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Abstract. Let f be a germ of biholomorphism of Cn, fixing the origin. We
show that if the germ commutes with a torus action, then we get information on the
germs that can be conjugated to f , and furthermore on the existence of a holomorphic
linearization or of a holomorphic normalization of f . We find out in a complete and
computable manner what kind of structure a torus action must have in order to get a
Poincaré-Dulac holomorphic normalization, studying the possible torsion phenomena.
In particular, we link the eigenvalues of dfO to the weight matrix of the action. The
link and the structure we found are more complicated than what one would expect;
a detailed study was needed to completely understand the relations between torus
actions, holomorphic Poincaré-Dulac normalizations, and torsion phenomena. We
end the article giving an example of techniques that can be used to construct torus
actions.

1. Introduction

We consider a germ of biholomorphism f of Cn at a fixed point p, which we may place at
the origin O. One of the main questions in the study of local holomorphic dynamics (see [A1],
[A2], and [Bra] for general surveys on this topic) is when f is holomorphically linearizable, i.e.,
when there exists a local holomorphic change of coordinates such that f is conjugated to its
linear part. The answer to this question depends on the set of eigenvalues of dfO, usually called
the spectrum of dfO. In fact if we denote by λ1, . . . , λn ∈ C∗ the eigenvalues of dfO, then it
may happen that there exists a multi-index K = (k1, . . . , kn) ∈ Nn with |K| = k1 + · · ·+kn ≥ 2
and such that

(1) λK − λj := λk1
1 · · ·λkn

n − λj = 0

for some 1 ≤ j ≤ n; a relation of this kind is called a multiplicative resonance of f , and K is
called a resonant multi-index. A resonant monomial is a monomial zK = zk1

1 · · · zkn
n in the j-th

coordinate such that λK = λj . From the formal point of view, we have the following classical
result (see [Ar] pp. 192–193 for a proof):

Theorem 1.1. Let f be a germ of holomorphic diffeomorphism of Cn fixing the origin O with
no resonances. Then f is formally conjugated to its differential dfO.

In presence of resonances, even the formal classification is not easy, as the following result
of Poincaré-Dulac, [Po], [D], shows

Theorem 1.2. (Poincaré-Dulac) Let f be a germ of holomorphic diffeomorphism of Cn fixing
the origin O. Then f is formally conjugated to a formal power series g ∈ C[[z1, . . . , zn]]n without
constant term such that dgO is in Jordan normal form, and g has only resonant monomials.
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The formal series g is called a Poincaré-Dulac normal form of f ; a proof of Theorem 1.2
can be found in [Ar] p. 194.

The problem with Poincaré-Dulac normal forms is that they are not unique. In particular,
one may wonder whether it could be possible to have such a normal form including finitely
many resonant monomials only. This is indeed the case (see, e.g., Reich [Re]) when dfO belongs
to the so-called Poincaré domain, that is when dfO is invertible and O is either attracting, i.e.,
all the eigenvalues of dfO have modulus less than 1, or repelling, i.e., all the eigenvalues of dfO

have modulus greater than 1 (when dfO is still invertible but does not belong to the Poincaré
domain, we shall say that it belongs to the Siegel domain).

Even without resonances, the holomorphic linearization is not guaranteed. The easiest
positive result is due to Poincaré [Po] who, using majorant series, proved the following

Theorem 1.3. (Poincaré, 1893 [Po]) Let f be a germ of holomorphic diffeomorphism of Cn

with an attracting or repelling fixed point. Then f is holomorphically linearizable if and only
if it is formally linearizable. In particular, if there are no resonances then f is holomorphically
linearizable.

When O is not attracting or repelling, even without resonances, the formal linearization
might diverge. In [Ra2] we found, under certain arithmetic conditions on the eigenvalues
and some restrictions on the resonances, a necessary and sufficient condition for holomorphic
linearization in presence of resonances, that in fact has as corollaries most of the known lin-
earization results. In [Ra3] we found that, given m ≥ 2 germs f1, . . . , fm of biholomorphisms
of Cn, fixing the origin, with (df1)O diagonalizable and such that f1 commutes with fh for
any h = 2, . . . ,m, under certain arithmetic conditions on the eigenvalues of (df1)O and some
restrictions on their resonances, f1, . . . , fm are simultaneously holomorphically linearizable if
and only if there exists a particular complex manifold invariant under f1, . . . , fm.

In any cases, there are germs not holomorphically linearizable, for instance when dfO is
not diagonalizable (see also [PM] for related results):

Theorem 1.4. (Yoccoz, 1995 [Y]) Let A ∈ GL(n,C) be an invertible matrix such that its
eigenvalues have no resonances and such that its Jordan normal form contains a non-trivial
block associated to an eigenvalue of modulus one. Then there exists a germ of biholomorphism f
of Cn fixing the origin, with dfO = A which is not holomorphically linearizable.

Then, since every germ of biholomorphism is formally normalizable, studying the holomor-

phic normalization problem, i.e., when there exists a local holomorphic change of coordinates
such that f is conjugated to one of its Poincaré-Dulac normal forms, could be very useful to
understand the dynamics of non-linearizable germs.

In [Zu], Zung found that to find a Poincaré-Dulac holomorphic normalization for a germ
of holomorphic vector field is the same as to find (and linearize) a suitable torus action which
preserves the vector field. Following this idea, we found that commuting with a linearizable
germ gives us information on the germs conjugated to a given one, and also on the linearization.
More precisely we have the following results (for the definition of weight matrix see section 2).

Theorem 1.5. Let f be a germ of biholomorphism of Cn fixing the origin O. Then f
commutes with a holomorphic effective action on (Cn, O) of a torus of dimension 1 ≤ r ≤ n
with weight matrix Θ ∈ Mn×r(Z) if and only there exists a local holomorphic change of
coordinates conjugating f to a germ with linear part in Jordan normal form and containing
only Θ-resonant monomials.

Theorem 1.6. Let f be a germ of biholomorphism of Cn fixing the origin O. Then f is
holomorphically linearizable if and only if it commutes with a holomorphic effective action
on (Cn, O) of a torus of dimension 1 ≤ r ≤ n with weight matrix Θ having no resonances.
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We want to face and to solve the following problem: to find out in a clear (and possibly
computable) manner what kind of structure a torus action must have in order to get a Poincaré-
Dulac holomorphic normalization from Theorem 1.5. In particular, to do so we need to link
in a clever way the eigenvalues of dfO to the weight matrix of the action. Zung dealt with
this problem in the case of holomorphic vector fields (see [Zu]), introducing the notion of toric

degree of a vector field. The following definition is a reformulation of Zung’s original one,
clearer and more suitable to our needs.

Definition 1.1. The toric degree of a germ of holomorphic vector field X of (Cn, O) singular at
the origin is the minimum r ∈ N such that Xdia =

∑n
j=1 ϕjzj∂j , the diagonalized semi-simple

part of the first jet of X, can be written as linear combination with complex coefficients of r
diagonal vector fields with integer coefficients, i.e.,

Xdia =

r∑

k=1

αkZk,

where α1, . . . , αr ∈ C∗ and Zk =
∑n

j=1 ρ
(k)
j zj∂j with ρ(k) ∈ Zn. The r-tuple Z1, . . . , Zk is called

a r-tuple of toric vector fields associated to X, and the numbers α1, . . . , αr ∈ C are a r-tuple
of toric coefficients of the toric r-tuple.

Then he found that

Theorem 1.7. (Zung, 2002 [Zu]) Let X be a germ of holomorphic vector field X of (Cn, O)
singular at the origin, of toric degree 1 ≤ r ≤ n. Then X admits a holomorphic Poincaré-Dulac
normalization if and only if there exists a holomorphic effective action on (Cn, O) of a torus
of dimension r preserving X and such that the columns of the weight matrix of the action are
a r-tuple of toric vectors associated to X.

It is a common thinking that once something can be done with germs of vector fields,
i.e., for continuous local dynamical systems, then it can be translated analogously for germs
of biholomorphisms, i.e., for discrete local dynamical systems. This is not completely true.
At the very least there are torsion phenomena to be considered, preventing a straightforward
translation from additive resonances (see below for the definition) to multiplicative resonances,
and giving rise to new behaviors. One of our aims is exactly to understand up to which point
one can push the analogies between continuous and discrete dynamics in the normalization
problem. Following Écalle [É], we shall use the following definition of torsion.

Definition 1.2. Let λ ∈ (C∗)n. The torsion of λ is the natural integer τ such that

1

τ
2πiZ = (2πiQ) ∩


(2πiZ)

⊕

1≤j≤n

(log(λj)Z)


 .

To understand what kind of structure a torus action must have in the case of germs of
biholomorphisms to get a result equivalent to Theorem 1.7, we first need a right notion of toric
degree for germs of biholomorphisms, and to link it to the torsion we introduced above. The
link and the structure we found are more complicated than what one would expect: torsion is
not enough to measure the difference between germs of holomorphic vector fields and germs of
biholomorphisms. We therefore need a more detailed study.

Notice that given λ ∈ (C∗)n, there is a unique [ϕ] ∈ (C/Z)n such that λ = e2πi[ϕ],
i.e., λj = e2πi[ϕj ] for every j = 1, . . . , n. The right definition of toric degree for maps is then
the following
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Definition 1.3. Let [ϕ] = ([ϕ1], . . . , [ϕn]) ∈ (C/Z)n, where [ · ]: Cn → (C/Z)n denotes the
standard projection. The toric degree of [ϕ] is the minimum r ∈ N such that there ex-
ist α1, . . . , αr ∈ C and θ(1), . . . , θ(r) ∈ Zn such that

(2) [ϕ] =

[
r∑

k=1

αkθ
(k)

]
.

The r-tuple θ(1), . . . , θ(r) is called a r-tuple of toric vectors associated to [ϕ], and the num-
bers α1, . . . , αr ∈ C are toric coefficients of the toric r-tuple.

Definition 1.4. Given θ ∈ Cn and j ∈ {1, . . . , n}, we say that a multi-index Q ∈ Nn,
with |Q| =

∑n
h=1 qh ≥ 2, gives an additive resonance relation for θ relative to the j-th coordinate

if

〈Q, θ〉 =

n∑

h=1

qhθh = θj

and we put
Res+j (θ) = {Q ∈ Nn | |Q| ≥ 2, 〈Q, θ〉 = θj}.

Given [ϕ] ∈ (C/Z)n, the set

Resj([ϕ]) = {Q ∈ Nn | |Q| ≥ 2, [〈Q,ϕ〉 − ϕj ] = [0]}

of multiplicative resonances of [ϕ] is well-defined and we have Resj(λ) = Resj([ϕ]), where
λ = e2πi[ϕ].

We shall find relations between the additive resonances of toric vectors associated to [ϕ]
and the multiplicative resonances of [ϕ]. One of the advantages of the approach we found
is that we shall be able to easily compute the multiplicative resonances, passing through the
additive resonances of r-tuples of toric vectors (see Lemma 7.1).

Given [ϕ] ∈ (C/Z)n of toric degree 1 ≤ r ≤ n, even when the r-tuple of toric vectors
associated to [ϕ] is not unique, we can always say whether the toric coefficients are rationally
independent with 1 or not.

Definition 1.5. Let [ϕ] ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n. We say that [ϕ] is in
the torsion-free case, or simply [ϕ] is torsion-free, if its r-tuples of toric vectors have toric
coefficients rationally independent with 1.

As a first application of our methods, we have the following characterization of the vec-
tors λ ∈ (C∗)n without torsion

Theorem 1.8. Let λ = e2πi[ϕ] ∈ (C∗)n. Then [ϕ] is torsion-free if and only if the torsion of λ
is 1.

In the torsion case, we can always find a more useful toric r-tuple.

Definition 1.6. Let [ϕ] = ([ϕ1], . . . , [ϕn]) ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n in the
torsion case. We say that a r-tuple η(1), . . . , η(r) of toric vectors associated to [ϕ] with toric
coefficients β1, . . . , βr rationally dependent with 1 is reduced if β1 = 1/m with m ∈ N \ {0, 1}
and m, η

(1)
1 , . . . , η

(1)
n coprime. In this case the toric vectors η(2), . . . , η(r) are called reduced

torsion-free toric vectors associated to [ϕ].

We have explicit (and easy to use) techniques to compute the toric degree and toric r-
tuples (reduced in the torsion case) of [ϕ]. Furthermore, we can also prove that, in the torsion
case, the torsion of e2πi[ϕ] always divides m (see Proposition 5.1).
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As expected, we are able to show that the torsion-free case behaves as the vector fields
case, proving the following analogue of Theorem 1.7 (which works even when dfO is not diag-
onalizable).

Theorem 1.9. Let f be a germ of biholomorphism of Cn fixing the origin O. Assume that,
denoted by λ = {λ1, . . . , λn} the spectrum of dfO, the unique [ϕ] ∈ (C/Z)n such that λ = e2πi[ϕ]

is of toric degree 1 ≤ r ≤ n and torsion-free. Then f admits a holomorphic Poincaré-Dulac
normalization if and only if there exists a holomorphic effective action on (Cn, O) of a torus of
dimension r commuting with f and such that the columns of the weight matrix of the action
are a r-tuple of toric vectors associated to [ϕ].

The torsion case is more delicate and difficult to deal. First of all, given [ϕ] ∈ (C/Z)n with
toric degree 1 ≤ r ≤ n and torsion τ ≥ 2, and a reduced toric r-tuple η(1), . . . , η(r), we always
have

(3)

r⋂

k=2

Res+j (η(k)) ⊇ Resj([ϕ]) ⊇
r⋂

k=1

Res+j (η(k)).

This suggest a subdivision in several subcases, all realizable (we have examples for all of them)
and, surprisingly, having very different behaviours. We have cases similar to the case of germs
of vector fields (even if we have torsion!), and cases that are indeed different. In particular,
considering iterates of f to reduce to the torsion-free case hides very interesting phenomena,
and it does not allow to see that some torsion cases can be directly studied. Moreover, we have
explicit (and computable) techniques to decide in which subcase a given [ϕ] ∈ (C/Z)n belongs
to.

