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Introduction

The starting point of the algebraic geometry is trying to study the solutions of systems of
polynomials: for simplicity, let k be a field, let P1, · · · , Pm ∈ k[X1, · · · , Xn] to be m polynomials
with n variables. Then we want to study the solutions of the following system:

P1(X1, · · · , Xn) = 0
P2(X, · · · , Xn) = 0

· · ·
Pm(X1, · · · , Xn) = 0

One could ask the following questions:

• Does this system have at least a solution in k?

• If we have a positive answer, then what can we say about these solutions (i.e., are there
just finitely many or there are infinite?). Or further more, can we know exactly what are
the solutions?

Of course, when each polynomial Pi is of degree 1, we know in the course of linear algebra
that, at least theoretically, there is a way to find explicitly all the solutions (if there is any) or
the show the contrast. But in the general case, these become very difficult questions. One can
consider the following famous example

Fermet’s last theorem

We consider k = Q, and we want to understand the solutions of the following equations: for
n ≥ 3 an integer, what can way say about the solutions in Q of the following single equation
with only two variables

Xn + Y n = 1.

Sure, one can easily find some solutions

(x, y) ∈ {(1, 0), (0, 1)}

or several more like

(−1, 0), (0,−1)

when the integer n is even. After these more or less trivial solutions, it becomes difficult to find
some new one (maybe you can try with the computers). In fact, one has the following

Conjecture 0.0.0.1 (Fermat’s last theorem, 1637). There is no non trivial solutions for n ≥ 3.
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Fermat himself solved this conjecture when n = 4. In fact, Fermet claimed also that he had
found a proof for this conjecture for all n ≥ 3. But today we believe that Fermet must make a
mistake in his proof. In fact, the human had to spend the next 358 years to completely prove this
statement!1 And the proof involves in fact very deep mathematical subjects such as algebraic
geometry and number theory, and it uses in a very impressed way the mathematical tools and
methods that are developed in the recent years.

Elliptic curves

Let again k = Q (or more generally a number field), and a, b ∈ k. We consider the following
equation

(1) y2 = x3 + ax+ b.

We suppose that 4a3 + 27b2 6= 0. Let Eaff the set of solutions in k of the previous equation. Of
course, there are three possibilities:

• (1) has no solutions in Q, i.e., Eaff = ∅.

• (1) has finitely many solutions in Q, i.e., Eaff is a nonempty finite set.

• (1) has infinitely many solutions in Q, i.e., Eaff is an infinite set.

Of course, by saying this, we get nothing. To get something interesting, we add an extra point,
denoted by ∞, to Eaff, we let

E = Eaff ∪ {∞}.

The equation (1) together the point at infinite ∞ give an elliptic curve, which amounts to
consider the projective version of the equation (1) above. The set E is then the k-points of this
curve. Now the miracle does happen: we have the following result

Theorem 0.0.0.2. One can endow a natural group structure to E so that E becomes an abelian
group, and ∞ is the neutral element of this group.2

Moreover, we have the following Mordell-Weil theorem

Theorem 0.0.0.3 (Mordell-Weil). With the group structure above, E is a finitely generated
abelian group.

Hence, by the structure theorem of abelian groups of finite type, we find

E ' Zr ⊕ Etor

with Etor the torsion part of E. The torsion part is more or less known according to the famous
result of Mazur, in fact, there are only finitely many possibilities be the torsion part of E. The
free part of E, or equivalently the rank of E, is still very mysterious. If we could completely
understand the free part of E, we can earn one millon dollars by proving the so-called Birch and
Swinnerton-Dyer conjecture, which relates the rank of E with some analytic invariant attached
to the equation (1).

1This is finally done by Andrew Wiles in 1995, with the help of his former student Richard Taylor.
2The more correct statement should be the following: the elliptic curve has a natural structure of group scheme

over the field of definition (in the example, this is Q), so that ∞ gives the neutral element of this group scheme.
In fact, what we get is an abelian variety of dimension 1.
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Remark 0.0.0.4. 1. Note that, an elliptic curve is not the same as an ellipse. Here the
latter is given in general by equation of the follow form

x2

a2
+
y2

b2
= 1.

In fact, we will see later that an elliptic curve is a projective smooth curve of genus 1,
while an ellipse is a projective smooth curve of genus 0, these two kinds of curves are of
completely different nature.

2. The solution of Fermat’s Last Theorem is built on a very sophisticate study of the elliptic
curves. In fact, elliptic curve is a very important object both in algebraic geometry and
modern number theory.

This course

Since a direct way is impossible, one have to find another way. We will put some extra structures
on the set of solutions (Zariski topology, variety, sheaf, cohomology), and then try to understand
this set together with the structure. That is what we do in algebraic geometry. In this course,
we will try to follow the approach of Grothendieck by using the language of schemes. The main
technique that we will use is then the commutative algebra. Hence, we will first review some
basic notions in commutative algebra.

Review of some basic notions in commutative algebra

The commutative algebra is the basic tool to study algebraic geometry. In this section, we will
fix some notations by reviewing some well-known things in commutative algebra. Recall first
the following definition

Definition 0.0.0.5. A commutative unitary ring is the given of the following datum (R,+, ·, 0, 1),
where R is a non empty set, +, · are two binary operations defined on R, and 1, 0 ∈ R are two
distinguish elements (maybe coincide) such that

– (R,+, 0) is an abelian group, while (R, ·, 1) is a commutative unitary monoid;

– The two binary operations are compatible: for any x, y, z ∈ R, we have

(x+ y) · z = x · z + y · z.

A commutative unitary ring R will be called trivial if 1 = 0, or equivalently, if R has only
one element.

Convention 0.0.0.6. Unless specifically stated to the contrast, in this course,

1. the word “ring” means a commutative unitary ring. Same thing for the subrings etc;

2. the word “field” means a commutative field.

Recall the following definition

Definition 0.0.0.7. Let A be a ring.
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1. An ideal I of A is a subgroup (for the addition) of A such that

∀a ∈ A, ∀x ∈ I, a · x ∈ I.

An ideal I ⊂ A is called of finite type if it can be generated as an ideal by finitely many
elements.

2. An ideal I is called prime if I 6= A, and whenever x · y ∈ I for some x, y ∈ A, we must
have either x ∈ I or y ∈ I. The set of prime ideals of A will be denoted by Spec(A).

3. An ideal I is called maximal if the following condition holds: if I 6= A, and for any ideal
J ⊂ A such that I ⊂ J ⊂ A, then we have either I = J or A = J . The set of maximal
ideal will be denoted by Max(A).

The proof of the following lemma uses Zorn’s lemma, or equivalently, the axiom of choice.

Lemma 0.0.0.8. We have Max(A) ⊂ Spec(A). Moreover, if A is non trivial, then Max(A) 6= ∅.

Lemma 0.0.0.9. Let A be a ring such that 0 6= 1, and I ⊂ A be an ideal. Then

• I is a prime ideal if and only if the quotient A/I is an integral domain.3

• I is a maximal ideal if and only if the quotient A/I is a field.

Definition 0.0.0.10. A ring A is call noetherian if it satisfies the following increasing chain
condition: for any increasing family of ideals of A:

I0 ⊂ I1 ⊂ · · · Ir ⊂ Ir+1 ⊂ · · ·

there exists some sufficiently large integer r0 � 0 such that Ir = Ir0 for any r ≥ r0.

In an equivalent way, a ring A is noetherian if and only if any ideal I ⊂ A is finitely generated.

Lemma 0.0.0.11. Let A be a ring.

1. If A is a field, or a principal ideal domain, then it’s noetherian.

2. Let I be an ideal of A. Then if A is noetherian, so is the quotient A/I.

Exercise 0.0.0.12. In general, a subring of a noetherian ring is not necessarily still noetherian.
Could you find an example?

Lemma 0.0.0.13. Suppose A noetherian, and M an A-module of finite type. Then M is
noetherian as A-module, namely, any A-submodule of M is finitely generated.

Theorem 0.0.0.14 (Hilbert’s basis theorem). If A is noetherian, so is A[X].

Proof. Let (0) 6= J ⊂ A[X] be an ideal, and let I be the set of leading coefficient of poly-
nomials in J .4 Then I ⊂ A is an ideal. As A is noetherian, I is finitely generated, say by
LC(P1), · · · ,LC(Pn). Let

J1 = (P1, · · · , Pn) ⊂ A[X]

3By definition, a domain is always non trivial.
4By convention, the leading coefficient of zero polynomial is 0. For f ∈ A[X], we denote by LC(f) the leading

coefficient of f .
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the ideal generated by these Pi, and d = maxi(deg(Pi)). Then one verifies easily that

J = J ∩Md + J1

with Md the set of polynomials in A[X] with degree ≤ d − 1. As A is noetherian, and as Md

is a A-module of finite type, according to the previous lemma, we find that Md is noetherian
as A-module. In particular, the A-submodule J ∩Md ⊂ Md is of finite type as A-module. Let
Q1, · · · , Qr ∈ J ∩Md ⊂ J be a family of generators, then we have

J = J ∩M + J1 ⊂ (Q1, · · · , Qr) + (P1, · · · , Pn) = (Q1, · · · , Qr, P1, · · · , Pn) ⊂ J.

As a result, J = (Q1, · · · , Qr, P1, · · · , Pn) is finitely generated. This finishes the proof.5

Corollary 0.0.0.15. For k a field. The polynomial rings k[X1, · · · , Xn] are all noetherian.
Hence any k-algebra of finite type is noetherian.

Remark 0.0.0.16. Let k be a field. Then k[X1, · · · , Xn] are the so-called unique factorization
domain (UFD for short). But in general, it is not a principal domain. In fact, it’s principal if
and only if n = 1.

Definition 0.0.0.17. Let k be a field, then k is called algebraically closed, if any polynomial
P ∈ k[X] of degree ≥ 1 has at least one solution in k (hence has exactly deg(P ) solutions).

Example 0.0.0.18. C is algebraically closed by the fundamental theorem of algebra.6 Moreover,
for any field k, one can always find an algebraically closed field K containing k, the smallest one
is called the algebraic closure of k.

5An alternative way to avoiding the previous lemma: after we get the equality J = J ∩M+J1, let I1 be the set
of leading coefficients of polynomials in J ∩M . Then I1 ⊂ A is again an ideal, hence there is Q1, · · · , Qr ∈ J ∩M
such that I1 = (LC(Q1), · · · ,LC(Qr)). Then similarly, we have

J ∩Md ⊂ J ∩Md1 + (Q1, · · · , Qr)

where d1 is the maximum of deg(Qi) for 1 ≤ i ≤ r. Clearly, d1 < d, and we have

J = J ∩Md1 + (P1, · · · , Pn, Q1, · · · , Qr).

Now, we continue with this process, and we can conclude.
6Despite the name of this theorem, there exists no purely algebraic proof of this result. The reason is that the

construction of C is not completely algebraic.
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Chapter 1

Algebraic sets and morphisms

The aim of this section is trying to gives some geometric background of the algebraic geometry.
So here k = k is an algebraically closed field.

1.1 Affine algebraic sets

1.1.1 Some definitions

Definition 1.1.1.1. Let k be an algebraically closed field as before.

• The affine space Ank of dimension n is just

kn = {(x1, · · · , xn) : xi ∈ k}.1

• Let S ⊂ k[X1, · · · , Xn] be a subset of polynomials of n variables. Define

V (S) := {(x1, · · · , xn) ∈ Ank : P (x1, · · · , xn) = 0 for any P ∈ S}

Such a subset of Ank is called an algebraic set of Ank .

Remark 1.1.1.2. Keeping the notations as before.

• If S1 ⊂ S2 ⊂ k[X1, · · · , Xn] are two subsets, then V (S2) ⊂ V (S1).

• Recall that for A a ring and S ⊂ A a subset. The ideal generated by S (denoted by < S >)
consists of all finite sums ∑

i

aisi, ai ∈ A, si ∈ S.

Hence V (< S >) ⊂ V (S) ⊂ V (< S >). As a result, we find V (S) = V (< S >). So for
algebraic sets, we only need to consider those of the form V (a) with a ⊂ k[X1, · · · , Xn] an
ideal.

• Recall also that since k is a field, k[X1, · · · , Xn] is noetherian. Hence any ideal of
k[X1, · · · , Xn] is finitely generated, say by P1, · · · , Pm ∈ A. So to define an algebraic
set, we only need finitely many equations

V (a) = {(x1, · · · , xn) ∈ kn : P1(x1, · · · , xn) = · · · = Pm(x1, · · · , xn) = 0}.
1The more correct notation should be Ank (k), but here we just write Ank for simplicity.
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Proposition 1.1.1.3. The union of two algebraic sets (of Ank) is again algebraic; the intersection
of any family of algebraic sets is again algebraic. Moreover, empty set and the total space Ank
are algebraic.

Proof. In fact, we have (i) V (a)∪V (b) = V (a · b); (ii) ∩iV (ai) = V (
∑

i ai); (iii) V ((1)) = ∅, and
V ((0)) = Ank .

Remark 1.1.1.4. We remark that we have always

V (a) = V (a2) = V (
√
a),

here √
a := {a ∈ A : ∃r ∈ Z≥1 s.t. ar ∈ a}

is the radical of the ideal a. Hence one can not expect to recover the ideal a from its corresponding
algebraic set V (a).

1.1.2 Hilbert’s Nullstellensatz

Definition 1.1.2.1. Let Y ⊂ Ank be a subset. Define the ideal of Y to be

I(Y ) := {P ∈ k[X1, · · · , Xn] : P (x) = 0 ∀x ∈ Y }.

Lemma 1.1.2.2. Keeping the notations as before:

• For any subset Y ⊂ Ank , we have
√
I(Y ) = I(Y ).2

• For any subsets Y1 ⊂ Y2 ⊂ Ank , we have I(Y2) ⊂ I(Y1).

• For any subsets Y1, Y2 ⊂ Ank , we have I(Y1 ∪ Y2) = I(Y1) ∩ I(Y2).

• For any ideal a ⊂ k[X1, · · · , Xn], a ⊂ I(Z(a)).

Now, we may state and prove the first fundamental result in this course

Theorem 1.1.2.3 (Hilbert’s Nullstellensatz). For any ideal a ⊂ k[X1, · · · , Xn], I(V (a)) =
√
a.

To prove this theorem, we begin with the following lemma:

Lemma 1.1.2.4. Let K be a field, L/K be a field extension which is finitely generated as
K-algebra. Then L/K is an algebraic extension.

Proof. 3 Up to replace K by its algebraic closure in L, we may assume that L/K is an transcen-
dant field extension, i.e., any non zero element of L is transcendant over K.

Suppose first that L/K is of transcendant degree 1, namely L contains a copy of K(x) (:=the
fraction field of the polynomial ring K[x]) such that L is algebraic over K(x). Since L is of finite
type as K-algebra, it’s also of finite type as K(x)-algebra. In particular, L is of finite dimension

2Such an ideal is called radical.
3When K is a uncountable field, this lemma can also be proved as follows: remark first that since L/K is

finitely generated as K-algebra, then L is of countable dimension over K as a K-vector space. On the other
hand, once the field K is uncountable, and once one can find x ∈ L which is transcendant over K, then the
following family {1/(x − a) : a ∈ K} is linearly independent and of cardinality uncountable. From this, we find
that the K-space L must has uncountable dimension, whence a contradiction. This gives the lemma when K is
uncountable.
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over K(x). Choose e1, · · · en a basis of L over K(x), and write down the multiplication table for
L:

(1.1) ei · ej =
∑
k

aijk(x)

bijk(x)
ek

with aijk(x), bijk(x) ∈ K[x]. Now suppose L = K[f1, · · · , fm], and we write each fj under the
basis {ei}:

fj =
∑
i

cij(x)

dij(x)
ei

Since for any element x ∈ L, x can be written as a polynomial in the fj ’s with coefficients in
K, it follows that x can also be written as a K(x)-combination of 1 and the product of ei’s
such that the denominator of each coefficient involves only the products of the polynomials
dij ’s. Now, by applying the multiplication table (1.1), we find that x can be written as a
K(x)-combination of 1 and the ei’s such that the denominator of each coefficient involves only
the products of the polynomials dij ’s and bijk’s. But there exists infinitely many irreducible
polynomials in K[x], there exists some polynomial p(x) ∈ K[x] which does not divide any dij
nor bijk. As a result, the fraction 1/p(x) cannot be written in the form described above, which
means 1/p(x) /∈ K[f1, · · · , fm] = L, a contradiction since we suppose that L is a field, hence à
priori, 1/p(x) ∈ L. This finishes the case when L/K is of transcendant degree 1.

For the general case (i.e. tr.deg(L/K) ≥ 1) , one can always find a subfield K ′ of L containing
K such that L/K ′ is of transcendant degree 1. In particular, the previous argument shows that
L cannot be of finite type as K ′-algebra. A priori, L cannot be of finite type as K-algebra. This
gives a contradiction.

From this lemma, we get the Weak Nullstellensatz :

Theorem 1.1.2.5 (Weak Nullstellensatz). Let k be an algebraically closed field, then every
maximal ideal in A = k[X1, · · · , Xn] has the form (X1−x1, · · · , Xn−xn) for some (x1, · · · , xn) ∈
kn. As a consequence, a family of polynomials functions on kn with no common zero generates
the unit ideal of A.

Proof. Let m ⊂ A be a maximal ideal, then the corresponding quotient K := A/m is a field
extension of k. Moreover, since A is finitely generated as k-algebra, so is K. Hence the previous
lemma tells us that K/k is in fact an algebraic extension. But since the base field k is alge-
braically closed, the inclusion k ↪→ K must be an isomorphism. Let now xi ∈ k be the image of
Xi in the quotient k ' K = A/m, then Xi − xi ∈ m for all i. As a result, we get

(X1 − x1, · · · , Xn − xn) ⊂ m ⊂ A.

On the other hand, we can verify directly that the ideal (X1−x1, · · · , Xn−xn) is itself maximal,
hence the first inclusion above is an equality: (X1 − x1, · · · , Xn − xn) = m. In this way, we get
the first assertion. For the last assertion, let J be the ideal generated by this family. Since this
family of polynomials functions has no common zero on kn, J is not contained in any maximal
ideal of A. As a result, we must have J = A. This finishes the proof.

Exercise 1.1.2.6. Prove directly (i.e., without using Weak Nullstellensatz) that I(Ank) = (0).

Proof of Hilbert’s Nullstellensatz. Suppose a = (f1, · · · , fm), and let g ∈ I(V (a)) − {0}. We
consider now the ring of polynomials in n+1 variables k[X1, · · · , Xn, Xn+1], and the polynomials
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fi, g can be viewed naturally as polynomials in n+ 1 variables. Now, consider following family
of polynomials

{f1, · · · , fm, Xn+1g − 1},

it has no common zero in kn+1. Hence by the Weak Nullstellensatz, we get

(f1, · · · , fm, Xn+1g − 1) = k[X1, · · · , Xn, Xn+1].

Hence, there are polynomials Q1, · · · , Qn+1 ∈ k[X1, · · · , Xn+1] such that

1 = Q1 · f1 + · · ·Qn · fn +Qn+1 · (Xn+1g − 1)

Now, take the image of this equality by the morphism

k[X1, · · · , Xn, Xn+1]→ k(X1, · · · , Xn), Xn+1 7→ 1/g.

We get the following equality in k(X1, · · · , Xn)

1 =
P1 · f1 + · · ·Pn · fn

gs

with Pi ∈ k[X1, · · · , Xn]. In particular, gs = P1 · f1 + · · · + Pn · fn ∈ a. Hence g ∈
√
a, this

finishes the proof.

Exercise 1.1.2.7. Show that V (I(Y )) = Y for any subset Y ⊂ Ank .

Corollary 1.1.2.8. There is one-to-one inclusion-reversing correspondence between algebraic
sets in Ank and radical ideals a ⊂ k[X1, · · · , Xn].

Proof. The correspondence is given by Y 7→ I(Y ), and conversely by a 7→ V (a).

1.1.3 Zariski topology on an affine algebraic set

Definition 1.1.3.1 (Topology). A topology on a set X is defined by giving a family T of subsets
of X such that

• ∅, X ∈ T ;

• T is stable by finite intersection;

• T is stable by any union.

In this case, a subset U ⊂ X is called open iff U ∈ T , and F ⊂ X is called closed iff its
complement F c = X − F is open in X.

As a corollary of the Proposition 1.1.1.3, we have the following

Definition 1.1.3.2 (Zariski topology). We define the Zariski topology on Ank by taking the
open subsets to be the complements of algebraic sets. For an algebraic subset V ⊂ Ank , then the
Zariski topology on V is the subspace topology induced from Ank .

Example 1.1.3.3. • A subset F ⊂ A1
k is closed iff F is a finite set. As a result, a subset

U ⊂ A1
k is open iff its complement Ank − U is a finite set.

• The Zariski topology on Ank is not Hausdorff. It’s just a T1 space: for any two different
points x, y ∈ Ank , one can find an open U ⊂ Ank such that x ∈ U and y /∈ U .
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Exercise 1.1.3.4. Determine the closed subsets of A2
k, and then prove that the topology of A2

k

is not the product topology on A2
k = A1

k × A1
k (here, this is an equality as sets).

Definition 1.1.3.5. A non empty subset Y of a topological space X is called irreducible if it
cannot be expressed as the union Y = Y1 ∪ Y2 of two proper subsets such that each Yi is closed
in Y .

Remark 1.1.3.6. Thought the empty set ∅ satisfies vacuously the condition of 1.1.3.5, in this
course, we don’t consider it as an irreducible set.

Example 1.1.3.7. V (X1 ·X2) = V (X1)∪V (X2) ⊂ A2
k is not irreducible, while A1

k is irreducible.

Proposition 1.1.3.8. A closed subset F ⊂ Ank is irreducible iff its ideal I(F ) ⊂ k[X1, · · · , Xn]
is a prime ideal.

Proof. Let F ⊂ Ank be irreducible, and let f, g ∈ k[X1, · · · , Xn] be two elements such that
f ·g ∈ I(F ). We have in particular (f ·g) ⊂ I(F ), hence F = V (I(F )) ⊂ V (f ·g) = V (f)∪V (g),
and we get

F = V (f · g) ∩ F = (V (f) ∩ F ) ∪ (V (g) ∩ F ) .

As V (f) and V (g) are both closed, and F is irreducible, we have either V (f) ∩ F = F or
V (g) ∩ F = F . Suppose for example V (f) ∩ F = F , in particular, we get F ⊂ V (f), hence
f ∈ I(V (f)) ⊂ I(F ). This shows that I(F ) ⊂ k[X1, · · · , Xn] is prime. Conversely, suppose I(F )
is a prime ideal, and show that F is irreducible. Let

F = F1 ∪ F2

with Fi ⊂ F two closed subsets. Then we have I(F ) ⊂ I(Fi). Now suppose F1 6= F , in particular,
by Hilbert’s Nullstellensatz, I(F ) ( I(F1). Let f ∈ I(F1)− I(F ), then for any g ∈ I(F2), then

f · g ∈ I(F1 ∪ F2) = I(F ).

As I(F ) is a prime ideal, we get g ∈ I(F ). In particular, I(F ) = I(F2), hence F = I(V (F )) =
I(V (F2)) = F2. This shows that F is irreducible. In this way, we get the proposition.

Example 1.1.3.9. The affine space Ank is irreducible since its ideal is (0) which is of course
prime.

Definition 1.1.3.10. A topological space X is called noetherian, if it satisfies the descending
chain condition for closed subsets: for any sequence

Y0 ⊃ Y1 ⊃ · · ·Yi ⊃ Yi+1 ⊃ · · ·

of closed subsets, there exists some integer i0 � 0 such that Yi = Yi0 for any i ≥ i0.

Proposition 1.1.3.11. Any algebraic subset together with the Zariski topology is a noetherian
topological space.

Proof. Since any closed subset of a noetherian space is again noetherian, we only need to show
that Ank is noetherian. Recall that the set of closed subsets of Ank is in inclusion-reversing one-
to-one correspondence with the set of radical ideal of k[X1, · · · , Xn]. Hence to show that Ank is
noetherian, we only need to show that k[X1, · · · , Xn] satisfies the increasing chain condition, or
equivalently, k[X1, · · · , Xn] is noetherian. This is exactly Hilbert’s basis theorem. As a result,
Ank is noetherian.
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Lemma 1.1.3.12. Let X be a neotherian topological space, and Y ⊂ X be a closed subset.
Then Y can be expressed as a finite union Y = Y1 ∪ Y2 · · · ∪ Yr of irreducible closed subsets Yi.
If we require moreover Yi * Yj whenever i 6= j, then the family {Yi : 1 ≤ i ≤ r} is uniquely
determined. They are called the irreducible components of Y .

Proof. We will first show the existence of such decomposition. Let S be the set of closed subset
Y ⊂ X which can not be written as a finite union of irreducible closed subsets, we need to show
that S = ∅. If not, let Y0 ∈ S be an arbitrary element of this set, then Y0 is not irreducible,
hence we have Y0 = Y ′0 ∪ Y ′′0 , with Y ′0 , Y

′′
0 ( Y0 two proper closed subsets of Y0. By the choice

of Y0, either Y ′0 ∈ S or Y ′′0 ∈ S. For simplicity, suppose Y ′0 ∈ S, and we note Y1 = Y ′0 . Then we
continue with this construction, and we get in this way a infinite sequence of closed subsets of
X:

Y0 ) Y1 ) Y2 ) · · · ) Yr ) Yr+1 ) · · · .

This gives a contradiction with the assumption that X is noetherian. As a result, S = ∅, and
any closed Y ⊂ X can be written as a finite union of irreducible closed subsets

Y = Y1 ∪ Y2 ∪ · · · ∪ Yr

By throwing away a few if necessary, we may assume that Yi * Yj whenever i 6= j. This gives
the existence.

For the uniqueness, suppose

Y =

r⋃
i=1

Yi =

s⋃
j=1

Y ′j

such that Yi * Yi′ and Y ′j * Yj′ whenever i 6= i′ and j 6= j′. Then Y ′1 ⊂ ∪iYi, hence there exists
some i such that Y ′1 ⊂ Yi. Similarly, we have Yi ⊂ Y ′j for some j, hence Y ′1 ⊂ Y ′j . We must have
1 = j, and Y ′1 = Yi. After renumbering the index i, we may assume i = 1. Now to finish the
proof, it remains remark that

r⋃
i=2

Yi = Y − Y1 = Y − Y ′1 =
s⋃
j=2

Y ′j .

Hence the uniqueness follows from an induction on min(r, s).

Corollary 1.1.3.13. Any closed subset F ⊂ Ank can be expressed as a finite union of the
following form

F =

s⋃
i=1

Fi

of irreducible closed subsets, no one containing another.

Exercise 1.1.3.14. Show that a noetherian topological space X is always quasi-compact. If
moreover it’s Hausdorff, then X is a finite set with the discrete topology.

1.1.4 Coordinate ring of an affine algebraic set

Let V ⊂ Ank be an algebraic set, we define its coordinate ring

k[V ] := k[X1, · · · , Xn]/I(V ).



1.1. AFFINE ALGEBRAIC SETS 17

Lemma 1.1.4.1. An element f ∈ k[X1, · · · , Xn] defines a function

Ank → k, x 7→ f(x),

whose restriction to V ⊂ Ank depends only on the coset f + I(V ).

In particular, any element of its coordinate ring k[V ] can be viewed naturally as a function
defined on V , which is called a regular function of V . We call also k[V ] the ring of regular
functions. Moreover, we endow V with the induced topology as V is a subset of the topological
space Ank . As a corollary of Hilbert’s Nullstellensatz, we have the following

Proposition 1.1.4.2. (a) The points of V are in one-to-one correspondence with the maximal
ideals of k[V ].

(b) The closed subsets of V are in one-to-one correspondence with the radical ideals of k[V ],
such that a closed subset F ⊂ V is irreducible iff the corresponding radical ideal under this
correspondence is a prime ideal of k[V ].4

(c) For any f ∈ k[V ], let D(f) := {x ∈ V : f(x) 6= ∅}. Then the family {D(f) : f ∈ k[V ]}
forms a basis for the topology of V : i.e., each D(f) is open, and any open U ⊂ V is a
union of D(f)’s.

Proof. (a) Let P = (x1, · · · , xn) ∈ V ⊂ Ank be an element of V , then I({P}) = mP =
(X1 − x1, · · · , Xn − xn) ⊂ k[X1, · · · , Xn] is a maximal ideal which contains I(V ). Hence
its image mP ⊂ k[V ] = k[X1, · · · , Xn]/I(V ) is again a maximal ideal. Now we claim that
the correspondence

V → Max(k[V ]), P 7→ mP

is bijective. Indeed, let n be a maximal ideal of k[V ], its inverse image m in k[X1, · · · , Xn]
is again maximal, hence of the form mPn for a unique point Pn ∈ Ank by Nullstellensatz.
One verifies easily that Pn is contained in V (since I(V ) ⊂ mPn), and the map

Max(k[V ])→ V, n 7→ Pn

gives an inverse of the previous correspondence.

(b) Similar proof as (a).

(c) First of all D(f) ⊂ V is open. Indeed, let f̃ be an arbitrary lifting of f in k[X1, · · · , Xn],
and consider

D(f̃) := {x ∈ Ank : f̃(x) 6= 0}.

