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Sujet 1

Les construction de Singer, Bose et Rusza d’ensembles de Sidon
Sujet proposé par Éric Balandraud

eric.balandraud@math.u-bordeaux.fr

Dans un groupe abélien, un ensemble de Sidon est un ensemble A tel que quels que
soient x, y, z, t dans A, on ait :

x+ y = z + t =⇒ {x, y} = {z, t}.

Autrement dit : toutes les sommes de deux éléments de A sont distinctes. Si le groupe est
fini, on veut construire des ensembles de Sidon les plus gros possibles.

L’objet de ce projet est de comprendre certaines constructions d’ensembles de Sidon,
qui sont de tailles maximales. Ces constructions se basent sur les propriétés algébriques et
géométriques des corps finis.

Références
- “A theorem in finite projective geometry and some applications to number theory”
J. Singer, Trans. Amer. Math. Soc. 43(1938), 337-385.

- “An affine analogue of Singer’s Theorem” R.C. Bose, J. Indian Math. Soc. 6 (1942),
1-15.

- “Solving a linear equation in a set of integers I” Rusza Acta Arithmetica, LXV
3(1993), 259-282.
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Sujet 2

Le paradoxe de Banach-Tarski
Sujet proposé par Laurent Bessières

laurent.bessieres@math.u-bordeaux.fr

Sujet déjà pris

Le théorème de Banach-Tarski (1924) affirme qu’il est possible de découper une boule
unité de R3 en un nombre fini de parties et de les déplacer par des isométries (affines) de
R3 afin de former deux boules unités disjointes.

Ce résultat paraît paradoxal car il semble qu’on double le volume de l’ensemble initial
en faisant agir des isométries. La solution au « paradoxe » est que les parties ne sont pas
mesurables.

Cet énoncé se généralise à Rn, n ≥ 3, mais pas au plan R2. La construction utilise
l’axiome du choix 1 et l’existence d’un groupe libre 2 d’isométries de R3.

Pré-requis : Notions élémentaires de théorie des groupes, géométrie vectorielle.

Références

[1] Stan Wagon, The Banach-Tarski paradox, Cambridge University Press.

[2] Karl Stromberg, The Banach-Tarski paradox, dans The American Mathematical
Monthly, Vol. 86, No. 3 (Mar., 1979), pp. 151-161.

1. Pour tout ensemble X, il existe une fonction f : P(X)\{∅} → X tel que f(A) ∈ A pour toute partie
A ⊂ X non vide.

2. Un groupe G est libre sur un sous-ensemble S ⊂ G si tout élément de G s’écrit de façon unique
comme produit réduit (ie et sans terme xx−1) d’éléments de S ∪ S−1
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Sujet 3

Théorèmes de métrisabilité
Sujet proposé par Laurent Bessières

laurent.bessieres@math.u-bordeaux.fr

Sujet déjà pris

Il s’agit d’étudier plusieurs résultats sur la métrisabilité des espaces topologiques. Ils
utilisent diverses notions de séparation. Soit X un espace topologique séparé. Alors X est
régulier si un point et un fermé disjoints quelconques peuvent être séparés par des ouverts
disjoints. L’espace X est normal si deux fermés disjoints quelconques peuvent être séparés
par des ouverts disjoints.

— Théorème de métrisabilité d’Urysohn : Tout espace X régulier à base dénombrable
est métrisable.
Éléments de la preuve : Un espace régulier à base dénombrable est normal. Lemme
d’Urysohn : soit A,B ⊂ X fermés disjoints où X est normal, alors il existe f : X →
[0, 1] continue telle que f = 0 sur A et f = 1 sur B. On plonge X dans un espace
métrique.

— Théorème de métrisabilité de Nagata-Smirnov : X est métrisable si et seulement si
il est régulier et à base dénombrablement localement finie 3.

— Théorème de métrisabilité de Smirnov : X est métrisable si et seulement si il est
séparé, paracompact 4 et localement métrisable 5.

Pré-requis : Cours de topologie.

Références

[1] James R. Munkres, Topology, Prentice Hall, Inc., Upper Saddle River, NJ.