Definition 1.7. Let [ϕ] ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n and in the torsion case. We
say that [ϕ] is in the impure torsion case if, for one (and hence any: see Lemma 7.6) reduced
r-tuple η(1), . . . , η(r) of toric vectors associated to [ϕ] we have

(4) Resj([ϕ]) =
r⋂

k=2

Res+j (η(k)),

for all j ∈ {1, . . . , n}. Otherwise we say that [ϕ] is in the pure torsion case.

The impure torsion case is the subcase behaving as the case of germs of vector fields, and
in which, again, we do not need dfO diagonalizable. In fact, we can prove the following

Theorem 1.10. Let f be a germ of biholomorphism of Cn fixing the origin O. Assume that, de-
noted by λ = {λ1, . . . , λn} the spectrum of dfO, the unique [ϕ] ∈ (C/Z)n such that λ = e2πi[ϕ]

is of toric degree 1 ≤ r ≤ n and in the impure torsion case. Then it admits a holomor-
phic Poincaré-Dulac normalization if and only if there exists a holomorphic effective action
on (Cn, O) of a torus of dimension r − 1 commuting with f , and such that the columns of the
weight matrix of the action are reduced torsion-free toric vectors associated to [ϕ].

The next subcase is

Definition 1.8. Let [ϕ] ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n and in the pure torsion case.
We say that [ϕ] can be simplified if it admits a reduced r-tuple of toric vectors η(1), . . . , η(r)

such that

(5) Resj([ϕ]) =

r⋂

k=1

Res+j (η(k)),
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for all j = 1, . . . , n. The r-tuple η(1), . . . , η(r) is said a simple reduced r-tuple associated to [ϕ].

As we shall see in section 7, condition (5) depends on the chosen toric r-tuple. However,
we have techniques to decide whether [ϕ] can be simplified or not.

The case in which [ϕ] can be simplified is similar to the case of germs of vector fields, but
we have a distinction between the case of dfO diagonalizable and dfO not diagonalizable, as
we see in the following result (for the definition of compatibility see section 3):

Theorem 1.11. Let f be a germ of biholomorphism of Cn fixing the origin O. Assume that,
denoted by λ = {λ1, . . . , λn} the spectrum of dfO, the unique [ϕ] ∈ (C/Z)n such that λ = e2πi[ϕ]

is of toric degree 1 ≤ r ≤ n and in the pure torsion case and it can be simplified. Then:

(i) if dfO is diagonalizable, f admits a holomorphic Poincaré-Dulac normalization if and
only if there exists a holomorphic effective action on (Cn, O) of a torus of dimension r
commuting with f and such that the columns of the weight matrix Θ of the action are
a simple reduced r-tuple of toric vectors associated to [ϕ];

(ii) if dfO is not diagonalizable and there exists a simple reduced r-tuple of toric vectors asso-
ciated to [ϕ] such that its vectors are the columns of a matrix Θ compatible with dfO, f
admits a holomorphic Poincaré-Dulac normalization if and only if there exists a holo-
morphic effective action on (Cn, O) of a torus of dimension r commuting with f and
with weight matrix Θ.

The case in which [ϕ] cannot be simplified is the furthest from the case of germs of vectors
fields, because we cannot reduce the multiplicative resonances to additive ones. In fact, we
only have a sufficient condition for holomorphic normalization.

Proposition 1.12. Let f be a germ of biholomorphism of Cn fixing the origin O. Assume that,
denoted by λ = {λ1, . . . , λn} the spectrum of dfO, the unique [ϕ] ∈ (C/Z)n such that λ = e2πi[ϕ]

is of toric degree 1 ≤ r ≤ n and in the pure torsion case and it cannot be simplified. If there
exists a holomorphic effective action on (Cn, O) of a torus of dimension r commuting with f
and such that the columns of the weight matrix of the action are a reduced r-tuple of toric
vectors associated to [ϕ], then f admits a holomorphic Poincaré-Dulac normalization.

We have then completely understood the relations between torus actions, holomorphic
Poincaré-Dulac normalizations, and torsion phenomena. We end the article giving an example
of techniques to construct torus actions.

Definition 1.9. Let 1 ≤ m ≤ n. A set of m integrable vector fields of (Cn, O) is a
set X1, . . . ,Xm of germs of holomorphic vector fields of (Cn, O) singular at the origin, of
order 1 and such that:

(i) X1, . . . ,Xm commute pairwise and are linearly independent;

(ii) there exist n − m germs of holomorphic functions g1, . . . , gn−m in (Cn, O) which are
common first integrals of X1, . . . ,Xm, and they are functionally independent almost
everywhere.

Definition 1.10. A germ of biholomorphism f of (Cn, O) fixing the origin commutes with a

set of integrable vector fields if there exists a positive integer 1 ≤ m ≤ n, such that there exists
a set of m germs of holomorphic integrable vector fields X1, . . . ,Xm such that

df(Xj) = Xj ◦ f

for each j = 1, . . . ,m.
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A germ of biholomorphism f of (Cn, O) commutes with a vector field X according to the
previous definition if and only if it commutes with the flow generated by X. Then (see also
Section 8 for more general statements):

Theorem 1.13. Let f be a germ of biholomorphism of (Cn, O) fixing the origin and commuting
with a set of integrable holomorphic vector fields X1, . . . ,Xm. Then f commutes with a
holomorphic effective action on (Cn, O) of a torus of dimension equal to the toric degree r
of X1 and such that the columns of the weight matrix of the action are a r-tuple of toric
vectors associated to X1.

If the semi-simple part of the linear term of X1 has the same resonances of the eigenvalues
of dfO, then we get a Poincaré-Dulac holomorphic normalization. Moreover, the commutation
condition implies that f preserves the foliation generated by X1, . . . ,Xm; hence this is a condi-
tion similar to condition A of [Brj] for the convergence of a normalization in the case of vector
fields. Finally, commuting with a torus action implies that f preserves the orbits of the action,
hence a condition of the kind of Definition 1.10 is close to be necessary and sufficient for the
existence of a commuting torus action.

The structure of this paper is as follows.
In section 2 we shall recall some basic facts about linear torus actions and we shall fix some

notations. In section 3 we shall describe the relations between the existence of torus actions with
certain properties and the possibility to conjugate a given germ of biholomorphism to another
one of a particular form, and we shall prove Theorem 1.5 and Theorem 1.6. In section 4 we shall
study the toric degree and the toric r-tuples associated to the eigenvalues of the differential dfO

of a germ of biholomorphism of Cn fixing the origin, and the weight matrices of torus actions.
In section 5 we shall study the notion of torsion and we shall prove Theorem 1.8. In section 6
we shall study the relations between the resonances of the eigenvalues of the differential dfO of
a germ of biholomorphism of Cn fixing the origin and the additive resonances of an associated
toric r-tuple, in the torsion-free case, and we shall prove Theorem 1.9. In section 7 we shall
study the relations between the resonances of the eigenvalues of the differential dfO of a germ
of biholomorphism of Cn fixing the origin and the additive resonances of an associated toric
r-tuple, in the torsion case, and we shall prove Theorem 1.10, Theorem 1.8 and Proposition
1.12. In the last section we shall give some geometric conditions to construct the torus actions
we need, and we shall prove Theorem 1.13 and other similar results.

Acknowledgments. I would like to thank Marco Abate for helpful comments on a draft
of this work, and Jean Écalle for the useful conversations on the last part of section 7. Part
of this work was done during a visit to the Département de Mathématiques de la Faculté des
Sciences d’Orsay, Université Paris-Sud 11, and I would also like to thank the Département
d’Orsay for its hospitality.

2. Preliminaries

Let A: Tr×M →M be a torus action on a complex manifold M , with a fixed point p0 ∈M
(that is A(x, p0) = Ax(p0) = p0 for all x ∈ Tr). The differential d(Ax)p0

:Tp0
M → Tp0

M is
then well-defined, and thus we have a linear torus action on Tp0

M . A linear torus action can
be thought of as a Lie group homomorphism A: Tr → Aut(Tp0

M), that is as a representation
of Tr on the vector space V = Tp0

M .
Characters and weights of Tr are well known. All characters of T1 = S1 = R/Z are of the

form
χθ(x) = exp(2πixθ)
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with θ ∈ Z; hence the character group of T1 is isomorphic to Z. Since Tr = T1 × · · · × T1, the
characters of Tr are obtained multiplying characters of T1, that is they are of the form

χθ(x) = exp

(
2πi

r∑

k=1

xkθ
k

)
,

with θ = (θ1, . . . , θr) ∈ (Zr)∗, where the ∗ denotes the dual. In particular, θ should be thought
of as a row vector. The weights of Tr are then the differential of the characters computed at
the identity element, and thus are given by

wθ(v) = 2πi

r∑

k=1

vkθ
k

with θ ∈ (Zr)∗ and v ∈ Rr. If we write θj = (θ1
j , . . . , θ

r
j ) ∈ (Zr)∗, then the matrix representation

of the linear action A in the eigenvector basis is given by

A(x) = diag
(
χθj

(x)
)

= diag

(
exp

(
2πi

r∑

k=1

xkθ
k
j

))
.

We have then associated to our torus action a matrix Θ = (θk
j ) ∈ Mn×r(Z), whose columns

do not depend on the particular coordinates chosen to express the torus action, but can be
uniquely (up to order) recovered by the action itself.

Definition 2.1. The matrix Θ just defined is called the weight matrix of the torus action.

Definition 2.2. Let θ ∈ Cn and let j ∈ {1, . . . , n}. We say that a multi-index Q ∈ Nn,
with |Q| =

∑n
h=1 qh ≥ 2, gives an additive resonance relation for θ relative to the j-th coordinate

if

〈Q, θ〉 =

n∑

h=1

qhθh = θj

and we put
Res+j (θ) = {Q ∈ Nn | |Q| ≥ 2, 〈Q, θ〉 = θj}.

Let λ ∈ (C∗)n and let j ∈ {1, . . . , n}. We say that a multi-index Q ∈ Nn, with |Q| ≥ 2, gives a
multiplicative resonance relation for λ relative to the j-th coordinate if

λQ = λq1

1 · · · λqn
n = λj

and we put
Resj(λ) = {Q ∈ Nn | |Q| ≥ 2, λQ = λj}.

Remark 2.1. Given [ϕ] ∈ (C/Z)n, where [ · ]: Cn → (C/Z)n is the standard projection, the set

{Q ∈ Nn | |Q| ≥ 2, 〈Q,ϕ〉 − ϕj ∈ Z}.

does not depend on the specific representative ϕ ∈ Cn but only on the class [ϕ], and so it is
well defined the set Resj([ϕ]) as

Resj([ϕ]) = {Q ∈ Nn | |Q| ≥ 2, [〈Q,ϕ〉 − ϕj ] = [0]}.
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Remark 2.2. Notice that given λ ∈ (C∗)n, we can always find a unique [ϕ] ∈ (C/Z)n such
that λ = e2πi[ϕ], i.e., λj = e2πi[ϕj ] for every j = 1, . . . , n. Then Resj(λ) = Resj([ϕ]), thus
justifying the definitions and the terminology.

3. Torus Actions and Normal Forms of germs of biholomorphisms

In this section we shall describe the relations between the existence of torus actions with
certain properties and the possibility to conjugate a given germ of biholomorphism to another
of a particular form.

Definition 3.1. Let θ(1), . . . , θ(r) ∈ Zn. We say that a monomial zQej , with Q ∈ Nn, |Q| ≥ 1
and j ∈ {1, . . . , n}, is Θ-resonant, where Θ is the n×r matrix whose columns are θ(1), . . . , θ(r),
if

〈Q, θ(k)〉 = θ
(k)
j

for every k = 1, . . . , r. In other words, zhej is Θ-resonant if θ
(k)
h = θ

(k)
j , for all k = 1, . . . , r,

and zQej , with |Q| ≥ 2 is Θ-resonant, if

(6) Q ∈ Rj(Θ) =
r⋂

k=1

Res+j (θ(k)).

We say that Θ has no resonances if Rj(Θ) = ∅ for every j = 1, . . . , n.

Definition 3.2. Let θ(1), . . . , θ(r) ∈ Zn and let T be a linear map of Cn. We say that the
matrix Θ, with columns θ(1), . . . , θ(r), is compatible with T if and only if we can write T in
Jordan form with all monomials Θ-resonant. In other words, a matrix T = (tij) in Jordan form

is compatible with Θ if and only if θ
(k)
j = θ

(k)
j+1 for all k = 1, . . . , r when tj,j+1 6= 0, that is in a

Jordan block of dimension at least 2.

Theorem 3.1. Let f be a germ of biholomorphism of Cn fixing the origin O. Then f
commutes with a holomorphic effective action on (Cn, O) of a torus of dimension 1 ≤ r ≤ n
with weight matrix Θ ∈ Mn×r(Z) if and only there exists a local holomorphic change of
coordinates conjugating f to a germ with linear part in Jordan normal form and containing
only Θ-resonant monomials.

Proof. Let us suppose that the linear part of f is in Jordan normal form and f contains
only Θ-resonant monomials. Then we claim that f commutes with the linear effective torus
action

A: Tr × (Cn, O) → (Cn, O),

defined by

A(x, z) = Diag
(
e2πi

∑
r

k=1
xkθ

(k)
j

)
z.

In fact in these hypotheses the j-th coordinate of f is

λjzj + εjzj−1 +
∑

|Q|≥2

Q∈Rj(Θ)

fQ,jz
Q

where εj ∈ {0, 1} can be different from 0 only if λj = λj−1, the set Rj(Θ) is defined in (6) and

the assumption that εjzj−1ej is Θ-resonant implies θ
(k)
j−1 = θ

(k)
j for k = 1, . . . , r if εj 6= 0. Then

9



for every x ∈ Tr we have

fj(A(x, z)) = λje
2πi
∑

r

k=1
xkθ

(k)
j zj + εje

2πi
∑

r

k=1
xkθ

(k)
j−1zj−1 +

∑

|Q|≥2

Q∈Rj(Θ)

fQ,je
2πi
∑

r

k=1
xk〈Q,θ(k)〉zQ

= λje
2πi
∑

r

k=1
xkθ

(k)
j zj + εje

2πi
∑

r

k=1
xkθ

(k)
j zj−1 +

∑

|Q|≥2

Q∈Rj(Θ)

fQ,je
2πi
∑

r

k=1
xkθ

(k)
j zQ

= e2πi
∑

r

k=1
xkθ

(k)
j


λjzj + εjzj−1 +

∑

|Q|≥2

Q∈Rj(Θ)

fQ,jz
Q




= e2πi
∑

r

k=1
xkθ

(k)
j (fj(z))

= A(x, f(z))j .

