

LOCAL ENERGY ESTIMATES FOR THE MAXWELL–LANDAU–LIFSHITZ SYSTEM AND APPLICATIONS

JEAN STARYNKÉVITCH

Mathématiques Appliquées de Bordeaux, Univ. Bordeaux 1 33405 Talence Cedex, France Jean.Starynkevitch@math.u-bordeaux1.fr

> Received 1 Jul. 2004 Accepted 19 Sep. 2004

Communicated by J. Rauch

Abstract. We study the Maxwell–Landau–Lifshitz system without exchange energy. First, we prove an $L^p(L^2_{loc})$ estimate for the linear wave equation and apply this local energy estimate to obtain a bound on the curl of the electromagnetic field, uniformly in time and locally in space. Next, we prove strong convergence results, when the time t tends to ∞ or when the speed of light tends to ∞ (which corresponds to the quasistationary approximation). Finally, we establish a stability result with respect to the damping parameter of the Landau–Lifshitz equation.

Keywords: Ferromagnetism; Maxwell's equations; local energy; quasi-stationary limit.

1. Introduction

1.1. Presentation of the Maxwell-Landau-Lifshitz system

The Maxwell–Landau–Lifshitz system reads

$$\begin{cases} \partial_T(\varepsilon_0 \mathbf{E}) - \mathbf{curl} \mathbf{H} = 0 \\ \partial_T(\mu_0 (\mathbf{H} + \mathbf{M})) + \mathbf{curl} \mathbf{E} = 0 \\ \partial_T \mathbf{M} = \gamma_0 \left(\mathbf{M} \times \mathbf{H}_T + \frac{\alpha}{|\mathbf{M}|} \mathbf{M} \times (\mathbf{M} \times \mathbf{H}_T) \right) \\ (\mathbf{E}(0), \mathbf{H}(0)) = (\mathbf{E}_0, \mathbf{H}_0) \\ \mathbf{M}(0) = \mathbf{M}_0 \\ \operatorname{div}(\varepsilon_0 \mathbf{E}) = 0 \\ \operatorname{div}(\mu_0 (\mathbf{H} + \mathbf{M})) = 0 \end{cases}$$
(1.1)

where the electric field **E**, the magnetic field **H** and the magnetization **M** depend on the time $T \in \mathbb{R}_+$ and the space-variable $X \in \mathbb{R}^d$ and take values into \mathbb{R}^3 . Here, the dielectric and magnetic permittivities ε_0 and μ_0 are constants. Although in most physical applications d = 3, the cases d = 1, 2 are also of interest. $\mathbf{M}(T)$ is assumed to be supported in a compact $\overline{\Omega}$ included in B_R . $|\mathbf{M}|$ is assumed to be a constant M_s on $\overline{\Omega}$. α is a non-dimensional constant called the damping parameter, between 0 and 1. Physically, we have α of order 10^{-1} or 10^{-2} . Here and below we denote by $B_{\rho} = \{x \in \mathbb{R}^d \mid |x| \leq \rho\}$ the ball in \mathbb{R}^d centered in 0 with radius ρ , and $B = B_1$.

The effective magnetic field \mathbf{H}_T , is defined by

$$\mathbf{H}_T = \mathbf{H} + \mathbf{H}_a(\mathbf{M}) + \mathbf{H}_e(\mathbf{M}) + \mathbf{H}_{ext},$$

where (see also [7, 14])

- for M in \mathbb{R}^3 , $\mathbf{H}_a(M) = -\nabla_M \tilde{\Phi}(M)$, where the datum $\tilde{\Phi}$ is a non-negative convex function from \mathbb{R}^3 which vanishes at 0. $\mathbf{H}_a(\mathbf{M})$ is called the anisotropy energy.
- $\mathbf{H}_{e}(\mathbf{M}) = -K \mathbb{1}_{\Omega} \Delta \mathbf{M}$, is the exchange energy.
- and \mathbf{H}_{ext} the Zemann energy or exterior energy, is given and does not depend on T.

Here, we consider the case K = 0. Mathematical results are very different in the other case (see, for instance, [2]). Note that the last two equations in (1.1) are satisfied for all times if they hold at T = 0. The non-dimensionalized system is:

$$\begin{cases} \eta \,\partial_t \mathbf{e} - \mathbf{curl} \,\mathbf{h} = 0 \\ \eta \,\partial_t (\mathbf{h} + \mathbf{m}) + \mathbf{curl} \,\mathbf{e} = 0 \\ \partial_t \mathbf{m} = -\mathbf{m} \times \mathbf{h}_T - \alpha \,\mathbf{m} \times (\mathbf{m} \times \mathbf{h}_T) \\ (\mathbf{e}(0), \mathbf{h}(0)) = (\mathbf{e}_0, \mathbf{h}_0) \\ \mathbf{m}(0) = \mathbf{m}_0 \\ \mathrm{div}(\mathbf{e}) = 0 \\ \mathrm{div}(\mathbf{e}) = 0 \\ \mathrm{div}(\mathbf{h} + \mathbf{m}) = 0 \\ |\mathbf{m}| = \mathbb{1}_{\Omega} \quad \Omega \subset B \\ \mathbf{h}_T = \mathbf{h} + \mathbf{h}_{ext} - \nabla \Phi(\mathbf{m}) \end{cases}$$
(1.2)

where $\eta = v/c$ is the quotient of two characteristic speeds of the system, i.e. the giromagnetic ratio in the Landau–Lifshitz equation $v = R|\gamma_0| M_s$, and the speed of light $c = (\varepsilon_0 \mu_0)^{-1/2}$.

1.2. Main results

In the case with no exchange energy, the system was studied by Joly–Métivier– Rauch in [12]. They established the existence of energy solutions, i.e. weak solutions satisfying natural energy estimates.

Theorem 1.1 (Joly–Métivier–Rauch). For $d \leq 3$, assume that \mathbf{e}_0 , \mathbf{h}_0 are in $L^2(\mathbb{R}^d)$, and that \mathbf{m}_0 , $\mathbf{h}_{\text{ext}} \in L^{\infty}(\mathbb{R}^d)$ and $\operatorname{supp} \mathbf{m}_0$ is compact. Then there exists an energy solution of (1.2), such that the fields \mathbf{e} , \mathbf{h} , \mathbf{m} are in $\mathcal{C}^0(\mathbb{R}_+; L^2(\mathbb{R}^d))$.

Moreover, if we assume that $\operatorname{curl} \mathbf{e}_0$ and $\operatorname{curl} \mathbf{h}_0$ are in $L^2(\mathbb{R}^d)$, then the energy solution is unique and the fields $\operatorname{curl} \mathbf{e}$, $\operatorname{curl} \mathbf{h}$ are also in $\mathcal{C}^0(\mathbb{R}_+; L^2(\mathbb{R}^d))$.

The proof of this theorem can be found in [12]. The term $\Phi(\mathbf{m})$ does not appear there, but its addition does not modify the proof substantially.

When d = 2, Haddar [7] has generalized the above result to variable ε in (1.1). When d = 3, Jochmann [10] proved the existence of weak energy solution of (1.1) in a more general situation, when ε and μ are non-constant and the first equation is replaced with

$$\partial_T(\varepsilon \mathbf{E}) - \mathbf{curl}\,\mathbf{H} = -\sigma \mathbf{E} - \mathbf{J},\tag{1.3}$$

where σ is a bounded non-negative function from \mathbb{R}^3 , and **J** belongs to $L^1(L^2(\mathbb{R}^3))$. No other result is known in the literature for strong solutions without exchange term.

Other results are available in the presence of the exchange term $\mathbf{h}_e(\mathbf{m})$ (see [3]).

We are interested in the strong solution of the problem (1.2) given by Theorem 1.1. We consider only the spatial dimensions d = 1, 2, 3, in order for the system (1.2) to be physically meaningful. However, the results on the wave equation are clearly true in any dimension.

We use the orthogonal decomposition of $L^2(\mathbb{R}^d)$: for $\mathbf{h} \in L^2$, \mathbf{h}_{\perp} (respectively, \mathbf{h}_{\parallel}) is the orthogonal projection on ker div (respectively, ker **curl**). The orthogonal component of \mathbf{h} satisfies the following wave equation:

$$\left(\eta^2 \partial_t^2 - \Delta\right) \mathbf{h}_\perp = -\eta^2 \partial_t^2 \mathbf{m}_\perp. \tag{1.4}$$

Consider a function P which is \mathcal{C}^{∞} on $\mathbb{R}^d \setminus \{0\}$ and homogeneous of degree 0, and denote by P(D)v the function such that $\widehat{P(D)v}(\xi) = P(\xi)\hat{v}(\xi)$, where $\hat{f}(\xi)$ is the Fourier transform of f defined by

$$\hat{f}(\xi) = \int_{\mathbb{R}^d} f(x) e^{-ix \cdot \xi} \, \mathrm{d}x$$

This work is based on a local energy estimate for solution of (1.4). Our first result is:

Theorem 1.2. Let v be a real-valued function from \mathbb{R}_+ to \mathbb{R}^d and let $1 \leq p \leq +\infty$. Let us assume that supp $v \subset \mathbb{R}_+ \times B$, and $v \in L^p(\mathbb{R}_+, L^2(\mathbb{R}^d))$, and $d \geq 2$. Denote by u_{Pv} the solution of the Cauchy problem

$$\begin{cases} \left(\eta^2 \partial_t^2 - \Delta\right) u = P(D)v = Pv\\ u_{|t=0} = 0\\ \partial_t u_{|t=0} = 0. \end{cases}$$

Then $\nabla_{t,x} u_{Pv} \in L^p(\mathbb{R}_+, L^2_{loc}) \cap L^{\infty}(\mathbb{R}_+; L^2_{loc})$, and there exists a constant C > 0depending only on P, such that for $v \in L^p(\mathbb{R}_+, L^2(\mathbb{R}^d))$ α , q with $p \leq q \leq +\infty$ and $\rho \geq 1$

$$\eta \|\partial_t u_{Pv}\|_{L^q(L^2(B_\rho))} + \|\nabla u_{Pv}\|_{L^q(L^2(B_\rho))} \le C\rho^{1+\frac{1}{q}-\frac{1}{p}} \|v\|_{L^p(L^2(\mathbb{R}^d))}.$$

This theorem can be used to prove for the system (1.2):

Proposition 1.3. Assume that \mathbf{e}_0 , \mathbf{h}_0 , \mathbf{m}_0 , $\mathbf{curl} \mathbf{e}_0$, $\mathbf{curl} \mathbf{h}_0$ are in $L^2(\mathbb{R}^d)$, \mathbf{h}_{ext} is in $L^{\infty}(B)$ and let $(\mathbf{e}, \mathbf{h}, \mathbf{m})$ be the strong solution of (1.2). Then, when $\alpha > 0$ the fields \mathbf{e} and \mathbf{h}_{\perp} are in $L^2(\mathbb{R}_+; L^2_{\text{loc}})$.

We can obtain:

Theorem 1.4. Assume that $\alpha > 0$ and \mathbf{e}_0 , \mathbf{h}_0 are in $L^2(\mathbb{R}^d)$, $\mathbf{h}_{\text{ext}} \in L^{\infty}(B)$; then $\mathbf{e}(t)$, $\mathbf{h}_{\perp}(t) \to 0$ when $t \to +\infty$ in L^2_{loc} .

Next, we derive a uniform bound on first derivatives when η is sufficiently small.

Theorem 1.5. Assume that \mathbf{e}_0 , \mathbf{h}_0 , \mathbf{m}_0 , $\operatorname{curl} \mathbf{e}_0$, $\operatorname{curl} \mathbf{h}_0$ are in $L^2(\mathbb{R}^d)$, \mathbf{h}_{ext} is in $L^{\infty}(B)$. Then for η sufficiently small, $\operatorname{curl} \mathbf{e}$ and $\operatorname{curl} \mathbf{h}$ are in $L^{\infty}(L^2_{\text{loc}})$.

This improves the results of [12], giving uniform estimates with respect to t of first derivatives of the electromagnetic field.

In [11], when $t \to +\infty$, the weak convergence in L^2 of $\mathbf{E}(t)$ and $\mathbf{H}_{\perp}(t)$ is established in (1.1)–(1.3), even in the case of variable ε and μ . A strong convergence result on $\mathbf{E}(t)$ is proved only when $\sigma \geq \sigma_0 > 0$. The description of the ω -limit set is only obtained with an exchange term which leads to an H^1 bound for \mathbf{m} ; cf. [3, 5].

We prove next the following quasi-stationary convergence result:

Theorem 1.6. The Cauchy problem

$$\begin{cases} \partial_t \mathbf{m} = -\mathbf{m} \times \mathbf{h}_T - \alpha \mathbf{m} \times (\mathbf{m} \times \mathbf{h}_T) \\ \mathbf{curl} \, \mathbf{h} = 0 \\ \operatorname{div}(\mathbf{h} + \mathbf{m}) = 0 \\ \mathbf{m}_{|t=0} = \mathbf{m}_0 \end{cases}$$

has a unique solution $\mathbf{m} \in \mathcal{C}^1(\mathbb{R}_+; L^2)$. Moreover, denoting by $(\mathbf{e}_{\eta}, \mathbf{h}_{\eta}, \mathbf{m}_{\eta})$ the solution of (1.2) for $\alpha \geq 0$ fixed, the fields \mathbf{e}_{η} and $\mathbf{h}_{\eta\perp}$ converge as $\eta \to 0$ to 0 in $L^2(\mathbb{R}_+; L^2_{loc})$ while \mathbf{m}_{η} converges strongly to \mathbf{m} in $\mathcal{C}(\mathbb{R}_+; L^2)$.

Without damping term (i.e. when $\alpha = 0$) the uniqueness has been proved by Jochmann [10], assuming that μ is non-constant. Again in [10], the weak quasi-stationary limit has been established.

In the last section of this paper, η being fixed and $(\mathbf{e}_{\alpha}, \mathbf{h}_{\alpha}, \mathbf{m}_{\alpha})$ being the solution of (1.2), we prove:

Proposition 1.7. When α tends to 0, $(\mathbf{e}^{\alpha}, \mathbf{h}^{\alpha}, \mathbf{m}^{\alpha})$ converges in $L^2_{\text{loc}}(L^2_{\text{loc}}) \times L^2_{\text{loc}}(L^2_{\text{loc}}) \times \mathcal{C}(L^2)$ to a strong solution $(\mathbf{e}^0, \mathbf{h}^0, \mathbf{m}^0)$ of the system (1.2) with $\alpha = 0$.

2. Transformation and Non-Dimensionalization

2.1. Transformation

We consider the system (1.1). We assume that

• supp $\mathbf{M}_0 \subset B_R$;

• $\forall x \in \operatorname{supp} \mathbf{M}_0, |\mathbf{M}_0(x)| = M_s \in \mathbb{R}^*_+;$

Let $(\mathbf{E}, \mathbf{H}, \mathbf{M})$ be an energy solution of this system. Then we have

$$\partial_t \mathbf{M}(t, x) \mathbf{M}(t, x) = 0$$
 f.a.e. $x \in \mathbb{R}^d$.