Then D(f) = D(f̃) ∩ V , hence, we only need to show D(f̃) ⊂ Ank is open. But its
complement can be described in the following way,

Ank −D(f̃) = {x ∈ Ank : f̃(x) = 0} = V ({f̃})

hence this is closed. As a result, D(f̃) is open. This gives the openness of D(f). For the
last assertion, suppose U = Ũ ∩ V be an open of V with Ũ is open in Ank . Hence, there is

some ideal a ⊂ k[X1, · · · , Xn] such that Ank−Ũ = V (a) = ∩g∈aV (g). Hence Ũ = ∪g∈aD(g).

As a result, U = Ũ ∩V = ∪g∈a(D(g)∩V ) = ∪g∈aD(ḡ) with ḡ the image of g in k[V ]. This
finishes the proof of (c).

4Note that by our convention 1.1.3.6, the empty set ∅ is not irreducible.
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Exercise 1.1.4.3. 1. Consider the affine twisted cubic curve:

C = {(t, t2, t3) : t ∈ k} ⊂ A3
k.

Show that C is an irreducible closed subset of A3
k, and find generators of the ideal I(C) ⊂

k[X,Y, Z].

2. Let V = V (X2−Y Z,XZ−X) ⊂ A3
k. Show that V consists of three irreducible components,

and determine the corresponding prime ideals.

3. We identify the space M2(k) of 2× 2-matrices over k with A4
k with coordinates a, b, c, d:

M2(k) ' A4
k,

(
a b
c d

)
7→ (a, b, c, d).

Show that the set of nilpotent matrices is an algebraic subset of A4
k, and determine its

ideal.

Exercise 1.1.4.4. Consider C = {(t3, t4, t5) : t ∈ k} ⊂ A3
k. Show that C is an irreducible

algebraic set, et determine I(C). Can I(C) be generated by 2 elements?

Solution. Consider the ideal J generated by the following three elements

XZ − Y 2, X2Y − Z2, Y Z −X3.

Then J ⊂ I(C), and V (J) = C. In particular, C is an algebraic set. Next, we claim that J is a
prime ideal. Indeed, consider the following morphism

φ : k[X,Y, Z]→ k[T ], X 7→ T 3, Y 7→ T 4, Z 7→ T 5.

Its kernel contains J , and we only need to show that ker(φ) = J . Let f ∈ k[X,Y, Z], using the
three generators of J as above, we have

f(X,Y, Z) ≡ a0(X) + a1(X) · Y + a2(X) · Z mod J

with ai(X) ∈ k[X]. Now f ∈ ker(φ) means that a0(T 3) + a1(T 3) · T 4 + a2(T 3) · T 5 = 0, which
is possible only when ai(X) = 0, that is f ∈ J . This proves that J = ker(φ) is prime. In
particular, J = I(C) by Hilbert’s Nullstellensatz. Moreover, I(C) cannot be generated by two
elements. In fact, if so, the k-vector space

J := J ⊗k[X,Y,Z] k[X,Y, Z]/(X,Y, Z) = J/(X,Y, Z) · J

must have dimension at most 2. On the other hands, we claim that the image of the three
generators above in J is k-linearly independent: let a, b, c ∈ k such that

a · (XZ − Y 2) + b · (X2Y − Z2) + c · (Y Z −X3) ∈ (X,Y, Z) · J

Since each term of all non zero element of (X,Y, Z) · J has degree at least 3, we must have

a · (XZ − Y 2)− b · Z2 + c · Y Z = 0

As a result, a = b = c = 0, this gives the claim. In particular, J = I(C) cannot be generated by
2 elements.
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1.2 Projective algebraic sets

1.2.1 Definitions

Let n ≥ 1 be an integer, and we consider the following equivalent relation ∼ on kn+1 − {0}: for
x = (x0, · · · , xn) and y = (y0, · · · , yn), we say x ∼ y iff there exists some λ ∈ k (must be non
zero) such that xi = λ · yi for each i.

Definition 1.2.1.1. We define the projective space of dimension n to be the set of equivalent
classes:

Pnk :=
(
kn+1 − {0}

)
/ ∼ 5

An element of Pnk is called a point of the projective space Pnk . For each element (x0, · · · , xn) ∈
kn+1 − {0}, its equivalent class in Pnk will be denoted by (x0 : x1 : · · · : xn). The n + 1-tuple
(x0, · · · , xn) is called the homogeneous coordinate of this equivalent class.

Recall that for a polynomial P ∈ k[X0, · · · , Xn], it’s called homogeneous if there exists some
integer d ≥ 0, such that P can be written under the following form

P (X0, · · · , Xn) =
∑

i0,··· ,in∈Z≥0,i0+···+in=d

ai0,··· ,inX
i0
0 · · ·X

in
n

In particular,
P (λ ·X0, λ ·X1, · · · , λ ·Xn) = λd · P (X0, X1, · · · , Xn).

for any λ ∈ k. Let now P be such a homogeneous polynomial, and let x = (x0, · · · , xn) be a
zero of P . For any λ ∈ k, λ · x = (λx0, · · · , λxn) is again a zero of P . Hence it makes sense
to say that for a point x ∈ Pnk , whether the value P (x) is zero or not. Moreover, an ideal
a ⊂ k[X0, · · · , Xn] is called homogeneous if it can be generated as an ideal by homogeneous
elements, or equivalently, if

a =
⊕
d≥0

a ∩ k[X0, · · · , Xn]d.

Definition 1.2.1.2. Let P ∈ k[X0, · · · , Xn] be a homogeneous polynomial. Let a = (f1, · · · , fm)
be a homogeneous ideal with {f1, · · · , fm} a family of homogeneous generators. We define the
corresponding projective algebraic set to be

V+(a) := {(x0 : · · ·xn) ∈ Pnk : fi(x0, · · · , xn) = 0 ∀i }

One can verify that this definition is independent of the choice of the homogeneous generators
{f1, · · · , fm}

Example 1.2.1.3. Let (a0 : · · · : an) ∈ Pnk be a point of the projective space, we consider the
ideal p generated by (Xiaj−Xjai)i,j . Then it’s homogeneous, and V+(p) = {(a0 : · · · : an)} ⊂ Pnk .
Note that this ideal is prime but not maximal. Moreover, V (p) ⊂ An+1

k is the line passing through
the origin of An+1

k and also the point (a0, · · · , an) ∈ An+1
k .

Example 1.2.1.4 (Hypersurfaces). Let f(X0, · · · , Xn) be an irreducible homogeneous polyno-
mial. Then f = 0 defines an irreducible algebraic set in Pnk , called a hypersurface.

It may happen that V+(a) = ∅ for a homogeneous ideal a even if a 6= k[X0, · · · , Xn]. In fact,
we have

5Similar to the affine case, the more correct notation here is Pnk (k), here we write Pnk just for simplicity.
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Proposition 1.2.1.5. Let a ⊂ k[X0, · · · , Xn] be a homogeneous ideal. The following two asser-
tions are equivalent

1. V+(a) = ∅;

2. a contains k[X0, · · · , Xn]d for some d > 0.

Proof. 6 Suppose V+(a) = ∅, which implies that V (a) ⊂ An+1
k has at most the single point {0},

that is V (a) ⊂ {0}. As a result, we find (X0, · · · , Xn) = I({0}) ⊂ I(V (a)) =
√
a. In particular,

there exists some s > 0 such that Xs
i ∈ a, hence k[X0, · · · , Xn]d ⊂ a with d = (n + 1) · s. This

gives (2). Conversely, suppose a contains k[X0, ·, Xn]d for some d > 0, then V (a) ⊂ {0}, hence
V+(a) = ∅.

Proposition 1.2.1.6. The union of two algebraic sets is algebraic. The intersection of any
family of algebraic sets is algebraic. The empty set and the whole space Pnk are both algebraic.

Definition 1.2.1.7. We define the Zariski topology on Pnk by taking open subsets to be the
complements of algebraic sets. For a subset Y ⊂ Pnk , the Zariski topology is the subspace
topology induced from Pnk .

Exercise 1.2.1.8. Describe the closed subsets of P1
k.

Definition 1.2.1.9. A subset V ⊂ Pnk is called a quasi-projective algebraic set, if it can be
realized as an open of a projective algebraic set of Pnk .

Example 1.2.1.10. For each integer i ∈ [0, n], let Hi = Z(Xi) = {(x0 : · · · : xn) : xi = 0} ⊂ Pnk .
Then it’s a projective algebraic set, and we will denote by Ui its complement. There is a
canonical map of sets

Ui → Ank , (x0 : · · · : xn) 7→
(
x0

xi
, · · · , xi−1

xi
,
xi+1

xi
, · · · , xn

xi

)
In fact, this is a homoeomorphism of topological spaces. Note that

⋂
iHi = ∅, hence

⋃
i Ui = Pnk .

Example 1.2.1.11. [Any affine algebraic set is quasi-projective] Let V = V (a) ⊂ Ank be an
affine algebraic set. We identify Ank with the open subset U0 of Pnk of elements with homogeneous
coordinate (x0 : x1 : · · · : xn) such that x0 6= 0. In this way, V can be seen as a subset of Pnk .
Since V ⊂ U0 is closed, we have V = V ∩ U0 with V ⊂ Pnk the closure of V in Pnk .

Exercise 1.2.1.12. Keeping the notations of Example 1.2.1.11. Describe explicitly from a the
closure V of V .

Solution. We consider the following construction: for each polynomial f ∈ k[X1, · · · , Xn], et
define β(f) ∈ k[x0, · · · , xn] the homogeneous polynomial given by

β(f) = x
deg(f)
0 · f

(
x1

x0
, · · · , xn

x0

)
.

Now, we consider b ⊂ k[x0, · · · , xn] the homogeneous ideal generated by β(a) ⊂ k[x0, · · · , xn],
then clearly V ⊂ V+(b), hence V ⊂ V+(b). Conversely, for G ∈ k[x0, · · · , xn] a homogeneous
polynomial such that V ⊂ V+(G), or equivalently V ⊂ V (g) with g = G(1, X1, · · · , Xn), we have
g ∈
√
a by Hilbert’s Nullstellensatz. In particular, there exists some integer r > 0 such that

gr ∈ a. In particular, β(g)r = β(gr) ∈ (β(a)) = b. Moreover, we have G = x
deg(G)−deg(g)
0 β(g),

hence Gr ∈ b, so G ∈
√
b. As a result, we find V+(b) ⊂ V+(G). In this way, we find V+(b) is

contained in any closed subset of Pnk which contains V . From this, we find V = V+(b).

6In the course, it was said that V+(a) = ∅ iff V (a) = {0}, but of course this equivalence works only when
a ( k[X0, · · · , Xn]. Hence here the more correct statement is that V+(a) = ∅ iff V (a) ⊂ {0}.
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Example 1.2.1.13 (Twisted cubic in P3
k). Recall that the affine twisted cubic is the affine

algebraic set given by
C = {(t, t2, t3) : t ∈ k} ⊂ A3

k

In terms of equations, this is V (X2 − Y,X3 − Z). Now, we identify A3
k with an open of P3

k by

A3
k ↪→ P3

k, (x, y, z) 7→ (1 : x : y : z).

Then the closure C of C is an projective algebraic set of P3
k, called the (projective) twisted cubic.

Now we want to give an explicitly description of C in terms of equations. Note that

(X2 − Y,X3 − Y ) = (X2 − Y,XY − Z) = (X2 − Y,XY − Z,XZ − Y 2)

Hence, if we consider I = (X2−YW,XY −ZW,XZ−Y 2) ⊂ k[W,X, Y, Z], then V+(I)∩A3
k = C.

Moreover, this ideal is prime: indeed, we can consider the following morphism of rings

α : k[W,X, Y, Z]→ k[S, T ], W 7→ S3, X 7→ S2T, Y 7→ ST 2, Z 7→ T 3.

Then I ⊂ α, hence to show that I is prime, we only need to show that I = ker(α). Now, any
polynomial f ∈ k[W,X, Y, Z] can be written as

f ≡ a0(W,Z) + a1(W,Z) ·X + a2(W,Z) · Y mod I

with ai ∈ k[W,Z]. If f ∈ ker(α), we then have

0 = a0(S3, T 3) + a1(S3, T 3) · S2T + a2(S3, T 3) · ST 2

which is possible iff ai = 0 for i ∈ {0, 1, 2}. Hence f ∈ I. This shows I is prime, hence V+(I)
is irreducible, and it contains V as an open subset, hence V+(I) = V . One shows also that this
ideal I cannot be generated by two elements.

Exercise 1.2.1.14. Consider the map

ν : P1
k → P3

k, (x; y) 7→ (x3 : x2y : xy2 : y3).

Prove that the image of this map is a projective algebraic set of P3
k. Can you recognize this

algebraic set?

1.2.2 Homogeneous Nullstellensatz

Definition 1.2.2.1. Let Y ⊂ Pnk be a subset. We define its homogeneous ideal I(Y ) to be the
ideal generated by the homogeneous polynomial P ∈ k[X0, · · · , Xn] such that P (x) = 0 for any
x ∈ Y .

Proposition 1.2.2.2. Keeping the notations as before.

1. We have I(V+(a)) =
√
a, and V+(I(Y )) = Y for Y ↪→ Pnk a subset.

2. The mappings a 7→ V (a) and Y 7→ I(Y ) set up a bijection between the set of closed algebraic
subsets of Pnk , and the set of all radical homogeneous ideal a ⊂ k[X0, · · · , Xn] such that
a 6= (X0, · · · , Xn).7

3. Under the previous correspondence, the irreducible closed subsets (resp. the points) of Pnk
correspond to the prime homogeneous ideals not equal to (X0, · · · , Xn) (resp. the prime
homogeneous ideals p ( (X0, · · · , Xn) which is maximal with respect to this property).

4. Pnk is neotherian with the Zariski topology.

7Note that the radical of a homogeneous ideal is still homogeneous.
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Exercises: affine cone over a projective subset

Let U = An+1
k − {0}, and p : U → Pnk be the canonical projection. Let Y ⊂ Pnk be a projective

algebraic subset, let
Ỹ := p−1(Y ) ∪ {0} ⊂ An+1

k .

Exercise 1.2.2.3. Show that Ỹ ⊂ An+1
k is an algebraic subset of An+1

k , whose ideal is I(Y )
considered as an ordinary ideal of k[X0, · · · , Xn]. Moreover show that Y is irreducible if and
only if Ỹ is irreducible. The affine algebraic set Ỹ is called the affine cone over Y .

Exercise 1.2.2.4. Use the notion of affine cone to establish 1.2.2.2.

1.2.3 Homogeneous coordinate ring

Recall first that a graded ring is a ring A, together with a decomposition of A into a direct sum
of its subgroups

A =
⊕
d≥0

Ad

such that Ad ·Ad′ ⊂ Ad+d′ . The decomposition above is called a gradation of A.
Let V = V+(a) ⊂ Pnk be a projective algebraic set, with a ⊂ k[X0, · · · , Xn] a homogeneous

ideal. Its homogeneous coordinate ring is then define to be the quotient k[X0, · · · , Xn]/I(V ),
with I(V ) the ideal of V . Since I(V ) is homogeneous, the quotient A := k[X0, · · · , Xn]/I(V ) is
naturally graded: A = ⊕d≥0Ad where

Ad := k[X0, · · · , Xn]d/k[X0, · · · , Xn]d ∩ I(V )

with k[X0, · · · , Xn] =
⊕

d≥0 k[X0, · · · , Xn]d the usual gradation of k[X0, · · · , Xn]. Let A+ :=
⊕d>0Ad. Let f ∈ A be a homogeneous element, which is the image of a homogeneous element
f̃ ∈ k[X0, · · · , Xn]. It’s easy to see that the set

{x ∈ V ⊂ Pnk : f̃(x) 6= 0}

is independent of the lifting f̃ of f , hence we will denote it by D+(f). For the future use, we
record the following proposition, which is a projective analogue of 1.1.4.2.

Proposition 1.2.3.1. 1. There is a one-to-one correspondence between the set of closed sub-
sets of V , and the set of homogeneous radical ideals not equal to A+.

2. Under the previous correspondence, the irreducible closed subsets (resp. points) correspond
to the homogeneous prime ideals of A not equal to A+ (resp. prime homogeneous ideals
p ( A+ which are maximal with respect to this property).

3. For f ∈ A = k[X0, · · · , Xn]/I(V ), the subset D+(f) is open in V . Moreover, the family
{D+(f) : f ∈ A homogeneous} forms a basis for the Zariski topology of V . Such an open
subset will be called principal.

1.2.4 Exercise: plane curves

We begin with a general ressult.

Exercise 1.2.4.1. Let a ⊂ k[X1, · · · , Xn] be an ideal. Show that V (a) is a finite set if and only
if the quotient k[X1, · · · , Xn]/a is of finite dimensional over k.
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Now, an affine plane curve, is the set of solutions in A2
k of a nonconstant polynomial f ∈

k[X,Y ].

Exercise 1.2.4.2. Let C = V (f), D = V (g) ⊂ A2
k be two plane curves with f, g two irreducible

polynomial of degree respectively m and n, such that f - g. We want to show that C ∩D is a
finite set in the following way.

1. For each integers d ≥ 0, let Pd be the set of polynomials ∈ k[X,Y ] of total degree ≤ d.
Compute the dimension of this k-vector space Pd.

2. Show that for d ≥ Max{m,n}, the k-vector space Pd/(f, g) ∩ Pd is of dimension ≤ mn.
For this, one could use the following sequence of maps

(1.2) Pd−m × Pd−n
α // Pd

β // Pd/(f, g) ∩ Pd

where α(u, v) = uf + vg, and β is the natural projection, and note that β ◦ α = 0.

3. Show that dimk(k[X,Y ]/(f, g)) ≤ mn and then conclude.

But it might happen that C ∩ D = ∅. To remedy this, we consider the projective plane
curves. By definition, a projective plane curve, or just a plane curve for short, is the set of
solutions in P2

k of a nonconstant homogeneous polynomial F ∈ k[X,Y, Z].

Exercise 1.2.4.3. Show that for any two plane curves C,D ∈ P2
k, their intersection C ∩D is

not empty. One could try to use the sequence (1.2) for help.

Now, we will examiner the case where C = V+(F ) is a plane curve with F ∈ k[X,Y, Z] a
homogenenous irreducible polynomial, and D = L is a line in P2

k. Let’s first define the intersction
multiplicity of L and C at a point P ∈ P2

k. We may assume that P = (x0 : y0 : 1) ∈ A2
k =

D+(Z) ⊂ P2
k. Hence L ∩ A2

k is given by a polynomial f in x, y of degree 1:

g(x, y) = a · (x− x0) + b · (y − y0)

and C ∩ A2
k is given by a polynomial f(x, y) = F (x, y, 1) ∈ k[x, y] such that f(x0, y0) = 0.

Without loss of generality, we assume b 6= 0, then replace y by

−a
b

(x− x0) + y0

in the expression of f , and we get a polynomial f̃(x) = f(x,−a
b (x−x0)+y0) ∈ k[x]. By definition,

x0 is a root of this polynomial. Now, we define the intersection multiplicity i(P ;L,C) to be the
multiplicity of the root x = x0 of the polynomial f̃ . Moreover, by convention, for P /∈ L ∩ C,
we define i(P ;L,C) = 0.

Exercise 1.2.4.4 (A special case of Bézout’s theorem). 8 Let L be a line of P2
k and C = V+(F )

be a plane curve given by an irreducible homogeneous polynomial of degree n. Suppose C 6= L,
then the following equality holds

n =
∑
P∈P2

k

i(P ;L,C)

The actual Bézout’s theorem is the following

8Of course, the affine analogue of this proposition is not true.
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Theorem 1.2.4.5. Let C and C ′ be two plane curves of degree respectively m and n. Suppose
that C or C ′ doesnot contain any irreducible component of the other curve as its irreducible
component, then the following equality holds:

m · n =
∑
P∈P2

k

i(P ;C,C ′)

1.3 Morphisms of algebraic sets

We will need to know when 2 algebraic sets are to be considered isomorphic. More generally,
we will need to define not just the set of all algebraic sets, but the category of algebraic sets.

1.3.1 Affine case

Let U ⊂ Ank and V ⊂ Amk be two affine algebraic sets.

Definition 1.3.1.1. A map σ : U → V is called a morphism if there exist m polynomials in
n variables P1, · · · , Pm ∈ k[X1, · · · , Xn] such that for any x = (x1, · · · , xn), we have σ(x) =
(P1(x), · · · , Pm(x)). A morphism σ : X → Y is called an isomorphism if it’s bijective,9 with
inverse σ−1 again a morphism. In this case, we say that U and V are isomorphic.

Remark 1.3.1.2. If we replace in the previous definition “polynomials” by “regular functions
on U”, we get the same notion. Hence a morphism σ : U → V ⊂ Amk is given by m regular
functions f1, · · · , fm ∈ k[U ] such that for any x ∈ U , σ(x) = (f1(x), · · · , fm(x)) ∈ V .

Example 1.3.1.3. Look at A1
k the affine line, and the parabola C = V (y − x2) ⊂ A2

k. The
projection π : (x, y) 7→ x of the parabola onto the x-axis should surely be an isomorphism
between these algebraic sets. Indeed, we consider the following map

σ : A1
k → C, x 7→ (x, x2).

Then we have σ ◦ π = id and π ◦ σ = id.

Proposition 1.3.1.4. Let f : U → V be a morphism of affine algebraic sets. Then f induces a
continuous map between the underlying topological spaces.

Proof. Suppose U ⊂ Ank , and V ⊂ Amk . By the definition, f is just the restriction to U of a
regular function F : Ank → Amk . Since U and V are endow with the subspace topology, hence we
are reduced to show that F is continuous. We write F = (P1, · · · , Pm) with Pi ∈ k[X1, · · · , Xn].
Let Y = V (I) ⊂ Amk be a closed subset with I = (g1, · · · , gr) ⊂ k[Y1, · · · , Ym] an ideal. Then
F−1(V (I)) = V (f1, · · · , fr) with fi = gi(P1, · · · , Pm) ∈ k[X1, · · · , Xn]. In particular, F−1(V (I))
is closed. Hence, F is continuous. This finishes the proof.

Let σ : U → V be a morphism of affine algebraic sets. For any regular function f : V → U ,
we claim the composition f ◦ σ : U → k gives a regular function on U . Indeed, as f is regular,
we may assume that f(y) = F (y) for y ∈ V with F ∈ k[Y1, · · · , Ym] a polynomial. Moreover, let
P1, · · · , Pm ∈ k[X1, · · · , Xn] such that σ(x) = (P1(x), · · · , Pm(x)) for x ∈ U . Then f ◦ σ(x) =
F (P1, · · · , Pn)(x) for x ∈ U . As F (P1, · · · , Pm) ∈ k[X1, · · · , Xn] is a polynomial, hence the
composition f ◦ σ is a regular function on U . In this way, we get a map, denoted by σ∗:

σ∗ : k[V ]→ k[U ].10

9Note that k = k.
10The proof given here is slicely different the proof give in the lecture.
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Proposition 1.3.1.5. The map

ι : Hom(U, V )→ Homk(k[V ], k[U ]), σ 7→ σ∗

is bijective.

Proof. We remark first that, for any x ∈ U , if we note mx = {f ∈ k[U ] : f(x) = 0} ⊂ k[U ] the
maximal ideal corresponding to x ∈ X, and nσ(x) ⊂ k[V ] the maximal ideal corresponding to
σ(x). Then we have

σ∗−1(mx) = nσ(x).

This remark implies immediately that the map ι is injective. To establish the surjectivity, let
τ : k[V ] → k[U ] be a morphism of k-algebras. Let Pi ∈ k[X1, · · · , Xn] be a lifting of τ(yi) for
each 1 ≤ i ≤ m, we have then the following commutative diagram

k[Y1, · · · , Ym]
Yi 7→Pi //

Yi 7→yi
��

k[X1, · · · , Xn]

Xi 7→xi
��

k[V ]
τ // k[U ].

Let
σ = (P1, · · · , Pm) : Ank → Amk

be the morphism given by the polynomials Pi’s. Then σ sends U to V , which means that for any
x ∈ U , (P1(x), · · · , Pm(x)) ∈ V . Indeed, we need to show that f(P1(x), · · · , Pm(x)) = 0 for any
f ∈ I(V ). But since the polynomial Pi is a lifting of τ(yi), we have f(P1(X), · · · , Pm(X)) ∈ I(U),
hence f(P1(x), · · · , Pm(x)) = 0 for any x ∈ U . In this way, we get a morphism from U to V ,
still denoted by σ. Finally, it remains to show that σ∗ = τ . We only need to show σ∗(yi) = τ(yi)
for each i: in fact, we have

σ∗(yi) = Pi(x1, · · · , xn) = Pi(X1, · · · , Xn) = τ(yi)

This finishes then the proof.

Corollary 1.3.1.6. A morphism of affine algebraic sets σ : U → V is an isomorphism iff the
induced maps between the coordinate rings is an isomorphism. In particular, two affine algebraic
sets are isomorphic if and only if there coordinate rings are isomorphic as k-algebras.

But note that a bijective morphism σ : U → V is not an isomorphism in general.

Example 1.3.1.7. Suppose k of characteristic p. Define the morphism

f : A1
k → A1

k, t 7→ tp

which is bijective. Then in the level of coordinate rings, f induces the map

f∗ : k[X]→ k[X], X 7→ Xp.

Clearly, this map is not an isomorphism. Hence, f is not an isomorphism of affine algebraic sets.

Example 1.3.1.8. We consider the following map

σ : A1
k → A2

k, t 7→ (t2, t3).

Let C be its image, then C is an affine algebraic set, and σ induces a bijection between A1
k and

C. But this morphism is not an isomorphism. In fact, these two affine algebraic sets are not
isomorphic.

Exercise 1.3.1.9. Verify the assertions in the previous exercise.



26 CHAPTER 1. ALGEBRAIC SETS AND MORPHISMS

1.3.2 Quasi-projective case

The definition of morphism in the projective case is more subtle. We begin with the notion of
regular functions.

Remark 1.3.2.1. Even for a homogeneous polynomial P , its value at a point x of projective
space Pnk is not well-defined. But for P,Q two homogeneous polynomials of the same degree,
such that Q(x) 6= 0, then we have a well-defined function on the neighborhood D(Q) := {y ∈
Pnk : Q(y) 6= 0}:

P

Q
: D(Q)→ k, y 7→ P (y)

Q(y)
.

Definition 1.3.2.2. For a quasi-projective algebraic set V ⊂ Pnk , and x ∈ V a point. A function
f : V → k is called regular at x if there exist two homogeneous polynomials P,Q ∈ k[X0, · · · , Xn]
of the same degree such that Q(x) 6= 0, and that f agrees with P

Q on a neighborhood of V at x.
The set of regular functions will be denoted by k[V ]. This has set naturally a ring structure.

Since an affine algebraic set can also be viewed as a quasi-projective algebraic set, we get
two versions of regular functions on it. But in fact, these two versions coincide. More precisely,
we have

Proposition 1.3.2.3. Let V ⊂ Ank be an algebraic set. Then the notion of regular functions on
V when V is viewed as an affine algebraic set is the same as the notion of regular function on
V when V is viewed as a quasi-projective algebraic set via V ⊂ Ank = D+(X0) ⊂ Pnk = {(x0 :
· · · : xn)|xi ∈ k not all zero}.

Proof. We identify Ank as an open of Pnk by the usual way:

Ank ↪→ Pnk , (a1, · · · , an) 7→ (1 : a1 : · · · : an).

Let V ⊂ Ank be a closed subset, and f : V → k a regular function in the sense of affine
algebraic set, then f = P |V with P ∈ k[X1, · · · , Xn] a polynomial. Now, take d = deg(P ), and
Q = Xd

0P (X1/X0, · · · , Xn/X0) ∈ k[X0, · · · , Xn]. Then Q is homogeneous of degree d, and we
have f = (Q/Xd

0 )|V , hence f is a regular function in the sense of projective algebraic set.

Conversely, let f : V → k a regular function when V is viewed as a quasi-projective set,
then for each point x ∈ V , there exist Px, Qx ∈ k[X0, · · · , Xn] homogeneous polynomials of
the same degree such that Qx(x) 6= 0, and that f = Px/Qx in a neighborhood Ux of x. Let
P ′x = Px(1, X1, · · · , Xn), and Q′x = Qx(1, X1, · · · , Xn), then P ′x = f · Q′x in Ux. Now, up to
multiply on both sides some regular function (in the affine sense) of V which is vanishing on
V −Ux but not at the point x, we may assume that the equality P ′x = f ·Q′x holds in V . Since the
family {Q′x : x ∈ V } has no common zero in V , as a result, we must have (Q′x : x ∈ V ) = k[V ].
Hence 1 ∈ k[V ] can be expressed as the following finite sum:

1 =
∑
x

gx ·Q′x

with gx ∈ k[V ]. Hence f =
∑

x gx · f ·Q′x =
∑

x gx · P ′x ∈ k[V ]. This finishes the proof.

In contrast to the affine case, the ring of regular functions may consist only of constants.
For example,
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Example 1.3.2.4. k[P1
k] = k. Indeed, recall that, let x, y be the coordinate of P1

k, then P1
k =

U0 ∪ U1 with U0 = {(x, y) : x 6= 0} and U1 = {(x : y) : y 6= 0}. Moreover, we can identify U0

with A1
k:

U0 ' A1
k, (x : y) 7→ y/x,

and similarly for U1:
U1 ' A1

k, (x : y) 7→ x/y.

