2

Res+j (ξ(k)),

for any j = 1, . . . , n, we have that

1

τp

〈η(1)
, P − ej〉 =

1

τq

〈ξ(1), P − ej〉 + 〈H,P − ej〉

for any P ∈
⋂r

k=2 Res+
j (η(k)). Now, if 〈ξ(1), P − ej〉 = 0 it must be 〈η(1)

, P − ej〉 ∈ τpZ. On

the contrary, if 〈η(1)
, P − ej〉 ∈ τpZ, then we would like to find H such that 〈ξ(1), P − ej〉 = 0

that is, for any j = 1, . . . , n,

1

τp

〈η(1)
, P − ej〉 = 〈H,P − ej〉



124 Jasmin Raissy – Geometrical methods in the normalization of germs of biholomorphisms

for any P ∈
⋂r

k=2 Res+j (η(k)) with 〈η(1)
, P − ej〉 ∈ τpZ. In fact, if such a vector exists, then,

setting q = p, ξ(1) = η

(1) − τpH, γk = βk and η

(k) = ξ

(k) for k = 2, . . . , r, we get

[ϕ] =

[

1

τp

ξ

(1) +
r
∑

k=2

γkξ
(k)

]

,

and for any P ∈ Resj([ϕ]) we have P ∈
⋂r

k=2 Res+
j (ξ(k)), and

〈ξ(1), P − ej〉 = 〈η(1)
, P − ej〉 − 〈H,P − ej〉 = 0,

that is (4.21).

We then have to study the structure of the intersection of a submodule of Z
n with N

n. It
turns out that such a structure is the following. We thank Jean Écalle for suggesting the gist
of the following argument.

Let A ⊂ Z
n be a sub-module of Z

n where n ∈ N
∗, and let us denote by A+ the set A∩N

n.
For any vector A = (a1, . . . , an) ∈ A, we denote by

red(A) =
1

α

A =
(

a1

α

, . . . ,

an

α

)

(4.22)

where α is the greatest common divisor of a1, . . . , an. The support of a vector A ∈ Z
n is the

set

supp(A) = {j ∈ {1, . . . , n} | aj 6= 0} ⊆ {1, . . . , n}.

Using the support we can then define a partial order on A+ as follows: we say that A ⊆ B

if supp(A) ⊂ supp(B), or the supports are equal and A ≤ B in the usual lexicographic order.

Definition 4.5.5. Let A ⊂ Z
n be any sub-module of Z

n, where n ∈ N
∗, and let A+ be the

set A ∩ N
n. For any A,B ∈ A+ we define

A/B = red(qA− pB) (4.23)

where
p

q

= min
j∈supp(B)

(

aj

bj

)

.

Obviously, if supp(B) ⊆ supp(A), then A/B ∈ A+ and A/B ⊆ A.

Definition 4.5.6. Let A ⊂ Z
n be any sub-module of Z

n, where n ∈ N
∗, and let A+ be the

set A ∩ N
n. An element M of A+ is said minimal if it is minimal with respect to the partial

order ⊆. An element C of A+ is said cominimal if for any minimal element M of A+ we
have C −M 6∈ A+.

Minimal elements have to satisfy certain properties.

Lemma 4.5.16. Let A ⊂ Z
n be any sub-module of Z

n, where n ∈ N
∗, and let A+ be the

set A ∩ N
n. Two minimal elements of A+ have distinct supports.

Proof. Let M and P be two distinct minimal elements of A+ and suppose by contradiction
that supp(M) = supp(P ). Then A = M/P and B = P/M both have supports strictly
contained in the ones of M and P contradicting their minimality with respect to ⊆.
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Corollary 4.5.17. Let A ⊂ Z
n be any sub-module of Z

n, where n ∈ N
∗, and let A+ be the

set A ∩ N
n. Then A+ contains only a finite number of minimal elements.

Minimal elements are a sort of generators of A+ in a sense that next result clarifies.

Lemma 4.5.18. Let A ⊂ Z
n be any sub-module of Z

n, where n ∈ N
∗, and let A+ be the

set A ∩ N
n. Then every element A of A+ can be written in the form

A =
1

δ

(α1M1 + · · · + αdMd) (4.24)

where α1, . . . , αd ∈ N, M1, . . . ,Md are the minimal elements, and δ = δ(A+) ∈ N
∗ depends

only on A+.

Proof. If A is non minimal, then there exists a minimal element Mj1 ⊆ A, and there ex-
ist γ1, δ1 ∈ Q

+ such that
A = γ1Mj1 + δ1A1,

where
A1 = A/Mj1 ,

and supp(A1) ⊂ supp(A). If A1 is not minimal, we can iterate this procedure getting

A1 = γ2Mj2 + δ2A2,

with supp(A2) ⊂ supp(A1) ⊂ supp(A). The chain supp(A) ⊃ supp(A1) ⊃ supp(A3) ⊃ · · · has
to end because A+ ⊂ N

n, then we eventually arrive to a decomposition of the form (4.24).
Now δ = δ(A+) cannot be greater than the least common multiple of all |det(M∗)| where M∗

varies in the square submatrices of order equal to the rank of the matrix having as columns all
the minimal elements M1, . . . ,Md of A+.

The cominimal elements are finite too.

Lemma 4.5.19. Let A ⊂ Z
n be any sub-module of Z

n, where n ∈ N
∗, and let A+ be the

set A ∩ N
n. Then A+ contains only a finite number of cominimal elements.