This implies that:

$$\forall t \in \mathbb{R}_+, \quad |\mathbf{M}(t, \cdot)| = M_s \mathbb{1}_{\mathrm{supp}\,\mathbf{M}_0}$$

In particular, $(\mathbf{E}, \mathbf{H}, \mathbf{M})$ is a solution of the (polynomial) PDE system:

$$\begin{cases} \partial_T \varepsilon_0 \mathbf{E} - \mathbf{curl} \mathbf{H} = 0\\ \partial_T \mu_0 (\mathbf{H} + \mathbf{M}) + \mathbf{curl} \mathbf{E} = 0\\ \partial_T \mathbf{M} = \gamma_0 \left(\mathbf{M} \times \mathbf{H} + \frac{\alpha}{M_s} \mathbf{M} \times (\mathbf{M} \times \mathbf{H}) \right)\\ (\mathbf{E}(0), \mathbf{H}(0)) = (\mathbf{E}_0, \mathbf{H}_0)\\ \mathbf{M}(0) = \mathbf{M}_0\\ \operatorname{div}(\varepsilon_0 \mathbf{E}) = 0\\ \operatorname{div} \mu_0 (\mathbf{H} + \mathbf{M}) = 0. \end{cases}$$

Conversely, by the same method, a solution of this PDE system is also solution of the system (1.1).

2.2. Non-dimensionalization

Make the following scalings:

$$\begin{cases} \mathbf{e} = \sqrt{\frac{\varepsilon_0}{\mu_0}} \frac{\mathbf{E}}{M_s} & \Phi(m) = \frac{\tilde{\Phi}(M_s m)}{{M_s}^2} \\ \mathbf{h} = \frac{\mathbf{H}}{M_s} & \mathbf{m} = \frac{\mathbf{M}}{M_s} \\ x = \frac{X}{R} & t = |\gamma_0| M_s T. \end{cases}$$

Define

$$\eta = R|\gamma_0| M_s \sqrt{\varepsilon_0 \mu_0}.$$

Remark 2.1. η is nothing but the quotient v/c of two characteristic system speed: first, the giromagnetic ratio in Landau–Lifshitz equation $v = R|\gamma_0| M_s$, next, the speed of light $c = (\varepsilon_0 \mu_0)^{-1/2}$. In particular, the limit $\eta \to 0$ corresponds to the quasi-stationary approximation of the electromagnetic field.

The non-dimensionalized system is now exactly (1.2), and we know that $\operatorname{supp} \mathbf{m}_0 \subset B$ and $|\mathbf{m}_0| = 1$ on $\operatorname{supp} \mathbf{m}_0$.

Remark 2.2. We do not see the geometry of $\operatorname{supp} \mathbf{m}_0$; we only use that it is bounded, so has a finite Lebesgue measure.

Notation 2.3. Let $f(m, h) = -m \times h - \alpha m \times (m \times h)$.

Properties 2.4. The function f satisfies:

- $f(0,h) = 0, h \in \mathbb{R}^3;$
- f is linear with respect to h;
- f is locally Lipschitzian with respect to m;
- $f(m,h) \cdot m = 0, h, m \in \mathbb{R}^3;$
- $f(m,h) \cdot h = \alpha |m \times h|^2, h, m \in \mathbb{R}^3;$
- $|f(m,h)|^2 = (1 + \alpha^2 |m|^2) |m \times h|^2, h, m \in \mathbb{R}^3.$

2.3. Classical energy estimates

Notation 2.5. Let $(\mathbf{e}, \mathbf{h}, \mathbf{m})$ be a weak solution of system (1.2). We note

$$\mathcal{E}(t) = \frac{1}{2} \left(\|\mathbf{e}(t)\|_{L^2(\mathbb{R}^d)}^2 + \|\mathbf{h}(t)\|_{L^2(\mathbb{R}^d)}^2 \right) + \int_B \Phi(\mathbf{m}(t)) + \frac{1}{2} |\mathbf{h}_{\text{ext}} - \mathbf{m}(t)|^2 \, \mathrm{d}x.$$

 \mathcal{E} is the usual electromagnetic energy in the Maxwell system, completed with the different energies coming from Landau–Lifshitz equation.

Let $(\mathbf{e}, \mathbf{h}, \mathbf{m})$ be a strong solution of system (1.2). Recall that

$$\mathbf{m}(t,x)| = |\mathbf{m}_0(x)| \quad \text{a.e.} \tag{2.2}$$

Take the $L^2(\mathbb{R}^d)$ scalar product of the first (respectively, second) equation in (1.2) with $\mathbf{e}(t)$ (respectively, $\mathbf{h}(t)$). Add the two expressions. Because **curl** is self-adjoint, we find

$$\eta \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{E}(t) + \eta \int_{\mathbb{R}^d} \partial_t \mathbf{m}(t) \cdot \mathbf{h}(t) \,\mathrm{d}x = 0.$$

Now, $\mathbf{h} = \mathbf{h}_T + \nabla \Phi(\mathbf{m}) - \mathbf{h}_{\text{ext}}$. Thus,

$$\partial_t \mathbf{m} \cdot \mathbf{h} = \partial_t \mathbf{m} \cdot \nabla \Phi(\mathbf{m}) - \partial_t \mathbf{m} \cdot \mathbf{h}_{\text{ext}} + \partial_t \mathbf{m} \cdot \mathbf{h}_T$$
$$= \partial_t \Phi(\mathbf{m}) - \partial_t \mathbf{m} \cdot \mathbf{h}_{\text{ext}} + f(\mathbf{m}, \mathbf{h}_T) \cdot \mathbf{h}_T.$$

Then, with (2.2), we have $-\partial_t \mathbf{m} \cdot \mathbf{h}_{\text{ext}} = \partial_t \frac{1}{2} |\mathbf{h}_{\text{ext}} - \mathbf{m}|^2$. Now, thanks to the two last properties in 2.4,

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{E}(t) + \frac{\alpha}{1+\alpha^2} \|\partial_t \mathbf{m}(t)\|_{L^2}^2 \le 0,$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{E}(t) + \alpha \|\mathbf{m}(t) \times \mathbf{h}(t)\|_{L^2}^2 \le 0.$$

With a time-integration, we obtain:

Proposition 2.6. Assume that $(\mathbf{e}, \mathbf{h}, \mathbf{m})$ is an energy solution of system (1.2); then for all $t \ge 0$,

$$\begin{aligned} \mathcal{E}(t) &+ \frac{\alpha}{1+\alpha^2} \int_0^t \|\partial_t \mathbf{m}(s)\|_{L^2}^2 \,\mathrm{d}s \leq \mathcal{E}(0), \\ \mathcal{E}(t) &+ \alpha \int_0^t \|\mathbf{m}(s) \times \mathbf{h}(s)\|_{L^2}^2 \,\mathrm{d}s \leq \mathcal{E}(0). \end{aligned}$$

In particular, $\mathbf{m} \times \mathbf{h}$ and $\partial_t \mathbf{m}$ belong to $L^2(\mathbb{R}^{1+d}_+)$.

Definition 2.7. Let $(\mathbf{e}, \mathbf{h}, \mathbf{m})$ be a weak solution, that is a solution in the distribution sense, of the system (1.2). We say that it is an energy solution if $\mathcal{E}(0) < +\infty$ and if the estimates (2.2), and Proposition 2.6 are satisfied.

3. Local Energy for the Wave Equation

3.1. An L^2 orthogonal decomposition

The system (1.2) uses the curl and div operators. We decompose the system, taking the curl part and the div part. Introduce the orthogonal decomposition of $L^2(\mathbb{R}^d)$:

Notation 3.1. Define

$$L^2_{\perp}(\mathbb{R}^d) = \{ u \in L^2(\mathbb{R}^d) \, | \, \operatorname{div} u = 0 \}$$

and
$$L^2_{\parallel}(\mathbb{R}^d) = \{ u \in L^2(\mathbb{R}^d) \, | \, \operatorname{\mathbf{curl}} u = 0 \}.$$

Proposition 3.2. We have an orthogonal sum

$$L^{2}(\mathbb{R}^{d}) = L^{2}_{\perp}(\mathbb{R}^{d}) \oplus L^{2}_{\parallel}(\mathbb{R}^{d}).$$

We denote by $P_{\perp} : u \mapsto P_{\perp}u = u_{\perp}$ and $P_{\parallel} : u \mapsto P_{\parallel}u = u_{\parallel}$ the two projectors associated to this decomposition.

Those projectors are both Fourier multipliers, with a symbols defined, respectively by

$$\widehat{P_{\perp}f}(\xi) = -\frac{\xi \times (\xi \times \widehat{f}(\xi))}{|\xi|^2} \quad and \quad \widehat{P_{\parallel}f}(\xi) = \frac{\xi \cdot (\xi \cdot \widehat{f}(\xi))}{|\xi|^2}.$$

The equation div $\mathbf{e} = 0$ implies that $\mathbf{e}_{\perp} = \mathbf{e}$, that $\mathbf{e}_{\parallel} = 0$. We also have $\mathbf{h}_{\parallel} + \mathbf{m}_{\parallel} = 0$. We know that \mathbf{m} has a bounded and time-invariant support in space, and $|\mathbf{m}| = 1$ where $\mathbf{m} \neq 0$. Moreover, $\partial_t \mathbf{m} = f(\mathbf{m}, \mathbf{h})$. This implies that $\sup \partial_t \mathbf{m} \subset \mathbb{R}_+ \times B$.

This provides some information about $\mathbf{h}_{\parallel} = -\mathbf{m}_{\parallel}$. In order to know \mathbf{h}_{\perp} , write the wave equation satisfied by \mathbf{h} :

$$(\eta^2 \partial_t^2 - \Delta) \mathbf{h} = -\eta^2 \partial_t^2 \mathbf{m} - \nabla \operatorname{div} \mathbf{m}.$$

Take the projection on $L^2_{\perp}(\mathbb{R}^d)$:

$$(\eta^2 \partial_t^2 - \Delta) \mathbf{h}_\perp = -\eta^2 \partial_t^2 \mathbf{m}_\perp.$$

We obtain similarly

$$\left(\eta^2 \partial_t^2 - \Delta\right) \mathbf{e} = -\eta \operatorname{\mathbf{curl}} \partial_t \mathbf{m}_\perp.$$

We can consider for the moment **m** as a datum. We know that $\partial_t \mathbf{m} \in L^2(\mathbb{R}^{1+d}_+)$ thanks to Eq. (2.6). Next, we note that, if u is a solution of $(\eta^2 \partial_t^2 - \Delta)u = -\partial_t \mathbf{m}_{\perp}$, then $\mathbf{e} - \mathbf{curl} u$ and $\mathbf{h}_{\perp} - \partial_t u$ are solutions of the linear homogeneous wave equation $(\eta^2 \partial_t^2 - \Delta)g = 0$.

3.2. L^2 local estimates for the non-homogeneous linear wave equation

In this section, d is any positive integer (not necessary less or equal than 3).

Notations 3.3. We denote by $S_{\rho} = \{x \in \mathbb{R}^d \mid |x| = \rho\}$ the sphere centered in 0 with radius ρ , and $\Gamma_{a,b} = \{x \in \mathbb{R}^d \mid a \leq |x| \leq b\}$ the annulus with radii a and b.

Notation 3.4. We denote by $E = E(t, x) \in \mathcal{D}'(\mathbb{R}^{1+d})$ the fundamental solution of the wave equation $(\Box E = \delta_{t,x} \in \mathcal{D}'(\mathbb{R}^{1+d})$, where $\Box = \partial_t^2 - \Delta)$ supported in $\{t \ge 0\}$, and $\mathbf{E} : t \mapsto \mathbf{E}(t)$ the fundamental solution valued at the time t, i.e. $\mathbf{E} \in \mathcal{C}^{\infty}(\mathbb{R}_+; \mathcal{D}'(\mathbb{R}^d))$ is defined by:

$$\forall \phi \in \mathcal{D}(\mathbb{R}^{1+d}), \quad \langle E, \phi \rangle_{\mathcal{D}'(\mathbb{R}^{1+d}), \mathcal{D}(\mathbb{R}^{1+d})} = \int_{\mathbb{R}_+} \langle \mathbf{E}(t), \phi(t, \cdot) \rangle_{\mathcal{D}'(\mathbb{R}^d), \mathcal{D}(\mathbb{R}^d)} \, \mathrm{d}t.$$

We have for $t \ge 0$

$$\widehat{\mathbf{E}(t)}(\xi) = \frac{\sin(t|\xi|)}{|\xi|}.$$

This formula implies that

Proposition 3.5. For $t \ge 0$, $\mathbf{E}'(t)$ defines by convolution in \mathbb{R}^d_x a continuous mapping $L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ with norm equal to 1. Similarly, $\nabla \mathbf{E}(t)$ defines a continuous mapping from $L^2(\mathbb{R}^d)$ to $L^2(\mathbb{R}^d)$ with norm equal to 1.

When d is even, $\mathbf{E}(t)$ is a smooth distribution outside S_t , defined by (see [6, 16])

$$\mathbf{E}(t)(x) = E(t, x) = \frac{\left(\frac{d}{2} - 1\right)!}{2\pi^{d/2} \left(d - 1\right)!} \frac{\mathbb{1}_{\{|x| < t\}}}{\left(\sqrt{t^2 - |x|^2}\right)^{d-1}} \\ = \left(\frac{1}{t} \frac{\partial}{\partial t}\right)^{\frac{d-2}{2}} \frac{t^d \mathbb{1}_{\{|x| < t\}}}{\left(\sqrt{t^2 - |x|^2}\right)^{1/2}}.$$

This implies:

for
$$|x| < t$$
, $\partial_t E(t, x) = \mathbf{E}'(t)(x) = -\frac{\left(\frac{d}{2} - 1\right)!}{2\pi^{d/2}(d-2)!} \frac{t}{(\sqrt{t^2 - |x|^2})^{d+1}}$,
for $|x| < t$, $\nabla_x E(t, x) = \nabla \mathbf{E}(t)(x) = -\frac{\left(\frac{d}{2} - 1\right)!}{2\pi^{d/2}(d-2)!} \frac{x}{(\sqrt{t^2 - |x|^2})^{d+1}}$.

When d is odd, the distributions $\mathbf{E}'(t)$ and $\nabla \mathbf{E}(t)$ are supported in S_t (Huygens principle).

We consider the solution u of the Cauchy problem:

$$\begin{cases} \left(\eta^2 \partial_t^2 - \Delta\right) u = v \\ u_{|t=0} = 0 \\ \partial_t u_{|t=0} = 0. \end{cases}$$
(3.2)

When $\eta = 1$, *u* is given by

$$u(t) = \int_0^t \mathbf{E}(t-s) *_x v(s) \, \mathrm{d}s := E *_{t,x} v(t).$$

Therefore,

$$\partial_t u(t) = \int_0^t \mathbf{E}'(t-s) *_x v(s) \, \mathrm{d}s = \partial_t E *_{t,x} v(t).$$

For locally integrable functions supported in $\{t \ge 0\}$, we use the notation

$$f *_t g(t) = \int_0^t f(t-s) g(s) \,\mathrm{d}s.$$

First, we prove the following theorem:

Theorem 3.6. Let $1 \leq p \leq +\infty$. Assume that $\operatorname{supp} v \subset \mathbb{R}_+ \times B$, and $v \in L^p(\mathbb{R}_+, L^2(\mathbb{R}^d))$. Let u_v be the solution of the Cauchy problem (3.2). Then $\partial_t u$ and ∇u_v are in $L^p(\mathbb{R}_+, L^2_{\operatorname{loc}}) \cap L^{\infty}(\mathbb{R}_+; L^2_{\operatorname{loc}})$. More precisely, there exists a constant C which depends only on d, such that for $v \in L^p(\mathbb{R}_+, L^2(\mathbb{R}^d))$ with $\operatorname{supp} v \subset \mathbb{R}_+ \times B$, for all q with $p \leq q \leq +\infty$, for all $T \in \mathbb{R}_+ \cup \{+\infty\}$ and $\rho \geq R$, one has:

$$\eta \|\partial_t u\|_{L^q(L^2(B_\rho))} + \|\nabla u_v\|_{L^q(L^2(B_\rho))} \le C\rho^{1+\frac{1}{q}-\frac{1}{p}} \|v\|_{L^p(L^2(\mathbb{R}^d))}.$$

Notation 3.7. Let *P* be a smooth function outside the origin, homogeneous with a degree 0 on \mathbb{R}^d . Let

$$\|P\|_{\mathcal{C}^d(S^{d-1})} = \sum_{j=0}^d \|P^{(j)}\|_{L^{\infty}(S^{d-1})}.$$

Proof of Theorem 3.6. Consider \tilde{u} defined by $\tilde{u}(t, x) = u(\eta \rho t, \rho x)$; we can check that:

- *u* is solution of $\Box \tilde{u} = \rho^2 \tilde{v}$ where $\tilde{v}(t, x) = v(\rho t, \rho x)$.
- supp $\tilde{v} \supset \mathbb{R}_+ \times B$.
- $\|\tilde{v}\|_{L^p(L^2)} = \eta^{-\frac{1}{p}} \rho^{-\frac{1}{2}-\frac{1}{p}} \|v\|_{L^p(L^2)}.$
- $\|\nabla \tilde{u}\|_{L^q(L^2(B_r))} = \eta^{-\frac{1}{p}} \rho^{1-\frac{1}{2}-\frac{1}{p}} \|\nabla u\|_{L^q(L^2(B_{\rho r}))}.$
- $\|\partial_t \tilde{u}\|_{L^q(L^2(B_r))} = \eta^{1-\frac{1}{p}} \rho^{1-\frac{1}{2}-\frac{1}{p}} \|\partial_t u\|_{L^q(L^2(B_{\rho r}))}.$

Hence, it suffices to prove the theorem for $R = \rho = 1$ and $\eta = 1$, which we now assume.

