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Abstract. We study the Maxwell–Landau–Lifshitz system without exchange energy.
First, we prove an Lp(L2

loc) estimate for the linear wave equation and apply this local
energy estimate to obtain a bound on the curl of the electromagnetic field, uniformly
in time and locally in space. Next, we prove strong convergence results, when the time
t tends to ∞ or when the speed of light tends to ∞ (which corresponds to the quasi-
stationary approximation). Finally, we establish a stability result with respect to the
damping parameter of the Landau–Lifshitz equation.
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1. Introduction

1.1. Presentation of the Maxwell–Landau–Lifshitz system

The Maxwell–Landau–Lifshitz system reads


∂T (ε0E) − curlH = 0
∂T (µ0(H + M)) + curlE = 0

∂TM = γ0

(
M × HT +

α

|M|M × (M × HT )
)

(E(0),H(0)) = (E0,H0)
M(0) = M0

div(ε0E) = 0
div(µ0(H + M)) = 0

(1.1)

where the electric field E, the magnetic field H and the magnetization M depend
on the time T ∈ R+ and the space-variable X ∈ Rd and take values into R3. Here,
the dielectric and magnetic permittivities ε0 and µ0 are constants.
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Although in most physical applications d = 3, the cases d = 1, 2 are also of
interest. M(T ) is assumed to be supported in a compact Ω̄ included in BR. |M|
is assumed to be a constant Ms on Ω̄. α is a non-dimensional constant called the
damping parameter, between 0 and 1. Physically, we have α of order 10−1 or 10−2.
Here and below we denote by Bρ = {x ∈ Rd | |x| ≤ ρ} the ball in Rd centered in 0
with radius ρ, and B = B1.

The effective magnetic field HT , is defined by

HT = H + Ha(M) + He(M) + Hext,

where (see also [7, 14])

• for M in R3, Ha(M) = −∇MΦ̃(M), where the datum Φ̃ is a non-negative convex
function from R3 which vanishes at 0. Ha(M) is called the anisotropy energy.

• He(M) = −K1lΩ∆M, is the exchange energy.
• and Hext the Zemann energy or exterior energy, is given and does not depend

on T .

Here, we consider the case K = 0. Mathematical results are very different in
the other case (see, for instance, [2]). Note that the last two equations in (1.1) are
satisfied for all times if they hold at T = 0. The non-dimensionalized system is:



η ∂te− curl h = 0
η ∂t(h + m) + curl e = 0
∂tm = −m × hT − α m × (m × hT )
(e(0),h(0)) = (e0,h0)
m(0) = m0

div(e) = 0
div(h + m) = 0
|m| = 1lΩ Ω ⊂ B

hT = h + hext −∇Φ(m)

(1.2)

where η = v/c is the quotient of two characteristic speeds of the system, i.e. the
giromagnetic ratio in the Landau–Lifshitz equation v = R|γ0|Ms, and the speed of
light c = (ε0µ0)

−1/2.

1.2. Main results

In the case with no exchange energy, the system was studied by Joly–Métivier–
Rauch in [12]. They established the existence of energy solutions, i.e. weak solutions
satisfying natural energy estimates.

Theorem 1.1 (Joly–Métivier–Rauch). For d ≤ 3, assume that e0, h0 are in
L2(Rd), and that m0, hext ∈ L∞(Rd) and suppm0 is compact. Then there exists
an energy solution of (1.2), such that the fields e, h, m are in C0(R+; L2(Rd)).
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Moreover, if we assume that curl e0 and curl h0 are in L2(Rd), then the energy
solution is unique and the fields curl e, curl h are also in C0(R+; L2(Rd)).

The proof of this theorem can be found in [12]. The term Φ(m) does not appear
there, but its addition does not modify the proof substantially.

When d = 2, Haddar [7] has generalized the above result to variable ε in (1.1).
When d = 3, Jochmann [10] proved the existence of weak energy solution of (1.1)
in a more general situation, when ε and µ are non-constant and the first equation
is replaced with

∂T (εE) − curlH = −σE− J, (1.3)

where σ is a bounded non-negative function from R3, and J belongs to
L1(L2(R3)). No other result is known in the literature for strong solutions with-
out exchange term.

Other results are available in the presence of the exchange term he(m) (see [3]).
We are interested in the strong solution of the problem (1.2) given by Theo-

rem 1.1. We consider only the spatial dimensions d = 1, 2, 3, in order for the system
(1.2) to be physically meaningful. However, the results on the wave equation are
clearly true in any dimension.

We use the orthogonal decomposition of L2(Rd): for h ∈ L2, h⊥ (respec-
tively, h‖) is the orthogonal projection on ker div (respectively, ker curl). The
orthogonal component of h satisfies the following wave equation:(

η2∂2
t − ∆

)
h⊥ = −η2∂2

t m⊥. (1.4)

Consider a function P which is C∞ on Rd\{0} and homogeneous of degree 0,
and denote by P (D)v the function such that P̂ (D)v(ξ) = P (ξ)v̂(ξ), where f̂(ξ) is
the Fourier transform of f defined by

f̂(ξ) =
∫

Rd

f(x)e−ix·ξ dx.

This work is based on a local energy estimate for solution of (1.4). Our first result is:

Theorem 1.2. Let v be a real-valued function from R+ to Rd and let 1 ≤ p ≤ +∞.
Let us assume that supp v ⊂ R+ × B, and v ∈ Lp(R+, L2(Rd)), and d ≥ 2. Denote
by u

Pv
the solution of the Cauchy problem


(
η2∂2

t − ∆
)
u = P (D)v = Pv

u|t=0 = 0
∂tu|t=0 = 0.

Then ∇t,xu
Pv

∈ Lp(R+, L2
loc) ∩ L∞(R+; L2

loc), and there exists a constant C > 0
depending only on P, such that for v ∈ Lp(R+, L2(Rd)) α, q with p ≤ q ≤ +∞ and
ρ ≥ 1

η‖∂tuPv
‖Lq(L2(Bρ)) + ‖∇u

Pv
‖Lq(L2(Bρ)) ≤ Cρ1+ 1

q − 1
p ‖v‖Lp(L2(Rd)).
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This theorem can be used to prove for the system (1.2):

Proposition 1.3. Assume that e0, h0, m0, curl e0, curl h0 are in L2(Rd), hext is
in L∞(B) and let (e,h,m) be the strong solution of (1.2). Then, when α > 0 the
fields e and h⊥ are in L2(R+; L2

loc).

We can obtain:

Theorem 1.4. Assume that α > 0 and e0, h0 are in L2(Rd), hext ∈ L∞(B); then
e(t), h⊥(t) → 0 when t → +∞ in L2

loc.

Next, we derive a uniform bound on first derivatives when η is sufficiently small.

Theorem 1.5. Assume that e0, h0, m0, curl e0, curl h0 are in L2(Rd), hext is in
L∞(B). Then for η sufficiently small, curl e and curl h are in L∞(L2

loc).

This improves the results of [12], giving uniform estimates with respect to t of
first derivatives of the electromagnetic field.

In [11], when t → +∞, the weak convergence in L2 of E(t) and H⊥(t) is estab-
lished in (1.1)–(1.3), even in the case of variable ε and µ. A strong convergence
result on E(t) is proved only when σ ≥ σ0 > 0. The description of the ω-limit set is
only obtained with an exchange term which leads to an H1 bound for m; cf. [3, 5].

We prove next the following quasi-stationary convergence result:

Theorem 1.6. The Cauchy problem


∂tm = −m × hT − αm × (m × hT )
curl h = 0
div(h + m) = 0
m|t=0 = m0

has a unique solution m ∈ C1(R+; L2). Moreover, denoting by (eη,hη,mη) the
solution of (1.2) for α ≥ 0 fixed, the fields eη and hη⊥ converge as η → 0 to 0 in
L2(R+; L2

loc) while mη converges strongly to m in C(R+; L2).

Without damping term (i.e. when α = 0) the uniqueness has been proved by
Jochmann [10], assuming that µ is non-constant. Again in [10], the weak quasi-
stationary limit has been established.

In the last section of this paper, η being fixed and (eα,hα,mα) being the solution
of (1.2), we prove:

Proposition 1.7. When α tends to 0, (eα,hα,mα) converges in L2
loc

(
L2

loc

) ×
L2

loc(L
2
loc) × C(L2) to a strong solution (e0,h0,m0) of the system (1.2) with α = 0.

2. Transformation and Non-Dimensionalization

2.1. Transformation

We consider the system (1.1). We assume that

• suppM0 ⊂ BR;
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• ∀x ∈ suppM0, |M0(x)| = Ms ∈ R∗
+;

Let (E,H,M) be an energy solution of this system. Then we have

∂tM(t, x)M(t, x) = 0 f.a.e. x ∈ Rd.

This implies that:

∀ t ∈ R+, |M(t, ·)| = Ms1lsuppM0 .