Let now f : P1
k → k a regular function, its restriction to U0 is a regular function on U0 ' A1

k,
hence f |U0 = P0(y/x) with P0 ∈ k[T ] a polynomial. Similarly, f |U1 = P1(x/y) with P1 ∈ k[S].
On the other hand, since f |U0∩U1 = P0(y/x)|U0∩U1 = P1(x/y)|U0∩U1 . That is, for any (x : y) ∈ P1

k

such that x · y 6= 0, we have
P0(y/x) = P1(x/y)

But since P0 and P1 are polynomials, the previous equality is possible only when P0 and P1 are
constants. Hence we have f = c is a constant function on P1

k. This finishes the proof.

Definition 1.3.2.5. For V a quasi-projective algebraic set. A map

f = (f1, · · · , fn) : V → Ank

is called regular if each component fi : V → k is a regular function of V .

Definition 1.3.2.6. Let V be a quasi-projective algebraic set.

1. A map f : V → Pnk is called a morphism if for any x ∈ V , there exists some affine piece
Ank containing of f(x) ∈ Pnk and a open neighborhood U of x in V such that f(U) ⊂ Ank ,
and that f |U : U → Ank is regular.

2. For W ⊂ Pnk a quasi-projective algebraic set. A map f : V → W is called a morphism if
the composite map

V →W ↪→ Pnk
is a morphism in the previous sense.

3. A morphism f : V →W is called an isomorphism if it’s bijective, with f−1 still a morphism
of quasi-projective algebraic set.

Example 1.3.2.7. Consider the map σ : P1
k → P2

k given by (x : y) 7→ (x2 : xy : y2). Then this
map is a morphism. Indeed, let P = (x : y) ∈ P1

k be a point in P1
k. Without loss of generality,

we may assume that x 6= 0. Let U = {(x : y) ∈ P1
k : x 6= 0}, and V = {(a : b : c) : a 6= 0}, and

identify them to the affine space in the usual way. Then σ(U) ⊂ V . Moreover, we have the
following diagram

P1
k

// P2
k

U
σ|U //?�

OO

V
?�

OO

A1
k

//

t7→(1:t)

OO

A2
k

(c,d)7→(1:c:d)

OO

Now as this diagram is commutative, the lowest horizontal map is then given by t 7→ (t, t2),
which is regular since the two components t and t2 are regular functions on A1

k. This gives the
result.
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Exercise 1.3.2.8. Let Y be the image of morphism of the previous example. Show that Y ⊂ P2
k

is a closed subset. Prove that P1
k ' Y , while their homogeneous coordinate rings are not

isomorphic.

Suppose V ⊂ Pnk = {(x0 : · · · : xn)} and W ⊂ Pmk = {(y0 : · · · : ym)} be two quasi-projective
sets. Let σ : V → W be a morphism of quasi-projective sets, then σ induces a morphism of
the ring of regular functions σ∗ : k[W ] → k[V ] in the following way: for f : W → k a regular
function, then f ◦ σ : V → k.

Lemma 1.3.2.9. The function f ◦ σ : V → k is regular.

Proof. For any v ∈ V , we write w = σ(v). So we need to show that f ◦σ is regular at v. This is a
local question around v. Without loss of generality, we suppose that w is contained in the affine
piece Amk = D+(Y0) ⊂ Pmk . Up to replace V by some small neighborhood around v, we may
assume that σ(V ) ⊂W ∩D+(Y0), hence we can write σ = (σ1, · · · , σm) with σi regular functions
defined on V . Up to replace further V by some small open of v, we may write σi = Fi/Gi with
Fi, Gi ∈ k[X0, · · · , Xn] homogeneous polynomials of the same degree such that Gi(x) 6= 0 for
any x ∈ V . The map σ : V →W ⊂ Pmk hence can be written as

σ(x) = (1 : F1(x)/G1(x) : · · · : Fm(x)/Gm(x))

Similarly, up to replace W by some small open neighborhood of w (and then replace correspond-
ingly V by some open neighborhood of v), we may assume that the regular function f can be
written as P/Q with P,Q ∈ k[Y0, · · · , Ym] two homogeneous polynomials of the same degree
such that Q(y) 6= 0 for any y ∈W . As a result,

f ◦ σ =
P (1, F1/G1, · · · , Fm/Gm)

Q(1, F1/G1, · · · , Fm/Gm)

One verifies that the latter fraction can be written as a quotient P̃ /Q̃ with P̃ , Q̃ ∈ k[X0, · · · , Xn]
be two homogeneous polynomials of the same degree, such that Q̃(v) 6= 0, which says exactly
that f ◦ σ is regular at v. This finishes the proof.

As a result, a morphism σ : V →W induces a morphism between the ring of regular functions

σ∗ : k[V ]→ k[W ].

By in general, if we just consider the ring of regular functions k[V ] of a quasi-projective algebraic
set, we will lost much information about V : for example when V = Pnk , one can show that k[Pnk ]
consists just the constant functions. Because of this, the analogues of 1.3.1.5 and 1.3.1.6 for
quasi-projective algebraic sets don’t hold in general.

Exercise 1.3.2.10. For X a quasi-projective algebraic set, and for any point x ∈ X. Show that
there exists a open neighborhood U of x such that U is isomorphic to an affine algebraic set.

Exercise 1.3.2.11. Let V,W be two quasi-projective algebraic sets, and f : V → W be a
morphism of algebraic sets. Then f is continuous between the underlying topological spaces.



Chapter 2

The Language of schemes

2.1 Sheaves and locally ringed spaces

2.1.1 Sheaves on a topological spaces

Let X be a topological space.

Definition 2.1.1.1. A presheaf F of abelian groups (resp. rings) on X consists of the following
data:

• for any open subset U ⊂ X, an abelian group F(U) (resp. a ring F(U)), and

• for any inclusion of open subsets V ⊂ U ⊂ X, a morphism of groups (resp. of rings)

ρUV : F(U)→ F(V )

subject to the conditions

• F(∅) = (0);

• ρUU : F(U)→ F(U) is the identity map for any open U ⊂ X;

• for W ⊂ V ⊂ U ⊂ X three opens of X, we have ρVW ◦ ρUV = ρUW .

Remark 2.1.1.2. Very often, for s ∈ F(U), and V ⊂ U , the image of s by the map ρUV is
denoted by s|V ∈ F(V ).

Example 2.1.1.3. Let X be a topological space.

1. For any open U ⊂ X, let OX(U) to be the set of real-valued continuous functions defined
on U . For V ⊂ U , the map ρUV is defined to be the restriction map. Then OX is a
presheaf.

2. Let CX be the presheaf such that for each open U ⊂ X, CX(U) is the set of constant
functions defined over U , together with the natural restriction. Then this gives us a
presheaf.

3. Let U ⊂ X be a open subset of X, and F be a presheaf on X. F induces in an obvious
way, a presheaf F|U on U by setting F|U (V ) = F(V ) for any open subset V ⊂ U . This is
the restriction of F to U .

29
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Definition 2.1.1.4. A presheaf F on a topological space X is called a sheaf if the following
two conditions are satisfied:

– For any open U of X, and any open covering U =
⋃
i Ui of U . Let s ∈ F(U) be a section

such that s|Ui = 0 for each i, then s = 0;

– For any open U of X, and any open covering U =
⋃
i Ui of U . Suppose that for each i,

we are given a local section si ∈ F(Ui) such that these sections verify the following gluing
condition: for each i, j, we have equality si|Ui∩Uj = sj |Uj∩Ui . Then there exists a section
s ∈ F(U) such that s|Ui = si ∈ F(Ui).

In a more fancy way, a presheaf F is a sheaf, if for any open U of X, and any open covering⋃
i Ui = U of U , the following sequence of abelian groups is exact :1

0→ F(U)→
∏
i

F(Ui)→
∏
ij

F(Ui ∩ Uj),

where the first morphism is s 7→ (s|Ui)i, and the second one is given by

(ti)i 7→ (ti|Ui∩Uj − tj |Ui∩Uj )ij .

Example 2.1.1.5. In the previous example, OX is a sheaf, while CX is not a sheaf. Moreover,
for a sheaf F on X, its restriction F|U to an open subset U ⊂ X is also a sheaf.

Definition 2.1.1.6. Let F and G be two presheaves of groups (resp. of rings) on X. A morphism
of presheaves f : F → G consists of the following data: for each open U , a morphism of groups
(resp. of rings) f(U) : F(U)→ G(U) such that the following square is commutative: for V ⊂ U ,

F(U)
(−)|V //

f(U)

��

F(V )

f(V )

��
G(U)

(−)|V
// G(V )

If moreover F and G are sheaves, we use the same definition for morphism of sheaves (or
presheaves). The set of morphisms of sheaves (or presheaves) of groups from F to G will be
denoted by Hom(F ,G).

B-sheaves

Let X be a topological space, and B be a basis for the open subsets of X.2 For each open subset
U of X, let BU be the set of elements of B which is contained in U .

Definition 2.1.1.7. A B-presheaf of abelian groups (resp. rings) on X consists of the following
data:

1Recall that a sequence of abelian groups

· · · // Gi−1

di−1 // Gi
di // Gi+1

// · · ·

is called a complex, if for each i, we have di ◦ di−1 = 0. If moreover ker(di) = im(di−1) for each i, then we say
that the complex above is exact.

2This means the following: B is a set of open subsets of X, such that any open subset of X can be written as
a union of the open subsets contained in B.
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– for any open subset U ∈ B, an abelian group (resp. a ring) F(U);

– for two open subsets V ⊂ U of X contained in B, a morphism of groups (resp. of rings)
ρUV : F(U)→ F(V ),

subject to the usual conditions as a presheaf on X. A B-presheaf is called a B-sheaf if moreover
the following condition is verified:

(SC) For any open subset U ∈ B, any open covering U =
⋃
i Ui by Ui ∈ B, the following complex

is exact

(2.1) 0 // F(U) //
∏
iF(Ui)

α //
∏
i,j

∏
W∈BUi∩Uj

F(W ) ,

where the second morphism α is given by (si)i 7→ (si|W − sj |W )i,j,W .

We say that a B-presheaf is separated if for any open U ∈ B and any open covering U =
⋃
i∈I Ui

with Ui ∈ B, the first map in the sequence (2.1) is injective.

Remark 2.1.1.8. Keeping the notations as in the definition, and suppose that the B-presheaf
F is separated. Temporarily, we say a family of section (si) ∈

∏
iF(Ui) is compatible if (si) lies

in the kernel of α. Suppose that, for each i, j, we are given an open covering Ui
⋂
Uj =

⋃
kWijk.

Then the family (si) ∈
∏
iF(Ui) is compatible if and only if si|Wijk

= sj |Wijk
for any k. Clearly,

if (si) is compatible, since Wijk ∈ BUi∩Uj , we have si|Wijk
= sj |Wijk

. Conversely, suppose the
latter condition is verified, we need to show that for any W ∈ BUi∩Uj , we have si|W = sj |W . As
Ui
⋂
Uj =

⋃
kWijk, we have W =

⋃
lW
′
l such that W ′l ∈ B and that each W ′l is contained in

some Wijk for some index k. Our hypothesis implies then, for any index l,

(si|W − sj |W )|W ′l = (si|Wijk
− sj |Wijk

)|W ′l = 0

where Wijk is such that W ′l ⊂Wijk. As a result, si|W = sj |W since the B-presheaf F is separated.
As a corollary, let B′ be another base of X such that B′ ⊂ B. Let F be a B-sheaf. Then the
restriction of a B-sheaf to B′ gives a B′-sheaf.

Lemma 2.1.1.9. Let F be a B-sheaf, then F can be naturally extended, in a unique way, to a
sheaf G on X, such that F(U) is canonically isomorphic to G(U) for any U ∈ B.

Proof. The uniqueness is clear. Let’s proceed to the proof of the existence. Let G(U) be the set
of compatible sections sV ∈ F(V ) for V ⊂ U an open in B:

G(U) := {(sV )V ∈BU : sV |W = sW for W,V ∈ BU s.t. W ⊂ V } ⊂
∏
V ∈BU

F(V ),

or equivalently, G(U) := lim←−V ∈BU F(V ). Note that if U ∈ B, the natural projection G(U) →
F(U) is an isomorphism. Let now U ′ ⊂ U be two open subsets of X, then BU ′ ⊂ BU . The
natural projection induces then a morphism of groups G(U) → G(U ′). In this way, we get a
presheaf G on X which extends the B-presheaf F .

On the other hand, for another basis B′ of the topology such that B′ ⊂ B, by the previous
remark, the restriction of F to B′ gives a B′-sheaf on X, denoted by F ′. Let G′ be the presheaf
on X defined from the B′-sheaf F . Since B′ ⊂ B, the projection induces then a morphism of
presheaves ι : G → G′. We claim that this latter map is an isomorphism. We first prove that this
map is injective. Indeed, let s = (sV )V ∈BU ∈ G(U) an arbitrary section such that sW = 0 for any
W ∈ B′U . Since B′ is a basis of X, for any V ∈ BU , there exists an open covering V =

⋃
i Vi of
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V with Vi ∈ B′. Now, sV |Vi = sVi = 0 (as Vi ∈ B′U ). Now since F is a B-sheaf, and V, Vi ∈ B, we
get sV = 0, and hence the injectivity. For the surjectivity, let s′ = (s′W )W∈B′U ∈ G

′(U), we need
to construct in a compatible way sections (sV )V ∈BU . Let V ∈ BU , then one can find a covering
V =

⋃
iWi with Wi ∈ B′U . For each Wi, we have a section s′Wi

∈ F(Wi), and these sections are
compatible (see the previous remark). As a result, these sections can be glued in a unique way
to a section sV ∈ F(V ). Moreover, these resulting sections (sV )V ∈BU are also compatible, hence
give a section s ∈ G(U). In this way, we see that the map G(U) → G′(U) is surjective. This
proves the claim.

Now to finish the proof of this lemma, one needs to verify the sheaf condition for G. Let U
be an open of X with

⋃
i Ui an open covering of U . Up to replace X by U , we may suppose that

U = X. Let B′ ⊂ B be the set of elements of B which is contained in Ui for some i. Then B′
is still a basis for the topology. Since the corresponding B′-sheaf extends to the same presheaf
as the B-sheaf F , we may also assume B = B′. In this case, we need to show that the following
sequence

0→ lim←−
V ∈B
F(V )→

∏
i

lim←−
V ∈BUi

F(V )→
∏
i,j

lim←−
W∈BUi∩Uj

F(W )

By the assumption on B, the first map is injective. To show the exactness in the middle,
let t = (ti,V )i,V ∈BUi an element of the middle, then t comes from an element of G(X) iff for
V ∈ BUi ∩ BUj = BUi∩Uj , we have ti,V = tj,V , which means exactly that t lies in the kernel of
the second map. This gives the exactness at the middle.

Stalks

Definition 2.1.1.10 (Stalk). Let F be a sheaf on X (or a presheaf on X). Let x ∈ X be a
point of X. We consider the family S of the pairs (U, s) where U ⊂ X is a open neighborhood of
x, and s ∈ F(U). We define the following equivalent relation ∼ on S: for (U, s) and (V, t) ∈ S,
we say (U, s) ∼ (V, t) if one can find a third open neighborhood W of x such that W ⊂ U ∩ V
and that s|W = t|W . We denote by Fx the set of equivalent classes S/ ∼. It is called the stalk
of the sheaf F at x.

In a more fancy way, the definition of stalk can be expressed as the following direct limits

Fx := lim−→
x∈U
F(U).

Remark 2.1.1.11. Let X be a topological space, with B a basis for the topology. Let F be a
B-sheaf which extends to the sheaf G on X. For x ∈ X, we have

Gx ' Fx := lim−→
x∈U∈B

F(U).

Sheaf associated with a presheaf

Proposition 2.1.1.12. For any presheaf F of groups, there is a canonically associated sheaf
of groups Fa on X together with a morphism ι : F → Fa such that for any sheaf G on X, the
following map

Hom(Fa,G)→ Hom(F ,G), f 7→ f ◦ ι

is bijective. The pair (Fa, ι), or simply Fa is called the associated sheaf of F , it is unique up
to isomorphisms. Moreover, the canonical map ι induces an isomorphism between the stalks
Fx ' Fax for any x ∈ X.
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Proof. (Sketch) For any open U ofX, we consider Fa(U) the set of applications s : U →
∐
x∈U Fx

such that

– s(x) ∈ Fx for any x ∈ U ;

– For any x0 ∈ U , there exists some open V of x0 contained in U and some element t ∈ F(V )
such that s(x) = tx ∈ Fx.

The collection {Fa(U)} together with the usual restriction maps give a sheaf Fa onX. Moreover,
there exists a canonical map ι : F → Fa, and the couple (Fa, ι) solves the universal problem
stated in the proposition. Indeed, let φ : F → G be a morphism of presheaves with G a sheaf on
X. For any element s ∈ Fa(U), let U =

⋃
Vi be an open covering of U , and ti ∈ F(Vi) such that

s|Vi = ι(ti). We take t′i = φ(ti) ∈ G(Vi), and claim that there exists some t′ ∈ G(U) such that
t′|Vi = t′i. For this, we need to verify that t′i|Vi∩Vj = t′j |Vi∩Vj . As ti,x = tj,x for any x ∈ Vi ∩ Vj ,
we have equally t′i,x = t′j,x for any x ∈ Vi ∩ Vj , which implies then t′i|Vi∩Vj = t′j |Vi∩Vj as G is a
sheaf on X. Moreover, it’s easy to show that the element t is independent of the choice of the
covering U =

⋃
i Vi and the sections ti ∈ F(Vi). The association s 7→ t gives then a morphism

of abelian sheaves φa : Fa → G such that φa ◦ ι = φ.

Now, we look at some properties related to exact sequences.

Definition 2.1.1.13. Let f : F → G be a morphism of sheaves.

1. We define the kernel of f to be the presheaf ker(f) given by ker(f)(U) = ker(f(U) :
F(U)→ G(U)) for any open U ⊂ X. One verifies that ker(f) is indeed a sheaf.

2. The cokernel of f is the sheaf coker(f) associated with the presheaf on X given by U 7→
coker(f(U) : F → G(U)).

3. f is called a monomorphism (resp. an epimorphism) if ker(f) = 0 (resp. coker(f) = 0).

Proposition 2.1.1.14. Let F ,G be two sheaves, and f : F → G be a morphism of sheaves.

1. F = 0 if and only if Fx = 0 for any x ∈ X.

2. f is a monomorphism (resp. an epimorphism, resp. an isomorphism) if and only if
fx : Fx → Gx is a monomorphism (resp. an epimorphism, resp. an isomorphism) for any
x ∈ X.

Some functorialities

Let f : X → Y be a continuous map of topological spaces. In particular, for any open V ⊂ Y ,
the preimage f−1(V ) ⊂ X is again open. We begin with the direct image. Let F be a sheaf on
X, we define f∗F to be the presheaf on Y given by

V ⊂ Y open 7→ F(f−1(V )).

This gives indeed a presheaf on Y .

Lemma 2.1.1.15. f∗F is a sheaf. We call it the direct image of F by the morphism f .

Let G be the sheaf on Y . We consider the presheaf F on X given by

U ⊂ X open 7→ lim−→
V⊂Y open, s.t. f(U)⊂V

G(V )
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Lemma 2.1.1.16. F is indeed a presheaf on X.

Definition 2.1.1.17. We define the inverse image of G by f the associated sheaf of the presheaf
F , denoted by f−1G.

Proposition 2.1.1.18. Let F be a sheaf on X, and G be a sheaf on Y . There is a canonical
bijection of sets

Hom(f−1G,F) ' Hom(G, f∗F).

Example 2.1.1.19. Let X be a topological space, F be a presheaf on X.

1. Let U ⊂ X be an open subset, et we note by j : U → X the inclusion map. Then j−1F is
just the restriction F|U of F to U .

2. Let x ∈ X be a point, et i : {x} → X be the inclusion map. Then i−1F ' Fx.

3. Consider two continuous maps Z
g // Y

f // X , then there exists a canonical isomor-
phism g−1(f−1F) ' (f ◦ g)−1F . In particular, we have (f−1G)x ' Gf(x).

2.1.2 Ringed space

A ringed space is a pair (X,OX) consists of

– a topological space X; and

– a sheaf of rings OX on X.

When there is no confusion possible, we will omit OX from the notation. A ringed space is
called local if for any x ∈ X, the stalk OX,x is a local ring.3 For a locally ringed space (X,OX),
the quotient OX,x/mx is called the residuel field of X at x. A morphism f = (f, f ]) : (X,OX)→
(Y,OY ) of ringed spaces is the given of

• a continuous map f : X → Y ; and

• a morphism of sheaves of rings f ] : f−1OY → OX (or equivalently a morphism of sheaves
of rings OY → f∗OX).

In particular, for any x ∈ X, the morphism (f, f ]) induces a morphism of the stalks OX,x →
OY,f(x). If moreover X,Y are both locally ringed spaces, a morphism (f, f ]) : X → Y is called a
morphism of locally ringed spaces if for any x ∈ X, the induced map OX,x → OY,f(x) is a local
morphism.4

Example 2.1.2.1. Let X be a topological space, and OX be the sheaf of continuous real-valued
functions on X. The pair (X,OX) gives a ringed space. Actually, this is a locally ringed space.

Example 2.1.2.2. Let X be a topological space, and O′X be the sheaf of not necessarily con-
tinuous functions on X. Then (X,O′X) is also a ringed space, which is not local in general.

3Recall that a local ring is a ring with only one maximal ideal.
4A morphism φ : A→ B of local rings is called local if φ−1(n) = m with m ⊂ A (resp. n ⊂ B) be the maximal

ideal of A (resp. of B).
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Example 2.1.2.3. Let X,Y be two topological spaces with OX and OY be the corresponding
sheaves of continuous real-valued functions. Let f : X → Y be a continuous map. It induces the
a morphism of ringed spaces

f : (X,OX)→ (Y,OY ).

One can show that this morphism is local.

Example 2.1.2.4. Let (X,OX) be a ringed space (resp. locally ringed space), and U ⊂ X be
an open subset. Then (U,OX |U ) is a ringed space (resp. locally ringed space). Let j : U ↪→ X
be the inclusion map, together with the adjunction map j] : OX → j∗OV , we get a morphism of
ringed spaces

j = (j, j]) : (U,OU )→ (X,OX)

Such a morphism is called an open immersion of ringed spaces.

Locally ringed space structure on an algebraic set

Let V be a quasi-projective algebraic set. For any open subset U ⊂ V , it is again quasi-
projective. Hence we can consider the regular functions defined over U . In this way, we get the
sheaf of regular functions OV on V , and in this way, we get a ringed space (V,OV ). Moreover,
let φ : V →W be a morphism of algebraic sets, it induces then a morphism of the ringed spaces

φ = (φ, φ]) : (V,OV )→ (W,OW ).

Proposition 2.1.2.5. Keeping the notations as before. Then the ringed space (V,OV ) is local,
and the morphism φ above is also local.

Exercise 2.1.2.6. Use the fact that a regular function f : U → k defines a continuous map
f : U → A1

k to gives a proof of the previous proposition.

Proposition 2.1.2.7. Let V ⊂ Ank be an affine algebraic set.

1. For each f ∈ k[V ], we have Γ(D(f),OV ) ' k[V ]f .

2. For each point x ∈ V corresponding to the maximal ideal m ⊂ k[V ], then we have OV,x '
k[V ]m.

In particular, this implies also that (V,OV ) is a locally ringed space.

Proof. (1) By definition, Γ(D(f),OV ) is the set of regular functions on D(f). Hence, we have a
natural map

k[V ]→ Γ(D(f),OV )

which sends f to an invertible element of Γ(D(f),OV ), hence the previous map factors through
the localization k[V ]f , and we get in this way a canonical map θf : k[V ]f → Γ(D(f),OV ). It’s
easy to see that this map is injective, and we only need to prove that it’s also surjective. Let
a : D(f)→ k be a regular function, then for each x ∈ D(f), there exist some open neighborhood
Ux of x contained in D(f), and two polynomials Px, Qx ∈ k[X1, · · · , Xn] such that Qx(x) 6= 0,
and that a = Px/Qx on Ux. In particular Px = a · Qx on Ux. Up to multiply both sides by
some element in k[V ] which vanishes on V − Ux but not at x, then we may assume that the
equality holds in V . Now if we look at the ideal I generated by the family {Qx : x ∈ D(f)},
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then V (I) ∩D(f) = ∅, hence V (I) ⊂ V (f). As a result,
√

(f) ⊂
√
I, hence there exists some

r > 0 such that f r ∈ I, so f r can be expressed as a finite sum

f r =
∑

x∈D(f)

Rx ·Qx.

In particular, we have a · f r =
∑

x∈D(f)Rx · Px ∈ k[V ]. Hence a = θ(a · f r/f r) lies in the image
of θ. This gives the surjectivity of θ, and hence the proof of (1).

(2) Let D(f) ⊂ D(g) ⊂ V be two opens of V , we have V (g) ⊂ V (f). Hence
√

(f) ⊂
√

(g).
One can then find some integer s > 0 and u ∈ k[V ] such that fs = ug. In particular, the
canonical map k[V ]→ k[V ]f factors through k[V ]g, and we get in this way a map

αf,g : k[V ]g → k[V ]f .

Moreover, by checking the definition, the following square is commutative

k[V ]g
αf,g //

θg
��

k[V ]f

θf
��

Γ(D(g),OV ) // Γ(D(f),OV )

.

Now, the condition that x ∈ D(f) is equivalent to say that f ∈ k[V ]−m, hence from the previous
commutative diagram, the morphisms θf ’s (for f ∈ k[V ]−m) pass to the direct limits, and we
get a canonical isomorphism

θ = lim−→
f∈k[V ]−m

θf : k[V ]m = lim−→
f∈k[V ]−m

k[V ]f ' lim−→
f∈k[V ]−m

Γ(D(f),OV ) = OV,x

This proves (2).

Remark 2.1.2.8. For a projective algebraic set V ⊂ Pnk , let A = k[X0, · · · , Xn]/I(V ) be its
homogeneous coordinate ring, with the natural gradation. Then (we refer to later discussion
about the precise definition of homogeneous localization of a graded ring)

1. For any f ∈ A, OV (D+(f)) ' A(f), where A(f) is the corresponding homogeneous local-
ization.

2. For a point x ∈ V , which corresponds to a homogeneous prime ideal p ⊂ A. Then
OV,x ' A(p), where A(p) is the corresponding homogeneous localization.

2.2 Schemes

2.2.1 Definition of schemes

Let A be a ring, we define the prime spectrum of A to be

Spec(A) := {p ⊂ A prime ideals}

An element p ∈ Spec(A) is called a point of Spec(A). For a ⊂ A an ideal, we put

V (a) := {p ∈ Spec(A) : a ⊂ p}.
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Lemma 2.2.1.1. Let A be a ring, and a, b ⊂ A be two ideals. The following two things are true.

1.
√
a =

⋂
p∈V (a) p.

2. V (a) ⊂ V (b) iff b ⊂
√
a. In particular, V (a) = V (b) iff

√
a =
√
b.

Proof. (1) Since a prime ideal p is radical, we have
√
a ∈

⋂
p∈V (a) p. Conversely, up to replace

A by A/a, we may assume a = 0. We then need to show that
⋂

p∈Spec(A) p consists of nilpotent
elements. Let f ∈

⋂
p∈Spec(A) p. If f is not nilpotent, the localization Af is non trivial, hence

it has a prime ideal q0 ⊂ Af , which corresponds then a prime ideal p0 of A such that f /∈ p0,
a contradiction. Hence

√
(0) =

⋂
p∈Spec(A) p. (2) If V (a) ⊂ V (b), then

√
a = ∩p∈V (a)p ⊃

∩q∈V (b)q =
√
q. In particular, b ⊂

√
a. Conversely, suppose b ⊂ a. Let p ∈ V (a), then

b ⊂
√
a ⊂ √p = p, that is p ∈ V (b). This proves (2).

Lemma 2.2.1.2. We have (i) V (A) = ∅, V ((0)) = Spec(A); (ii) ∩iV (ai) = V (
∑

i ai); and (iii)
V (a) ∪ V (b) = V (a ∩ b).

Definition 2.2.1.3. The topology on Spec(A) in which the closed subsets are given by the
subsets of the form V (a) for some ideal of A is called the Zariski topology on Spec(A).

Exercise 2.2.1.4. Let X = Spec(A).

1. The topological space X is T0.

2. The space X is quasi-compact, namely any open covering of X admits a finite sub-covering.

3. If moreover A is a noetherian ring, then X is a noetherian topological space.

Proposition 2.2.1.5. Let X = Spec(A). The family of opens {D(f) : f ∈ A} forms a basis for
the Zariski topology on X. Moreover, for f, g ∈ A,, then D(f) ⊂ D(g) iff f r ∈ (g) for some
r ∈ Z≥1.

Proof. Let U = X − V (a) ⊂ X be an open subset of X. Then we have V (a) = ∩fV (f), hence
U = ∪fD(f). The last assertion follows from Lemma 2.2.1.1.

Example 2.2.1.6. For k = k an algebraically closed field. Spec(k[X1, · · · , Xn]) is the in one-
to-one correspondence with the irreducible closed subsets of Ank(k).5 Moreover, if we endow
Ank(k) with the Zariski topology as we did in the first chapter, the natural map Ank(k) →
Spec(k[X1, · · · , Xn]) is then continuous.

