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Abstract. We study the Maxwell-Landau—Lifshitz system without exchange energy.
First, we prove an LP(LIQOC) estimate for the linear wave equation and apply this local
energy estimate to obtain a bound on the curl of the electromagnetic field, uniformly
in time and locally in space. Next, we prove strong convergence results, when the time
t tends to oo or when the speed of light tends to oo (which corresponds to the quasi-
stationary approximation). Finally, we establish a stability result with respect to the
damping parameter of the Landau-Lifshitz equation.
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1. Introduction

1.1. Presentation of the Maxwell-Landau—Lifshitz system
The Maxwell-Landau—Lifshitz system reads

Or(e,E) —curlH=0

Or(u,(H+M)) + curlE =0

8TM:’)/0 <MXHT+

(E(0), ( )) (Eo, Ho)
M(0)

div(e, E ) =0

div(p,( H+M)) =0

where the electric field E, the magnetic field H and the magnetization M depend

on the time 7' € R, and the space-variable X € R? and take values into R?. Here,

the dielectric and magnetic permittivities €, and p, are constants.

ﬁl\/{ % (M x HT))
(1.1)
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566 J. Starynkévitch

Although in most physical applications d = 3, the cases d = 1,2 are also of
interest. M(T') is assumed to be supported in a compact  included in Bg. |M|
is assumed to be a constant M, on Q. « is a non-dimensional constant called the
damping parameter, between 0 and 1. Physically, we have o of order 10~ or 1072
Here and below we denote by B, = {z € R? | |z| < p} the ball in R? centered in 0
with radius p, and B = Bj.

The effective magnetic field Hrp, is defined by

Hr = H+H,(M) + Hc(M) + Hex,
where (see also [7,14])

e for M in R3, H,(M) = —V,,®(M), where the datum ® is a non-negative convex
function from R? which vanishes at 0. H,(M) is called the anisotropy energy.

e H. (M) =—-K1oAM, is the exchange energy.

e and H.,; the Zemann energy or exterior energy, is given and does not depend
on 7.

Here, we consider the case K = 0. Mathematical results are very different in
the other case (see, for instance, [2]). Note that the last two equations in (1.1) are
satisfied for all times if they hold at 7" = 0. The non-dimensionalized system is:

noe —curlh =0
no¢(h+m) + curle =0

Om = —-m x hy —am x (m x hy)

(e(0), h(0)) = (eo, ho)

m(0) = myg (1.2)
div(e) =0

divih+m) =0

hy = h + hey — VO(m)

where 7 = v/c is the quotient of two characteristic speeds of the system, i.e. the
giromagnetic ratio in the Landau-Lifshitz equation v = R|vo| M, and the speed of
light ¢ = (g,p,) /2.

1.2. Main results

In the case with no exchange energy, the system was studied by Joly-Métivier—
Rauch in [12]. They established the existence of energy solutions, i.e. weak solutions
satisfying natural energy estimates.

Theorem 1.1 (Joly—Métivier—Rauch). For d < 3, assume that ey, hy are in
L?(R%), and that mg, hey € L>®(R?) and suppmyg is compact. Then there exists
an energy solution of (1.2), such that the fields e, h, m are in C°(Ry; L?(R%)).
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Moreover, if we assume that curley and curlhg are in L?(R?), then the energy
solution is unique and the fields curle, curlh are also in CO(Ry; L?(R%)).

The proof of this theorem can be found in [12]. The term ®(m) does not appear
there, but its addition does not modify the proof substantially.

When d = 2, Haddar [7] has generalized the above result to variable € in (1.1).
When d = 3, Jochmann [10] proved the existence of weak energy solution of (1.1)
in a more general situation, when € and p are non-constant and the first equation
is replaced with

Or(eE) — curlH = —0E — J, (1.3)

where ¢ is a bounded non-negative function from R?, and J belongs to
L'(L?(R3)). No other result is known in the literature for strong solutions with-
out exchange term.

Other results are available in the presence of the exchange term h.(m) (see [3]).

We are interested in the strong solution of the problem (1.2) given by Theo-
rem 1.1. We consider only the spatial dimensions d = 1,2, 3, in order for the system
(1.2) to be physically meaningful. However, the results on the wave equation are
clearly true in any dimension.

We use the orthogonal decomposition of L?(R%): for h € L? h, (respec-
tively, h)) is the orthogonal projection on kerdiv (respectively, kercurl). The
orthogonal component of h satisfies the following wave equation:

(70} = A)hL = —n*0}m.. (1.4)

Consider a function P which is C> on R?\{0} and homogeneous of degree 0,

and denote by P(D)v the function such that @(f) = P(&)d(€), where f(€) is
the Fourier transform of f defined by

fO=] fla)e ™ de.
Rd
This work is based on a local energy estimate for solution of (1.4). Our first result is:

Theorem 1.2. Let v be a real-valued function from R, to R? and let 1 < p < +o00.
Let us assume that suppv C Ry x B, and v € LP(Ry, L?(R%)), and d > 2. Denote
by u,, the solution of the Cauchy problem

(n?0f — A)u = P(D)v = Pv
Ult=0 = 0

3tu|t:0 =0.

Then Vigup, € LP(Ry, L3 ) N L>®(Ry; LE ), and there exists a constant C' > 0
depending only on P, such that for v € LP(Ry, L?(R?)) «, q with p < ¢ < 400 and
p=1

1

1_ 1
M0, Loz, + [ Vep, Loz, < Cp a2 [ullozage))-
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This theorem can be used to prove for the system (1.2):

Proposition 1.3. Assume that eg, hyg, my, curleg, curlhy are in L?(R?), hey is
in L>=(B) and let (e,h,m) be the strong solution of (1.2). Then, when « > 0 the
fields e and h| are in L*(Ry; L3 ).

We can obtain:

Theorem 1.4. Assume that o > 0 and eq, hg are in L>(R?), hey € L=(B); then
e(t), hy(t) — 0 when t — +oo in L?

loc*

Next, we derive a uniform bound on first derivatives when 7 is sufficiently small.

Theorem 1.5. Assume that ey, hy, mg, curley, curlhy are in L? (Rd), heyt is in
L>(B). Then for n sufficiently small, curle and curlh are in L>(L? ).

This improves the results of [12], giving uniform estimates with respect to t of
first derivatives of the electromagnetic field.

In [11], when ¢ — 400, the weak convergence in L? of E(t) and H () is estab-
lished in (1.1)—(1.3), even in the case of variable ¢ and p. A strong convergence
result on E(t) is proved only when o > g > 0. The description of the w-limit set is
only obtained with an exchange term which leads to an H' bound for my; cf. [3, 5].

We prove next the following quasi-stationary convergence result:

Theorem 1.6. The Cauchy problem

Om=-m x hy —am x (m x hp)
curlh =0
divi(h+m) =0

m‘tzo = Iy

has a unique solution m € C'(Ry;L?). Moreover, denoting by (e, h,,m,) the
solution of (1.2) for a > 0 fized, the fields e, and h, | converge as n — 0 to 0 in
L2(Ry; L2 ) while m, converges strongly to m in C(Ry; L?).

Without damping term (i.e. when a = 0) the uniqueness has been proved by
Jochmann [10], assuming that p is non-constant. Again in [10], the weak quasi-
stationary limit has been established.