In particular, (E,H,M) is a solution of the (polynomial) PDE system:


∂T ε0E− curlH = 0
∂T µ0(H + M) + curl E = 0

∂TM = γ0

(
M × H +

α

Ms
M × (M × H)

)
(E(0),H(0)) = (E0,H0)
M(0) = M0

div(ε0E) = 0
div µ0(H + M) = 0.

Conversely, by the same method, a solution of this PDE system is also solution
of the system (1.1).

2.2. Non-dimensionalization

Make the following scalings:


e =
√

ε0
µ0

E
Ms

Φ(m) =
Φ̃(Msm)

Ms
2

h =
H
Ms

m =
M
Ms

x =
X

R
t = |γ0|Ms T.

Define

η = R|γ0|Ms
√

ε0µ0 .

Remark 2.1. η is nothing but the quotient v/c of two characteristic system speed:
first, the giromagnetic ratio in Landau–Lifshitz equation v = R|γ0|Ms, next, the
speed of light c = (ε0µ0)

−1/2. In particular, the limit η → 0 corresponds to the
quasi-stationary approximation of the electromagnetic field.

The non-dimensionalized system is now exactly (1.2), and we know that
suppm0 ⊂ B and |m0| = 1 on suppm0.

Remark 2.2. We do not see the geometry of suppm0; we only use that it is
bounded, so has a finite Lebesgue measure.

Notation 2.3. Let f(m, h) = −m× h − αm × (m × h).
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Properties 2.4. The function f satisfies:

• f(0, h) = 0, h ∈ R3;
• f is linear with respect to h;
• f is locally Lipschitzian with respect to m;
• f(m, h) · m = 0, h, m ∈ R3;
• f(m, h) · h = α|m × h|2, h, m ∈ R3;
• |f(m, h)|2 = (1 + α2|m|2)|m × h|2, h, m ∈ R3.

2.3. Classical energy estimates

Notation 2.5. Let (e,h,m) be a weak solution of system (1.2). We note

E(t) =
1
2
(‖e(t)‖2

L2(Rd) + ‖h(t)‖2
L2(Rd)

)
+

∫
B

Φ(m(t)) +
1
2
|hext − m(t)|2 dx.

E is the usual electromagnetic energy in the Maxwell system, completed with
the different energies coming from Landau–Lifshitz equation.

Let (e,h,m) be a strong solution of system (1.2). Recall that

|m(t, x)| = |m0(x)| a.e. (2.2)

Take the L2(Rd) scalar product of the first (respectively, second) equation in
(1.2) with e(t) (respectively, h(t)). Add the two expressions. Because curl is self-
adjoint, we find

η
d
dt

E(t) + η

∫
Rd

∂tm(t) · h(t) dx = 0.

Now, h = hT + ∇Φ(m) − hext. Thus,

∂tm · h = ∂tm · ∇Φ(m) − ∂tm · hext + ∂tm · hT

= ∂tΦ(m) − ∂tm · hext + f(m,hT ) · hT .

Then, with (2.2), we have −∂tm · hext = ∂t
1
2 |hext − m|2. Now, thanks to the

two last properties in 2.4,
d
dt

E(t) +
α

1 + α2
‖∂tm(t)‖2

L2 ≤ 0,

d
dt

E(t) + α‖m(t) × h(t)‖2
L2 ≤ 0.

With a time-integration, we obtain:

Proposition 2.6. Assume that (e,h,m) is an energy solution of system (1.2); then
for all t ≥ 0,

E(t) +
α

1 + α2

∫ t

0

‖∂tm(s)‖2
L2 ds ≤ E(0),

E(t) + α

∫ t

0

‖m(s) × h(s)‖2
L2 ds ≤ E(0).

In particular, m × h and ∂tm belong to L2
(
R

1+d
+

)
.
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Definition 2.7. Let (e,h,m) be a weak solution, that is a solution in the distri-
bution sense, of the system (1.2). We say that it is an energy solution if E(0) < +∞
and if the estimates (2.2), and Proposition 2.6 are satisfied.

3. Local Energy for the Wave Equation

3.1. An L2 orthogonal decomposition

The system (1.2) uses the curl and div operators. We decompose the system, taking
the curl part and the div part. Introduce the orthogonal decomposition of L2(Rd):

Notation 3.1. Define

L2
⊥(Rd) = {u ∈ L2(Rd) | div u = 0}

and L2
‖(R

d) = {u ∈ L2(Rd) | curl u = 0}.
Proposition 3.2. We have an orthogonal sum

L2(Rd) = L2
⊥(Rd) ⊕ L2

‖(R
d).

We denote by P⊥ : u 
→ P⊥u = u⊥ and P‖ : u 
→ P‖u = u‖ the two projectors
associated to this decomposition.

Those projectors are both Fourier multipliers, with a symbols defined, respec-
tively by

P̂⊥f(ξ) = −ξ × (ξ × f̂(ξ))
|ξ|2 and P̂‖f(ξ) =

ξ · (ξ · f̂(ξ))
|ξ|2 .

The equation div e = 0 implies that e⊥ = e, that e‖ = 0. We also have h‖ +
m‖ = 0. We know that m has a bounded and time-invariant support in space, and
|m| = 1 where m �= 0. Moreover, ∂tm = f(m,h). This implies that supp ∂tm ⊂
R+ × B.

This provides some information about h‖ = −m‖. In order to know h⊥, write
the wave equation satisfied by h:(

η2∂2
t − ∆

)
h = −η2∂2

t m −∇div m.

Take the projection on L2
⊥(Rd):(
η2∂2

t − ∆
)
h⊥ = −η2∂2

t m⊥.

We obtain similarly (
η2∂2

t − ∆
)
e = −η curl ∂tm⊥.

We can consider for the moment m as a datum. We know that ∂tm ∈ L2
(
R

1+d
+

)
thanks to Eq. (2.6). Next, we note that, if u is a solution of

(
η2∂2

t −∆
)
u = −∂tm⊥,

then e−curlu and h⊥−∂tu are solutions of the linear homogeneous wave equation(
η2∂2

t − ∆
)
g = 0.
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3.2. L2 local estimates for the non-homogeneous linear wave

equation

In this section, d is any positive integer (not necessary less or equal than 3).

Notations 3.3. We denote by Sρ = {x ∈ Rd | |x| = ρ} the sphere centered in 0
with radius ρ, and Γa,b = {x ∈ Rd | a ≤ |x| ≤ b} the annulus with radii a and b.

Notation 3.4. We denote by E = E(t, x) ∈ D′(R1+d) the fundamental solution
of the wave equation (�E = δt,x ∈ D′(R1+d), where � = ∂2

t − ∆) supported in
{t ≥ 0}, and E : t 
→ E(t) the fundamental solution valued at the time t, i.e.
E ∈ C∞(R+;D′(Rd)) is defined by:

∀φ ∈ D(R1+d), 〈E, φ〉D′(R1+d),D(R1+d) =
∫

R+

〈E(t), φ(t, · )〉D′(Rd),D(Rd) dt.

We have for t ≥ 0

Ê(t)(ξ) =
sin(t|ξ|)

|ξ| .

This formula implies that

Proposition 3.5. For t ≥ 0, E′(t) defines by convolution in Rd
x a continuous map-

ping L2(Rd) → L2(Rd) with norm equal to 1. Similarly, ∇E(t) defines a continuous
mapping from L2(Rd) to L2(Rd) with norm equal to 1.

When d is even, E(t) is a smooth distribution outside St, defined by (see [6, 16])

E(t)(x) = E(t, x) =

(
d
2 − 1

)
!

2πd/2 (d − 1)!
1l{|x|<t}(√

t2 − |x|2)d−1

=
(

1
t

∂

∂t

) d−2
2 td1l{|x|<t}(√

t2 − |x|2)1/2
.

This implies:

for |x| < t, ∂tE(t, x) = E′(t)(x) = −
(

d
2 − 1

)
!

2πd/2(d − 2)!
t

(
√

t2 − |x|2)d+1
,

for |x| < t, ∇xE(t, x) = ∇E(t)(x) = −
(

d
2 − 1

)
!

2πd/2(d − 2)!
x

(
√

t2 − |x|2)d+1
.

When d is odd, the distributions E′(t) and ∇E(t) are supported in St (Huygens
principle).
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We consider the solution u of the Cauchy problem:


(
η2∂2

t − ∆
)
u = v

u|t=0 = 0
∂tu|t=0 = 0.

(3.2)

When η = 1, u is given by

u(t) =
∫ t

0

E(t − s)∗x v(s) ds := E ∗t,x v(t).

Therefore,

∂tu(t) =
∫ t

0

E′(t − s)∗x v(s) ds = ∂tE ∗t,x v(t).

For locally integrable functions supported in {t ≥ 0}, we use the notation

f ∗t g(t) =
∫ t

0

f(t − s) g(s) ds.

