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Abstract. Let f be a germ of holomorphic diffeomorphism of Cn fixing the ori-
gin O, with dfO diagonalizable. We prove that, under certain arithmetic conditions
on the eigenvalues of dfO and some restrictions on the resonances, f is locally holo-
morphically linearizable if and only if there exists a particular f -invariant complex
manifold. Most of the classical linearization results can be obtained as corollaries of
our result.

1. Introduction

We consider a germ of holomorphic diffeomorphism f of Cn at a fixed point p, which we
may place at the origin O. One of the main questions in the study of local holomorphic dynamics
(see [A] and [B] for general surveys on this topic) is when f is holomorphically linearizable, i.e.,
when there exists a local holomorphic change of coordinates such that f is conjugated to its
linear part. The answer to this question depends on the set of eigenvalues of dfO, usually called
the spectrum of dfO. In fact if we denote by λ1, . . . , λn ∈ C∗ the eigenvalues of dfO, then it
may happen that there exists a multi-index k = (k1, . . . , kn) ∈ Nn with |k| = k1 + · · ·+ kn ≥ 2
and such that

(1) λk − λj = λk1
1 · · ·λkn

n − λj = 0

for some 1 ≤ j ≤ n; a relation of this kind is called a resonance of f , and k is called a resonant

multi-index. A resonant monomial is a monomial zk = zk1
1 · · · zkn

n in the j-th coordinate, such
that λk = λj . From the formal point of view, we have the following classical result (see [Ar]
pp. 192–193 for a proof):

Theorem 1.1. Let f be a germ of holomorphic diffeomorphism of Cn fixing the origin O with
no resonances. Then f is formally conjugated to its differential dfO.

In presence of resonances, even the formal classification is not easy, as the following result
of Poincaré-Dulac, [P], [D], shows

Theorem 1.2.(Poincaré-Dulac) Let f be a germ of holomorphic diffeomorphism of Cn fixing
the origin O. Then f is formally conjugated to a formal power series g ∈ C[[z1, . . . , zn]]n without
constant term such that dgO is in Jordan normal form, and g has only resonant monomials.

The formal series g is called a Poincaré-Dulac normal form of f ; a proof of Theorem 1.2
can be found in [Ar] p. 194.

Even without resonances, the holomorphic linearization is not guaranteed. We need the
following definitions:

- if all the eigenvalues of dfO have modulus less than 1, we say that the fixed point O is
attracting;

- if all the eigenvalues of dfO have modulus greater than 1, we say that the fixed point O
is repelling;



- if all the eigenvalues of dfO have modulus different from 1, we say that the fixed point O
is hyperbolic;

- if all the eigenvalues of dfO are roots of unity, we say that the fixed point O is parabolic;
in particular, if dfO = Id we say that f is tangent to the identity;

- if all the eigenvalues of dfO have modulus 1 but none is a root of unity, we say that the
fixed point O is elliptic;

- if dfO = O, we say that the fixed point O is superattracting.

The easiest positive result is due to Poincaré [P] who, using majorant series, proved the
following

Theorem 1.3.(Poincaré, 1893 [P]) Let f be a germ of holomorphic diffeomorphism of Cn with
an attracting or repelling fixed point. Then f is holomorphically linearizable if and only if
it is formally linearizable. In particular, if there are no resonances then f is holomorphically
linearizable.

When O is not attracting or repelling, even without resonances, the formal linearization
might diverge. Let us introduce the following definition:

Definition 1.1. Let n ≥ 2 and let λ1, . . . , λn ∈ C∗ be not necessarily distinct. Fix 1 ≤ s ≤ n
and let λ = (λ1, . . . , λs). For any m ≥ 2 put

ωs(m) = min
2≤|k|≤m

min
1≤j≤n

|λk − λj |,

where λk = λk1
1 · · ·λks

s . We say that λ = (λ1, . . . , λn) satisfies the partial Brjuno condition of

order s if there exists a strictly increasing sequence of integers {pν}ν≥0 with p0 = 1 such that

∑

ν≥0

p−1
ν log ωs(pν+1)

−1 <∞.

Remark 1.4. For s = n the partial Brjuno condition of order s is nothing but the usual Brjuno
condition introduced in [Br] (see also [M] pp. 25–37 for the one-dimensional case). When s < n,
the partial Brjuno condition of order s is indeed weaker than the Brjuno condition. Let us
consider for example n = 2 and let λ, µ ∈ C∗ be distinct. To check whether the pair (λ, µ)
satisfies the partial Brjuno condition of order 1, we have to consider only the terms |λk − λ|
and |λk −µ| for k ≥ 2, whereas to check the full Brjuno condition we have to consider also the
terms |µh − λ|, |µh − µ| for h ≥ 2, and |λkµh − λ|, |λkµh − µ| for k, h ≥ 1.

Remark 1.5. A n-tuple λ = (λ1, . . . , λs, 1, . . . , 1) ∈ (C∗)n satisfies the partial Brjuno condition
of order s if and only if (λ1, . . . , λs) satisfies the Brjuno condition.

We assume that the differential dfO is diagonalizable. Then, possibly after a linear change
of coordinates, we can write

f(z) = Λz + f̂(z),

where Λ = Diag(λ1, . . . , λn), and f̂ vanishes up to first order at O ∈ Cn.
The linear map z 7→ Λz has a very simple structure. For instance, for any subset λ1, . . . , λs

of eigenvalues with 1 ≤ s ≤ n, the direct sum of the corresponding eigenspaces obviously is an
invariant manifold on which this map acts linearly with these eigenvalues.

We have the following result of Pöschel [Pö] that generalizes the one of Brjuno [Br]:

Theorem 1.6.(Pöschel, 1986 [Pö]) Let f be a germ of holomorphic diffeomorphism of Cn fixing
the origin O. If there exists a positive integer 1 ≤ s ≤ n such that the eigenvalues λ1, . . . , λn
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of dfO satisfy the partial Brjuno condition of order s, then there exists locally a complex
analytic f -invariant manifold M of dimension s, tangent to the eigenspace of λ1, . . . , λs at the
origin, on which the mapping is holomorphically linearizable.

In this paper we would like to extend Pöschel Theorem in such a way to get a complete
linearization in a neighbourhood of the origin.