3. X une base de topologie qui s’écrit comme une union dénombrable B = ∪n∈NBn où chaque Bn est
localement fini : chaque x ∈ X a un voisinage qui n’intersecte qu’un nombre fini d’éléments de Bn.

4. Tout recouvrement ouvert a un sous-recouvrement localement fini.
5. Tout point a un voisinage métrisable.
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Sujet 4

Corps cyclotomiques et le théorème de Chevalley-Bass
Sujet proposé par Yuri BILU

yuri@math.u-bordeaux.fr

Soit ζm une m-ième racine primitive de l’unité. Le m-ième corps cyclotomique Q(ζm)
est le corps obtenu en ajoutant ζm au corps Q des nombres rationnels.

Supposons que m = pk, où p est un nombre premier impair. Chevalley (1951) à observé
le phénomène suivant : un nombre rationnel est une m-ième puissance dans Q(ζm) si et
seulement s’il est une m-ième puissance dans Q :

Q ∩Q(ζm)
m = Qm.

Pour m général ce n’est plus vrai : par exemple, −4 = (1 + ζ4)
4 est une 4ième puissance

dans Q(ζ4), mais pas dans Q. Quand même, Bass (1965) a obtenu une généralisation
partielle du Théorème de Chevalley à m quelconque.

L’objectif de ce projet est d’étudier la notion de corps cyclotomiques et les théorèmes
de Chevalley et de Bass mentionnés ci-dessus.

Pré-requis : Notions de base sur les groupes et les corps

Références

[1] Yu. Bilu, The Chevellay-Bass Theorem, https://arxiv.org/abs/2305.05041

[2] K. Conrad, Cyclotomic extensions, https://kconrad.math.uconn.edu/blurbs/
galoistheory/cyclotomic.pdf

[3] K. Ireland, M. Rosen, A classical introduction to modern number theory, Grad.
Texts in Math. 84, Springer-Verlag, New York, 1990.
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Sujet 5

La marche aléatoire
Sujet proposé par Michel Bonnefont

Michel.Bonnefont@math.u-bordeaux.fr

Sujet déjà pris

Le but de ce travail de TER est d’étudier la marche aléatoire simple symétrique sur Z ou
sur Zd. Pour ce travail, on étudiera la récurrence et la transience de la marche (savoir si elle
repasse une infinité de fois en 0). On étudiera également pour la marche unidimensionnelle
le problème de la ruine du joueur, la loi du temps d’atteinte d’un point, le principe de
réflexion ainsi que le théorème du scrutin.

Comme première référence, on pourra utiliser le chapitre 2 de [1]

Références

[1] Chafaï, Djalil and Malrieu, Florent : Recueil de modèles aléatoires Mathématiques &
Applications (Berlin) Vol 78. Springer-Verlag, Berlin (2016).
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Sujet 6

Sous-groupes de Hall
Sujet proposé par Olivier Brinon

olivier.brinon@math.u-bordeaux.fr

Sujet déjà pris

Soit G un groupe fini d’ordre n. Un sous-groupe de Hall de G est un sous-groupe H
tel que pgcd(#H, [G : H]) = 1. Les sous-groupes de Sylow de G sont des cas particuliers
de sous-groupes de Hall. Les théorèmes de Sylow assurent l’existence de p-Sylow pour tout
nombre premier p : il est naturel de se demander si, étant donné un diviseur d de n tel que
pgcd(d, n/d) = 1, le groupe G contient toujours des sous-groupes de Hall d’ordre d. C’est
faux en général, mais Hall a démontré que c’est le cas si on suppose le groupe G résoluble.
Le but du projet est d’étudier la notion de résolubilité et démontrer les théorèmes de Hall.

Pré-requis : Structures algébriques 2.

Références

[1] I. M. Isaacs, Finite group theory, Graduate studies in mathematics 92, AMS.