First, we prove the following theorem:

Theorem 3.6. Let 1 ≤ p ≤ +∞. Assume that supp v ⊂ R+ × B, and v ∈
Lp(R+, L2(Rd)). Let uv be the solution of the Cauchy problem (3.2). Then ∂tu and
∇uv are in Lp(R+, L2

loc) ∩ L∞(R+; L2
loc). More precisely, there exists a constant C

which depends only on d, such that for v ∈ Lp(R+, L2(Rd)) with supp v ⊂ R+ × B,

for all q with p ≤ q ≤ +∞, for all T ∈ R+ ∪ {+∞} and ρ ≥ R, one has:

η ‖∂tu‖Lq(L2(Bρ)) + ‖∇uv‖Lq(L2(Bρ)) ≤ Cρ1+ 1
q − 1

p ‖v‖Lp(L2(Rd)).

Notation 3.7. Let P be a smooth function outside the origin, homogeneous with
a degree 0 on Rd. Let

‖P‖Cd(Sd−1) =
d∑

j=0

‖P (j)‖L∞(Sd−1).

Proof of Theorem 3.6. Consider ũ defined by ũ(t, x) = u(ηρt, ρx); we can check
that:

• u is solution of �ũ = ρ2ṽ where ṽ(t, x) = v(ρt, ρx).
• supp ṽ ⊃ R+ × B.
• ‖ṽ‖Lp(L2) = η− 1

p ρ−
1
2− 1

p ‖v‖Lp(L2).
• ‖∇ũ‖Lq(L2(Br)) = η− 1

p ρ1− 1
2− 1

p ‖∇u‖Lq(L2(Bρr)).
• ‖∂tũ‖Lq(L2(Br)) = η1− 1

p ρ1− 1
2− 1

p ‖∂tu‖Lq(L2(Bρr)).

Hence, it suffices to prove the theorem for R = ρ = 1 and η = 1, which we now
assume.

The principle is to decompose v into several pieces, and next to bound each of
them by the convolution of t 
→ ‖v(t)‖L2(Rd) with a function of [L1 ∩ L∞](R+).
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We write the details of the proof for ∂tu. The estimates for ∇u are similar; in
particular, we use in even dimension, that

|∇xE(t, x)| ≤ |∂tE(t, x)| |x| < t.

First with (t − 4)+ := max{t − 4, 0} write

uv(t) =
∫ (t−4)+

0

E′(t − s)∗x v(s) ds +
∫ t

(t−4)+
E′(t − s)∗x v(s) ds.

The second integral in the right-hand side can be bounded:

����
∫ t

(t−4)+
E′(t − s)∗x v(s) ds

����
L2(B)

≤
����

∫ t

(t−4)+
E′(t − s)∗x v(s) ds

����
L2(Rd)

≤
∫ t

(t−4)+
‖E′(t − s)∗x v(s)‖L2(Rd) ds

≤
∫ t

(t−4)+
‖v(s)‖L2(Rd) ds

≤ (1l[0,4]∗t ‖v‖L2(Rd))(t).

Let us consider E′(t − s)∗x v(s) on B when t − s ≥ 4. In odd dimension, the
support property of convolution shows that, when t − s ≥ 4.

E′(t − s)∗x v(s) = 0 on B3 thus on B.

This completes the proof in this case. In even dimension, E′(t − s)∗x v(s) is on B

a smooth function, and for x ∈ B:

[E(t − s)∗x v(s)](x) =
∫

B

Cd (t − s)√
(t − s)2 − |x − y|2d+1

· v(s, y) dy ds

The Schwarz inequality yields thanks to the fact that (t−s)2−|x−y|2 ≥ 1
2 (t−s)2

for x ∈ B and t − s ≥ 4:

‖E′(t − s)∗x v(s)‖L2(B) ≤ √
σd‖E′(t − s)∗x v(s)‖L∞(B)

≤ 2d/2Cd σd · (t − s)−d · ‖v(s)‖L2(B)

≤ 2d/2Cd σd · (t − s)−d · ‖v(s)‖L2(Rd).

where σd is the Lebesgue measure of the unit ball in Rd.
Noting that t 
→ t−d1l[4,+∞[(t) belongs to L1 ∩ L∞(R+), this completes the

proof.
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Proof of Theorem 1.2. The scheme of the proof is the same as the proof of
Theorem 3.6. Write

uPv(t) =
∫ (t−6)+

0

E′(t − s)∗x Pv(s) ds +
∫ t

(t−6)+
E′(t − s)∗x Pv(s) ds.

The second term in the left hand side is bounded by 1l[0,6] ∗t ‖v‖L2(Rd). Write,
for t − s ≥ 6,

Pv(s) = 1lB2Pv(s)︸ ︷︷ ︸
v1(t,s)

+ 1lΓ2,t−s−4Pv(s)︸ ︷︷ ︸
v2(t,s)

+ 1lΓt−s−4,t−s+1Pv(s)︸ ︷︷ ︸
v3(t,s)

+ 1lBc
t−s+1

Pv(s)︸ ︷︷ ︸
v4(t,s)

.

We want to show that ‖E′(t − s)∗x vj(t, s)‖L2(B) ≤ fj(t − s)‖v(s)‖L2 where
fj ∈ L1 ∩ L∞(R+), j = 1, 2, 3, 4. The support properties imply:

[E′(t − s)∗x v4(t, s)]|B = 0

and, in odd space dimension,

[E′(t − s)∗x v1(t, s)]|B = [E′(t − s)∗x v2(t, s)]|B = 0.

Moreover, because E′(t − s)∗x : L2(Rd) → L2(Rd) is continuous,

‖[E(t − s)∗x v3(t, s)]‖L2(B) ≤ ‖v3(t, s)‖L2(Rd) = ‖Pv(s)‖L2(Γt−s−4,t−s+1). (3.3)

In order to bound the last quantity, we use the following theorem:

Theorem 3.8. Let P = P (D) be a Fourier multiplier, with symbol P (ξ) smooth
on Rd\{0} and homogeneous of degree 0. The inverse Fourier transform of P (ξ),
denoted P̃ (x) is a smooth function outside the origin, homogeneous of degree −d,

and there exists a constant γ (which does not depend of P ) such that

∀x �= 0, |P̃ (x)| ≤ γ ‖P‖Cd(Sd−1)

|x|d .

For a proof of this result, see [17]. From now on, γ will be the constant given by
this theorem.

Corollary 3.9. Let f ∈ L1(Rd) supported in B, and P as above. Then Pf is smooth
on Rd\B, and, when |x| > 1, we have:

|Pf (x)| ≤ γ ‖P‖Cd(Sd−1)‖f‖L1(Rd)

(|x| − 1)d
.

Proof. Since the singular support of P̃ is contained in {0} the singular support
of Pf is contained in the support of f and therefore in B (see, for instance, [9,
Chap. 4]). The inequality is a consequence of Theorem 3.8 and of the following
equality

Pf (x) =
∫

B

P̃ (x − y)f(y) dy.
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Corollary 3.10. There is a constant C which depends only of d such that for all
f ∈ L2(Rd) with supp f ∈ B and t ≥ 6,

‖Pf ‖L2(Γt−4,t) ≤
Cγ ‖P‖Cd(Sd−1)‖f‖L2(Rd)

t
d+1
2

.

Proof. We have ‖Pf ‖L2(Γt−4,t) = ‖1lΓt−4,tP 1lB f‖L2(Rd). The kernel of 1lΓt−4,tP1lB
is

K(x, y) = 1lΓt−4,t(x)P̃ (x − y)1lB(y).

Therefore, we have

M1 := sup
x∈Rd

‖K(x, · )‖L1(Rd) = sup
x∈Γt−4,t

‖P̃ (x − · )‖L1(B) ≤
Cd γ‖P‖Cd(Sd−1)

(t − 5)d
,

M2 := sup
y∈Rd

‖K( · , y)‖L1(Rd) = sup
y∈B

‖P̃ ( · − y)‖L1(Γt−4,t)

≤ C γ‖P‖Cd(Sd−1) [td − (t − 5)d]
(t − 5)d

≤ γ‖P‖Cd(Sd−1)C
′
d

t − 5
.

The operator is bounded on L2(Rd) with norm smaller than
√

M1 M2 thanks to
Schur’s lemma, implying the corollary.

The last corollary bounds the second member in the inequality (3.3) by
‖v(s)‖

L2(Rd)

(t−s)
d+1
2

. This finishes the proof of Theorem 1.2 in odd dimension.

It remains to study contributions of v1 and v2 in even dimension. In this case:

for x ∈ B, [E′(t − s)∗x v1(t, s)](x) =
∫

B2

Cd(t − s)1l{t−s≥x−y}√
(t − s)2 − |x − y|2d+1

Pv(s, y) dy.

Use the inequality (t − s)2 − |x − y|2 ≥ 3
4 (t − s)2 on the domain of integration

|[E′(t − s)∗x v1(t, s)](x)| ≤
(

4
3

) d+1
2 Cd

(t − s)d

∫
B2

|Pv(s, y)| dy.

Schwarz inequality and the boundedness of P in L(L2(Rd)) imply:

‖E′(t − s)∗x v1(t, s)‖L∞(B) ≤ 2√
3

(
8
3

)d/2 √
σdCd

(t − s)d
· ‖v(s)‖L2(Rd)

which concludes for the contribution of v1.
Now, we can apply Corollary 3.9 to have an estimate for the contribution of v2.