Example 2.2.1.7. Spec(Z) = {(p) : p prime} ∪ {(0)}, where (0) ∈ Spec(Z) is the only non
closed point of Spec(Z).

Remark 2.2.1.8. 1. As we see in the previous example, in contrast to the algebraic sets, not
all the points in Spec(A) is closed. In fact, let x ∈ Spec(A) be a point which corresponds
to the prime ideal p ⊂ A, then {x} = V (p). Hence x is a closed point, iff {x} = {x}, or
equivalently, iff p ⊂ A is a maximal ideal.

2. The Zariski topology on Spec(A) is a very “nonclassical” topology, in the sense that it’s
non-Hausdorff. In fact, as in the case of algebraic sets, we have seen such things. But
here, the Zariski topology on Spec(A) is even “less Hausdorff” since we have included all
prime ideal, hence non closed points.

5In this first chapter, Ank (k) is denoted by Ank for simplicity.
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Structure sheaf on Spec(A)

Let X = Spec(A), for f ∈ A, let D(f) = X − V ((f)).

Lemma 2.2.1.9. The set of principal opens B = {D(f) : f ∈ A} gives an base of the open
subsets of X.

Hence, to define a sheaf of rings OX on X, we only need to define a B-sheaf on X. We will
begin with some generalities on the localizations of rings. Let D(f) ⊂ D(g), or equivalently,
f r = g · a for r ∈ Z≥1 and a ∈ A, the element g ∈ Af is invertible with inverse given by
1/g = a/ga = a/f r ∈ Af . By the universal property of localization, we obtain the following
commutative diagram of rings

A

��

// Af

Ag

∃ αg,f

>>

The isomorphisms αg,f ’s satisfy also the transitive conditions: for D(f) ⊂ D(g) ⊂ D(h), then
(i) αh,f = αg,f ◦αh,g; and (ii) αf,f = idAf . In particular, when D(f) = D(g), the canonical map
αgf : Ag → Af is an isomorphism. In the following, we will use this isomorphism to identify Af
and Ag.

Now, for each principal open subset U ∈ B, we take fU ∈ A such that U = D(fU ). We define
then

O′X(U) = AfU ,
6

and for V ⊂ U two principal open subsets, we define

ρUV = αfU ,fV : O′X(U) = AfU → AfV = O′X(V ).

The transitivity property of αg,f implies that the family {O′X(U), ρUV }U,V ∈B gives a B-presheaf
of rings.

Lemma 2.2.1.10. The B-presheaf O′X is a B-sheaf.

Proof. Up to replace X by D(f), we may assume that X = D(f). Suppose X = ∪iD(fi), we
are reduced to show that the following sequence

(2.2) 0 // A
can //

∏
iAfi

//
∏
i,j Afifj

is exact, where the second map is given by (ai)i 7→ (ai − aj ∈ Afifj )i,j .
For an element a ∈ A in the kernel of the first map, i.e., a = 0 ∈ Afi for each i, one

can find some power f rii ∈ A such that f rii · a = 0 for each i. On the other hand, since
X =

⋃
iD(fi) =

⋃
iD(f rii ), we can find gi ∈ A for each i such that

1 =
∑
i

gi · f rii ,

6If we like, for U ⊂ Spec(A) a principal open subset, we can define

O′(U) =

(sf )f ∈
∏

f∈A,D(f)=U

Af : αg,f (sg) = sf , for any f, g ∈ A such that D(f) = D(g) = U
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from where we find a =
∑

i gi · f
ri
i · a = 0. This shows the injectivity.

To show the exactness at the middle term, we can assume that the covering X =
⋃
D(fi) is

finite. Let (ai)i ∈
∏
iAfi a family of elements in the kernel of the second map of the sequence

(2.2), where ai = gi/f
ei
i ∈ Afi with gi ∈ A. Up to replace fi by feii , we may assume that ei = 1

for all i. Moreover, since ai = aj in Afifj for all i, j, we have

(fifj)
rij (gifj − gjfi) = 0

for some integer rij . We may equally assume that rij = r � 0 for any i, j. Since the covering
X =

⋃
D(fi) is finite, up to replace rij by a bigger one, we may suppose that rij = r is

independent of i, j. The previous equality gives then

gif
r+1
j f ri = gjf

r+1
i f rj , ∀i, j.

Again, as X =
⋃
iD(fi) =

⋃
iD(f r+1

i ), there exist hi ∈ A such that 1 =
∑

i hi · f
r+1
i . We take

then a =
∑

i higif
r
i , and we find

af r+1
j =

∑
i

higif
r
i f

r+1
j =

∑
i

higjf
r+1
i f rj = gjf

r
j

which means a = gj/fj in Afj for each j. Hence the element (ai) lies in the image of the first
map of (2.2). This finishes the proof.

Definition 2.2.1.11. We call the structural sheaf onX = Spec(A) the sheafOX onX extending
the B-sheaf O′X .

Proposition 2.2.1.12. Let X = Spec(A) with OX its structural sheaf.

1. OX(D(f)) ' Af ;

2. OX,x ' Apx with x ∈ X a point which corresponds to the prime ideal px of A.

In particular, (Spec(A),OSpec(A)) gives a local ringed space.

Remark 2.2.1.13. Let M be an A-module, the previous construction allows us also to associate
a sheaf on X to M : we first define a B-presheaf M̃ ′ on X: for U = D(f) ∈ B,

M̃ ′(D(f)) := Mf

As before, we can show that this gives indeed a B-sheaf on X, we can then consider the sheaf
M̃ on X extending M̃ ′, and M̃ is a sheaf of OX-modules (or just an OX-module for short). An

OX -module F on X is called quasi-coherent, if it’s isomorphic to M̃ for some A-module M .

Now we are in the position to give the definition of schemes.

Definition 2.2.1.14. 1. A ringed space (X,OX) is called an affine scheme is it’s isomorphic
to some (Spec(A),OSpec(A)) constructed as above. By abuse of notation, the latter will
often be denoted simply by Spec(A).

2. A ringed space (X,OX) is called a scheme, if X admits an open covering X =
⋃
i Ui such

that for each i, the open sub-ringed space (Ui,OX |Ui) is an affine scheme. Very often, a
scheme (X,OX) will be denoted by X when no confusion is possible.

Remark 2.2.1.15. In particular, a scheme is always a locally ringed space, and we will see later
that an open subset of a scheme with the natural sub-ringed space structure is also a scheme.
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2.2.2 Morphisms of schemes

Definition 2.2.2.1. Let X,Y be two schemes, then a morphism of locally ringed spaces

(f, f ]) : (Y,OY )→ (X,OX)

is called a morphism of schemes. When no confusion is possible, we will simply denote the latter
by f : Y → X. We will use the notation Mor(Y,X) to denote the set of morphisms from Y to
X.

We first look at the affine cases. Let φ : A→ B be a morphism of rings. Then for any prime
ideal p ⊂ B, its inverse image φ−1(p) ⊂ A is a prime ideal of A. In particular, φ induces a map
of sets

fφ : Y = Spec(B)→ X = Spec(A), p 7→ φ−1(p)

called the associated map of φ. Moreover, this map is continuous with respect to the Zariski
topology on both sides, and for each a ∈ A, we have f−1

φ (D(a)) = D(φ(a)). On the other hand,
for each a, we have the following canonical map Aa → Bφ(a), from which we get a compatible
family of morphisms of rings {OX(D(a)) → OY (f−1(D(a)))}. By the sheaf properties, this

family extends uniquely to a morphism of sheaves of rings f ]φ : OX → fφ,∗OY . In this way, we
get a morphism of ringed spaces:

(fφ, f
]
φ,φ) : Y = (Spec(B),OSpec(B))→ X = (Spec(A),OSpec(A))

Lemma 2.2.2.2. The morphism above is local.

Proof. By construction, the following diagram is commutative

OX,fφ(y)

fφ,y // OY,y

OX(X)
fφ(X)

//

OO

OY (Y )

OO

A
φ // B

.

Let p ⊂ B be the prime ideal corresponding to y, then after identifying OY,y with Bp, and
OX,fφ(y) with Aφ−1(p), the morphism fφ,y is such that

fφ,y : Aφ−1(p) → Bp, a/1 7→ φ(a)/1

for a ∈ A. Hence, for any s ∈ A− φ−1(p), we have

φ(s)fφ,y(a/s) = fφ,y(s/1)fφ,y(a/s) = fφ,y(s · (a/s)) = fφ,y(a/1) = φ(a).

As φ(s) /∈ p, we find fφ,y(a/s) = φ(a)/φ(s) ∈ Bp. As a result, fφ,y is a local morphism. This
finishes the proof.

Proposition 2.2.2.3. The previous construction

Φ: Homring(A,B)→ Mor(Spec(B), Spec(A)), φ 7→ (fφ, f
]
φ)

is bijective.
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Proof. For any morphism f : Y = Spec(B) → X = Spec(A), it defines then a morphism of
sheaves on X:

f ] : OX → f∗OY

which gives a morphism of rings between the global sections Ψ(f) : A = OX(X)→ (f∗OY )(Y ) =
B. In particular, we get another map

Ψ: Mor(Y,X)→ Hom(A,B), f 7→ Ψ(f).

By constructions, we have Ψ ◦ Φ = id, and it remains to show that Φ ◦Ψ = id. Let f : Y → X
a morphism of schemes, with φ = Ψ(f) : A → B. We must show f = fφ. First, they give the
same map on the underlying topological spaces: indeed, let y ∈ Y , and x = f(y) ∈ X, we have
then the following commutative diagram

A
φ // B

OX(X)
f] //

��

OY (Y )

��
OX,x

f]y // OY,y

Since f ]y is a local morphism, we find φ−1(qy) = px (with px ⊂ A (resp. qy ⊂ B) the prime ideal
corresponds to x (resp. to y)). In particular, we have fφ(y) = x = f(y), as asserted. Moreover,

this commutative diagram implies also that f ]y = f ]φ,y : OX,x → OY,y for any y, hence f ] = f ]φ.
This finishes then the proof.

Example 2.2.2.4. Let S ⊂ A be a multiplicative system of A, and ι : A → S−1A be the
canonical morphism. It induces then the following map of topological spaces

fι : Spec(S−1A)→ Spec(A).

In fact, Im(fι) =
⋂
f∈S D(f), and the induced map Spec(S−1A) →

⋂
f∈S D(f) is a homeomor-

phism of topological spaces. An important special case is the following: let f ∈ A which is not
nilpotent, then the natural map fι : Spec(Af ) → Spec(A) induces a homeomorphism between
Spec(Af ) and the principal open subset D(f) ⊂ Spec(A). In fact, this identifies also the scheme
Spec(Af ) with the open affine subscheme D(f) of Spec(A). Indeed, by abuse of the notations,
we still denote by ι the induced morphism of locally ringed spaces fι : Spec(Af ) → D(f). As
fι is a homeomorphism between the underlying topological spaces, only need to show that the
following morphism of sheaves OD(f) = OSpec(A)|D(f) → fι,∗OSpec(Af ) is an isomorphism. Hence
we are reduced to prove that for any prime ideal p ⊂ A such that f /∈ p, the morphism ι : A→ Af
induces an isomorphism of local rings Ap ' Af,pAf which is easy to establish.

Proposition 2.2.2.5. Let (X,OX) be a scheme, and U ⊂ X an open subset. Then the open
sub-ringed space (U,OX |U ) is also a scheme.

Proof. Let X =
⋃
i Ui such that (Ui,OX |Ui) is an affine scheme. Then U =

⋃
i(U ∩Ui), hence we

are reduced to show that any open of an affine scheme is again a scheme. Hence the proposition
follows since such a open can be covered by the principal open subsets, which are affine scheme
by the previous example.
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Definition 2.2.2.6. LetX a scheme, and U ⊂ X be an open subset of the underlying topological
space of X. Then the open sub-ringed space (U,OX |U ) is called an open subscheme of X, and
it will often simply denoted by U . We will say that U is an open affine subscheme of X if the
scheme U is affine. A morphism of schemes f : Y → X is called an open immersion if there
exists an open subset U ⊂ X such that f(Y ) ⊂ U , and that the induced morphism Y → U is
an isomorphism of schemes.

Example 2.2.2.7. Let a ⊂ A be an ideal. The projection A → A/a defines then a morphism
of affines schemes

Spec(A)→ Spec(A/a).

A morphism of schemes f : Y → X is called a closed immersion if for each point x ∈ X, there ex-
ists some affine open subscheme U = Spec(A) ⊂ X, such that the restriction f |f−1(U) : f−1(U)→
U is isomorphic to Spec(A/a) → Spec(A) constructed as above. In this case, Y is also called
a closed subscheme of X. Finally, a morphism f : X → Y is called an immersion if f can be
decomposed as f = g ◦ h with h a closed immersion, and g an open immersion.7

Remark 2.2.2.8. In the previous example, for f : Y → X a closed immersion with X =
Spec(A), one can find for each point x ∈ X, an principal affine open subset D(a) ⊂ X containing
x such that f−1(D(a)) is affine, and that the induced map OX(D(a)) → OY (f−1(D(a))) is
surjective. Indeed, the definition gives an open subset U ⊂ X containing x, such that f−1(U) is
affine, and that the induced map OX(U)→ OY (f−1(U)) is surjective. Since U ⊂ X is open, one
can find a ∈ A such that x ∈ D(a) ⊂ U . Now, we write U = Spec(A′) and f−1(U) = Spec(B′).
Let a′ be the image of a by the canonical map A→ A′, then D(a) = D(a′) is also the principal
open subset of U defined by the element a′. Now, f−1(D(a)) = f−1(D(a′)) = D(f ](a′)),
where f ] is the following canonical map f ] : A′ = OX(U) → OY (f−1(U)) = B′. In particuar,
f−1(D(a)) = Spec(B′

f](a′)
) is affine, and the canonical map OX(D(a)) → OY (f−1(D(a))) is

surjective since it can be identified as the localization with respect to a′ of the following surjection
A′ → B′. This proves the assertion.

Exercise 2.2.2.9. Show that the composition of two immersions is an immersion.

Exercise 2.2.2.10. Let Y → Spec(A) be a closed immersion to a affine scheme. Show that Y
is affine, and of the form Spec(A/a) for some ideal a ⊂ A.

Exercise 2.2.2.11. Let X,Y be two schemes with Y affine. Show that the canonical map

Mor(X,Y )→ Homring(OY (Y ),OX(X)), f 7→ (f ](X) : OY (Y )→ OX(X)).

is bijective. Note that when X is also affine, we recover then 2.2.2.3.

We finish this section by the following gluing lemma, which allows us to construct schemes.

Lemma 2.2.2.12 (Gluing lemma). Let {Xi}i be a family of schemes, and Xij ↪→ Xi be a open
subscheme of Xi. Suppose we are given a family of isomorphisms of schemes fij : Xij ' Xji such
that (i) Xii = Xi, and fii = idXi for all i; (ii) fij(Xij

⋂
Xik) ⊂ Xji

⋂
Xjk, and fik = fjk ◦fij on

Xij
⋂
Xik for all index i, j, k. Then there exists a scheme X, unique up to isomorphism, together

with open immersions gi : Xi → X such that gi = gj ◦ fij on Xij, and that X =
⋃
i gi(Xi).

7This is the definition given in EGA I.4.1.3. Note that if we define immersion as morphism of the form g ◦ h
with h open and g closed, then this kind of “immersion” is not closed under compositions.
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2.2.3 Projective schemes

8

Let S be a scheme, an S-scheme (or a scheme over S) is by definition a morphism of schemes
f : X → S. When S = Spec(R) is affine, an S-scheme is also called an R-scheme. The aim of
this section is to define the so called projective schemes over an affine scheme S = Spec(R).

Aside: graded rings and homogeneous localization

Let R be a ring. Recall that a graded R-algebra is an R-algebra A, together with a decomposition

A =
⊕
d≥0

Ad

of A into a sum of R-modules, such that for any d, d′ ∈ Z≥0, we have Ad·Ad′ ⊂ Ad+d′ . An element
x ∈ Ad − {0} is called homogeneous of degree d. An ideal a ⊂ A is then called homogeneous if a
can be generated by homogeneous elements, or equivalently, if

a =
⊕
d≥0

a ∩Ad.

For A =
⊕

dAd a graded R-algebra, let

A+ :=
⊕
d>0

Ad.

Example 2.2.3.1. Let R be a ring.

1. The ring of polynomials R[X1, · · · , Xn] is naturally graded, with R[X1, · · · , Xd]d−{0} the
set of homogeneous polynomial of degree d.

2. Let a ⊂ R[X1, · · · , Xn] be a homogeneous ideal. Then the quotient R[X1, · · · , Xn]/a has
also a natural gradation:

R[X1, · · · , Xn] =
⊕ R[X1, · · · , Xn]d

a ∩R[X1, · · · , Xn]d

Definition 2.2.3.2 (Homogeneous localization). Let R be a ring, and A be a graded R-algebra.

1. Let f ∈ A be a homogeneous element of degree d, the homogeneous localization A(f) of A
with respect to f is the subring of Af consists of elements of the form a/fm with a ∈ Amd.

2. Let p ⊂ A be a homogeneous prime ideal, and T ⊂ A − p be the set of homogeneous
elements. We define the the homogeneous localization A(p) of A with respect to p is the
subring of T−1A consists of elements of the form a/s with a ∈ A and s ∈ T such that
deg(a) = deg(s).

8NEED TO MODIFY: graded R-algebra to graded ring. For a graded R-algebra, need to define the structural
map.
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The projective spectrum Proj(A)

Let R be a ring, A be a graded R-algebra, we define

Proj(A) : = {p ∈ Spec(A) homogeneous such that A+ * p}

For a ⊂ A a homogeneous ideal, let

V+(a) := {p ∈ Proj(A) : a ⊂ p}

Proposition 2.2.3.3. One can endow a topology on the set Proj(A) by taking the closed subsets
to be the subsets of the form V+(a) with a ⊂ A some homogeneous ideal. This topology is
called the Zariski topology on Proj(A). Moreover, for any homogenous element f ∈ A, let
D+(f) = Proj(A) − V+(fA) (such an open subset is called principal). Then the family B :=
{D+(f) : f ∈ A+ homogeneous} is a basis for the Zariski topology on Proj(A).

Proof. For the last statement, we prove first that the family B′ := {D+(f) : f ∈ A} forms a
basis for the Zariski topology. Indeed, for U = Proj(A) − V+(a) an open subset with a ⊂ A a
homogeneous ideal. Then we have

V+(a) =
⋂

f∈a homogeneous

V+(fA).

Hence
U =

⋃
f∈a homogeneous

D+(f).

This shows that the family B′ is indeed a basis. On the other hand,

∅ =
⋂

g∈A+ homogeneous

V+(gA),

hence
Proj(A) =

⋃
g∈A+ homogeneous

D+(g),

from where, we find

D+(f) =
⋃

g∈A+ homogeneous

(D+(f) ∩D+(g)) =
⋃

g∈A+ homogeneous

D+(fg).

Note that fg ∈ A+, this gives then the proof.

Remark 2.2.3.4. For d > 0 an integer, then the family of opens

{D+(f) : f ∈
⊕
n>0

And homogeneous}

gives also an basis for the topology on Proj(A).

Let I ⊂ A be an arbitrary ideal of A, we associate to it a homogeneous ideal Ih generated
by the homogeneous elements contained in I:

Ih =
⊕
d

(I ∩Ad).
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Lemma 2.2.3.5. Let I, J be two ideal of A.

1. If I is prime, so is Ih.

2. If I, J are homogeneous, then V+(I) ⊂ V+(J) iff J ∩A+ ⊂
√
I.

3. Proj(A) = ∅ iff A+ is nilpotent.

Proof. Suppose I is a prime ideal. Let a, b ∈ A such that ab ∈ Ih. We need to show that either
a ∈ Ih or b ∈ Ih. We will prove this by contradiction. Hence assume a, b /∈ Ih. Now, we write
a = a0 + · · · + an and b = b0 + · · · + bm be the decomposition of a, b into the homogeneous
components with an 6= 0 and bm 6= 0. Moreover, up to replace a (resp. b) by a − an (resp. by
b− bm), we may assume that an /∈ Ih and bm /∈ Ih. Now

ab =
∑
i,j

aibj = anbm + termes of lower degree ∈ Ih

As a result, anbm ∈ Ih as Ih is homogeneous. Hence anbm ∈ I, which implies that either an ∈ I
or bm ∈ I. A contradiction. This gives (1). To show (2), suppose first that J ∩ A+ ⊂

√
I. Let

p ∈ V+(I), i.e., I ⊂ p and A+ * p. In particular, J ∩ A+ ⊂
√
I ⊂ p. But as A+ * p, let

λ ∈ A+ − p, and let a ∈ J , then λ · a ∈ J ∩ A+ ⊂ p. So we get a ∈ p, hence J ⊂ p. That is
p ∈ V+(J), hence V+(I) ⊂ V+(J). Conversely, assume V+(I) ⊂ V+(J). The previous argument
shows also that V+(I) = V+(I ∩A+). Hence we have

√
I ∩A+ =

⋂
p∈V (I

⋂
A+)

p =

 ⋂
p∈V (IA+),A+*p

p

⋂ ⋂
p∈V (I∩A+),A+⊂p

 =

 ⋂
p∈V+(I)

p

⋂√
A+

In particular, if V+(I) ⊂ V+(J), we get

J ∩A+ ⊂
√
J
⋂
A+ ⊂

√
I
⋂
A+ ⊂

√
I.

This finishes the proof of (2). For the last statement, Proj(A) = ∅ if and only if V+(0) ⊂ V+(A+),
and by (2), the latter condition is equivalent to say that A+ ⊂

√
(0). In other words, A+ is

nilpotent.

Now we want to define a structure sheaf on Proj(A), in a similar way as the affine case.
Suppose f, g ∈ A+ two homogeneous elements, such that D+(f) ⊂ D+(g), or equivalently,
f ∈

√
(g). The natural morphism defined in ???? αg,f : Ag → Af , then it sends A(g) to A(f)

and we get hence a morphism of rings

α(g,f) : A(g) → A(f).

These morphisms satisfy still the transitivity condition: (i) α(f,f) = idA(f)
; (ii) α(h,f) = α(g,f) ◦

α(h,g) for three opens D+(f) ⊂ D+(g) ⊂ D+(h). In particular, we have α(g,f) : A(g) ' A(f) for
D+(f) = D+(g). We will use this canonical isomorphism to identify these two homogeneous
localization rings.

Now, we define, for each principal open U = D+(f) ⊂ X := Proj(A) with f ∈ A+, O′x(U) =
A(f). This gives clearly a B-presheaf, with B the basis consists of principal open subset of the
form D+(f) for some homogeneous f ∈ A+.

Lemma 2.2.3.6. The B-presheaf O′X is a B-sheaf.
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As a corollary, the B-sheaf O′X extends to a sheaf of rings OX on X. In this way, we
obtain a ringed space (X,OX). The next task is then to show that this ringed space is actually
a scheme. For this, we want to determine the open subringed space (D+(f),OX |D+(f)) for
f ∈ A+ homogeneous of degree d > 0. In fact, we have

Lemma 2.2.3.7. There is an canonical isomorphism of ringed spaces D+(f) ' Spec(A(f)).

Proof. We have the two canonical morphisms of rings

A(f)
// Af A

βoo ,

hence the diagram of maps of sets:

Spec(A(f)) Spec(Af ) �
� β∗ //oo Spec(A)

Proj(A)
?�

OO
.

Note that, β∗ identifies Spec(Af ) with the open subscheme D(f) ⊂ Spec(A), and D+(f) =
D(f) ∩ Proj(A). In this way, we get a continuous map θ : D+(f)→ Spec(A(f)).

We will first prove that θ is homeomorphism. We remark first that, for a ∈ And, we have

θ−1(D(a/fn)) = D+(af).

Indeed, for p ∈ D+(f), θ(p) ∈ D(a/fn) iff pf ∩A(f) ∈ D(a/fn), or still a/fn /∈ pf . Since f /∈ p,
the last condition is equivalent to say that a /∈ p, that is p ∈ D+(af). Now since Spec(A((f)))
and D+(f) are both T0-spaces, and since the family {D(a/fn) : a/fn ∈ A(f)} (resp. the family
{D+(af) : a ∈ And for some n}) is a basis of Spec(A(f)) (resp. of D+(f)), the equality above
implies in particular that θ is injective. Hence to complete the proof of the assertion, it suffices
to show that θ is surjective. Let now q ⊂ A(f) be a prime ideal, and for each n, pn be the set of

elements x of An such that xd/fn ∈ q. Let p =
⊕

n pn, which is then a subgroup of A. Indeed,
let x, y ∈ pn, by binomial formula, (x − y)2d/f2n ∈ q, hence (x − y)d/fn ∈ q. In other words,
x− y ∈ pn, which implies that pn ⊂ An is a subgroup.

We claim that this is in fact a prime ideal of A. First, it’s an ideal: let a ∈ Am, x ∈ pn, then
ax ∈ Am+n, moreover,

(ax)d/fm+n = (ad/fm) · (xd/fn) ∈ q.

It’s also a prime ideal: let x =
∑

i xi ∈ A and y =
∑

j yj ∈ A such that x, y /∈ p. Suppose
x, y /∈ p. Let xi0 (resp. yj0) be the homogeneous component of x (resp. of y) of minimal degree
i0 (resp. j0), we may assume that xi0 /∈ p, and yj0 /∈ p, hence

xy = xi0yj0 + terms of higher degree ∈ p.

So, we must have xi0yj0 ∈ pi0+j0 . But

(xi0yi0)d/f i0+j0 = (xdi0/f
i0) · (ydj0/f

j0) ∈ q.

As q ⊂ A(f) is a prime ideal, we have either xdi0/f
i0 ∈ q or ydj0/f

j0 ∈ q. Hence either xi0 ∈ p or
yj0 ∈ p. This gives a contradiction. In this way, we see that p ⊂ A is a homogeneous prime ideal.
To finish the proof of surjectivity, since f /∈ p (otherwise, 1 = fd/fd ∈ q which is impossible),
we find p ∈ D(f), and A+ * p. Hence p ∈ D+(f). Finally,

pf ∩A(f) = {a/fn : a ∈ pnd},
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and for any a ∈ pnd, we have ad/fnd = (a/fn)d ∈ q. As q is a prime ideal, we then find a/fn ∈ q.
This shows that pf ∩ A(f) ⊂ q. Conversely, for any a/fn ∈ q with a ∈ And, we find ad/fnd ∈ q,
in particular, a ∈ pnd, as a result, a/fn ∈ pf ∩ A(f), this gives q ⊂ pf ∩ A(f). So we get finally
q = pf ∩ A(f) = θ(p), which gives then the surjectivity. As a corollary, θ : D+(f)→ Spec(A(f))
is a homeomorphism.

Now to finish the proof, we need to construct an isomorphism of sheaves

OSpec(A(f)) → θ∗(OProj(A)|D+(f))

We will first do it in the level of B-sheaves. For each a/fn ∈ A(f),

OSpec(A(f))(D(a/fn)) '
(
A(f)

)
a/fn

and OProj(A)(D+(af)) ' A(af), it’s only need to establish a natural isomorphism

(A(f))a/fn ' A(af).

For this, we consider the canonical map A(f) → A(af) given by b/fn 7→ anb/(af)n (for b ∈ And).
Then the image of a/fn under this map is an+1/(af)n is invertible, with inverse given by
fn+1/af ∈ A(af). In this way, we find a natural map (A(f))a/fn → A(af). One verifies easily
that this gives indeed an isomorphism. This finishes the proof.

Corollary 2.2.3.8. Let A be a graded R-algebra. The ringed space (Proj(A),OSpec(A)) is a
scheme.

Corollary 2.2.3.9. Let x ∈ X = Proj(A) with corresponds to the homogeneous prime ideal p
of A. Then OX,x ' A(p).

Definition 2.2.3.10. Let A be a graded R-algebra. The projective scheme associated with A
to be the ringed space (Proj(A),OProj(A)) constructed as above.

Example 2.2.3.11. Let R be a ring, A = R[T0, · · · , Td] with the natural gradation. Then
Proj(A) is called the projective space of dimension d over R (or over Spec(R)), denoted by PdR
or PdSpec(R).

9 More general, a morphism f : X → S is called projective, if there exists an open

covering S =
⋃
i∈I Si with Si affine, such that for each i ∈ I, the restriction f |f−1(Si) : Si can be

realized as a closed immersion to a projective space PnSi for some integer n.

Functorial property of projective spectrum

Let R be a ring, A,B be two graded R-algebras. Recall that a morphism of R-algebras ϕ : A→ B
is called graded if ϕ(An) ⊂ Bn for any integer n ≥ 0. Let ϕ : A → B be such a morphism. In
particular, we have ϕ(A+) ⊂ B+. Let

G(ϕ) := Proj(B)− V+(ϕ(A+)),

which is an open subset of Proj(B). Let p ⊂ B be a homogeneous prime ideal such that
p ∈ G(ϕ). Then ϕ−1(p) ⊂ A is again a homogeneous prime ideal such that A+ * ϕ−1(p). Hence
ϕ−1(p) ∈ Proj(A). We get in this way a map

aϕ : G(ϕ)→ Proj(A).