Proof. Let us assume by contradiction that there is an infinite sequence of distinct cominimal
elements {Cj}. Thanks to Lemma 4.5.18, for each j ≥ 1, we have

Cj =
1

δ

d
∑

k=1

γjkMk

where γjk ∈ N. Then there is an infinite subsequence {Cj′} such that all the correspond-
ing (γj′,1, . . . , γj′,d) belong to a same class (γ∗1 , . . . , γ

∗
d) modulo δZd. Hence there is an infinite

subsequence {Cj′′} such that at least one component γj′′,k0
diverges as j′′ tends to infinity,

and such that the other components γj′′,k with k 6= k0 do not decrease. Then there exist at
least two cominimal elements Cj1 ≤ Cj2 such that

Cj2 − Cj1 =

d
∑

k=1

γ̃kMk

with

γ̃k =
1

δ

(γj2,k − γj1,k) ∈ N

meaning that Cj2 is not cominimal against the assumption.
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For each element of A+, we want to find a decomposition with natural coefficients into
linear combination of a finite number of elements of A+. This is possible using minimal and
cominimal elements, as shown in next result.

Proposition 4.5.20. Let A ⊂ Z
n be any sub-module of Z

n, where n ∈ N
∗, and let A+ be the

set A ∩ N
n. Then for any A ∈ A+ there exist l1, . . . , ld ∈ N such that

A =
d
∑

j=1

ljMj (4.25)

or

A = Ch +

d
∑

j=1

ljMj (4.26)

for some h ∈ {1, . . . , e}, where M1, . . . ,Md are the minimal elements of A+, and C1, . . . , Ce

are the cominimal elements of A+.

Proof. If A is non cominimal, there exists a minimal element Mj1 ≤ A; thus if A1 = A−Mj1

is not cominimal, we iterate the procedure. The chain A ≥ A1 ≥ A3 ≥ · · · has to end with a
zero, i.e., we get a decomposition of the form (4.25), or with a cominimal element, i.e., we get
a decomposition of the form (4.26).

Remark 4.5.21. Note that it can happen that the number of minimal elements of A+ is
not equal to the maximum number of Q-linearly independent elements of A+. In fact, if we
consider the submodule A of Z4 orthogonal to (1,−1,−1, 1)T , and A+, such a maximum is
clearly 3, but we have four minimal elements







1
1
0
0






,







0
1
0
1






,







1
0
1
0






,







0
0
1
1






,

and we need all of them (and no cominimal) to ensure (4.25) and (4.26).

Returning to our problem, if now we consider

A = {Q ∈ Z
n | 〈Q, η(k)〉 = 0, for k = 2, . . . , r},

it is easy to verify that
r
⋂

k=2

Res+j (η(k)) = B+
0 ∪ B+

j

where
B+

0 = {P ∈ N
n | P = Q+ ej , Q ∈ A+

, |Q| ≥ 1}

and
B+

j = {P ∈ N
n | P = Q+ ej , Q ∈ A, qh ≥ 0, for h 6= j, qj = −1, |Q| ≥ 1}.

Notice that Q ∈ B+
j if and only if we have

〈η̂(k)
,

̂

Q〉 = η

(k)
j for k = 2, . . . , r (4.27)
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where ̂Q = (q1, . . . , qj−1, qj+1, . . . , qn) ∈ N
n−1 and η̂(k) = (η

(k)
1 , . . . , η

(k)
j−1, η

(k)
j+1, . . . , η

(k)
n ), i.e., ̂Q

is a solution in N
n−1 of the linear system with integer coefficients (4.27). Moreover, since A

is a submodule of Z
n, Proposition 4.5.20 applies to A+. Let M = {M1, . . . ,Md} be the set

of minimal elements of A+ and let C = {C1, . . . , Ce} be the set of cominimal elements of A+

(recall that they all are different from O, hence their modulus is at least 1). We can thus
consider the subsets {M ′

1, . . . ,M
′
s} ⊂ M and {C ′

1, . . . , C
′
t} ⊂ C of the minimal and cominimal

elements R of A+ such that 〈η(1)
, R〉 ∈ τpZ. Then [ϕ] can be simplified if and only if there

exists H ∈ Z
n such that

〈H,M ′
h〉 =

1

τp

〈η(1)
,M

′
h〉,

for 1 ≤ h ≤ s,

〈H,C ′
l〉 =

1

τp

〈η(1)
, C

′
l〉,

for 1 ≤ l ≤ t, and such that, for any j = 1, . . . , n, we have

〈 ̂H, ̂Q〉 − hj =
1

τp

(

〈η̂(1)
,

̂

Q〉 − η

(1)
j

)

,

for every solution ̂

Q ∈ N
n of (4.27), with |Q| ≥ 1, such that 〈 ̂Q, η̂(1)〉 ∈ τp η

(1)
j Z.

4.6 Construction of torus actions

In this last section we shall see some conditions assuring the existence of the torus actions we
need.

It is possible to introduce formal Poincaré-Dulac normal forms and the normalization

problem for germs of holomorphic vector field of (Cn
, O) with a singular point at the origin,

i.e., for local continuous dynamical systems. We refer to [Ar] pp. 180–191 for a more detailed
exposition, and shall restrict ourselves to recall here the main facts that we shall need in the
following.

Let X ∈ Xn be a germ of holomorphic vector field of (Cn
, O) singular at the origin, in

Poincaré-Dulac normal form, i.e.,

X = X

dia +X

nil +X

res

where, denoting with ∂j the partial derivative ∂/∂zj ,

X

dia =

n
∑

j=1

ϕjzj∂j ,

X

nil is a linear nilpotent vector field singular at the origin such that

[Xdia
,X

nil] = 0,

X

res is a holomorphic vector field singular at the origin with no linear part and such that

[Xdia
,X

res] = 0.
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In particular

[Xdia
,X

nil +X

res] = 0.