[E′(t − s)∗x v2(t, s)](x) =
∫

Γ2,t−s−4

Cd(t − s) 1l{t−s≥|x−y|}√
(t − s)2 − |x − y|2d+1

Pv(s, y) dy

|[E′(t − s)∗x v2(t, s)](x)| ≤
∫

Γ2,t−s−4

Cd (t − s)√
(t − s)2 − (1 + |y|)2d+1

‖v(s)‖L2(Rd)

|y|d dy
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On the domain of integration, t − s + 1 + |y| ≥ t − s, so in polar coordinates:

|[E′(t − s)∗x v2(t, s)](x)| ≤
∫

Γ2,t−s−4

Cd (t − s) ‖v(s)‖L2(Rd)√
((t − s) − (1 + |y|))(t − s + 1 + |y|)d+1

dy

|y|d

≤ C′
d‖v(s)‖L2(Rd)

∫ t−s−4

2

1

(t−s)
d−1
2 (t−s− (1+r))

d+1
2

dr

r

≤ C′′
d ‖v(s)‖L2(Rd)

∫ t−s−3

3

1

(t − s)
d−1
2 (t − s − r)

d+1
2

dr

r
.

Thus, taking u = t − s, it is sufficient to prove the integrability and the bounded-
ness of the function u 
→ 1

u
d−1
2

∫ u−3

3
1

(u−r)
d+1
2

dr
r on [6, +∞[. To do this, note that

u − r ≥ u/2 when r ≤ u/2:

1

u
d−1
2

∫ u−3

3

1

(u − r)
d+1
2

dr

r
≤ 2

d+1
2

u
d−1
2

∫ u/2

3

1

u
d+1
2

dr

r
+

2

u
d−1
2

∫ u−3

u/2

1
u

dr

(u − r)
d+1
2

≤ 2
d+1
2 ln u

ud
+

2

u
d+1
2

∫ u/2

3

dr

r
d+1
2

≤ 2
d+1
2 ln u

ud
+

2

u
d+1
2

1(
d+3
2

)
3

d+3
2

.

The last member is a sum of two functions of u integrable on [6, +∞[ when d ≥ 2,
this finishes the proof of Theorem 1.2.

3.3. Estimates for the Cauchy problem for the homogeneous linear

wave equation

Proposition 3.11. Let u0 ∈ H1(Rd) and u1 ∈ L2(Rd) be two data supported in
BR, and u such that




(η2∂2
t − ∆)u = 0

u|t=0 = u0

∂tu|t=0 = u1.

Then exists a constant C which depends only on d such that for all 1 ≤ p ≤ +∞,

and ρ ≥ R, we have:

√
η(η‖∂tu‖Lp(R+;L2(Bρ)) + ‖∇u‖Lp(R+;L2(Bρ)))

≤ Cρ1+ 1
p [‖∇u0‖L2(Rd) + η‖u1‖L2(Rd)].

Proof. After rescaling, it suffices to prove the theorem for R = ρ = η = 1.
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Choose a function χ(t), smooth on R+, vanishing when t ≤ 1/2, equal to 1 when
t ≥ 1. Let w(t, x) = χ(t)u(t, x). The function w is the solution of the following
Cauchy problem: 


�w = χ′′u + χ′∂tu

w|t=0 = 0
∂tw|t=0 = 0.

The function χ′′u + χ′∂tu is supported by
[
1
2 , 1

] × B2, and

‖χ′′u + χ′∂tu‖L∞(R+;L2) ≤ ‖χ′′‖L∞‖u‖L∞((0,1);L2)

+ ‖χ′‖L∞‖∂tu‖L∞((0,1);L2).

Since u(t) = u0 +
∫ t

0 ∂tu(s) ds, we have, when t ∈ [0, 1],

‖u‖L∞((0,1);L2) ≤ ‖u0‖L2 +
∫ t

0

‖∂tu(s)‖L2 ds ≤ ‖u0‖L2 + ‖∂tu‖L∞(R+;L2).

With the energy conservation for the wave equation

‖∂tu(t)‖2
L2(Rd) + ‖∇x u(t)‖2

L2(Rd) = ‖u1‖2
L2(Rd) + ‖∇u0‖2

L2(Rd),

this implies that

‖χ′′u + χ′∂tu‖L∞(R+;L2(Rd)) ≤ C(‖u1‖L2(Rd) + ‖∇u0‖L2(Rd)).

Moreover, χ′′u + χ′∂tu is compactly supported in time, and for all p ≥ 1,

‖χ′′u + χ′∂tu‖Lp(R+;L2(Rd)) ≤ ‖χ′′u + χ′∂tu‖L∞(R+;L2(Rd)).

Thus, by Theorem 3.6,

‖∂tw‖Lp(R+;L2(Bρ)) ≤ Cρ1+ 1
p (‖u1‖L2(Rd) + ‖∇u0‖L2(Rd)).

To conclude, use the estimate:

‖∂tu‖p
Lp(R+;L2(Bρ)) =

∫ ∞

0

‖∂tu(s)‖p
L2(Bρ) ds

=
∫ 1

0

‖∂tu(s)‖p
L2(Bρ) ds +

∫ ∞

1

‖∂tw(s)‖p
L2(Bρ) ds

≤
∫ 1

0

(‖u1‖2
L2(Rd) + ‖∇x u0‖2

L2(Rd)

)p/2 ds + ‖∂tw‖p
Lp(R+;L2(Bρ)).

Remark 3.12. We have analogous results for initial data of the form Pu0 and
Pu1. Indeed, let v the solution of homogeneous wave equation with initial data Pu0

and Pu1. The new w = χ v satisfies �w = χ′′v + χ′v = P [χ′′u + χ′u] because
P commutes with differential operators. The remainder of the proof is exactly the
same, using Theorem 1.2 instead of Theorem 3.6.

Remark 3.13. For the case p = +∞, the conservation of energy

E(t) =
1
2
‖∇t,xu(t)‖2

L2
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gives already the result, with no restriction on the localization of the initial values,
nor on the evaluation.

In the case p = 2, for non-compactly supported initial data, we use the following
estimate:

Theorem 3.14. Let u0 ∈ D′(Rd) such that ∇u0 ∈ L2(Rd) and u1 ∈ L2(Rd). Let u

the solution of
(
η2∂2

t − ∆
)
u = 0 such that u|t=0 = u0 and ∂tu|t=0 = u1. Then, for

all ball BR, there is a constant C = C(R) > 0 such that

η2‖∂tu‖2
L2(R+;L2(BR) + ‖∇u‖2

L2(R+;L2(BR) ≤ C(‖∇u0‖2
L2(Rd) + η2‖u1‖2

L2(Rd)).

Proof. Once again, it suffices to prove theorem when η = 1.
When d is odd, the idea is to write explicitly the integral to be calculated, and to

use firstly Huygens principle (‖∇t,xu(t)‖L2(BR) ≤ ‖∇t,xu(0)‖L2(Γt−R,t+R)), secondly
Fubini’s theorem.

‖∇t,xu‖2
L2(R+,L2(BR)) =

∫
R+

‖∇t,xu(t)‖2
L2(BR) dt

≤
∫

R+

‖∇t,xu(0)‖2
L2(Γt−R,t+R) dt

=
∫

R+

∫
t−R≤|x|≤t+R

|∇t,xu(0, x)|2 dxdt

=
∫

Rd

|∇t,xu(0, x)|2 dx

∫
|x|−R≤t≤|x|+R

dt

≤
∫

Rd

|∇t,xu(0, x)|2 dx 2R

= 2R
(‖∇u0‖2

L2(Rd) + ‖u1‖2
L2(Rd)

)
.

When d is even, write

u(t) = E′(t) ∗x u0 + E(t) ∗x u1

∇u(t) = E′(t) ∗x ∇u0 + ∇E(t) ∗x u1

∂tu(t) = E′′(t) ∗x u0 + E′(t) ∗x u1

= ∆E(t) ∗x u0 + E′(t) ∗x u1

= −∇E(t) ∗x ∇u0 + E′(t) ∗x u1.

We only give details for the contribution of E′(t) ∗x u1. The other terms are
similar.

‖E′(t) ∗x u1‖2
L2(B) ≤ ‖E′(t) ∗x u11lBt−2‖2

L2(B) + ‖E′(t) ∗x u11lBc
t−2

‖2
L2(B)

≤ ‖E(t) ∗x u11lBt−2‖2
L2(B) + ‖u1‖L2(Γt−2,t+1). (3.4)
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The second term of the right-hand side can be bounded as in odd dimension.
Consider the first term. For |x| ≤ 1, one has:

|E′(t) ∗x u11lBt−2(x)|2 = Cd

( ∫
|y|≤t−2

t√
t2 − |x − y|2d+1

u(y)dy

)2

.

Using Schwarz inequality, and the inequality |x − y| ≤ |y| + 1,

|E′(t) ∗x u11lBt−2(x)|2 ≤ Ctd−1

∫
|y|≤t−2

|u1(y)|2 t2

(t2 − (|y| + 1)2)d+1
dy.