9One can define the general projective space over a scheme by gluing the previous definition for affine schemes.
We will see later a direct definition using the notion of base change.
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Lemma 2.2.3.12. For any f ∈ A+ homogeneous, D+(ϕ(f)) ⊂ G(ϕ). Moreover, aϕ−1(D+(f)) =
D+(ϕ(f)).

Proof. We show first that D+(ϕ(f)) ⊂ G(ϕ). Indeed, for any p ∈ D+(ϕ(f)), that is, an element
p ∈ Proj(B) such that ϕ(f) /∈ p. Since f ∈ A+, we find in particular ϕ(A+) * p. Hence
p /∈ V+(ϕ(A+)B), i.e., p ∈ G(ϕ). This gives the first statement. For the second statement, for
any p ∈ G(ϕ), we find that p ∈ aϕ−1(D+(f)) if and only if aϕ(p) ∈ D+(f), in other words,
f /∈ φ−1(p). The latter condition is also equivalent to the condition that ϕ(f) /∈ p, that is,
p ∈ D+(ϕ(f)). Hence aϕ−1(D+(f)) = D+(ϕ(f)).

As a result, aϕ is continuous. To define a morphism of schemes G(ϕ) → Proj(A), we still
need to define a morphism of sheaves of rings

OProj(A) → (aϕ)∗OG(ϕ).

Hence, we need to define for each f ∈, a compatible family of morphisms of rings

A(f) = OProj(A)(D+(f))→
(
(aϕ)∗OG(ϕ)

)
(D+(f)) = OG(ϕ)(D+(ϕ(f))) = B(ϕ(f)).

which can be given by the morphism

A(f) → B(ϕ(f)),
a

fn
7→ ϕ(a)

ϕ(f)n
.

In this way, we get a morphism of schemes, which will denoted by Proj(ϕ):

Proj(ϕ) : G(ϕ)→ Proj(A).

Example 2.2.3.13. Let R be a ring, and A be a graded R-algebra. For I ⊂ A a homogeneous
ideal, we denote by B = A/I the R-algebra with the induced gradation, and by ϕ : A→ B the
canonical projection. Hence, we have ϕ(A+) = B+, as a result, V+(ϕ(A+)B) = V+(B+). In
particular, G(ϕ) = Proj(B), and we get a morphism of schemes

Proj(ϕ) : Proj(B)→ Proj(A).

This morphism is actually a closed immersion of schemes. Indeed, for any principal open subset
D+(f) ⊂ Proj(A), the inverse image Proj(ϕ)−1(D+(f)) = D+(ϕ(f)), which is affine. Moreover,
the induced map

OProj(A)(D+(f))→
(
Proj(ϕ)∗OProj(B)

)
(D+(f)) = OProj(B)(D+(ϕf))

can be identified with the following morphism of rings

A(f) → B(ϕ(f)),
a

fm
7→ ϕ(a)

ϕ(f)m

which is surjective. Hence by definition, Proj(ϕ) is a closed immersion.
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2.3 First properties of schemes and morphisms of schemes

2.3.1 Topological properties

Recall that a topological space X is called quasi-compact, if any open covering of X admit a
finite subcovering.

Definition 2.3.1.1. Let X be a scheme. X is called connected (resp. irreducible, resp. quasi-
compact) if its underlying topological space is connected (resp. irreducible, resp. quasi-compact).

Example 2.3.1.2. Let k be a field. A2
k = Spec(k[X,Y ]) is irreducible (hence connected), while

Spec(k[X,Y ]/(XY )) is connected but not irreducible. Affine schemes are all quasi-compact.

Recall that, an element a ∈ A of a ring is called idempotent if a2 = a. Clearly, for any ring,
0 and 1 are two idempotents of A.

Proposition 2.3.1.3. Let X = Spec(A) be an affine scheme. The following two assertions are
equivalent:

1. X is connected;

2. The only idempotents of A are 0 and 1.

Proof. Suppose X is connected. If A contains a third idempotent e ∈ A, then we have the
following decomposition of A into a product of two rings:

A = e ·A× (1− e) ·A

As e 6= 0, 1, the two rings e · A and (1 − e) · A are both non trivial. Hence, we get Spec(A) =
Spec(eA)

∐
Spec((1−e)A). Moreover, these two subsets are all closed, hence X is not connected.

Conversely, suppose that 0, 1 are the only idempotents of A. If X is not connected, hence
X = X1

∐
X2 with Xi ⊂ X non empty open and closed. As a result, from the sheaf property,

we find OX(X) = OX(X1) × OX(X2). As Xi non empty, the two rings OX(Xi) are both non
trivial. Hence the element (1, 0) gives a non trivial idempotent of A. A contradiction.

Definition 2.3.1.4. Let X be a topological space. Let x, y ∈ X be points of X. We say that
y is a specialization of x, or that x specializes to y if y ∈ {x}. We say that x ∈ X is a generic
point if x is then unique point of X that specializes to x.

Exercise 2.3.1.5. Show that a topological space admitting a unique generic point must be
irreducible.

Recall that for a topological space Z, an irreducible component of Z is a maximal irreducible
closed subset of Z.

Proposition 2.3.1.6. Let X be a scheme.

1. Any irreducible closed subset of X contains a unique generic point.

2. For any generic point ξ ∈ X, {ξ} is an irreducible component of X. This establishes a
bijection between the irreducible components of X and the generic points of X.

3. Let X be a scheme and x ∈ X. Then the irreducible components of Spec(OX,x) correspond
bijectively to the irreducible components of X passing through x.
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Proof. When X = Spec(A) is affine. A closed subset V (a) ⊂ X is irreducible iff
√
a = p with

p ⊂ A a prime ideal. In this case, the point p is a generic point of V (a) ⊂ X. Now for X an
arbitrary scheme, Z ⊂ X an irreducible subset. Let x ∈ X be a point contained in Z, then x
has a affine neighborhood U ⊂ X. Since Z is irreducible, U ∩ Z ⊂ Z is dense and irreducible.
Moreover, U ∩ Z ⊂ U is closed and irreducible with U an affine scheme, it contains a generic
point, which gives also a generic point of Z. The uniqueness follows from the fact that the
underlying topological space of a scheme is a T0-space. This gives (1). For (2), let Z ⊂ X be an
irreducible component of X, and ξ ∈ Z be its generic point. Then we claim that ξ is a generic
point of X, that is, no point other then ξ can specialize to ξ: indeed, if η specialize to ξ, then
ξ ∈ {η}, hence Z = {ξ} ⊂ {η}. As Z is a maximal irreducible closed subset of X, we must have
{ξ} = {η}, hence ξ = η. This shows that ξ ∈ X is a generic point. Then one verifies easily that
the correspondence stated in (2). For the last assertion (3), we may assume that X = Spec(A)
is affine, with x ∈ X corresponds to a prime ideal p ⊂ A. By the correspondence between
irreducible closed subsets and the prime ideals of A, an irreducible component of X corresponds
to a minimal prime ideal of A. Hence the irreducible components of X passing through x are in
one-to-one correspondence with the minimal prime ideals of A which are contained in p, or still,
with the minimal prime ideals of Ap = OX,x, that is the irreducible components of Spec(OX,x).
This gives (3).

2.3.2 Noetherian schemes

Definition 2.3.2.1. A scheme X is called locally noetherian if X admits an affine open covering
X =

⋃
Xi such that OX(Xi) is a noetherian ring for all i. X is called noetherian, if it’s quasi-

compact and locally neotherian.

Proposition 2.3.2.2. 1. An affine scheme Spec(A) is noetherian iff A is noetherian.

2. Let X be a locally noetherian scheme (resp. neotherian scheme), then so is any open
subscheme scheme of X.

3. For X a noetherian scheme, its underlying topological space is a noetherian topological
space. In particular, any closed subset of X can be decomposed as a finite union of its
irreducible components.

Proof. (1) The latter condition is clearly sufficient. We show that it’s also necessary. Let
X = Spec(A) be an affine scheme which is noetherian. Since a localization of a noetherian
ring is again noetherian, X contains then a topological basis B which consists of open principal
D(f) = Spec(Af ) with Af noetherian. In particular, X can be covered by finitely many principal
opens in B: X = ∪iXi with Xi = Spec(Afi). Now, as Afi is noetherian, afi ⊂ Afi is an ideal of
finite type. Let {aij}j be a family of generators of Ifi , we may assume that aij ∈ I. We claim
that {aij : i, j} gives then a family of generators of a. Indeed, for each a ∈ I, and for each i,
there exists λij ∈ A and eij ∈ Z≥1 such that

a =
∑
j

λij · aij/f
eij
i ∈ Afi

Up to replace eij by some bigger integer, we may assume that eij = e is independent of i, j.
Moreover, there exists mi ∈ Z≥0 such that

fmi+ei a =
∑
j

fmii λijaij
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But, since X =
⋃
iD(fi) =

⋃
iD(fmi+ei ), one can find µi ∈ A such that 1 =

∑
i µif

mi+e
i . So

finally, we get

a =
∑
i

aµif
mi+e
i =

∑
i

∑
j

µif
mi
i λijaij .

This gives (1). For (2), as the localizations of a noetherian ring are again neotherian, X contains
then a open basis consisting of noetherian affine schemes. This shows that any open subscheme
of a locally noetherian scheme is locally noetherian. If moreover X is noetherian, any open
subset of X is quasi-compact, in particular, any open subscheme is noetherian. This gives (2).
The proof of (3) is left to the readers.

2.3.3 Reduced and integral schemes

Recall that a ring A is called reduced, if the only nilpotent element of A is 0, and A is called
integral if the equality a · b = 0 for a, b ∈ A implies either a = 0 or b = 0.

Definition 2.3.3.1. 1. A scheme X is called reduced at a point x, if the local ring OX,x is
reduced. X is called reduced, if it’s reduced at all its points.

2. A scheme X is called integral at a point x, if the local ring OX,x is integral. If X is integral
at all points of X, and X is irreducible, then we say X is integral.

Proposition 2.3.3.2. Let X be a scheme. Then

1. X is reduced (resp. integral) iff for each non empty open U ⊂ X, the ring OX(U) is
reduced (resp. integral).

2. X is integral iff X is irreducible and reduced.

Proof. Suppose X is reduced, and let f ∈ OX(U) such that fn = 0. We want to show f = 0.
Indeed, the assumption implies that the image fx ∈ OX,x of f is also nilpotent, hence fx = 0
by the reducedness of OX,x. As a OX is a sheaf, we then have f = 0. The converse statement
is easy since a direct limit of reduced rings is still reduced. Now we suppose X integral. Let
f, g ∈ OX(U)− {0} such that f · g = 0, and let

Df = {x ∈ U : f(x) = 0}, 10 and Dg = {x ∈ U : g(x) = 0}.

These are two closed subsets of X. Indeed, for this assertion, we only need to verify that Df ∩V
is closed in V for any V = Spec(A) ⊂ X affine open subscheme. In fact, as a set, we have
Df ∩V = V ((f)) ⊂ Spec(A), which is hence closed in V , and this gives the assertion. Moreover,
Df
⋃
Dg = U (as f ·g = 0), and U being irreducible (as X is), hence either Df = U , or Dg = U .

By symmetry, we assume that Df = U . Now, we claim f = 0. To see this, we only need to
show that f |V = 0 for any affine open V ⊂ U . But then f |V lies in the nilpotent radical of
OX(V ) which is reduced by what we have shown in the beginning of this proof, hence f |V = 0.
Conversely, suppose OX(U) is integral for any non empty U of X. In particular, all local rings
OX,x are integral. It remains to verify that X is irreducible. Indeed, otherwise, X = X1

⋃
X2

with Xi ↪→ X two closed subsets of X such that Xi ( X. Now we consider Ui = X −Xi which
is open in X. Moreover, U1

⋂
U2 = ∅. Hence we find

OX(U1 ∪ U2) = OX(U1)⊕OX(U2)

10Here, f(x) is the image of f in the residuel field of X at x.
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In particular, OX(U) is not integral. A contradiction. This finishes the proof of (1). If we
read carefully the proof of (1), it proves actually that if X is irreducible and reduced, then
X is integral. This gives partially (2). The other direction is trivial, and hence the proof is
finished.

By definition, for X a scheme, a closed subscheme of X, is an closed immersion i : Y ↪→ X.

Proposition 2.3.3.3. Let X be a scheme, and |Y | ⊂ |X| be a closed subspace of |X|. Then
there is a unique closed subscheme structure Yred on |Y | such that Yred is reduced. This is called
the reduced subscheme structure on Y .

Sketch of the proof. We first prove this proposition when X = Spec(A) is affine. In this case,
Y = V (I) ⊂ X, then Yred is defined to be Spec(A/

√
I), this gives then the unique reduced

subscheme structure on Y .

Next, we consider the case where X is an open of some affine schemes. For this case,
we can cover X by the affine opens X =

⋃
i Ui such that Ui ∩ Uj is again affine.11 Now we

take Yi = Ui ∩ Y ↪→ Ui. By the previous construction for affine schemes, there is a unique
reduced subscheme structure Yi,red ↪→ Ui. Moreover, let Uij = Ui ∩ Uj , then Yi,red ∩ Uij ↪→ Uij
and Yj,red ∩ Uij ↪→ Uij give two reduced subscheme structures on Y ∩ Uij . Hence, by the
uniqueness for the affine case, there exists a unique isomorphism between Yi,red ∩ Uij ↪→ Uij
and Yj,red ∩ Uij ↪→ Uij . Using these isomorphisms to glue the small pieces, we get a subscheme
structure Yred ⊂ X on Y , which is also reduced. One can also verify that this scheme structure
is unique.

It remains to treat the general case. We cover X by affine open subschemes X =
⋃
i Ui,

and for each i we take Yi = Ui ∩ Y which is a closed subset of Ui. In particular, the previous
construction for the affine case gives a canonical reduced subscheme structure Yi,red on Yi. Now
let Uij := Ui ∩ Uj ⊂ X, since Uij ↪→ Ui is an open of an affine scheme, hence by the uniqueness
in the second case, there exist an unique isomorphism between the two reduced subscheme
structures Yi,red ∩Uij ↪→ Uij and the closed immersion Yj,red ∩Uij ↪→ Uij on Y ∩Uij . Hence the
conclusion follows again by gluing. This finishes the proof.

Remark 2.3.3.4. 1. When we take |Y | = |X| in the previous construction, then we get a
reduced closed subscheme Xred ↪→ X. This is always a homeomorphism on the underlying
topological spaces, and it’s an isomorphism of schemes iff X is reduced.

2. For Y ⊂ X a closed subset, then Yred ↪→ X is also the minimal closed subscheme structure
on Y : for any closed subscheme Z ↪→ X whose underlying topological space contains Y ,
then Yred ↪→ X can be factorized through Z. To show this, by gluing processus, we may
reduce to the case where X is affine, then this assertion follows easily.

Proposition 2.3.3.5. Let X be an integral scheme, with generic point ξ.

1. Let V be an affine open subset of X, then OX(V ) → OX,ξ induces an isomorphism
Frac(OX(V )) ' OX,ξ.

2. For any open subset U of X, and any point x ∈ U . The canonical morphisms OX(U) →
OX,x and OX,x → OX,ξ are injective.

3. By identifying OX(U) and OX,x to subrings of OX,ξ, we have OX(U) =
⋂
x∈U OX,x.

11which means that X is separated.
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Proof. The first assertion (1) is clear since if V = Spec(A), then OX,ξ is exactly the fraction
field Frac(A), and the canonical map OX(V ) → OX,ξ is then the natural map A ⊂ Frac(A).
Hence the conclusion follows. For (2), let f ∈ OX(U) be any element such that its image
fx ∈ OX,x is zero. Then there exists an affine open neighborhood V of x such that f |V = 0.
In particular, the image fξ ∈ OX,ξ is zero. Now by applying the first assertion, we see that for
any affine open V ′ of X, we have f |V ′ = 0. Hence f = 0. This gives the injectivity of the first
morphism. For the second injectivity, we take any affine open neighborhood V = Spec(A) of x,
and suppose that x corresponds to the prime ideal p ⊂ A, then the canonical map OX,x → OX,ξ
is just the canonical inclusion Ap ⊂ Frac(A), where comes the desired injectivity. For (3),
we have clearly OX(U) ⊂

⋂
x∈U OX,x. Conversely, by the sheaf condition and the injectivity

proved in (2), we may assume that U = Spec(A) is affine. Then we are reduced to show that
A =

⋂
p∈Spec(A)Ap, seen as a subring of Frac(A). Indeed, for a fraction f ∈ Frac(A) which is

contained in
⋂

p∈Spec(A)Ap, then for each p ∈ Spec(A), there exists sp ∈ A − p, and ap ∈ A
such that f = ap/sp. As A is integral, we deduce then f · sp ∈ A. Now, if we take the family
{sp : p ∈ Spec(A)}, which generates the unit ideal. Hence, one can find bp ∈ A, almost all zero,
such that 1 =

∑
p bpsp. From where, we find f =

∑
p bpfsp =

∑
p bpap ∈ A. This gives the

result.

Definition 2.3.3.6. Let X be an integral scheme, with generic point ξ. We denote the field OX,ξ
by K(X). Sometimes, when X is an algebraic over a field k, we also denote K(X) by k(X). An
element of K(X) is called a rational function on X. We call K(X) the field of rational functions
or function field of X. We say that f ∈ K(X) is regular at x ∈ X, if f ∈ OX,x.

With the terminology above, a rational function f is regular at any point of x ∈ U is
contained in OX(U).

2.3.4 Finiteness conditions

Definition 2.3.4.1. Let f : X → Y be a morphism of schemes.

1. f is said to be quasi-compact, if for any quasi-compact open subset V ⊂ Y , the inverse
image f−1(U) is quasi-compact.

2. f is said to be locally of finite type, if for any affine opens U = Spec(A) ⊂ X and V =
Spec(B) ⊂ Y such that f(U) ⊂ V , and that the map B = OY (V ) → OX(U) = A makes
A into a B-algebra of finite type.

3. f is said to be finite type, if f is quasi-compact and locally of finite type.

Example 2.3.4.2. If X is quasi-compact, Y is affine, then any morphism f : X → Y is quasi-
compact. Indeed, since X is quasi-compact, X can be written as a finite union of affine open
subsets of X. As a result, for any principal subset U ⊂ Y , f−1(U) can be covered by finitely
many affine schemes, in particular f−1(U) is quasi-compact. Now, let V be an arbitrary affine
open of Y . Since V can be covered by finitely many principal open subsets of Y , we find that
f−1(V ) can be equally covered by finitely many affine opens of X. From here, we find that
f−1(V ) is quasi-compact. This gives the result.

Proposition 2.3.4.3. Let f : X → Y be a morphism.

1. Suppose that there exists a covering {Vi}i of Y by affine open subsets such that for every
i, f−1(Yi) is a union of affine open subsets Uij such that OX(Uij) is an OY (Vi)-algebra of
finite type. Then f is locally of finite type.
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2. Suppose that there exists a covering {Vi}i by affine open subsets, f−1(Vi) is quasi-compact.
Then f is quasi-compact.

Proof. (1) We begin with the following remark: if B is an A-algebra of finite type, then for
any f ∈ B, we know that Bf ' B[X]/(fX − 1) is still of finite type over A. Hence to prove
(1), we may assume that X = Spec(B), and Y = Spec(A) are both affine. The hypothesis
says that we can find open covering Y =

⋃
i Yi with Yi = D(ai) ⊂ Spec(A) = Y , and affine

covering of f−1(Yi) =
⋃
j Xij such that Xij is affine, and that OX(Xij) is finitely generated

as OY (Yi)-algebra. Moreover, since Yi is principal, so is f−1(Yi) = D(f ](ai)). Hence we may
assume that the coverings Y =

⋃
i Yi. and f−1(Yi) =

⋃
j Xij are all finite. We claim first that

it suffices to prove that OX(f−1(ai)) is finitely generated as OY (D(ai))-algebra. Indeed, we
know OY (Yi) = Aai , and OX(f−1(D(ai))) = Bbi with bi = f ](ai). If Bbi is finitely generated,
namely Bbi = Aai [ci,1, · · · , ci,ri ] for some ci,j ∈ Bbi . Since bi = f ](ai), we may assume that
ci,j ∈ B. Then one can show B = A[ci,j |i ∈ I, 1 ≤ j ≤ ri]. In particular, B is finitely generated
as A-algebra. Now, to complete the proof, we may then assume X =

⋃n
i=1Xi such that Xi ⊂ X

is principal affine, and that OX(Xi) is a finitely generated A-algebra. Suppose Xi = D(gi),
then there exists ci,1, · · · , ci,si ∈ Bgi such that Bgi = A[ci,1, · · · , ci,si ]. We may moreover assume
ci,j = c′i,j/g

m
i for some m sufficiently large, and c′i,j ∈ B. Since X =

⋃n
i=1D(gi), there exists

some λi ∈ B such that 1 =
∑n

i=1 λi · gi. Now, we claim that

B = A[gi, λi, c
′
i,j |1 ≤ i ≤ n, 1 ≤ j ≤ si].

For any b ∈ B, its image in Bbi can be written as fi(ci,1, · · · , ci,si) with fi ∈ A[Xi,1, · · · , Xi,si ] a
polynomial. As a result, there exists a polynomial Fi ∈ A[Xi,1, · · · , Xi,si , Yi] and some integer
N � 0 such that b = Fi(c

′
i,1, · · · , c′i,si , gi)/g

N
i . Hence, there exists M � 0, such that

gM+N
i b = gMi Fi(c

′
i,1, · · · , c′i,si , gi) ∈ B.

As 1 = 1n(M+N) = (
∑

i λigi)
n(M+N) =

∑
i λ
′
ig
M+N
i with λ′i ∈ B[λi, gi|1 ≤ i ≤ n]. So finally, we

get

b = b · 1 =
∑
i

λ′ig
M+N
i b =

∑
i

λ′ig
M
i Fi(c

′
i,1, · · · , c′i,si .gi) ∈ A[gi, λi, c

′
i,j ].

This gives (1). To prove (2), by Example 2.3.4.2, the restriction f |f−1(Vi) is quasi compact.
As a result, if we consider the set B of quasi-compact opens V in Y such that f−1(V ) is also
quasi-compact, this set B gives a base for the open subsets of Y . Now for any quasi-compact
open V ⊂ Y , it can be written as a finite union V =

⋃n
i=1 Vi with Vi ∈ B. As a result,

f−1(V ) =
⋃n
i=1 f

−1(Vi) can be written as a finite union of quasi-compact open subsets. In
particular, f−1(V ) is quasi-compact. This gives (2).

2.4 Dimension

2.4.1 Dimension of a topological space

Let X be a topological space. A chain of irreducible closed subsets of X is a strictly ascending
sequence of irreducible closed subsets

Z0 ( Z1 ( · · · ( Zn ⊂ X.

The integer n is called the length of the chain.
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Definition 2.4.1.1. Let X be a topological space. We define the (Krull) dimension of X, which
we denote by dim(X), to be the supremum of the lengths of the chains of irreducible closed
subsets. Note that this number is might be not finite. Moreover, by convention, the empty set
is of dimension −∞. X is called purely of dimension n if all its irreducible components are of
the same dimension n.

Example 2.4.1.2. 1. A discrete topological space is of dimension 0.

2. For k a field, then the underlying topological space of A1
k is of dimension 1.

Definition 2.4.1.3. For X a topological space, and x ∈ X a point. We put

dimxX = inf{dim U : U an open neighborhood of x}

Proposition 2.4.1.4. Let X be a topological space.

1. For any subset Y of X endowed with the induced topology, then dim Y ≤ dim X.

2. Suppose X irreducible of finite dimension, and let Y ⊂ X be a closed subset. Then Y = X
iff dim Y = dim X.

3. The dimension of X is the supremum of the dimensions of its irreducible components.

4. We have dim X = sup{dimx X : x ∈ X}.

Proof. (1) Note that, for a closed subset Z of Y , if we note Z the closure of Z in X, then
Z ∩Y = Z. Indeed, we only need to show that Z ∩Y ⊂ Z. But, as Z ⊂ Y is closed with respect
to the subspace topology on Y , hence Z = F ∩ Y with F ⊂ X closed. In particular, we have
Z ⊂ F , hence Z ∩ Y ⊂ F ∩ Y = Z, this proves the claim. As a corollary, for any two closed
subsets of Y : Z1 ( Z2, their closures verify Z1 ( Z2. Then the first assertion follows easily.
The assertions (2), (3) and (4) are clear from definition.

Definition 2.4.1.5. Let Y be an irreducible closed subset of X, we define the codimension
of Y in X to be the supremum of the lengths of the chains of irreducible closed subsets of X
containing Y :

Y = Z0 ( Z1 ( · · · ( Zn ⊂ X.

Let Z be a closed subset of X, the codimension of Z in X, which we denote by codim(Z,X), is
the infimum of the codimensions in X of the irreducible components.

Exercise 2.4.1.6. Let X be a topological space with Z ⊂ X a closed subset of X. Show that

codim(Z,X) + dim(Z) ≤ dim(X).

But the equality doesn’t hold in general. Find a conter-example.

2.4.2 Dimension of schemes and rings

Let X be a scheme. Its dimension is defined to be the dimension of its underlying topological
space. For A a ring, we define its (Krull) dimension to be the dimension of the corresponding
affine scheme Spec(A), denoted by dim(A). According to the inclusion-reversing one-to-one
correspondence between the set of irreducible closed subsets and the set of prime ideals of A,
dim is also the supremum of the lengths of strictly ascending chains of prime ideals of A:

p0 ( p1 ( · · · ( pn ⊂ A.
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For p ⊂ A a prime ideal, we define the height of p (resp. depth of p) to be the supremum of the
lengths of strictly ascending chains of prime ideals contained in p (resp. containing p), denoted
by ht(p) (resp. depth(p)). Via the usual correspondence, we have ht(p) = codim(V (p), Spec(A)).
Moreover, since there is a one-to-one correspondence between the set of prime ideals of A con-
tained in p, and the set the prime ideals of Ap, we find also ht(p) = dim(Ap), and we have

ht(p) + depth(p) ≤ dim(A).

Similarly, depth(p) = dim(V (p)).

Proposition 2.4.2.1. Let A be a ring. Then

1. Let n ⊂ A be a nilpotent ideal.12 Then dim(A) = dim(A/n).

2. We have dim(A) = supm∈Max(A){dim(Am)}

Example 2.4.2.2. A field k is of dimension 0. A DVR which is not a field is then of dimension
1. Any Dedekind domain is also which is not a field (e.g. the ring of integers of an algebraic
number field) is also of dimension 1.

Recall that a morphism of rings φ : A → B is called integral if B is integral over the image
of A, that is, for any b ∈ B, there exist a0, · · · , an−1 ∈ A such that

bn + φ(an−1) · bn−1 + · · ·φ(a1)b+ φ(a0) = 0.

Lemma 2.4.2.3. Let φ : A→ B be an injective integral morphism. If B is a field, so is A.

Proof. First of all, A is a domain as φ is injective. Let a ∈ A−{0}, we consider 1/a ∈ B, which
satisfies then an integral relation with coefficient: one can find a0, · · · , an−1 ∈ A such that

(1/a)n + an−1 · (1/a)n−1 + · · · a1 · (1/a) + a0 = 0.

Hence, we get

1 + a · (an−1 + an−2 · a+ · · ·+ a1 · an−2 + a0 · an−1) = 0

In particular, a−1 = −(an−1 +an−2 ·a+ · · ·+a1 ·an−2 +a0 ·an−1) ∈ A. This gives the proof.

Proposition 2.4.2.4. Let φ : A→ B be an integral homomorphism. For any q ∈ Spec(B), take
p = φ−1(q) ∈ Spec(A).

1. We have ht(q) ≤ ht(p). In particular, dim(B) ≤ dim(A).

2. If moreover φ is injective. Then then induced map Spec(B) → Spec(A) is surjective.
Moreover, we have depth(p) = depth(q) and dim(A) = dim(B).

Proof. (1) We will show that for any prime ideal q1 ( q of B, then φ−1(q1) ( φ−1(q). Indeed,
up to replace A by A/φ−1(q1), and B by B/q1, we may assume that φ is injective, and that
q1 = 0. So we need to show that φ−1(q) 6= 0. So let b ∈ q− {0} be any non zero element, with
minimal integral polynomial Xn + an−1X

n−1 + · · ·+ a1X + a0 ∈ A[X]. We remark that a0 6= 0,
and

φ(a0) = −(bn + φ(an−1) · bn−1 + · · ·+ φ(a1) · b) ∈ q.

12It means that any element of n is nilpotent. When n is of finite type, this means also that nr = 0 for some
r > 0.
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In particular, a0 ∈ φ−1(q), and φ−1(q) 6= 0. This gives the assertion. Let now

q0 ( q1 ( · · · ( qn ⊂ q

be a strictly ascending chain of prime ideals contained in p, by applying φ−1(−) and the previous
assertion, we find

φ−1(q0) ( φ−1(q1) ( · · · ( φ−1(qn) ⊂ φ−1(q) = p,

from where we find ht(q) ≤ ht(p). In particular, dim(B) ≤ dim(A). This gives (1).
For the second statement, we show first that φ∗ : Spec(B) → Spec(A) is surjective. Since

φ : A → B is injective, we identify A with a subring of B over which B is integral. Let
p ∈ Spec(A), up to replace A by Ap, and B by S−1B with S = A − p, we may assume that
p ⊂ A is the only maximal. Let now q be a maximal ideal of B (note that A ⊂ B, hence the
ring B is non trivial). Then q ∩A is also a maximal ideal according to the previous lemma. So
we must have q ∩ A = p, and this proves the surjectivity of Spec(B) → Spec(A). As a result,
for any strictly ascending chain of prime ideals

p0 ( p1 ( · · · ( pn ⊂ A,

one can find inductively an ascending chain of prime ideals

q0 ( q1 ( · · · ( qn ⊂ B

such that qi ∩ A = pi. As a result, dim(A) ≤ dim(B), hence dim(A) = dim(B) by taking
account the first statement. Moreover, since p = q ∩ A, the morphism A/p → B/q is integral
and injective. In particular, dim(A/p) = dim(B/q), that is, depth(p) = depth(q).