The principle is to decompose v into several pieces, and next to bound each of them by the convolution of $t \mapsto ||v(t)||_{L^2(\mathbb{R}^d)}$ with a function of $[L^1 \cap L^\infty](\mathbb{R}_+)$.

574 J. Starynkévitch

We write the details of the proof for $\partial_t u$. The estimates for ∇u are similar; in particular, we use in even dimension, that

$$|\nabla_x E(t, x)| \le |\partial_t E(t, x)| \qquad |x| < t.$$

First with $(t - 4)^+ := \max\{t - 4, 0\}$ write

$$u_v(t) = \int_0^{(t-4)^+} \mathbf{E}'(t-s) *_x v(s) \, \mathrm{d}s + \int_{(t-4)^+}^t \mathbf{E}'(t-s) *_x v(s) \, \mathrm{d}s.$$

The second integral in the right-hand side can be bounded:

$$\begin{split} \left| \int_{(t-4)^{+}}^{t} \mathbf{E}'(t-s) *_{x} v(s) \, \mathrm{d}s \right| \right|_{L^{2}(B)} \\ &\leq \left\| \int_{(t-4)^{+}}^{t} \mathbf{E}'(t-s) *_{x} v(s) \, \mathrm{d}s \right\|_{L^{2}(\mathbb{R}^{d})} \\ &\leq \int_{(t-4)^{+}}^{t} \|\mathbf{E}'(t-s) *_{x} v(s)\|_{L^{2}(\mathbb{R}^{d})} \, \mathrm{d}s \\ &\leq \int_{(t-4)^{+}}^{t} \|v(s)\|_{L^{2}(\mathbb{R}^{d})} \, \mathrm{d}s \\ &\leq (1_{[0,4]} *_{t} \|v\|_{L^{2}(\mathbb{R}^{d})})(t). \end{split}$$

Let us consider $\mathbf{E}'(t-s) *_x v(s)$ on B when $t-s \ge 4$. In odd dimension, the support property of convolution shows that, when $t-s \ge 4$.

$$\mathbf{E}'(t-s)*_x v(s) = 0 \text{ on } B_3 \text{ thus on } B.$$

This completes the proof in this case. In even dimension, $\mathbf{E}'(t-s) *_x v(s)$ is on B a smooth function, and for $x \in B$:

$$[\mathbf{E}(t-s)*_{x}v(s)](x) = \int_{B} \frac{C_{d}(t-s)}{\sqrt{(t-s)^{2} - |x-y|^{2}}} \cdot v(s,y) \, \mathrm{d}y \, \mathrm{d}s$$

The Schwarz inequality yields thanks to the fact that $(t-s)^2 - |x-y|^2 \ge \frac{1}{2}(t-s)^2$ for $x \in B$ and $t-s \ge 4$:

$$\begin{aligned} \|\mathbf{E}'(t-s)*_{x}v(s)\|_{L^{2}(B)} &\leq \sqrt{\sigma_{d}}\|\mathbf{E}'(t-s)*_{x}v(s)\|_{L^{\infty}(B)} \\ &\leq 2^{d/2}C_{d}\,\sigma_{d}\cdot(t-s)^{-d}\cdot\|v(s)\|_{L^{2}(B)} \\ &\leq 2^{d/2}C_{d}\,\sigma_{d}\cdot(t-s)^{-d}\cdot\|v(s)\|_{L^{2}(\mathbb{R}^{d})} \end{aligned}$$

where σ_d is the Lebesgue measure of the unit ball in \mathbb{R}^d .

Noting that $t \mapsto t^{-d} \mathbb{1}_{[4,+\infty[}(t)$ belongs to $L^1 \cap L^{\infty}(\mathbb{R}_+)$, this completes the proof.

Proof of Theorem 1.2. The scheme of the proof is the same as the proof of Theorem 3.6. Write

$$u_{Pv}(t) = \int_0^{(t-6)^+} \mathbf{E}'(t-s) *_x Pv(s) \,\mathrm{d}s + \int_{(t-6)^+}^t \mathbf{E}'(t-s) *_x Pv(s) \,\mathrm{d}s.$$

The second term in the left hand side is bounded by $\mathbb{1}_{[0,6]} *_t ||v||_{L^2(\mathbb{R}^d)}$. Write, for $t-s \ge 6$,

$$Pv(s) = \underbrace{\mathbb{1}_{B_2}Pv(s)}_{v_1(t,s)} + \underbrace{\mathbb{1}_{\Gamma_{2,t-s-4}}Pv(s)}_{v_2(t,s)} + \underbrace{\mathbb{1}_{\Gamma_{t-s-4,t-s+1}}Pv(s)}_{v_3(t,s)} + \underbrace{\mathbb{1}_{B_{t-s+1}^c}Pv(s)}_{v_4(t,s)}.$$

We want to show that $\|\mathbf{E}'(t-s)*_x v_j(t,s)\|_{L^2(B)} \leq f_j(t-s)\|v(s)\|_{L^2}$ where $f_j \in L^1 \cap L^\infty(\mathbb{R}_+), j = 1, 2, 3, 4$. The support properties imply:

$$[\mathbf{E}'(t-s)*_{x}v_{4}(t,s)]_{|B} = 0$$

and, in odd space dimension,

$$[\mathbf{E}'(t-s)*_x v_1(t,s)]_{|B} = [\mathbf{E}'(t-s)*_x v_2(t,s)]_{|B} = 0.$$

Moreover, because $\mathbf{E}'(t-s) *_x : L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ is continuous,

$$\|[\mathbf{E}(t-s)*_{x}v_{3}(t,s)]\|_{L^{2}(B)} \leq \|v_{3}(t,s)\|_{L^{2}(\mathbb{R}^{d})} = \|Pv(s)\|_{L^{2}(\Gamma_{t-s-4,t-s+1})}.$$
 (3.3)

In order to bound the last quantity, we use the following theorem:

Theorem 3.8. Let P = P(D) be a Fourier multiplier, with symbol $P(\xi)$ smooth on $\mathbb{R}^d \setminus \{0\}$ and homogeneous of degree 0. The inverse Fourier transform of $P(\xi)$, denoted $\tilde{P}(x)$ is a smooth function outside the origin, homogeneous of degree -d, and there exists a constant γ (which does not depend of P) such that

$$\forall x \neq 0, \qquad |\tilde{P}(x)| \leq \frac{\gamma \|P\|_{\mathcal{C}^d(S^{d-1})}}{|x|^d}.$$

For a proof of this result, see [17]. From now on, γ will be the constant given by this theorem.

Corollary 3.9. Let $f \in L^1(\mathbb{R}^d)$ supported in B, and P as above. Then Pf is smooth on $\mathbb{R}^d \setminus B$, and, when |x| > 1, we have:

$$|Pf(x)| \le \frac{\gamma \, \|P\|_{\mathcal{C}^d(S^{d-1})} \|f\|_{L^1(\mathbb{R}^d)}}{(|x|-1)^d}.$$

Proof. Since the singular support of \tilde{P} is contained in $\{0\}$ the singular support of Pf is contained in the support of f and therefore in B (see, for instance, [9, Chap. 4]). The inequality is a consequence of Theorem 3.8 and of the following equality

$$Pf(x) = \int_{B} \tilde{P}(x-y)f(y) \,\mathrm{d}y.$$

Corollary 3.10. There is a constant C which depends only of d such that for all $f \in L^2(\mathbb{R}^d)$ with supp $f \in B$ and $t \ge 6$,

$$\|Pf\|_{L^{2}(\Gamma_{t-4,t})} \leq \frac{C\gamma \|P\|_{\mathcal{C}^{d}(S^{d-1})} \|f\|_{L^{2}(\mathbb{R}^{d})}}{t^{\frac{d+1}{2}}}.$$

Proof. We have $\|Pf\|_{L^2(\Gamma_{t-4,t})} = \|\mathbb{1}_{\Gamma_{t-4,t}}P\mathbb{1}_B f\|_{L^2(\mathbb{R}^d)}$. The kernel of $\mathbb{1}_{\Gamma_{t-4,t}}P\mathbb{1}_B$ is

$$K(x,y) = \mathbb{1}_{\Gamma_{t-4,t}}(x)\tilde{P}(x-y)\mathbb{1}_B(y).$$

Therefore, we have

$$M_{1} := \sup_{x \in \mathbb{R}^{d}} \|K(x, \cdot)\|_{L^{1}(\mathbb{R}^{d})} = \sup_{x \in \Gamma_{t-4,t}} \|\tilde{P}(x-\cdot)\|_{L^{1}(B)} \leq \frac{C_{d} \gamma \|P\|_{\mathcal{C}^{d}(S^{d-1})}}{(t-5)^{d}},$$

$$M_{2} := \sup_{y \in \mathbb{R}^{d}} \|K(\cdot, y)\|_{L^{1}(\mathbb{R}^{d})} = \sup_{y \in B} \|\tilde{P}(\cdot - y)\|_{L^{1}(\Gamma_{t-4,t})}$$

$$\leq \frac{C \gamma \|P\|_{\mathcal{C}^{d}(S^{d-1})} [t^{d} - (t-5)^{d}]}{(t-5)^{d}} \leq \frac{\gamma \|P\|_{\mathcal{C}^{d}(S^{d-1})} C'_{d}}{t-5}.$$

The operator is bounded on $L^2(\mathbb{R}^d)$ with norm smaller than $\sqrt{M_1 M_2}$ thanks to Schur's lemma, implying the corollary.

The last corollary bounds the second member in the inequality (3.3) by $\frac{\|v(s)\|_{L^2(\mathbb{R}^d)}}{(t-s)^{\frac{d+1}{2}}}$. This finishes the proof of Theorem 1.2 in odd dimension.

It remains to study contributions of v_1 and v_2 in even dimension. In this case:

for
$$x \in B$$
, $[\mathbf{E}'(t-s)*_x v_1(t,s)](x) = \int_{B_2} \frac{C_d(t-s)\mathbb{1}_{\{t-s \ge x-y\}}}{\sqrt{(t-s)^2 - |x-y|^2}} Pv(s,y) \, \mathrm{d}y$

Use the inequality $(t-s)^2 - |x-y|^2 \ge \frac{3}{4}(t-s)^2$ on the domain of integration

$$|[\mathbf{E}'(t-s)*_x v_1(t,s)](x)| \le \left(\frac{4}{3}\right)^{\frac{d+1}{2}} \frac{C_d}{(t-s)^d} \int_{B_2} |Pv(s,y)| \,\mathrm{d}y$$

Schwarz inequality and the boundedness of P in $\mathcal{L}(L^2(\mathbb{R}^d))$ imply:

$$\|\mathbf{E}'(t-s)*_{x}v_{1}(t,s)\|_{L^{\infty}(B)} \leq \frac{2}{\sqrt{3}} \left(\frac{8}{3}\right)^{d/2} \frac{\sqrt{\sigma_{d}}C_{d}}{(t-s)^{d}} \cdot \|v(s)\|_{L^{2}(\mathbb{R}^{d})}$$

which concludes for the contribution of v_1 .

Now, we can apply Corollary 3.9 to have an estimate for the contribution of v_2 .

$$\begin{aligned} [\mathbf{E}'(t-s)*_{x}v_{2}(t,s)](x) &= \int_{\Gamma_{2,t-s-4}} \frac{C_{d}(t-s)\,\mathbb{1}_{\{t-s\geq |x-y|\}}}{\sqrt{(t-s)^{2}-|x-y|^{2}}} Pv(s,y)\,\mathrm{d}y\\ |[\mathbf{E}'(t-s)*_{x}v_{2}(t,s)](x)| &\leq \int_{\Gamma_{2,t-s-4}} \frac{C_{d}(t-s)}{\sqrt{(t-s)^{2}-(1+|y|)^{2}}} \frac{\|v(s)\|_{L^{2}(\mathbb{R}^{d})}}{|y|^{d}}\,\mathrm{d}y\end{aligned}$$

On the domain of integration, $t - s + 1 + |y| \ge t - s$, so in polar coordinates:

$$\begin{split} |[\mathbf{E}'(t-s)*_{x}v_{2}(t,s)](x)| &\leq \int_{\Gamma_{2,t-s-4}} \frac{C_{d}(t-s) \|v(s)\|_{L^{2}(\mathbb{R}^{d})}}{\sqrt{((t-s)-(1+|y|))(t-s+1+|y|)}^{d+1}} \frac{\mathrm{d}y}{|y|^{d}} \\ &\leq C_{d}' \|v(s)\|_{L^{2}(\mathbb{R}^{d})} \int_{2}^{t-s-4} \frac{1}{(t-s)^{\frac{d-1}{2}}(t-s-(1+r))^{\frac{d+1}{2}}} \frac{\mathrm{d}r}{r} \\ &\leq C_{d}'' \|v(s)\|_{L^{2}(\mathbb{R}^{d})} \int_{3}^{t-s-3} \frac{1}{(t-s)^{\frac{d-1}{2}}(t-s-r)^{\frac{d+1}{2}}} \frac{\mathrm{d}r}{r}. \end{split}$$

Thus, taking u = t - s, it is sufficient to prove the integrability and the boundedness of the function $u \mapsto \frac{1}{u^{\frac{d-1}{2}}} \int_3^{u-3} \frac{1}{(u-r)^{\frac{d+1}{2}}} \frac{dr}{r}$ on $[6, +\infty[$. To do this, note that $u - r \ge u/2$ when $r \le u/2$:

$$\frac{1}{u^{\frac{d-1}{2}}} \int_{3}^{u-3} \frac{1}{(u-r)^{\frac{d+1}{2}}} \frac{\mathrm{d}r}{r} \le \frac{2^{\frac{d+1}{2}}}{u^{\frac{d-1}{2}}} \int_{3}^{u/2} \frac{1}{u^{\frac{d+1}{2}}} \frac{\mathrm{d}r}{r} + \frac{2}{u^{\frac{d-1}{2}}} \int_{u/2}^{u-3} \frac{1}{u} \frac{\mathrm{d}r}{(u-r)^{\frac{d+1}{2}}}$$
$$\le \frac{2^{\frac{d+1}{2}}\ln u}{u^d} + \frac{2}{u^{\frac{d+1}{2}}} \int_{3}^{u/2} \frac{\mathrm{d}r}{r^{\frac{d+1}{2}}}$$
$$\le \frac{2^{\frac{d+1}{2}}\ln u}{u^d} + \frac{2}{u^{\frac{d+1}{2}}} \frac{1}{(\frac{d+3}{2})3^{\frac{d+3}{2}}}.$$

The last member is a sum of two functions of u integrable on $[6, +\infty)$ when $d \ge 2$, this finishes the proof of Theorem 1.2.