[2] J. Rotman, An introduction to the theory of groups, Graduate texts in mathematics
148, Springer.
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Sujet 7

Analyse de Fourier et Equations aux Dérivées Partielles
Sujet proposé par Vincent Bruneau

Vincent.Bruneau@math.u-bordeaux.fr

La transformée de Fourier est un outil important de l’étude des Equations aux Dérivées
Partielles (EDP) aussi bien pour montrer l’existence de solutions que pour donner des
propriétés de ces solutions. Pour étudier l’existence et le comportement, par rapport au
temps, de solutions d’EDP d’évolution, nous introduirons des outils d’analyse de Fourier
et les espaces de Sobolev adaptés. Nous nous intéresserons ensuite à quelques exemples
d’q́uations d’évolution (la chaleur, les ondes, Schrödinger...).

Ce sujet fait appel à des notions d’intégration et d’analyse fonctionnelle/hilbertienne.
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Sujet 8

Le protocole de vote en ligne Belenios
Sujet proposé par Guilhem Castagnos en L3 MI ou L3 MF

guilhem.castagnos@math.u-bordeaux.fr

Sujet déjà pris

Belenios est un protocole de vote en ligne open source reposant sur de nombreux mé-
canismes cryptographiques afin de garantir des propriétés de confidentialité des votes et
de vérification du résultat. Le cœur du protocole est le chiffrement à clef publique d’El-
gamal qui permet de chiffrer les votes pour assurer la confidentialité tout en permettant
des opérations sur les données chiffrées (propriété dite homomorphe). Suivant la filière (MI
ou MF), on pourra s’intéresser aux objets mathématiques nécessaires à la mise en œuvre
(courbes elliptiques et interpolation de Lagrange dans des corps finis pour la version dite à
seuil d’ElGamal), à s’initier à certains outils cryptographiques utilisés dans Belenios (cryp-
tographie à seuil, preuve à divulgation nulle de connaissances (zero-knowledge)) ou à une
implantation réduite du protocole.

Références

[1] La page de Belenios, https ://www.belenios.org

[2] Une présentation haut niveau par Cortier, Gaudry, Glondu,
https ://www.belenios.org/slides-belenios.pdf

[3] Blake, Seroussi, Smart, Elliptic Curves in Cryptography

[4] Pedersen, A Threshold Cryptosystem without a Trusted Party,
https ://link.springer.com/content/pdf/10.1007/3-540-46416-6_47.pdf
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Sujet 9

Compléments et contre-exemples en topologie
Sujet proposé par Andrea Fanelli

andrea.fanelli.1@u-bordeaux.fr

Ce projet consiste à approfondir les notions vues au cours de topologie, en étudiant des
constructions et des résultats classiques. Le but est aussi d’étudier des exemples bizarres
et pathologiques en topologie générale. Voici quelques sujets possibles.

(i) Compactifications de Alexandroff et de Stone-Čech ;

(ii) Complétion d’un espace métrique ;

(iii) Prébases et Théorème d’Alexander ;

(iv) Produits infinis et Théorème de Tyconoff.

Prérequis Notions élémentaires de topologie.

Référence
Lynn Arthur Steen, J. Arthur Seebach Jr., Counterexamples in Topology, Springer.
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Sujet 10

Comprendre et implémenter l’algorithme PageRank
Sujet proposé par Bernhard Haak

bernhard.haak@math.u-bordeaux.fr

Modélisation du Web. On considère un ensemble de pages web numérotées 1, . . . , n.
La matrice d’adjacence A = (aij) est définie par : aij = 1 si la page j pointe avec un
hyperlien vers la page i, et 0 sinon. On construit ensuite une matrice colonne-stochastique

Pij =

{
1

deg(j) si la page j pointe vers i,

0 sinon.

On modélise la navigation d’un internaute par un surfeur aléatoire. Il se trouve à un instant
donné sur une page i, il suit un lien sortant vers une page j avec une probabilité uniforme,
Cependant, certaines complications apparaissent :

— certaines colonnes peuvent être nulles (pages sans liens sortants),
— le graphe peut être réductible – en gros, le Web peut se comporter comme plusieurs

“petits internets” qui s’ignorent mutuellement.
Pour y remédier, on autorise, avec une petite probabilité 1 − α, un saut vers une page
quelconque (téléportation) selon une loi uniforme. Cette dynamique est alors décrite par
une chaîne de Markov : un système où l’état suivant dépend uniquement de l’état courant.
Mathématiquement, on fixe α ∈ (0, 1) (“facteur d’amortissement”), et l’on pose la matrice
de Google :