So, integrating in x ∈ B,

‖E′(t) ∗x u11lBt−2‖2
L2(B) ≤ C

∫
|y|≤t−2

|u1(y)|2 td+1

(t − (|y| + 1))d+1(t + |y| + 1)d+1
dy.

Let us denote v1(t) = E′(t) ∗x u11lBt−2 . We want to prove

‖v1‖L2(L2(B)) ≤ C‖u1‖L2.

A time integration and Fubini’s theorem, give:

‖v1‖2
L2(R+;L2(B)) ≤ C

∫
Rd

|u1(y)|2dy

∫ +∞

t=|y|+2

td+1

(t − (|y| + 1))d+1(t + |y| + 1)d+1
dt.

Thus, we just need to bound uniformly in r = |y| the following integral

F (r) =
∫ +∞

t=r+2

td+1

(t − (r + 1))d+1(t + r + 1)d+1
dt.

We have (with u = t − r + 1)

F (r) =
∫ +∞

u=1

1
ud+1

(
u + r + 1
u + 2r + 2

)d+1

du

F (r) ≤
∫ +∞

1

du

ud+1
=

1
d

< +∞.

This finishes the proof.

4. Application to the Maxwell–Landau–Lifshitz System

In this section, we apply to the system (1.2) the new results on the wave equation
proved in the previous section. Let (e,h,m) be a strong solution of the system
(1.2). The key point is the fact that h⊥ and e are solutions of the following Cauchy
problems. 


(η2∂t − ∆)h̃ = −η2∂2

t m⊥
h̃|t=0 = P⊥h0

∂th̃|t=0 = −1
η
curl e0 − f(m0,h0 −∇Φ(m0) + hext)⊥

(4.1)




(η2∂t − ∆)ẽ = −curl η∂tm⊥
ẽ|t=0 = e0

∂tẽ|t=0 = −1
η
curl h0

(4.2)
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4.1. Boundedness of h⊥ and e with respect to η

In order to study h⊥ and e, decompose the problem in three independent problems:
let u, φ and ψ be the solutions of the following Cauchy problems:


(
η2∂2

t − ∆
)
u = −η∂tm⊥

u|t=0 = 0
∂tu|t=0 = 0

(4.3)




(
η2∂2

t − ∆
)
φ = 0

φ|t=0 = 0

∂tφ|t=0 =
1
η
P⊥h0

(4.4)




(
η2∂2

t − ∆
)
ψ = 0

ψ|t=0 = 0

∂tψ|t=0 =
1
η
e0

(4.5)

Lemma 4.1. Define u, φ, ψ as solutions of the Cauchy problems (4.3)–(4.5). Then
h⊥ = η∂tu + η∂tφ − curlψ and e = curl u + curlφ − ∂tψ.

Proof. Denote h̃ = η∂tu + η∂tφ − curlψ. Clearly, h̃ is solution of wave equation
in (4.1), and h̃|t=0 = P⊥h0. It remains to check that

∂th̃|t=0 = η f(m0,h0 −∇Φ(m0) + hext)⊥ − curl e0.

Indeed,

∂th̃|t=0 = ∂2
t u|t=0 + ∂2

t φ|t=0 + ∂tcurl ψ|t=0

= (∆u)|t=0 − P⊥(∂tm̃)|t=0 + (∆φ)|t=0 + [curl (∂tψ)]|t=0

= ∆(u|t=0) − ηf(m0,h0 −∇Φ(m0) + hext)⊥ + ∆(φ|t=0) − curl e0

= ηf(m0,h0 −∇Φ(m0) + hext)⊥ − curl e0.

The proof for e is similar.

Proposition 4.2. Let (e,h,m) be a solution of the system (1.2). Then for all
R ≥ 1, there is a constant CR which does not depend of m and η such that:

‖h⊥‖L2(R+;L2(BR)) + ‖e‖L2(R+;L2(BR)) ≤ CR
√

η
(√E(0) +

√
η‖∂tm‖L2(R+;L2(Rd))

)
Proof. By Theorem 1.2, the solution u of (4.3) satisfies:

‖η∂tu‖L2(L2(BR)) + ‖∇u‖L2(L2(BR)) ≤ CRη‖∂tm‖L2(L2)

By Theorem 3.14, the solutions φ and ψ of (4.4) and (4.5) satisfies:

‖η∂tφ‖L2(L2(BR)) + ‖∇φ‖L2(L2(BR)) ≤ CR
√

η‖h0‖L2

‖η∂tψ‖L2(L2(BR)) + ‖∇ψ‖L2(L2(BR)) ≤ C
√

η‖e0‖L2.

We conclude by using Lemma 4.1.
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Proof of Theorem 1.4. It suffices again to prove Theorem with η = 1.
We showed in the proof of Theorem 1.2 that there exists hR ∈ L1 ∩ L∞(R+) ⊂

L2(R+) such that the solution u of (4.3) satisfies

‖∇t,xu(t)‖L2(BR) ≤ hR∗t ‖∂tm(t)‖L2(Rd
x).

The property of convolution L2 ∗ L2 implies that the right-hand side is contin-
uous and tends to 0 at infinity. Thus, when t → +∞,

‖∇t,xu(t)‖L2(BR) → 0. (4.6)

By Huygens principle, for t > R, and Φ, Ψ solutions of (4.4) and (4.5),

‖∇t,x(Φ, Ψ)(t)‖L2(BR) ≤ ‖∇t,x(Φ, Ψ)(0)‖L2(Γt−R,t+R)

= ‖1lΓt−R,t+R∇t,x(Φ, Ψ)(0)‖L2(Rd).

Thus, by Lebesgue’s theorem, when t → +∞,

‖∇t,x(Φ, Ψ)(t)‖L2(BR) → 0. (4.7)

We conclude again by using (4.6) and (4.7) with Lemma 4.1.

4.2. Bounds for the curl fields

Notation 4.3. We denote Ecurl(t) = ‖curl e(t)‖2
L2(Rd) + ‖curl h(t)‖2

L2(Rd).

The aim of this paragraph is to prove Theorem 1.5. More precisely, we establish the
following result:

Proposition 4.4. There is a constant K such that, for all positive real fixed Er,

there exists η0 > 0 such that for all 0 < η ≤ η0 and all solution of the problem (1.2)
such that Ecurl(0) ≤ Er, we have

Ecurl(t) ≤ Ecurl(0) + K(E(0)4 + 1).

Proof. We search to estimate ∂th⊥. Decompose h⊥ = h1 + h2, where h1 and h2

are the solutions of the following Cauchy problems:


(
η2∂2

t − ∆
)
h1 = −η2∂2

t m⊥
h1|t=0 = 0
∂th1|t=0 = 0,

(4.8)




(
η2∂2

t − ∆
)
h2 = 0

h2|t=0 = h0⊥

∂th2|t=0 =
1
η
curl e0 + f(m0,h0 −∇Φ(m0) + hext)⊥.

(4.9)

In order to apply Theorem 1.2 to h1 solution of (4.8), estimate ∂2
t m⊥. We have

∂2
t m = ∂tf(m,hT ) = Dmf(m,hT )∂tm + f(m, ∂thT ) (4.10)
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|Dmf(m,hT )∂tm| ≤ 2|hT | |∂tm| ≤ 4 |hT |2 |m| = 4 |h⊥ − m‖ −∇Φ(m) + hext|2 1lB

|Dmf(m,hT )∂tm|2 �
[|h⊥|4 + |m‖|4 + |∇Φ(m)|4 + |hext|4

]
1lB (4.11)

where we wrote f � g in order to say that there is a constant C which is independent
of η and (e,h,m), such that f ≤ Cg. Since m(t) is supported in B,

‖m‖(t)‖4
L4(Rd) � ‖m(t)‖4

L4(Rd) � ‖m‖L∞ = 1.

Next, because ∇Φ is continuous, ‖Φ(m)‖L∞ ≤ supm∈B |Φ(m)| < +∞. More-
over, Φ(0) ≤ Φ(m) for m ∈ R3. Thus, ∇Φ(0) = 0 and supp∇Φ(m) is supported
in B. Consequently,

‖∇Φ(m(t))‖L4(Rd) � ‖∇Φ(m(t))‖L∞(Rd) � 1.

Integrate in x on B in (4.11), then

‖Dmf(m(t),h(t))∂tm(t)‖2
L2(Rd) � ‖h⊥(t)‖4

L4(B) + 1.

Now, because d ≤ 3, by Sobolev inequality (see [1]):

‖h‖L4(B) � ‖h‖L2(B) + ‖∇h‖L2(B).

Thus

‖Dmf(m(t),hT (t))∂tm(t)‖2
L2(Rd) � ‖∇xh⊥(t)‖4

L2(B) + ‖h⊥(t)‖4
L2(B) + 1.