Before stating our result we need the following definitions:

Definition 1.2. Let 1 ≤ s ≤ n. We say that λ = (λ1, . . . , λs, µ1, . . . , µr) ∈ (C∗)n has only

level s resonances if there are only two kinds of resonances:

λk = λh ⇐⇒ k ∈ K̃1,

where

K̃1 =

{
k ∈ Nn : |k| ≥ 2,

s∑

p=1

kp = 1 and µ
ks+1

1 · · ·µkn
r = 1

}
,

and
λk = µj ⇐⇒ k ∈ K̃2,

where

K̃2 = {k ∈ Nn : |k| ≥ 2, k1 = · · · = ks = 0 and ∃j ∈ {1, . . . , r} s.t. µ
ks+1

1 · · · µkn
r = µj}.

Example 1.7. When s < n, if λ = (λ1, . . . , λs, 1, . . . , 1) satisfies the Brjuno condition of
order s then it is easy to verify that it has only level s resonances.

Remark 1.8. It is obvious that if the set K̃2 is empty (which implies that the set K̃1 is
empty as well), there are no resonances. If K̃1 6= ∅, having only level s resonances implies
that the sets {λ1, . . . , λs} and {µ1, . . . , µr} are disjoint. If K̃1 = ∅ but K̃2 6= ∅, then the
sets {λ1, . . . , λs} and {µ1, . . . , µr} may intersect only in elements not involved in resonances,
i.e., we can have λp = µq for some p and q only if for every multi-index (ks+1, . . . , kn), we

have µ
ks+1

1 · · ·µkn
r 6= µq, and for any resonance µ

ks+1

1 · · ·µkn
r = µj with j 6= q, we have ks+q = 0.

Example 1.9. Let γ ≥ 1 and let µ3 be a (γ + 1)-th primitive root of unity. Let µ1, µ2 be two
complex numbers of modulus different from 1 and such that

µα1µ
β
2 = µ3

with α, β ∈ N \ {0}. Then we have

µα1µ
β
2µ

γ
3 = 1.

We can choose µ1, µ2 such that the only resonant multi-indices for the triple (µ1, µ2, µ3)
are (α, β, 0), (α − 1, β, γ) and (α, β − 1, γ). Then, if we consider λ such that (λ, µ1, µ2, µ3)
has only level 1 resonances, the admitted resonances are the following:

K̃1 = {(1, α, β, γ)},

K̃2 = {(0, α, β, 0), (0, α − 1, β, γ), (0, α, β − 1, γ)}.

Example 1.10. Let us consider (µ1, µ2, µ3, µ4) ∈ (C∗)4 with only one resonance, say µp1µ
q
2 = µ3

with p, q ≥ 1, and such that (λ, µ1, µ2, µ3, µ4) has only level 1 resonances with λ = µ4. Then

K̃1 = ∅,

K̃2 = {(0, p, q, 0, 0)}.
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Definition 1.3. Let n ≥ 2 and let λ1, . . . , λn ∈ C∗ be not necessarily distinct. For any m ≥ 2
put

ω̃(m) = min
2≤|k|≤m

k 6∈Resj (λ)

min
1≤j≤n

|λk − λj |,

where Resj(λ) is the set of multi-indices k ∈ Nn giving a resonance relation for λ = (λ1, . . . , λn)
relative to 1 ≤ j ≤ n, i.e., λk − λj = 0. We say that λ satisfies the reduced Brjuno condition if
there exists a strictly increasing sequence of integers {pν}ν≥0 with p0 = 1 such that

∑

ν≥0

p−1
ν log ω̃(pν+1)

−1 <∞.

Definition 1.4. Let f be a germ of holomorphic diffeomorphism of Cn fixing the origin O
and let s ∈ N, 1 ≤ s ≤ n. The origin O is called a quasi-Brjuno fixed point of order s if dfO is
diagonalizable and, denoting by λ = (λ1, . . . , λn) the spectrum of dfO, we have:

(i) λ has only level s resonances;

(ii) λ satisfies the reduced Brjuno condition.

We say that the origin is a quasi-Brjuno fixed point if there exists 1 ≤ s ≤ n such that it is a
quasi-Brjuno fixed point of order s.

Definition 1.5. Let f be a germ of holomorphic diffeomorphism of Cn fixing the origin O,
and let 1 ≤ s ≤ n. We will say that f admits an osculating manifold M of codimension s if
there is a germ of f -invariant complex manifold M at O of codimension s such that the normal
bundle NM of M admits a holomorphic flat (1, 0)-connection that commutes with df |NM

.

We can now state our result which is a linearization result in presence of resonances:

Theorem 1.11. Let f be a germ of a holomorphic diffeomorphism of Cn having the origin O
as a quasi-Brjuno fixed point of order s. Then f is holomorphically linearizable if and only
if it admits an osculating manifold M of codimension s such that f |M is holomorphically
linearizable.

Roughly speaking, having only level s resonances and the existence of the osculating
manifold on which f is holomorphically linearizable take cares of the resonances in the µj ’s and
give the formal linearization. Under these hypotheses the partial Brjuno condition of order s
holds, so we have a partial holomorphic linearization given by Pöschel’s result, and the reduced
Brjuno condition glues the formal linearization and the partial holomorphic linearization so to
get a global holomorphic linearization. In [Rü], Rüssmann gives an alternative way to pass from
a formal linearization to a holomorphic one under an arithmetic hypothesis on the eigenvalues
which implies the reduced Brjuno condition.

The structure of this paper is as follows.
In the next section we shall explain the relations between the quasi-Brjuno condition and

the partial Brjuno condition of order s.
In the third section we shall give a characterization of osculating manifolds.
In the fourth section we shall prove a formal linearization result.
In the fifth section we shall prove the holomorphic linearization result, i.e., Theorem 1.11.
In the last section we shall point out similarities and differences with the known results.

In the rest of the paper we shall denote by ‖ · ‖ the norm ‖ · ‖∞; but we could also had
used the norm ‖ · ‖2 thanks to the equivalence of such norms. We shall also need the following
notation: if g: Cn → C is a holomorphic function with g(O) = 0 (or a formal power series
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without constant term), and z = (x, y) ∈ Cn with x ∈ Cs and y ∈ Cn−s, we shall denote
by ordx(g) the maximum positive integer m such that g belongs to the ideal (x1, · · · , xs)

m.

2. Quasi-Brjuno condition vs Partial Brjuno condition

Notice that whereas it is always possible to introduce the reduced Brjuno condition, the
partial Brjuno condition makes sense only when there are no resonant multi-indices k ∈ Nn,
with |k| ≥ 2 and ks+1 = . . . = kn = 0. Anyway, when we have only level s resonance, we can
deal with these two condition at the same time.