G = αP +
1

n
(1− α)1,

où (1)j,k = 1 désigne la matrice de toutes les entrées égales à 1.
Ainsi, si le surfeur est distribué selon un vecteur de probabilités x à un instant donné, alors
la distribution au pas suivant est Gx. Le “point fixe” x? = Gx? est d’intérêt, car

— x? est invariant par la dynamique du surfeur,
— c’est une distribution de probabilité d’équilibre,
— elle modélise la fréquence limite des visites : le pourcentage de clics qui dirigent vers

la page i quand le nombre total de clics tend vers l’infini.
C’est exactement ce que PageRank cherche à mesurer : l’importance d’une page dans l’éco-
système du Web. L’équation Gx? = x? admet toujours une unique solution (contrairement
à Px = x pour une quelconque matrice colonne-stochastique P ).
Dans ce projet, vous allez décrire l’idée et la modélisation, démontrer l’existence et l’unicité
du point fixe, puis :

— générer un graphe aléatoire,
— implémenter l’algorithme en Python,
— tester plusieurs valeurs de α,
— visualiser les scores PageRank.

Références

[1] Langville & Meyer, Google’s PageRank and Beyond, Princeton University Press, 2006.
[2] S. Vigna, Spectral Ranking, arXiv :0912.0238 (2010).
[3] S. Brin & L. Page, The Anatomy of a Large-Scale Hypertextual Web Search Engine,

Computer Networks, 1998.
[4] Wikipedia : PageRank.
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Sujet 11

Rétropropagation : introduction mathématique courte
Sujet proposé par Bernhard Haak

bernhard.haak@math.u-bordeaux.fr

On va s’intéresser à un réseau de neurones simple, découvrir le vocabulaire (couches, pa-
ramètres, fonctions d’activation), puis rappeler la règle de chaîne pour des fonctions vec-
torielles composées. Ceci permet d’établir la formule de rétropropagation à partir de la
dérivation en chaîne. Concrètement :
L’idée d’un réseau de neurones entièrement connecté, est une application de la forme x0 7→
N(x0)

x0

a1 =W1x0 + b1 x1
σ

a2 =W2x1 + b2 x2
σ

· · · · · ·

an =Wnxn−1 + bn xn
σ

N(x0)

où les Wi sont des matrices, Chaque couche calcule d’abord une transformation affine
xn = Wnxn−1 + bn, puis applique la fonction d’activation σ. La complexité (c’est-à-dire :
le fait que n couches ont de meilleures capacités d’entraînement qu’une seule) provient
uniquement de la fonction d’activation σ qui est non-linéaire et effectue une “troncature
lisse” : ainsi une information trop petite d’une couche n’est pas transmise à la couche
suivante. L’entraînement du système consiste à avoir une (grande) collection de données

D = {(Ei, Ri) : i ∈ I},

où Ei sont des entrées, Ri les réponses attendues, et à chercher à optimiser les coeffi-
cients des systèmes affines internes pour minimiser l’erreur quadratique moyenne sur la
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collection D :
`i = ‖N(Ei)−Ri‖2, L(D) =

∑
i∈I

`i.

Pour ‘èntraîner”, donc améliorer les coefficients, c’est-à-dire : les adapter aux données pré-
sentes, on va d’abord comprendre comment fonctionne une “descente de gradient” pour
approcher un minimum d’une fonction de plusieurs variables (c’est une partie élémentaire
d’analyse numérique). Concrètement, on calcule

∂L

∂Wk
et

∂L

∂bk

pour des paramètres (Wi, bi) donnés, ce qui se fait grâce à la règle de la chaîne. Puis on
met à jour les systèmes affines internes (avec un paramètre η > 0) :

W nouv
i :=Wi − η

∂L

∂Wi
, bnouv

i := bi − η
∂L

∂bi
.

En practique, Rétropropagation utilise de sous-paquetsDi deD, et des astuces numeriques ;
ceci est une version simplifié, pour illustration du principe. Néanmoins, on voit pourquoi
le calcul différentiel – et en particulier la règle de dérivation en chaîne – est littéralement
au cœur de l’apprentissage en intelligence artificielle moderne ....