Similarly for the second term in (4.10),

|f(m, ∂thT )| ≤ 2|m| |∂thT | ≤ 2|∂thT |1lB,

|f(m, ∂thT )|2 � (|∂th⊥|2 + |∂tm‖|2 + |∇Φ(m)|)1lB,

‖f(m(t), ∂thT (t))‖2
L2(Rd) � ‖∂th⊥(t)‖2

L2(B) + ‖∂tm(t)‖2
L2(Rd) + 1

� ‖∂th⊥(t)‖2
L2(B) + ‖h(t)‖2

L2(Rd) + 1.

Taking the essential supremum in t on (0, T ):

‖∂tf(m,h)‖2
L∞((0,T );L2(Rd)) �

[‖∇xh⊥‖4
L∞((0,T );L2(B))

+ ‖∂th⊥‖2
L∞((0,T );L2(BR)) + C(h⊥, ∂tm)

]
(4.12)

with

C(h⊥, ∂tm) = ‖h⊥‖4
L∞(R+;L2(B)) + 1 + ‖h‖2

L∞(R+;L2(Rd)) � E(0)2 + 1 < +∞.

(4.13)

By Theorem 1.2,

‖(η∂th1,∇h1)‖L∞((0,T );L2(B)) � η2‖∂tf(m,h)‖L∞((0,T );L2(Rd)).



September 15, 2005 17:2 WSPC/JHDE 00055

584 J. Starynkévitch

We have also conservation of energy for the linear wave equation

‖(η∂th2,∇h2)‖L∞((0,T );L2(B)) ≤ ‖η∂th2(0),∇h2(0)‖L2(Rd)4

≤
√
‖curl h0‖2

L2 + ‖curl e0‖2
L2.

Adding the last two inequalities yields:

‖(η∂th⊥,∇h⊥)‖L∞((0,T );L2(B))4 � η2‖∂tf(m,h)‖L∞((0,T );L2)

+
√
Ecurl(0).

Finally, we use the inequalities (4.12) and (4.13). There is a constant C1 such
that

‖(η∂th⊥,∇h⊥)‖L∞((0,T );L2(B))4 ≤ C1η
2
[‖∇xh⊥‖2

L∞((0,T );L2(B))

+ ‖∂th⊥‖L∞((0,T );L2(BR)) + E(0)2 + 1
]
+

√
Ecurl(0).

In order to put the term ‖∂th⊥‖L∞((0,T );L2(BR)) in (4.12) in the left-hand side,
assume that η ≤ 1

2C1
.

Let

X(T ) = ‖(η∂th⊥,∇h⊥)‖L∞((0,T );L2(BR)).

Then we have, with C2 = 4C1:

X(T ) ≤ η2C2(X(T )2 + E(0)2 + 1) +
√
Ecurl(0).

Now, remark that ‖∇xh⊥(t)‖L2(Rd) = ‖curl h‖L2(Rd). Now, because we are look-
ing for solution of the (1.2) with regularity C(R+, H(curl, Rd)), we obtain that X

is a continuous function. Thus, if X(0) ≤ X1, where X1 is the smaller root of the
quadratic polynomial η2 C2 (X2 + E(0)2 + 1)−X , then X(t) ≤ X1 for all t ≥ 0. We
are in this case when:

η ≤ 1
4C2(C2(E(0)2 + 1) +

√Ecurl(0))
.

To conclude, remark that ‖∇h⊥(t)‖L2 = ‖curl h(t)‖L2 and, thanks to the second
equation and the condition div(h + m) = 0 in (1.2),

‖curl e(t)‖L2 ≤ ‖η∂th⊥(t)‖ + η‖h(t)‖L2 .

Remark 4.5. The L2 estimates so obtained on curl e and curl h does not depend
on the parameter α ∈ [0, 1] in the definition of f(m, h). So, we can obtain a conver-
gence result, in the next section, when α → 0.
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5. Convergence Toward Quasistationary System; Existence and
Uniqueness of Weak Solutions in Quasistationary Problem

We prove a convergence result when η tends to 0 in (1.2), which is the quasi-
stationary limit. In [10], Jochmann proved a weak quasi-stationary limit for weak
energy solution of (1.1). Here, we consider a strong limit for strong solution. We
first study e = eη and hη⊥ using Proposition 4.2, next we study the convergence of
m = mη.

5.1. Convergence of hη⊥ and eη to 0

Proposition 5.1. For fixed α ≥ 0. Let (hη, eη,mη) be the solution of the Cauchy
problem (1.2). Then, for all R > 0, when α > 0

lim
η→0+

‖hη⊥‖L2(R+;L2(BR)) + ‖eη‖L2(R+;L2(BR)) = 0.

When α = 0, we have, for all T > 0,

lim
η→0+

‖hη⊥‖L2((0,T );L2(BR)) + ‖eη‖L2((0,T );L2(BR)) = 0.

Proof. First, recall Proposition 4.2 (when 0 < T ≤ +∞)

‖hη⊥‖L2(R+;L2(BR)) +‖eη‖L2(R+;L2(BR)) ≤ CR
√

η
(√E(0)+

√
η‖∂tm‖L2(R+;L2(Rd))

)
.

By Proposition 2.6, when α > 0,

‖∂tmη‖L2(R+;L2(Rd)) ≤
√

1 + α2

α
E(0).

This gives the proof in this case. When α = 0, the proof follows from the inequality

‖∂tm(t)‖L∞((0,T );L2) ≤ ‖h(t)‖L∞((0,T );L2) ≤
√

2E(0)

given by the Landau–Lifshitz equation.

5.2. Convergence of mη

In this section, we prove the following result in several steps:

Theorem 5.2. There exists a unique solution in C1(R+; L2) of the following
Cauchy problem:

∂tm = f(m,−m‖)

m(0) = m0.
(5.1)

Moreover, if (hη, eη,mη) is a weak solution of (1.2), then as η → 0 mη → m
strongly in C((0, T ); L2).
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5.2.1. Weak convergence

Proposition 5.3. There exists m ∈ L∞(R+ × Rd) and a subsequence of (mη)η

such that:

• mη converges ∗-weakly in L∞ to m.
• m is continuous from R+ to L2

weak(R
d).

• for all t ≥ 0, mη(t) converges weakly in L2(Rd) to m(t).

Proof. (mη)η>0 is bounded in L∞([0, T ]×Rd), so, extracting a subsequence, con-
verges ∗-weakly to a m ∈ L∞([0, T ]× Rd). Moreover, we know that

∂tmη = f(mη,hη⊥ − mη‖ −∇Φ(mη) + hext),

so

‖∂tmη‖L∞([0,T ];L2) ≤ ‖mη‖L∞(‖hη⊥‖L∞([0,T ];L2) + ‖mη‖‖L∞([0,T ];L2)

+ ‖∇Φ(mη)‖L∞([0,T ];L2) + ‖hext‖L2(B))

≤
√
E(0) + C.

Consequently, the set (mη)η is equi-continuous from [0, T ] to L2.
L2 with its weak topology is a metric space such that bounded sets are compact.

According to Ascoli’s theorem, mη converges, extracting further a subsequence, in
C([0, T ]; L2

weak), necessarily to m by uniqueness of the limit in the distribution
sense. In particular, for all t ∈ [0, T ], mη(t) converges weakly to m(t) in L2(Rd).

5.2.2. First estimates

Let η1, η2 > 0 two positive reals, intended to converge to 0.

∂tmη1 − ∂tmη2 = f(mη1 ,hη1⊥− mη1‖ −∇Φ(mη1) + hext)

− f(mη2,hη2⊥− mη2‖ −∇Φ(mη2) + hext)

= (f(mη1 ,−m‖ −∇Φ(mη1) + hext)

− f(mη2,−m‖ −∇Φ(mη1) + hext)

+ f(mη2,∇Φ(mη1) −∇Φ(mη2))

+ f(mη1,hη1⊥) − f(mη2 ,hη2⊥)

+ f(mη1, P‖(m − mη1)) − f(mη2 , P‖(m − mη2)). (5.2)
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Take the scalar product of this equality by mη1 − mη2 , to find a bound, using
the fact that |mη1 |, |mη2 | ≤ 1:

1
2
∂t|mη1 − mη2 |2 ≤ 2|mη1 − mη2 |2 (|m‖| + |∇Φ(mη1)| + |hext|)

+ 2|mη1 − mη2 | |∇Φ(mη1) −∇Φ(mη2)| |mη2 |
+ 2|mη1 − mη2 | |mη1 | |hη1⊥| + 2|mη1 − mη2 | |mη2 | |hη2⊥|
+ |f(mη1 , P‖(m − mη1)) · (mη1 − mη2)|
+ |f(mη2 , P‖(m − mη2)) · (mη1 − mη2)|

≤ 2|mη1 − mη2 |2 (|m‖| + C)

+ 8(|hη1⊥| + |hη2⊥|)
+ |f(mη1 , P‖(m − mη1)) · (mη1 − mη2)|
+ |f(mη2 , P‖(m − mη2)) · (mη1 − mη2)|. (5.3)

We use a Gronwall’s lemma to absorb the first term in the left-hand side.
m is bounded, and supported in B, hence in L2([0, T ]; L2(Rd)), thus m‖ is in
L2([0, T ]; L2(Rd)), therefore in L1([0, T ] × B). By Fubini’s theorem, the function
x 
→ ‖m‖( · , x)‖L1([0,T ]) is integrable, thus finite almost everywhere. Hence, we can
define, for almost every x ∈ B:

a(t, x) = |x|2 + 2
∫ t

0

(|m‖(s, x)| + C) ds.