Conversely, let us suppose that f commutes with a holomorphic effective action on (Cn, O)
of a torus of dimension 1 ≤ r ≤ n with weight matrix Θ. Then, by Böchner linearization
theorem [B], there exists a tangent to the identity holomorphic change of variables ψ linearizing
the torus action. Furthermore, up to a linear change of coordinates we can assume that in the
new coordinates the action is given by

A(x, z) = Diag
(
e2πi

∑
r

k=1
xkθ

(k)
j

)
z,

and that f (still commuting with the torus action) has linear part in Jordan normal form
compatible with Θ, and thus its j-th coordinate is

λjzj + εjzj−1 +
∑

|Q|≥2

fQ,jz
Q

where εj ∈ {0, 1} can be different from 0 only if λj−1 = λj and θj−1 = θj . For every x ∈ Tr,
we have

fj(A(x, z)) = λje
2πi
∑

r

k=1
xkθ

(k)
j zj + εje

2πi
∑

r

k=1
xkθ

(k)
j−1zj−1 +

∑

|Q|≥2

fQ,je
2πi
∑

r

k=1
xk〈Q,θ(k)〉zQ,

and

A(x, f(z))j = e2πi
∑

r

k=1
xkθ

(k)
j


λjzj + εjzj−1 +

∑

|Q|≥2

fQ,jz
Q


 .

Then fj(A(x, z)) = A(x, f(z))j if and only if

fQ,j

(
e2πi

∑
r

k=1
xk〈Q,θ(k)〉 − e2πi

∑
r

k=1
xkθ

(k)
j

)
= 0

for every x ∈ Tr, j = 1, · · · , n, Q ∈ Nn with |Q| ≥ 2, i.e., fQ,j can be non-zero only when

r∑

k=1

xk(〈Q, θ(k)〉 − θ
(k)
j ) ∈ Z ∀x ∈ Tr,

which is equivalent to

〈Q, θ(k)〉 − θ
(k)
j = 0

for every k = 1, . . . , r, meaning that f contains only Θ-resonant monomials.
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As a consequence of this result we have

Corollary 3.2. Let f be a germ of biholomorphism of Cn fixing the origin O. Then f is
holomorphically linearizable if and only if it commutes with a holomorphic effective action
on (Cn, O) of a torus of dimension 1 ≤ r ≤ n with weight matrix Θ having no resonances.

Proof. If f is linear and in Jordan normal form, then it commutes with any linear action of T1

with compatible weight matrix Θ; so it suffices to choose Θ with R1(Θ) = . . . = Rn(Θ) = ∅.
Conversely, if f commutes with a holomorphic effective action on (Cn, O) of a torus of

dimension 1 ≤ r ≤ n with weight matrix Θ, then, by the previous result, Θ is compatible with
the linear part of f and there exists a local holomorphic change of coordinates such that f is
conjugated to a germ with the same linear part and containing only Θ-resonant monomials.
But each Rj(Θ) is empty; hence there are no Θ-resonant monomials of degree at least 2, and
thus f is holomorphically linearizable.

4. Toric degree

We want to study the relations between the resonances of the eigenvalues of the differ-
ential dfO of a germ of biholomorphism of Cn fixing the origin, and the weight matrices of
torus actions to understand in which cases Theorem 3.1 gives us a Poincaré-Dulac holomorphic
normalization. Thanks to Remark 2.2 we have to deal with vectors of (C/Z)n. A concept that
turns out to be crucial for this study is that of toric degree.

Definition 4.1. Let [ϕ] = ([ϕ1], . . . , [ϕn]) ∈ (C/Z)n. The toric degree of [ϕ] is the mini-
mum r ∈ N such that there exist α1, . . . , αr ∈ C and θ(1), . . . , θ(r) ∈ Zn such that

(7) [ϕ] =

[
r∑

k=1

αkθ
(k)

]
.

The r-tuple θ(1), . . . , θ(r) is called a r-tuple of toric vectors associated to [ϕ], and the num-
bers α1, . . . , αr ∈ C are toric coefficients of the toric r-tuple.

Remark 4.1. Note that the toric degree is necessarily at most n, since

[ϕ] =

[
n∑

k=1

ϕkek

]
.

We did not say the toric coefficients because we have the following result.

Lemma 4.2. Let [ϕ] ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n and let θ(1), . . . , θ(r) be a r-tuple
of toric vectors associated to [ϕ] with toric coefficients α1, . . . , αr ∈ C. Then β1, . . . , βr ∈ C

satisfy

[ϕ] =

[
r∑

k=1

βkθ
(k)

]

if and only if

Θ



α1 − β1

...
αr − βr


 ∈ Zn

11



where Θ is the n× r matrix whose columns are θ(1), . . . , θ(r).

Proof. We have [
r∑

k=1

αkθ
(k)

]
=

[
r∑

k=1

βkθ
(k)

]

if and only if
r∑

k=1

αkθ
(k) −

r∑

k=1

βkθ
(k) ∈ Zn,

that is

Θ



α1 − β1

...
αr − βr


 ∈ Zn,

which is the assertion.

Thanks to Remark 2.2 the following definition makes sense.

Definition 4.2. Let f be a germ of biholomorphism of Cn fixing the origin and denote
by λ = {λ1, . . . , λn} the spectrum of dfO. The toric degree of f is the toric degree of the
unique [ϕ] ∈ (C/Z)n such that λ = e2πi[ϕ] .

Toric r-tuples and toric coefficients have to satisfy certain arithmetic properties, as the
following result shows.

Lemma 4.3. Let [ϕ] ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n and let θ(1), . . . , θ(r) be a r-tuple
of toric vectors associated to [ϕ] with toric coefficients α1, . . . , αr ∈ C. Then:

(i) α1, . . . , αr is a set of rationally independent complex numbers;

(ii) every r-tuple of toric vectors associated to [ϕ] is a set of Q-linearly independent vectors.

Proof. (i) Let us suppose by contradiction that α1, . . . , αr ∈ C are rationally dependent. Then
there exists (c1, . . . , cr) ∈ Zr \ {O} such that

c1α1 + · · · + crαr = 0.

Up to reordering we may assume c1 6= 0. Then

α1 = − 1

c1
(c2α2 + · · · + crαr),

and hence

[ϕ] =

[
r∑

k=1

αkθ
(k)

]

=

[
− 1

c1
(c2α2 + · · · + crαr)θ

(1) + α2θ
(2) + · · · + αrθ

(r)

]

=

[
α2

c1
(c1θ

(2) − c2θ
(1)) + · · · + αr

c1
(c1θ

(r) − crθ
(1))

]
,

and this contradicts the definition of toric degree.

(ii) The proof is analogous to the previous one.

12



Remark 4.4. Given [ϕ] ∈ (C/Z)n, of toric degree 1 ≤ r ≤ n, if θ(1), . . . , θ(r) is a r-tuple of
toric vectors associated to [ϕ], the n×r matrix Θ whose columns are θ(1), . . . , θ(r), has maximal
rank r.

Remark 4.5. Note that, if [ϕ] ∈ (C/Z)n has toric degree 1 ≤ r ≤ n, and θ(1), . . . , θ(r) is
a r-tuple of toric vectors associated to [ϕ], up to change the toric coefficients α1, . . . , αr, we

can always assume θ
(k)
1 , . . . , θ

(k)
n coprime for each 1 ≤ k ≤ r. In fact, if dk ∈ Z is the greatest

common divisor of θ
(k)
1 , . . . , θ

(k)
n , then

[ϕ] =

[
r∑

k=1

αkθ
(k)

]
=

[
r∑

k=1

dkαkθ̃
(k)

]
,

where

θ̃(k) =



θ
(k)
1 /dk

...
θ
(k)
n /dk




for k = 1, . . . , r.

Remark 4.6. Given [ϕ] ∈ (C/Z)n, of toric degree 1 ≤ r ≤ n, the r-tuple of toric vectors
associated to [ϕ] is not necessarily unique. Let us consider, for example

[ϕ] =




3
√

2 + 4i
2
√

2 + 6i
−
√

2 + 2i


 .

The toric degree cannot be 1, since it is immediate to verify that ϕ cannot be written as the
product of a complex number times an integer vector. The toric degree is in fact 2, since we
have

[ϕ] =


√2




3
2
−1


+ 2i




2
3
1




 .

However we can also write [ϕ] as

[ϕ] =


−3

√
2 + 16i

6




0
1
1


+

3
√

2 + 4i

6




6
5
−1




 .

Note that, in both cases, the toric coefficients are rationally independent with 1.

Example 4.7. The vector of (C/Z)2

[ϕ] =

[
(1 + 6

√
2)/6

(1 − 2
√

2)/2

]
,

has toric degree 2, since we have

[ϕ] =

[
1 + 6

√
2

6

(
1
0

)
+

1 − 2
√

2

2

(
0
1

)]
,
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and it is not difficult to verify that it cannot have toric degree 1. We can also write [ϕ] as

[ϕ] =

[
1

6

(
1
3

)
+

√
2

(
1
−1

)]
.

Note that this time, in both cases, the toric coefficients are rationally dependent with 1.

We shall prove that, given [ϕ] ∈ (C/Z)n of toric degree 1 ≤ r ≤ n, even when the r-tuple
of toric vectors associated to [ϕ] is not unique, we can always say whether the toric coefficients
are rationally independent with 1 or not, so this will be an intrinsic property of the vector.
Before proving this, we shall need the following result that gives us a way to find a more useful
toric r-tuple when the toric coefficients are rationally dependent with 1.

Remark 4.8. Note that α ∈ C is rationally dependent with 1 if and only if it belongs to Q.

Lemma 4.9. Let [ϕ] ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n, and let θ(1), . . . , θ(r) be a r-tuple
of toric vectors associated to [ϕ] with toric coefficients α1, . . . , αr ∈ C rationally dependent
with 1. Then there exists a r-tuple of toric vectors η(1), . . . , η(r) associated to [ϕ] with toric

coefficients β1, . . . , βr ∈ C such that β1 = 1/m with m ∈ N\{0, 1} and m, η
(1)
1 , . . . , η

(1)
n coprime.

Moreover β2, . . . , βr are rationally independent with 1.

Proof. If r = 1, then α is rationally dependent with 1 if and only if it belongs to Q, i.e.,

[ϕ] =

[
p

q
θ

]

where we may assume without loss of generality p and q coprime and q, θ1, . . . , θn coprime.
Then

[ϕ] =

[
1

q
η

]

where η = p · θ ∈ Zn and we are done.
Let us suppose now r ≥ 2. Since α1, . . . , αr are (rationally independent and) rationally

dependent with 1, we can consider the minimum positive integer m0 ∈ N \ {0} so that there
exists (m1, . . . ,mr) ∈ Zr \ {O} such that

m1α1 + · · · +mrαr = m0.

Thanks to the minimality of m0, we have that m1, . . . ,mr,m0 are coprime. Up to reordering
we may assume m1 6= 0. Then

α1 =
m0

m1
−
(
m2

m1
α2 + · · · + mr

m1
αr

)

=
m′

0

m′
1

−
(
m2

m1
α2 + · · · + mr

m1
αr

)
,

where m0

m1
=

m′
0

m′
1

with (m′
0,m

′
1) = 1 and m′

1 ∈ N \ {0, 1}. Let d be the greatest common divisor

of m′
1 and the components of θ(1), and consider

θ̃(1) =
1

d
θ(1), m̃1 =

m′
1

d
.
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Hence

[ϕ] =

[
m′

0

m′
1

θ(1) +
r∑

k=2

αk

m1
(m1θ

(k) −mkθ
(1))

]

=

[
m′

0

m̃1
θ̃(1) +

r∑

k=2

αk

m1
(m1θ

(k) −mkθ
(1))

]

=

[
1

m̃1
m′

0θ̃
(1) +

r∑

k=2

αk

m1
(m1θ

(k) −mkθ
(1))

]

=

[
r∑

k=1

βkη
(k)

]
,

where

β1 =
1

m̃1
, β2 =

α2

m1
, . . . , βr =

αr

m1
,

and
η(1) = m′

0θ̃
(1), η(2) = m1θ

(2) −m2θ
(1), . . . , η(r) = m1θ

(r) −mrθ
(1).

Notice that m̃1 is necessarily greater than 1, because otherwise the toric degree of [ϕ] would
be less than r.

Now, if β2, . . . , βr were rationally dependent with 1, then we would have (k2, . . . , kr) ∈ Zr−1\{O}
such that

k2β2 + · · · + krβr = k ∈ Z \ {0},
then

−k m̃1 ·
1

m̃1
+ k2β2 + · · · + krβr = 0,

contradicting Lemma 4.3. This concludes the proof.

Definition 4.3. Let [ϕ] = ([ϕ1], . . . , [ϕn]) ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n. We say
that a r-tuple η(1), . . . , η(r) of toric vectors associated to [ϕ] with toric coefficients β1, . . . , βr

rationally dependent with 1 is reduced if β1 = 1/m with m ∈ N \ {0, 1} and m, η
(1)
1 , . . . , η

(1)
n

coprime. In this case the toric vectors η(2), . . . , η(r) are called reduced torsion-free toric vectors

associated to [ϕ].

Now we can prove that the rational independence with 1 of the coefficients of toric r-tuples
associated to a given vector [ϕ] ∈ (C/Z)n of toric degree 1 ≤ r ≤ n is an intrinsic property
of [ϕ].