Remark 2.1. If λ has only level s resonances, then we have

ω̃(m) = min
2≤|k|≤m

min

{
min

1≤j≤n

k1+···+ks≥2

|λk − λj |, min
1≤j≤n−s

k1+···+ks=1

|λk − λs+j |

}
,

therefore

ω̃(m) = min



ωs(m), min

2≤|k|≤m

(ks+1,...,kn) 6=O

{
min

1≤j≤n

k1+···+ks≥2

|λk − λj |, min
1≤j≤n−s

k1+···+ks=1

|λk − λs+j |

}
 ,

so it is obvious that, since ω̃(m) ≤ ωs(m) for every m ≥ 2, the reduced Brjuno condition
implies the partial Brjuno condition of order s. A partial converse is the following

Lemma 2.2. Let n ≥ 2 and let λ1, . . . , λn ∈ C∗ be not necessarily distinct. Let 1 ≤ s ≤ n be
such that λ = (λ1, . . . , λn) has only level s resonances. Then, if there exists a strictly increasing
sequence of integers {pν}ν≥0 with p0 = 1 such that

∑

ν≥0

p−1
ν log ωs(pν+1)

−1 <∞,

(i.e., λ satisfies the partial Brjuno condition of order s), and there exist k ∈ N and α ≥ 1 such
that

pν > k ⇒ ω̃(pν − k) ≥ ωs(pν)
α,

then λ satisfies the reduced Brjuno condition.

Proof. Let q0 = p0 and qj = pν0+j − k for j ≥ 1, where ν0 is the minimum index such
that pν > k for all ν ≥ ν0. Then we have

∑

ν≥0

q−1
ν log ω̃(qν+1)

−1 ≤ α
∑

ν≥0

q−1
ν log ωs(qν+1 + k)−1

= αp−1
0 log ωs(pν0+1)

−1 + α
∑

ν≥ν0+2

pν
pν − k

p−1
ν logωs(pν+1)

−1

≤ 2α
∑

ν≥0

p−1
ν logωs(pν+1)

−1

<∞,

and we are done.
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Remark 2.3. Suppose that λ has only level s resonances. Recall that a sequence {am} is said
to be Diophantine of exponent τ > 1 if there exist γ, γ′ > 0 so that γ′m−β ≥ am ≥ γm−β

(see also [C], [G] and [S]). Then if ω̃(m) is Diophantine of exponent β > 1, and if ωs(m) is
Diophantine of exponent ε > 1, there always exist α ≥ 1 and δ > 0 for which

ω̃(m) ≥ γm−β ≥ δm−εα ≥ ωs(m)α,

and thus the hypothesis of Lemma 2.2 is satisfied with k = 0.
More in general, if we have

∀m ≥ k + 2 ω̃(m− k) ≥ ωs(m)α

for some k ∈ N and α ≥ 1, the hypothesis of Lemma 2.2 is obviously satisfied. For example
if λ1, . . . , λs ∈ R are positive and λs+1, . . . , λn ∈ {−1,+1} then it is easy to verify that

∀m ≥ 3 ω̃(m− 1) ≥ ωs(m).

Furthermore, if λs+1 = · · · = λn = 1 then ω̃(m) = ωs(m), and so in this case the partial Brjuno
condition of order s coincides with the reduced Brjuno condition.

3. Osculating manifolds

Let f be a germ of holomorphic diffeomorphism of Cn at a point which we may assume
without loss of generality to be the origin O, and let M be an f -invariant complex manifold
through O of codimension s, with 1 ≤ s ≤ n. In this situation, the differential df acts on the
normal bundle NM = TCn/TM .

It is obvious that locally every holomorphic bundle admits a holomorphic flat (1, 0)-
connection (it suffices to take the trivial connection on a trivialization). Moreover, it is easy to
prove the following result, which has exactly the same proof as in the smooth case (adopting
for instance the argument in [BCS] pp. 272–274).

Proposition 3.1. Let π:E → M be a holomorphic vector bundle on a complex manifold M
and let ∇ be a holomorphic flat (1, 0)-connection. Then there are a local holomorphic co-
ordinate system about O and a local holomorphic frame of E in which all the connection
coefficients Γijk are zero.

In the particular case of the normal bundle we have the following useful result.

Lemma 3.2. Let M ⊂ Cn be a complex manifold through O of codimension s, with 1 ≤ s ≤ n
and let NM be its normal bundle. Fix p ∈M . Take a local holomorphic frame in a neighbour-
hood of p. Then there exist local coordinates at p in Cn such that for every local holomorphic
frame {V1, . . . , Vs} of NM we can find local holomorphic coordinates (U, z) with z = (x, y),
adapted to M (i.e., M ∩ U = {x = 0}) such that, on U ∩M ,

Vj = π

(
∂

∂xj

)

for every j = 1, . . . , s, where π:TCn → NM is the canonical projection.

Proof. Let us choose local holomorphic coordinates z̃ = (x̃, ỹ) at p adapted to M . Then
for every point (0, ỹ) ∈ M there exists a non-singular matrix A(ỹ) = (aij(ỹ)), depending
holomorphically on ỹ, such that

Vj(ỹ) =

s∑

i=1

aij(ỹ)π

(
∂

∂x̃i

)∣∣∣∣
(0,ỹ)

.
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Therefore, using the coordinates

xi =

s∑

i=1

aij(ỹ)x̃i for i = 1, . . . , s,

yj = ỹj for j = 1, . . . , r,

we obtain the assertion.

Definition 3.1. Let f be a germ of holomorphic diffeomorphism of Cn fixing the origin O, and
let M be a germ of f -invariant complex manifold at O of codimension s, with 1 ≤ s ≤ n. We
say that a holomorphic flat (1, 0)-connection ∇ of the normal bundle NM of M is f -invariant

if it commutes with df |NM
.

Theorem 3.3. Let f be a germ of holomorphic diffeomorphism of Cn fixing the origin O, let M
be a germ of f -invariant complex manifold through O of codimension s, with 1 ≤ s ≤ n, and
let ∇ be a holomorphic flat (1, 0)-connection of the normal bundle NM . Then ∇ is f -invariant
if and only if there exist local holomorphic coordinates z = (x, y) about O adapted to M in
which f has the form

(2)
x′i = λixi + εixi+1 + f1

i (x, y) for i = 1, . . . , s,

y′j = µjyj + εs+jyj+1 + f2
j (x, y) for j = 1, . . . , r = n− s,

where εi, εs+j ∈ {0, 1}, and

ordx(f
1
i ) ≥ 2,

for any i = 1, . . . , s.