Remark 5.4. We need the term |x|2 in order to have e−a(t) ∈ L4(Rd), which is
used later.

There holds

1
2
∂t|e−2a(mη1 − mη2)|2 ≤ 8e−2a(|hη1⊥| + |hη2⊥|)

+
∣∣f(mη1 , e

−aP‖(m − mη1)) ·
(
e−a(mη1 − mη2)

)∣∣
+

∣∣f(mη2 , e
−aP‖(m − mη2)) ·

(
e−a(mη1 − mη2)

)∣∣.
Integrate on [0, t] × B. Because mη1(0) = m0 = mη2(0), we have

1
2
‖e−a(t)(mη1(t) − mη2(t))‖2

L2

≤ 8‖e−2a(|hη1⊥| + |hη2⊥|)‖L1([0,T ]×B)

+
∫ t

0

∫
B

∣∣f(mη1 , e
−aP‖(m − mη1)) · (e−a(mη1 − mη2))

∣∣ dxdt

+
∫ t

0

∫
B

∣∣f(mη2 , e
−aP‖(m − mη2)) · (e−a(mη1 − mη2))

∣∣ dxdt.

Assume for the moment the following result, which is proved in the next section.
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Proposition 5.5. There is a constant C and a function D(η1, η2) converging to 0
when (η1, η2) tends to (0, 0) such that, for η which is η1 or η2, and all t ∈ [0, T ],∫

B

∣∣f(
mη(t), e−a(t)P‖(m(t) − mη(t))

) · (e−a(t)(mη1(t) − mη2(t))
)∣∣dx

≤ C‖e−a(t)(mη1(t) − mη2(t))‖L2‖e−a(t)(m(t) − mη(t))‖L2 + D(η1, η2).

Let D′(η1, η2) = D(η1, η2) + 8‖e−2a(|hη1⊥| + |hη2⊥|)‖L1([0,T ]×B). Then, by
Proposition 5.1.

lim
η1,η2→0

D′(η1, η2) = 0.

Hence,
1
2
‖e−a(t)

(
mη1(t) − mη2(t)

)‖2
L2

≤ D′(η1, η2) + C

∫ t

0

‖e−a(s)(mη1(s) − mη2(s))‖L2‖e−a(s)(m(s) − mη(s))‖L2 ds.

(5.4)

We use the following nonlinear Gronwall’s lemma (for a proof, see for instance
the annex.C in [7]),

Lemma 5.6 (Square Gronwall). Let y be a function in H1(0, T ), C ≥ 0 and f

in L1(0, T ) such that:

∀t ∈ [0, T ], y2(t) ≤ C +
∫ t

0

f(s) y(s) ds.

Then

∀t ∈ [0, T ], y(t) ≤
√

C +
1
2

∫ t

0

f(s) ds.

Applying this lemma to y(t) = ‖e−a(t)(mη1(t) − mη2(t))‖L2 and

f(t) = ‖e−a(t)(m(t) − mη(t))‖L2

in (5.4), we obtain

1
2
‖e−a(t)(mη1(t) − mη2(t))‖L2 ≤

√
D′(η1, η2) +

1
2

∫ t

0

‖e−a(s)(m(s) − mη(s))‖L2 .

We take the limit for η = η1 fixed and η2 → 0. Because the norm is lower
semi-continuous for the weak topology we have

‖e−a(t)(mη1(t) − m(t))‖L2 ≤ 2 lim inf
η2→0

√
D′(η1, η2)

+
∫ t

0

‖e−a(s)(mη1(s) − m(s))‖L2 ds.

The usual Gronwall’s lemma implies

‖e−a(t)(mη1(t) − m(t))‖L2 ≤ 2 lim inf
η2→0

√
D(η1, η2)eT

thus, the convergence of (e−amη)η to e−am in L∞([0, T ]; L2).
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Because e−a > 0 a.e, modulo a subsequence, we can further assume that mη(t, x)
converges to m(t, x) almost everywhere in [0, T ] × B. Using the boundedness in
L∞(R1+d

+ ) of the family (mη)η > 0, the Lebesgue theorem prove the convergence
of mη to m in Lp([0, T ]× B), p < +∞.

This convergence implies in particular the convergence of Φ(mη) to Φ(m), in
L2. Finally, we obtain a strong convergence in L1([0, T ]×B) of f(mη,hη⊥−mη‖) of
f(m,−m‖). Moreover, ∂tmη converge to ∂tm (in the distribution sense), we obtain
that m is a solution of (5.1).

Remark 5.7. This proves also the existence of solution of the Cauchy prob-
lem (5.1).

5.3. Uniqueness of the Cauchy problem

We show the uniqueness of the solution to this Cauchy problem. This shows that
there is only one limit of (mη) (the solution), so the full sequence (mη) converges
to m.

Let m1 and m2 be two solutions in L∞([0, T ]× Rd) ∩ H1([0, T ]; L2(Rd)) of the
Cauchy problem (5.1). The computations are similar to (5.2) and (5.3).

∂tm1 − ∂tm2 = f(m1,−m1‖ −∇Φ(m1) + hext)− f(m2,−m2‖ −∇Φ(m2) + hext).

We have

1
2
∂t|m1 − m2|2 ≤ 2|m1 − m2| |P‖(m1 − m2)| + (|m1‖| + C) |m1 − m2|2. (5.5)

If m1‖ were bounded, the Cauchy–Schwarz inequality and Gronwall’s lemma
would yield that m1(t) = m2(t) for all t ≥ 0. Unfortunately, this is not the case,
but we use the following substitute (see [17] for a proof):

Proposition 5.8. There exists a constant C such that for all p ∈ ]2, +∞[, the
operator P‖ is bounded from Lp(Rd) into Lp(Rd) with norm less than Cp.

We cut P‖m1 in a bounded part, and a small remainder in L1.

Definition 5.9. For M > 0, let PM
‖ be defined in

⋃
p Lp(Rd) by:

PM
‖ (f) = f‖ × 1l{|f‖|>M}.

Let also P ′M
‖ (f) = f‖×1l{|f‖|≤M}, so that ‖P ′M

‖ (f)‖L∞ ≤ M and P‖ = PM
‖ +P ′M

‖ .

We use Proposition 5.8 to prove

Lemma 5.10. Let f ∈ [L1 ∩ L∞](Rd). Then exists two constants c, C > 0 such
that for all M > 1/c, we have:

‖PM
‖ (f)‖L1 ≤ C exp(−cM).
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Proof. Let C1 = [‖f‖L1 + ‖f‖L∞], so that ‖f‖Lp ≤ C1 for all p. For a borelian
Ω in Rd, note |Ω| its Lebesgue’s measure. First, we have, thanks to the Bienaymé–
Tchebytchev inequality

|{|f‖| > M}| ≤
(‖f‖‖Lr

M

)r

.

By Proposition 5.8, ‖f‖‖Lr � r‖f‖Lr � r. Thus, for all r ≥ 1,

|{|f‖| > M}| ≤
(

rC1

M

)r

.

If we assume M sufficiently large, we can choose r = M
Ce so that:

|{|f‖| > M}| � e−cM

where c = 1
Ce . Secondly, Hölder’s inequality implies that for all q (with 1

q + 1
q′ = 1):

‖PM
‖ (f)‖L1 ≤ ‖f‖‖Lq‖1l{|f |>M}‖Lq′

≤ qC1|{|f | > M}|1− 1
q

≤ qC1C
1− 1

q e−
cM

q e−cM .

Choose q = cM (assuming that M > 1
c ). Thus,

‖PM
‖ (f)‖L1 � Me−cM � e−c′M

with c′ such that 0 < c′ < c.
We now finish the proof of uniqueness in problem (5.1). In inequality (5.5),

decompose m1‖ = PM
‖ (m1) + P ′M

‖ (m1). Using ‖P ′M
‖ (m1)‖L∞ ≤ M , we obtain

1
2
∂t|m1 − m2|2 ≤ 2(M + C)|m1 − m2|2 + 2|m2 − m2| |m1‖ − m2‖| + 4|PM

‖ (m2)|.

Integrate on B (using Cauchy–Schwarz inequality for the second term in the
right-hand side, and the fact that ‖P‖‖L(L2) = 1).

1
2

d
dt

‖m1(t) − m2(t)‖L2 ≤ 2(M + C + 1)‖m1(t) − m2(t)‖2 + 4Ce−cM .

Using Gronwall’s lemma, we obtain that, for T > 0, which will be fixed later,
for all t ∈ [0, T ],

‖m1(t) − m2(t)‖2
L2 � eT exp(M(T − c)).

Fix T < c, and let M tend to +∞. There holds m1(t) = m2(t) for all t < T . We
have uniqueness on [0, T [, therefore, global uniqueness since it is an autonomous
system.