Proposition 4.10. Let [ϕ] ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n, and let θ(1), . . . , θ(r) be
a r-tuple of toric vectors associated to [ϕ], with toric coefficients α1, . . . , αr ∈ C rationally
independent with 1. Then every other r-tuple of toric vectors associated to [ϕ] has toric
coefficients rationally independent with 1.

Proof. Let us assume by contradiction that there exists a r-tuple η(1), . . . , η(r) of toric vec-
tors associated to [ϕ] with toric coefficients β1, . . . , βr rationally dependent with 1. Thanks
to Lemma 4.9, we may assume without loss of generality β1 = 1/m with m ∈ N \ {0, 1}
and m, η

(1)
1 , . . . , η

(1)
n coprime. Let N be the matrix with columns η(1), . . . , η(r), and let Θ be

the matrix with columns θ(1), . . . , θ(r). We have

[ϕ] =


N ·



β1
...
βr





 =


Θ ·



α1
...
αr




 ,
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that is, there exists an integer vector k ∈ Zn such that

N ·



β1
...
βr


 = Θ ·



α1
...
αr


+ k.

Since N has maximal rank r, the linear map N : Qr → Qn is injective and, for every U ⊆ Qn

such that Qn = Im(N) ⊕ U , there is a linear map LU : Qn → Qr such that ker(LU ) = U

and LUN = Id; hence there is a linear map L̃U : Zn → Zr that L̃UN = h Id, with h ∈ Z \ {0}.
Then

h



β1
...
βr


 = L̃UΘ ·



α1
...
αr


+ L̃Uk.

Moreover, we can choose U so that the first row of L̃UΘ is not identically zero. In fact, the first
row of L̃UΘ is identically zero if and only if the first vector e1 of the standard basis belongs
to ker(ΘT L̃T

U ), and hence it is orthogonal to Im(L̃UΘ), because for any u ∈ Qr we have

0 = 〈u,ΘT L̃T
Ue1〉 = 〈Θu, L̃T

Ue1〉 = 〈L̃UΘu, e1〉.

In particular Im(Θ) ∩ U 6= {O}; otherwise L̃U |Im(Θ) would be injective, thus Im(L̃UΘ) = Qr,

and e1 could not be orthogonal to Im(L̃UΘ). Now, it is a well-known fact of linear algebra that
given two subspaces V,W of a vector space T having the same dimension there exists a sub-
space U such that T = V⊕U = W⊕U . Hence choosing U so that Qn = Im(N)⊕U = Im(Θ)⊕U ,

we have Im(Θ) ∩ U = {O}, and thus the first row of L̃UΘ is not identically zero.
Then

h
1

m
= (L̃UΘ)1 ·



α1
...
αr


+ (L̃Uk)1

and this gives us a contradiction since α1, . . . , αr are rationally independent with 1 by assump-
tion.

We have then two cases to deal with: the rationally independent with 1 case, and the
rationally dependent with 1 case.

Definition 4.4. Let [ϕ] ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n. We say that [ϕ] is in
the torsion-free case, or simply [ϕ] is torsion-free, if its r-tuples of toric vectors have toric
coefficients rationally independent with 1.

A notion of torsion-free germ of biholomorphism was firstly introduced by Écalle in [É].
We shall show in the next section that our notion is equivalent to his; our approach however
gives more information on the normalization problem.

We end this section with a couple of results showing how to compute the toric degree,
starting with toric degree 1.

Proposition 4.11. Let [ϕ] ∈ (C/Z)n. Then:

(i) [ϕ] has toric degree 1 with rational toric coefficient if and only if it belongs to (Q/Z)n;

(ii) [ϕ] has toric degree 1 with toric coefficient in C \ Q if and only if [ϕ] 6∈ (Q/Z)n, and
there exists θ ∈ Zn \ {O}, with θk = 0 if [ϕk] = [0], such that there is j0 ∈ {1, . . . , n} so
that
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(a) [ϕj0 ] 6∈ (Q/Z)n and

(8) θk[ϕj0 ] − θj0 [ϕk] = [0]

for any k so that [ϕk] 6= [0]; and

(b) for any representatives ϕk of [ϕk], the integer vector ϕj0θ − θj0ϕ belongs to the

subspace Span
Z
{θ̂,−θj0e1, . . . ,

̂−θj0ej0 , . . . ,−θj0en}, where θ̂ = θ − θj0ej0 .

Proof. (i) If α = p/q ∈ Q then

[ϕ] =

[
p

q
θ

]
,

hence [ϕ] ∈ (Q/Z)n.
Conversely, if [ϕj ] = [pj/qj ] with pj/qj ∈ Q for j = 1, . . . , n, then, considering q = q1 · · · qn

we get

[ϕ] =




p1q2···qn

q

...
pnq1···qn−1

q


 =

[
1

q
θ

]
,

and we are done.

(ii) If

[ϕ] =


α



θ1
...
θn




 ,

with α ∈ C \ Q and θ ∈ Zn \ {O} then it is immediate to verify that [ϕ] 6∈ (Q/Z)n, and θ
satisfies (a). By assumption, once we choose arbitrarily representatives ϕk of [ϕk] we can
write ϕk = αθk +mk for suitable mk ∈ Z. Then

θkϕj − θjϕk = θk(αθj +mj) − θj(αθk +mk) = θkmj − θjmk,

for any j and k, thus (b) is verified.
Conversely, let θ ∈ Zn \ {O} satisfy the hypotheses. By assumption [ϕ] 6∈ (Q/Z)n and

there is j0 ∈ {1, . . . , n} such that [ϕj0 ] 6∈ (Q/Z)n satisfies (a) and (b); for the sake of simplicity,
we may assume, without loss of generality, j0 = 1. Let us choose a representative ϕ of [ϕ] and
set

θjϕ1 − θ1ϕj = kj ∈ Z

for j = 2, . . . , n. Condition (b) means that we can find m1, . . . ,mn ∈ Z so that

(9)



θ2 −θ1
...

. . .

θn −θ1


 ·



m1
...
mn


 =



k2
...
kn


 ,

that is
kj = θjm1 − θ1mj .

Now we put

α =
ϕ1 −m1

θ1
/∈ Q.

Then [ϕ] = [αθ]; indeed

αθj =
θj(ϕ1 −m1)

θ1
=
θjϕ1 − kj − θ1mj

θ1
= ϕj −mj .
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Remark 4.12. Condition (b) of the previous Proposition is necessary. In fact, if we just
assume that condition (a) holds, then it is always possible to solve (9) in Q, but this does not
imply that it is solvable in Z. For example the vector

[ϕ] =




(2i + 1)/3
i

(11 + 10i)/6




has toric degree 2, but if we consider

θ =




2
3
5




we get condition (a) for j = 1. Moreover, choosing ((2i+4)/3, i, (11+10i)/6) as representative
of [ϕ], we get (

k2

k3

)
=

(
1
−2

)

and it is not difficult to verify that

(
3 −2 0
5 0 −2

)
·



m1

m2

m3


 =

(
1
−2

)

has no solution (m1,m2,m3) ∈ Z3.

Example 4.13. The vector of (C/Z)3

[ϕ1] =




(
√

2 + i)/6
(
√

2 + i)/3
5(
√

2 + i)/6




has toric degree 1, since it can be written as

[ϕ1] =



√

2 + i

6




1
2
5




 .

In general, to compute the toric degree of a vector one starts from the trivial representation
of Remark 4.1, and then uses (the proof of) Lemma 4.3 to obtain rationally independent
toric coefficients and toric vectors. Then the toric degree is computed as follows (see also
Proposition 5.5)

Proposition 4.14. Let α1, . . . , αr be 1 ≤ r ≤ n rationally independent complex numbers and
let θ(1), . . . , θ(r) ∈ Zn be Q-linearly independent integer vectors. Then:

(i) if α1, . . . , αr are rationally independent with 1, then [ϕ] =
[∑r

k=1 αkθ
(k)
]

has toric
degree r;

(ii) if α1, . . . , αr are rationally dependent with 1, then [ϕ] =
[∑r

k=1 αkθ
(k)
]

has toric de-
gree r − 1 or r.

18



Proof. (i) Let α1, . . . , αr be rationally independent with 1. The toric degree of [ϕ] is not
greater than r. Let us suppose by contradiction that [ϕ] has toric degree s < r. Then there
exist η(1), . . . , η(s) ∈ Zn and β1, . . . , βs ∈ C rationally independent such that

[
r∑

k=1

αkθ
(k)

]
=

[
s∑

k=1

βkη
(k)

]
.

Let N be the matrix with columns η(1), . . . , η(s), and Θ the matrix with columns θ(1), . . . , θ(r).
We have

[ϕ] =


N ·



β1
...
βs





 =


Θ ·



α1
...
αr




 ,

that is there exists an integer vector k ∈ Zn such that

N ·



β1
...
βs


 = Θ ·



α1
...
αr


+ k.

Since Θ has maximal rank r, the linear map Θ: Qr → Qn is injective and, for every U ⊆ Qn such
that Qn = Im(Θ)⊕U , there is a linear map LU : Qn → Qr such that ker(LU ) = U and LUΘ = Id;

hence there is a linear map L̃U : Zn → Zr such that L̃UΘ = h Id, with h ∈ Z \ {0}. Then

L̃UN ·



β1
...
βs


− L̃Uk = h



α1
...
αr


 .

Now, dim(ker(L̃UN)T ) ≥ 1. In particular, there exists ξ ∈ Zr \ {O} such that (L̃UN)T ξ = O,

that is ξT L̃UN = O; therefore

Z ∋ −ξT L̃Uk = hξT



α1
...
αr


 = h〈ξ, α〉,

which is an absurdum, because α1, . . . , αr, 1 are rationally independent.

(ii) Now we have α1, . . . , αr rationally dependent with 1, and, arguing as in the proof of
Lemma 4.9, we can suppose, without loss of generality, α1 = 1/m and α2, . . . , αr rationally

independent with 1. If m divides θ
(1)
1 , . . . , θ

(1)
n , then [ϕ] = [

∑r
k=2 αkθ

(k)] has toric degree r− 1

thanks to (i). Otherwise, we may assume, without loss of generality, m, θ
(1)
1 , . . . , θ

(1)
n coprime.

The toric degree of [ϕ] is not greater than r. Let us suppose that [ϕ] has toric degree s < r.
Then there exist η(1), . . . , η(s) ∈ Zn and β1, . . . , βs ∈ C such that

[
r∑

k=1

αkθ
(k)

]
=

[
s∑

k=1

βkη
(k)

]
,

thus we have

[mϕ] =

[
r∑

k=2

αk ·mθ(k)

]
=

[
s∑

k=1

βk ·mη(k)

]
,

and, since α2, . . . , αr are rationally independent with 1, by (i) we get s = r − 1.
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Remark 4.15. Note that both cases in (ii) can occur. In fact, it is not difficult to verify that

[ϕ1] =




1/2√
2
i


 =

[
1

2
e1 +

√
2e2 + ie3

]

has toric degree 3. However, if we consider,

[ϕ2] =


1

2




1
1
1


+

√
2 − 1

2




1
1
3


+

i

2




0
1
1




 ,

then

[ϕ2] =




√
2/2

(
√

2 + i)/2
(−2 + 3

√
2 + i)/2


 =



√

2

2




1
1
3


+

i

2




0
1
1




 ,

so the toric degree is 2. Proposition 5.5 will show how to distinguish between the two cases of
Proposition 4.14.(ii).

5. Torsion

In [É], Écalle introduced the following notion.

Definition 5.1. Let λ ∈ (C∗)n. The torsion of λ is the natural integer τ such that

(10)
1

τ
2πiZ = (2πiQ) ∩


(2πiZ)

⊕

1≤j≤n

((log λj)Z)


 .

Translated in our notation, (10) becomes

1

τ
Z = Q ∩


Z

⊕

1≤j≤n

ϕjZ


 ,

where ϕ is a representative of the unique [ϕ] ∈ (C/Z)n such that λ = exp(2πi[ϕ]).

The torsion is well-defined, as the following result shows (and whose proof describes how
to explicitly compute the torsion).

Proposition 5.1. The torsion of a n-tuple (λ1, . . . , λn) ∈ (C∗)n is a well-defined natural
integer. Furthermore, writing λ = e2πi[ϕ], if [ϕ] is torsion-free, then τ = 1; otherwise τ divides
the denominator of the first toric coefficient in a reduced representation of [ϕ].

Proof. Let [ϕ] ∈ (C/Z)n be the unique vector such that λ = exp(2πi[ϕ]), let 1 ≤ r ≤ n
be its toric degree and let θ(1), . . . , θ(r) be a r-tuple of toric vectors associated to [ϕ] with
coefficients α1, . . . , αr.

Our aim is to determine the structure of the set

R = Q ∩


Z

n⊕

j=1

ϕjZ


 ,
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that is of the set of rational numbers x that can be expressed in the form

Q ∋ x = m0 +m1ϕ1 + · · · +mnϕn

with m0, . . . ,mn ∈ Z. Write, as usual,

ϕj = hj +

r∑

k=1

αkθ
(k)
j ,

with hj ∈ Z. Then

x = (m0 +m1h1 + · · · +mnhn) +m1

r∑

k=1

αkθ
(k)
1 + · · · +mn

r∑

k=1

αkθ
(k)
n

= m̃+

r∑

k=1

αk〈M,θ(k)〉,

where m̃ ∈ Z and M ∈ Zn are generic. If α1, . . . , αr are rationally independent with 1, it
follows that x ∈ Q if and only if 〈M,θ(1)〉 = · · · = 〈M,θ(r)〉 = 0, and thus R = Z and τ = 1.

If α1, . . . , αr are not rationally independent with 1, let us use instead the reduced repre-
sentation, with β1 = 1/m, the remaining coefficients β2, . . . , βr rationally independent with 1,
and with η(1), . . . , η(r) as toric vectors. We get

x = m̃+
1

m
〈M,η(1)〉 +

r∑

k=2

βk〈M,η(k)〉.