In the last section of this paper, 1 being fixed and (e, h,, m, ) being the solution
of (1.2), we prove:

Proposition 1.7. When « tends to 0, (e®,h® m®) converges in L? (LIQOC) X

loc
L2 (L3 .) x C(L?) to a strong solution (€°,h%, m°) of the system (1.2) with o = 0.

2. Transformation and Non-Dimensionalization
2.1. Transformation

We consider the system (1.1). We assume that

e supp My C Bg;
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e V€ supp My, |[Mo(z)| = M, € RY;
Let (E,H, M) be an energy solution of this system. Then we have
OM(t,z) M(t,z) =0 fae zeRY
This implies that:
Vte Ry, |M(t, )| = Mslsupp m,-
In particular, (E, H, M) is a solution of the (polynomial) PDE system:
Ore,E—curlH=0

Orpy(H+M) +curlE =0
o

8TM=70<M><H+ Mx(MxH))

(E(0),H(0)) = (Eo, Ho)

M(0) = My

div(e,E) =0

div p,(H+M) = 0.
Conversely, by the same method, a solution of this PDE system is also solution

of the system (1.1).

2.2. Non-dimenstionalization

Make the following scalings:

_ /& E _ ®(Msm)
B Ho MS (m) M52
H M
h = =
M, ML
X
x R 70| M,

Define
n= R|70| M vV E Mo -

Remark 2.1. 7 is nothing but the quotient v/c of two characteristic system speed:
first, the giromagnetic ratio in Landau-Lifshitz equation v = R|vyy| Ms, next, the
speed of light ¢ = (60,%)_1/2. In particular, the limit 7 — 0 corresponds to the
quasi-stationary approximation of the electromagnetic field.

The non-dimensionalized system is now exactly (1.2), and we know that
suppmg C B and |mg| = 1 on supp my.

Remark 2.2. We do not see the geometry of suppmg; we only use that it is
bounded, so has a finite Lebesgue measure.

Notation 2.3. Let f(m,h) = —m x h — am x (m x h).
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Properties 2.4. The function f satisfies:

e f(0,h) =0, h € R3;

e f is linear with respect to h;

e f is locally Lipschitzian with respect to m;

o f(m,h)-m =0, h, m € R?

e f(m,h)-h=almx hl?, h, m € R3;

o |f(m,h)]? = (1+a?m|?)|m x h|?, h, m € R3.

2.3. Classical energy estimates

Notation 2.5. Let (e,h,m) be a weak solution of system (1.2). We note

£(0) = 5 (1) 2 asy + 100 Fazn) + [ Plm(t)) + b — m(D) da.

£ is the usual electromagnetic energy in the Maxwell system, completed with
the different energies coming from Landau-Lifshitz equation.
Let (e,h,m) be a strong solution of system (1.2). Recall that
lm(t, 2)| = |mo(x)] a.e. (2.2)
Take the L?(R?) scalar product of the first (respectively, second) equation in

(1.2) with e(t) (respectively, h(t)). Add the two expressions. Because curl is self-
adjoint, we find

d
n—=Et)+n [ Om(t)-h(t)dx = 0.
dt ]Rd
Now, h = hy + V®(m) — heyt. Thus,
Om-h=90m-V®(m)— dym-hey + Om - hy
= 8t<I>(m) — 8tm . hext + f(m, hT) . hT.
Then, with (2.2), we have —0;m - heyy = 8t%|hext — m|?. Now, thanks to the
two last properties in 2.4,

d ! 9

_ - . <
dtﬁ(t)+ 1+OéQIIf)tm(lt)HL <0,
d

Eg(t) + a|/m(t) x h(t)||2. < 0.

With a time-integration, we obtain:

Proposition 2.6. Assume that (e, h, m) is an energy solution of system (1.2); then
for allt >0,

t
«
&0+ 1z [ Iom)s ds < £0),

£(t) + a/o Im(s) x h(s)||% ds < £(0).

In particular, m x h and d;m belong to L> (Rf’d).
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Definition 2.7. Let (e,h,m) be a weak solution, that is a solution in the distri-
bution sense, of the system (1.2). We say that it is an energy solution if £(0) < 400
and if the estimates (2.2), and Proposition 2.6 are satisfied.

3. Local Energy for the Wave Equation
3.1. An L? orthogonal decomposition

The system (1.2) uses the curl and div operators. We decompose the system, taking
the curl part and the div part. Introduce the orthogonal decomposition of L?(R%):

Notation 3.1. Define

L% (RY) = {u € L*(RY) |divu = 0}
and Lﬁ (RY) = {u € L*(RY) | curlu = 0}.

Proposition 3.2. We have an orthogonal sum
L*(RY) = L7 (RY) @ LF(RY).

We denote by Py : uw — Piu = uy and P| : v — Pju = u) the two projectors
associated to this decomposition.
Those projectors are both Fourier multipliers, with a symbols defined, respec-
tively by
5 Ex (€ x f(9)

PLf(§) = 25252 and Bif(€) =

£- (€ £(€)
BE '

€12

The equation dive = 0 implies that e, = e, that ;] = 0. We also have h +
m) = 0. We know that m has a bounded and time-invariant support in space, and
lm| = 1 where m # 0. Moreover, 9ym = f(m,h). This implies that supp dym C
Ry x B.

This provides some information about h” = —my. In order to know h, , write
the wave equation satisfied by h:

(n*0} — A)h = —p?0fm — V divm.
Take the projection on L2 (R9):
(77283 — A)hL = —r]28t2ml.
We obtain similarly
(7728t2 — A)e = —ncurldym, .

We can consider for the moment m as a datum. We know that Oym € L? (Rf’d)
thanks to Eq. (2.6). Next, we note that, if u is a solution of (n?0} — A)u = —9ym
then e — curlu and h; — Q;u are solutions of the linear homogeneous wave equation
(n?07 — A)g =0.
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3.2. L2 local estimates for the non-homogeneous linear wave
equation

In this section, d is any positive integer (not necessary less or equal than 3).

Notations 3.3. We denote by S, = {z € R?| |z| = p} the sphere centered in 0
with radius p, and I'y, = {z € R?| a < |z| < b} the annulus with radii a and b.

Notation 3.4. We denote by E = E(t,x) € D'(R'*?) the fundamental solution
of the wave equation (JE = &, € D'(R'T4), where 0 = 97 — A) supported in
{t > 0}, and E : ¢t — E(t) the fundamental solution valued at the time ¢, i.e.
E € C*(R,;D'(R?)) is defined by:

V¢ € DR™?), (E,¢)p/(ri+a)prita) :/]R (E(t), ¢(t, - ))pr (re),D(Ray dE.

+

We have for t > 0

This formula implies that

Proposition 3.5. Fort >0, E'(t) defines by convolution in RS a continuous map-
ping L?(R?) — L2(R%) with norm equal to 1. Similarly, VE(t) defines a continuous
mapping from L*(R%) to L2(R?) with norm equal to 1.

When d is even, E(t) is a smooth distribution outside S, defined by (see [6, 16])

(-1t <ty

2714/2 (d — 1)! (m)d—l

=2 d
_ (12) R
t ot (V&= |$|2)1/2

E(t)(x) = E(t,z) =

This implies:

) 1) t
for |z <t, OE(t,x) =E<f)<f”>:‘2ﬂ5/2<d_)z>!( 12— [a[?)d+t
(4-1) :

for |z| <t, V.E(t,z)=VE()(x)=

_27rd/2(d —2)! (m)dﬂ'

When d is odd, the distributions E’(t) and VE(t) are supported in S; (Huygens
principle).
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We consider the solution u of the Cauchy problem:
(207 — A)u=v
U‘t:() = O (32)
atU‘t:() =0.