3.3. Estimates for the Cauchy problem for the homogeneous linear wave equation

Proposition 3.11. Let $u_0 \in H^1(\mathbb{R}^d)$ and $u_1 \in L^2(\mathbb{R}^d)$ be two data supported in B_R , and u such that

$$\begin{cases} (\eta^2 \partial_t^2 - \Delta) u = 0\\ u_{|t=0} = u_0\\ \partial_t u_{|t=0} = u_1. \end{cases}$$

Then exists a constant C which depends only on d such that for all $1 \le p \le +\infty$, and $\rho \ge R$, we have:

$$\sqrt{\eta}(\eta \|\partial_t u\|_{L^p(\mathbb{R}_+;L^2(B_\rho))} + \|\nabla u\|_{L^p(\mathbb{R}_+;L^2(B_\rho))}) \\
\leq C\rho^{1+\frac{1}{p}} [\|\nabla u_0\|_{L^2(\mathbb{R}^d)} + \eta \|u_1\|_{L^2(\mathbb{R}^d)}].$$

Proof. After rescaling, it suffices to prove the theorem for $R = \rho = \eta = 1$.

Choose a function $\chi(t)$, smooth on \mathbb{R}_+ , vanishing when $t \leq 1/2$, equal to 1 when $t \geq 1$. Let $w(t, x) = \chi(t)u(t, x)$. The function w is the solution of the following Cauchy problem:

$$\begin{cases} \Box w = \chi'' u + \chi' \partial_t u \\ w_{|t=0} = 0 \\ \partial_t w_{|t=0} = 0. \end{cases}$$

The function $\chi'' u + \chi' \partial_t u$ is supported by $\left[\frac{1}{2}, 1\right] \times B_2$, and

$$\begin{aligned} \|\chi''u + \chi'\partial_t u\|_{L^{\infty}(\mathbb{R}_+;L^2)} &\leq \|\chi''\|_{L^{\infty}} \|u\|_{L^{\infty}((0,1);L^2)} \\ &+ \|\chi'\|_{L^{\infty}} \|\partial_t u\|_{L^{\infty}((0,1);L^2)}. \end{aligned}$$

Since $u(t) = u_0 + \int_0^t \partial_t u(s) \, \mathrm{d}s$, we have, when $t \in [0, 1]$,

$$\|u\|_{L^{\infty}((0,1);L^{2})} \leq \|u_{0}\|_{L^{2}} + \int_{0}^{t} \|\partial_{t}u(s)\|_{L^{2}} \,\mathrm{d}s \leq \|u_{0}\|_{L^{2}} + \|\partial_{t}u\|_{L^{\infty}(\mathbb{R}_{+};L^{2})}.$$

With the energy conservation for the wave equation

$$\|\partial_t u(t)\|_{L^2(\mathbb{R}^d)}^2 + \|\nabla_x u(t)\|_{L^2(\mathbb{R}^d)}^2 = \|u_1\|_{L^2(\mathbb{R}^d)}^2 + \|\nabla u_0\|_{L^2(\mathbb{R}^d)}^2,$$
mplies that

this implies that

$$\|\chi'' u + \chi' \partial_t u\|_{L^{\infty}(\mathbb{R}_+; L^2(\mathbb{R}^d))} \le C(\|u_1\|_{L^2(\mathbb{R}^d)} + \|\nabla u_0\|_{L^2(\mathbb{R}^d)}).$$

Moreover, $\chi'' u + \chi' \partial_t u$ is compactly supported in time, and for all $p \ge 1$,

$$\|\chi''u + \chi'\partial_t u\|_{L^p(\mathbb{R}_+;L^2(\mathbb{R}^d))} \le \|\chi''u + \chi'\partial_t u\|_{L^\infty(\mathbb{R}_+;L^2(\mathbb{R}^d))}$$

Thus, by Theorem 3.6,

$$\|\partial_t w\|_{L^p(\mathbb{R}_+;L^2(B_\rho))} \le C\rho^{1+\frac{1}{p}}(\|u_1\|_{L^2(\mathbb{R}^d)} + \|\nabla u_0\|_{L^2(\mathbb{R}^d)}).$$

To conclude, use the estimate:

$$\begin{aligned} \|\partial_t u\|_{L^p(\mathbb{R}_+;L^2(B_\rho))}^p &= \int_0^\infty \|\partial_t u(s)\|_{L^2(B_\rho)}^p \,\mathrm{d}s \\ &= \int_0^1 \|\partial_t u(s)\|_{L^2(B_\rho)}^p \,\mathrm{d}s + \int_1^\infty \|\partial_t w(s)\|_{L^2(B_\rho)}^p \,\mathrm{d}s \\ &\leq \int_0^1 \left(\|u_1\|_{L^2(\mathbb{R}^d)}^2 + \|\nabla_x u_0\|_{L^2(\mathbb{R}^d)}^2\right)^{p/2} \,\mathrm{d}s + \|\partial_t w\|_{L^p(\mathbb{R}_+;L^2(B_\rho))}^p. \end{aligned}$$

Remark 3.12. We have analogous results for initial data of the form Pu_0 and Pu_1 . Indeed, let v the solution of homogeneous wave equation with initial data Pu_0 and Pu_1 . The new $w = \chi v$ satisfies $\Box w = \chi'' v + \chi' v = P[\chi'' u + \chi' u]$ because P commutes with differential operators. The remainder of the proof is exactly the same, using Theorem 1.2 instead of Theorem 3.6.

Remark 3.13. For the case $p = +\infty$, the conservation of energy

$$\mathcal{E}(t) = \frac{1}{2} \|\nabla_{t,x} u(t)\|_{L^2}^2$$

gives already the result, with no restriction on the localization of the initial values, nor on the evaluation.

In the case p = 2, for non-compactly supported initial data, we use the following estimate:

Theorem 3.14. Let $u_0 \in \mathcal{D}'(\mathbb{R}^d)$ such that $\nabla u_0 \in L^2(\mathbb{R}^d)$ and $u_1 \in L^2(\mathbb{R}^d)$. Let u the solution of $(\eta^2 \partial_t^2 - \Delta)u = 0$ such that $u_{|t=0} = u_0$ and $\partial_t u_{|t=0} = u_1$. Then, for all ball B_R , there is a constant C = C(R) > 0 such that

$$\eta^2 \|\partial_t u\|_{L^2(\mathbb{R}_+;L^2(B_R))}^2 + \|\nabla u\|_{L^2(\mathbb{R}_+;L^2(B_R))}^2 \le C(\|\nabla u_0\|_{L^2(\mathbb{R}^d)}^2 + \eta^2 \|u_1\|_{L^2(\mathbb{R}^d)}^2).$$

Proof. Once again, it suffices to prove theorem when $\eta = 1$.

When d is odd, the idea is to write explicitly the integral to be calculated, and to use firstly Huygens principle $(\|\nabla_{t,x}u(t)\|_{L^2(B_R)} \leq \|\nabla_{t,x}u(0)\|_{L^2(\Gamma_{t-R,t+R})})$, secondly Fubini's theorem.

$$\begin{split} \|\nabla_{t,x}u\|_{L^{2}(\mathbb{R}_{+},L^{2}(B_{R}))}^{2} &= \int_{\mathbb{R}_{+}} \|\nabla_{t,x}u(t)\|_{L^{2}(B_{R})}^{2} \,\mathrm{d}t \\ &\leq \int_{\mathbb{R}_{+}} \|\nabla_{t,x}u(0)\|_{L^{2}(\Gamma_{t-R,t+R})}^{2} \,\mathrm{d}t \\ &= \int_{\mathbb{R}_{+}} \int_{t-R \leq |x| \leq t+R} |\nabla_{t,x}u(0,x)|^{2} \,\mathrm{d}x \,\mathrm{d}t \\ &= \int_{\mathbb{R}^{d}} |\nabla_{t,x}u(0,x)|^{2} \,\mathrm{d}x \int_{|x|-R \leq t \leq |x|+R} \,\mathrm{d}t \\ &\leq \int_{\mathbb{R}^{d}} |\nabla_{t,x}u(0,x)|^{2} \,\mathrm{d}x \,2R \\ &= 2R \big(\|\nabla u_{0}\|_{L^{2}(\mathbb{R}^{d})}^{2} + \|u_{1}\|_{L^{2}(\mathbb{R}^{d})}^{2} \big). \end{split}$$

When d is even, write

$$u(t) = \mathbf{E}'(t) *_{x} u_{0} + \mathbf{E}(t) *_{x} u_{1}$$
$$\nabla u(t) = \mathbf{E}'(t) *_{x} \nabla u_{0} + \nabla \mathbf{E}(t) *_{x} u_{1}$$
$$\partial_{t} u(t) = \mathbf{E}''(t) *_{x} u_{0} + \mathbf{E}'(t) *_{x} u_{1}$$
$$= \Delta \mathbf{E}(t) *_{x} u_{0} + \mathbf{E}'(t) *_{x} u_{1}$$
$$= -\nabla \mathbf{E}(t) *_{x} \nabla u_{0} + \mathbf{E}'(t) *_{x} u_{1}$$

We only give details for the contribution of $\mathbf{E}'(t) *_x u_1$. The other terms are similar.

$$\|\mathbf{E}'(t) *_{x} u_{1}\|_{L^{2}(B)}^{2} \leq \|\mathbf{E}'(t) *_{x} u_{1} \mathbb{1}_{B_{t-2}}\|_{L^{2}(B)}^{2} + \|\mathbf{E}'(t) *_{x} u_{1} \mathbb{1}_{B_{t-2}}\|_{L^{2}(B)}^{2}$$

$$\leq \|\mathbf{E}(t) *_{x} u_{1} \mathbb{1}_{B_{t-2}}\|_{L^{2}(B)}^{2} + \|u_{1}\|_{L^{2}(\Gamma_{t-2,t+1})}.$$
(3.4)

580 J. Starynkévitch

The second term of the right-hand side can be bounded as in odd dimension. Consider the first term. For $|x| \leq 1$, one has:

$$|\mathbf{E}'(t) *_{x} u_{1} \mathbb{1}_{B_{t-2}}(x)|^{2} = C_{d} \left(\int_{|y| \le t-2} \frac{t}{\sqrt{t^{2} - |x-y|^{2}}^{d+1}} u(y) \mathrm{d}y \right)^{2}.$$

Using Schwarz inequality, and the inequality $|x - y| \le |y| + 1$,

$$|\mathbf{E}'(t) *_{x} u_{1} \mathbb{1}_{B_{t-2}}(x)|^{2} \leq Ct^{d-1} \int_{|y| \leq t-2} \frac{|u_{1}(y)|^{2} t^{2}}{(t^{2} - (|y|+1)^{2})^{d+1}} \, \mathrm{d}y.$$

So, integrating in $x \in B$,

$$\|\mathbf{E}'(t) *_{x} u_{1} \mathbb{1}_{B_{t-2}}\|_{L^{2}(B)}^{2} \leq C \int_{|y| \leq t-2} \frac{|u_{1}(y)|^{2} t^{d+1}}{(t - (|y| + 1))^{d+1} (t + |y| + 1)^{d+1}} \, \mathrm{d}y.$$

Let us denote $v_1(t) = \mathbf{E}'(t) *_x u_1 \mathbb{1}_{B_{t-2}}$. We want to prove

$$||v_1||_{L^2(L^2(B))} \le C ||u_1||_{L^2}.$$

A time integration and Fubini's theorem, give:

$$\|v_1\|_{L^2(\mathbb{R}_+;L^2(B))}^2 \le C \int_{\mathbb{R}^d} |u_1(y)|^2 \mathrm{d}y \int_{t=|y|+2}^{+\infty} \frac{t^{d+1}}{(t-(|y|+1))^{d+1}(t+|y|+1)^{d+1}} \,\mathrm{d}t.$$

Thus, we just need to bound uniformly in r = |y| the following integral

$$F(r) = \int_{t=r+2}^{+\infty} \frac{t^{d+1}}{(t-(r+1))^{d+1}(t+r+1)^{d+1}} \, \mathrm{d}t.$$

We have (with u = t - r + 1)

$$F(r) = \int_{u=1}^{+\infty} \frac{1}{u^{d+1}} \left(\frac{u+r+1}{u+2r+2}\right)^{d+1} du$$

$$F(r) \le \int_{1}^{+\infty} \frac{du}{u^{d+1}} = \frac{1}{d} < +\infty.$$

This finishes the proof.

4. Application to the Maxwell–Landau–Lifshitz System

In this section, we apply to the system (1.2) the new results on the wave equation proved in the previous section. Let $(\mathbf{e}, \mathbf{h}, \mathbf{m})$ be a strong solution of the system (1.2). The key point is the fact that \mathbf{h}_{\perp} and \mathbf{e} are solutions of the following Cauchy problems.

$$\begin{cases} (\eta^{2}\partial_{t} - \Delta)\tilde{\mathbf{h}} = -\eta^{2}\partial_{t}^{2}\mathbf{m}_{\perp} \\ \tilde{\mathbf{h}}_{|t=0} = P_{\perp}\mathbf{h}_{0} \\ \partial_{t}\tilde{\mathbf{h}}_{|t=0} = -\frac{1}{\eta}\mathbf{curl}\,\mathbf{e}_{0} - f(\mathbf{m}_{0},\mathbf{h}_{0} - \nabla\Phi(\mathbf{m}_{0}) + \mathbf{h}_{\mathrm{ext}})_{\perp} \end{cases}$$

$$\begin{cases} (\eta^{2}\partial_{t} - \Delta)\tilde{\mathbf{e}} = -\mathbf{curl}\,\eta\partial_{t}\mathbf{m}_{\perp} \\ \tilde{\mathbf{e}}_{|t=0} = \mathbf{e}_{0} \\ \partial_{t}\tilde{\mathbf{e}}_{|t=0} = -\frac{1}{\eta}\mathbf{curl}\,\mathbf{h}_{0} \end{cases}$$

$$(4.1)$$

4.1. Boundedness of h_{\perp} and e with respect to η

In order to study \mathbf{h}_{\perp} and \mathbf{e} , decompose the problem in three independent problems: let u, ϕ and ψ be the solutions of the following Cauchy problems:

$$\begin{cases} \left(\eta^{2}\partial_{t}^{2}-\Delta\right)u=-\eta\partial_{t}\mathbf{m}_{\perp} \\ u_{|t=0}=0 \\ \partial_{t}u_{|t=0}=0 \end{cases}$$

$$\begin{cases} \left(\eta^{2}\partial_{t}^{2}-\Delta\right)\phi=0 \\ \phi_{|t=0}=0 \\ \partial_{t}\phi_{|t=0}=\frac{1}{\eta}P_{\perp}\mathbf{h}_{0} \end{cases}$$

$$\begin{cases} \left(\eta^{2}\partial_{t}^{2}-\Delta\right)\psi=0 \\ \psi_{|t=0}=0 \\ \partial_{t}\psi_{|t=0}=\frac{1}{\eta}\mathbf{e}_{0} \end{cases}$$

$$(4.3)$$

Lemma 4.1. Define u, ϕ, ψ as solutions of the Cauchy problems (4.3)–(4.5). Then $\mathbf{h}_{\perp} = \eta \partial_t u + \eta \partial_t \phi - \operatorname{curl} \psi$ and $\mathbf{e} = \operatorname{curl} u + \operatorname{curl} \phi - \partial_t \psi$.