A germ of holomorphic vector field X of (Cn
, O) singular at the origin is in Poincaré-Dulac

normal form up to order k if

X = X

dia +X

nil + ˜

X,

where Xdia and X

nil are as above, and ˜

X is a holomorphic vector field singular at the origin
with no linear part and such that

[Xdia
,

˜

X ] = O(‖z‖k).

Recall that the flows of two commuting vector fields also commute (see [Le] Prop. 18.5).
We have

exp(Xdia) = Diag(eϕ1
, . . . , e

ϕn)z.

and, in general for a linear vector field X

lin =
∑n

j=1 (
∑n

h=1 ahjzh) ∂j , we have

exp(X lin) = e

A
z,

where A is the matrix (ahj). If Y is a holomorphic vector field singular at the origin with no
linear part, then we have

exp(tY )z =
∑

k≥0

t

k

k!
Y

k(z). (4.28)

In fact, defining Kt(z) = z + tY (z), we get K0(z) = z and ∂
∂t
Kt(z)|t=0 = Y (z), then we

have exp(tY )z = limm→∞(K1/m)m, (see [AMR] Theorem 4.1.26), that is (4.28). Moreover,
if V,W are two commuting vector fields, we have

exp(t(V +W )) =





∑

k≥0

(tV )k

k!









∑

k≥0

(tW )k

k!



 = exp(tV ) exp(tW ).

Then we have the following result.

Proposition 4.6.1. Let X be a germ of holomorphic vector field of (Cn
, O), singular at

the origin, and in Poincaré-Dulac normal form. Then its flow is a germ of biholomorphism

of (Cn
, O) in Poincaré-Dulac normal form.

Proof. The flow of Xnil +X

res is unipotent, then the linear part of the flow of X is Az with A
triangular matrix with diagonal Diag(eϕ1

, . . . , e

ϕn), and the flow of X has to commute with
the flow of Xdia.

In [Zu1], Zung found that to find a Poincaré-Dulac holomorphic normalization for a germ
of holomorphic vector field is the same as to find (and linearize) a suitable torus action which
preserves the vector field. To deal with this problem he introduced the notion of toric degree

of a vector field. The following definition is a reformulation of Zung’s original one, clearer and
more suitable to our needs.

Definition 4.6.1. The toric degree of a germ of holomorphic vector field X of (Cn
, O)

singular at the origin is the minimum r ∈ N such that the diagonalized semi-simple part
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X

dia =
∑n

j=1 ϕjzj∂j of the linear term of X can be written as linear combination with com-
plex coefficients of r diagonal vector fields with integer coefficients, i.e.,

X

dia =

r
∑

k=1

αkZk,

where α1, . . . , αr ∈ C
∗ and Zk =

∑n
j=1 ρ

(k)
j zj∂j with ρ(k) ∈ Z

n. The r-tuple Z1, . . . , Zk is called
a r-tuple of toric vector fields associated to X, and the numbers α1, . . . , αr ∈ C are a r-tuple
of toric coefficients of the toric r-tuple.

In particular, we have

ϕ =

r
∑

k=1

αkρ
(k)
,

and, similarly to the case of germs of biholomorphisms, toric r-tuples of vector fields and their
toric coefficients have to satisfy certain arithmetic properties, as the following result shows.

Lemma 4.6.2. Let Xdia =
∑n

j=1 ϕjzj∂j be a germ of semi-simple linear holomorphic vector

field of (Cn
, O) singular at the origin, of toric degree r, and let Z1, . . . , Zr be a r-tuple of

toric vector fields associated to Xdia with toric coefficients α1, . . . , αr and Zk =
∑n

j=1 ρ
(k)
j zj∂j .

Then:

(i) α1, . . . , αr is a set of rationally independent complex numbers;

(ii) Z1, . . . , Zr is a set of Q-linearly independent vectors;

(iii) for every j = 1, . . . , n we have

Res+
j (ϕ) =

r
⋂

k=1

Res+j (ρ(k));

(iv) we have ρ
(k)
j = ρ

(k)
h whenever ϕj = ϕh, for every k = 1, . . . , r.

Proof. (i) Let us suppose by contradiction that α1, . . . , αr ∈ C are rationally dependent. Then
there exists (c1, . . . , cr) ∈ Z

r \ {O} such that

c1α1 + · · · + crαr = 0.

Up to reordering we may assume c1 6= 0. Then

α1 = −
1

c1
(c2α2 + · · · + crαr),

and hence

X

dia =
r
∑

k=1

αkZk

= −
1

c1
(c2α2 + · · · + crαr)Z1 + α2Z2 + · · · + αrZr

=
α2

c1
(c1Z2 − c2Z1) + · · · +

αr

c1
(c1Zr − crZ1),

and this contradicts the definition of toric degree.
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(ii) The proof is analogous to the previous one.

(iii) Let Q be in N
n with |Q| ≥ 2 and le 1 ≤ j ≤ n. We have

〈Q,ϕ〉 − ϕj =

r
∑

k=1

αk

(

〈Q, ρ(k)〉 − ρ

(k)
j

)

(4.29)

and, since α1, . . . , αr are rationally independent, the right-hand side of (4.29) vanishes if and

only if 〈Q, ρ(k)〉 − ρ

(k)
j = 0 for every k = 1, . . . , r.

(iv) If ϕj = ϕh, then

α1ρ
(1)
j + · · · + αrρ

(r)
j = α1ρ

(1)
h + · · · + αrρ

(r)
h ,

hence

α1

(

ρ

(1)
j − ρ

(1)
h

)

+ · · · + αr

(

ρ

(r)
j − ρ

(r)
h

)

= 0,

and, since ρ
(k)
j − ρ

(k)
h ∈ Z for k = 1, . . . , r, the assertion follows from the rational independence

of α1, . . . , αr.