When n =1, u is given by

u(t) = /0 E(t — s)*, v(s)ds 1= E ¢ , v(1).

Therefore,

yu(t) = /0 E/(t — 8)%0 v(s) ds = O F %10 0(t).

For locally integrable functions supported in {¢ > 0}, we use the notation

t
Frg®) = [ f(t-9)g(s)ds
0
First, we prove the following theorem:

Theorem 3.6. Let 1 < p < +4o0. Assume that suppv C Ry X B, and v €
LP(Ry, L?(RY)). Let u, be the solution of the Cauchy problem (3.2). Then dyu and
Vu, are in LP(Ry, L3 ) N L>=(Ry; L ). More precisely, there exists a constant C
which depends only on d, such that for v € LP(Ry, L?(R?)) with suppv C Ry x B,
for all ¢ with p < q < 400, for all T € Ry U{+oc0} and p > R, one has:

1_1

10l Loczzs,)) + 1VuollLarzs,)) < Cp a7~ 7 o]l o(re ey

Notation 3.7. Let P be a smooth function outside the origin, homogeneous with
a degree 0 on R, Let

d
| Pllcacgi-1y = Z [ PD| oo (ga-1y.-
=0

Proof of Theorem 3.6. Consider @ defined by u(t, z) = u(npt, px); we can check
that:

u is solution of i = p?9 where (¢, z) = v(pt, px).
supp?v D Ry x B.

1 1

19|l e(z2y = 77_5/’_5_15||U|1\Lp1(m)-

IVl Lacr2(,)) = 77_Efl_gl_;l”V“”M(L%Bpr))~
- 1—1 911

10|l a2y =n  7p 27 7 |OwullLaL2(B,,))-

Hence, it suffices to prove the theorem for R = p = 1 and = 1, which we now
assume.

The principle is to decompose v into several pieces, and next to bound each of
them by the convolution of ¢ — [[v(t)]| L2(rae) with a function of [L' N L*=](R.).
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We write the details of the proof for 0;u. The estimates for Vu are similar; in

particular, we use in even dimension, that
|VoE(t,x)| < |0 E(t,x)] |z < t.
First with (t —4)" := max{t — 4,0} write

(t—4a)* t
Uy (t) = /0 E'(t — 5)*; v(s) ds—i—/( E'(t — 8)*, v(s)ds.

t—a)+

The second integral in the right-hand side can be bounded:

t
H / E'(t — )%, v(s)ds
(t—4)*

L*(B)

¢
< H / E'(t — s)*, v(s)ds
(t—4)* L2(R4)

t
< / IE(t — 8)%0 0(5) | g2 g ds

(t=4)*

t
<[ IOl ds

(t—a)+
< (Mjo,ap%¢ vl L2 (may) (2)-

Let us consider E/(t — s)*, v(s) on B when t — s > 4. In odd dimension, the

support property of convolution shows that, when ¢t — s > 4.

E'(t — s)*; v(s) =0 on Bs thus on B.

This completes the proof in this case. In even dimension, E'(t — s)*, v(s) is on B

a smooth function, and for z € B:

[E(t—s)*xv(s)](x):/B\/(t C;Z(t|—8) |2d
S —Je—y

(s, y)dyds

The Schwarz inequality yields thanks to the fact that (t—s)*—|z—y|> > 3 (t—s)?

forx € Band t — s > 4:

B (t — 8) 0 v(5) || 12(5) < VTl E'(t = 8) %2 v(s)|| L= (5)
<2Y2Cq04- (t =) [0(9)]22(m)
<2'2Cq0q- (t—35)"" 0o(s) 2 (ma)-

where o4 is the Lebesgue measure of the unit ball in R?,

Noting that ¢ — ¢ U4 ((t) belongs to L' N L>*(R4), this completes the

proof.

O
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Proof of Theorem 1.2. The scheme of the proof is the same as the proof of
Theorem 3.6. Write
t

(t—6)T
upy(t) = / E'(t — 8)%, Pv(s)ds + / E'(t — 8)%, Pv(s)ds.
0 (t—6)+

The second term in the left hand side is bounded by Tjg ¢ * [|v| 2 (ra). Write,
fort — s> 6,

PU(S) = ]132PU(8) + ]1F2.t7374pv(8) + ]1Ft7374.t73+lpv(8) + ]lBt“,b,Jrva(s) .
———
v1(t,s) va(t,s) v3(t,s) va(t,s)

We want to show that ||[E'(t — s)*, v;(t,s)|z25) < fj(t — s)||v(s)|[z2 where
f; € LN L>®(Ry), j =1,2,3,4. The support properties imply:

[E'(t — s)%z va(t, s)]jp =0
and, in odd space dimension,
[E'(t — 8)*; vi(t, s)ip = [E'(t — s)*4 va(t, s)]jp = 0.
Moreover, because E/(t — s)*, : L?(R%) — L?(R?) is continuous,
I[E( = s)*a vs(t, )l L2(5) < llvs(t, )l L2@ay = 1Pv(s)llL2rimiiimiin)- (3:3)
In order to bound the last quantity, we use the following theorem:

Theorem 3.8. Let P = P(D) be a Fourier multiplier, with symbol P(§) smooth
on RN{0} and homogeneous of degree 0. The inverse Fourier transform of P(€),
denoted p(x) 18 a smooth function outside the origin, homogeneous of degree —d,
and there exists a constant v (which does not depend of P) such that

YIIPlea(sa—1y

P <
Va #0, |P(z)] < B

For a proof of this result, see [17]. From now on, v will be the constant given by
this theorem.

Corollary 3.9. Let f € L'(R?) supported in B, and P as above. Then Pf is smooth
on RN\ B, and, when |x| > 1, we have:

Y 1Pllcacsa-1y 1 fll o (may
(|2 = 1)

[Pf(z)] <

Proof. Since the singular support of P is contained in {0} the singular support
of Pf is contained in the support of f and therefore in B (see, for instance, |9,
Chap. 4]). The inequality is a consequence of Theorem 3.8 and of the following
equality

Pf(x) = /B B(z — ) f(y) dy. o
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Corollary 3.10. There is a constant C' which depends only of d such that for all
f € L2(R?) with supp f € B and t > 6,

CY 1 Plleacsa-1yll fll 2(rey

d+1
t 2

I PfllL2(r_as) <

PI‘OOf. We have HPf||L2(Ft—4.t) = |‘]1Ft—4,tP ]IB fHLQ(]Rd). The kernel Of ]11'*11_4’tP]13
is

K(xa y) = ]lrt—4.t (m)]s(x - y)]lB (y)

Therefore, we have

~ CdWHPHcd Sd—1
My = sup [|[K(z, ey = sup [Pla— )l|pm < —— oo,
rERC x€ly 4t (t 5)
My = sup [|K(-,9)llz1@ey = sup [P = 9)|l21
yER? yeEB
- OlPllessas [t = (¢ =5)") _ A|PlleasaCy
- (t —5)d - t—5 '

The operator is bounded on L?(R?) with norm smaller than /M, M, thanks to
Schur’s lemma, implying the corollary. O

The last corollary bounds the second member in the inequality (3.3) by

Mg)niLr,zﬁd) This finishes the proof of Theorem 1.2 in odd dimension.