Proof. If there exist local holomorphic coordinates z = (x, y) aboutO adapted toM , in which f
has the form (2) with ordx(f

1
i ) ≥ 2 for any i = 1, . . . , s, then it is obvious to verify that the

trivial holomorphic flat (1, 0)-connection is f -invariant.
Conversely, let ∇ be a holomorphic flat f -invariant (1, 0)-connection of the normal bun-

dle NM . Thanks to Proposition 3.1 and to Lemma 3.2 we can find local holomorphic coordi-
nates z = (x, y) adapted to M , in which all the connection coefficients Γijk with respect to the

local holomorphic frame {π( ∂
∂x1

), . . . , π( ∂
∂xs

)} of NM are zero. We may assume without loss of
generality, (up to linear changes of the coordinates we can assume that the linear part of f is
in Jordan normal form), that in such coordinates f has the form

x′i = λixi + εixi+1 + f1
i (x, y) for i = 1, . . . , s,

y′j = µjyj + εs+jyj+1 + f2
j (x, y) for j = 1, . . . , r,

where εi, εs+j ∈ {0, 1}. Moreover, since M = {x = 0} is f -invariant, we have

ordx(f
1
i ) ≥ 1.

Thanks to the f -invariance of ∇ we have

∇ ∂
∂yk

(
df |NM

π

(
∂

∂xj

))
= df |NM

∇ ∂
∂yk

π

(
∂

∂xj

)
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for any j = 1, . . . , s and k = 1, . . . , r. Now the right-hand side vanishes, because in the chosen

coordinates we have ∇ ∂
∂yk

π
(

∂
∂xj

)
= 0. So, using Leibniz formula, we obtain

(3)

0 = ∇ ∂
∂yk

(
dfπ

(
∂

∂xj

))

= ∇ ∂
∂yk

(
s∑

h=1

(
λhδhj + εhδh,j+1 +

∂f1
h

∂xj
(0, y)

)
π

(
∂

∂xh

))

=

s∑

h=1

(
λhδhj + εhδh,j+1 +

∂f1
h

∂xj
(0, y)

)
∇ ∂

∂yk

π

(
∂

∂xh

)
+

s∑

h=1

∂

∂yk

(
∂f1

h

∂xj
(0, y)

)
π

(
∂

∂xh

)

=

s∑

h=1

∂

∂yk

(
∂f1

h

∂xj
(0, y)

)
π

(
∂

∂xh

)
.

Therefore we obtain
∂

∂yk

(
∂f1

h

∂xj
(0, y)

)
= 0

for every j, h = 1, . . . , s and k = 1, . . . r, that is

ordx(f
1
h) ≥ 2

for every h = 1, . . . , s, and this concludes the proof.

Corollary 3.4. Let f be a germ of holomorphic diffeomorphism of Cn fixing the origin O, and
let 1 ≤ s ≤ n. Then f admits an osculating manifold M of codimension s such that f |M is
holomorphically linearizable if and only if there exist local holomorphic coordinates z = (x, y)
about O adapted to M in which f has the form

(4)
x′i = λixi + εixi+1 + f1

i (x, y) for i = 1, . . . , s,

y′j = µjyj + εs+jyj+1 + f2
j (x, y) for j = 1, . . . , r,

where εi, εs+j ∈ {0, 1}, and

(5)
ordx(f

1
i ) ≥ 2,

ordx(f
2
j ) ≥ 1,

for any i = 1, . . . , s and j = 1, . . . , r.

Proof. One direction is clear. Conversely, thanks to Theorem 3.3, the fact that M is osculating,
i.e., M is an f -invariant complex manifold through O of codimension s, with 1 ≤ s ≤ n, with
a holomorphic flat f -invariant (1, 0)-connection of the normal bundle NM , is equivalent to the
existence of local holomorphic coordinates z = (x, y) about O adapted to M , in which f has
the form (4) with ordx(f

1
i ) ≥ 2 for any i = 1, . . . , s.

Furthermore, f |M is linearizable; therefore there exists a local holomorphic change of
coordinate, tangent to the identity, and of the form

x̃ = x

ỹ = Φ(y),

conjugating f to f̃ of the form (4) satisfying (5), as we wanted.
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Then we could say that, if we write f as in (2), the hypothesis of f -invariance is equivalent
to ordx(f

1
i ) ≥ 1; f |M linearized is equivalent to ordx(f

2
j ) ≥ 1; osculating means that f1

i has no

terms of order 1 in x, that is, f1
i =

∑
h,k xhxkθ

hk
i (x, y).

Notice that in Theorem 3.3 and in Corollary 3.4, up to linear changes of coordinates, we
can always assume εi, εj ∈ {0, ε} instead of εi, εj ∈ {0, 1} for every ε > 0 small enough.

Since we are going to first prove a formal result, we need the formal analogue of Defini-
tion 1.5. We define a formal complex manifold M of codimension s by means of an ideal of
formal complex power series generated by s power series g1, . . . , gs such that their differentials

at the origin dg1, . . . dgs are linearly independent (see also [BER] and [BMR]). Denote by T̂Cn

the formal tangent bundle of Cn, that is the space of all formal vector fields with complex co-
efficients. Then the formal tangent bundle T̂M to M is well-defined as being the set of formal

vector fields of T̂Cn vanishing on the ideal of formal power series generated by g1, . . . , gs. The

formal normal bundle N̂M of M is then the quotient T̂Cn/T̂M . A formal connection on the

formal normal bundle is a formal map ∇̂: T̂M × N̂M → N̂M which satisfies the usual properties
of a connection but in the formal category. Thus the following definitions makes sense.

Definition 3.2. Let f be a formal invertible map of Cn without constant term, and let M
be an f -invariant formal complex manifold of codimension s, with 1 ≤ s ≤ n. We say that
a formal flat (1, 0)-connection ∇̂ of the formal normal bundle N̂M of M is f -invariant if it
commutes with df |NM

.

Definition 3.3. Let 1 ≤ s ≤ n, and let f be a formal invertible map of Cn without constant
term. We will say that f admits a formal osculating manifold M of codimension s if there
is an f -invariant formal complex manifold M of codimension s such that the formal normal
bundle N̂M of M admits a formal flat f -invariant (1, 0)-connection.