Lemma 4.6.3. Let Xdia =
∑n

j=1 ϕjzj∂j be a germ of semi-simple linear holomorphic vector

field of (Cn
, O) singular at the origin. Then X

dia has toric degree 1 if and only if, chosen a

non-zero eigenvalue of its linear part, all the other eigenvalues are rational multiplies of it. In

particular we have uniqueness of the toric vector field associated to Xdia up to multiplication

by a non-zero integer.

Proof. Up to reorderings we may assume ϕ1 6= 0. The vector field X

dia has toric degree 1 if
and only if there exist a non zero complex number α and a diagonal vector field with integer
coefficients Y =

∑n
j=1mjzj∂j such that Xdia = αY , that is

ϕj = αmj ∀j = 1, . . . , n,

which is equivalent to
ϕj

ϕ1
=
mj

m1
∀j = 1, . . . , n,

and, since mj/m1 ∈ Q for each j = 1, . . . , n, this concludes the proof.

We shall use the following definitions, that are a generalization of the one of [Zu1].

Definition 4.6.2. Let 1 ≤ m ≤ n. A set of m integrable vector fields of (Cn
, O) is a

set X1, . . . ,Xm of germs of holomorphic vector fields of (Cn
, O) singular at the origin, and

such that:

(i) X1, . . . ,Xm commute pairwise and are linearly independent, i.e., X1 ∧ · · · ∧Xm 6≡ 0;

(ii) there exist n − m germs of holomorphic functions g1, . . . , gn−m in (Cn
, O) which are

common first integrals of X1, . . . ,Xm, i.e., Xj(gk) = 0 for any j and k, and they are
functionally independent almost everywhere, i.e., dg1 ∧ · · · ∧ dgn−m 6≡ 0.

The minimal [resp. maximal] order of the set is the minimum [resp. maximum] of the
orders of vanishing at the origin of the vector fields in the set; when all the vector fields have
the same order of vanishing at the origin we simply call it the order of the set.
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Definition 4.6.3. A germ of holomorphic vector field X of (Cn
, O) singular at the origin is

said integrable if there exists a positive integer 1 ≤ m ≤ n such that X belongs to a set of m
integrable vector fields.

Theorem 4.6.4. (Zung, 2002 [Zu1]) Let X be a germ of holomorphic vector field of (Cn
, O)

singular at the origin with non-nilpotent linear part which is integrable. Then X admits a

holomorphic Poincaré-Dulac normalization.

As a corollary of Proposition 4.6.1, we obtain

Corollary 4.6.5. The flow of a germ of integrable holomorphic vector field of (Cn
, O) sin-

gular at the origin and with non-nilpotent linear part admits a holomorphic Poincaré-Dulac

normalization.

Moreover we have the following result

Theorem 4.6.6. (Zung, 2002 [Zu1]) Let 1 ≤ m ≤ n. Every set of m integrable vector fields

of order of vanishing at the origin 1 and with non-nilpotent linear parts admits a simultaneous

holomorphic Poincaré-Dulac normalization.

Thus we have the following corollary

Corollary 4.6.7. Let 1 ≤ m ≤ n. The flows of a set of m integrable vector fields of order

of vanishing at the origin 1 with non-nilpotent linear parts admit a simultaneous holomorphic

Poincaré-Dulac normalization.

Remark 4.6.8. Theorem 4.6.6 means that we can conjugate X1, . . . ,Xm to a m-tuple of vector
fields containing only monomials belonging to the intersection of the additive resonances of the
eigenvalues of the linear terms of X1, . . . ,Xm.

Now, we introduce an analogous for germs of biholomorphisms of the notion of integrability
we described above.

Definition 4.6.4. A germ of biholomorphism f of (Cn
, O) fixing the origin commutes with a

set of integrable vector fields if there exists a positive integer 1 ≤ m ≤ n, such that there exists
a set of m germs of holomorphic integrable vector fields X1, . . . ,Xm such that

df(Xj) = Xj ◦ f

for each j = 1, . . . ,m.

Remark 4.6.9. A germ of biholomorphism f of (Cn
, O) commutes with a vector field X

according to the previous definition if and only if it commutes with the flow generated by X.

In the following we shall need the following results of Zung [Zu1] that we report here with
their proof, since we are using a different (but equivalent) definition for the toric degree. Next
result also shows that the vector field case is similar to the torsion-free case but simpler.

Lemma 4.6.10. Let X = X

dia + ˜

X be a germ of holomorphic vector field of (Cn
, O) singular

at the origin, with X

dia =
∑n

j=1 ϕjzj∂j of toric degree r, in Poincaré-Dulac normal form up

to order k ≥ 1 and let Z1, . . . , Zr be a toric r-tuple of vector fields associated to X. Then

(i) if Y is a germ of holomorphic vector field of (Cn
, O) commuting with X, then we

have [Zh, Y ] = O(‖z‖k) for each h = 1, . . . , r;

(ii) if g is a germ of holomorphic function of (Cn
, O) such that X(g) = 0, then we have

Zh(g) = O(‖z‖k) for every h = 1, . . . , r.