(tfs)T
It remains to study contributions of v; and v in even dimension. In this case:

Calt — 8) gy g>m
alt = s) s> yd}HPv(s y) dy.

2 2

\/(t —5)? — |z —y|

Use the inequality (¢ — s)? — [z — y|?> > 2(t — 5)? on the domain of integration
d

forz € B, [E'(t— s)*; vi(t,5)](z) = /B

B sl < (3) ot [ Pl

Schwarz inequality and the boundedness of P in £(L?(R%)) imply:

doN=:

E'(t — 8)%, vi(t, (g < — -
[E(t — s)*z v1(t,8)l|L (B)f\/g 3 (t —s)d HU(S)HLZ(W)

which concludes for the contribution of v;.
Now, we can apply Corollary 3.9 to have an estimate for the contribution of vs.

Cat = s) s> ja—ypy Pu(s.y) dy

[E/(t _ 8)*95 Uz(ta 5)](m) = /F .

V=7 —a =P
E/(t — 8)%0 va(t, 8)](2)] < /F = S)C;d_(t(I j—)|y|)2d+1 ||U(S|)£|Z2(]Rd)dy
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On the domain of integration, t — s + 1+ |y| > ¢ — s, so in polar coordinates:

e Ca (t = 3) [o(3)l o) dy
-l | VE=9 =T+ —s+1+ )" I
, s 1 dr

< Clllo(3)laes | PR T——

t—s—3
1 dr
X ATOIET / _ ar
! R T P

Thus, taking u =t — s, it is sufficient to prove the integrability and the bounded-

ness of the function u — —— f;—S ( 1)d+1 % on [6,+00[. To do this, note that
u- 2 u—r)- 2
u—r>wu/2 when r < u/2:
1 /“3 1L dr_ 2% /“/2 L odr /“3 1 dr
wT )3 (u—r)% T e R e w2 U (u—r)d;1
datt w/2
272 Inu dr
= T T oo FESY
u u-z J3 ro2
_ 2% Inu L2 1
= d IX1 [ g43\ 548
v u's (452)3%

The last member is a sum of two functions of u integrable on [6,40c[ when d > 2,
this finishes the proof of Theorem 1.2. O

3.3. Estimates for the Cauchy problem for the homogeneous linear
wave equation

Proposition 3.11. Let ug € H'(R?) and u; € L*(R?) be two data supported in
Bpr, and u such that

(7207 = A)ju =0
Ult=0 = U0
atU‘t:() = Ui.

Then exists a constant C' which depends only on d such that for all 1 < p < 400,
and p > R, we have:

VOl e 5228,y + IVUllLe®,L2(8,)))
1

< Cp"t v [Vl p2ray + mllur ]l p2(ray)-

Proof. After rescaling, it suffices to prove the theorem for R =p=mn=1.
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Choose a function x(t), smooth on R, vanishing when ¢ < 1/2, equal to 1 when
t > 1. Let w(t,z) = x(t)u(t,z). The function w is the solution of the following
Cauchy problem:

Ow = x"u + x' 0w
Wyg=0 =0
atU)‘t:O =0.

The function x”u + x'0yu is supported by [3,1] x Bs, and
Ix"u+ X Ovull ey 22y < X[z lullLos ((0,1);22)
+ X e 0l Loo(0,1);22)-
Since u(t) = ug + fot dyu(s) ds, we have, when ¢ € [0, 1],

t
[ull oo ((0,1):22) < lluol| 2 +/ [0ku(s)|| > ds < [luoll L2 + [|Opu]l oo L2)-
0
With the energy conservation for the wave equation
106wt 122 gy + IV u()l| 722y = [ualZapay + 1 Vuol|Z2(gay,
this implies that
IX"w+ X Opul| oo (s L2(ray) < CllunllL2(ray + ([ Vol L2 (ray)-
Moreover, x”u + x'0;u is compactly supported in time, and for all p > 1,
IX"w+ X Ol Lo, r2ray < X 1w+ X Ol Lo, ;12(RAY)-
Thus, by Theorem 3.6,
1
||atw||LP(R+;L2(Bp)) < CP1+” (||U1||L2(Rd) + ||vu0||L2(Rd))'

To conclude, use the estimate:

oo
||8tu||’£p(R+;L2(B,,)) :/0 ||8tu(5)||1£2(3,))d5
1 o)
= [ 1oy s+ [ N0 s
1

p/2
< /0 (||u1||%2(Rd) + [ Ve UOH%Z(Rd)) ds + ||8tw||ip(R+;L2(Bp))-
O
Remark 3.12. We have analogous results for initial data of the form Puy and
Pu;. Indeed, let v the solution of homogeneous wave equation with initial data Pug
and Puj. The new w = yv satisfies Dw = x"v + x'v = P[x"u + x'u] because

P commutes with differential operators. The remainder of the proof is exactly the
same, using Theorem 1.2 instead of Theorem 3.6.

Remark 3.13. For the case p = +00, the conservation of energy

1
Et) = 51 Viau®)2
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gives already the result, with no restriction on the localization of the initial values,
nor on the evaluation.

In the case p = 2, for non-compactly supported initial data, we use the following
estimate:

Theorem 3.14. Let ug € D'(RY) such that Vug € L?(RY) and u1 € L?(RY). Let u
the solution of (7728t2 — A)u = 0 such that uj,—o = uo and Opu—o = uy. Then, for
all ball Br, there is a constant C' = C(R) > 0 such that

772H8tu||2L2(]R+;L2(BR) + Hvu||2L2(]R+;L2(BR) < C(HVUOH%%W) + 772||u1||2L2(]R4))'

Proof. Once again, it suffices to prove theorem when n = 1.

When d is odd, the idea is to write explicitly the integral to be calculated, and to
use firstly Huygens principle (||V¢zu(t)||22(8z) < IVi2u(0)|22(0,_n.,\ r))> secondly
Fubini’s theorem.

R / IV ts®)][25 s,
.

< [ IV, g
R

:/ / | Vi 2w (0, )| da dt
Ry Jt—R<|z|<t+R

:/ |Vt@u(0,x)|2dx/ dt
R |z| - R<t<|z|+R

< / [Vi 2w (0, z)|? dz 2R
]Rd

= 2R(||VuollZ2 gy + lurllZe(ea)).
When d is even, write
u(t) = E'(t) *5 uo + E(t) %, ug
Vu(t) = E'(t) % Vug + VE(t) %, uy
Oult) = E(1) %2 up + E'(t) 50w
= AE(t) %z ug + E'(t) x5 us
= —VE(t) *, Vug + E'(t) *4 u1.

We only give details for the contribution of E'(t) #, u;. The other terms are
similar.