Then, for the formal normal bundle we can prove the formal analogue of Proposition 3.1
(using a formal solution of the parallel transport equation that can be easily computed) and
Lemma 3.2. We then have the following results, whose proofs are the formal analogues of the
ones of Theorem 3.3 and Corollary 3.4.

Theorem 3.5. Let f be a formal invertible map of Cn without constant term, let M be an f -
invariant formal complex manifold through O of codimension s, with 1 ≤ s ≤ n, and let ∇̂ be
a formal flat (1, 0)-connection of the formal normal bundle N̂M . Then ∇̂ is f -invariant if and
only if there exist local formal coordinates z = (x, y) about O adapted to M in which f has
the form

(6)
x′i = λixi + εixi+1 + f1

i (x, y) for i = 1, . . . , s,

y′j = µjyj + εs+jyj+1 + f2
j (x, y) for j = 1, . . . , r,

where εi, εs+j ∈ {0, 1}, and
ordx(f

1
i ) ≥ 2,

for any i = 1, . . . , s.

Corollary 3.6. Let 1 ≤ s ≤ n, and let f be a formal invertible map of Cn without constant
term. Then f admits a formal osculating manifold M of codimension s such that f |M is
formally linearizable if and only if there exist local formal coordinates z = (x, y) about O
adapted to M in which f has the form

(7)
x′i = λixi + εixi+1 + f1

i (x, y) for i = 1, . . . , s,

y′j = µjyj + εs+jyj+1 + f2
j (x, y) for j = 1, . . . , r,
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where εi, εs+j ∈ {0, 1}, and

(8)
ordx(f

1
i ) ≥ 2,

ordx(f
2
j ) ≥ 1,

for any i = 1, . . . , s and j = 1, . . . , r.

4. Formal linearization

As announced, we first prove a formal result.

Theorem 4.1. Let f be a formal invertible map of Cn without constant term such that dfO
is diagonalizable and the spectrum of dfO has only level s resonances, with 1 ≤ s ≤ n. Then f
is formally linearizable if and only if it admits an osculating formal manifold of codimension s
such that f |M is formally linearizable.

Proof. If f is formally linearizable the assertion is obvious.
Conversely, using Corollary 3.6, we can choose formal local coordinates

(x, y) = (x1, . . . , xs, y1, . . . , yr)

such that, writing (x′, y′) = f(x, y), f is of the form

x′i = λixi + f1
i (x, y) for i = 1, . . . , s,

y′j = µjyj + f2
j (x, y) for j = 1, . . . , r,

where
ordx(f

1
i ) ≥ 2,

ordx(f
2
j ) ≥ 1.

Denote by Λ the diagonal matrix Diag(λ1, . . . , λs, µ1, . . . , µr). We would like to prove that a
formal solution ψ of

(9) f ◦ ψ = ψ ◦ Λ

exists of the form
xi = ui + ψ1

i (u, v) for i = 1, . . . , s,

yj = vj + ψ2
j (u, v) for j = 1, . . . , r,

where (u, v) = (u1, . . . , us, v1, . . . , vr) and ψ1
i and ψ2

j are formal power series with

ordu(ψ
1
i ) ≥ 2,

ordu(ψ
2
j ) ≥ 1.

Write f(z) = Λz + f̂(z) and ψ(w) = w + ψ̂(w), where z = (x, y) and w = (u, v). Then
equation (9) is equivalent to

(10) ψ̂ ◦ Λ − Λψ̂ = f̂ ◦ ψ.
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To obtain a formal solution, we first write

ψ̂ =
∑

|k|≥2

ψkw
k, ψk ∈ Cn,

where k = (k1, . . . , kn), and

f̂ =
∑

|l|≥2

flz
l, fl ∈ Cn,

where l = (l1, . . . , ln). Denoting λ̃ = (λ1, . . . , λs, µ1, . . . , µr) = (λ̃1, . . . , λ̃n), equation (10)
becomes

(11)
∑

|k|≥2

Akψkw
k =

∑

|l|≥2

fl


 ∑

|m|≥1

ψmw
m



l

,

where
Ak = λ̃kIn − Λ.

The matrices Ak might not be invertible for some choice of k due to the presence of reso-
nances. We can write Ak = Diag(A1

k, A
2
k) and recall that having only level s resonances means

that det(A1
k) = 0 if and only if

k ∈ K̃1,

and det(A2
k) = 0 if and only if

k ∈ K̃2.

Moreover, from the hypotheses of the Theorem we have that f1
l = 0 for l in K1∪K2 and f2

l = 0
for l in K2, where

K1 = {l ∈ Nn : |l| ≥ 2, l = (0, . . . , 0, li, 0, . . . , 0, ls+1, . . . , ln), li = 1 and i ∈ {1, . . . , s}}

K2 = {l ∈ Nn : |l| ≥ 2, l = (0, . . . , 0, ls+1, . . . , ln)}.

Notice that K̃1 ⊆ K1 and K̃2 ⊆ K2. For each j in {1, . . . , s}, let us denote by Kj
1 the set

{l ∈ Nn : |l| ≥ 2, l = (0, . . . , 0, lj , 0, . . . , 0, ls+1, . . . , ln), lj = 1}, so that K1 = ∪sj=1K
j
1 . We look

for a solution of (9) with ψ1
k = 0 for k ∈ K1 ∪K2 and ψ2

k = 0 for k ∈ K2.
To do so, let us write (11) in a more explicit way: for i = 1, . . . , s

(12)
∑

|k|≥2
k 6∈K1∪K2

(λ̃k − λi)ψ
1
k,iw

k =
∑

|l|≥2
l 6∈K1∪K2

f1
l,i


 ∑

|m|≥1

ψmw
m



l

,

and for j = 1, . . . , r

(13)

s∑

p=1

∑

|k|≥2

k∈K
p

1

(λ̃k − µj)ψ
2
k,jw

k +
∑

|k|≥2
k 6∈K1∪K2

(λ̃k − µj)ψ
2
k,jw

k

=

s∑

p=1

∑

|l|≥2

l∈K
p
1

f2
l,j


 ∑

|m|≥1

ψmw
m



l

+
∑

|l|≥2
l 6∈K1∪K2

f2
l,j


 ∑

|m|≥1

ψmw
m



l

.
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Now, it is obvious that there are no terms wk with k ∈ K2 in either side of (12) and of
(13), and we can obtain terms wk with k ∈ K1 in (13) only from terms with l ∈ K1. In fact,
if l ∈ Kh

1 then


 ∑

|m|≥1

ψmw
m



l

=

(
uh +

∑

p,q

upuqθ
pq
h (u, v)

)


r∏

j=1

(
vj +

∑

p

upθ
p
j (u, v)

)ls+j




= uhv
ls+1

1 · · · vlnr +
∑

p,q

upuqχ
pq(u, v)

= wl +
∑

p,q

upuqχ
pq(u, v).