Moreover, if X is in Poincaré-Dulac normal form, Y commutes with X and X(g) = 0, then Y

commutes with each Zh, and Zh(g) = 0 for any h = 1, . . . , r.
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Proof. (i) Let Y be a germ of holomorphic vector field of (Cn
, O) commuting with X. Then

we have
πk ([X,Y ]) = 0, (4.30)

where πk is the projection on the space of k-jets of holomorphic vector field of (Cn
, O) and it

verifies
πk ([X,Y ]) = [πk(X), πk(Y )]. (4.31)

SinceX is in Poincaré-Dulac normal form up to order k, the vector field πk(Xdia) is semi-simple;
thus thanks to the uniqueness of the Jordan-Chevalley decomposition in finite-dimensional vec-
tor spaces, the semi-simple part of ad(πk(X)) coincides with ad(πk(Xdia)), and hence πk(Xdia)
coincides with the semi-simple part of the vector field πk(X). Furthermore, the semi-simple
part if ad(πk(X)) is well-known to be a polynomial in ad(πk(X)), hence, by equations (4.30)
and (4.31), we have

0 = [πk(X)dia
, πk(Y )]

= [πk(Xdia), πk(Y )]

= πk([Xdia
, Y ]),

that is [Xdia
, Y ] = O(‖z‖k), which means that all the monomials of Y of degree l ≤ k − 1 are

resonant, and we get the thesis by Lemma 4.6.2.
Moreover, if X is in Poincaré-Dulac normal form and it commutes with Y , we have

[Xdia
, Y ] = O(‖z‖k) for every positive k, hence Y commutes with X

dia and therefore with
each Zh.

(ii) Each germ of holomorphic vector field of (Cn
, O) singular at the origin is a derivation

on the space CO{z1, . . . , zn} of germs holomorphic function of (Cn
, O), hence it acts linearly

on CO{z1, . . . , zn}. Let g ∈ CO{z1, . . . , zn} be such that X(g) = 0 . Then we have

ρk(X(g)) = 0,

where ρk is the projection of CO{z1, . . . , zn} over the space of k-jets Jk
n of germs of holomorphic

functions of (Cn
, O); as above we have

ρk(X(g)) = πk(X)(ρk(g)).

In fact, if X =
∑

j,P Xj,P ∂j , for any monomial fQz
Q of g we have

ρk(X(zQ)) =
n
∑

j=1

∑

|Q+P−ej |≤k

Xj,P gQqj z
Q+P−ej

=

n
∑

j=1

∑

|P |≤k,|Q|≤k

|Q+P−ej |≤k

Xj,P gQqj z
Q+P−ej

,

(4.32)

where in the last equality we used that |Q + P − ej | ≤ k yields |P | ≤ k e |Q| ≤ k; moreover,
if azQ is a monomial with |Q| ≤ k and a ∈ C, we have

πk(X)(azQ) =
n
∑

j=1

∑

|P |≤k,|Q|≤k

|Q+P−ej |≤k

Xj,P a qj z
Q+P−ej

. (4.33)



4.6 Construction of torus actions 133

Since each monomial of ρk(g) is of the form gQz
Q with |Q| ≤ k, by (4.32) and (4.33) we

get ρk(X(g)) = πk(X)(ρk(g)).
It follows that

0 = πk(X)dia(ρk(g))

= πk(Xdia)(ρk(g))

= ρk(Xdia(g)),

that is Xdia(g) = O(‖z‖k), thus, for any h = 1, . . . , n, we have Zh(g) = O(‖z‖k).

If, moreover, X is in Poincaré-Dulac normal form and X(g) = 0, then for any positive k,
we have Xdia(g) = O(‖z‖k), implying Xdia(g) = 0. Hence, writing g =

∑

|Q|≥0 gQz
Q, we get

0 = X

dia(g)

=

r
∑

h=1

αhZh(g)

=

r
∑

h=1

αh





n
∑

j=1

ρ

(h)
j zj∂j(g)





.

(4.34)

Since, we have
n
∑

j=1

ρ

(h)
j zj∂j(g) =

n
∑

j=1

ρ

(h)
j zj∂j





∑

|Q|≥0

gQz
Q





=

n
∑

j=1

ρ

(h)
j zj

∑

|Q|≥0

gQqj

z

Q

zj

=
∑

|Q|≥0

gQz
Q

n
∑

j=1

ρ

(h)
j qj

= Mhg,

with Mh ∈ Z, equation (4.34) becomes

0 =

(

r
∑

h=1

αhMh

)

g,

and we get the thesis from the rational independence of α1, . . . , αr.

Lemma 4.6.11. (Zung, 2005 [Zu2]) Let (εd) be a sequence of positive numbers converging

to 0 and let S be a complex analytic subset of C
n containing the origin, of complex codi-

mension d ≥ 1. Then any bounded holomorphic function defined on U =
⋃∞

d=1 Ud, where Ud

is the set {z ∈ C
n : ‖z‖ < εd, d(z, S) > ‖z‖d}, admits a holomorphic extension to a whole

neighbourhood of the origin in C
n.

Theorem 4.6.12. Let f be a germ of biholomorphism of (Cn
, O) fixing the origin. Let f

commute with a set of n integrable holomorphic vector fields X1, . . . ,Xn of minimal order 1
such that Xj has non-nilpotent linear part for some j ∈ {1, . . . ,m}. Then f commutes with

a holomorphic effective action on (Cn
, O) of a torus of dimension equal to the toric degree r
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of Xj and such that the columns of the weight matrix of the action are a r-tuple of toric vectors

associated to Xj .

Proof. Let ℓ ≥ 1 be the maximal order of the set X1, . . . Xn. Up to reordering we may assume
j = 1. Let us fix a holomorphic system of coordinates z = (z1, . . . , zn) in a neighbourhood of
the origin of C

n in which X1 is in Poincaré-Dulac normal form up to order D ∈ N, with D ≥ 2ℓ
sufficiently large. Let

Z

D =
n
∑

j=1

iρjzj∂j

be a toric vector field associated to X1. Since [X1,Xh] = 0 for h = 2, . . . , n, from Lemma
4.6.10, we have

[ZD
,Xj ] = O(‖z‖D), (4.35)

for j = 1, . . . , n. Thanks to the hypotheses, there exist aD
1 , . . . , a

D
n : Cn → C holomorphic

functions such that

Z

D(z) =

n
∑

j=1

a

D
j (z)Xj(z);

then (4.35) implies, since the maximal order of the set X1
, . . . ,Xn is ℓ, that

∥

∥

a

D
j (z) − a

D
j (0)

∥

∥ = O(‖z‖D−2ℓ+1).