Therefore x ∈ Q if and only if 〈M,η(2)〉 = · · · = 〈M,η(r)〉 = 0, and moreover in that case

x = m̃+
1

m
〈M,η(1)〉.

Now, the set
S = {〈M,η(1)〉 |M ∈ Zn, 〈M,η(2)〉 = · · · = 〈M,η(r)〉 = 0}

is an ideal of Z; therefore S = qZ for some q ∈ N. It follows that

R = Z ⊕ q

m
Z = Z ⊕ q̃

m̃
Z =

1

m̃
Z,

where q̃ and m̃ are coprime, and q/m = q̃/m̃. Hence τ = m̃, and we are done.

Remark 5.2. Note that, in the previous proof, S 6= {O}, i.e., q 6= 0. Indeed, S = {O} if
and only if the kernel in Zn of the linear form (η(1))T contains the intersection of the kernels
in Zn of the linear forms (η(2))T , . . . , (η(r))T . It is easy to see that this implies that the
kernel in Qn of the linear form (η(1))T contains the intersection of the kernels in Qn of the
linear forms (η(2))T , . . . , (η(r))T . But this implies that the linear form (η(1))T is a Q-linear
combination of (η(2))T , . . . , (η(r))T , and so η(1), . . . , η(r) are Q-linearly dependent, impossible.

The next result explains the terminology of Definition 4.4.
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Theorem 5.3. Let λ = e2πi[ϕ] ∈ (C∗)n. Then [ϕ] is torsion-free if and only if the torsion of λ
is 1.

Proof. If [ϕ] is torsion-free, then the toric coefficients of a toric r-tuple associated to [ϕ] are
rationally independent with 1, and the torsion τ is 1, by Proposition 5.1.

Conversely, let η(1), . . . , η(r) be a reduced r-tuple of toric vectors associated to [ϕ] with
toric coefficients 1/m, β2, . . . , βr. Let us assume by contradiction that the torsion τ of [ϕ] is 1.
From the proof of Proposition 5.1 it is clear that we have τ = 1 if and only if 〈P, η(1)〉 ∈ mZ,
for any P ∈ Zn such that 〈P, η(k)〉 = 0 for k = 2, . . . , r.

Since η(1), . . . , η(r) are a toric r-tuple, we may assume, without loss of generality, that the
matrix A of Mn×n(Z) with columns η(2), . . . , η(r), er, . . . , en is invertible in Mn×n(Q). Denote
by N ′ the matrix in M(r−1)×(r−1)(Z)

N ′ =



η
(2)
1 . . . η

(r)
1

...
...

η
(2)
r−1 . . . η

(r)
r−1


 ,

and by N ′′ the matrix in M(n−r+1)×(r−1)(Z)

N ′′ =



η
(2)
r . . . η

(r)
r

...
...

η
(2)
n . . . η

(r)
n


 .

Then

A =

(
N ′ O
N ′′ In−r+1

)

and det(A) = det(N ′) 6= 0.
We claim that, up to pass to another toric r-tuple η̂(1), η(2), . . . , η(r), we may assume

that m = det(N ′) and η̂(1) ∈ {0}r−1 × Zn−r+1. In fact, η(k) = A−1ek−1 for k = 2, . . . , r,
with A−1 ∈ Mn×n(Q). Hence P ∈ Zn is such that 〈P, η(k)〉 = 0 for k = 2, . . . , r if and only
if 〈ATP, ej〉 = 0 for j = 1, . . . , r − 1, that is ATP ∈ {0}r−1 × Zn−r+1. Now, we have

ATP =

(
N ′T N ′′T

O In−r+1

)(
P ′

P ′′

)
∈ {0}r−1 × Zn−r+1

if and only if

P =

(
−(N ′T )−1N ′′TP ′′

P ′′

)
with P ′′ ∈ Zn−r+1 and (N ′T )−1N ′′TP ′′ ∈ Zr−1,

that is
P ′′ ∈ Zn−r+1 and (N ′+)TN ′′TP ′′ ∈ det(N ′)Zr−1

where (N ′+)T ∈ M(r−1)×(r−1)(Z) and (N ′+)TN ′ = det(N ′)Ir−1. In particular, since we are
assuming

(11) 〈P, η(k)〉 = 0 for k = 2, . . . , r =⇒ 〈P, η(1)〉 ∈ mZ,

we get

〈ATP,A−1η(1)〉 =

〈(
O
P ′′

)
, A−1η(1)

〉
∈ mZ

22



for any P ′′ ∈ det(N ′)Zn−r+1. Then there exist q1, . . . , qr−1 ∈ Q and η̂(1) ∈ {0}r−1 × Zn−r+1

such that

A−1η(1) = q1e1 + · · · + qr−1er−1 +
m

det(N ′)
η̂(1),

that is

η(1) = q1η
(2) + · · · + qr−1η

(r) +
m

det(N ′)
η̂(1),

thus we get

[ϕ] =

[
1

m
η(1) +

r∑

k=2

βkη
(k)

]

=

[
1

m

m

det(N ′)
η̂(1) +

r∑

k=2

(
βk +

qk−1

m

)
η(k)

]

=

[
1

det(N ′)
η̂(1) +

r∑

k=2

β̃kη
(k)

]
.

Note that β̃2, . . . , β̃r are rationally independent with 1.

Now we can assume that (11) holds with m = det(N ′) and η(1) ∈ {0}r−1 × Zn−r+1.
We claim that there exist γ2, . . . , γr ∈ C∗ such that [ϕ] = [

∑r
k=2 γkη

(k)], i.e., [ϕ] has toric de-
gree r−1, contradicting the hypotheses. We can have [ϕ] = [

∑r
k=2 γkη

(k)] with γ2, . . . , γr ∈ C∗,
if there exists θ′ ∈ Zr−1 such that



γ2
...
γr


 =



β2
...
βr


+N ′−1θ′,

and θ′ ∈ Zr−1 is a solution

(12) N ′′N ′+




x1
...

xr−1


 ≡



η
(1)
r

...
η
(1)
n


 mod mZn−r+1.

In fact, since N ′′N ′−1 = (1/m)N ′′N ′+, this implies

(13)
1

m
η(1) =

1

m

(
O
η′′(1)

)
≡
(

O
N ′′N ′−1θ′

)
,
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modulo Z, where η′′(1) = (η
(1)
r , . . . , η

(1)
n ), hence

[ϕ] =


 1

m
η(1) +N



β2
...
βr







=



(

O
N ′′N ′−1θ′

)
+

(
N ′

N ′′

)





γ2
...
γr


−N ′−1θ′







=



(

O
N ′′N ′−1θ′

)
+

(
N ′

N ′′

)


γ2
...
γr


−

(
θ′

N ′′N ′−1θ′

)



=


N



γ2
...
γr





 .

Now we prove that, if (11) holds with m = det(N ′) and η(1) ∈ {0}r−1 × Zn−r+1, then
there exists a solution θ′ ∈ Zr−1 of (12). In fact, if P ′′ 6∈ mZn−r+1 is a multi-index such
that P ′′TN ′′N ′+ ∈ mZr−1, then by (11) we have P ′′T η′′(1) ∈ mZ, where we use the same
notation of (13); thus, since up to reorder the indices we may assume that the last coordinate
of P ′′ is not in mZ, we can substitute P ′′TN ′′N ′+x ≡ P ′′T η′′(1) to the last equation of (12),
and we have to solve a system with one equation less. We iterate this procedure for a set of
generators of a complement of mZn−r+1 in the lattice of P ′′ until, up to reordering, we get

B




x1
...

xr−1


 ≡




η
(1)
r

...
η
(1)
r+h−1


 mod mZh

where 1 ≤ h ≤ n − r + 1, B ∈ Mh×(r−1)(Z) is the matrix of the first h rows of N ′′N ′′+, and

for any R 6∈ mZh, we have RTB 6∈ mZr−1, that is B has maximal rank modulo m.
If h = 1, then we have

(14) b1x1 + · · · + br−1xr−1 ≡ η
(1)
1 mod mZ.

If b1, . . . , br−1,m are coprime it is obvious that (14) is solvable. If the greatest common divisor
of b1, . . . , br−1,m is p > 1, then m = qp and q(b1, . . . , br−1) ∈ mZr−1, hence, by (11), we must

have η
(1)
1 ∈ pZ too, thus

b1
p
x1 + · · · + br−1

p
xr−1 ≡ η

(1)
1

p
mod

m

p
Z

is solvable.
Let us now suppose 1 < h ≤ n − r + 1. Since B has maximal rank modulo m, there

exists B+ in M(r−1)×h(Z) such that B+B ≡ dIr−1, modulo mZ where d 6= m. Thus we have

d




x1
...

xr−1


 ≡ B+




η
(1)
r

...
η
(1)
r+h−1


 mod mZh.
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If d and m are coprime, we are done. Otherwise, let p be greatest common divisor of d and m,
and let q = m/p. Since B+B ≡ dIr−1 modulo mZ, we have qB+B ≡ O modulo mZ, thus,
since we are assuming that for any R 6∈ mZh, we have RTB 6∈ mZr−1, it has to be qB+ ≡ O
modulo mZ, that is B+ ≡ pB̃ modulo mZ. Therefore we have

d

p




x1
...

xr−1


 ≡ B̃




η
(1)
r

...
η
(1)
r+h−1


 mod

m

p
Zh,

which is solvable, as we wanted.

The torsion case is more delicate and difficult to deal. First, given [ϕ] ∈ (C/Z)n with toric
degree 1 ≤ r ≤ n and torsion τ ≥ 2, and a reduced toric r-tuple η(1), . . . , η(r), we have

(15),

r⋂

k=2

Res+j (η(k)) ⊇ Resj([ϕ]) ⊇
r⋂

k=1

Res+j (η(k)),

yielding a subdivision in more subcases, all realizable (we have examples for all of them) and,
surprisingly, having very different behaviours ones from the others; we have cases similar to
the case of germs of vector fields (even if we have torsion!), and cases that are indeed different.
In particular, considering iterates of f to reduce to the torsion-free case hides very interesting
phenomena, and it does not allow to see that some torsion cases can be directly studied.
Moreover, we have explicit (and computable) techniques to decide in which subcase a given
[ϕ] ∈ (C/Z)n belongs to.

Example 5.4. Let us consider the vector

[ϕ] =

[
1

6

(
1
3

)
+

√
2

(
1
−6

)]
∈ (C/Z)2,

of toric degree 2. We have
〈P, η(2)〉 = p1 − 6p2 = 0

if and only if

P ∈
(

6
1

)
Z,

hence

Res+1 (η(2)) = {(6h + 1, h) | h ∈ N \ {0}} and Res+2 (η(2)) = {(6h, h + 1) | h ∈ N \ {0}},

and
〈(6h, h), η(1)〉 ∈ 9Z,

that is
S = 9Z,

and the torsion is clearly 2. Moreover, we have

[ϕ] =

[
1

2

(
1
1

)
+

3
√

2 − 1

3

(
1
−6

)]
∈ (C/Z)2.
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Using the torsion τ of a vector, we obtain a complete criterion to compute the toric degree
of a vector, as next result shows.

Proposition 5.5. Let [ϕ] ∈ (C/Z)n and let τ be its torsion. If

[ϕ] =

[
1

m
η(1) +

r∑

k=2

βkη
(k)

]
,

with η(1) 6∈ mZn, then [ϕ] has toric degree r if and only if the torsion of [ϕ] is τ > 1, the
coefficients β2, . . . , βr are rationally independent with 1, and the integer vectors η(1), . . . , η(r)

are Q-linearly independent.

Proof. It follows from Lemma 4.9, Proposition 5.1 and from the proof of Theorem 5.3.

6. Poincaré-Dulac Normal Form in the torsion-free case

In the torsion-free case, it is not difficult to show that we can compute the resonances
of [ϕ], which are multiplicative, using the additive resonances of one of its associated r-tuples
of toric vectors, as the next result shows.

Lemma 6.1. Let [ϕ] ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n and torsion-free. Then for
any r-tuple of toric vectors, θ(1), . . . , θ(r), associated to [ϕ] we have

Resj([ϕ]) =
r⋂

k=1

Res+j (θ(k))

for every j = 1, . . . , n.

Proof. We have

(16) [〈Q,ϕ〉 − ϕj ] =

[
r∑

k=1

αk

(
〈Q, θ(k)〉 − θ

(k)
j

)]

and, since α1, . . . , αr are rationally independent with 1, the right-hand side of (16) vanishes if

and only if 〈Q, θ(k)〉 − θ
(k)
j = 0 for every k = 1, . . . , r.

Example 6.2. Let us consider the torsion-free vector

[ϕ] =


√2




3
2
−1


+ 2i




2
3
1




 ∈ (C/Z)3,

of toric degree 2. Then {
〈P, θ(1)〉 = 3p1 + 2p2 − p3 = 0

〈P, θ(2)〉 = 2p1 + 3p2 + p3 = 0

for some P ∈ Zn, if and only if

P ∈




1
−1
1


Z.
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Hence in this case

Res1([ϕ]) = Res3([ϕ]) = ∅ and Res2([ϕ]) = {(1, 0, 1)}.

Example 6.3. Let us consider the vector

[ϕ] =


√2




3
2
−1


+ 2i




2
−3
1




 ∈ (C/Z)3.

Again, [ϕ] has toric degree 2 and it is torsion-free. In this case, we have

{
〈P, θ(1)〉 = 3p1 + 2p2 − p3 = 0

〈P, θ(2)〉 = 2p1 − 3p2 + p3 = 0

for some P ∈ Zn, if and only if

P ∈




1
5
13


Z.

Hence
Res1([ϕ]) = {(q + 1, 5q, 13q) | q ∈ N \ {0}}
Res2([ϕ]) = {(q, 5q + 1, 13q) | q ∈ N \ {0}}
Res3([ϕ]) = {(q, 5q, 13q + 1) | q ∈ N \ {0}} .

We have the following immediate corollary of Lemma 6.1.