Proof. Denote $\tilde{\mathbf{h}} = \eta \partial_t u + \eta \partial_t \phi - \operatorname{curl} \psi$. Clearly, $\tilde{\mathbf{h}}$ is solution of wave equation in (4.1), and $\tilde{\mathbf{h}}_{|t=0} = P_{\perp} \mathbf{h}_0$. It remains to check that

$$\partial_t \mathbf{\hat{h}}_{|t=0} = \eta f(\mathbf{m}_0, \mathbf{h}_0 - \nabla \Phi(\mathbf{m}_0) + \mathbf{h}_{\text{ext}})_{\perp} - \operatorname{curl} \mathbf{e}_0.$$

Indeed,

$$\begin{aligned} \partial_t \tilde{\mathbf{h}}_{|t=0} &= \partial_t^2 u_{|t=0} + \partial_t^2 \phi_{|t=0} + \partial_t \mathbf{curl} \psi_{|t=0} \\ &= (\Delta u)_{|t=0} - P_{\perp} (\partial_t \tilde{\mathbf{m}})_{|t=0} + (\Delta \phi)_{|t=0} + [\mathbf{curl} (\partial_t \psi)]_{|t=0} \\ &= \Delta (u_{|t=0}) - \eta f(\mathbf{m}_0, \mathbf{h}_0 - \nabla \Phi(\mathbf{m}_0) + \mathbf{h}_{\text{ext}})_{\perp} + \Delta (\phi_{|t=0}) - \mathbf{curl} \mathbf{e}_0 \\ &= \eta f(\mathbf{m}_0, \mathbf{h}_0 - \nabla \Phi(\mathbf{m}_0) + \mathbf{h}_{\text{ext}})_{\perp} - \mathbf{curl} \mathbf{e}_0. \end{aligned}$$

The proof for \mathbf{e} is similar.

Proposition 4.2. Let $(\mathbf{e}, \mathbf{h}, \mathbf{m})$ be a solution of the system (1.2). Then for all $R \geq 1$, there is a constant C_R which does not depend of \mathbf{m} and η such that:

$$\|\mathbf{h}_{\perp}\|_{L^{2}(\mathbb{R}_{+};L^{2}(B_{R}))} + \|\mathbf{e}\|_{L^{2}(\mathbb{R}_{+};L^{2}(B_{R}))} \leq C_{R}\sqrt{\eta} \left(\sqrt{\mathcal{E}(0)} + \sqrt{\eta}\|\partial_{t}\mathbf{m}\|_{L^{2}(\mathbb{R}_{+};L^{2}(\mathbb{R}^{d}))}\right)$$

Proof. By Theorem 1.2, the solution u of (4.3) satisfies:

$$\|\eta \partial_t u\|_{L^2(L^2(B_R))} + \|\nabla u\|_{L^2(L^2(B_R))} \le C_R \eta \|\partial_t \mathbf{m}\|_{L^2(L^2)}$$

By Theorem 3.14, the solutions ϕ and ψ of (4.4) and (4.5) satisfies:

$$\begin{aligned} \|\eta \partial_t \phi\|_{L^2(L^2(B_R))} + \|\nabla \phi\|_{L^2(L^2(B_R))} &\leq C_R \sqrt{\eta} \|\mathbf{h}_0\|_{L^2} \\ \|\eta \partial_t \psi\|_{L^2(L^2(B_R))} + \|\nabla \psi\|_{L^2(L^2(B_R))} &\leq C \sqrt{\eta} \|\mathbf{e}_0\|_{L^2}. \end{aligned}$$

We conclude by using Lemma 4.1.

Proof of Theorem 1.4. It suffices again to prove Theorem with $\eta = 1$.

We showed in the proof of Theorem 1.2 that there exists $h_R \in L^1 \cap L^{\infty}(\mathbb{R}_+) \subset L^2(\mathbb{R}_+)$ such that the solution u of (4.3) satisfies

$$\|\nabla_{t,x}u(t)\|_{L^2(B_R)} \le h_R *_t \|\partial_t \mathbf{m}(t)\|_{L^2(\mathbb{R}^d_x)}.$$

The property of convolution $L^2 * L^2$ implies that the right-hand side is continuous and tends to 0 at infinity. Thus, when $t \to +\infty$,

$$\|\nabla_{t,x}u(t)\|_{L^2(B_R)} \to 0.$$
 (4.6)

By Huygens principle, for t > R, and Φ, Ψ solutions of (4.4) and (4.5),

$$\begin{aligned} \|\nabla_{t,x}(\Phi,\Psi)(t)\|_{L^{2}(B_{R})} &\leq \|\nabla_{t,x}(\Phi,\Psi)(0)\|_{L^{2}(\Gamma_{t-R,t+R})} \\ &= \|\mathbb{1}_{\Gamma_{t-R,t+R}}\nabla_{t,x}(\Phi,\Psi)(0)\|_{L^{2}(\mathbb{R}^{d})} \end{aligned}$$

Thus, by Lebesgue's theorem, when $t \to +\infty$,

$$\|\nabla_{t,x}(\Phi,\Psi)(t)\|_{L^2(B_R)} \to 0.$$
 (4.7)

We conclude again by using (4.6) and (4.7) with Lemma 4.1.

4.2. Bounds for the curl fields

Notation 4.3. We denote $\mathcal{E}_{\operatorname{curl}}(t) = \|\operatorname{curl} \mathbf{e}(t)\|_{L^2(\mathbb{R}^d)}^2 + \|\operatorname{curl} \mathbf{h}(t)\|_{L^2(\mathbb{R}^d)}^2$.

The aim of this paragraph is to prove Theorem 1.5. More precisely, we establish the following result:

Proposition 4.4. There is a constant K such that, for all positive real fixed \mathcal{E}_r , there exists $\eta_0 > 0$ such that for all $0 < \eta \leq \eta_0$ and all solution of the problem (1.2) such that $\mathcal{E}_{curl}(0) \leq \mathcal{E}_r$, we have

$$\mathcal{E}_{\text{curl}}(t) \le \mathcal{E}_{\text{curl}}(0) + K(\mathcal{E}(0)^4 + 1).$$

Proof. We search to estimate $\partial_t \mathbf{h}_{\perp}$. Decompose $\mathbf{h}_{\perp} = \mathbf{h}_1 + \mathbf{h}_2$, where \mathbf{h}_1 and \mathbf{h}_2 are the solutions of the following Cauchy problems:

$$\begin{cases} (\eta^2 \partial_t^2 - \Delta) \mathbf{h}_1 = -\eta^2 \partial_t^2 \mathbf{m}_\perp \\ \mathbf{h}_{1|t=0} = 0 \\ \partial_t \mathbf{h}_{1|t=0} = 0, \end{cases}$$
(4.8)
$$\begin{cases} (\eta^2 \partial_t^2 - \Delta) \mathbf{h}_2 = 0 \\ \mathbf{h}_{2|t=0} = \mathbf{h}_{0\perp} \\ \partial_t \mathbf{h}_{2|t=0} = \frac{1}{\eta} \mathbf{curl} \, \mathbf{e}_0 + f(\mathbf{m}_0, \mathbf{h}_0 - \nabla \Phi(\mathbf{m}_0) + \mathbf{h}_{\mathrm{ext}})_\perp. \end{cases}$$
(4.9)

In order to apply Theorem 1.2 to \mathbf{h}_1 solution of (4.8), estimate $\partial_t^2 \mathbf{m}_{\perp}$. We have

$$\partial_t^2 \mathbf{m} = \partial_t f(\mathbf{m}, \mathbf{h}_T) = D_m f(\mathbf{m}, \mathbf{h}_T) \partial_t \mathbf{m} + f(\mathbf{m}, \partial_t \mathbf{h}_T)$$
(4.10)

$$|D_m f(\mathbf{m}, \mathbf{h}_T) \partial_t \mathbf{m}| \le 2|\mathbf{h}_T| |\partial_t \mathbf{m}| \le 4 |\mathbf{h}_T|^2 |\mathbf{m}| = 4 |\mathbf{h}_\perp - \mathbf{m}_\parallel - \nabla \Phi(\mathbf{m}) + \mathbf{h}_{\text{ext}}|^2 \mathbb{1}_B$$

$$|D_m f(\mathbf{m}, \mathbf{h}_T) \partial_t \mathbf{m}|^2 \lesssim \left[|\mathbf{h}_{\perp}|^4 + |\mathbf{m}_{\parallel}|^4 + |\nabla \Phi(\mathbf{m})|^4 + |\mathbf{h}_{\text{ext}}|^4 \right] \mathbb{1}_B$$
(4.11)

where we wrote $f \leq g$ in order to say that there is a constant C which is independent of η and $(\mathbf{e}, \mathbf{h}, \mathbf{m})$, such that $f \leq Cg$. Since $\mathbf{m}(t)$ is supported in B,

$$\|\mathbf{m}_{\|}(t)\|_{L^{4}(\mathbb{R}^{d})}^{4} \lesssim \|\mathbf{m}(t)\|_{L^{4}(\mathbb{R}^{d})}^{4} \lesssim \|\mathbf{m}\|_{L^{\infty}} = 1.$$

Next, because $\nabla \Phi$ is continuous, $\|\Phi(\mathbf{m})\|_{L^{\infty}} \leq \sup_{m \in B} |\Phi(m)| < +\infty$. Moreover, $\Phi(0) \leq \Phi(m)$ for $m \in \mathbb{R}^3$. Thus, $\nabla \Phi(0) = 0$ and $\operatorname{supp} \nabla \Phi(\mathbf{m})$ is supported in *B*. Consequently,

$$\|\nabla\Phi(\mathbf{m}(t))\|_{L^4(\mathbb{R}^d)} \lesssim \|\nabla\Phi(\mathbf{m}(t))\|_{L^\infty(\mathbb{R}^d)} \lesssim 1.$$

Integrate in x on B in (4.11), then

$$||D_m f(\mathbf{m}(t), \mathbf{h}(t))\partial_t \mathbf{m}(t)||^2_{L^2(\mathbb{R}^d)} \lesssim ||\mathbf{h}_{\perp}(t)||^4_{L^4(B)} + 1.$$

Now, because $d \leq 3$, by Sobolev inequality (see [1]):

$$||h||_{L^4(B)} \lesssim ||h||_{L^2(B)} + ||\nabla h||_{L^2(B)}.$$

Thus

$$\|D_m f(\mathbf{m}(t), \mathbf{h}_T(t))\partial_t \mathbf{m}(t)\|_{L^2(\mathbb{R}^d)}^2 \lesssim \|\nabla_x \mathbf{h}_{\perp}(t)\|_{L^2(B)}^4 + \|\mathbf{h}_{\perp}(t)\|_{L^2(B)}^4 + 1.$$

Similarly for the second term in (4.10),

$$\begin{aligned} |f(\mathbf{m},\partial_t \mathbf{h}_T)| &\leq 2|\mathbf{m}| \left| \partial_t \mathbf{h}_T \right| \leq 2|\partial_t \mathbf{h}_T | \mathbf{1}_B, \\ |f(\mathbf{m},\partial_t \mathbf{h}_T)|^2 &\lesssim (|\partial_t \mathbf{h}_\perp|^2 + |\partial_t \mathbf{m}_\parallel|^2 + |\nabla \Phi(\mathbf{m})|) \mathbf{1}_B, \\ \|f(\mathbf{m}(t),\partial_t \mathbf{h}_T(t))\|_{L^2(\mathbb{R}^d)}^2 &\lesssim \|\partial_t \mathbf{h}_\perp(t)\|_{L^2(B)}^2 + \|\partial_t \mathbf{m}(t)\|_{L^2(\mathbb{R}^d)}^2 + 1 \\ &\lesssim \|\partial_t \mathbf{h}_\perp(t)\|_{L^2(B)}^2 + \|\mathbf{h}(t)\|_{L^2(\mathbb{R}^d)}^2 + 1. \end{aligned}$$

Taking the essential supremum in t on (0, T):

$$\begin{aligned} \|\partial_t f(\mathbf{m}, \mathbf{h})\|_{L^{\infty}((0,T); L^2(\mathbb{R}^d))}^2 &\lesssim \left[\|\nabla_x \mathbf{h}_{\perp}\|_{L^{\infty}((0,T); L^2(B))}^4 \\ &+ \|\partial_t \mathbf{h}_{\perp}\|_{L^{\infty}((0,T); L^2(B_R))}^2 + C(\mathbf{h}_{\perp}, \partial_t \mathbf{m}) \right] \end{aligned}$$
(4.12)

with

$$C(\mathbf{h}_{\perp}, \partial_t \mathbf{m}) = \|\mathbf{h}_{\perp}\|_{L^{\infty}(\mathbb{R}_+; L^2(B))}^4 + 1 + \|\mathbf{h}\|_{L^{\infty}(\mathbb{R}_+; L^2(\mathbb{R}^d))}^2 \lesssim \mathcal{E}(0)^2 + 1 < +\infty.$$
(4.13)

By Theorem 1.2,

$$\|(\eta\partial_t \mathbf{h}_1, \nabla \mathbf{h}_1)\|_{L^{\infty}((0,T);L^2(B))} \lesssim \eta^2 \|\partial_t f(\mathbf{m}, \mathbf{h})\|_{L^{\infty}((0,T);L^2(\mathbb{R}^d))}.$$

We have also conservation of energy for the linear wave equation

$$\begin{aligned} \|(\eta \partial_t \mathbf{h}_2, \nabla \mathbf{h}_2)\|_{L^{\infty}((0,T);L^2(B))} &\leq \|\eta \partial_t \mathbf{h}_2(0), \nabla \mathbf{h}_2(0)\|_{L^2(\mathbb{R}^d)^4} \\ &\leq \sqrt{\|\mathbf{curl}\,\mathbf{h}_0\|_{L^2}^2 + \|\mathbf{curl}\,\mathbf{e}_0\|_{L^2}^2}. \end{aligned}$$

Adding the last two inequalities yields:

$$\begin{aligned} \|(\eta\partial_t \mathbf{h}_{\perp}, \nabla \mathbf{h}_{\perp})\|_{L^{\infty}((0,T);L^2(B))^4} &\lesssim \eta^2 \|\partial_t f(\mathbf{m}, \mathbf{h})\|_{L^{\infty}((0,T);L^2)} \\ &+ \sqrt{\mathcal{E}_{\mathrm{curl}}(0)}. \end{aligned}$$

Finally, we use the inequalities (4.12) and (4.13). There is a constant C_1 such that

$$\begin{aligned} \|(\eta \partial_t \mathbf{h}_{\perp}, \nabla \mathbf{h}_{\perp})\|_{L^{\infty}((0,T);L^2(B))^4} &\leq C_1 \eta^2 \big[\|\nabla_x \mathbf{h}_{\perp}\|_{L^{\infty}((0,T);L^2(B))}^2 \\ &+ \|\partial_t \mathbf{h}_{\perp}\|_{L^{\infty}((0,T);L^2(B_R))} + \mathcal{E}(0)^2 + 1 \big] + \sqrt{\mathcal{E}_{\mathrm{curl}}(0)}. \end{aligned}$$

In order to put the term $\|\partial_t \mathbf{h}_{\perp}\|_{L^{\infty}((0,T);L^2(B_R))}$ in (4.12) in the left-hand side, assume that $\eta \leq \frac{1}{2C_1}$.