1B (8) 2 utlZom) < 1B (8) %o wallp, s 17205y + B (1) %o willpy_, 1725

< HE(t) *y ul]lBt—z ||%2(B) + ||u1||L2(Ft_2,1,+1)' (34)
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The second term of the right-hand side can be bounded as in odd dimension.
Consider the first term. For || < 1, one has:

B0) 5 s, (0 = Ca / t

|<t=2 /12 — |z — y|2dJr

Using Schwarz inequality, and the inequality |z — y| < |y| + 1,

2t2
E'(t) #, u1lp, ,(x 2<C’1fd_1/ [1(v)] dy.
e P e RS E L

1U(y)dy>2-

So, integrating in x € B,
|ua (y)]? 4!
wi<e—2 (6= ([yl+ 1)HE+ [y + 1)FH

Let us denote vy (t) = E'(t) %, u11p,_,. We want to prove

”E/(t) *x ulllBt_2||2L2(B) S C dy

lvillL2(z2(my) < CllusllLz.

A time integration and Fubini’s theorem, give:
“+o0 td+1

vy |2 . SC’/qudy/ dt.
folie ey <€ J @R | G o T 0o

Thus, we just need to bound uniformly in r = |y| the following integral

“+o0 td+1
F = .
(r) /t_m T D)) e Y

We have (with u =¢ —r+1)
F(r)_/m (e d+1du
Sy wdt \ w420 +2

o du 1
F(T)S‘/l W=E<+OO.

This finishes the proof. |

4. Application to the Maxwell-Landau—Lifshitz System

In this section, we apply to the system (1.2) the new results on the wave equation
proved in the previous section. Let (e,h,m) be a strong solution of the system
(1.2). The key point is the fact that h; and e are solutions of the following Cauchy
problems.

(n?0, — A)h = —p?0?m |

hj,—o = P1hg (4.1)
~ 1

Othj—g = —Ecurleo — f(mg,hg — V®(my) + hext) 1

(n?0; — A)é = —curl ndym |

1
0¢€|;—g = ——curlhg
n
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4.1. Boundedness of hy and e with respect to n

In order to study h and e, decompose the problem in three independent problems:
let u, ¢ and v be the solutions of the following Cauchy problems:

(77283 — A)u = —ndym

Ujpmg = 0 (4.3)
8,5U‘t:0 =0

(707 —A)¢ =0

Ple=0 =0 (4.4)

1
8t¢\t:0 = ;Plho

(707 = A) =0

Ylt=0 =0 : (4.5)
8t¢\t:0 = —€o
n

Lemma 4.1. Define u, ¢, ¥ as solutions of the Cauchy problems (4.3)—(4.5). Then
h; =ndwu+ndip — curly and e = curlu + curl ¢ — 01).

Proof. Denote h = ndu + ndip — curlep. Clearly, h is solution of wave equation
in (4.1), and hj;—y = P hy. It remains to check that
8t}~1‘t:0 =1 f(mg,hg — V®(myg) + hext) 1 — curleg.
Indeed,
Oihyy_g = 0fup_g + 07—y + Orcurl ¥y,
= (Au)ji=o — PL(9ym)|4—¢ + (AQ)jt=0 + [curl (0s1))];1=0
= A(up—o) — nf(mg, hg — VO(myg) + hext) 1 + A(¢i=0) — curleg
=nf(mg,hg — VO®(mg) + heyt) | — curleg.

The proof for e is similar. O

Proposition 4.2. Let (e,h,m) be a solution of the system (1.2). Then for all
R > 1, there is a constant C'r which does not depend of m and n such that:

HhL”L2(R+;L2(BR)) + HeHLQ(]R+;L2(BR)) < Crvn (\/ £(0) + \/7_7||athL2(]R+;L2(Rd)))
Proof. By Theorem 1.2, the solution u of (4.3) satisfies:
1n0sullL2(L2(Br)) + IVullL2(L2(BR)) < CrNllOml|L2(22)
By Theorem 3.14, the solutions ¢ and ¢ of (4.4) and (4.5) satisfies:

1M0:dll 212 (Br)) + IVOlL2(22(BR)) < CryVMNlIhol| L2
M0l L2(L2(BR)) + IVl L2(L2(BR)) < CVlleo]| L2
We conclude by using Lemma 4.1. O
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Proof of Theorem 1.4. It suffices again to prove Theorem with n = 1.
We showed in the proof of Theorem 1.2 that there exists hg € L' N L=(Ry) C
L2(R,) such that the solution u of (4.3) satisfies

[Viau(®)|L2(Br) < hrxt [|0m(t)| L2 ®e)-

The property of convolution L? * L? implies that the right-hand side is contin-
uous and tends to 0 at infinity. Thus, when ¢ — o0,

IVeau(t)|lL2pr) — 0. (4.6)
By Huygens principle, for t > R, and ®, ¥ solutions of (4.4) and (4.5),
Hvtﬂf(q)a \I’)(t)HLz(BR) < ||vt7$((1)7 \I/)(O)||L2(Ft—R,t+R)
= M, r Ve (@, U)(0)] 2(ra)-
Thus, by Lebesgue’s theorem, when ¢t — +o0,
Vi (®, V) (#)|L2(8r) — O (4.7)
We conclude again by using (4.6) and (4.7) with Lemma 4.1. O

4.2. Bounds for the curl fields

Notation 4.3. We denote Ecyp(t) = chrle(t)Hig(Rd) + ||curlh(t)|\%2(Rd).

The aim of this paragraph is to prove Theorem 1.5. More precisely, we establish the

following result:

Proposition 4.4. There is a constant K such that, for all positive real fized &,,
there exists no > 0 such that for all 0 < n < no and all solution of the problem (1.2)
such that Equn(0) < &, we have

Eeurt(t) < Eeur1(0) + K(£(0)* +1).

Proof. We search to estimate d;h ). Decompose h; = h; + hy, where h; and hy
are the solutions of the following Cauchy problems:

(0% — A)y = —PoRm,

hyj;—o =0 (4.8)

athl\t:() = 07

(n202 — A)hy = 0

hyjt—0 =ho1 (4.9)
1

8th2|t:0 = 50111‘1 ey + f(m(), hy — V(I)(mo) + hext)J_~

In order to apply Theorem 1.2 to h; solution of (4.8), estimate 07m . We have
9?m = 0, f(m,hr) = D, f(m,hr)d;m + f(m,d;hr) (4.10)



Local Energy Estimates in Ferromagnetism 583

Dy f(m, hy)dm| < 2| |0;m| < 4 |hr[? jm| = 4| — m) — VB(m) + he| 15
| D f (m, hr)Oym|? S by |* + oy |* + [VE(m)[* + [hee|] 15 (4.11)

where we wrote f < g in order to say that there is a constant C' which is independent
of n and (e,h, m), such that f < Cg. Since m(t) is supported in B,

Iy (B)1 74y S MO 7azay < Mz =1.

Next, because V@ is continuous, [|®(m)||z~ < sup,,cp |®(m)| < 4o00. More-
over, ®(0) < ®(m) for m € R3. Thus, V®(0) = 0 and supp V®(m) is supported
in B. Consequently,

[VO(m(t))||psray S IVEm(t))| Lo mey S 1-
Integrate in 2 on B in (4.11), then
[ Do f(m(t), h() B ()| 72 ey S e (B 735) + 1.
Now, because d < 3, by Sobolev inequality (see [1]):
Ihllzasy S IhllL2) + (VA L2(B).-
Thus
1D 0(8), 1 ()0m(8) B gy S Vb ()L gy + 1B () )+ 1.
Similarly for the second term in (4.10),

|f(m,dhr)| < 2lm[|9;hr| < 2[0;hr |15,
|f(m, 8ihr)|? < (|0:h |* + |0imy|? + [VO(m)|) 15,
1f (), Ohr ()72 ey S 10 ()] 25y + 10m(t)[|72(ma) + 1
S 10 ()1 725) + ()72 (gay + 1.