Therefore for j = 1, . . . , r, we have

s∑

p=1

∑

|k|≥2

k∈K
p

1

(λ̃k − µj)ψ
2
k,jw

k =

s∑

p=1

∑

|l|≥2

l∈K
p

1

f2
l,j


 ∑

|m|≥1

ψmw
m



l

=
s∑

p=1

∑

|l|≥2

l∈K
p
1

f2
l,j


wl +

∑

a,b

uaubχ
ab(u, v)




from which we conclude that for k ∈ Kp
1 and j = 1, . . . , r we have

(14) ψ2
k,j = f2

k,j(λ̃
k − µj)

−1.

The remaining ψk with k 6∈ K1 ∪K2 are easily determined by recursion, as usual.

5. Holomorphic linearization

Now we can prove the main result of this paper.

Theorem 5.1. Let f be a germ of a holomorphic diffeomorphism of Cn having the origin O
as a quasi-Brjuno fixed point of order s, with 1 ≤ s ≤ n. Then f is holomorphically lin-
earizable if and only if it admits an osculating manifold M of codimension s such that f |M is
holomorphically linearizable.

Proof. If f is linearizable the assertion is obvious.
Conversely, we already know, thanks to the previous result, that f is formally linearizable,

(notice that, thanks to Corollary 3.4, the changes of coordinates needed before finding ψ are
holomorphic because now M is a complex manifold). Since the spectrum of dfO satisfies
the reduced Brjuno condition, to prove the convergence of the formal conjugation ψ in a
neighbourhood of the origin it suffices to show that

(15) sup
k

1

|k|
log ‖ψk‖ <∞.

Since f is holomorphic in a neighbourhood of the origin, there exists a positive number P such
that ‖fl‖ ≤ P |l| for |l| ≥ 2. The functional equation (9) remains valid under the linear change
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of coordinates f(z) 7→ Qf(z/Q), ψ(w) 7→ Qψ(w/Q) with Q = max{1, P 2}. Hence we may
assume that

∀|l| ≥ 2 ‖fl‖ ≤ 1.

It follows from (11) and (14) that

(16) ‖ψk‖ ≤





ε−1
k

∑

k1+···+kν=k

ν≥2

‖ψk1
‖ · · · ‖ψkν

‖, |k| ≥ 2, k 6∈ K1 ∪K2,

ε−1
k , |k| ≥ 2, k ∈ K1,

where

εk =





min
1≤i≤n

|λ̃k − λ̃i|, k 6∈ K1 ∪K2,

min
1≤h≤r

|λ̃k − µh|, k ∈ K1.

We can define, inductively, for j ≥ 2

αj =
∑

j1+···+jν=j

ν≥2

αj1 · · ·αjν ,

and for |k| ≥ 2

δk =





ε−1
k max

k1+···+kν=k

ν≥2

δk1
· · · δkν

, k 6∈ K1 ∪K2,

ε−1
k , k ∈ K1,

0, k ∈ K2,

with α1 = 1 and δe = 1, where e is any integer vector with |e| = 1. Then, by induction, we
have that

∀|k| ≥ 1 ‖ψk‖ ≤ α|k|δk.

Therefore, to establish (15), it suffices to prove analogous estimates for αj and δk.

It is easy to estimate αj . Let α =
∑
j≥1 αjt

j . We have

α− t =
∑

j≥2

αjt
j

=
∑

j≥2


∑

h≥1

αht
h



j

=
α2

1 − α
.

This equation has a unique holomorphic solution vanishing at zero

α =
t+ 1

4

(
1 −

√
1 −

8t

(1 + t)2

)
,
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defined for |t| small enough. Hence,

sup
j

1

j
log αj <∞,

as we want.

To estimate δk we have to take care of small divisors. First of all, for each k 6∈ K2

with |k| ≥ 2 we can associate to δk a decomposition of the form

(17) δk = ε−1
l0
ε−1
l1

· · · ε−1
lq
,

where l0 = k, |k| > |l1| ≥ · · · ≥ |lq| ≥ 2 and lj 6∈ K2 for all j = 1, . . . , q and q ≥ 1. If k ∈ K1

it is obvious by the definition of δk. If k 6∈ K1 ∪K2, choose a decomposition k = k1 + · · · + kν
such that the maximum in the expression of δk is achieved. Obviously, kj doesn’t belong to K2

for all j = 1, . . . , ν. We can then express δk in terms of ε−1
kj

and δk′
j

with |k′j | < |kj |. Carrying

on this process, we eventually arrive at a decomposition of the form (17). Furthermore,

εk = |λ̃k − λ̃ik |, |k| ≥ 2, k 6∈ K2,

the index ik being chosen in some definite way (of course, if k ∈ K1 then ik ∈ {s+ 1, . . . , n}).

The rest of the proof follows closely [Pö]. For the benefit of the reader, we report here the
main steps.

We can define,
N j
m(k), m ≥ 2, j ∈ {1, . . . , n},

to be the number of factors ε−1
l in δk, (l = l0, . . . , lq) satisfying

εl < θ ω̃(m), and il = j,

where ω̃(m) is defined in Definition 1.3, and in this notation can be expressed as

ω̃(m) = min
2≤|k|≤m

k 6∈K2

εk, m ≥ 2,

and θ is the positive real number satisfying

4θ = min
1≤h≤n

|λ̃h| ≤ 1.

The last inequality can always be satisfied by replacing f by f−1 if necessary. Then we also
have ω̃(m) ≤ 2.

Notice that ω̃(m) is non-increasing with respect to m and under our assumptions ω̃(m)
tends to zero as m goes to infinity. Following [Br], we have the key estimate.

Lemma 5.2. For m ≥ 2, 1 ≤ j ≤ n and k 6∈ K2,

N j
m(k) ≤





0, |k| ≤ m,

2|k|

m
− 1, |k| > m.
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Proof. The proof is done by induction. Since we fix m and j throughout the proof, we write N
instead of N j

m.
For |k| ≤ m,

εk ≥ ω̃(|k|) ≥ ω̃(m) > θ ω̃(m),

hence N(k) = 0.
Assume now that |k| > m. Then 2|k|/m− 1 ≥ 1. If k ∈ K1 then, by definition, δk = ε−1

k ,
so N(k) can only be equal to 0 or 1 and we are done.