Corollary 6.4. Let λ ∈ (C∗)n and let [ϕ] ∈ (C/Z)n be such that λ = e2πi[ϕ]. If [ϕ] is
torsion-free and has toric degree 1 ≤ r ≤ n, then for every r-tuple θ(1), . . . , θ(r) of toric vectors
associated to [ϕ] we have

Resj(λ) =

r⋂

k=1

Res+j (θ(k))

for every j = 1, . . . , n.

Lemma 6.5. Let [ϕ] ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n and torsion-free. Then for any r-

tuple of toric vectors, θ(1), . . . , θ(r), associated to [ϕ] we have θ
(k)
j = θ

(k)
h whenever [ϕj ] = [ϕh],

for every k = 1, . . . , r.

Proof. If [ϕj ] = [ϕh], then

[
α1θ

(1)
j + · · · + αrθ

(r)
j

]
=
[
α1θ

(1)
h + · · · + αrθ

(r)
h

]
;

hence there exists m ∈ Z, such that

α1

(
θ
(1)
j − θ

(1)
h

)
+ · · · + αr

(
θ
(r)
j − θ

(r)
h

)
= m,

and, since θ
(k)
j − θ

(k)
h ∈ Z for k = 1, . . . , r, the assertion follows from the rational independence

with 1 of α1, . . . , αr.
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Definition 6.1. Let f be a germ of biholomorphism of Cn fixing the origin. We say that f
is torsion-free if, denoted by λ = {λ1, . . . , λn} the spectrum of dfO, the unique [ϕ] ∈ (C/Z)n

such that λ = e2πi[ϕ] is in the torsion-free case.

We have then the following complete description of Poincaré-Dulac holomorphic normal-
ization in the torsion-free case.

Theorem 6.6. Let f be a germ of biholomorphism of Cn fixing the origin O, of toric de-
gree 1 ≤ r ≤ n and in the torsion-free case. Then f admits a holomorphic Poincaré-Dulac
normalization if and only if there exists a holomorphic effective action on (Cn, O) of a torus of
dimension r commuting with f and such that the columns of the weight matrix of the action
are a r-tuple of toric vectors associated to f .

Proof. It follows from Theorem 3.1, Lemma 6.5 and Corollary 6.4.

7. Poincaré-Dulac Normal Form in presence of torsion

Let us consider now [ϕ] ∈ C/Z, of toric degree 1 ≤ r ≤ n and let θ(1), . . . , θ(r) be a r-tuple
of toric vectors associated to [ϕ] with toric coefficients α1, . . . , αr rationally dependent with 1.
We shall put

D(α1, . . . , αr) = {M ∈ Zr | m1α1 + · · · +mrαr ∈ Z},
and

Adm(θ(1), . . . , θ(r)) =
n⋃

j=1

Admj(θ
(1), . . . , θ(r)),

where

Admj(θ
(1), . . . , θ(r)) = {M ∈ Zr | ∃Q ∈ Nn, |Q| ≥ 2 s.t. mk = 〈Q−ej , θ

(k)〉 ∀k = 1, . . . , r}∪{O},

for all j ∈ {1, . . . , n}.
Even if, in this case, it is not always true that we can compute the resonances of [ϕ] as

intersection of additive resonances, we can say many things on the resonant multi-indices using
reduced r-tuples associated to [ϕ].

Lemma 7.1. Let [ϕ] ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n and let η(1), . . . , η(r) be a
reduced r-tuple of toric vectors associated to [ϕ] with toric coefficients 1/m, β2, . . . , βr. Then

(i) D(1/m, β2, . . . , βr) = {(hm, 0, . . . , 0) | h ∈ Z} ⊂ Zr;

(ii) we have
D(1/m, β2, . . . , βr) ∩ Adm(η(1), . . . , η(r)) 6= {O}

if and only there exist Q ∈ Nn, with |Q| ≥ 2 and j ∈ {1, . . . , n} such that

〈Q− ej , η
(1)〉 ∈ mZ \ {0} and Q ∈

r⋂

k=2

Res+j (η(k));

(iii) we have

Resj([ϕ]) = {Q ∈ Nn | |Q| ≥ 2, 〈Q− ej , η
(1)〉 ∈ mZ} ∩

r⋂

k=2

Res+j (η(k)),
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for any j ∈ {1, . . . , n}. In particular,

(17)

r⋂

k=2

Res+j (η(k)) ⊇ Resj([ϕ]) ⊇
r⋂

k=1

Res+j (η(k)),

for all j ∈ {1, . . . , n}.
(iv) [ϕj ] = [ϕh] implies that m divides η

(1)
j − η

(1)
h , and that η

(k)
j = η

(k)
h for any k = 2, . . . , r.

Proof. (i) One inclusion is obvious. Conversely, let M ∈ D(1/m, β2, . . . , βr); then

m1
1

m
+m2β2 + · · · +mrβr ∈ Z.

Since β2, . . . , βr are rationally independent with 1, this implies m2 = · · · = mr = 0, thus we
must have m1/m ∈ Z, and we are done.

(ii) It is immediate from the definitions of D(1/m, β2, . . . , βr) and Adm(η(1), . . . , η(r)) and
from (i).

(iii) It is immediate from (ii) and from

(18) [〈Q,ϕ〉 − ϕj ] =

[
1

m
〈Q− ej , η

(1)〉 +

r∑

k=2

βk〈Q− ej , η
(k)〉
]
.

(iv) If [ϕj ] = [ϕh], then

[
1

m
η
(1)
j + β2η

(2)
j + · · · + βrη

(r)
j

]
=

[
1

m
η
(1)
h + β2η

(2)
h + · · · + βrη

(r)
h

]
,

hence
1

m

(
η
(1)
j − η

(1)
h

)
+ β2

(
η
(2)
j − η

(2)
h

)
· · · + βr

(
η
(r)
j − η

(r)
h

)
∈ Z,

and, since η
(k)
j − η

(k)
h ∈ Z for k = 1, . . . , r, the assertion follows as in (i).

Remark 7.2. Note that, given [ϕ] ∈ (C/Z)n of toric degree 1 ≤ r ≤ n, if η(1), . . . , η(r) is
a reduced r-tuple of toric vectors associated to [ϕ] with toric coefficients 1/m, β2, . . . , βr, and

such that [ϕj ] = [ϕh] for some distinct coordinates j and h, but η
(1)
j 6= η

(1)
h , then, since m

divides η
(1)
j − η

(1)
h , we have

1

m
η
(1)
j =

1

m
η
(1)
h +

1

m

(
η
(1)
j − η

(1)
h

)
;

thus

[ϕ] =

[
1

m
η̃(1) +

r∑

k=2

βkη
(k)

]

where, η̃
(1)
p = η

(1)
p for any p 6= j, h and η̃

(1)
j = η̃

(1)
h , that is η̃(1) = η(1)− (η

(1)
j −η(1)

h )ej , obtaining
a compatible reduced r-tuple.

Even in the torsion case, toric r-tuples associated to a same vector [ϕ] have to verify certain
properties on the resonances, as next result shows.
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Lemma 7.3. Let [ϕ] ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n and in the torsion case.
Let η(1), . . . , η(r) be a reduced r-tuple of toric vectors associated to [ϕ] with toric coeffi-
cients 1/m, β2, . . . , βr and let ξ(1), . . . , ξ(r) be a reduced r-tuple of toric vectors associated
to [ϕ] with toric coefficients 1/m̃, γ2, . . . , γr. Then we have

r⋂

k=2

Res+j (η(k)) =
r⋂

k=2

Res+j (ξ(k)),

for all j = 1, . . . , n.

Proof. We have

[ϕ] =

[
1

m
η(1) +

r∑

k=2

βkη
(k)

]
=

[
1

m̃
ξ(1) +

r∑

k=2

γkξ
(k)

]
.

Then

[mm̃ϕ] =

[
r∑

k=2

mm̃βkη
(k)

]
=

[
r∑

k=2

mm̃γkξ
(k)

]
,

and, by Proposition 4.14, [mm̃ϕ] has toric degree r − 1 and is torsion-free, because β2, . . . , βr

and γ2, . . . , γr are rationally independent with 1. Therefore, by Lemma 6.1, we have

r⋂

k=2

Res+j (η(k)) = Resj([mm̃ϕ]) =
r⋂

k=2

Res+j (ξ(k)),

for any j = 1, . . . , n, and we are done.

As Theorem 5.3 shows, it is not possible that 〈P, η(1)〉 ∈ mZ for any P ∈ Zn such
that 〈P, η(k)〉 = 0 for k = 2, . . . , r. However, it is possible that

Resj([ϕ]) =
r⋂

k=2

Res+j (η(k))

for all j ∈ {1, . . . , n}, as next example shows.

Example 7.4. Let us consider the vector

[ϕ] =


1

3




0
0
1
1


+

√
2




−12
0
0
1


+

√
3




0
5
2
0





 ∈ (C/Z)4,

of toric degree 3. In this case D(1/3,
√

2,
√

3) = {(3h, 0, 0) | h ∈ Z}. We have

〈P, η(2)〉 = −12p1 + p4 = 0

if and only if

P ∈




1
0
0
12


Z ⊕ e2Z ⊕ e3Z,
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and
〈P, η(3)〉 = 5p2 + 2p3 = 0

if and only if

P ∈




0
−2
5
0


Z ⊕ e1Z ⊕ e4Z.

We have

Res+1 (η(2)) = {(q1, q2, q3, 12(q1 − 1)) | q1, q2, q3 ∈ N, 13q1 + q2 + q3 ≥ 14}
Res+2 (η(2)) = {(q1, q2, q3, 12q1) | q1, q2, q3 ∈ N, 13q1 + q2 + q3 ≥ 2}
Res+3 (η(2)) = Res+2 (η(2))

Res+4 (η(2)) = {(q1, q2, q3, 12q1 + 1) | q1, q2, q3 ∈ N, 13q1 + q2 + q3 ≥ 1} ,

and
Res+1 (η(3)) = {(q1, 0, 0, q4) | q1, q4 ∈ N, q1 + q4 ≥ 2}
Res+2 (η(3)) = {(q1, 1, 0, q4) | q1, q4 ∈ N, q1 + q4 ≥ 1}
Res+3 (η(3)) = {(q1, 0, 1, q4) | q1, q4 ∈ N, q1 + q4 ≥ 1}
Res+4 (η(3)) = Res+1 (η(3)).

Moreover for each multi-index of the form (p, 0, 0, 12p) with p ≥ 1, we get

〈


p
0
0

12p


 , η(1)

〉
= 12p ∈ 3 Z.

Then it is easy to verify that

Resj([ϕ]) = Res+j (η(2)) ∩ Res+j (η(3)),

for j = 1, . . . , 4.

Remark 7.5. Last example shows that, even in the torsion case, there are vectors [ϕ] ∈ (C/Z)n

such that, for any j, Resj([ϕ]) can be written as intersection of sets of additive resonances.

We have then the following definition.

Definition 7.1. Let [ϕ] ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n and in the torsion case. We say
that [ϕ] is in the impure torsion case if, given η(1), . . . , η(r) a reduced r-tuple of toric vectors
associated to [ϕ] with toric coefficients 1/m, β2, . . . , βr, we have

(19) Resj([ϕ]) =

r⋂

k=2

Res+j (η(k)),

for all j ∈ {1, . . . , n}. Otherwise we say that [ϕ] is in the pure torsion case.

The next result shows that the impure torsion case is well-defined, i.e., it does not depend
on the chosen toric r-tuple.
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Lemma 7.6. Let [ϕ] ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n and in the torsion case.
Let η(1), . . . , η(r) be a reduced r-tuple of toric vectors associated to [ϕ] with toric coeffi-
cients 1/m, β2, . . . , βr. If

(20) Resj([ϕ]) =

r⋂

k=2

Res+j (η(k)),

for all j ∈ {1, . . . , n}, then (20) holds for any other reduced toric r-tuple associated to [ϕ].

Proof. Let ξ(1), . . . , ξ(r) be another reduced r-tuple of toric vectors associated to [ϕ] with toric
coefficients 1/m̃, γ2, . . . , γr. Since η(1), . . . , η(r) is in the impure torsion case, we have

Resj([ϕ]) =

r⋂

k=2

Res+j (η(k)),

but, thanks to Lemma 7.3, we have

r⋂

k=2

Res+j (η(k)) =
r⋂

k=2

Res+j (ξ(k)),

for any j = 1, . . . , n, that is ξ(1), . . . , ξ(r) satisfy (20).

Definition 7.2. Let f be a germ of biholomorphism of Cn fixing the origin. We say that f is
in the impure torsion case [resp., in the pure torsion case] if, denoting with λ = {λ1, . . . , λn}
the spectrum of dfO, the unique [ϕ] ∈ (C/Z)n such that λ = e2πi[ϕ] is in the impure torsion
case [resp., in the pure torsion case].

Theorem 7.7. Let f be a germ of biholomorphism of Cn fixing the origin O of toric de-
gree 1 ≤ r ≤ n and in the impure torsion case. Then it admits a holomorphic Poincaré-Dulac
normalization if and only if there exists a holomorphic effective action on (Cn, O) of a torus
of dimension r − 1 commuting with f , and such that the columns of the weight matrix of the
action are reduced torsion-free toric vectors associated to f .

Proof. It follows from Theorem 3.1, Lemma 7.1 and Lemma 7.6.

The next examples show that, in case of pure torsion there are more possible cases.

Example 7.8. Let us consider the vector

[ϕ] =

[
1

6

(
1
3

)
+

√
2

(
1
6

)]
∈ (C/Z)2,

of toric degree 2. In this case D(1/6,
√

2) = {(6h, 0) | h ∈ Z}. We have

〈P, η(2)〉 = p1 + 6p2 = 0

if and only if

P ∈
(
−6
1

)
Z,

hence
Res+1 (η(2)) = ∅ and Res+2 (η(2)) = {(6, 0)}.
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Since
〈(6,−1), η(1)〉 = 3 6∈ 6Z,

we have
D(1/6,

√
2) ∩ Admj(η

(1), η(2)) = {O}
for j = 1, 2, so we have

Resj([ϕ]) =
r⋂

k=1

Res+j (η(k)) = ∅,

for j = 1, 2. Moreover, it is evident that the torsion is 2.