Let

$$X(T) = \|(\eta \partial_t \mathbf{h}_\perp, \nabla \mathbf{h}_\perp)\|_{L^{\infty}((0,T);L^2(B_R))}.$$

Then we have, with $C_2 = 4C_1$:

$$X(T) \le \eta^2 C_2(X(T)^2 + \mathcal{E}(0)^2 + 1) + \sqrt{\mathcal{E}_{\text{curl}}(0)}.$$

Now, remark that $\|\nabla_x \mathbf{h}_{\perp}(t)\|_{L^2(\mathbb{R}^d)} = \|\mathbf{curl} \mathbf{h}\|_{L^2(\mathbb{R}^d)}$. Now, because we are looking for solution of the (1.2) with regularity $\mathcal{C}(\mathbb{R}_+, H(\mathbf{curl}, \mathbb{R}^d))$, we obtain that Xis a continuous function. Thus, if $X(0) \leq X_1$, where X_1 is the smaller root of the quadratic polynomial $\eta^2 C_2 (X^2 + \mathcal{E}(0)^2 + 1) - X$, then $X(t) \leq X_1$ for all $t \geq 0$. We are in this case when:

$$\eta \leq \frac{1}{4C_2(C_2(\mathcal{E}(0)^2 + 1) + \sqrt{\mathcal{E}_{\operatorname{curl}}(0)})}.$$

To conclude, remark that $\|\nabla \mathbf{h}_{\perp}(t)\|_{L^2} = \|\mathbf{curl} \mathbf{h}(t)\|_{L^2}$ and, thanks to the second equation and the condition $\operatorname{div}(\mathbf{h} + \mathbf{m}) = 0$ in (1.2),

$$\|\mathbf{curl}\,\mathbf{e}(t)\|_{L^2} \le \|\eta\partial_t\mathbf{h}_{\perp}(t)\| + \eta\|\mathbf{h}(t)\|_{L^2}.$$

Remark 4.5. The L^2 estimates so obtained on **curl e** and **curl h** does not depend on the parameter $\alpha \in [0, 1]$ in the definition of f(m, h). So, we can obtain a convergence result, in the next section, when $\alpha \to 0$.

5. Convergence Toward Quasistationary System; Existence and Uniqueness of Weak Solutions in Quasistationary Problem

We prove a convergence result when η tends to 0 in (1.2), which is the quasistationary limit. In [10], Jochmann proved a weak quasi-stationary limit for weak energy solution of (1.1). Here, we consider a strong limit for strong solution. We first study $\mathbf{e} = \mathbf{e}_{\eta}$ and $\mathbf{h}_{\eta\perp}$ using Proposition 4.2, next we study the convergence of $\mathbf{m} = \mathbf{m}_{\eta}$.

5.1. Convergence of $h_{\eta\perp}$ and e_{η} to 0

Proposition 5.1. For fixed $\alpha \geq 0$. Let $(\mathbf{h}_{\eta}, \mathbf{e}_{\eta}, \mathbf{m}_{\eta})$ be the solution of the Cauchy problem (1.2). Then, for all R > 0, when $\alpha > 0$

$$\lim_{\eta \to 0^+} \|\mathbf{h}_{\eta \perp}\|_{L^2(\mathbb{R}_+; L^2(B_R))} + \|\mathbf{e}_{\eta}\|_{L^2(\mathbb{R}_+; L^2(B_R))} = 0.$$

When $\alpha = 0$, we have, for all T > 0,

$$\lim_{\eta \to 0^+} \|\mathbf{h}_{\eta\perp}\|_{L^2((0,T);L^2(B_R))} + \|\mathbf{e}_{\eta}\|_{L^2((0,T);L^2(B_R))} = 0$$

Proof. First, recall Proposition 4.2 (when $0 < T \le +\infty$)

$$\|\mathbf{h}_{\eta\perp}\|_{L^{2}(\mathbb{R}_{+};L^{2}(B_{R}))} + \|\mathbf{e}_{\eta}\|_{L^{2}(\mathbb{R}_{+};L^{2}(B_{R}))} \leq C_{R}\sqrt{\eta} \left(\sqrt{\mathcal{E}(0)} + \sqrt{\eta}\|\partial_{t}\mathbf{m}\|_{L^{2}(\mathbb{R}_{+};L^{2}(\mathbb{R}^{d}))}\right).$$

By Proposition 2.6, when $\alpha > 0$,

$$\|\partial_t \mathbf{m}_{\eta}\|_{L^2(\mathbb{R}_+;L^2(\mathbb{R}^d))} \le \sqrt{\frac{1+\alpha^2}{\alpha}} \mathcal{E}(0).$$

This gives the proof in this case. When $\alpha = 0$, the proof follows from the inequality

$$\|\partial_t \mathbf{m}(t)\|_{L^{\infty}((0,T);L^2)} \le \|\mathbf{h}(t)\|_{L^{\infty}((0,T);L^2)} \le \sqrt{2\mathcal{E}(0)}$$

given by the Landau–Lifshitz equation.

5.2. Convergence of m_{η}

In this section, we prove the following result in several steps:

Theorem 5.2. There exists a unique solution in $C^1(\mathbb{R}_+; L^2)$ of the following Cauchy problem:

$$\partial_t \mathbf{m} = f(\mathbf{m}, -\mathbf{m}_{\parallel})$$

$$\mathbf{m}(0) = \mathbf{m}_0.$$
 (5.1)

Moreover, if $(\mathbf{h}_{\eta}, \mathbf{e}_{\eta}, \mathbf{m}_{\eta})$ is a weak solution of (1.2), then as $\eta \to 0 \ \mathbf{m}_{\eta} \to \mathbf{m}$ strongly in $\mathcal{C}((0, T); L^2)$.

5.2.1. Weak convergence

Proposition 5.3. There exists $\mathbf{m} \in L^{\infty}(\mathbb{R}_+ \times \mathbb{R}^d)$ and a subsequence of $(\mathbf{m}_{\eta})_{\eta}$ such that:

- \mathbf{m}_n converges *-weakly in L^{∞} to \mathbf{m} .
- **m** is continuous from \mathbb{R}_+ to $L^2_{\text{weak}}(\mathbb{R}^d)$.
- for all $t \ge 0$, $\mathbf{m}_n(t)$ converges weakly in $L^2(\mathbb{R}^d)$ to $\mathbf{m}(t)$.

Proof. $(\mathbf{m}_{\eta})_{\eta>0}$ is bounded in $L^{\infty}([0,T] \times \mathbb{R}^d)$, so, extracting a subsequence, converges *-weakly to a $\mathbf{m} \in L^{\infty}([0,T] \times \mathbb{R}^d)$. Moreover, we know that

$$\partial_t \mathbf{m}_{\eta} = f(\mathbf{m}_{\eta}, \mathbf{h}_{\eta\perp} - \mathbf{m}_{\eta\parallel} - \nabla \Phi(\mathbf{m}_{\eta}) + \mathbf{h}_{\text{ext}}),$$

 \mathbf{SO}

$$\begin{aligned} \|\partial_t \mathbf{m}_{\eta}\|_{L^{\infty}([0,T];L^2)} &\leq \|\mathbf{m}_{\eta}\|_{L^{\infty}}(\|\mathbf{h}_{\eta\perp}\|_{L^{\infty}([0,T];L^2)} + \|\mathbf{m}_{\eta\|}\|_{L^{\infty}([0,T];L^2)} \\ &+ \|\nabla\Phi(\mathbf{m}_{\eta})\|_{L^{\infty}([0,T];L^2)} + \|\mathbf{h}_{\mathrm{ext}}\|_{L^2(B)}) \\ &\leq \sqrt{\mathcal{E}(0)} + C. \end{aligned}$$

Consequently, the set $(\mathbf{m}_{\eta})_{\eta}$ is equi-continuous from [0, T] to L^2 .

 L^2 with its weak topology is a metric space such that bounded sets are compact. According to Ascoli's theorem, \mathbf{m}_{η} converges, extracting further a subsequence, in $C([0,T]; L^2_{\text{weak}})$, necessarily to **m** by uniqueness of the limit in the distribution sense. In particular, for all $t \in [0,T]$, $\mathbf{m}_{\eta}(t)$ converges weakly to $\mathbf{m}(t)$ in $L^2(\mathbb{R}^d)$.

5.2.2. First estimates

Let $\eta_1, \eta_2 > 0$ two positive reals, intended to converge to 0.

$$\partial_{t} \mathbf{m}_{\eta_{1}} - \partial_{t} \mathbf{m}_{\eta_{2}} = f(\mathbf{m}_{\eta_{1}}, \mathbf{h}_{\eta_{1}\perp} - \mathbf{m}_{\eta_{1}\parallel} - \nabla \Phi(\mathbf{m}_{\eta_{1}}) + \mathbf{h}_{\text{ext}}) - f(\mathbf{m}_{\eta_{2}}, \mathbf{h}_{\eta_{2}\perp} - \mathbf{m}_{\eta_{2}\parallel} - \nabla \Phi(\mathbf{m}_{\eta_{2}}) + \mathbf{h}_{\text{ext}}) = (f(\mathbf{m}_{\eta_{1}}, -\mathbf{m}_{\parallel} - \nabla \Phi(\mathbf{m}_{\eta_{1}}) + \mathbf{h}_{\text{ext}}) - f(\mathbf{m}_{\eta_{2}}, -\mathbf{m}_{\parallel} - \nabla \Phi(\mathbf{m}_{\eta_{1}}) + \mathbf{h}_{\text{ext}}) + f(\mathbf{m}_{\eta_{2}}, \nabla \Phi(\mathbf{m}_{\eta_{1}}) - \nabla \Phi(\mathbf{m}_{\eta_{2}})) + f(\mathbf{m}_{\eta_{1}}, \mathbf{h}_{\eta_{1}\perp}) - f(\mathbf{m}_{\eta_{2}}, \mathbf{h}_{\eta_{2}\perp}) + f(\mathbf{m}_{\eta_{1}}, P_{\parallel}(\mathbf{m} - \mathbf{m}_{\eta_{1}})) - f(\mathbf{m}_{\eta_{2}}, P_{\parallel}(\mathbf{m} - \mathbf{m}_{\eta_{2}})).$$
(5.2)

Take the scalar product of this equality by $\mathbf{m}_{\eta_1} - \mathbf{m}_{\eta_2}$, to find a bound, using the fact that $|\mathbf{m}_{\eta_1}|, |\mathbf{m}_{\eta_2}| \leq 1$:

$$\frac{1}{2}\partial_{t}|\mathbf{m}_{\eta_{1}} - \mathbf{m}_{\eta_{2}}|^{2} \leq 2|\mathbf{m}_{\eta_{1}} - \mathbf{m}_{\eta_{2}}|^{2} \left(|\mathbf{m}_{\parallel}| + |\nabla\Phi(\mathbf{m}_{\eta_{1}})| + |\mathbf{h}_{\text{ext}}|\right) \\
+ 2|\mathbf{m}_{\eta_{1}} - \mathbf{m}_{\eta_{2}}| |\nabla\Phi(\mathbf{m}_{\eta_{1}}) - \nabla\Phi(\mathbf{m}_{\eta_{2}})| |\mathbf{m}_{\eta_{2}}| \\
+ 2|\mathbf{m}_{\eta_{1}} - \mathbf{m}_{\eta_{2}}| |\mathbf{m}_{\eta_{1}}| |\mathbf{h}_{\eta_{1}\perp}| + 2|\mathbf{m}_{\eta_{1}} - \mathbf{m}_{\eta_{2}}| |\mathbf{m}_{\eta_{2}}| |\mathbf{h}_{\eta_{2}\perp}| \\
+ |f(\mathbf{m}_{\eta_{1}}, P_{\parallel}(\mathbf{m} - \mathbf{m}_{\eta_{1}})) \cdot (\mathbf{m}_{\eta_{1}} - \mathbf{m}_{\eta_{2}})| \\
+ |f(\mathbf{m}_{\eta_{2}}, P_{\parallel}(\mathbf{m} - \mathbf{m}_{\eta_{2}})) \cdot (\mathbf{m}_{\eta_{1}} - \mathbf{m}_{\eta_{2}})| \\
\leq 2|\mathbf{m}_{\eta_{1}} - \mathbf{m}_{\eta_{2}}|^{2} (|\mathbf{m}_{\parallel}| + C) \\
+ 8(|\mathbf{h}_{\eta_{1}\perp}| + |\mathbf{h}_{\eta_{2}\perp}|) \\
+ |f(\mathbf{m}_{\eta_{1}}, P_{\parallel}(\mathbf{m} - \mathbf{m}_{\eta_{1}})) \cdot (\mathbf{m}_{\eta_{1}} - \mathbf{m}_{\eta_{2}})| \\
+ |f(\mathbf{m}_{\eta_{2}}, P_{\parallel}(\mathbf{m} - \mathbf{m}_{\eta_{2}})|. \tag{5.3}$$

We use a Gronwall's lemma to absorb the first term in the left-hand side. **m** is bounded, and supported in B, hence in $L^2([0,T]; L^2(\mathbb{R}^d))$, thus \mathbf{m}_{\parallel} is in $L^2([0,T]; L^2(\mathbb{R}^d))$, therefore in $L^1([0,T] \times B)$. By Fubini's theorem, the function $x \mapsto \|\mathbf{m}_{\parallel}(\cdot, x)\|_{L^1([0,T])}$ is integrable, thus finite almost everywhere. Hence, we can define, for almost every $x \in B$:

$$a(t,x) = |x|^2 + 2\int_0^t (|\mathbf{m}_{\parallel}(s,x)| + C) \,\mathrm{d}s.$$

Remark 5.4. We need the term $|x|^2$ in order to have $e^{-a(t)} \in L^4(\mathbb{R}^d)$, which is used later.

There holds

$$\begin{aligned} \frac{1}{2} \partial_t |e^{-2a} (\mathbf{m}_{\eta_1} - \mathbf{m}_{\eta_2})|^2 &\leq 8e^{-2a} (|\mathbf{h}_{\eta_1 \perp}| + |\mathbf{h}_{\eta_2 \perp}|) \\ &+ \left| f(\mathbf{m}_{\eta_1}, e^{-a} P_{\parallel}(\mathbf{m} - \mathbf{m}_{\eta_1})) \cdot \left(e^{-a} (\mathbf{m}_{\eta_1} - \mathbf{m}_{\eta_2}) \right) \right| \\ &+ \left| f(\mathbf{m}_{\eta_2}, e^{-a} P_{\parallel}(\mathbf{m} - \mathbf{m}_{\eta_2})) \cdot \left(e^{-a} (\mathbf{m}_{\eta_1} - \mathbf{m}_{\eta_2}) \right) \right|. \end{aligned}$$

Integrate on $[0, t] \times B$. Because $\mathbf{m}_{\eta_1}(0) = \mathbf{m}_0 = \mathbf{m}_{\eta_2}(0)$, we have

$$\begin{aligned} \frac{1}{2} \| e^{-a(t)} (\mathbf{m}_{\eta_1}(t) - \mathbf{m}_{\eta_2}(t)) \|_{L^2}^2 \\ &\leq 8 \| e^{-2a} (|\mathbf{h}_{\eta_1 \perp}| + |\mathbf{h}_{\eta_2 \perp}|) \|_{L^1([0,T] \times B)} \\ &+ \int_0^t \int_B \left| f(\mathbf{m}_{\eta_1}, e^{-a} P_{\parallel}(\mathbf{m} - \mathbf{m}_{\eta_1})) \cdot (e^{-a} (\mathbf{m}_{\eta_1} - \mathbf{m}_{\eta_2})) \right| \, \mathrm{d}x \mathrm{d}t \\ &+ \int_0^t \int_B \left| f(\mathbf{m}_{\eta_2}, e^{-a} P_{\parallel}(\mathbf{m} - \mathbf{m}_{\eta_2})) \cdot (e^{-a} (\mathbf{m}_{\eta_1} - \mathbf{m}_{\eta_2})) \right| \, \mathrm{d}x \mathrm{d}t. \end{aligned}$$

Assume for the moment the following result, which is proved in the next section.