Taking the essential supremum in ¢ on (0,7):

[10ef (0, W) 17 < 0.7y, 22 Ry S IV | Lo 0,7y £2(8)
10| F e (0.7y:22(B)) + OB, m)] (4.12)

with

C(hi,0m) = b7, r2(my + 1+ [0l Fem, 2@y S E(0)° +1 < +oo.
(4.13)

By Theorem 1.2,

[(ndehy, V)| Lo 0,7y 22(8)) S 071100 f (0, 1) || oo (0,7); £2(R2)) -
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We have also conservation of energy for the linear wave equation

[(ndsha, Vo) Lo ((0,1:22(B)) < [[10:h2(0), Vhy(0)|| p2(rays

< \/llcurlby |2, + [[eurl e ..

Adding the last two inequalities yields:

[(noshr, Vhi)| Lo (o) 28y S 02110:f (M, h)|| oo (0.1):22)
+ gcurl(o)-

Finally, we use the inequalities (4.12) and (4.13). There is a constant C; such
that

(ndsh, Vi) Lo,y < Cun? IV LT 0.1y 02(3))
+ |\8thL||Lm((07T);L2(BR)) + 5(0)2 + 1} + v/ Eeur1(0).
In order to put the term [|0th ||z ((0,7);52(Bg)) in (4.12) in the left-hand side,

assume that n < ﬁ
Let

X(T) = [|(nosh., VhJ_)HL“((O,T);L2(BR))~
Then we have, with Cy = 4CY:
X(T) < n?Co(X(T)* + £(0)? + 1) + /Ecunt (0).

Now, remark that ||V,h ()| 2(re) = [[curlh|| ;2 (ga). Now, because we are look-
ing for solution of the (1.2) with regularity C(R, H(curl,R?)), we obtain that X
is a continuous function. Thus, if X (0) < X;, where X7 is the smaller root of the
quadratic polynomial n? Cy (X2 +£(0)2+ 1) — X, then X (¢) < X; for all t > 0. We
are in this case when:

1
= 4C5(Co(£(0)2 + 1) + /Ecan (0))

Ui

To conclude, remark that | Vh, (¢)||z2 = ||curl h(¢)| z2 and, thanks to the second
equation and the condition div(h + m) = 0 in (1.2),

[curle(®)][z> < [[ndih ()] + nlh(t)]|L>- 0

Remark 4.5. The L? estimates so obtained on curle and curlh does not depend
on the parameter « € [0, 1] in the definition of f(m, k). So, we can obtain a conver-
gence result, in the next section, when o — 0.
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5. Convergence Toward Quasistationary System; Existence and
Uniqueness of Weak Solutions in Quasistationary Problem

We prove a convergence result when 7 tends to 0 in (1.2), which is the quasi-
stationary limit. In [10], Jochmann proved a weak quasi-stationary limit for weak
energy solution of (1.1). Here, we consider a strong limit for strong solution. We
first study e = e, and h,,| using Proposition 4.2, next we study the convergence of
m = m,,.

5.1. Convergence of h,,, and e, to 0

Proposition 5.1. For fized o > 0. Let (h,, e,, m,) be the solution of the Cauchy
problem (1.2). Then, for all R > 0, when o > 0

nlirg+ Iyl 2@yiz2Br)) + lenllL2 @y iL2(a)) = 0.
When a = 0, we have, for all T > 0,

S b 2o myiea e + lenllLomyeasny) = 0-

Proof. First, recall Proposition 4.2 (when 0 < T' < +00)
0yl 2y sz2Br)) + l€nll L2y L2(Br)) < Cryv/m (VEO) + v/l 2k, ;12 ®ay) ) -
By Proposition 2.6, when a > 0,

1+ a2
o

£(0).

0vmy || L2 ;2(Ray) <
This gives the proof in this case. When o = 0, the proof follows from the inequality
[0 (t)[| oo ((0,7)522) < ()]l Loe(0,7):22) < V/2E(0)

given by the Landau-Lifshitz equation. O

5.2. Convergence of m,,
In this section, we prove the following result in several steps:

Theorem 5.2. There exists a unique solution in C'(Ry;L?) of the following
Cauchy problem:

Om = f(m, —m)
m(0) = my. (5:1)

Moreover, if (h,,e,, my,) is a weak solution of (1.2), then asn — 0 m,, — m
strongly in C((0,T); L?).
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5.2.1. Weak convergence

Proposition 5.3. There erists m € L>®(Ry x R?) and a subsequence of (m,),
such that:

e m, converges x-weakly in L to m.
e m is continuous from Ry to L%, (RY).
e for allt >0, m,(t) converges weakly in L*(R%) to m(t).

Proof. (m,;),>0 is bounded in L>([0, 7] x RY), so, extracting a subsequence, con-
verges *-weakly to a m € L°°([0, 7] x R%). Moreover, we know that

Ormy, = f(my, hyy —my) — Ve(my) + hext),
S0

[[0smn | Loe (0, 73;22) < [l | oo (L[| Lo jo,7)522) + 1m0 [l Loc (0,77 22)
+[[VO(my,)| o ([0,13;22) + Dext |l £2(B))

< V&) +C.

Consequently, the set (m,), is equi-continuous from [0, 7] to L2,

L? with its weak topology is a metric space such that bounded sets are compact.
According to Ascoli’s theorem, m, converges, extracting further a subsequence, in
C([0,T); L2 ,,.), necessarily to m by uniqueness of the limit in the distribution
sense. In particular, for all ¢ € [0,7], m,(t) converges weakly to m(t) in L?(R?).

O

5.2.2. First estimates

Let 11,12 > 0 two positive reals, intended to converge to 0.

atm’h - 8flnfiz = f(mm Jhy, 1 — my, | — V(I)(mm) + hext)
— f(my,, hy, | — My, || — Vo(my, ) + hext)
= (f(my,, —my = V& (my, ) + hext)
= f(my,, —my = V(my, ) + hex)
+ f(my,, VO(my, ) — Ve (m,,))
+ f(my, hy, 1) = f(my,, hy, o)
(mm,PH(m m,,)) — f(mm,PH(m —my,)). (5.2)
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Take the scalar product of this equality by m,, —m,,, to find a bound, using
the fact that my,, |, |m,,| < 1:

SOy, — g ? < 2y, (| [920my,)|+ o))
+2/my, — my, | [VO(my, ) — VO (my, )| [my, |
+2[my, — my, | [my, | [hy, 1]+ 2(my, — my, | [mg, | [hy, |
+ [f (my,, Py (m —my, ) - (my, —my,)|
+ |f(mn2,PH(m —my,)) - (m, —m,,)|
< 2jmy, — my,|? (jmy| + C)
+8(hy, 1|+ [y, 1)
+ |f(mm,PH(m —my,)) - (m, —m,,)|
+ |f(mn2,PH(m - mnz)) : (mm - mn2)|~ (5.3)
We use a Gronwall’s lemma to absorb the first term in the left-hand side.
m is bounded, and supported in B, hence in L?([0,T]; L?(R%)), thus m is in
L%(]0,T); L*(R%)), therefore in L'([0,T] x B). By Fubini’s theorem, the function

o [lmy (-, 2)||L1(o,7)) is integrable, thus finite almost everywhere. Hence, we can
define, for almost every = € B:

t
ot z) = |x|2—|—2/ (Imy (s, 2)| + C) ds.
0
Remark 5.4. We need the term |z|? in order to have e~*®) € L*(R?), which is

used later.