Si le temps le permet, nous allons programmer un petit réseau expérimental et l’entraîner.
(Ne vous attendez pas à un micro-chatgpt !)

Références

[1] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-
propagating errors, Nature, 323 :533–536, 1986.

[2] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to docu-
ment recognition, Proc. IEEE, 86(11) :2278–2324, 1998.

[3] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.

[4] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

[5] M. Nielsen, Neural Networks and Deep Learning, online book, 2015,
http://neuralnetworksanddeeplearning.com/

[6] CS231n : Convolutional Neural Networks for Visual Recognition, Stanford University,
http://cs231n.stanford.edu/
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Sujet 12

un+1 = f(un)

Sujet proposé par Philippe Jaming

Philippe.Jaming@math.u-bordeaux.fr

L’objectif de ce mémoire est détudier les suites récurrentes sous plusieurs aspects. On peut
mentionner :

— comportement local au tour d’un point fixe (répulsif, attractif ou parabolique)
— le théorème de Charkovski (période 3 implique chaos)
— l’approximation des solutions d’équations différentielles ordinaires (convergence de

l’algorithme d’Euler, théorème d’existence de Cauchy-Peano-Arzela)
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Sujet 13

Le théorème du point fixe de Brouwer et applications
Sujet proposé par Philippe Jaming

Philippe.Jaming@math.u-bordeaux.fr

Le théorème du point fixe de Brouwer et applications nous dit que si C est un convexe
compact alors toute fonction continue C → C admet un point fixe. L’objectif de ce mémoire
est de démontrer ce théorème par exemple avec un argument combinatoire (lemme de
Sperner). On en donnera ensuite une ou plusieurs applications (Équations Différentielles
Ordinaires, théorie des jeux,...)
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Sujet 14

Nombres premiers dans les progressions arithmétiques
Sujet proposé par Florent Jouve

florent.jouve@math.u-bordeaux.fr

Étant donné des entiers a et b premiers entre eux, le théorème de Dirichlet affirme qu’il
existe une infinité de nombres premiers p ≡ a(mod b). Le but de ce projet est l’étude d’une
preuve d’une version forte de cette assertion, à savoir :∑

p≤x, p premier
p≡a( mod b)

1

p
=

1

ϕ(b)
log log x+Ob(1) , (x ≥ 3)

où ϕ désigne la fonction indicatrice d’Euler. La méthode de preuve mélange des considéra-
tions élémentaires sur les groupes (Z/bZ)× et des outils d’analyse permettant en particulier
l’étude cruciale de la fonction

L(s, χ) =
∑
n≥1

χ(n)

ns
, (Re(s) > 1)

où le caractère de Dirichlet χ est obtenu par prolongement b-périodique d’un morphisme
de groupe (Z/bZ)× → C×.

Références
• A. J. Hildebrand : Introduction to analytic number theory, disponible en ligne :
https://faculty.math.illinois.edu/~hildebr/ant/.
• B. Veklych : A one-formula proof of the nonvanishing of L-functions of real charac-

ters at 1. Amer. Math. Monthly 122 (2015), no. 5, 484–485. Disponible en ligne :
https://arxiv.org/abs/1412.5162.
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Sujet 15

Quaternions et octonions
Sujet proposé par Jean Lécureux

jean.lecureux@math.u-bordeaux.fr

On sait que les nombres complexes s’obtiennent à partir des réels en ajoutant un nombre
i dont le carré vaut −1. Les nombres complexes permettent d’étudier de manière efficace
la géométrie du plan.
L’objectif de ce stage est de comprendre deux constructions, en dimension plus grande :
les quaternions et les octonions. Ceux-ci s’obtiennent de manière analogue aux complexes,
en dimension 4 pour les quaternions (on ajoute donc deux "nombres" supplémentaires j
et k, après i) et en dimension 8 pour les octonions. Même si les propriétés qu’ils vérifient
sont moins fortes que celles des complexes, ils permettent d’obtenir quelques applications
géométriques, et des constructions d’espaces et de groupes associés intéressants. Un des
objectifs du stage serait de comprendre comment les quaternions et octonions permettent
de travailler avec la géométrie sphérique en dimension 3 et 7.