Example 7.9. Let us consider the vector

[ϕ] =

[
1

7

(
1
3

)
+

√
2

(
1
−6

)]
∈ (C/Z)2,

of toric degree 2. In this case D(1/7,
√

2) = {(7h, 0) | h ∈ Z}. We have

Res+1 (η(1)) = ∅ and Res+2 (η(1)) = {(3, 0)},

and

Res+1 (η(2)) = {(6h + 1, h) | h ∈ N \ {0}} and Res+2 (η(2)) = {(6h, h + 1) | h ∈ N \ {0}};

then
Res+1 (η(1)) ∩ Res+1 (η(2)) = ∅ and Res+2 (η(1)) ∩ Res+2 (η(2)) = ∅.

However, we have
〈(6h, h), η(1)〉 ∈ 9Z;

hence we have

Res+1 (η(2)) ⊃ Res1([ϕ]) = {(42h + 1, 7h) | h ∈ N \ {0}} ⊃ Res+1 (η(1)) ∩ Res+1 (η(2))

Res+2 (η(2)) ⊃ Res2([ϕ]) = {(42h, 7h + 1) | h ∈ N \ {0}} ⊃ Res+2 (η(1)) ∩ Res+2 (η(2)).

Moreover, it is not difficult to verify that the torsion is 7.

In the pure torsion case, one could ask whether, given a toric r-tuple η(1), . . . , η(r) associ-
ated to [ϕ] such that

(21)

r⋂

k=2

Res+j (η(k)) ⊃ Resj([ϕ]) ⊃
r⋂

k=1

Res+j (η(k)),

for some j ∈ {1, . . . , n}, then this is true for any other toric r-tuple associated to [ϕ]. This is
not always true, as next example shows.

Example 7.10. Let us consider the vector

[ϕ] =


1

3




1
1
1
1


+

√
2




1
6
0
0


+

√
3




0
0
−1
5





 ∈ (C/Z)4,
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of toric degree 3. In this case D(1/3,
√

2,
√

3) = {(3h, 0, 0) | h ∈ Z}. We have

Res+j (η(1)) = ∅,

for j = 1, . . . , 4,

Res+1 (η(2)) = {(1, 0, p, q) | p, q ∈ N, p+ q ≥ 1}
Res+2 (η(2)) = {(6, 0, p, q) | p, q ∈ N} ∪ {(0, 1, p, q) | p, q ∈ N, p+ q ≥ 1}
Res+3 (η(2)) = {(0, 0, p, q) | p, q ∈ N, p+ q ≥ 2}
Res+4 (η(2)) = Res+3 (η(2)),

and
Res+1 (η(3)) = {(h, k, 5q, q) | h, k, q ∈ N, h+ k + 6q ≥ 2}
Res+2 (η(3)) = Res+1 (η(3))

Res+3 (η(3)) = {(h, k, 5q + 1, q) | h, k, q ∈ N, h+ k + 6q ≥ 1}
Res+4 (η(3)) = {(h, k, 5(q − 1), q) | h, k, q ∈ N, h+ k + 6q ≥ 7} .

Then we have
3⋂

k=1

Res+j (η(k)) = ∅,

for j = 1, . . . , 4, but it is not difficult to verify that

Res2([ϕ]) = {(0, 1, 5q, q) | q ∈ N∗} 6= ∅ and Resj([ϕ]) = Res+j (η(2))∩Res+j (η(3)) j = 1, 3, 4.

Then, since

Res+2 (η(2)) ∩ Res+2 (η(3)) = {(6, 0, 5q, q) | q ∈ N} ∪ {(0, 1, 5q, q) | q ∈ N∗} 6= Res2([ϕ]),

we are in the pure torsion case, but we cannot write all the resonances of [ϕ] as intersection of
the additive resonances of η(1), η(2) and η(3). However, we can write

[ϕ] =


1

3




1
−2
1
−5


+

√
2




1
6
0
0


+

√
3




0
0
−1
5





 ,

and it is not difficult to verify that, in this representation, we have

Resj([ϕ]) =

3⋂

k=1

Res+j (ξ(k)),

for j = 1, . . . , 4.

Example 7.11. If [ϕ] ∈ (C/Z)2 is given by Example 7.9, we saw that we can write it in the
form

[ϕ] =

[
1

τ
η(1) + βη(2)

]
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so that

(22) Res+j (η(2)) ⊃ Resj([ϕ]) ⊃ Res+j (η(1)) ∩ Res+j (η(2)),

for all j. Furthermore, it is easy to check that [ϕ] does not admit any reduced representation

[ϕ] =

[
1

τq
ξ(1) + γξ(2)

]

such that for all j we have

(23) Resj([ϕ]) = Res+j (ξ(1)) ∩ Res+j (ξ(2)).

We are then led to the following

Definition 7.3. Let [ϕ] ∈ (C/Z)n be of toric degree 1 ≤ r ≤ n and in the pure torsion case.
We say that [ϕ] can be simplified if it admits a reduced r-tuple of toric vectors η(1), . . . , η(r)

such that

(24) Resj([ϕ]) =

r⋂

k=1

Res+j (η(k)),

for all j = 1, . . . , n. The r-tuple η(1), . . . , η(r) is said a simple reduced r-tuple associated to [ϕ].

Definition 7.4. Let f be a germ of biholomorphism of Cn fixing the origin in the pure torsion
case. We say that f can be simplified if, denoting with λ = {λ1, . . . , λn} the spectrum of dfO,
the unique [ϕ] ∈ (C/Z)n such that λ = e2πi[ϕ] can be simplified.

Theorem 7.12. Let f be a germ of biholomorphism of Cn fixing the origin O of toric de-
gree 1 ≤ r ≤ n and in the pure torsion case, such that it can be simplified. Then:

(i) if dfO is diagonalizable, f admits a holomorphic Poincaré-Dulac normalization if and
only if there exists a holomorphic effective action on (Cn, O) of a torus of dimension r
commuting with f and such that the columns of the weight matrix Θ of the action are
a simple reduced r-tuple of toric vectors associated to f ;

(ii) if dfO is not diagonalizable and there exists a simple reduced r-tuple of toric vectors as-
sociated to f such that its vectors are the columns of a matrix Θ compatible with dfO, f
admits a holomorphic Poincaré-Dulac normalization if and only if there exists a holo-
morphic effective action on (Cn, O) of a torus of dimension r commuting with f and
with weight matrix Θ.

Proof. It follows from Theorem 3.1.

Remark 7.13. Note that we cannot get rid of the compatibility hypothesis in the case of dfO

non diagonalizable, because if we change a simple reduced toric r-tuple as in Remark 7.2, it
is not true that we obtain another simple reduced r-tuple. In fact, if [ϕ] ∈ (C/Z)n has toric
degree 1 ≤ r ≤ n, and η(1), . . . , η(r) is a simple reduced r-tuple of toric vectors associated to [ϕ]
with toric coefficients 1/m, β2, . . . , βr, but we have [ϕj ] = [ϕh] for some distinct coordinates j

and h, and η
(1)
j 6= η

(1)
h , then for every P ∈ Resl([ϕ]), the equality

[ϕ] =

[
1

m
η̃(1) +

r∑

k=2

βkη
(k)

]
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with η̃(1) = η(1) − (η
(1)
j − η

(1)
h )ej , only implies

η
(1)
j − η

(1)
h

m
(δlh − ph) ∈ Z

and there well can be resonant multi-indices with ph 6= 1.

In case of pure torsion that cannot be simplified, we have the following result.

Proposition 7.14. Let f be a germ of biholomorphism of Cn fixing the origin O of toric
degree 1 ≤ r ≤ n and in the pure torsion case, such that it cannot be simplified. If there exists
a holomorphic effective action on (Cn, O) of a torus of dimension r commuting with f and
such that the columns of the weight matrix of the action are a reduced r-tuple of toric vectors
associated to f , then f admits a holomorphic Poincaré-Dulac normalization.

Proof. It follows from Theorem 3.1 and Lemma 7.1.

We end this section describing an algorithm to decide when a vector [ϕ] can be simplified.

We want to know when, given [ϕ] in the torsion case,

[ϕ] =

[
1

τp
η(1) +

r∑

k=2

βkη
(k)

]

of toric degree r, torsion τ ≥ 2, and such that there is j ∈ {1, . . . , n} so that

(25)

r⋂

k=1

Res+j (η(k)) ⊂ Resj([ϕ]) ⊂
r⋂

k=2

Res+j (η(k)),

there is another reduced representation

[ϕ] =

[
1

τq
ξ(1) +

r∑

k=2

γkξ
(k)

]

such that for all j = 1, . . . , n we have

(26) Resj([ϕ]) =
r⋂

k=1

Res+j (ξ(k)).

We know that there must be H ∈ Zn \ {O} such that

1

τp
η(1) +

r∑

k=2

βkη
(k) =

1

τq
ξ(1) +

r∑

k=2

γkξ
(k) +H.

Since
r⋂

k=2

Res+j (η(k)) =

r⋂

k=2

Res+j (ξ(k)),

for any j = 1, . . . , n, we have that

1

τp
〈η(1), P − ej〉 =

1

τq
〈ξ(1), P − ej〉 + 〈H,P − ej〉
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for any P ∈ ⋂r
k=2 Res+j (η(k)). Now, if 〈ξ(1), P − ej〉 = 0 it must be 〈η(1), P − ej〉 ∈ τpZ. On

the contrary, if 〈η(1), P − ej〉 ∈ τpZ, then we would like to find H such that 〈ξ(1), P − ej〉 = 0
that is, for any j = 1, . . . , n,

1

τp
〈η(1), P − ej〉 = 〈H,P − ej〉

for any P ∈ ⋂r
k=2 Res+j (η(k)) with 〈η(1), P − ej〉 ∈ τpZ. In fact, if such a vector exists, then,

setting q = p, ξ(1) = η(1) − τpH, γk = βk and η(k) = ξ(k) for k = 2, . . . , r, we get

[ϕ] =

[
1

τp
ξ(1) +

r∑

k=2

γkξ
(k)

]
,

and for any P ∈ Resj([ϕ]) we have P ∈ ⋂r
k=2 Res+j (ξ(k)), and

〈ξ(1), P − ej〉 = 〈η(1), P − ej〉 − 〈H,P − ej〉 = 0,

that is (26).

We then have to study the structure of the intersection of a submodule of Zn with Nn. It
turns out that such a structure is the following. We thank Jean Écalle for suggesting the gist
of the following argument.

Let A ⊂ Zn be a sub-module of Zn where n ∈ N∗, and let us denote by A+ the set A∩Nn.
For any vector A = (a1, . . . , an) ∈ A, we denote by

(27) red(A) =
1

α
A =

(a1

α
, . . . ,

an

α

)

where α is the greatest common divisor of a1, . . . , an. The support of a vector A ∈ Zn is the
set

supp(A) = {j ∈ {1, . . . , n} | aj 6= 0} ⊆ {1, . . . , n}.
Using the support we can then define a partial order on A+ as follows: we say that A ⊆ B
if supp(A) ⊂ supp(B), or the supports are equal and A ≤ B in the usual lexicographic order.

Definition 7.5. Let A ⊂ Zn be any sub-module of Zn, where n ∈ N∗, and let A+ be the
set A ∩ Nn. For any A,B ∈ A+ we define

(28) A/B = red(qA− pB)

where
p

q
= min

j∈supp(B)

(
aj

bj

)
.

Obviously, if supp(B) ⊆ supp(A), then A/B ∈ A+ and A/B ⊆ A.

Definition 7.6. Let A ⊂ Zn be any sub-module of Zn, where n ∈ N∗, and let A+ be the
set A ∩ Nn. An element M of A+ is said minimal if it is minimal with respect to the partial
order ⊆. An element C of A+ is said cominimal if for any minimal element M of A+ we
have C −M 6∈ A+.

Minimal elements have to satisfy certain properties.

Lemma 7.15. Let A ⊂ Zn be any sub-module of Zn, where n ∈ N∗, and let A+ be the
set A ∩ Nn. Two minimal elements of A+ have distinct supports.

Proof. Let M and P be two distinct minimal elements of A+ and suppose by contradiction
that supp(M) = supp(P ). Then A = M/P and B = P/M both have supports strictly
contained in the ones of M and P contradicting their minimality with respect to ⊆.
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Corollary 7.16. Let A ⊂ Zn be any sub-module of Zn, where n ∈ N∗, and let A+ be the
set A ∩ Nn. Then A+ contains only a finite number of minimal elements.

Minimal elements are a sort of generators of A+ in a sense that next result clarifies.

Lemma 7.17. Let A ⊂ Zn be any sub-module of Zn, where n ∈ N∗, and let A+ be the
set A ∩ Nn. Then every element A of A+ can be written in the form

(29) A =
1

δ
(α1M1 + · · · + αdMd)

where α1, . . . , αd ∈ N, M1, . . . ,Md are the minimal elements, and δ = δ(A+) ∈ N∗ depends
only on A+.

Proof. If A is non minimal, then there exists a minimal element Mj1 ⊆ A, and there ex-
ist γ1, δ1 ∈ Q+ such that

A = γ1Mj1 + δ1A1,

where
A1 = A/Mj1 ,

and supp(A1) ⊂ supp(A). If A1 is not minimal, we can iterate this procedure getting

A1 = γ2Mj2 + δ2A2,

with supp(A2) ⊂ supp(A1) ⊂ supp(A). The chain supp(A) ⊃ supp(A1) ⊃ supp(A3) ⊃ · · ·
has to end because A+ ⊂ Nn, then we eventually arrive to a decomposition of the form (29).
Now δ = δ(A+) cannot be greater than the least common multiple of all |det(M∗)| where M∗

varies in the square submatrices of order equal to the rank of the matrix having as columns all
the minimal elements M1, . . . ,Md of A+.

The cominimal elements are finite too.

Lemma 7.18. Let A ⊂ Zn be any sub-module of Zn, where n ∈ N∗, and let A+ be the
set A ∩ Nn. Then A+ contains only a finite number of cominimal elements.