Proposition 5.5. There is a constant C and a function $D(\eta_1, \eta_2)$ converging to 0 when (η_1, η_2) tends to (0, 0) such that, for η which is η_1 or η_2 , and all $t \in [0, T]$,

$$\int_{B} \left| f\left(\mathbf{m}_{\eta}(t), e^{-a(t)} P_{\parallel}(\mathbf{m}(t) - \mathbf{m}_{\eta}(t))\right) \cdot \left(e^{-a(t)}(\mathbf{m}_{\eta_{1}}(t) - \mathbf{m}_{\eta_{2}}(t))\right) \right| dx$$

$$\leq C \|e^{-a(t)}(\mathbf{m}_{\eta_{1}}(t) - \mathbf{m}_{\eta_{2}}(t))\|_{L^{2}} \|e^{-a(t)}(\mathbf{m}(t) - \mathbf{m}_{\eta}(t))\|_{L^{2}} + D(\eta_{1}, \eta_{2}).$$

Let $D'(\eta_1, \eta_2) = D(\eta_1, \eta_2) + 8 ||e^{-2a}(|\mathbf{h}_{\eta_1 \perp}| + |\mathbf{h}_{\eta_2 \perp}|)||_{L^1([0,T] \times B)}$. Then, by Proposition 5.1.

$$\lim_{\eta_1,\eta_2 \to 0} D'(\eta_1,\eta_2) = 0.$$

Hence,

$$\frac{1}{2} \|e^{-a(t)} \left(\mathbf{m}_{\eta_1}(t) - \mathbf{m}_{\eta_2}(t)\right)\|_{L^2}^2 \leq D'(\eta_1, \eta_2) + C \int_0^t \|e^{-a(s)} \left(\mathbf{m}_{\eta_1}(s) - \mathbf{m}_{\eta_2}(s)\right)\|_{L^2} \|e^{-a(s)} \left(\mathbf{m}(s) - \mathbf{m}_{\eta}(s)\right)\|_{L^2} \, \mathrm{d}s.$$
(5.4)

We use the following nonlinear Gronwall's lemma (for a proof, see for instance the annex.C in [7]),

Lemma 5.6 (Square Gronwall). Let y be a function in $H^1(0,T)$, $C \ge 0$ and f in $L^1(0,T)$ such that:

$$\forall t \in [0,T], \quad y^2(t) \le C + \int_0^t f(s) y(s) \,\mathrm{d}s.$$

Then

$$\forall t \in [0,T], \quad y(t) \le \sqrt{C} + \frac{1}{2} \int_0^t f(s) \, \mathrm{d}s.$$

Applying this lemma to $y(t) = \|e^{-a(t)}(\mathbf{m}_{\eta_1}(t) - \mathbf{m}_{\eta_2}(t))\|_{L^2}$ and

$$f(t) = ||e^{-a(t)}(\mathbf{m}(t) - \mathbf{m}_{\eta}(t))||_{L^2}$$

in (5.4), we obtain

$$\frac{1}{2} \|e^{-a(t)}(\mathbf{m}_{\eta_1}(t) - \mathbf{m}_{\eta_2}(t))\|_{L^2} \le \sqrt{D'(\eta_1, \eta_2)} + \frac{1}{2} \int_0^t \|e^{-a(s)}(\mathbf{m}(s) - \mathbf{m}_{\eta}(s))\|_{L^2}.$$

We take the limit for $\eta = \eta_1$ fixed and $\eta_2 \to 0$. Because the norm is lower semi-continuous for the weak topology we have

$$\begin{aligned} \|e^{-a(t)}(\mathbf{m}_{\eta_1}(t) - \mathbf{m}(t))\|_{L^2} &\leq 2 \liminf_{\eta_2 \to 0} \sqrt{D'(\eta_1, \eta_2)} \\ &+ \int_0^t \|e^{-a(s)}(\mathbf{m}_{\eta_1}(s) - \mathbf{m}(s))\|_{L^2} \,\mathrm{d}s \end{aligned}$$

The usual Gronwall's lemma implies

$$\|e^{-a(t)}(\mathbf{m}_{\eta_1}(t) - \mathbf{m}(t))\|_{L^2} \le 2 \liminf_{\eta_2 \to 0} \sqrt{D(\eta_1, \eta_2)} e^T$$

thus, the convergence of $(e^{-a}\mathbf{m}_{\eta})_{\eta}$ to $e^{-a}\mathbf{m}$ in $L^{\infty}([0,T];L^2)$.

Because $e^{-a} > 0$ a.e, modulo a subsequence, we can further assume that $\mathbf{m}_{\eta}(t, x)$ converges to $\mathbf{m}(t, x)$ almost everywhere in $[0, T] \times B$. Using the boundedness in $L^{\infty}(\mathbb{R}^{1+d}_+)$ of the family $(\mathbf{m}_{\eta})_{\eta} > 0$, the Lebesgue theorem prove the convergence of \mathbf{m}_{η} to \mathbf{m} in $L^{p}([0, T] \times B), p < +\infty$.

This convergence implies in particular the convergence of $\Phi(\mathbf{m}_{\eta})$ to $\Phi(\mathbf{m})$, in L^2 . Finally, we obtain a strong convergence in $L^1([0,T] \times B)$ of $f(\mathbf{m}_{\eta}, \mathbf{h}_{\eta\perp} - \mathbf{m}_{\eta\parallel})$ of $f(\mathbf{m}, -\mathbf{m}_{\parallel})$. Moreover, $\partial_t \mathbf{m}_{\eta}$ converge to $\partial_t \mathbf{m}$ (in the distribution sense), we obtain that **m** is a solution of (5.1).

Remark 5.7. This proves also the existence of solution of the Cauchy problem (5.1).

5.3. Uniqueness of the Cauchy problem

We show the uniqueness of the solution to this Cauchy problem. This shows that there is only one limit of (\mathbf{m}_{η}) (the solution), so the full sequence (\mathbf{m}_{η}) converges to \mathbf{m} .

Let \mathbf{m}_1 and \mathbf{m}_2 be two solutions in $L^{\infty}([0,T] \times \mathbb{R}^d) \cap H^1([0,T]; L^2(\mathbb{R}^d))$ of the Cauchy problem (5.1). The computations are similar to (5.2) and (5.3).

$$\partial_t \mathbf{m}_1 - \partial_t \mathbf{m}_2 = f(\mathbf{m}_1, -\mathbf{m}_{1\parallel} - \nabla \Phi(\mathbf{m}_1) + \mathbf{h}_{ext}) - f(\mathbf{m}_2, -\mathbf{m}_{2\parallel} - \nabla \Phi(\mathbf{m}_2) + \mathbf{h}_{ext}).$$

We have

$$\frac{1}{2}\partial_t |\mathbf{m}_1 - \mathbf{m}_2|^2 \le 2|\mathbf{m}_1 - \mathbf{m}_2| |P_{\parallel}(\mathbf{m}_1 - \mathbf{m}_2)| + (|\mathbf{m}_{1\parallel}| + C) |\mathbf{m}_1 - \mathbf{m}_2|^2.$$
(5.5)

If $\mathbf{m}_{1\parallel}$ were bounded, the Cauchy–Schwarz inequality and Gronwall's lemma would yield that $\mathbf{m}_1(t) = \mathbf{m}_2(t)$ for all $t \ge 0$. Unfortunately, this is not the case, but we use the following substitute (see [17] for a proof):

Proposition 5.8. There exists a constant C such that for all $p \in [2, +\infty)$, the operator P_{\parallel} is bounded from $L^{p}(\mathbb{R}^{d})$ into $L^{p}(\mathbb{R}^{d})$ with norm less than Cp.

We cut $P_{\parallel}\mathbf{m}_1$ in a bounded part, and a small remainder in L^1 .

Definition 5.9. For M > 0, let P^M_{\parallel} be defined in $\bigcup_p L^p(\mathbb{R}^d)$ by:

$$P^{M}_{\parallel}(f) = f_{\parallel} \times 1_{\{|f_{\parallel}| > M\}}.$$

Let also $P'^M_{\parallel}(f) = f_{\parallel} \times \mathbb{1}_{\{|f_{\parallel}| \le M\}}$, so that $\|P'^M_{\parallel}(f)\|_{L^{\infty}} \le M$ and $P_{\parallel} = P^M_{\parallel} + P'^M_{\parallel}$.

We use Proposition 5.8 to prove

Lemma 5.10. Let $f \in [L^1 \cap L^\infty](\mathbb{R}^d)$. Then exists two constants c, C > 0 such that for all M > 1/c, we have:

$$||P_{||}^{M}(f)||_{L^{1}} \le C \exp(-cM).$$

Proof. Let $C_1 = [||f||_{L^1} + ||f||_{L^{\infty}}]$, so that $||f||_{L^p} \leq C_1$ for all p. For a borelian Ω in \mathbb{R}^d , note $|\Omega|$ its Lebesgue's measure. First, we have, thanks to the Bienaymé–Tchebytchev inequality

$$|\{|f_{\parallel}| > M\}| \le \left(\frac{\|f_{\parallel}\|_{L^r}}{M}\right)^r.$$

By Proposition 5.8, $||f_{\parallel}||_{L^r} \lesssim r||f||_{L^r} \lesssim r$. Thus, for all $r \ge 1$,

$$|\{|f_{\parallel}| > M\}| \le \left(\frac{rC_1}{M}\right)^r$$

If we assume M sufficiently large, we can choose $r = \frac{M}{Ce}$ so that:

$$|\{|f_{\parallel}| > M\}| \lesssim e^{-cM}$$

where $c = \frac{1}{Ce}$. Secondly, Hölder's inequality implies that for all q (with $\frac{1}{q} + \frac{1}{q'} = 1$):

$$\begin{aligned} \|P_{\parallel}^{M}(f)\|_{L^{1}} &\leq \|f_{\parallel}\|_{L^{q}} \|\mathbb{1}_{\{|f|>M\}}\|_{L^{q'}} \\ &\leq qC_{1}|\{|f|>M\}|^{1-\frac{1}{q}} \\ &\leq qC_{1}C^{1-\frac{1}{q}}e^{-\frac{cM}{q}}e^{-cM}. \end{aligned}$$

Choose q = cM (assuming that $M > \frac{1}{c}$). Thus,

$$\|P^M_{\parallel}(f)\|_{L^1} \lesssim M e^{-cM} \lesssim e^{-c'M}$$

with c' such that 0 < c' < c.

We now finish the proof of uniqueness in problem (5.1). In inequality (5.5), decompose $\mathbf{m}_{1\parallel} = P_{\parallel}^{M}(\mathbf{m}_{1}) + {P'}_{\parallel}^{M}(\mathbf{m}_{1})$. Using $\|P'_{\parallel}^{M}(\mathbf{m}_{1})\|_{L^{\infty}} \leq M$, we obtain

$$\frac{1}{2}\partial_t |\mathbf{m}_1 - \mathbf{m}_2|^2 \le 2(M+C)|\mathbf{m}_1 - \mathbf{m}_2|^2 + 2|\mathbf{m}_2 - \mathbf{m}_2||\mathbf{m}_{1\parallel} - \mathbf{m}_{2\parallel}| + 4|P_{\parallel}^M(\mathbf{m}_2)|.$$

Integrate on *B* (using Cauchy–Schwarz inequality for the second term in the right-hand side, and the fact that $||P_{\parallel}||_{\mathcal{L}(L^2)} = 1$).

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|\mathbf{m}_1(t) - \mathbf{m}_2(t)\|_{L^2} \le 2(M + C + 1) \|\mathbf{m}_1(t) - \mathbf{m}_2(t)\|^2 + 4Ce^{-cM}.$$

Using Gronwall's lemma, we obtain that, for T > 0, which will be fixed later, for all $t \in [0, T]$,

$$\|\mathbf{m}_1(t) - \mathbf{m}_2(t)\|_{L^2}^2 \lesssim e^T \exp(M(T-c)).$$

Fix T < c, and let M tend to $+\infty$. There holds $\mathbf{m}_1(t) = \mathbf{m}_2(t)$ for all t < T. We have uniqueness on [0, T], therefore, global uniqueness since it is an autonomous system.

5.4. Proof of Proposition 5.5

The aim of this subsection is to prove Proposition 5.5. We start by giving another formulation which is equivalent because of the symmetry of the indices η_1 and η_2 .

Proposition 5.11. There is a constant C which only depends of T such that for all $\varepsilon > 0$, exists $\eta_0 > 0$ such that for all $\eta_1, \eta_2 \leq \eta_0$ and $t \in [0, T]$, we have

$$\begin{split} &\int_{B} \left| f \left(\mathbf{m}_{\eta_{1}}(t), e^{-a(t)} P_{\parallel}(\mathbf{m}(t) - \mathbf{m}_{\eta_{1}}(t)) \right) \cdot \left(e^{-a(t)}(\mathbf{m}_{\eta_{1}}(t) - \mathbf{m}_{\eta_{2}}(t)) \right) \right| \, \mathrm{d}x \\ &\leq C \| e^{-a(t)}(\mathbf{m}_{\eta_{1}}(t) - \mathbf{m}_{\eta_{2}}(t)) \|_{L^{2}} \| e^{-a(t)}(\mathbf{m}(t) - \mathbf{m}_{\eta_{1}}(t)) \|_{L^{2}} + \varepsilon. \end{split}$$

Proof. The first step is to write $e^{-a(t)}P_{\parallel} = P_{\parallel}e^{-a(t)} + [e^{-a(t)}, P_{\parallel}]$ and use the linearity of f with respect to its second argument. So we have

$$\begin{split} &\int_{B} \left| f \left(\mathbf{m}_{\eta_{1}}(t), e^{-a(t)} P_{\parallel}(\mathbf{m}(t) - \mathbf{m}_{\eta_{1}}(t)) \right) \cdot \left(e^{-a(t)} \left(\mathbf{m}_{\eta_{1}}(t) - \mathbf{m}_{\eta_{2}}(t) \right) \right) \right| \mathrm{d}x \\ &\leq \int_{B} \left| f \left(\mathbf{m}_{\eta_{1}}(t), P_{\parallel} e^{-a(t)} \left(\mathbf{m}(t) - \mathbf{m}_{\eta_{1}}(t) \right) \right) \cdot \left(e^{-a(t)} \left(\mathbf{m}_{\eta_{1}}(t) - \mathbf{m}_{\eta_{2}}(t) \right) \right) \right| \mathrm{d}x \\ &+ \int_{B} \left| f \left(\mathbf{m}_{\eta_{1}}(t), [e^{-a(t)}, P_{\parallel}] (\mathbf{m}(t) - \mathbf{m}_{\eta_{1}}(t)) \right) \cdot \left(e^{-a(t)} \left(\mathbf{m}_{\eta_{1}}(t) - \mathbf{m}_{\eta_{2}}(t) \right) \right) \right| \mathrm{d}x. \end{split}$$

Using the fact that $|f(m,h)| \leq 2|h|$ when $|m| \leq 1$, the first term in the righthand side is bounded by

$$2\int_{B} \left(P_{\parallel} e^{-a(t)} (\mathbf{m}(t) - \mathbf{m}_{\eta_{1}}(t)) \right) \cdot \left(e^{-a(t)} (\mathbf{m}_{\eta_{1}}(t) - \mathbf{m}_{\eta_{2}}(t)) \right) dx$$

$$\leq 2 \| e^{-a(t)} (\mathbf{m}(t) - \mathbf{m}_{\eta_{1}}(t)) \|_{L^{2}} \| e^{-a(t)} (\mathbf{m}_{\eta_{1}}(t) - \mathbf{m}_{\eta_{2}}(t)) \|_{L^{2}}$$

according to Cauchy–Schwarz inequality and the property $||P_{\parallel}||_{\mathcal{L}(L^2)} = 1$.