Références

[Bae02] John C. Baez. The octonions. Bull. Am. Math. Soc., New Ser., 39(2) :145–205,
2002.

[CS03] John H. Conway and Derek A. Smith. On quaternions and octonions : their
geometry, arithmetic, and symmetry. Natick, MA : A K Peters, 2003.
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Sujet 16

Groupes libres et arbres
Sujet proposé par Pierre Mounoud

pierre.mounoud@math.u-bordeaux.fr

On peut caractériser les groupes libres par une “propriété universelle” : Un groupe libre de
base X est un groupe F engendré par X et tel que toute application ϕ : X → G, où G est
un groupe quelconque, s’étend de manière unique en un morphisme de groupes φ : F → G.
Les groupes libres sont des objets qui apparaissent très naturellement en théorie des
groupes. En un certain sens, F est le plus gros groupe qu’un ensemble de cardinal #X
peut engendrer.
On montrera que pour tout n ≥ 1, il existe un unique (à isomorphisme près) groupe libre
de rang n, c’est-à-dire ayant une base de cardinal n. On verra comment ce groupe, noté
Fn, permet de “présenter“ tout groupe à n générateurs.
On verra ensuite comment associer à un groupe G un graphe sur lequel G agit fidèlement.
Pour illustrer comment ce genre d’action permet de mieux connaitre G, on montrera le
théorème suivant.
Théorème de Nielsen-Schreier. Tout sous-groupe d’un groupe libre est un groupe libre.

Références

[1] John Meier, Groups, graphs and trees. An introduction to the geometry of infinite
groups. London Mathematical Society Student Texts, 73. Cambridge University Press,
2008

[2] D. Guin, T. Hausberger, Algèbre 1, groupes, corps et théorie de Galois, EDP Sciences,
collection enseignement Sup (2008)
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Sujet 17

Introduction à la théorie de Lyapounov des systèmes dynamiques
Sujet proposé par Laurent Michel

laurent.michel@math.u-bordeaux.fr

Le but de ce projet est d’étudier le comportement en temps long de systèmes différentiels
ẋ = f(x). On commencera par revoir les résultats classiques d’existence et unicité ainsi
que le cas de systèmes linéaires en dimension 2 (portrait de phase). On passera ensuite à
l’étude de la stabilité des points stationnaire par la théorie de Lyapunov. On appliquera
cette théorie pour démontrer un résultat de linéarisation. Une référence pour ce projet est
le livre de H. K. Khali, Nonlinear systems.
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Sujet 18

La géométrie des nombres et la finitude du nombre de classes
d’anneaux d’entiers des corps de nombres

Sujet proposé par Pierre Parent

pierre.parent@math.u-bordeaux.fr

Sujet déjà pris
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Sujet 19

Introduction aux nombres p-adiques
Sujet proposé par Léo Poyeton

leo.poyeton@math.u-bordeaux.fr

On peut construire le corps des nombres réels R en complétant Q pour la valeur absolue.
Étant donné un nombre premier p, on peut construire sur Q une autre valeur absolue,
appelée norme p-adique. Lorsqu’on complète Q pour cette nouvelle valeur absolue, on
obtient le corps des nombres p-adiques Qp, et l’adhérence de Z dans Qp pour la topologie
p-adique est un anneau Zp, appelé anneau des entiers p-adiques.
L’objectif de ce projet est de se familiariser avec les nombres p-adiques et leurs propriétés,
en suivant en partie [Kob12] et [Ser, Chapitre II]. Dans un premier temps, on étudiera les
propriétés topologiques de Qp et Zp, on définira l’écriture en base p des nombres p-adiques.
On verra plusieurs conséquences surprenantes des propriétés topologiques de Qp et Zp.
Dans un deuxième temps, on s’intéressera aux fonctions continues sur Zp, à leur struture
et à leurs propriétés.
On verra également comment construire un analogue p-adique Cp du corps des nombres
complexes C.
Si le temps le permet, on s’intéressera également aux séries entières p-adiques, et à la notion
de polygone de Newton pour étudier ces dernières.