September 15, 2005 17:2 WSPC/JHDE 00055

Local Energy Estimates in Ferromagnetism 591

5.4. Proof of Proposition 5.5

The aim of this subsection is to prove Proposition 5.5. We start by giving another
formulation which is equivalent because of the symmetry of the indices η1 and η2.

Proposition 5.11. There is a constant C which only depends of T such that for
all ε > 0, exists η0 > 0 such that for all η1, η2 ≤ η0 and t ∈ [0, T ], we have∫

B

∣∣f(
mη1(t), e

−a(t)P‖(m(t) − mη1(t))
) · (e−a(t)(mη1(t) − mη2(t))

)∣∣ dx

≤ C‖e−a(t)(mη1(t) − mη2(t))‖L2‖e−a(t)(m(t) − mη1(t))‖L2 + ε.

Proof. The first step is to write e−a(t)P‖ = P‖ e−a(t) + [e−a(t), P‖] and use the
linearity of f with respect to its second argument. So we have∫

B

∣∣f(
mη1(t), e

−a(t)P‖(m(t) − mη1(t))
) · (e−a(t)(mη1(t) − mη2(t))

)∣∣dx

≤
∫

B

∣∣f(
mη1(t), P‖e−a(t)(m(t) − mη1(t))

) · (e−a(t)(mη1(t) − mη2(t))
)∣∣dx

+
∫

B

∣∣f(
mη1(t), [e

−a(t), P‖](m(t) − mη1(t))
) · (e−a(t)(mη1(t) − mη2(t))

)∣∣ dx.

Using the fact that |f(m, h)| ≤ 2|h| when |m| ≤ 1, the first term in the right-
hand side is bounded by

2
∫

B

(
P‖e−a(t)(m(t) − mη1(t))

) · (e−a(t)(mη1(t) − mη2(t))
)
dx

≤ 2‖e−a(t)(m(t) − mη1(t))‖L2‖e−a(t)(mη1(t) − mη2(t))‖L2

according to Cauchy–Schwarz inequality and the property ‖P‖‖L(L2) = 1.
For the second term, we show the strong convergence of [e−a(t), P‖](mη1(t) −

m(t)) to 0, uniformly in t ∈ [0, T ]. Since P‖ is a linear continuous map from L4 to
itself (and from L2 to itself), we have, for G ∈ L2 ∩ L4,

‖[G, P‖](m(t) − mη1(t))‖ ≤ C‖G‖L2∩L4‖m(t) − mη1(t)‖L4 ≤ C′‖G‖L2∩L4 . (5.6)

Since a(t, x) ≥ 0 almost everywhere,

|e−a(t,x) − e−a(t′,x)| ≤ 2e−|x|2
∣∣∣∣
∫ t′

t

|m(s, x)| + C ds

∣∣∣∣p.
Use Hölder’s inequality for the last term.

|e−a(t,x) − e−a(t′,x)|p ≤ C1
p |t − t′|p−1e−p|x|2

∫ t

0

(|m‖(s, x)|p + C2
p

)
ds.
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So, ‖e−a(t) − e−a(t′)‖Lp(Rd) ≤ Cp|t − t′|(p−1)/p. In particular, t 
→ e−a(t) is uni-
formly continuous from [0, T ] to Lp for p > 1.

Let φ and χ be two non-negative smooth functions supported in a compact on
R+, equal to 1 near 0. Let, for ρ > 0, χρ(x) = 1

ρd χ
(

x
ρ

)
and Xρf(x) = φ(ρx)χ∗f(x).

Then, for all t ∈ [0, T ], Xρe−a(t) converges in L4 ∩ L2 to e−a(t) when ρ → 0.
Secondly, as the family of operators (Xρ) is bounded on L(L4), we have the

following result: (t 
→ Xρe−a(t))ρ is an equicontinuous family from [0, T ] to L4. By
Ascoli’s theorem, the sequence Xρe−a converges to e−a in L∞([0, T ]; L4 ∩ L2).

Fix ρ such that C′‖e−a(t) − Xρe−a(t)‖L4 ≤ ε/2 for all t ∈ [0, T ]. Use inequality
(5.6), then we have ‖[e−a(t) − Xρe−a(t), P‖](m(t) − mη1(t))‖L2 ≤ ε/2.

Now, ρ > 0 being fixed, note that the function t 
→ [Xρe−a(t), P‖] is continuous
from [0, T ] to the space of compact operators in L2, so uniformly continuous thanks
to Heine’s theorem. Hence we have, for t, t′ ∈ [0, T ]:

[Xρe−a(t), P‖]mη1(t) − [Xρe−a(t′), P‖]mη1(t′)

= [Xρe−a(t), P‖](mη1(t) − mη1(t′)) +
(
[Xρe−a(t), P‖] − [Xρe−a(t′), P‖]

)
mη1(t′).

Thus

‖[Xρe−a(t), P‖]mη1(t) − [Xρe−a(t′), P‖]mη1(t′)‖L2∩L4

≤ ‖[Xρe−a, P‖]‖L∞([0,T ];L(L2;L2∩L4))‖(mη1(t) − mη1(t′))‖L2

+ ‖[Xρe−a(t), P‖] − [Xρe−a(t′), P‖]‖L(L2∩L4;L2) · C.

Therefore, the sequence (t 
→ [Xρe−a(t), P‖]mη1(t))η1 is equicontinuous, and
strongly converges to t 
→ [Xρe−a(t), P‖]m(t); the convergence is uniform in t by
Ascoli’s theorem. Therefore, there exists η0 such that for all η1 ≤ η0, we have
‖[Xρe−a(t), P‖](mη1(t) − m(t))‖L2 < ε/2 for all t ∈ [0, T ].

Finally, we obtain that ‖[e−a(t), P‖](mη1(t) − m(t))‖L2 ≤ ε for all
η1 ≤ η0. Therefore we have strong convergence to 0 in L∞([0, T ]; L2) of
t 
→ [e−a(t), P‖](mη1(t) − m(t)).

6. The Damping Parameter

We prove here a strong convergence result of the system (1.2) when the parameter
α tends to 0. In [8], Hamdache and Tiloua establish a weak convergence result for
the system, with an exchange term.

Theorem 6.1. Assume that e0, h0, m0, curl e0, curl h0 are in L2(RD), hext is in
L∞(B) and η is small. Let, for a damping paramater α not fixed (eα,hα,mα) be
the solution of the system (1.2). Then (eα,hα,mα) converges strongly in C0(L2) ×
C0(L2) × C0(L2) to the solution (e,h,m) of the system (1.2) with α = 0 when α

tends to 0.
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Proof. First, we can assume, after extracting a subsequence, that eα and hα con-
verge weakly in L2((0, T ) × Rd). Now the uniform estimates in t on h⊥ in Propo-
sitions 4.2 and 4.4 are independant of α. Consequently, because η > 0 is fixed,
the family (∇t,xhα

⊥) is bounded in L∞((0, T ); L2(B)) ⊂ L2((0, T ) × B), so (hα
⊥) is

bounded H1((0, T )×B) and, after extracting a subsequence, converges strongly in
L1((0, T ) × B).

Let α1, α2 > 0 intended to tend to 0. We have

∂tmα1 − ∂tmα2 = (mα1 − mα2) × (hα1 + hext + ∇Φ(mα1))

+mα1 × (∇Φ(mα1) −∇Φ(mα2))

+mα1 × (mα1
‖ − mα2

‖ )

+mα1 × (hα1
⊥ − hα2

⊥ )

+ α1 mα1 × (mα1 × hα1)

−α2 mα2 × (mα2 × hα2).

So, the estimate on |mα1 − mα2 | is written as:
1
2
∂t|mα1 − mα2 |2 ≤ 0 + C|mα1 − mα2 |2

+ |mα1 − mα2 | |P‖(mα1 − mα2)|
+ 2

∣∣hα1
⊥ − hα2

⊥
∣∣ + α1|hα1 | + α2|hα2 |.

Therefore,

1
2

d
dt

‖mα1(t) − mα2(t)‖2
L2 ≤ (C + 1)‖mα1(t) − mα2(t)‖2

L2

+ ‖hα1
⊥ (t) − hα2

⊥ (t)‖L2(B) + D(α1, α2)

which gives, after an integration in time,

1
2
‖mα1(t) − mα2(t)‖2

L2 ≤ (C + 1)
∫ t

0

‖mα1(s) − mα2(s)‖2
L2 ds

+ ‖hα1 − hα2‖L1((0,T×B)) + TD(α1, α2).

We conclude with Gronwall’s lemma that the subsequence (mα)α is a Cauchy
sequence in L∞

loc(L
2). It has a strong limit, which makes to take the limit in the non-

linear terms; consequently, the limit is a solution of the Landau–Lipschitz equation
without damping parameter.

Remark 6.2. In fact, we can prove with the arguments developped in these two last
sections, that (α, η) 
→ (e,h,m) is continuous from [0, 1]× [0, 1] to L2([0, T ]; L2

loc)×
L2([0, T ]; L2

loc) × C([0, T ]; L2).
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