The previous proof gives also the so-called going up theorem (see the book of Atiyah-
MacDonald). There exists also a similar going down theorem, which we will include below
without proof (see the book of Atiyah-MacDonald for the proof). Recall that an integral do-
main A is called normal if for any x ∈ Frac(A) with x integral over A, then x ∈ A.

Theorem 2.4.2.5 (going down theorem). Let A ⊂ B be integral domains such that B is integral
over A, and that A is normal. Let

p1 ⊃ p2 ⊃ · · · ⊃ pn

and
q1 ⊃ q2 ⊃ · · · ⊃ qm

be decreasing chains of prime ideals of A and B respectively with M < n such that qi ∩ A = pi
for i ≤ m. Then one can extend the chain q1 ⊃ q2 ⊃ · · · ⊃ qm to a chain

q1 ⊃ q2 ⊃ · · · ⊃ qm ⊃ qm+1 ⊃ · · · ⊃ qn

such that qi ∩A = pi for all i ≤ n.

2.4.3 The noetherian case

We start by characterizing the scheme of dimension 0. Recall that a ring A is called artinian if
every descending sequence of ideals of A is stationary.

Lemma 2.4.3.1. Let (A,m) be a noetherian local ring. The following conditions are equivalent:
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1. dim(A) = 0;

2. m =
√

0;

3. There exists q ≥ 1 such that mq = 0;

4. A is artinian.

Proof. Assume (1), then A contains only one prime ideal, namely the maximal ideal m, hence√
0 =

⋂
p∈Spec(A) p = m. This gives (2), and hence (3) since m is of finite type. Now, assume

(3), we claim that m is of finite length as A-modules. Indeed, as mq = 0 for some q > 0, hence
we are only need to show that mi/mi+1 is of finite length as A-module. By this is clear since as
a A/m-space, it’s of finite dimensional. Now, it’s easy to see that A is artinian since any ideal
A must have finite length as A-modules. This shows (4). It remains to show that (4) implies
(1). So we need to show that m is the only prime ideal of A, hence we only need to prove
that any element of m is nilpotent: let a ∈ m, we consider the descending sequence of ideals
(a) ⊃ (a2) ⊃ · · · (ar) ⊃ · · · . Hence there is some integer r0 � 0 such that (ar0) = (ar) for any
r ≥ r0. In particular, ar0 = u ·ar0+1 for some u ∈ A. As a result (1−ua) ·ar0 = 0, hence ar0 = 0
as 1 − ua ∈ A∗. This shows that m is nilpotent, hence m is the only prime ideal of A, that is,
dim(A) = 0.

Proposition 2.4.3.2. Let X be a noetherian scheme of dimension 0. Then (i) X is affine with
finite cardinality; (ii) any point x ∈ X is open; and (iii) OX(X) is a product of artinian rings.

Proof. Let U = Spec(A) ⊂ X be an affine open of X, then U is also noetherian of dimension
0. Let U = ∪ni Yi its decomposition into the union of its irreducible components. In particular,
Yi,red is affine, hence, its contains at least a closed point xi ∈ Yi. But since Yi has dimension
zero, we find that {xi} = Yi is a single point. In particular, this shows that U is a finite set,
and each point is open in U , which give immediately the first assertion as X is noetherian. In
particular X is affine. Let X = {x1, · · · , xn}, we have then

OX(X) =
n∏
i=1

OX({xi}) =
n∏
i=1

OX,x.

OX,x is local noetherian of dimension 0, hence, it’s artinian.

Theorem 2.4.3.3 (Krull’s principal ideal theorem). Let A be a noetherian ring, and f ∈ A be
a non-invertible element. Then for any prime ideal p that is minimal among those containing
f , then ht(p) ≤ 1.

Proof. Cf de book of Liu.

Lemma 2.4.3.4. Let A be a noetherian ring, and p0 ( p1 ( · · · ( pn be an ascending sequence
of prime ideals of A. Let f ∈ A be an element such that f ∈ pn. Then there exists a sequence
of prime ideals p′1 ( p′2 ( · · · ( p′n = pn such that f ∈ p′1.

Proof. The proof is done by induction on n. If n = 1, there is nothing to prove. For n > 1, we
may assume that f /∈ pn−1. Consider the quotient A/pn−2, then the image f̄ ∈ A/pn−2 is non
zero, and let q be the minimal prime ideal containing f̄ , and contained in pn/pn−2 ⊂ A/pn−2.
Let p′n−1 ⊂ A be the preimage of q. Then f ∈ p′n−1, and pn−2 ( p′n−1 ( pn. Now, it suffices to
apply the induction hypothesis to the ascending sequence p0 ( · · · pn−2 ( p′n−1 to conclude.

Corollary 2.4.3.5. Let A be a noetherian ring, and I an ideal generated by r elements.
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1. Let p ⊂ A be a prime ideal of A, minimal among those containing I, then ht(p) ≤ r.

2. If, moreover, A is local with maximal ideal m, then A is of finite dimension, and dim(A) ≤
dimA/m(m/m2).

Proof. We will prove (1) by induction. When I is generated by one element f , and p be a
prime ideal, minimal among those containing f (note that this implies implicitly that f is non-
invertible), the previous theorem says then ht(p) ≤ 1. Suppose now this statement is proved for
an ideal of a noetherian ring generated by at most r−1 elements (for r ≥ 2). Let I = (f1, · · · , fr),
Ã := A/(fr), and Ĩ be the image of I in Ã. Then Ĩ can be generated by r − 1 elements. Let
p ⊂ A be a prime ideal, minimal among those containing I. In particular, f1 ∈ p, and the
image p̃ ⊂ Ã is then a prime ideal which is minimal among those containing Ĩ. In particular,
ht(p̃) ≤ r− 1. On the other hand, let p0 ⊂ p1 ⊂ · · · ⊂ pn = p be an ascending sequence of prime
ideals contained in p. By the previous lemma, one can find a strictly ascending sequence of prime
ideals p′1 ( p′2 ( · · · ( p′n = p such that fr ∈ p′1. Hence their images in Ã give a strictly ascending
sequence of prime ideals contained in p̃. As a result, we must have n− 1 ≤ ht(p̃) ≤ r− 1. Hence
n ≤ r. This gives (1). For the second statement, let r = dimA/mm/m

2. According to (1), we
only need to show that m then can be generated by r elements. This latter statement follows
from Nakayama’s lemma.

Remark 2.4.3.6. The geometric interpretation of the previous corollary is that, for X a noethe-
rian scheme, and for Y ⊂ X a closed subscheme which can locally be defined by r elements,
then codim(Y,X) ≤ r.

Theorem 2.4.3.7. Let (A,m) be a noetherian local ring, and f ∈ m. Then dim(A/fA) ≥
dim(A)− 1. Moreover, the equality holds if f is not contained in any minimal prime ideal of A.

Proof. The fist statement is contained in Lemma 2.4.3.4. For the last assertion, suppose that
f is not contained in any minimal prime ideal of A, and let q0 ( q1 ( · · · ( qd be a strictly
ascending sequence of prime ideals in A/f of longest length (hence d = dim(A/f)), then the
preimages of these ideals give a strictly ascending sequence of prime ideals p0 ( p1 ( · · · ( pd.
Moreover, as f ∈ p0, this prime ideal is not minimal. Hence p0 contains at least one prime ideal
p−1 ( p0. In this way, we find a strictly ascending sequence of prime ideals of length d + 1.
Hence dim(A) = dim(A/f) + 1.

Finally, we consider the dimension of an affine space.

Lemma 2.4.3.8. Let (A,m) be a noetherian local ring, and n ⊂ A[T ] be a maximal ideal such
that n ∩A = m. Then ht(n) = dim(A) + 1.

Proof. Since for any prime ideal p ⊂ A of A, pA[T ] ⊂ A[T ] is a prime ideal contained in mA[T ].
In particular, ht(n) ≥ ht(mA[T ]) ≥ dim(A). Moreover, as A[T ]/mA[T ] ' (A/m)[T ] is not a
field, mA[T ] ( n. Hence ht(n) ≥ dim(A) + 1. It remains to show that ht(n) ≤ dim(A) +
1. We will show this inequality by induction on dim(A) (which is finite by the noetherian
hypothesis). If dim(A) = 0, m ⊂ A is nilpotent, hence mA[T ] is also nilpotent. As a result,
dim(A[T ]) = dim(A[T ]/mA[T ]) = dim((A/m)[T ]) = 1, and any maximal ideal of A[T ] is of
height 1. Suppose now dim(A) > 0, in particular, m is of height ≥ 1. Let f ∈ m which is
not contained in any of the minimal prime ideals of A (see the exercise below), by the previous
theorem, dim(A/fA) = dim(A) − 1. Moreover, the maximal ideal n = n/fA[T ] ⊂ (A/f)[T ] is
of height ≤ dim(A/f) + 1 = dim(A) (induction hypothesis). Now lemma 2.4.3.4 implies then
ht(n) ≤ dim(A) + 1: otherwise, we find find a strictly ascending sequence of prime ideals of
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length n > dim(A) + 1: p0 ( p1 ( · · · ( pn = n. Since f ∈ n, by 2.4.3.4, we find hence a
sequence of length n − 1 > dimA: p′1 ( · · · ( p′n = n such that f ∈ p′1, a contradiction. This
gives the inequality, and hence the lemma.

Exercise 2.4.3.9. Let A be a ring, and a, p1, · · · , pn be n + 1 ideals of A such that pi’s are
prime ideals. Show that if a ⊂

⋃n
i=1 pi, then a is contained in one of the ideals pi.

Lemma 2.4.3.10. Let A be any noetherian ring, and p ⊂ A be a prime ideal. Then ht(p) =
ht(pR[T ]).

Proof. First of all, for any chain of prime ideals of A contained in p:

p0 ( p1 ( · · · ( pn = p,

it gives a chain of prime ideals of A[T ] contained in pA[T ]:

p0A[T ] ( p1A[T ] ( · · · ( pnR[T ] = pA[T ].

Hence ht(pA[T ]) ≥ ht(p). It remains to show that ht(pA[T ]) ≤ ht(p). For any chain of prime
ideals of A[T ] contained in pA[T ]

q0 ( q1 ( · · · ( qn = pA[T ],

we have qi ∩ A ⊂ qn ∩ A = p. Hence the above chain induces also a chain of prime ideals of
S−1A[T ] = Ap[T ] (where S = A− p):

S−1q0 ( S−1q1 ( · · · ( S−1qn = pAp[T ],

Hence ht(pA[T ]) ≤ ht(pAp[T ]). But since pAp[T ] is not a maximal ideal, we must have
ht(pAp[T ]) ≤ dim(Ap[T ])−1 = dim(Ap) = ht(p). So, we obtain the desired inequality ht(pA[T ]) ≤
ht(p).

Lemma 2.4.3.11. Let A be any ring, and Q1 ( q2 be two prime ideals of A[T ]. Suppose
q1 ∩A = q2 ∩A =: p, then q1 = pA[T ].

Proof. Up to replace A by A/p, we may assume that p = 0. So we need to show that q1 = 0.
As qi ∩ A = (0), they induce two non trivial ideals of K[T ]: q1K[T ] ( q2K[T ]. But K[T ] is an
principal ideal domain, so we must have q1K[T ] = 0. In particular, q1 = 0.

Proposition 2.4.3.12. Let A be a noetherian ring, then dim(A[T ]) = dim(A) + 1

Proof. Clearly, we have dim(A[T ]) ≤ dim(A) + 1. On the other hand, consider a chain of prime
ideal of A[T ]:

q0 ( q1 ( · · · ( qn ⊂ A[T ],

we need to show that n ≤ dim(A[T ]). We may assume that there exists an index i such that
qi ∩ A = qi+1 ∩ A (otherwise, the above chain induces a chain of prime ideals of A, hence
n ≤ dim(A) < dim(A) + 1), and we choose j to be the largest integer i with respect to this
properties. We have hence the following chain of prime ideals of A:

p := qj+1 ∩A ( qj+2 ∩A ( · · · ( qn ∩A ⊂ A.

As a result, we find dim(A) ≥ n − j − 1 + ht(p). Now, on applying Lemma 2.4.3.11, we
find qj = pA[T ]. Now Lemma 2.4.3.10 tells us ht(p) = ht(qj) ≥ j. As a result, dim(A) ≥
n− j − 1 + ht(p) ≥ n− 1, that is, n ≤ dim(A) + 1. This finishes the proof.

Corollary 2.4.3.13. Let A be a noetherian ring. Then dim(A[T1, · · · , Tn]) = dim(A) + n.
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2.4.4 Dimension of schemes over a field

So here, we consider the case where A is a k-algebra of finite type, with k a field. Recall first that
for a finite type field extension k ⊂ K, there exists an integer d, and elements t1, · · · , td ∈ K
such that k(t1, · · · , td) ' Frac(k[T1, · · · , Td]), and that K is a finite algebraic extension over
k(t1, · · · , td). The integer d is called the transcendent degree ofK over k, denoted by tr.deg(K/k).
It’s uniquely determined. We recall the famous

Proposition 2.4.4.1 (Noether normalization lemma). Let A be a finitely generated algebra
over a field k. Then there exists an integer d ≥ 0, and a finite injective homomorphism
k[T1, · · · , Td] ↪→ A.

When, moreover, A is integral, the integer d in the Noether normalization lemma is the
transcendent degree of K := Frac(A) over k. In particular, we get the following

Corollary 2.4.4.2. Let X be an integral scheme of finite type over a field k. Then for any non
empty open subset U ⊂ X, we have dim(U) = dim(X) = tr.deg(K(X)/k).

Lemma 2.4.4.3. Let B be a homogeneous algebra over a field k, and p ⊂ B be a prime ideal.
Then the ideal ph of generated by the homogeneous elements contained in p is a homogeneous
prime ideal of B.

Proof. Let f, g ∈ B two elements, such that f · g ∈ ph. We write f = f0 + f1 + · · · + fn with
fi ∈ B homogeneous such that deg(f0) < deg(f1) < · · · < deg(fn), similarly, g = g0 + · · · + gm
with gi ∈ B homogeneous and deg(g0) < · · · < deg(gm). We need to show that either f ∈ ph or
g ∈ ph. Otherwise, we may assume that f0, g0 /∈ ph. Then

f · g = f0 · g0 + terms of higher degree.

As ph is homogeneous, hence f0 ·g0 ∈ ph ⊂ p. Hence either f0 ∈ p or g0 ∈ p, which implies either
f0 ∈ ph or g0 ∈ ph. This gives a contradiction, and hence the lemma.

Corollary 2.4.4.4. Let B be a homogeneous algebra over a field k.13 Then dim(Spec(B)) =
dim(Proj(B)) + 1.

Proof. According to the previous lemma, any minimal prime ideal of B is homogeneous. Up to
replace B by the quotient of B by any minimal prime ideal, we may assume that B is integral.
Now for any f ∈ B+ a homogeneous element of degree 1, we have D+(f) = Spec(B(f)) which is
irreducible of dimension dim(B(f)). On the other hand, there exists a canonical map

B(f)[T ]→ Bf , T 7→ 1/f

As Bf ⊂ Frac(B) is integral, the previous homomorphism of groups is bijective. As a result,
we have dim(Bf ) = dim(B(f)) + 1. As a result, dim(D+(f)) = dim(B(f)) = dim(Bf ) − 1 =
dim(D(f)) − 1 = dim(Spec(B)) − 1. As the opens D+(f) (f ∈ B1) gives an open covering of
Proj(B), we find dim(Proj(B)) = dim(Spec(B))− 1. This gives the corollary.

Lemma 2.4.4.5. Let A be a finitely generated integral domain over k, and let p be a prime ideal
of A of height 1. Then dim(A/p) = dim(A)− 1.

Proof. See the book of Liu.

13This means that B ' k[T1, · · · , Tn]/I for some homogeneous ideal, hence B is generated as a k-algebra by
B1.
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Proposition 2.4.4.6. Let A be a finitely generated integral domain over a field k. Let p ⊂ A
be a prime ideal.

1. ht(p) + dim(A/p) = dim(A).

2. If p is maximal. Then dim(A) = dim(Ap).

Proof. (1) We prove this by induction on r = ht(p). The case when r = 0 is clear, while when
r = 1, this is the previous lemma. From now on, suppose r > 1, and let 0 = p0 ( p1 ( · · · ( pr =
p be a strictly ascending sequence of prime ideals contained in p. The prime ideal p/p1 ⊂ A/p1

is of height r − 1. As a result, we have ht(p/p1) + dim(A/p) = dim(A/p1) = dim(A) − ht(p1).
Moreover, p/p1 is of height r − 1, hence dim(A/p) = dim(A)− 1− (r − 1) = dim(A)− r. This
gives (1). When p is maximal, A/p is then a finite extension of k, in particular, dim(A/p) = 0.
Hence dim(A) = ht(p) = dim(Ap).

Corollary 2.4.4.7. Let X be an irreducible finite type scheme over a field k. Let x ∈ X be a
closed point. Then dim(X) = dim(OX,x).

Proof. Since dim(X) = dim(Xred), and dim(OX,x) = dim(OXred,x). Hence up to replace X by
Xred, we may assume that X is integral. Moreover, we may assume that X is affine, hence the
corollary follows.

Now, for X be a scheme, and f ∈ OX(X). Let D(f) = {x ∈ X : fx /∈ mxOX,x}, which is
open in X. Such an open is called principal. We put V (f) = X −D(f).

Corollary 2.4.4.8. Let X be an irreducible finite type scheme over a field k, and f ∈ OX(X)
which is not nilpotent. Then every irreducible component of V (f) is of dimension dim(X)− 1.

Proof. As f is non nilpotent, V (f) 6= X. SinceX is irreducible, any component ofX is dimension
≤ dim(X)− 1. On the other hand, for any irreducible component Y of V (f), let U ⊂ X be an
affine open such that U = Spec(A) ∩ Y 6= ∅. The image f ′ of f in OX(U) = A is non nilpotent
and non invertible. The prime ideal p ⊂ A corresponds to x is a minimal prime ideal containing
f ′, hence ht(p) = 1 (as p contains (0)), hence dim(Y ) = dim(U ∩Y ) = dim(A/p) = dim(A)−1 =
dim(X)− 1. This gives the conclusion.

2.5 Fiber products and base change

2.5.1 Sum of schemes

Recall that in a category C, let Xi be a family of objects of C. The sum of the family Xi, denoted
by
∐
iXi, is an objet of C together with morphisms pi : Xi →

∐
iXi for each i, such that for

any family of morphisms fi : Xi → Z, there exists a unique morphism F :
∐
iXi → Z such that

F ◦ pi = fi for ech i. For example, in the category of sets, the sum of a family of sets is the
disjoint union of these sets.

Let (Xı)i∈I be an arbitrary family of schemes, let X be the sum of the topological spaces (Xi).
Hence X is a disjoint union of its opens X ′i (i ∈ I), together a homeomorphism φi : Xi → X ′i.
By means of φi, we get a ringed space

(X,
∏
i

ji,∗φi,∗OXi)
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It’s clear that this gives a scheme, called the sum of the family of scheme (Xi), denoted by∐
iXi. For each Xi, we have a then a morphism of scheme ψi : Xi → X. One shows easily that

the natural map is an isomorphism:

Hom

(∐
i

Xi, T

)
'
∏
i

Hom(Xi, T ), f 7→ (f ◦ ψi).

Exercise 2.5.1.1. Let X be a topological space, and Fi a family of sheaves on X. Define
∏
iFi

the presheaf on X such that for any open U ⊂ X, (
∏
iFi) (U) =

∏
iFi(U). Show that the

presheaf
∏
iFi is a sheaf.

2.5.2 Fiber products of schemes

Recall that for f : X → S and g : Y → S be two maps of sets, the fiber product of f and g, or
the fiber product of X and Y over S, denoted by X ×S Y , is defined to be the following subset
of X × Y ;

X ×S Y := {(x, y) ∈ X × Y | f(x) = g(y)} ⊂ X × Y.

We can actually define the notion of fiber product in a category.

Definition 2.5.2.1. Let C be a category, and let f : X → S and g : Y → S be two morphisms
in the category C. The fiber product of f and g, or the fiber product of X and Y over S, is an
object of C which represents the following functor

C → Set, T 7→ Hom(T,X)×Hom(T,S) Hom(T, Y ).

If the fiber product exists, it will be denoted by X ×S Y .

In more concrete terms, the fiber product of X and Y over S is an object, denoted by X×SY
of C, together with two morphisms p : X ×S Y → X and q : X ×S Y → Y such that

– f ◦ p = g ◦ q;

– For any pair of morphisms (α : T → X,β : T → Y ) such that f ◦ α = g ◦ β, there exists a
unique morphism γ : T → X ×S Y such that p ◦ γ = α and q ◦ γ = β.

T
∃ ! γ

##

β

##

α

##

X ×S Y
q //

p

��

X

g

��
Y

f
// S.

The fiber product in a category does not exist in general. But if it exists, then it’s unique up
to a unique isomorphism since it’s the solution of some universal problem.

Proposition 2.5.2.2. Let X,Y be two S-schemes. Then the fiber product of X and Y over S
exists in the category of schemes.
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Proof. We divide the proof into several steps.

Case when X,Y, S are affine.

In this case, suppose X = Spec(A), Y = Spec(B), and S = Spec(R). We take Z = Spec(A⊗RB),
and consider p : Z → X the morphism induced by A → A ⊗R B, a 7→ a ⊗ 1, q : Z → Y the
morphism induced by B → A ⊗R B, b 7→ 1 ⊗ b. We claim that (Z, p, q) represents the fiber
product of X and Y over S: let T be a scheme:

Hom(T,Z) ' Homring(A⊗R B,OZ(Z))
' Hom(A,OZ(Z))×Hom(R,OZ(Z)) Hom(B,OZ(Z))

= Hom(T,X)×Hom(T,S) Hom(T, Y )

hence get a isomorphism

Hom(T,Z)→ Hom(T,X)×Hom(T,S) Hom(T, Y ), γ 7→ (p ◦ γ, q ◦ γ).

As a result, (Z, p, q) gives the fiber product of X and Y over S.

Case when X,Y are opens of affine schemes over S.

In this case, we assume that jX : X ↪→ X ′ and jY : Y ↪→ Y ′ are two open immersions over
S with S,X, Y three affine schemes. Let f ′ : X ′ → S and g′ : Y ′ → S be the two structural
morphisms. According to the previous case, we know that the fiber product X ′×S Y ′ of X ′ and
Y ′ over S exists. Let p : X ′ ×S Y ′ → X ′ and q : X ′ ×S Y ′ → Y ′ be the canonical morphisms, we
consider then the open subset U := p−1(X)

⋂
q−1(Y ) ⊂ X ′ ×S Y ′, and we claim that the triple

(U, p|U , q|U ) gives the fiber product of X and Y over S: indeed, let α : Z → X, and β : Z → Y
be two morphisms such that f ◦ α = g ◦ β : Z → S. Let α′ = jX ◦ α, et β′ = jY ◦ β. Then
f ′ ◦ α′ = f ′ ◦ jX ◦ α = f ◦ α = g ◦ β = g′ ◦ β′, from where we get a morphism γ′ : Z → X ′ ×S Y ′
such that p◦γ′ = α′ = jX ◦α and that q◦γ′ = β′ = jY ◦β. Hence Im(γ) ⊂ U = p−1(X)∩q−1(Y ).
Hence γ : Z → X ′×S Y ′ factors through U ↪→ X ′×S Y ′, et we get a morphism γ′ : Z → U . One
verifies easily that γ′ is also unique. Hence the triple (U, p|U , q|V ) solves the universal problem,
hence it gives the fiber product of X and Y over S.

Case when S is affine.

We cover X by affine opens X =
⋃
i∈I Xi, and Y by affine opens Y =

⋃
j∈J Yj . For each (i, j),

the fiber product Xi ×S Yj exists. Moreover, according to the previous case, the fiber product
Xii′ ×S Yjj′ exists also, and can be realized as an open of Xi ×S Yj for any index i, i′ ∈ I and
j, j′ ∈ J . Now the fiber product X×S Y is constructed by gluing these Xi×S Yj along the opens
Xii′ ×S Yjj′ ↪→ Xi×S Yj . This gives the fiber product when S is affine. As a corollary, this gives
also the case when the structural maps f and g can factor through some affine open S0 ⊂ S.
Indeed, in this case, one verifies easily that X ×S Y = X ×S0 Y , hence X ×S Y exists as the
latter fiber product exists.

General case.

In this case, we cover S by the affine opens S =
⋃
i Si and let Xi (resp. Yi) be the inverse

image of Si ↪→ S, and Xij = Xi ∩ Xj . According to the previous cases, the fiber product
Xi×S Yi = Xi×Si Yi exists, and so is Xij×S Yij = Xij×Sij Yij (since it’s the same as Xij×Si Yij).
Moreover, Xij ×S Yij = Xij ×Sij Yij is an open of Xi×S Yi = Xi×Si Yi. Hence, the fiber product
X ×S Y is obtained by gluing the schemes Xi ×S Yi along the opens Xij ×S Yij .

This finishes then the proof of Proposition 2.5.2.2

From the proof, we deduce also the following corollary:
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Corollary 2.5.2.3. Let S be a scheme.

1. Let X ↪→ X ′ and Y ↪→ Y ′ be two open immersions over S. Let p′ : X ′ ×S Y ′ → X ′ and
q′ : X ′×S Y ′ → Y ′ be the canonical morphisms. Then there exists a canonical isomorphism
between X ′ ×S Y ′ and the open subscheme p′−1(X) ∩ q′−1(Y ).

2. For three schemes X,Y, Z over S, we have (X ×S Y )×S Z ' X ×S (Y ×S Z).

3. For X be a scheme over S. Then there is a canonical isomorphism X ×S S ' X.

Example 2.5.2.4. We have Ank ×Spec(k) Amk ' A
m+n
k , while Pmk ×Spec(k) Pnk � P

m+n
k .

Exercise 2.5.2.5. Verify the previous example.

Remark 2.5.2.6. In general, the underlying set of X ×S Y ′ is not the fiber product of the
underlying sets of X and Y over S. For example, Spec(C) ×Spec(R) Spec(C) consists of two
points, while the fiber product of the underlying sets has only one point.

Definition 2.5.2.7. Let f : X → X ′ and g : Y → Y ′ be two morphisms over S, the by the
universal property of fiber product, we get a morphism f ×S g : X ×S Y → X ′ ×S Y ′ such that
pX′ ◦ (f ×S g) = pX , and pY ′ ◦ (f ×S g) = pY . When no confusion is possible, we often omit S
from the notation f ×S g.

2.5.3 Base change; fibers

Definition 2.5.3.1. Let S be a scheme, and X be an S-scheme. For any S-scheme S′, the
second projection q : X ×S S′ → S′ endows X ×S S′ with a structure of an S′-scheme. Such a
process is called the base change of X by S′ → S. We sometimes denote the S′-scheme X ×S S′
by XS′ . For a morphism of S-schemes f : X × Y , its base change by S′ → S is the morphism
f ×S S′ : X×′S → Y ×S S′, sometimes it’s denoted by fS′ .

Example 2.5.3.2. Let S = Spec(A), and X = Spec(A[T1, · · · , Tn]/(P1, · · · , Pm)). Then for

any morphism of rings τ : A→ B, we have XSpec(B) = Spec(B[T1, · · · , Tn]/(P̃1, · · · , P̃n)) where

P̃i is obtained by applying the morphism τ on the coefficients of Pi.

Example 2.5.3.3. For A a ring, and B a homogeneous A-algebra. Let C be an A-algebra, the
tensor product D := B ⊗A C is then naturally a homogeneous C-algebra. Moreover, we have
Proj(B)Spec(C) ' Proj(B ×A C). In particular, for S an arbitrary scheme, we can consider the
projective space over S of dimension n, which is given by PnS := Proj(Z[T0, · · · , Tn])S .

Exercise 2.5.3.4. Verify that Proj(B)Spec(C) ' Proj(B ×A C) in the previous example.

Now, to define the fiber of a morphism, recall that for a point y ∈ Y of a scheme, there is a
induced morphism of schemes Spec(k(y))→ Y . More precisely, let U = Spec(A) ⊂ Y be an affine
open of Y containing y, the point y corresponds then a prime ideal p ⊂ A of A, the canonical
map Spec(k(y)) → Y is then the composite of U ↪→ X and Spec(k(y)) → U = Spec(A), where
the latter morphism is induced by the morphism of rings A→ Ap → Ap/pAp = k(y).