Now we normalize X1 up to order D + 1 via a holomorphic, tangent to the identity, change of
coordinate w = ϕ

D+1(z) in a neighbourhood of O (we can always do it, up to shrinking the
neighbourhood, and ϕD+1 − Id will be of order D + 1). Setting

Z

D+1(w) =

n
∑

j=1

iρjwj

∂

∂wj

,

as before, from Lemma 4.6.10, we have

[ZD+1
,Xj ](w) = O(‖w‖D+1), (4.36)

for j = 1, . . . , n, and there exist aD+1
1 , . . . , a

D+1
n : Cn → C holomorphic functions such that

Z

D+1(w) =

n
∑

j=1

a

D+1
j (w)Xj(w),

with
∥

∥

a

D+1
j (w) − a

D+1
j (0)

∥

∥ = O(‖w‖D−2ℓ+2).

In the new coordinates, writing ϕD+1 = Id +ϕ̂D+1, we have

Z

D(w) =

n
∑

j=1

(

iρjwj + iρjϕ̂
D+1
j (w)

)

n
∑

k=1

∂wk

∂zj

∂

∂wk

=

n
∑

k=1

(iρkwk + ψk(w))
∂

∂wk
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where ψk(w) = O(‖w‖D+1). Moreover, the ZD are defined in a uniform neighbourhood of the
origin because they are obtained by polynomial changes of variables. We also have

Z

D(w) =

n
∑

j=1

a

D
j (w)Xj(w),

with
∥

∥

a

D
j (w) − a

D
j (0)

∥

∥ = O(‖w‖D−2l+1). (4.37)

Then, since ZD+1 coincides with Z

D up to order D,

∥

∥

Z

D+1(w) − Z

D(w)
∥

∥ =

∥

∥

∥

∥

∥

∥

n
∑

j=1

(aD+1
j (w) − a

D
j (w))Xj(w)

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

n
∑

j=1

−ψk(w)
∂

∂wk

∥

∥

∥

∥

∥

∥

= O(‖w‖D+1)

thus
∥

∥

a

D+1
j (w) − a

D
j (w)

∥

∥ = O(‖w‖D−2ℓ+1) (4.38)

for j = 1, . . . , n. Then aD
j (0) = aj(0) does not depend on D for any j = 1, . . . , n. Set

Z =

n
∑

j=1

aj(0)Xj .

The holomorphic vector field Z is 2π-periodic because, from (4.37), it is arbitrarily close to a
2π-periodic vector field. Then we have

df(Z) = df





n
∑

j=1

aj(0)Xj





=

n
∑

j=1

aj(0)df(Xj)

=
n
∑

j=1

aj(0)Xj ◦ f

= Z ◦ f.

It is evident that we can apply the same procedure to any toric vector field associated to X1,
hence we get r 2π-periodic germs of holomorphic vector fields, which are linearly independent,
commute pairwise and with f , and such that their linear parts form a r-tuple of toric vectors
associated to the linear semi-simple part of X1, implying the thesis.
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Theorem 4.6.13. Let f be a germ of biholomorphism of (Cn
, O) fixing the origin and com-

muting with a set of integrable holomorphic vector fields X1, . . . ,Xm such that Xj has non-

nilpotent linear part for some j ∈ {1, . . . ,m}. Then f commutes with a holomorphic effective

action on (Cn
, O) of a torus of dimension equal to the toric degree r of Xj and such that the

columns of the weight matrix of the action are a r-tuple of toric vectors associated to Xj .

Proof. Up to reordering we may assume j = 1. We dealt with the case n = m in Theorem
4.6.12. Let us now consider the case 1 ≤ m < n.

Let us fix a holomorphic system of coordinates z = (z1, . . . , zn) in a neighbourhood of
the origin of C

n, a standard Hermitian metric in C
n and a positive sufficiently small num-

ber ε0. Let S be the singular locus of the n-tuple of vector fields X1, . . . ,Xm and of the
functions g1, . . . , gn−m, i.e.,

{z ∈ C
n : ‖z‖ < ε0, X1 ∧ · · · ∧Xm(z) = 0} ∪ {z ∈ C

n : ‖z‖ < ε0, dg1 ∧ · · · ∧ dgn−m(z) = 0}.

Thanks to the hypotheses, S is a complex analytic set of complex codimension at least 1; then
it is possible to write it locally as the zero locus of a finite number of complex holomorphic
functions, S = {h1 = 0, . . . , hl = 0}, and, using  Lojasiewicz inequalities (see [ Lo] pp. 242–
245), there exist a positive integer N > 0 and a positive constant C > 0 such that, for any z

with ‖z‖ < ε0 we have the following  Lojasiewicz inequalities

‖X1 ∧ · · · ∧Xm(z)‖ ≥ C d(z, S)N

‖dg1 ∧ · · · ∧ dgn−m(z)‖ ≥ C d(z, S)N
,

(4.39)

where the norms are the standard norms on the considered spaces and the distance is the
Euclidean distance.

For each positive integer d and small positive number ε(d) (which shall be chosen later in
function of d with limd→∞ ε(d) = 0), let us define the following open subset of C

n

Ud,ε(d) = {z ∈ C
n : ‖z‖ < ε(d), d(z, S) > ‖z‖d}.