There holds

1 —2a —za
§8t|€ ? (m,, — mn2)|2 < 8 ? (Jhy, 1|+ [hy, o ])

+ |f(mmaeiapl\ (m—m,,))- (eia(mm - mnz))|

)
+ |f(mnzaeiapl\ (m—m,,)) - (eia(mm - mnz))|-
Integrate on [0,t] x B. Because m,, (0) = my = m,, (0), we have

1 —a
S lle © (my, (1) — my, (1))]17:

< 8le™>*(hy, L] + My, L)L 0,11 B)
t
[ e Py m = m) - (e, )| dod

+ /0 /B|f(mn2,efaP” (m — mT]2)) . (efa(mm o mn2))| dzdt.

Assume for the moment the following result, which is proved in the next section.
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Proposition 5.5. There is a constant C' and a function D(n1,1n2) converging to 0
when (n1,m2) tends to (0,0) such that, for n which is m or ne, and all t € [0,T],

L/umn a® By (m(t) — my(1))) - (e~ (my, (1) — my (1)) da

< Clle™® (my, () = mu, (8)) ] 22 [le™* (m(t) — my (1))l] 2 + D1, m2).

Let D'(n1,m2) = D(ni,m2) + 8lle™*(Jhy, .| + [y, L[)l21(0,71x5)- Then, by
Proposition 5.1.

lim D’ (ny,m2) = 0.
n1,m2—0

Hence,

1 —a
S lle @ (my, (1) — my, (1)) )17

< D'(m,m2) + C/O le™ ) (my, (s) — mp, (5))]| 2]l (m(s) — my(s))][ 22 ds.
(5.4)

We use the following nonlinear Gronwall’s lemma (for a proof, see for instance
the annex.C in [7]),

Lemma 5.6 (Square Gronwall). Let y be a function in H'(0,T), C > 0 and f
in L'(0,T) such that:

WeMH,fmgc+Af@M$w
Then
Vvt € [0, 7], y(t)gx/a—i—%/ f(s)ds
0

Applying this lemma to y(t) = [|e~*®") (m,, (t) — m,, (t))||z> and
F) = lle™*@ (m(t) — my (1))]| 2
n (5.4), we obtain
1, _ Lt
3 lle Oy, (t) —my, (1))llz2 < VD' (pr,m2) + 5/0 lle=*) (m(s) — 1y (s))]] 2

We take the limit for n = n; fixed and 72 — 0. Because the norm is lower
semi-continuous for the weak topology we have

le=# (muy, (8) = m(£) |2 < 21minf /D (1, n2)
t
+ A ||€7a(8)(m771 (3) — m(s))||L2 ds.

The usual Gronwall’s lemma implies
le= ") (my, (#) = m(2))] > < 2lim inf /D(1,m2)e”
n2—

thus, the convergence of (e~*m,;), to e~ %m in L>([0, T]; L?).
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Because e”* > 0 a.e, modulo a subsequence, we can further assume that m,, (¢, z)
converges to m(¢,z) almost everywhere in [0,7] X B. Using the boundedness in
Loo(Rffd) of the family (m,), > 0, the Lebesgue theorem prove the convergence
of m,, to m in L?([0,7] x B), p < +oc.

This convergence implies in particular the convergence of ®(m,) to ®(m), in
L?. Finally, we obtain a strong convergence in L*([0, T x B) of f(m,, h,, | —m,) of
f(m, —my). Moreover, 9;m,, converge to d;m (in the distribution sense), we obtain
that m is a solution of (5.1).

Remark 5.7. This proves also the existence of solution of the Cauchy prob-
lem (5.1).

5.3. Uniqueness of the Cauchy problem

We show the uniqueness of the solution to this Cauchy problem. This shows that
there is only one limit of (m,,) (the solution), so the full sequence (m,,) converges
to m.

Let m; and my be two solutions in L>([0, 7] x R?) N H([0, T]; L*(R?)) of the
Cauchy problem (5.1). The computations are similar to (5.2) and (5.3).

Oymy —Omy = f(my, —my — VO(my) 4 hext) — f(mz, — my — VO (my) + hex).
‘We have
1
§3t|m1 —my|? < 2[my — my| [Pj(my — my)| + (jmy| + C) [my — my[*.  (5.5)

If m; were bounded, the Cauchy—Schwarz inequality and Gronwall’s lemma
would yield that m;(¢) = my(¢) for all ¢ > 0. Unfortunately, this is not the case,
but we use the following substitute (see [17] for a proof):

Proposition 5.8. There exists a constant C' such that for all p € ]2,+00], the
operator P| is bounded from LP(R?) into LP(R?) with norm less than Chp.

We cut Pym; in a bounded part, and a small remainder in L'

Definition 5.9. For M > 0, let PHM be defined in {J, LP(R%) by:

M
B = i < Wy gy 15 my-
Let also P/lllvl(f) = f” X ]1{|f”|gjw}, so that HP'lj‘w(f)HLm < M and PH = P”M—|—P/|J‘VI.

We use Proposition 5.8 to prove

Lemma 5.10. Let f € [L' N L¥)(R?). Then ewists two constants ¢, C > 0 such
that for all M > 1/c¢, we have:

1B (N)ler < Cexp(—eM).
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Proof. Let C; = [||fllz1 + || fllz=], so that ||f]r» < Cy for all p. For a borelian
Q in R?, note || its Lebesgue’s measure. First, we have, thanks to the Bienaymé-
Tchebytchev inequality

LAl \"
MMH<|——.
KIfl > M3 < ( i
By Proposition 5.8, || fillz- < rl[fllo- < 7. Thus, for all » > 1,

> < (5

If we assume M sufficiently large, we can choose r = % so that:

Ayl > MY S e
where ¢ = é Secondly, Holder’s inequality implies that for all ¢ (with % + % =1):
12 (Al < 1Al 2ol g 15 aey ] o
< qCil{lf] > My
< qucl_%e_%we_CM.
Choose ¢ = ¢M (assuming that M > %) Thus,

1M () S MemM e

with ¢’ such that 0 < ¢’ < c.
We now finish the proof of uniqueness in problem (5.1). In inequality (5.5),
decompose m; || = P”M(ml) + P'ﬁw(ml). Using ||P’|1|V1(m1)||Loo < M, we obtain

1
§8t|m1 —my|* <2(M + C)|my — my|* + 2[my — mo| [my — myy| + 4[P (my)].

Integrate on B (using Cauchy—Schwarz inequality for the second term in the
right-hand side, and the fact that || P[22 = 1).

——|my(t) — ma(t)|| 2 < 2(M + C + 1)||my () — ma(t)||* + 4Ce M.

Using Gronwall’s lemma, we obtain that, for 7" > 0, which will be fixed later,
for all ¢t € [0, T7,

[y () = ma(t)][72 <

~

elexp(M(T — ¢)).