Proof. Let us assume by contradiction that there is an infinite sequence of distinct cominimal
elements {Cj}. Thanks to Lemma 7.17, for each j ≥ 1, we have

Cj =
1

δ

d∑

k=1

γjkMk

where γjk ∈ N. Then there is an infinite subsequence {Cj′} such that all the correspond-
ing (γj′,1, . . . , γj′,d) belong to a same class (γ∗1 , . . . , γ

∗
d) modulo δZd. Hence there is an infinite

subsequence {Cj′′} such that at least one component γj′′,k0
diverges as j′′ tends to infinity,

and such that the other components γj′′,k with k 6= k0 do not decrease. Then there exist at
least two cominimal elements Cj1 ≤ Cj2 such that

Cj2 − Cj1 =
d∑

k=1

γ̃kMk

with

γ̃k =
1

δ
(γj2,k − γj1,k) ∈ N

meaning that Cj2 is not cominimal against the assumption.
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For each element of A+, we want to find a decomposition with natural coefficients into
linear combination of a finite number of elements of A+. This is possible using minimal and
cominimal elements, as shown in next result.

Proposition 7.19. Let A ⊂ Zn be any sub-module of Zn, where n ∈ N∗, and let A+ be the
set A ∩ Nn. Then for any A ∈ A+ there exist l1, . . . , ld ∈ N such that

(30) A =

d∑

j=1

ljMj

or

(31) A = Ch +

d∑

j=1

ljMj

for some h ∈ {1, . . . , e}, where M1, . . . ,Md are the minimal elements of A+, and C1, . . . , Ce

are the cominimal elements of A+.

Proof. If A is non cominimal, there exists a minimal element Mj1 ≤ A; thus if A1 = A−Mj1

is not cominimal, we iterate the procedure. The chain A ≥ A1 ≥ A3 ≥ · · · has to end with a
zero, i.e., we get a decomposition of the form (30), or with a cominimal element, i.e., we get a
decomposition of the form (31).

Remark 7.20. Note that it can happen that the number of minimal elements of A+ is not
equal to the maximum number of Q-linearly independent elements of A+. In fact, if we consider
the submodule A of Z4 orthogonal to (1,−1,−1, 1)T , and A+, such a maximum is clearly 3,
but we have four minimal elements




1
1
0
0


 ,




0
1
0
1


 ,




1
0
1
0


 ,




0
0
1
1


 ,

and we need all of them (and no cominimal) to ensure (30) and (31).

Returning to our problem, if now we consider

A = {Q ∈ Zn | 〈Q, η(k)〉 = 0, for k = 2, . . . , r},

it is easy to verify that
r⋂

k=2

Res+j (η(k)) = B+
0 ∪ B+

j

where
B+

0 = {P ∈ Nn | P = Q+ ej , Q ∈ A+, |Q| ≥ 1}
and

B+
j = {P ∈ Nn | P = Q+ ej , Q ∈ A, qh ≥ 0, for h 6= j, qj = −1, |Q| ≥ 1}.

Notice that Q ∈ B+
j if and only if we have

(32) 〈η̂(k), Q̂〉 = η
(k)
j for k = 2, . . . , r
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where Q̂ = (q1, . . . , qj−1, qj+1, . . . , qn) ∈ Nn−1 and η̂(k) = (η
(k)
1 , . . . , η

(k)
j−1, η

(k)
j+1, . . . , η

(k)
n ), i.e., Q̂

is a solution in Nn−1 of the linear system with integer coefficients (32). Moreover, since A
is a submodule of Zn, Proposition 7.19 applies to A+. Let M = {M1, . . . ,Md} be the set of
minimal elements of A+ and let C = {C1, . . . , Ce} be the set of cominimal elements of A+

(recall that they all are different from O, hence their modulus is at least 1). We can thus
consider the subsets {M ′

1, . . . ,M
′
s} ⊂ M and {C ′

1, . . . , C
′
t} ⊂ C of the minimal and cominimal

elements R of A+ such that 〈η(1), R〉 ∈ τpZ. Then [ϕ] can be simplified if and only if there
exists H ∈ Zn such that

〈H,M ′
h〉 =

1

τp
〈η(1),M ′

h〉,

for 1 ≤ h ≤ s,

〈H,C ′
l〉 =

1

τp
〈η(1), C ′

l〉,

for 1 ≤ l ≤ t, and such that, for any j = 1, . . . , n, we have

〈Ĥ, Q̂〉 − hj =
1

τp

(
〈η̂(1), Q̂〉 − η

(1)
j

)
,

for every solution Q̂ ∈ Nn of (32), with |Q| ≥ 1, such that 〈Q̂, η̂(1)〉 ∈ τp η
(1)
j Z.

8. Construction of torus actions

In this last section we shall see some conditions assuring the existence of the torus actions
we need.

Let X ∈ Xn be a germ of holomorphic vector field of (Cn, O) singular at the origin, in
Poincaré-Dulac normal form, i.e.,

X = Xdia +Xnil +Xres

where, denoting with ∂j the partial derivative ∂/∂zj ,

Xdia =

n∑

j=1

ϕjzj∂j ,

Xnil is a linear nilpotent vector field singular at the origin such that

[Xdia,Xnil] = 0,

and Xres is a holomorphic vector field singular at the origin with no linear part and such that

[Xdia,Xres] = 0.

In particular
[Xdia,Xnil +Xres] = 0.

Recall that the flows of two commuting vector fields also commute (see [Le] Prop. 18.5). We
have

exp(Xdia) = Diag(eϕ1 , . . . , eϕn)z.

40



and, in general for a linear vector field X lin =
∑n

j=1 (
∑n

h=1 ahjzh) ∂j , we have

exp(X lin) = eAz,

where A is the matrix (ahj). If Y is a holomorphic vector field singular at the origin with no
linear part, then we have

(33) exp(tY )z =
∑

k≥0

tk

k!
Y k(z).

In fact, defining Kt(z) = z + tY (z), we get K0(z) = z and ∂
∂tKt(z)|t=0 = Y (z), then we

have exp(tY )z = limm→∞(K1/m)m, (see [AMR] Theorem 4.1.26), that is (33). Moreover,
if V,W are two commuting vector fields, we have

exp(t(V +W )) =


∑

k≥0

(tV )k

k!




∑

k≥0

(tW )k

k!


 = exp(tV ) exp(tW ).

Then we have the following result.

Proposition 8.1. Let X be a germ of holomorphic vector field of (Cn, O), singular at the ori-
gin, and in Poincaré-Dulac normal form. Then its flow is a germ of biholomorphism of (Cn, O)
in Poincaré-Dulac normal form.

Proof. The flow of Xnil +Xres is unipotent, then the linear part of the flow of X is Az with A
triangular matrix with diagonal Diag(eϕ1 , . . . , eϕn), and the flow of X has to commute with
the flow of Xdia.

In [Zu], Zung found that to find a Poincaré-Dulac holomorphic normalization for a germ
of holomorphic vector field is the same as to find (and linearize) a suitable torus action which
preserves the vector field. To deal with this problem he introduced the notion of toric degree

of a vector field. The following definition is a reformulation of Zung’s original one, clearer and
more suitable to our needs.

Definition 8.1. The toric degree of a germ of holomorphic vector field X of (Cn, O) singular at
the origin is the minimum r ∈ N such that the diagonalized semi-simple partXdia =

∑n
j=1 ϕjzj∂j

of the linear term of X can be written as linear combination with complex coefficients of r di-
agonal vector fields with integer coefficients, i.e.,

Xdia =

r∑

k=1

αkZk,

where α1, . . . , αr ∈ C∗ and Zk =
∑n

j=1 ρ
(k)
j zj∂j with ρ(k) ∈ Zn. The r-tuple Z1, . . . , Zk is called

a r-tuple of toric vector fields associated to X, and the numbers α1, . . . , αr ∈ C are a r-tuple
of toric coefficients of the toric r-tuple.

In particular, we have

ϕ =

r∑

k=1

αkρ
(k).
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One can prove (see [Ra1] pp. 55–57) that the toric coefficients α1, . . . , αr are rationally inde-

pendent, and ρ
(k)
j = ρ

(k)
h whenever ϕj = ϕh, for every k = 1, . . . , r, implying that

Res+j (ϕ) =

r⋂

k=1

Res+j (ρ(k))

for all j = 1, . . . , n.

Remark 8.2. A vector field has toric degree 1 if and only if, chosen a non-zero eigenvalue of
its linear part, all the other eigenvalues are rational multiplies of it; then in this case we have
uniqueness of the toric vector field associated to X up to multiplication by a non-zero integer.

We recall the following definition from [Zu]

Definition 8.2. A germ of holomorphic vector field X of (Cn, O) singular at the origin is
integrable if it has order 1 and there exists a positive integer 1 ≤ m ≤ n such that there exist m
germs of holomorphic vector fields X1 = X,X2, . . . ,Xm of (Cn, O) singular at the origin and
of order 1, and n−m germs of holomorphic functions g1, . . . , gn−m in (Cn, O) satisfying:

(i) X1, . . . ,Xm commute pairwise and are linearly independent, i.e., X1 ∧ · · · ∧Xm 6≡ 0;

(ii) g1, . . . , gn−m are common first integrals of X1, . . . ,Xm, i.e., Xj(gk) = 0 for any j and k,
and they are functionally independent almost everywhere, i.e., dg1 ∧ · · · ∧ dgn−m 6≡ 0.

Noticing that all the vector fields in the previous definition are integrable, we can define

Definition 8.3. Let 1 ≤ m ≤ n. A set of m integrable vector fields of (Cn, O) is a
set X1, . . . ,Xm of germs of holomorphic vector fields of (Cn, O) singular at the origin, of
order 1 and such that:

(i) X1, . . . ,Xm commute pairwise and are linearly independent;

(ii) there exist n − m germs of holomorphic functions g1, . . . , gn−m in (Cn, O) which are
common first integrals of X1, . . . ,Xm, and they are functionally independent almost
everywhere.

Theorem 8.3. (Zung, 2002 [Zu]) Let X be a germ of holomorphic vector field of (Cn, O)
singular at the origin which is integrable. Then X admits a holomorphic Poincaré-Dulac
normalization.

As a corollary of Proposition 8.1, we obtain

Corollary 8.4. The flow of a germ of integrable holomorphic vector field of (Cn, O) singular
at the origin admits a holomorphic Poincaré-Dulac normalization.

Moreover we have the following result

Theorem 8.5. (Zung, 2002 [Zu]) Let 1 ≤ m ≤ n. Every set of m integrable vector fields
admits a simultaneous holomorphic Poincaré-Dulac normalization.

Thus we have the following corollary

Corollary 8.6. Let 1 ≤ m ≤ n. The flows of a set of m integrable vector fields admit a
simultaneous holomorphic Poincaré-Dulac normalization.

Remark 8.7. The last corollary means that we can conjugate X1, . . . ,Xm to a m-tuple of
vector fields containing only monomials belonging to the intersection of the additive resonances
of the eigenvalues of the linear terms of X1, . . . ,Xm.

Now, we introduce an analogous for germs of biholomorphisms of the notion of integrability
we described above.
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Definition 8.4. A germ of biholomorphism f of (Cn, O) fixing the origin commutes with a set

of integrable vector fields if there exists a positive integer 1 ≤ m ≤ n, such that there exists a
set of m germs of holomorphic integrable vector fields X1, . . . ,Xm such that

df(Xj) = Xj ◦ f

for each j = 1, . . . ,m.

Remark 8.8. A germ of biholomorphism f of (Cn, O) commutes with a vector field X ac-
cording to the previous definition if and only if it commutes with the flow generated by X.

Theorem 8.9. Let f be a germ of biholomorphism of (Cn, O) fixing the origin and commuting
with a set of integrable holomorphic vector fields X1, . . . ,Xm. Then f commutes with a
holomorphic effective action on (Cn, O) of a torus of dimension equal to the toric degree r
of X1 and such that the columns of the weight matrix of the action are a r-tuple of toric
vectors associated to X1.

Proof. From the proof of Theorem 8.3 (see [Zu]) we get r holomorphic vector field Z1, . . . ,Zr

which generate a Tr action preservingX1, . . . ,Xm. Moreover we get a1,k, . . . , am,k holomorphic
functions constant on the connected components of each level set Ly = g−1(g(y)), where we
denote by g = (g1, . . . , gn−m) the (n−m)-tuple of common first integrals of X1, . . . ,Xm, such
that

Zk =

m∑

j=1

aj,kXj ,

for each k = 1, . . . , r. Then, for each k = 1, . . . , r, we have

df(Zk) = df




m∑

j=1

aj,kXj




=

m∑

j=1

(aj,k ◦ f) df(Xj)

=
m∑

j=1

(aj,k ◦ f) (Xj ◦ f)

= Zk ◦ f.

Thus the torus action commutes with f as we wanted.

Corollary 8.10. Let f be a germ of biholomorphism of (Cn, O) fixing the origin and commut-
ing with a set of integrable holomorphic vector fields. Then f is holomorphically conjugated
to a germ containing only monomials belonging to the intersection of the additive resonances
of the eigenvalues of the linear terms of X1, . . . ,Xm.

Proof. The assertion follows from Theorem 8.9, Corollary 8.6 and Theorem 3.1.

Then we also have the following

Corollary 8.11. Let f be a germ of biholomorphism of (Cn, O) fixing the origin and com-
muting with a set of integrable holomorphic vector fields, such that the intersection of the
additive resonances of the eigenvalues of the linear terms of X1, . . . ,Xm is equal or contained
in the set of resonances of the spectrum of dfO. Then f admits a holomorphic Poincaré-Dulac
normalization.
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Remark 8.12. A slight generalization of the proof of Theorem 8.3 shows that in the statement
of Theorem 8.9 it is not necessary for all the vector fields X2, . . . ,Xm to have order 1; however,
it is still necessary that the whole set of vector fields X1, . . . ,Xm commutes with f . We refer
to [Ra4] for the precise statement and detailed proof.
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