Let us suppose k 6∈ K1 ∪K2. Write

δk = ε−1
k δk1

· · · δkν
, k = k1 + · · · + kν , ν ≥ 2,

with |k| > |k1| ≥ · · · ≥ |kν |, and consider the following different cases. Observe that k−k1 6∈ K2,
otherwise the other kh’s would be in K2.

Case 1: εk ≥ θ ω̃(m) and ik arbitrary, or εk < θ ω̃(m) and ik 6= j. Then

N(k) = N(k1) + · · · +N(kν),

and applying the induction hypotheses to each term we get N(k) ≤ (2|k|/m) − 1.

Case 2: εk < θ ω̃(m) and ik = j. Then

N(k) = 1 +N(k1) + · · · +N(kν),

and there are three different cases.
Case 2.1: |k1| ≤ m. Then

N(k) = 1 <
2|k|

m
− 1,

as we want.
Case 2.2: |k1| ≥ |k2| > m. Then there is ν′ such that 2 ≤ ν′ ≤ ν and |kν′ | > m ≥ |kν′+1|,

and we have

N(k) = 1 +N(k1) + · · · +N(kν′) ≤ 1 +
2|k|

m
− ν′ ≤

2|k|

m
− 1.

Case 2.3: |k1| > m ≥ |k2|. Then

N(k) = 1 +N(k1),

and there are three different cases.
Case 2.3.1: ik1

6= j. Then N(k1) = 0 and we are done.
Case 2.3.2: |k1| ≤ |k| −m and ik1

= j. Then

N(k) ≤ 1 + 2
|k| −m

m
− 1 <

2|k|

m
− 1.

Case 2.3.3: |k1| > |k| −m and ik1
= j. The crucial remark is that ε−1

k1
gives no contribute

to N(k1), as shown in the next lemma.

Lemma 5.3. If k > k1 with respect to the lexicographic order, k, k1 and k − k1 are not
in K2, ik = ik1

= j and
εk < θ ω̃(m) and εk1

< θ ω̃(m),

15



then |k − k1| = |k| − |k1| ≥ m.

Proof. Before we proceed with the proof, notice that the equality |k−k1| = |k|−|k1| is obvious
since k > k1.

Since we are supposing εk1
= |λ̃k1 − λ̃j | < θ ω̃(m), we have

|λ̃k1 | > |λ̃j | − θ ω̃(m)

≥ 4θ − 2θ = 2θ.

Let us suppose by contradiction |k − k1| = |k| − |k1| < m. By assumption, it follows that

2θ ω̃(m) > εk + εk1

= |λ̃k − λ̃j | + |λ̃k1 − λ̃j |

≥ |λ̃k − λ̃k1 |

≥ |λ̃k1 | |λ̃k−k1 − 1|

≥ 2θ ω̃(|k − k1| + 1)

≥ 2θ ω̃(m),

which is impossible.

Using Lemma 5.3, case 1 applies to δk1
and we have

N(k) = 1 +N(k11
) + · · · +N(k1ν1

),

where |k| > |k1| > |k11
| ≥ · · · ≥ |k1ν1

| and k1 = k11
+ · · · + k1ν1

. We can do the analysis of
case 2 again for this decomposition, and we finish unless we run into case 2.3.2 again. However,
this loop cannot happen more than m+1 times and we have to finally run into a different case.
This completes the induction and the proof of Lemma 5.2.

Since the origin is a quasi-Brjuno fixed point of order s, there exists a strictly increasing
sequence {qν}ν≥0 of integers with q0 = 1 and such that

(18)
∑

ν≥0

q−1
ν log ω̃(qν+1)

−1 <∞.

Since δk = 0 for k ∈ K2, we have to estimate only

1

|k|
log δk =

q∑

j=0

1

|k|
log ε−1

lj
, k 6∈ K2.

By Lemma 5.2,

card
{
0 ≤ j ≤ q : θ ω̃(qν+1) ≤ εlj < θ ω̃(qν)

}
≤ N1

qν
(k) + · · ·Nn

qν
(k)

≤
2n|k|

qν

for ν ≥ 1. It is also easy to see from the definition of δk that the number of factors ε−1
lj

is

bounded by 2|k| − 1. In particular,

card
{
0 ≤ j ≤ q : θ ω̃(q1) ≤ εlj

}
≤ 2n|k| =

2n|k|

q0
.
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Then,

(19)

1

|k|
log δk ≤ 2n

∑

ν≥0

q−1
ν log(θ−1 ω̃(qν+1)

−1)

= 2n


∑

ν≥0

q−1
ν log ω̃(qν+1)

−1 + log(θ−1)
∑

ν≥0

q−1
ν


 .

Since ω̃(m) tends to zero monotonically as m goes to infinity, we can choose some m such
that 1 > ω̃(m) for all m > m, and we get

∑

ν≥ν0

q−1
ν ≤

1

log ω̃(m)−1

∑

ν≥ν0

q−1
ν log ω̃(qν+1)

−1,

where ν0 verifies the inequalities qν0−1 ≤ m < qν0 . Thus both series in parentheses in (19)
converge thanks to (18). Therefore

sup
k

1

|k|
log δk <∞

and this concludes the proof.

Remark 5.4. Notice that the osculating hypothesis on the f -invariant manifold is necessary.
Let us take a look at the following example in C2. Let f be given by

x′ = λ(1 + y)x+ x2

y′ = y

with (λ, 1) satisfying the Brjuno condition of order 1 (in particular λ is not a root of unity). This
germ is not linearizable. In fact, let gy(x) = λ(1+y)x+x2, so we can write f(x, y) = (gy(x), y).
A linearization for f is a germ of holomorphic diffeomorphism ψ = (ψ1, ψ2) fixing the origin,
tangent to the identity, and such that

(
gψ2(x,y)(ψ1(x, y)), ψ2(x, y)

)
=
(
ψ1(λx, y), ψ2(λx, y)

)
.

This last equality implies ψ2 ≡ ψ2(y) and gψ2(y)(ψ1(x, y)) = ψ1(λx, y). Composing on the right

with ψ−1
2 and setting hy(x) = ψ1(x, ψ

−1
2 (y)), we have

(20) gy
(
hy(x)

)
= hy(λx).