Fix T < ¢, and let M tend to 4+o00. There holds m (t) = my(¢) for all t < T'. We
have uniqueness on [0, T, therefore, global uniqueness since it is an autonomous
system. O
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5.4. Proof of Proposition 5.5

The aim of this subsection is to prove Proposition 5.5. We start by giving another
formulation which is equivalent because of the symmetry of the indices 71 and 7.

Proposition 5.11. There is a constant C which only depends of T such that for
all e > 0, exists ng > 0 such that for all ny, na < no and t € [0,T), we have

/B|f(mm (t), =" Py(m(t) — my, (1)) - (e (my, () — my, (1)) | do

< Clle™® (my, (t) = muy, (1)) 2 [le™ P (m(t) = my, (8))]]2 + &

Proof. The first step is to write e=*O P = Pje=® 4 [e=%") Pj] and use the
linearity of f with respect to its second argument. So we have

/B|f(mm (1), e "W Py(m(t) — my, (1)) - (e (my, () — my, (1)) do
< / | f (0, (8), Pre™ O (m(t) —my, (1)) - (e=*Y (my, (1) — my, (£)))] de
B
+ /B|f(mm (1), [e™*@, Pyl(m(t) — my, (1)) - (e (my, () — my, (1)) | da

Using the fact that |f(m,h)| < 2|h| when |m| < 1, the first term in the right-
hand side is bounded by

2 / (Pje"® (m(t) — my, (1)) - (e~ (m, (¢) — my, (1)) de
B

< 2le” @ (m(t) — my, (1)) z2lle”*® (my, (1) — my, ()] 2

according to Cauchy-Schwarz inequality and the property || Py[|zz2) = 1.

For the second term, we show the strong convergence of [e~ ("), Py](m,, (t) —
m(t)) to 0, uniformly in ¢ € [0,77]. Since Pj is a linear continuous map from L* to
itself (and from L? to itself), we have, for G € L? N L4,

G, Py J(m(t) — my, ()| < ClG 2npslm(t) — my, @)l 2+ < C[|GllL2nzs- (5.6)

Since a(t,z) > 0 almost everywhere,

’

t
/ |m(s,z)| + Cds

t

p
le—a(t:®) _ gmalt'.0)| < go—lal®

Use Holder’s inequality for the last term.

t
emate) _ gmaltho)p < Cplt — ¢/p=teplal® /0 (jmy(s,2)” + C}) ds.
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So, [le=*®) — e[ 1, gay < Cyplt — ¢'|P=D/P. In particular, ¢ — e~ is uni-
formly continuous from [0,7] to L? for p > 1.

Let ¢ and y be two non-negative smooth functions supported in a compact on
RT, equal to 1 near 0. Let, for p > 0, x*(z) = p—ldx(%) and X7 f(x) = ¢(px) x* f(z).
Then, for all t € [0, 7], XPe~*®) converges in L* N L? to e~ *®) when p — 0.

Secondly, as the family of operators (X”) is bounded on L£(L*), we have the
following result: (¢ +— XPe~%(")), is an equicontinuous family from [0,7] to L*. By
Ascoli’s theorem, the sequence X”e™® converges to e~ in L>([0,T]; L* N L?).

Fix p such that C’[|e=*®) — XPe=2®)|| 4 < /2 for all t € [0,T]. Use inequality
(5.6), then we have [|[[e=*() — X?Pe=*® PJ(m(t) — my, ()| 2 < /2.

Now, p > 0 being fixed, note that the function t — [Xpe*“(t), Py] is continuous
from [0, T] to the space of compact operators in L?, so uniformly continuous thanks
to Heine’s theorem. Hence we have, for ¢,t € [0, T:

[XPem ™, Pjlm™ (t) — [XPe ), Py Jm™ (¢')
= [XPe™® P )(m™ (1) — m™ (¢')) + ([XPe 0, Pj] — [XPe o) Py m™ (t').

Thus

[[XPe™®, P lm™ (t) — [XPe ) P\ lm™ (¢')| 2n 10
< |[XPe™, Pyl o (jo,1;2(22:L2nLay | (m™ (t) — m™ (t))]| >
+[XPe®, Py] — [XPe ), Py]ll £(z2n24,22) - C.

Therefore, the sequence (¢ +— [Xpe_“(t),P”]m’71 (t))n, is equicontinuous, and
strongly converges to t — [Xpe_a(t), PjJm(t); the convergence is uniform in ¢ by
Ascoli’s theorem. Therefore, there exists 1y such that for all n; < 19, we have
[[XPe=®, P J(m™ (t) — m(t))| 2 < /2 for all t € [0, 7.

Finally, we obtain that [[e™® PJ(m™(t) — m(t))z < e for all
m < mno. Therefore we have strong convergence to 0 in L°([0,T];L?) of
t— [e=*®, Py](m™ (t) — m(t)). O

6. The Damping Parameter

We prove here a strong convergence result of the system (1.2) when the parameter
a tends to 0. In [8], Hamdache and Tiloua establish a weak convergence result for
the system, with an exchange term.

Theorem 6.1. Assume that ey, hy, mg, curleg, curlhy are in L?(RP), hey is in
L°°(B) and n is small. Let, for a damping paramater o not fized (eq,hy, my) be
the solution of the system (1.2). Then (eq,hs, my) converges strongly in C°(L?) x
CO(L?) x C°(L?) to the solution (e,h,m) of the system (1.2) with o = 0 when «
tends to 0.
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Proof. First, we can assume, after extracting a subsequence, that e® and h® con-
verge weakly in L2((0,7) x R?). Now the uniform estimates in ¢ on h; in Propo-
sitions 4.2 and 4.4 are independant of «. Consequently, because n > 0 is fixed,
the family (V;,h%) is bounded in L>((0,T); L?(B)) C L?((0,T) x B), so (h9) is
bounded H'((0,7T) x B) and, after extracting a subsequence, converges strongly in
L'((0,T) x B).
Let a1, as > 0 intended to tend to 0. We have
om® — 9m*? = (m* — m*?) x (h*'" + heyy + VO (m))
+m™* x (VO(m*) — V®(m?))
+m* x (mﬁ‘1 — mﬁ‘Q)
+m® x (h — he?)
+arm® x (m® x h*)
—aom®? X (m*? x h*?).
So, the estimate on |m®* — m®*?| is written as:
1
§8t|ma1 o ma2|2 < 0+ C|ma1 o ma2|2
+ ™~ m® |7 (m® — m)|
+2|h$* — hP?| 4+ o1 [h*'| 4 ag[h*?].

Therefore,

1d
sqlm® () —m* @7 < (C+ DlIm™ (¢) - m* @)]7:

+ S (1) — b () 2By + D(an, az)

which gives, after an integration in time,

Sl (0) = m® (@) < (€ +1) [ m® () =m0 ds

+ Hhal — he HLl((O,TxB)) + TD(Oél, 042).

We conclude with Gronwall’s lemma that the subsequence (m®), is a Cauchy
sequence in Li’:c(L2). It has a strong limit, which makes to take the limit in the non-
linear terms; consequently, the limit is a solution of the Landau—Lipschitz equation

without damping parameter. O

Remark 6.2. In fact, we can prove with the arguments developped in these two last
sections, that (o, 1) — (e, h,m) is continuous from [0, 1] x [0, 1] to L%([0, T]; LE ) x
L2(0,T); L2,)  C([0, T); L2).

loc
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