We will define a holomorphic vector field Z in Ud,ε(d), periodic with period 2π, and in such
a way that, for any two positive distinct integers d1, d2, the vector field Z defined in Ud1,ε(d1)

coincides, in the intersection Ud1,ε(d1) ∩ Ud2,ε(d2), with the one defined in Ud2,ε(d2).
Up to holomorphic, tangent to the identity, changes of coordinates, we may assume X1 to

be in Poincaré-Dulac normal form up to order D(d) ∈ N, with D(d) = 4dℓN + 2 ≥ 2ℓ, where
ℓ ≥ 1 is the maximal order of the set X1, . . . ,Xm, (in particular limd→∞D(d) = +∞). Let

Z

d =

n
∑

j=1

iρjzj∂j

be a toric vector field associated to X1. Since [X1,Xh] = 0 for h = 2, . . . , n, from Lemma
4.6.10, we have

[Zd
,Xj ] = O(‖z‖D(d)),

for any j = 1, . . . ,m, and

Z

d(g)(z) = O(‖z‖D(d))

where g = (g1, . . . , gn−m) is the (n−m)-tuple of common first integrals of X1, . . . ,Xm.
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Let y be an arbitrary point in Ud,ε(d). Then, thanks to inequalities (4.39) and to the
definition of Ud,ε(d), we have

‖X1 ∧ · · · ∧Xm(y)‖ ≥ C ‖y‖dN

‖dg1 ∧ · · · ∧ dgn−m(y)‖ ≥ C ‖y‖dN
.

(4.40)

Let us denote by Γd(t, y) = Γd(t) the closed curve, t ∈ [0, 2π], which is the orbit of the
periodic vector field Z

d starting at y. Then we have Γd(0) = y and, for ε(d) small enough, we
have 1

2‖y‖ ≤ ‖Γd(t)‖ ≤ 2‖y‖ for any t in [0, 2π]. Then, for any x in Γd we have

‖X1 ∧ · · · ∧Xm(x)‖ >
C

2dN
‖y‖dN

‖dg1 ∧ · · · ∧ dgn−m(x)‖ >
C

2dN
‖y‖dN

.

(4.41)

Since Zd commutes with X1, . . . ,Xm up to order D(d) and g is a first integral of Zd up
to order D(d), for ε(d) small, we have the following inequalities

‖g(x) − g(y)‖ < ‖y‖D1(d)

‖[Xj , Z
d](x)‖ < ‖y‖D1(d) ∀j = 1, . . . ,m

(4.42)

for any x belonging to Γd
k, where D1(d) = dN + 3, (which is larger than dN + 2 and veri-

fies D1(d) < D(d) − 1 = 4dN + 1 for every d). In fact

‖g(x) − g(y)‖ ≤ C1‖Z
d(g)(y)‖ ≤ C2‖y‖

D(d)
< ‖y‖D1(d)

and, for any j = 1, . . . ,m, we have

‖[Xj , Z
d](x)‖ ≤ C3‖x‖

D(d) ≤ 2D(d)
C3‖y‖

D(d)
< ‖y‖D1(d)

.

The inequalities (4.41) and (4.42) imply the following facts:

a) For any point y the regular part of the level set Ly = g−1(g(y)) has complex dimen-
sion m, and its tangent space at each point is spanned by X1, . . . ,Xm. Moreover, the regular
part of Ly has an affine flat structure given by the vector fields X1, . . . ,Xm, because they
commute.

b) The curve Γd can be projected orthogonally on a smooth closed curve ̂Γd(t) lying on Ly

and close to Γd in the C1-topology: the distance between ̂Γd and Γd in the C1-topology is
bounded from above by ‖y‖D2(d), where D2(d) = dN + 1.

c) We can write d̂Γd(t)/dt in the form
∑m

j=1 Re(aj(t)Xj(̂Γd(t))), and the holomorphic

functions aj(t) are almost constant, in the sense that

∥

∥

a

j(t) − a

j
y(0)

∥

∥ ≤ ‖y‖D3(d)
,

for t ∈ [0, 2π], where D3(d) is positive, for example D3(d) = D2(d) − 1 = dN . This fol-
lows from the almost commutativity of X1, . . . ,Xm with Z

d and from the fact that, thanks

to b), we have ‖d̂Γd(t)/dt − Re(Zd(̂Γd
k(t)))‖ < ‖y‖D2(d). In fact, since X1, . . . ,Xm commute,

in a suitable system of coordinates z1, . . . , zn we may assume that each Xj coincides with ∂j
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for j = 1, . . . ,m. Writing Zd in the form
∑n

j=1 ζj(z)∂j in these coordinates, since Zd almost
commutes with X1, . . . ,Xm and it is almost tangent to the level sets, the functions ζ1, . . . , ζm,
are almost constant along the chosen orbit of Zd, whereas ζm+1, . . . , ζn are almost zero. Pro-
jecting on the level set those functions remain almost constant.

d) Arguing analogously to what we did in the proof of Theorem 4.6.12, there exist complex
numbers a1

, . . . , a

m such that ‖aj − a

j
y(0)‖ ≤ ‖y‖D3(d), and the time-2π flow of the vector

field
∑m

j=1 a
j
Xj in Ly fixes y. Then the real vector field Re(

∑m
j=1 a

j
Xj) has a periodic orbit

of period 2π passing through y, and this orbit is C1-close to ̂Γd(t, y).

e) Thanks to the affine flat structure of Ly, the numbers a1
, . . . , a

m are well-defined,
i.e., unique, and they do not depend, at least locally, on the choice of y in Ly. We can
consider a1

, . . . , a

m as functions of y: a1(y), . . . , am(y). These functions are holomorphic, due
to the holomorphic implicit function theorem, constant on the connected components in Ud,ε(d)

of the level sets of g, and they are uniformly bounded in Ud,ε(d) by a constant, provided that ε(d)
is small enough.