Références

[Kob12] Neal Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, vol. 58, Sprin-
ger Science & Business Media, 2012.

[Ser] Jean-Pierre Serre, Cours d’arithmétique. 1970, Presses Universitaires de France.
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Sujet 20

Les opérateurs de classe trace dans les espaces de Hilbert
Sujet proposé par Edoardo Provenzi

edoardo.provenzi@math.u-bordeaux.fr

Le concept de trace d’un opérateur linéaire entre espaces euclidiens de dimension finie est
bien connu. Il est possible d’étendre ce concept à une classe d’opérateurs linéaires bornés
sur un espace de Hilbert de dimension infinie ; ces opérateurs portent le nom d’opérateurs
de classe trace pour des raisons évidentes.
En dehors de leur utilité en analyse fonctionnelle, ces opérateurs se révèlent très impor-
tants dans les applications à la mécanique quantique. Dans ce projet, vous serez amenés à
démontrer les propriétés les plus importantes de ces opérateurs.
En particulier, on démontrera que le théorème bien connu qui affirme que la trace d’une
matrice est la somme de ses valeurs propres peut être étendu aux opérateurs auto-adjoints
de classe trace. Il s’agit d’un cas particulier d’un théorème important démontré par Lidskii
en 1959, dans lequel l’hypothèse d’auto-adjonction n’est pas requise.

Pré-requis : cours d’espaces d’Hilbert et transformée de Fourier de L3 math-fonda.

Référence principale : H. Lal Vasudeva : ‘Elements of Hilbert spaces and operator
theory’, Springer.
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Sujet 21

Contrôlabilité et observabilité des systèmes d’équations différentielles
linéaires

Sujet proposé par Marius Tucsnak

marius.tucsnak@u-bordeaux.fr

L’objectif du projet proposé est une initiation à un sujet permettant des ouberures vers
des questions de recherche actuelles ou vers des applications. Le poind de départ sont de
notions de base sur l’algebre linéaire et les systèmes d’équations différentielles linéaires.
Pour décrire brièvement ce sujet, on introduit tout d’abord les espaces euclidiens de di-
mension finie U (espace de contrôles) et X (espaces des états, de dimension n) ainsi que
les opérateurs linéaires A : X → X et B : U → X. Nous nous intéresserons aux systèmes
dynamiques décrits par

ż(t) = Az(t) +Bu(t) (t > 0), (1)

où u(t) ∈ U , u est la fonction de contrôle (ou signal d’entrée) et z(t) ∈ X est l’état
au moment t. L’équation différentielle (1) a, pour tout u continue et z(0) ∈ X, l’unique
solution, donnée par la formule de Duhamel,

z(t) = etAz(0) +

∫ t

0
e(t−σ)ABu(σ) dσ. (2)

Le système (1) est dit contrôlable en temps τ > 0 si pour tous z0, z1 ∈ X il existe
une fonction u telle que z(0) = z0 et z(τ) = z1. Le travail proposé consiste dans la
compréhension détaillée, en suivant les premiers chapitres de [1] et [2], des conditions
classiques de Kalman et Hautus garantissant la contrôlabilité.
Plus précisément il s’agira de rédiger, suivant les références ci-dessus, une preuve détaillée
des résultats suivants :

Théorème 1.(Kalman)La paire (A,B) est contrôlable si et seulement si

rang
[
B AB A2B · · · An−1B

]
= n. (3)

Théorème 2.(Hautus) La paire (A,B) est contrôlable si et seulement si

rang
[
A− λI B

]
= n (λ ∈ C). (4)

Le sujet incluera l’étude de la notion duale d’observabilité, pour laquelle on donnera les
versions duales des deux théorèmes ci-dessus.

Références

[1] J.-M. Coron, Control and Nonlinearity, vol. 136 of Mathematical Surveys and Mono-
graphs, American Mathematical Society, Providence, RI, 2007.

[2] M. Tucsnak and G. Weiss, Observation and control for operator semigroups, Sprin-
ger Science & Business Media, 2009.
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