Definition 2.5.3.5. Let f : X → Y be a morphism of schemes. For any point y ∈ Y , we set
Xy = X×Y Spec(k(y)), where Spec(k(y))→ Y the canonical map associated to the point y ∈ Y .
We call Xy be the fiber of f over y. The second projection Xy = X×Y Spec(k(y))→ Spec(k(y))
makes Xy into a scheme over k(y).
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Example 2.5.3.6. For y ∈ Y a point. PnY,y ' Pnk(y)

Definition 2.5.3.7. For f : X → Y a morphism with Y irreducible of generic point η ∈ Y . The
fiber Xη over η is called the generic fiber of f .

Lemma 2.5.3.8. Let B be a ring, and T ⊂ B be a multiplicative subset. Then the canonical
map Spec(T−1B)→ Spec(B) induces a homeomorphism between Spec(T−1B) and the subset T
of element q ⊂ B such that T ∩ q = ∅ of Spec(B)

Proof. Let α : B → T−1B be the canonical map of rings. It’s well-known in commutative algebra
that, the map

ι : Spec(T−1B)→ Spec(B), p 7→ α−1(p)

induces a one-to-one correspondence between Spec(T−1B) and the subset T. So we only need
to check that this correspondence respects also the topology. Indeed, it’s continuous, and for
any ideal a ⊂ T−1B, let {xi : i ∈ I} be a family of generators of a. Up to multiply xi by some
element in T (which is invertible in T−1B), we may assume that xi = bi/1 with bi ∈ B. Now,
consider b ⊂ B the ideal generated by the bi’s, then its clear that T−1b = a. Now, for any prime
ideal p = T−1q ⊂ T−1B, a = T−1(b) ⊂ T−1q = p if and only if b ⊂ q. As a result, we find
ι(V (a)) = T ∩ V (b). Hence ι is a closed map. So it’s a homoeomorphism, as required.

Proposition 2.5.3.9. Let f : X → Y be a morphism of schemes, and y ∈ Y be a point. Then
the first projection Xy → X induces a homeomorphism between the underlying topological space
of Xy and the subspace f−1(y) of Y with the induced topology.

Proof. Clearly, to prove our proposition, we may assume that Y = Spec(A) and X = Spec(B)
are both affine. We consider ϕ = f ] : A → B be the associated morphism between the rings.
Let p ⊂ A be the prime ideal which corresponds to y. Then

f−1(y) = {q ∈ Spec(B)|ϕ−1(q) = p},

and

Xy = Spec(B ⊗A Ap/pAp) = Spec

(
B ⊗A Ap

ϕ(p)(B ⊗A Ap)

)
.

Moreover, the projection Xy = Spec(k(y))×Y X to X induces a map of topological spaces

ιy : Xy → f−1(y),

and we need to show that ιy is a homeomorphism. Let S = A − p, and T = ϕ(S) ⊂ B. Then,
we have B ⊗A Ap ' T−1B. As a result,

B ⊗A Ap

ϕ(p)(B ⊗A Ap)
' T−1B

ϕ(p)T−1B
.

According the the previous lemma, ιy induces a homeomorphism between Xy the set of prime
ideals q ⊂ B such that q ∩ T = ∅, and that T−1q ⊃ ϕ(p)T−1B, that is, the set of prime ideals
q ⊂ B such that ϕ−1(q) = p, as desired.

Hence sometimes we write Xy by f−1(y). Intuitively, we can consider X as a family of
schemes Xy → Spec(k(y)).

Example 2.5.3.10. Let m ∈ Z be an integer. The scheme Spec(Z[X,Y ]/(XY −m)) gives then
a family of scheme over the base scheme Spec(Z). Over each closed point (p) ∈ Spec(Z), the fiber
over (p) is Spec(Fp[X,Y ]/(XY −m̄)), while its generic fiber is given by Spec(Q[X,Y ]/(XY −m)).
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Definition 2.5.3.11. Let P be a property of morphisms of schemes f : X → Y .

1. The property P is said to be local on the base Y if the following assertions are equivalent:

(a) f verifies P;

(b) for any y ∈ Y , there exists an affine neighborhood V of y such that f |f−1(V ) verifies
P.

2. The property P is said to be stable under the base change if for any morphism f : X → Y
verifying P, and for any morphism Y ′ → Y , the base change fY ′ : XY ′ → Y ′ verifies again
the property P.

Example 2.5.3.12. Open immersion and closed immersion are properties which are local on
the base, which are also stable under base change. We will encounter more properties which are
local on the base or stable under base change.

2.6 Some global properties of morphisms

2.6.1 Separatedness of schemes

We begin with a topological observation.

Proposition 2.6.1.1. Let X be a topological space, and ∆: X → X ×X be the diagonal map.
Then X is separated ( i.e., Hausdorff) iff the image ∆(X) ⊂ X ×X is closed.

Proof. Suppose first of all X is separated. Let p = (x, y) /∈ ∆(X), namely x, y ∈ X such that
x 6= y. As X is separated, there exist two opens U, V of X such that x ∈ U , y ∈ V and
U ∩ V = ∅. In particular, p ∈ U × V ⊂ X ×X −∆(X). By the definition of product topology,
U × V is open in X × X. Hence, X × X − ∆(X) is open, as a result, ∆(X) ⊂ X × X is
closed. Conversely, suppose ∆(X) ⊂ X ×X is closed, and let x, y ∈ X such that x 6= y. Hence
(x, y) ∈ X ×X −∆(X) which is open by assumption. Hence, can find U, V ⊂ X two opens such
that (x, y) ∈ U × V ⊂ X ×X −∆(X). Hence U ∩ V = ∅. This shows that X is Hausdorff.

Let now X be a scheme, we know that the underlying topological space of X in general is not
Hausdorff, nevertheless, we will define the separatedness of schemes in a similar way. Recall first
that a morphism of schemes f : X → Y is a closed immersion if for any affine open U of Y , the
inverse image f−1(U) ⊂ X is again affine, moreover, the induced map OY (U) → OX(f−1(U))
is surjective.

Definition 2.6.1.2. A morphism of schemes f : X → Y is called separated if the diagonal
morphism ∆: X → X ×Y X is a closed immersion. We say the X is a separated Y -scheme or
X is separated over Y . A scheme X is said to be separated if X is separated over Spec(Z).

Example 2.6.1.3. Any morphism of affine schemes is separated. In particular, any affine
scheme is separated.

Lemma 2.6.1.4. For any morphism of schemes f : X → Y , its diagonal morphism ∆: X →
X ×Y X is an immersion.

Proof. This is a local property on Y , hence we may assume that Y is affine. To show that ∆
is an immersion, we need to find an open neighborhood V of the image ∆(X) such that the
induced map ∆: X → V is a closed immersion. So for any point x ∈ X, let Ux ⊂ X be a
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affine open neighborhood of x. Then Ux ×Y Ux gives an open subset of X ×Y X such that
∆−1(Ux ×Y Ux) = Ux. Put

V =
⋃
x∈X

Ux ×Y Ux,

which gives an open subset of X ×Y X containing ∆(X). Moreover, as the Ux’s are affine and
Y is affine, the induced map ∆ : Ux = ∆−1(Ux ×Y Ux) → Ux ×Y Ux is a closed immersion (as
it’s the diagonal map of the Y -scheme Ux). As a result, the induced map ∆: X → V is also a
closed immersion, as desired.

Corollary 2.6.1.5. Let f : X → Y be a morphism of schemes. Then f is separated if and only
if the image ∆(X) ⊂ X ×Y X is closed.

Proof. Clearly, if f is separated, then ∆(X) ⊂ X ×Y X is closed. Conversely, if ∆(X) is closed,
we need to check that ∆ is then a closed immersion. As ∆: X → X ×Y X is an immersion, let
U be an open neighborhood of ∆(X) such that then induced map X → U is a closed immersion.
As ∆(X) ⊂ X ×Y X is closed, let V = X ×Y X − ∆(X). We obtain hence an open covering
X = U ∪ V of X such that ∆|∆−1(U) and ∆|∆−1(V ) are both closed immersions. As a result, ∆
is a closed immersion.

Proposition 2.6.1.6. Let f : Y → X = Spec(A) be a morphism of schemes with X affine. The
following three conditions are equivalent:

1. f is separated;

2. For any two affine opens U, V ⊂ Y , their intersection U∩V ⊂ Y is again affine, moreover,
the canonical map OY (U)⊗A OY (V )→ OY (U ∩ V ) is surjective;

3. There exists an open affine covering Y =
⋃
i∈I Ui such that Ui

⋂
Uj is affine, and that the

canonical map OY (Ui)⊗OY (Uj)→ OY (Ui ∩ Uj) is surjective for any i, j ∈ I.

Proof. (1)=⇒(2): Suppose f is separated, namely the diagonal ∆: Y → Y ×X Y is a closed
immersion. Since X is affine, the open U ×X V is also affine, hence its preimage, U

⋂
V by ∆ is

also affine. Moreover, the canonical map OY×XY (U ×X V ) = OY (U)⊗A OY (V )→ OY (U ∩ V )
is surjective. This gives (2). Clearly (2) implies (3). It remains to show (3)=⇒(1). With the
notations of (3), the family {Ui×X Uj}i,j forms an affine open covering of Y ×X Y . Moreover the
preimage of Ui ×X Uj by ∆ is Ui

⋂
Uj which is affine by assumption. Moreover, the canonical

map
OY×XY (Ui ×X Uj) = OY (Ui)⊗A OY (Uj)→ OY (Ui ∩ Uj)

is surjective, as a result, the diagonal ∆: Y → Y ×X Y is a closed immersion. This gives (1).

Example 2.6.1.7. The projective space PnZ = Proj(Z[X0, · · · , Xn]) is separated. Indeed, PnZ
can be covered by the affine opens D+(Xi). Moreover, the intersection D+(Xi)

⋂
D+(Xj) is

also affine. Hence PnZ is separated over Z. As a corollary, any projective space PnS is separated
over S. More generally, a projective morphism f : X → S is separated.

Example 2.6.1.8. We consider X1 = X2 = Spec(Z), X12 = D(p) ⊂ X1 and X21 = D(p) ⊂ X2.
We glue the two schemes X1 and X2 along the open subschmes X12 ' X21. Now, the scheme X
obtained in this way is not separated. Indeed, X1 (resp. X2) can be identified with a open of X,
still denoted by X1 (resp. by X2), their intersection is denoted by U . Clearly, Xi is affine, and
so is U . So to show that X is not separated, we only need to verify that the canonical morphism

Z ' Z⊗Z Z = OX(X1)⊗Z OX(X2)→ OX(U) ' Z(p) = Z[1/p] ⊂ Q.
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But clearly, this map is not surjective. This gives the statement.

Proposition 2.6.1.9. 1. Open and closed immersions are separated.

2. Separated morphisms are stable under base change.

3. The composition of two separated morphisms is again separated. In particular, immersions
are separated.

4. Let f : X → Y , and g : Y → Z be two morphisms such that g ◦ f is separated. Then f is
separated.

Proof. (1) is clear since in this case, the diagonal is an isomorphism. (2) is also clear. (3) Let
f : X → Y and g : Y → Z be two separated morphisms. Then the diagonal ∆g◦f : X → X×ZX
can factor as

X → X ×Y X → X ×Z X.

Hence we only need to verify that the second morphism is a closed immersion. Indeed, this
second morphism can be obtained by the following cartesian diagram

X ×Y X //

��

X ×Z X

��
Y

∆g // Y ×Z Y.

Now since g is separated, the diagonal ∆g is closed immersion. As a result, the canonical
morphism X×Y X → X×ZX is a closed immersion. Hence ∆g◦f is a closed immersion, namely
g ◦ f is separated. (4) The morphism f can factor as

X
Γf // X ×Z Y

p2 // Y .

The second morphism p2 is separated since it is the base change of g ◦ f by Y → Z. Moreover,
Γf is an immersion (see the exercise below), in particular is separated. As a result, f = p2 ◦ Γf
is separated.

Exercise 2.6.1.10. Let f : X → Y be a morphism of S-schemes, then the graph

Γf : X → X ×S Y, x 7→ (x, f(x)).

Show that the following diagram is cartesian

X
Γf //

f
��

X ×S Y

f×idY
��

Y
∆ // Y ×S Y

.

Deduce then Γf is always an immersion, and is a closed immersion if Y/S is separated.

Proposition 2.6.1.11. Let P be a property about the morphism of schemes. Suppose that

– the property P is stable under base change.

– the property P is stable under composition.
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– closed immersions satisfy the property P.

Let f : X → Y and g : Y → Z be two morphisms of schemes such that g is separated. Suppose
that the composition g ◦ f satisfies P, then so is f .

Proof. The morphism f can factor as

X
Γf // X ×Z Y

p2 // Y .

As p2 is obtained as the base change of g ◦f : X → Z by Y → Z, it satisfies also the property P.
By the exercise above, since Y/S is separated, the graph Γf is a closed immersion. As a result,
it verifies the property P. Thus, the morphism f , being the composition of Γf with p2, verifies
the property P.

Exercise 2.6.1.12. Let X,Y be two S-schemes such that Y/S is separated, and that X is
reduced. Let f, g : X → Y be two morphism of S-schemes which coincide over a dense open
subset of X. Show that f = g.

2.6.2 Proper morphisms

The properness of a morphism is essentially a topological property. Recall that a map of topo-
logical spaces f : X → Y is said to be closed if for any closed subset of X, its image f(F ) ⊂ Y
is closed.

Definition 2.6.2.1. Let f : X → Y be a morphism of locally noetherian schemes.

1. f is said to be universally closed if for any morphism Y ′ → Y , the base change

fY ′ : X ′ = X ×Y Y ′ → Y ′

is a closed map between the underlying topological spaces.

2. f is said to be proper if f is separated, of finite type,14 and universally closed.

Proposition 2.6.2.2. We have the following properties:

1. Closed immersions are proper.

2. The composition of two proper morphisms is proper.

3. The base change of a proper morphism is still proper.

4. If the composition of X → Y and Y → Z is proper, and if the second morphism Y → Z
is separated. Then the first morphism X → Y is proper.

5. Let f : X → Y be a surjective morphism of S-schemes. Let us suppose that Y is separated
and of finite type over S, and that X is proper over S, then Y is proper over S.

A fundamental property about proper morphisms is the finiteness result. Here we will show
a very special case, and we will refer to Liu’s book for the proof.

Proposition 2.6.2.3. Let X → Spec(A) = S be a proper morphism. Then OX(X) is finite
over A.

14Over a non noetherian base Y , the condition “of finite type” should be replaced by “of finite presentation”,
but here for simplicity, we will not use this definition
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2.6.3 Projective morphisms

Recall that, a morphism of schemes f : X → Y is called projective if there exists an open covering
Y =

⋃
i Yi, such that f |f−1(Yi) : f−1(Yi)→ Yi can be factored as

f−1(Yi) ↪→ PmiYi → Yi

with the first morphism a closed immersion.

Theorem 2.6.3.1. A projective morphism is proper.

Proof. Let f : X → Y be a projective morphism. Then we have seen that f is of finite type and
separated. Hence it remains to show that f is universally closed. Since a base change of f is still
projective, we only need to show that f is a closed map. This is a local question on Y , hence
we may assume that Y = Spec(R), and that f can be factored as X ↪→ PnY → Y with first map
a closed immersion. Since any closed subset of X gives a closed subset of PnY , we are reduced to
the case where X = PnY = Proj(R[X0, · · · , Xn]). We denote in the following A = R[X0, · · · , Xn]
with the natural gradation. Let F = V+(I) be a closed subset with I ⊂ A a homogeneous ideal.
Let B = A/I = ⊕n≥0Bn be the quotient with the natural gradation. We need to show that
f(F ) ⊂ Y is closed. Now, for any y ∈ Y , y ∈ f(F ) if and only if F ∩Pnk(y) 6= ∅. Suppose I can be

generated by the homogeneous polynomials g1, · · · , gr ∈ A, then F ∩Pnk(y) = V+(g1, · · · , gr) with

gi the image of gi by the canonical map R[X0, · · · , Xn]→ k(y)[X0, · · · , Xn]. Hence F ∩Pnk(y) = ∅
if and only if A+⊗Rk(y) ⊂

√
(g1, · · · , gr). In an equivalent way, this means that Bn⊗Rk(y) = 0

for some integer n. Now for each n, as a R-module, Bn is of finite type, hence by Nakayama’s
lemma, Bn ⊗R k(y) = 0 is equivalent to Bn,y = 0. Hence y ∈ f(F ) if and only if y ∈ Supp(Bn)
for any n. Now, to complete the proof, it suffices to remark that the support Supp(Bn) is closed
as it’s give by V (Ann(Bn)) ⊂ Spec(R).

Lemma 2.6.3.2. Let S be a scheme. Then there exists a closed immersion PnS × PmS →
P(n+1)(m+1)−1
S , called the Segre embedding.

Proof. We will just give a set theoretical description of this morphism: let N = (n+1)(m+1)−1,
then this map is given by

PnS ×S PmS → PNS , ((x0 : · · · : xn), (y0 : · · · : ym))→ (x0y:x0y1 : · · · : xiyj : · · · : xnym).

Corollary 2.6.3.3. The following statements are true:

1. Closed immersions are projective morphisms.

2. The composition of two projective morphisms is projective morphisms.

3. Projective morphisms are stable under base change.

4. Let X → S and Y → S be projective morphisms, then so is X ×S Y → S.

5. If the composition of X → Y , Y → Z is projective, and if Y → Z is projective, then so is
X → Y .

Proof. See Liu’s book.



72 CHAPTER 2. THE LANGUAGE OF SCHEMES

Remark 2.6.3.4. Let k be a field. Let X a proper scheme over k. We can show that (1) if
dim(X) ≤ 1 then X is projective; (2) if dim(X) = 2 and X is smooth (see below for the definition
of smoothness), then X is projective; (3) there exist proper scheme over k of dimension 2 and
smooth proper scheme over k of dimension ≥ 3 which are not projective.

Theorem 2.6.3.5 (Chow’s lemma). Let Y be a noetherian scheme, and f : X → Y be a proper
morphism. Then there exists a projective Y -scheme g : X ′ → Y , and a Y -morphism f : X ′ → X
such that there exists an everywhere dense open subset U ⊂ X such that f |f−1(U) : f−1(U)→ U
is an isomorphism.

Proof. Omitted.

2.7 Some local properties of schemes and morphisms of schemes

2.7.1 Zariski tangent spaces

Definition 2.7.1.1. 1. Let X be a scheme, and x ∈ X. Let mx ⊂ OX,x be the maximal
ideal and k(x) = OX,x/mx the residue field. We define the tangent space to X at x to the
k(x)-vector space (mx/m

2
x)∨ := Homk(x)(mx/m

2
x, k(x)).

2. For f : X → Y be a morphism of schemes. Let x ∈ X and y = f(x). Then f ]x : OY,y → OX,x
canonically induces a k(x)-linear map TX,x → TY,y ⊗k(y) k(x), which will be denoted by
Tf,x, called the tangent map of f at x.

The following lemma is very useful.

Lemma 2.7.1.2. Let A be a ring with m ⊂ A a maximal ideal. Then the canonical morphism
of A-modules m/m2 → mAm/m

2Am is an isomorphism.

Proof. We remark first that the canonical map A/m → Am/mAm is an isomorphism of A-
modules, hence so is the canonical maps

m/m2 ' m⊗A A/m ' m⊗A (Am/m
2Am) ' mAm/m

2Am,

which is exactly the canonical morphism considered in this lemma.

In the following, we will consider an explicit example. Let

– k be a field;

– Y = Ank = Spec(k[T1, · · · , Tn]), with y = (λ1, · · · , λn) ∈ Ank(k) a rational point;

– E = kn be the k-vector spaces of dimension n.

Associate with the point y, we consider the following k-linear map

Dy : k[T1, · · · , Tn]→ E∨, f 7→

(
(t1, · · · , tn) 7→

n∑
i=1

∂f

∂Ti
(y)ti

)
.

Lemma 2.7.1.3. Let m = (T1 − λ1, · · · , Tn − λn) ⊂ k[T1, · · · , Tn] be the maximal ideal corre-
sponding to y.

1. The restriction of Dy to m induces an isomorphism m/m2 ' E∨.
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2. TY,y ' E.

Proof. Direct computation.

In particular, we obtain the following perfect pairing

m/m2 × E → k, (f, (t1, · · · , tn)) 7→
n∑
i=1

∂f

∂Ti
(y)ti.

Consider a closed subscheme X = Spec(k[T1, · · · , Tn]/I) ↪→ Y with I ⊂ k[T1, · · · , Tn] an ideal.
Let x = (λ1, · · · , λn) ∈ X(k) ⊂ Y (k) be a rational point of X. Let m ⊂ k[T1, · · · , Tn] (resp.
n ⊂ A := k[T1, · · · , Tn]/I) be the maximal ideal corresponding to x ∈ Y (resp. to x ∈ X). Then
I ⊂ m, and n = m/I. In particular, n/n2 = m/(m2 + I), and we obtain the following short exact
sequence:

0→ (m2 + I)/m2 → m/m2 → n/n2 → 0.

As a result, the isomorphism TY,x = (m/m2)∨ ' E induces an identification between TX,x and
the subspace

(Dy(I))⊥ :=

{
(t1, · · · , tn) ∈ E :

n∑
i=1

∂P

∂Ti
(x)ti = 0 ∀P ∈ I

}
.

If I = (P1, · · · , Pm), the latter space can also be written as:

(Dy(I))⊥ :=

{
(t1, · · · , tn) ∈ E :

n∑
i=1

∂Pj
∂Ti

(x)ti = 0 ∀j = 1, · · · ,m

}
.

Example 2.7.1.4. Let k be an algebraically closed field. Consider X = Spec(k[T, S]/(T 2 −
S3)) ↪→ A2

k. Let P = (a, b) ∈ X be a closed point (hence rational as k is algebraically closed).
Then according to the previous calculations, we have

TX,P ' {(t, s) ∈ k2 : 2at− 3b2s = 0}.

Hence dimkTX,P = 1 if P is not equal to the origin of A2
k, otherwise it’s of dimension 2.

2.7.2 Regular schemes

Let (A,m) be a neotherian local ring with residue field k. Recall that dim(A) ≤ dimkm/m
2. We

consider also the following k-graded algebra associated with A:

grm(A) =

∞⊕
n=0

mn/mn+1.

Definition 2.7.2.1. A neotherian local ring (A,m) is called regular if dim(A) = dimkm/m
2

Theorem 2.7.2.2. Let (A,m) be a noetherian local ring of dimension d. The following three
statements are equivalent.

1. A is regular.

2. m ⊂ A can be generated by d elements.

3. grm(A) is isomorphic, as a k-graded algebra, to the ring of polynomials in d variables.
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Proof. Cf. Atiyah-MacDonald Theorem 11.22.

Proposition 2.7.2.3. Let (A,m) be a regular neotherian local ring. Then A is an integral
domain.

Proof. This proposition can be proved by using the theorem above, see Atiyah-MacDonald 11.23.
Here is a direct proof of this result. We will prove by induction on d := dim(A). If d = 0, as
A is regular, we find dimkm/m

2 = 0. Hence m = m2, which implies m = 0 by Nakayama’s
lemma. So A is a field in this case. In particular, it’s an integral domain. Suppose now d ≥ 1,
and the statement has been verified for the local rings of dimension ≤ d − 1. Let f ∈ m − m2,
and consider A/(f). We claim first that dim(A/(f)) is regular of dimension d − 1. Indeed, let
n = m/(f) ⊂ A/(f) be its maximal ideal. Then n/n2 = m/(m2 + (f)) which is of dimension
d − 1 (as f /∈ m2). On the other hand, as A is noetherian, dim(A/(f)) ≥ dim(A) − 1 = d − 1,
hence we find the following inequalities

d− 1 = dim(A)− 1 ≤ dim(A/f) ≤ dimkn/n
2 = d− 1.

On the other hand, let p ⊂ A be a (minimal) prime ideal of depth d, then A/p is again regular
of dimension d, and the quotient A/(f + p) is a local ring of dimension ≥ dim(A/p)− 1 = d− 1
(being the quotient of A/p by a single element) whose maximal ideal can be generated by d− 1
elements (being a quotient of A/(f) which is regular local of dimension d − 1), as a result,
A/(f + p) is equally regular of dimension d − 1. Now, as A/(f + p) is a quotient of A/f ,
which are both integral by induction hypothesis, we have (f) + p = (f). Therefore, p ∈ (f).
So for any u ∈ p, there exists v ∈ A such that u = fv. But note that f /∈ p (otherwise
dim(A/f) ≥ dim(A/p) = d), we must have v ∈ p. This shows p ⊂ (f)p ⊂ mp. So the Nakayama
lemma implies p = 0. So A is integral. This finishes the proof.

From the proof, we obtain also the following

Corollary 2.7.2.4. Let (A,m) be a noetherian regular local ring of dimension d. Let f ∈ m.
Then A/(f) is regular of dimension d− 1 if and only if f /∈ m2.

Proof. From the proof, we know that if f ∈ m − m2, then A/(f) is regular of dimension d − 1.
Conversely, suppose A/(f) is regular of dimension d − 1. In particular, f 6= 0. Moreover, to
require that A/(f) is regular of dimension d−1 is the same to require that dim(m/(m2 +(f))) =
dim(m/m2)− 1. Hence we must have f /∈ m2.

By induction, we obtain also the following

Corollary 2.7.2.5. Let (A,m) be a regular noetherian local ring of dimension d. Let I ⊂ A
be a proper ideal of A. Then A/I is regular if and only if I can be generated by r ele-
ments f1, · · · , fr with r = dim(A) − dim(A/I), such that the fi’s can be generated to a family
{f1, · · · , fr, fr+1, · · · , fd} of generators of m.

Theorem 2.7.2.6. Let A be a regular neotherian local ring. Then the following properties hold.

1. For any prime ideal p ⊂ A, its localization Ap is also regular.

2. The ring A is factorial.

Definition 2.7.2.7. Let X be a locally neotherian scheme, and let x ∈ X be a point. We say
that X is regular at x ∈ X, or x is a regular point of X if OX,x is regular. We say that X is
regular if X is regular at all its points. A point x ∈ X which is not regular is called a singular
point of X. A scheme that is not regular is said to be singular.
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Corollary 2.7.2.8. Let X be a noetherian scheme. Then X is regular if and only if X is regular
at all its closed points.

Proof. Note that, as X is noetherian, any closed subset of X admits a closed point.

Example 2.7.2.9. Let k be an algebraically closed field.15 The affine space Ank is regular.
Indeed, as Ank is one quasi-compact, we only need to check that Ank is regular at all its closed
points. Let x = (x1, · · · , xn) ∈ Ank be a closed point, and let m = (X1 − x1, · · · , Xn − xn) ⊂
k[X1, · · · , Xn] be the corresponding maximal idea. Then m/m2 is of dimension n over k with a
base given by the images of Xi−xi in m/m2. On the other hand, we know Ank is of dimension n,
the local ring OAnk ,x is of dimension n. Thus, by Lemma 2.7.1.2, OAnk ,x is regular of dimension n.
In this way, one shows that Ank is regular. As a corollary, the projective space Pnk is also regular.

Theorem 2.7.2.10 (Jacobian criterion). Let k be a field. Let X = V (I) ↪→ Ank be a subscheme
defined by the ideal I ⊂ k[T1, · · · , Tn]. Suppose I = (F1, · · · , Fr), and let x ∈ X(k) be a rational
point. Then X is regular at x if and only if the following matrix

Jx =

(
∂Fi
∂Tj

(x)

)
1≤i≤r,1≤j≤n

is of rank n− dim(OX,x).

Example 2.7.2.11. Consider X = V (T 2 − S3) ⊂ A2
k = Spec(k[T, S]). Let P = (a, b) be a

rational point of X. The localization OX,P is always of dimension 1. While for the corresponding
matrix JP , it’s of rank 1 if and only if x it not the origin of A2

k. Hence P ∈ X is a regular point
if and only if P is not the origin.

For X a noetherian scheme, we will denote by Reg(X) the set of regular points of X, and
Xsing := X − Reg(X) the singular locus of X.

Proposition 2.7.2.12. Let k be an algebraically closed field, and X/k be a scheme of finite
type. Then

1. If moreover X is reduced. Then Reg(X) contains a closed point of X.

2. In general, Reg(X) ⊂ X is an open subset.

Proof. (1) See Liu’s book.
(2) This is a local question on X, hence we may assume thatX = Spec(A) is affine. Moreover,

we may assume that Xis irreducible. Hence for each closed point x ∈ X(k), OX,x is of the same
dimension d = dim(X). As X is of finite type over k, A ' k[T1, · · · , Tn]/I for some ideal
I ⊂ k[T1, · · · , Tn]. Suppose I = (F1, · · · , Fr), and consider the matrix

M =

(
∂Fi
∂Tj

)
with coefficients in k[T1, · · · , Tn]. For each closed point x ∈ X, the matrix M(x) is then of
rank ≤ n − d. Let J ⊂ A be image of the ideal of k[T1, · · · , Tn] generated by the minors
of M of order n − d. Then a closed point x ∈ X is singular if and only if all the minors
of order n − d of M(x) vanishes, in other words, if and only if x ∈ V (J) ⊂ X. Now we
claim that Reg(X) = X − V (J). Indeed, for a point y ∈ X − V (J), it can specialize to a

15In fact, this assumption is unnecessary. Here we make this assumption just for simplicity.
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closed point x of X contained in X − V (J). Hence y is a regular point of X since OX,y is a
localization of a regular local ring OX,x. In this way, we see X − V (J) ⊂ Reg(X). Conversely,

consider a regular point x ∈ X, and let Z = {x} ⊂ X with the reduced subscheme structure.
Let I ⊂ A be the ideal defining Z. As Z is integral with x ∈ Z its generic point, the local
ring OZ,x = OX,x/IOX,x is a field. Since OX,x is a local ring, one can find r := dim(OX,x)
elements {f1, · · · , fr} ⊂ I such that mX,x = IOX,x = (f1, · · · , fr)OX,x. As a result, we find
mX,xOX,y = (f1, · · · , fr)OX,y. According to (1), there exists a regular closed point y0 ∈ Z.
Hence OZ,y0 = OX,y0/(f1, · · · , fr) = OX,y0/mX,xOX,y0 is regular. As a result, OX,y0 is regular
by the lemma below. Since y0 ∈ X is closed, by the jacobian criterion, y0 ∈ X − V (J). This
implies x ∈ X − V (J) since y ∈ {x}.