For the second term, we show the strong convergence of $[e^{-a(t)}, P_{\parallel}](\mathbf{m}_{\eta_1}(t) - \mathbf{m}(t))$ to 0, uniformly in $t \in [0, T]$. Since P_{\parallel} is a linear continuous map from L^4 to itself (and from L^2 to itself), we have, for $G \in L^2 \cap L^4$,

$$\|[G, P_{\parallel}](\mathbf{m}(t) - \mathbf{m}_{\eta_1}(t))\| \le C \|G\|_{L^2 \cap L^4} \|\mathbf{m}(t) - \mathbf{m}_{\eta_1}(t)\|_{L^4} \le C' \|G\|_{L^2 \cap L^4}.$$
 (5.6)

Since $a(t, x) \ge 0$ almost everywhere,

$$|e^{-a(t,x)} - e^{-a(t',x)}| \le 2e^{-|x|^2} \left| \int_t^{t'} |\mathbf{m}(s,x)| + C \,\mathrm{d}s \right|^p.$$

Use Hölder's inequality for the last term.

$$|e^{-a(t,x)} - e^{-a(t',x)}|^p \le C_p^1 |t - t'|^{p-1} e^{-p|x|^2} \int_0^t \left(|\mathbf{m}_{\parallel}(s,x)|^p + C_p^2\right) \mathrm{d}s.$$

So, $\|e^{-a(t)} - e^{-a(t')}\|_{L^p(\mathbb{R}^d)} \leq C_p |t - t'|^{(p-1)/p}$. In particular, $t \mapsto e^{-a(t)}$ is uniformly continuous from [0, T] to L^p for p > 1.

Let ϕ and χ be two non-negative smooth functions supported in a compact on \mathbb{R}^+ , equal to 1 near 0. Let, for $\rho > 0$, $\chi^{\rho}(x) = \frac{1}{\rho^d} \chi(\frac{x}{\rho})$ and $X^{\rho}f(x) = \phi(\rho x) \chi * f(x)$. Then, for all $t \in [0, T]$, $X^{\rho}e^{-a(t)}$ converges in $L^4 \cap L^2$ to $e^{-a(t)}$ when $\rho \to 0$.

Secondly, as the family of operators (X^{ρ}) is bounded on $\mathcal{L}(L^4)$, we have the following result: $(t \mapsto X^{\rho} e^{-a(t)})_{\rho}$ is an equicontinuous family from [0, T] to L^4 . By Ascoli's theorem, the sequence $X^{\rho} e^{-a}$ converges to e^{-a} in $L^{\infty}([0, T]; L^4 \cap L^2)$.

Fix ρ such that $C' \| e^{-a(t)} - X^{\rho} e^{-a(t)} \|_{L^4} \leq \varepsilon/2$ for all $t \in [0, T]$. Use inequality (5.6), then we have $\| [e^{-a(t)} - X^{\rho} e^{-a(t)}, P_{\parallel}] (\mathbf{m}(t) - \mathbf{m}_{\eta_1}(t)) \|_{L^2} \leq \varepsilon/2$.

Now, $\rho > 0$ being fixed, note that the function $t \mapsto [X^{\rho}e^{-a(t)}, P_{\parallel}]$ is continuous from [0, T] to the space of compact operators in L^2 , so uniformly continuous thanks to Heine's theorem. Hence we have, for $t, t' \in [0, T]$:

$$\begin{split} & [X^{\rho}e^{-a(t)}, P_{\parallel}]\mathbf{m}^{\eta_{1}}(t) - [X^{\rho}e^{-a(t')}, P_{\parallel}]\mathbf{m}^{\eta_{1}}(t') \\ &= [X^{\rho}e^{-a(t)}, P_{\parallel}](\mathbf{m}^{\eta_{1}}(t) - \mathbf{m}^{\eta_{1}}(t')) + \left([X^{\rho}e^{-a(t)}, P_{\parallel}] - [X^{\rho}e^{-a(t')}, P_{\parallel}]\right)\mathbf{m}^{\eta_{1}}(t'). \end{split}$$

Thus

$$\begin{split} \| [X^{\rho} e^{-a(t)}, P_{\parallel}] \mathbf{m}^{\eta_{1}}(t) - [X^{\rho} e^{-a(t')}, P_{\parallel}] \mathbf{m}^{\eta_{1}}(t') \|_{L^{2} \cap L^{4}} \\ &\leq \| [X^{\rho} e^{-a}, P_{\parallel}] \|_{L^{\infty}([0,T];\mathcal{L}(L^{2};L^{2} \cap L^{4}))} \| (\mathbf{m}^{\eta_{1}}(t) - \mathbf{m}^{\eta_{1}}(t')) \|_{L^{2}} \\ &+ \| [X^{\rho} e^{-a(t)}, P_{\parallel}] - [X^{\rho} e^{-a(t')}, P_{\parallel}] \|_{\mathcal{L}(L^{2} \cap L^{4};L^{2})} \cdot C. \end{split}$$

Therefore, the sequence $(t \mapsto [X^{\rho}e^{-a(t)}, P_{\parallel}]\mathbf{m}^{\eta_1}(t))_{\eta_1}$ is equicontinuous, and strongly converges to $t \mapsto [X^{\rho}e^{-a(t)}, P_{\parallel}]\mathbf{m}(t)$; the convergence is uniform in t by Ascoli's theorem. Therefore, there exists η_0 such that for all $\eta_1 \leq \eta_0$, we have $\|[X^{\rho}e^{-a(t)}, P_{\parallel}](\mathbf{m}^{\eta_1}(t) - \mathbf{m}(t))\|_{L^2} < \varepsilon/2$ for all $t \in [0, T]$.

Finally, we obtain that $\|[e^{-a(t)}, P_{\parallel}](\mathbf{m}^{\eta_1}(t) - \mathbf{m}(t))\|_{L^2} \leq \varepsilon$ for all $\eta_1 \leq \eta_0$. Therefore we have strong convergence to 0 in $L^{\infty}([0,T]; L^2)$ of $t \mapsto [e^{-a(t)}, P_{\parallel}](\mathbf{m}^{\eta_1}(t) - \mathbf{m}(t))$.

6. The Damping Parameter

We prove here a strong convergence result of the system (1.2) when the parameter α tends to 0. In [8], Hamdache and Tiloua establish a weak convergence result for the system, with an exchange term.

Theorem 6.1. Assume that \mathbf{e}_0 , \mathbf{h}_0 , \mathbf{m}_0 , $\operatorname{curl} \mathbf{e}_0$, $\operatorname{curl} \mathbf{h}_0$ are in $L^2(\mathbb{R}^D)$, $\mathbf{h}_{\mathrm{ext}}$ is in $L^{\infty}(B)$ and η is small. Let, for a damping parameter α not fixed ($\mathbf{e}_{\alpha}, \mathbf{h}_{\alpha}, \mathbf{m}_{\alpha}$) be the solution of the system (1.2). Then ($\mathbf{e}_{\alpha}, \mathbf{h}_{\alpha}, \mathbf{m}_{\alpha}$) converges strongly in $\mathcal{C}^0(L^2) \times \mathcal{C}^0(L^2) \times \mathcal{C}^0(L^2)$ to the solution ($\mathbf{e}, \mathbf{h}, \mathbf{m}$) of the system (1.2) with $\alpha = 0$ when α tends to 0.

Proof. First, we can assume, after extracting a subsequence, that \mathbf{e}^{α} and \mathbf{h}^{α} converge weakly in $L^2((0,T) \times \mathbb{R}^d)$. Now the uniform estimates in t on \mathbf{h}_{\perp} in Propositions 4.2 and 4.4 are independent of α . Consequently, because $\eta > 0$ is fixed, the family $(\nabla_{t,x}\mathbf{h}_{\perp}^{\alpha})$ is bounded in $L^{\infty}((0,T); L^2(B)) \subset L^2((0,T) \times B)$, so $(\mathbf{h}_{\perp}^{\alpha})$ is bounded $H^1((0,T) \times B)$ and, after extracting a subsequence, converges strongly in $L^1((0,T) \times B)$.

Let $\alpha_1, \alpha_2 > 0$ intended to tend to 0. We have

$$\begin{split} \partial_t \mathbf{m}^{\alpha_1} - \partial_t \mathbf{m}^{\alpha_2} &= (\mathbf{m}^{\alpha_1} - \mathbf{m}^{\alpha_2}) \times (\mathbf{h}^{\alpha_1} + \mathbf{h}_{\text{ext}} + \nabla \Phi(\mathbf{m}^{\alpha_1})) \\ &+ \mathbf{m}^{\alpha_1} \times (\nabla \Phi(\mathbf{m}^{\alpha_1}) - \nabla \Phi(\mathbf{m}^{\alpha_2})) \\ &+ \mathbf{m}^{\alpha_1} \times (\mathbf{m}_{\parallel}^{\alpha_1} - \mathbf{m}_{\parallel}^{\alpha_2}) \\ &+ \mathbf{m}^{\alpha_1} \times (\mathbf{h}_{\perp}^{\alpha_1} - \mathbf{h}_{\perp}^{\alpha_2}) \\ &+ \alpha_1 \mathbf{m}^{\alpha_1} \times (\mathbf{m}^{\alpha_1} \times \mathbf{h}^{\alpha_1}) \\ &- \alpha_2 \mathbf{m}^{\alpha_2} \times (\mathbf{m}^{\alpha_2} \times \mathbf{h}^{\alpha_2}). \end{split}$$

So, the estimate on $|\mathbf{m}^{\alpha_1} - \mathbf{m}^{\alpha_2}|$ is written as:

$$\begin{aligned} \frac{1}{2}\partial_t |\mathbf{m}^{\alpha_1} - \mathbf{m}^{\alpha_2}|^2 &\leq 0 + C |\mathbf{m}^{\alpha_1} - \mathbf{m}^{\alpha_2}|^2 \\ &+ |\mathbf{m}^{\alpha_1} - \mathbf{m}^{\alpha_2}| |P_{\parallel}(\mathbf{m}^{\alpha_1} - \mathbf{m}^{\alpha_2})| \\ &+ 2 |\mathbf{h}^{\alpha_1}_{\perp} - \mathbf{h}^{\alpha_2}_{\perp}| + \alpha_1 |\mathbf{h}^{\alpha_1}| + \alpha_2 |\mathbf{h}^{\alpha_2}|. \end{aligned}$$

Therefore,

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \| \mathbf{m}^{\alpha_1}(t) - \mathbf{m}^{\alpha_2}(t) \|_{L^2}^2 \le (C+1) \| \mathbf{m}^{\alpha_1}(t) - \mathbf{m}^{\alpha_2}(t) \|_{L^2}^2 + \| \mathbf{h}^{\alpha_1}_{\perp}(t) - \mathbf{h}^{\alpha_2}_{\perp}(t) \|_{L^2(B)} + D(\alpha_1, \alpha_2)$$

which gives, after an integration in time,

$$\frac{1}{2} \|\mathbf{m}^{\alpha_1}(t) - \mathbf{m}^{\alpha_2}(t)\|_{L^2}^2 \le (C+1) \int_0^t \|\mathbf{m}^{\alpha_1}(s) - \mathbf{m}^{\alpha_2}(s)\|_{L^2}^2 \,\mathrm{d}s + \|\mathbf{h}^{\alpha_1} - \mathbf{h}^{\alpha_2}\|_{L^1((0,T\times B))} + TD(\alpha_1,\alpha_2).$$

We conclude with Gronwall's lemma that the subsequence $(\mathbf{m}^{\alpha})_{\alpha}$ is a Cauchy sequence in $L^{\infty}_{\text{loc}}(L^2)$. It has a strong limit, which makes to take the limit in the non-linear terms; consequently, the limit is a solution of the Landau–Lipschitz equation without damping parameter.

Remark 6.2. In fact, we can prove with the arguments developped in these two last sections, that $(\alpha, \eta) \mapsto (\mathbf{e}, \mathbf{h}, \mathbf{m})$ is continuous from $[0, 1] \times [0, 1]$ to $L^2([0, T]; L^2_{loc}) \times L^2([0, T]; L^2_{loc}) \times C([0, T]; L^2)$.

Acknowledgments

The author wishes to warmly thank Guy Métivier and Stéphane Labbé for their help and their advise.

References

- [1] H. Brezis, Analyse Fonctionnelle, Théorie et Applications (Masson, Paris, 1983).
- [2] G. Carbou and P. Fabrie, Comportement asymptotique des solutions faibles des équations de Landau-Lifshitz, C.R. Acad. Sci. Paris 325 (1997) 717–720.
- [3] G. Carbou and P. Fabrie, Time average in micromagnetism, J. Differential Equations 147 (1998) 383–409.
- [4] G. Carbou and P. Fabrie, Regular solutions for Landau-Lifshitz equation in a bounded domain, *Differential Integral Equations* 14 (2001) 213–229.
- [5] G. Carbou, P. Fabrie and F. Jochmann, A remark on the weak ω-limit set for micromagnetism equation, Appl. Math. Lett. 15 (2002) 95–99.
- [6] L. C. Evans, *Partial Differential Equations*, Graduates Studies in Mathematics, Vol. 19 (American Mathematical Society, 1997).
- [7] H. Haddar, Modèles asymptotiques en ferromagnétisme; couches minces et homogénéisation, PhD thesis (December 2000).
- [8] K. Hamdache and M. Tilioua, The Landau–Lifshitz equations and the damping Parameter, to appear in *Boll. Unione. Mat. Ital. Sez. B.*
- [9] L. Hörmander, *The Analysis of Linear Partial Differential Operators I*, Grundlehren der Mathematischen Wissenschaften (Springer-Verlag, 1990).
- [10] F. Jochmann, Existence of solutions and quasi-stationary limit for a hyperbolic system describing ferromagnetism, SIAM. J. Math. Anal. 34 (2002) 315–340.
- [11] F. Jochmann, Asymptotic behavior of the electromagnetic field for a micromagnetism equation without exchange energy, preprint (2004).
- [12] J.-L. Joly, G. Métivier and J. Rauch, Global solution to Maxwell equation in a ferromagnetic medium, Ann. Inst. H. Poincaré 1 (2000) 307–340.
- [13] P. Joly and O. Vacus, Mathematical and numerical studies of 1D non linear ferromagnetic material, in *Numerical Methods in Engineering '96* (1996).
- [14] S. Labbé, Simulation numérique du comportement hyperfréquence des matériaux ferromagnétiques, PhD thesis (December 1998).
- [15] L. Landau and E. Lifshitz, *Electrodynamique des Milieux Continus* (Mir, Moscou, 1969).
- [16] L. Schwartz, Théorie des Distributions (Hermann, Paris, 1966).
- [17] E. M. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton University Press, 1970).