From (20) we deduce that hy(0) ∈ Fix(gy) = {0, 1 − λ(1 + y)}. Now, h0(0) = 0; hence, by
continuity hy(0) = 0 for |y| small enough, and so g′y(0)h

′
y(0) = λh′y(0) for |y| small enough.

But h′0(0) = 1 6= 0; therefore λ(1 + y) = g′y(0) = λ for |y| small enough, which is impossible.
Since f is not linearizable it cannot admit an osculating invariant manifold of codimension 1,
even if, obviously, the manifold {x = 0} is f -invariant, and f is linear there.

Remark 5.5. The reduced Brjuno condition and the hypothesis f holomorphically linearizable
on the osculating manifold are necessary. Consider the following example in Cn for n ≥ 2. Let f
be a holomorphic diffeomorphism of Cn, fixing the origin, given by

(21)
x′i = λixi + f ii (x, y) for i = 1, . . . , n − 1,

y′ = µy + y2,
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with ordx(f
1
i ) ≥ 2 for every i = 1, . . . , n − 1, (λ1, . . . , λn−1, µ) non resonant, and µ = e2πθ

with θ ∈ R \ Q not a Brjuno number. Then M = {x = 0} is an osculating manifold of codi-
mension n − 1, but (λ1, . . . , λn−1, µ) does not satisfy the reduced Brjuno condition (which,
since we have no resonances, coincides with the usual Brjuno condition). Furthermore, thanks
to Yoccoz’s Theorem [Y], f |M is not holomorphically linearizable. This germ is not holo-
morphically linearizable. In fact, assume by contradiction that ψ is a holomorphic lineariza-
tion. Then M̃ = ψ(M) = {ψ−1

1 (x̃, ỹ) = 0, . . . , ψ−1
n−1(x̃, ỹ) = 0} is an osculating manifold of

codimension n − 1 for f̃(x̃, ỹ) = ψ ◦ f ◦ ψ−1 ≡ Diag(λ1, . . . , λn−1, µ)(x̃, ỹ). Thanks to the
implicit function Theorem there exist n − 1 holomorphic functions χ1(ỹ), . . . , χn−1(ỹ), such
that M̃ = {x̃1 = χ1(ỹ), . . . , x̃n−1 = χn−1(ỹ)}. The f̃ -invariance of M̃ yields

λiχi(ỹ) = χ(µỹ) for i = 1, . . . , n− 1,

and this is equivalent, writing χi(ỹ) =
∑
m≥1 χ

i
mỹ

m, to

∑

m≥1

λiχ
i
mỹ

m =
∑

m≥1

χimµ
mỹm,

which implies χim ≡ 0 for every i = 1, . . . , n − 1 and m ≥ 0, because (λ1, . . . , λn−1, µ) is not
resonant. Then M̃ = {x̃ = 0} and, since f̃ |M̃ is linear, we have a holomorphic linearization
of f |M , contradiction.

6. Final remarks

We can obtain many of the result recalled in the Introduction as corollaries of our The-
orems. If there are no resonances Theorem 4.1 with s = n yields Theorem 1.1. If there are
no resonances and the origin is an attracting [resp., repelling] fixed point then Theorem 1.11
with s = n yields Theorem 1.3 because the Brjuno condition is automatically satisfied.

Our result can be also compared with the following result obtained by Nishimura in [N] (the
statement is slightly different from the original one presented in [N] but perfectly equivalent):

Theorem 6.1.(Nishimura, 1983 [N]) Let f be a germ of holomorphic diffeomorphism of Cn,
fixing the origin O. Assume that Y is a complex manifold through O of codimension s pointwise
fixed by f . In coordinates z = (x, y) in which Y = {x = 0} we can write f in the form

x′i =
∑s
k=1Cik(y)xk + f1

i (x, y) for i = 1, . . . , s,

y′j = yj + f2
j (x, y) for j = 1, . . . , r,

with ordx(f
1
i ) ≥ 2 and ordx(f

2
j ) ≥ 1. If for each point p ∈ Y the eigenvalues {λ1(p), . . . , λs(p)}

of the matrix C(p) =
(
Cjk(p)

)
have modulus less than 1 and have no resonances, then there

exists a unique holomorphic change of coordinates ψ, defined in a neighbourhood of Y , tangent
to the identity such that

f ◦ ψ = ψ ◦ L,

where L is the germ
x′i =

∑s
k=1Cik(y)xk for i = 1, . . . , s,

y′j = yj for j = 1, . . . , r.
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The hypotheses of Nishimura are slightly different from ours, and, in fact, he does not prove
a true linearization theorem. However, his result becomes a linearization result when C(y) is
a constant matrix, which is equivalent to requiring that Y is an osculating fixed manifold. In
this situation our result can be seen as a generalization of Theorem 6.1 in the case of dfO
diagonalizable. In fact while he needs an osculating fixed manifold and a strong hypothesis
on the modulus of the eigenvalues, we only need an osculating manifold on which our germ is
holomorphically linearizable and the origin as a quasi-Brjuno fixed point of order s.

Recently, Rong [R] proved the following result

Theorem 6.2.(Rong, 2006 [R]) Let f be a germ of holomorphic diffeomorphism of Cn, fixing
the origin with dfO = Diag(Λs, Ir), where Λs = Diag(λ1, . . . , λs) with λj = e2πiθj , θj ∈ R \ Q.
Let M be a pointwise fixed complex manifold through O of codimension s. Choose local coordi-

nates (x, y) centered in O such that M = {x = 0}. For any p ∈M , write dfp =

(
Λs(y) O
⋆ Ir

)
.

Assume that Λs(y) ≡ Λs for all p ∈ M . If the λj ’s satisfy the Brjuno condition, then there
exists a local holomorphic change of coordinates ψ such that

f ◦ ψ = ψ ◦ Λ,

where Λ is the linear part of f .

This result too can be seen as a particular case of Theorem 1.11. In fact, if we are in
the hypotheses of Rong, our hypotheses are automatically verified: M is an osculating fixed
manifold thanks to the hypothesis Λs(y) ≡ Λs for all p ∈ M , and the hypotheses on the
eigenvalues follow immediately from Remarks 1.5 and 2.3.

What it is new in our result is that we are not assuming anything on the modulus of the
eigenvalues, so we are really dealing with the mixed case. In fact we are allowing cases in which
there are some eigenvalues with modulus greater than 1, some eigenvalues with modulus 1, and
the remaining eigenvalues with modulus less than 1. Finally, our Theorem applies in cases not
covered by the previous results, as shown by Remark 2.3.
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