Let us now define the vector field Z as follows

Z(y) =

m
∑

j=1

a

j(y)Xj(y).

Then Z is a holomorphic vector field in Ud,ε(d) with the following properties:

(a) Z is uniformly bounded by a constant, and it is periodic with period 2π, at least in an
open subset of Ud,ε(d).

(b) If Z is a vector field defined as above for Ud,ε(d), and Z ′ is another vector field defined
as above but for Ud′,ε(d′), with d 6= d

′, then Z and Z ′ coincide in Ud,ε(d) ∩Ud′,ε(d′). In fact, the
vector field Z commutes with Z ′ on Ud,ε(d)∩Ud′,ε(d′) by construction, and Z−Z ′ is tangent to
the level sets of g in Ud,ε(d) ∩Ud′,ε(d′) and it is a constant vector field with respect to the affine
flat structure on each level set. Moreover Z − Z ′ is periodic of period 2π on the considered
intersection; but the coefficients of Z − Z ′, when they are written as a linear combination
of X1, . . . ,Xm, are bounded from above by ‖y‖min(D3(d),D3(d′)), therefore Z − Z ′ is too small
to be 2π-periodic unless it is zero. Thus Z = Z ′ in Ud,ε(d) ∩ Ud′,ε(d′).

We have then defined a bounded holomorphic vector field Z on the open set

U =

∞
⋃

d=1

Ud,ε(d),

which is constant on each Ly with respect to the affine flat structure. Moreover Z is 2π-periodic,
and there exist a1, . . . , am holomorphic functions constant on the connected components of each
level set, such that

Z =

m
∑

j=1

ajXj
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in U . Then

df(Z) = df





m
∑

j=1

ajXj





=

m
∑

j=1

(aj ◦ f) df(Xj)

=
m
∑

j=1

(aj ◦ f) (Xj ◦ f)

= Z ◦ f.

Applying Lemma 4.6.11, there exists a holomorphic vector field, defined in a whole neighbour-
hood of the origin, coinciding with Z on U .

It is evident that we can apply the same procedure to any toric vector field associated
to X1. Hence get r germs of holomorphic 2π-periodic vector fields Z1, . . . ,Zr which are lin-
early independent, commute pairwise and with each Xj , and thus they generate a T

r action
preserving X1, . . . ,Xm. Moreover for each k = 1, . . . , r, there exist a1,k, . . . , am,k germs of
holomorphic functions of (Cn

, O), constant on the connected components of each level set
Ly = g−1(g(y)), where we denote by g = (g1, . . . , gn−m) the (n − m)-tuple of common first
integrals of X1, . . . ,Xm, such that

Zk =
m
∑

j=1

aj,kXj ,

for each k = 1, . . . , r. Then, for each k = 1, . . . , r, we have

df(Zk) = df





m
∑

j=1

aj,kXj





=

m
∑

j=1

(aj,k ◦ f) df(Xj)

=

m
∑

j=1

(aj,k ◦ f) (Xj ◦ f)

= Zk ◦ f.

Thus the torus action commutes with f as we wanted, and this concludes the proof.

Corollary 4.6.14. Let f be a germ of biholomorphism of (Cn
, O) fixing the origin and

commuting with a setX1, . . . ,Xm ofm integrable holomorphic vector fields of order of vanishing

at the origin 1, with non-nilpotent linear parts. Then f is holomorphically conjugated to a

germ containing only monomials belonging to the intersection of the additive resonances of the

eigenvalues of the linear terms of X1, . . . ,Xm.

Proof. It follows from the previous proof that, for each Xj , we can find r holomorphic periodic
vector fields, such that their linear terms form a r-tuple of toric vector fields associated to
Xj , which commute pairwise, are linearly independent, and they commute with f . Then the
assertion follows from Corollary 4.6.7 and Theorem 4.1.1.
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Then we also have the following

Corollay 4.6.15. Let f be a germ of biholomorphism of (Cn
, O) fixing the origin and com-

muting with a set X1, . . . ,Xm of m integrable holomorphic vector fields of order of vanishing

at the origin 1, with non-nilpotent linear parts, and such that the intersection of the addi-

tive resonances of the eigenvalues of the linear terms of X1, . . . ,Xm is equal or contained in

the set of resonances of the spectrum of dfO. Then f admits a holomorphic Poincaré-Dulac

normalization.
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309–349.

[FHY] A. Fathi, M. Herman, J.-C. Yoccoz: A proof of Pesin’s stable manifold theorem. In
Geometric Dynamics, Lect Notes in Math. 1007, Springer Verlag, Berlin, 1983,
pp. 177–216.

[GS] V. Gelfreich, D. Sauzin: Borel summation and splitting of separatrices for the Hénon
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Sūrikaisekikenkyūsho Kōkyūroku 959 (1996), 168–180.

[V] L. R. Vivas: Fatou-Bieberbach domains as basins of attraction of automorphisms

tangent to the identity . Preprint, arXiv: 0907.2061v1, 2009.

[Vo] S.M. Voronin: Analytic classification of germs of conformal maps (C, 0) → (C, 0) with

identity linear part. Func. Anal. Appl. 15 (1981), 1–17.

[W] B.J. Weickert: Attracting basins for automorphisms of C
2. Invent. Math. 132 (1998),

581–605.

[Wu] H. Wu: Complex stable manifolds of holomorphic diffeomorphisms. Indiana Univ.
Math. J. 42 (1993), 1349–1358.
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