Lemma 2.7.2.13. Let (A,m) be a noetherian local ring. Let p ⊂ A be a prime ideal such that
Ap and A/p are both regular. Moreover, suppose that p can be generated by e elements with
e = dim(Ap). Then A is also regular.

Proof. Write d = dim(A). As p can be generated by e elements {f1, · · · , fe}, we find dim(A/p) ≥
d − e. On the other hand, as dim(Ap) + dim(A/p) ≤ dim(A), we find exactly dim(A/p) =
d − e. Let {g1, · · · , gd−e} ⊂ m whose images in A/p generate m/p, then we obtain m =
(f1, · · · , fe, g1, · · · , gd−e) which hence can be generated by d elements. As a result, A is reg-
ular.

Remark 2.7.2.14. With the notations of the proof of Proposition 2.7.2.12 (2), the singular
locus Xsing of an irreducible affine scheme X = Speck[T1, · · · , Tn]/(F1, · · · , Fr) is given by V (J),
where J ⊂ k[T1, · · · , Tn]/(F1, · · · , Fr) is the ideal generated by the images of the minors of order
n− dim(X).

2.7.3 Flatness and smoothness

As we mentioned before, intuitively, a morphism of schemes f : X → Y can be thought as a
family of schemes defined over fields {Xy}y∈Y indexed by the scheme Y . As in the analytic
case, to have some good properties on f , we usually need to suppose that the family moves
continuously along the scheme Y . The right notion for the continuity in algebraic geometry is
the flatness. Recall first the following definition in commutative algebra.

Definition 2.7.3.1. Let A be a ring.

1. An A-module M is said to be flat if for any injective morphism N ′ ↪→ N , the induced
morphism M ⊗A N ′ →M ⊗A N is still injective.

2. A morphism of ring A→ B is said to be flat, if B is flat as an A-module.

Definition 2.7.3.2. Let f : X → Y be a morphism of schemes. We say that f is flat at the
point x ∈ X if the homomorphism f ]x : OY,f(x) → OX,x is a flat. We say that f is flat if it’s flat
at all the points of X.

Example 2.7.3.3. If Y = Spec(k) is the spectrum of a field, then every morphism f : X → Y
is flat.

Example 2.7.3.4. For A a discrete valuation ring, let π ∈ A be a uniformizing element. Then
an A-module M is flat if and only if M has no non-trivial π-torsion. As a result, a morphism
f : X → Y is flat if and only if every irreducible component of X dominates Y . See 4.3.9 of
Liu’s book for a proof of this statement.
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Proposition 2.7.3.5. The following properties are true.

1. Open immersions are flat morphisms.

2. Flat morphisms are stable under composition and base change.

3. Let A → B be a morphism of rings. Then Spec(B) → Spec(A) is flat if and only if B is
flat over A.

For a flat morphism f : X → Y , the family {Xy}y∈Y moves continuously along the scheme
Y , which allows to deduce many interesting properties about the morphism f . For example, one
have the following theorem, whose proof can be found in the book of Liu.

Theorem 2.7.3.6. Let f : X → Y be a morphism of locally neotherian schemes. Let x ∈ X
and y = f(x). Then

dim(OXy ,x) ≤ dim(OX,x)− dim(OY,y).

If, moreover, f is flat, then we have equality.

Corollary 2.7.3.7. Let X,Y be two irreducible schemes of finite type over a field k, and f : X →
Y be a surjective flat morphism of k-schemes. Then for every y ∈ Y , every irreducible component
of Xy is of dimension dim(X)− dim(Y ).

Moreover, we have

Theorem 2.7.3.8. Let f : X → Y be a morphism of schemes between locally noetherian schemes.
Assume that f is flat. Then f is an open map between the underlying topological spaces of X
and Y .

Definition 2.7.3.9. 1. Let f : X → Y be a morphism of finite type of locally noetherian
schemes. Let x ∈ X and y = f(x). We say that f is unramified at x if the homomorphism
OY,y → OX,x verifies myOX,x = mx, and the (finite) extension of residue fields k(y)→ k(x)
is separable. We say that f is étale at x if it’s unramified and flat at x.

2. A morphism of noetherian local rings A → B is called étale is it’s unramified, flat and if
B is a localization of a finitely generated A-algebra.

Lemma 2.7.3.10. Let f : X → Y be a morphism of finite type of locally noetherian schemes.

1. Then f is unramified if and only if for each y ∈ Y , the fiber Xy is unramified (hence
automatically étale over k(y)).

2. If Y = Spec(k) is the spectrum of a field, then X is unramified over k if and only if X
affine with OX(X) a finite product of separable extensions of k.

Proof. (1) For any x ∈ X over y ∈ Y , the quotient OX,x/myOX,x remains unchange after we
replace X by its fiber Xy over y. As a result, f is unramified at x if and only if Xy is unramified
at x over k(y), which shows (1). For (2), let x ∈ X be an arbitrary point, as the maximal ideal
of OX,x is 0, OX,x is a field. As a result, dim(OX,x) = 0 for any x ∈ X. Hence dim(X) = 0 and
X is a disjoint union of finitely many points. Moreover, for each point x ∈ X, OX,x = k(x) is a
separable extension of k, as a result, OX(X) is a finite product of separable extension of k.

Proposition 2.7.3.11. The following properties are true.

1. All closed immersion of locally noetherian scheme is an unramified morphism.
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2. All open immersion of locally noetherian scheme is an étale morphism.

3. Unramified morphisms and étale morphisms are both stable under composition and base
change.

Example 2.7.3.12 (Standard étale ring homomorphism). Let A be a noetherian ring, f ∈ A[X]
be a monic polynomial with coefficients in A, and g ∈ A[X]. Let B = A[X]/(f), and suppose
that the image of the derivative f ′ of f in Bg is invertible. Then Bg is étale over A. Such a ring
homomorphism A → (A[X]/f)g is called a standard étale ring homomorphism. To justify the
terminology, we prove first that the A-algebra B is flat. Indeed, write

f(X) = Xn + an−1X
n−1 + · · ·+ a1X + a0,

then the qotient B = A[X]/(f) is a free A-module free of rank n. In particular, its localization
Bg is flat over A. Hence, to show that Bg is étale over A, we may assume that A = k is a field.
Let

f(X) =

s∏
i=1

Pi(X)mi

be the decomposition of f into product of irreducible polynomials such that Pi - Pj for any
i 6= j. Then we know

k[X]/(f(X)) =
s∏
i=1

k[X]/(Pi(X)mi),

and hence X =
∐s
i=1 Spec(k[X]/(Pi(X)mi) = {x1, · · · , xs}. So we need to show that, if the

image of f ′ in k[X]/(Pi(X)mi) is invertible, then mi = 1, and Pi(X) is a separable polynomial.
By definition, we have

f ′(X) =
s∑
i=1

miPi(X)mi−1P ′i (X) ·
∏
j 6=i

Pj(X)mj .

Hence f ′(X) is invertible in Bi := k[X]/(Pi(X)mi) if and only if Pi(X)mi−1P ′i (X) is invertible
in Bi. So we must have mi = 1, and P ′i (X) is non zero, which implies that Pi is separable. This
prove the assertion.

The importance of the previous example is that, any étale morphism of rings locally looks
like a standard étale ring homomorphism. More precisely, we have

Theorem 2.7.3.13 (local structure of étale and unramified morphisms). Let B be an A-algebra
and q ⊂ B be a prime ideal over a prime ideal p ⊂ A.

1. The following two conditions are equivalent:

(a) Spec(B) is étale over Spec(A) over some open neighborhood of q ∈ Spec(B).

(b) There exist f ∈ B − q and h ∈ A − p such that Bf is A-isomorphic to a standard
étale Ah-algebra C = (Ah[X]/P )g.

2. The following two conditions are equivalent:

(a) Spec(B) is unramifield over Spec(A) over some open neighborhood of q ∈ Spec(B).

(b) There exist f ∈ B − q, h ∈ A− p and a standard étale Ah-algebra C = (Ah[X]/P )g,
and a surjective morphism of A-algebras C → Bf .
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Proof. We refer to Raynaud’s book Anneaux locaux henséliens Chapitre V for a proof of this
important theorem.

Definition 2.7.3.14. Let X/k be a scheme of finite type over a field k. Let k be an algebraic
closure of k. We say that X is smooth at a point x ∈ X if the points of Xk over x are regular
points of Xk. We say X is smooth if X is smooth at any points of X, or equivalently, if Xk is
regular.

Example 2.7.3.15. Let k be a field.

1. The affine space Ank and projective space Pnk are all smooth over k. Indeed, by Exam-
ple 2.7.2.9, the base changes An

k̄
and Pn

k̄
are all regular.

2. Let L/k be a finite separable extension of k, then X := Spec(L)→ Spec(k) is smooth. In
fact, its base change Xk̄ = Spec(L ⊗k k̄). As L/k is finite separable, it can be generated
by just one element x ∈ L. Let P (X) ∈ k[X] be the minimal polynomial of x over k, then
L ' k[X]/(f(X)). Hence Xk̄ = Spec(k̄[X]/(f(X))). As f(X) is separable, f(X) can be
decomposed in k̄[X] as follows:

f(X) = (X − a1)(X − a2) · · · (X − an)

where ai ∈ k such that ai 6= aj (i 6= j). Now, the Chinese remainder theorem implies that

k̄[X]/(f(X)) ' k̄[X]/(X − a1)× · · · × k̄[X]/(X − an) ' k̄n.

So Xk̄ = Spec(k̄n) is a disjoint union of finitely many closed points xi (1 ≤ i ≤ n), and
the corresponding local ring OXk̄,xi is isomorphic to k. Hence Xk̄ is regular of dimension
0. This shows that Spec(L)→ Spec(K) is smooth.

3. Suppose now k is imperfect of characteristic p. Consider a ∈ k−kp, and the finite extension
L = k[X]/(Xp − a). Then X = Spec(L) is regular, but X is not smooth over Spec(k).
Indeed, its base change to k̄ is given by Spec(L⊗k k̄) = Spec(k̄[X]/(X −α)p) where α ∈ k̄
such that αp = a. So Xk̄ is a non-reduced scheme. In particular, Xk̄ is not regular. As a
result, X is not smooth over Spec(k).

Exercise 2.7.3.16. Let L/k be a finite field extension. Then Spec(L) → Spec(k) is smooth if
and only if L/k is separable. Deduce that for a scheme X of finite type over a field k such that
dim(X) = 0, X is smooth over k if and only if X is étale over k.

Lemma 2.7.3.17. Let k be an algebraically closed field, and let Ω be an algebraically closed field
containing k. Let X be a scheme of finite type over k with is irreducible of dimension d. Then
so is the base change XΩ.

Proof. To be added later. The key point here is the following: for k an algebraic closed field,
and for K,L two field extension of k, the tensor product K ⊗k L is an integral domain.

Lemma 2.7.3.18. Suppose k = k is algebraically closed, and let Ω/k be an extension of k which
is also algebraically closed. Let X/k be a scheme of finite type. Then X/k is smooth, if and only
if the base change XΩ over Ω is smooth.



80 CHAPTER 2. THE LANGUAGE OF SCHEMES

Proof. Up to replace X by a connected component of X, we may assume that X is connected.
As X is smooth over k, with k algebraically closed, each local ring of X is regular, and hence is
an integral domain. As a result, X is irreducible (see the exercise below), hence X is integral.
As a result, XΩ is also irreducible, and dim(XΩ) = dim(X) =: d (see the lemma above). We
may also assume that X = Spec(A) is affine, with A = k[T1, · · · , Tn]/(F1, · · · , Fr), as a result,
XΩ = Spec(Ω[T1, · · · , Tn]/(F1, · · · , Fr)). Let J be the ideal generated by the images of the
minors of order n− d of the following matrix M

M: =

(
∂Fi
∂Tj

)
1≤i≤r,1≤j≤n

Then as we see in the proof of Proposition 2.7.2.12 (2) (or Remark 2.7.2.14), V (J) ⊂ X is the
singular locus Xsing of X. Similarly, the ideal

JΩ := J ⊗k Ω ⊂ AΩ = A⊗k Ω

defines also the singular locus XΩ,sing of XΩ. Hence, if X is smooth over k, then V (J) = ∅.
This implies that the ideal J ⊂ A is equal to A. Hence so is the ideal JΩ ⊂ AΩ. As a result,
V (JΩ) = ∅. In other words, XΩ is smooth.

Exercise 2.7.3.19. Let X be a noetherian scheme whose local rings are all integral domains.
Prove that any connected component of X is also irreducible.

Corollary 2.7.3.20. Let X/k be a scheme over k, and let k ⊂ k′ be a field extension. If X is
smooth over k, then so is the base change Xk′.

Definition 2.7.3.21. Let f : X → Y be a morphism of schemes. We say that f is smooth at a
point x ∈ X if f is flat at x, and Xy is smooth at x (where y = f(x)). If f is smooth at any
point of X, then we say that f is smooth.

For a flat morphism f : X → Y , we define the relative dimension of f at a point y ∈ Y to
be the dimension of the fiber Xy. With this terminology, a étale morphism is just a smooth
morphism of relative dimension 0. More precisely, we have

Proposition 2.7.3.22. Let f : X → Y be a finite type morphism between locally noetherian
schemes. Suppose moreover that f is a smooth morphism. Then f is étale if and only if for any
point y ∈ f(X) ⊂ Y , the relative dimension of f at y is equal to zero.

Proof. Use Exercise 2.7.3.16.

Proposition 2.7.3.23. Let Y be a regular locally noetherian scheme, and f : X → Y be a
smooth morphism. Then X is also regular.

Proof. Omitted, see Liu’s book, theorem 4.3.36.

Proposition 2.7.3.24. Smooth morphisms are stable under base change and composition.

Proposition 2.7.3.25. Let f : X → Y be a morphism of finite type between locally noetherian
schemes. Let x ∈ X and y = f(x). Then we have an exact sequence of k(x)-vector spaces

0→ TXy ,x → TX,x → TY,y ⊗k(y) k(x)

If moreover f is smooth at x, then the sequence above is also exact at right.
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2.7.4 Normal schemes

Recall that an integral domain R is called normal if R is integrally closed in its fraction fields.
Namely, for any element a ∈ Frac(R), if there exists a monic polynomial P (X) ∈ A[X] such
that P (a) = 0, then a ∈ R.

Exercise 2.7.4.1. Let A be a ring.

1. If A is a unique factorization domain. Then A is normal. Deduce that any regular noethe-
rian local ring is normal (use Theorem 2.7.2.6 (2)).

2. If A is a normal integral domain. Then S−1A is normal for any multiplicative subset S of
A.

Remark 2.7.4.2. Let (A,m) be a noetherian local ring.

1. If dim(A) = 0. Then A is normal iff A is regular iff A is an integral domain iff A is a field.

2. If dim(A) = 1. The we claim that the following three statements are all equivalents: (a)
A is a principal ideal domain; (b) A is a regular; (c) A is normal.

• Clearly (a) implies (b) and (c).

• Now assuming A normal, we will show that m can be generated by one element, that
is A is regular. Let x ∈ m−m2. As A is a domain of dimension 1, the quotient A/(x)
is of dimension 0. In particular, its maximal ideal m/(x) ⊂ A/(x) is nilpotent, which
implies that there exists an integer r � 1 such that mr ⊂ xA. If r = 1, we can then
conclude m = (x) is principal. Otherwise, assume r ≥ 2, and we claim that claim that
mr−1 ⊂ xA. Indeed, let y ∈ mr−1, then yx−1m ⊂ x−1mr ⊂ A. Thus yx−1m is an ideal
of A. It cannot be equal to A since otherwise one would have x ∈ ym ⊂ m2, which
is a contradiction. Hence yx−1m ⊂ m. Now we claim yx−1 ∈ Frac(A) is integral over
A: indeed, suppose m = (x1, · · · , xn), there exist aij ∈ A such that

yx−1xi =
∑
j

aijxj .

In other words, we have the following equality in terms of matrix

(yx−1In − (aij)) · (x1, · · · , xn)′ = 0.

As a result, det
(
yx−1In − (aij)

)
· xi = 0. Since A is a domain, Frac(A) is a field.

Moreover m is non-zero, we must have then det
(
yx−1In − (aij)

)
= 0. So the element

yx−1 ∈ Frac(A) verifies an integral relation over A. By consequent, yx−1 is integral
over A. As A is normal, we must have yx−1 ∈ A. Hence y ∈ xA, and we obtain
mr−1 ⊂ A. If we continue this proof in finitely many times, we find m ⊂ xA, hence
m = xA is principal. So this implies (b).

• To complete the proof, it remains to show (b) implies (a). Let x ∈ A such that
m = (x). We claim first that I :=

⋂
n≥m

n is equal to (0). Clearly mI ⊂ I, so
by Nakayama’s lemma, it remains to show I ⊂ mI. If mI = 0, as A is an integral
domain, we must have I = 0, and we have trivially I ⊂ mI. If mI 6= 0. Then A/mI
is a noetherian local ring of dimension 0, as a result, there exist some integer r � 0
such that mr ⊂ mI. Hence I ⊂ mr ⊂ mI. So in both case, we have I ⊂ mI. This
gives finally mI = I, as a result, I = 0 by Nakayama’s lemma. Next, let J ⊂ A
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be a non-zero ideal contained in m. As
⋂
n≥0 m

n = 0, there exists an integer n ≥ 1

such that J ⊂ mn = (xn) but J * mn+1. We claim that J = xnA. Indeed, choose
y ∈ J−mn+1, then the image of y in the quotient mn/mn+1 = mn⊗AA/m is non-zero.
But the latter quotient is of one dimensional over A/m, as a result, the image of y
gives a base of this quotient. So by Nakayama’s lemma, y generates also the ideal
mn. Hence mn = (y) ⊂ J . This shows J = mn = (xn), and hence gives (1).

3. If dim(A) ≥ 2. Then there exits example of normal local ring which is not regular. For
example, consider the ring A = k[X,Y, Z]/(Z2 −XY ). The scheme X = Spec(A) is not
regular (for example, one can use jacobian criterion to see that X is not regular at the
point o = (0, 0, 0)), but the ring A is however normal. As a result, OX,o is a normal
noetherian local ring which is not regular.

Example 2.7.4.3. For k a field, show that A = k[X,Y, Z]/(Z2 −XY ) is a normal ring (Hint:
show firstly the following morphism is injective

A→ k[U, V ], X 7→ U2, Y 7→ V 2, Z 7→ UV.

Then use this injection to identify A with the subring k[U2, V 2, UV ]. Finally verify the equality
k[U2, V 2, UV ] = k[U, V ] ∩ k(U2, V/U), where the intersection is taken in k(U, V ), and conclude
that k[U2, V 2, UV ] is normal).

Definition 2.7.4.4. Let X be a scheme. We say that X is normal at x ∈ X or that x is a
normal point of X if OX,x is normal. We say that X is normal if it is normal at all of its
points.16 Similarly, we define the notion of factorial scheme.

Proposition 2.7.4.5. Let X be an irreducible scheme. The following properties are equivalent:

1. The scheme X is normal.

2. For every open subset U of X, OX(U) is a normal integral domain.

If, moreover, X is quasi-compact, these properties are equivalent to

3 The scheme X is normal at its closed points.

Proof. (1)=⇒(2). As X is normal, the scheme X is integral. In particular, OX(U) is integral
domain. Let α ∈ Frac(OX(U)) which is integral over OX(U). We may assume U is affine. Write
U = Spec(A). As X is normal, for any prime ideal p of A, the localization Ap is normal. In
particular, we have x ∈ Ap. Hence α = ap/bp with ap ∈ A, and bp ∈ A − p. In particular, we
find in the field frac(A) the equality xbp = ap. Now we consider I ⊂ A the ideal generated by
bp, then I = A. In particular, one can find the equality 1 =

∑
p λpbp. Hence x =

∑
p λpbpx =∑

p λpap ∈ A. This gives (2). The inverse direction is clear. Suppose now X quasi-compact.
It remains to show that (3) implies (1). In fact, for any point x ∈ X, we claim that there

exists a closed point y ∈ X such that y ∈ {x}.17 Indeed, as X is quasi-compact, and {x} ⊂ X
is a closed subset, we can find finitely many affine open subschemes Ui (i = 1, · · · , n) such that
{x} ⊂

⋃n
i=1 Ui. Now suppose x ∈ U1, then x corresponds to a prime ideal p1 of the ring OX(U1),

hence there exists a maximal ideal containing p1, which corresponds then a closed point y1 of
U1. In other words, y1 ∈ U1 is a closed point of U1 such that y1 ∈ {x}. Then y1 ∈ X is closed

16This definition differs from the definition in the book of Liu where we require for simplicity that X is
irreducible.

17In this proof, the closure is always taken in X
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if and only if {y1}
⋂
Ui is a closed subset of Ui for each i. If it is not the case, there exists

i ∈ {2, · · · , n}, say i = 2 such that {y1}
⋂
U2 is not closed. Hence one can find y2 ∈ U2 which is

closed in U2 such that y2 ∈ {y1}. Moreover, since y1 ∈ U2 is not closed, y2 6= y1. Hence y2 /∈ U1

since y1 ∈ U1 is already closed. Now we continue with this processus, and since the covering
is finite, after at most n steps, one find a point y ∈ X such that y ∈ {x} such that {y} ∩ Ui
is closed in Ui for each i. In other words, y ∈ X is a closed point. This gives the claim. Now
by the assumption, OX,y is a normal ring. Since OX,x is a localization of OX,y, it’s hence still
normal. In this way, we show that X is normal. This proves (1), and hence finishes the proof of
this proposition.

Theorem 2.7.4.6 (Krull’s structure theorem). Let A be a noetherian integral domain. Then A
is normal if and only if the following two conditions are satisfied:

(i) For any prime ideal p ⊂ A of height 1, Ap is a principal ideal domain.

(ii) We have the following equality in Frac(A) =: K:

A =
⋂

p∈Spec(A),ht(p)=1

Ap.

Proof. Clearly, if A is an integral domain verifying the two properties (i) and (ii) above, then A is
normal as it’s the intersection of normals subrings. Now let A be a normal ring, we need to show
that the two properties (i) and (ii) are true. In fact, for any prime ideal p ⊂ A of height 1, Ap

is a normal local ring of dimension 1, hence Ap is a principal ideal domain. It remains to verify
the second property. In fact, let A′ =

⋂
p∈Spec(A),ht(p)=1Ap ⊂ Frac(A), we need to show that

A = A′. Clearly A ⊂ A′. If A ( A′, for any element f ∈ A′ −A, let If := {a ∈ A|af ∈ A} ⊂ A,
which is clearly non-zero. As A is noetherian, the set {If : f ∈ A′ − A} contains a maximal
element, say q := Ig. We claim that q ⊂ A is a prime ideal. Indeed, let a1, a2 ∈ A such that
a1a2 ∈ q but a2 /∈ q. Then a2g ∈ A′ − A, and a1 ∈ Ia2g. Furthermore, by definition, we have
q = Ig ⊂ Ia2g. By the choice of q = Ig, we must have q = Ia2g. Hence a1 ∈ q. This shows that q
is a prime ideal. Moreover, we remark that ht(q) ≥ 1 since 0 ( q.

Consider now the ideal gqAq ⊂ Aq (note that gq ⊂ A). If gqAq = Aq, then we obtain
qAq = g−1Aq (equality in Frac(A)). As a result, Aq is a local ring of dimension ≤ 1 (as its
maximal ideal can be generated by just one element). So this implies that q is of height 1. But

g ∈ A′ =
⋂

p∈Spec(A),ht(p)=1

Ap,

we have g ∈ Aq, so we obtain 1 = g−1g ∈ g−1Aq = qAq, a contradiction. Thus, we must
have gqAq ⊂ qAq. As Aq is noetherian, the ideal qAq, is of finite type. By the same argument
as we see in Remark 2.7.4.2 (2) ((c)=⇒(b)), g ∈ Frac(A) is integral over Aq. As Aq, being a
localization of the normal ring A, is normal, we must have g ∈ Aq. As a result, g = a/s with
a ∈ A and s ∈ A − q. So sg = a ∈ A, which implies that s ∈ q = Ig. A contradiction. As a
result, one cannot find such ideal q, hence the set {If |f ∈ A′−A} must be empty, which means
A′ = A. This finishes the proof of the theorem.

As a geometric application of Krull’s theorem, we have the following

Proposition 2.7.4.7. Let X be a normal locally noetherian scheme. Let F ⊂ X be a closed
subset of codimension ≥ 2 in X. Then the restriction map OX(X)→ OX(X − F ) is bijective.
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Proof. We may assume that X = Spec(A) is affine and irreducible. In particular, X is integral.
Let ξ ∈ X be its generic point. According to Proposition 2.3.3.5, for any open U ⊂ X (resp.
any point x ∈ X), OX(U) (resp. OX,x) is naturally a subring of OX,ξ. Moreover, under these
identifications, if x ∈ U , then OX(U) ⊂ OX,x ⊂ OX,ξ = Frac(A). Now, as F ⊂ X is of
codimension ≥ 2, its complement X − F contains all the primes of A of height 1. In particular,

A = OX(X) ⊂ OX(X − F ) ⊂
⋂

p∈Spec(A),ht(p)=1

Ap = A.

As a result, OX(X)OX(X − F ) = A. This finishes the proof.

The following properties is also very useful.

Proposition 2.7.4.8. Let S be a scheme, X,Y be two locally noetherian S-schemes, and U ⊂ X
is an non-empty open subset. We assume

• X is normal.

• Y/S is proper.

Let f : U → X be an S-morphism. There there exists a open subset V ⊂ X containing U such
that its complement X − V is of codimension ≥ 2 in X, and a unique morphism of S-schemes
g : V → Y such that g|U = f . In particular, if dim(X) = 1, then f can be extended to a unique
morphism of S-schemes X → Y .

Proof. The proof requires the valuative criterion for proper morphisms, so we omit the proof
here.

For a integral scheme, there is a canonical normal scheme attached to it, called its normal-
ization. More precisely, we have

Proposition 2.7.4.9. For any integral scheme X, there exists a unique normal scheme together
with a morphism π : X ′ → X verifying the following universal property: for any dominant
morphism f : Y → X with Y a normal scheme, there exists a unique morphism f ′ : Y → X ′

such that π ◦ f ′ = f .

Proof. We will just give the construction of X ′ when X = Spec(A) is affine. Let K be the
fraction field of A, and A′ be the set of elements which are integral over A. Then A′ ⊂ K
is a subring containing A. Hence we get a morphism Spec(A′) → Spec(A) which satisfies the
universal property required by the proposition.

Exercise 2.7.4.10. Let m be an integer, and consider X = Spec(Z[S0, S1, S2]/(S2
2 −mS1S2)).

Is X normal? If so, prove your conclusion, otherwise find the normalization of X (one can refer
to Liu’s book for a detail answer is this exercise).



Chapter 3

An introduction to algebraic curves

For simplicity, in this chapter, k denotes an algebraically closed field of characteristic p ≥ 0.
An algebraic curve defined over k is a k-scheme of finite type of dimension 1. We will mostly
suppose in this chapter that X is irreducible smooth and proper over k.

3.1 Divisors and invertible sheaves

3.1.1 Divisors

Definition 3.1.1.1. Let X/k be a smooth irreducible curve.

1. A divisor D on X is a formal sum D =
∑

x nxx, where the x’s are closed points of X,
nx ∈ Z and nx = 0 for all but finitely many x. The divisor D is called effective if nx ≥ 0
for all x. For two divisors D =

∑
x nxx and D′ =

∑
xmxx, we say that D ≥ D′ if nx ≥ mx

for all x.

2. For D =
∑

x nxx a divisor, we define its degree deg(D) =
∑

x nx ∈ Z.

3. We will denote by Div(X) be the set of divisors on X, which is then the free abelian group
generated by the closed points of X, and Div0(X) the set of divisors on X of degree 0.

Let X be a smooth curve over k with function field K(X). In particular, X is a regular
scheme, thus, for any closed point x ∈ X, its local ring OX,x is a discrete valuation ring. As
a result, there exists a valuation on K defined by: for any f ∈ K∗, we define vx(f) to be the
integer n ∈ Z such that f ∈ mn

x −mn+1
x . Consider the following formal sum

div(f) :=
∑

x∈X closed

vx(f) · x.

Lemma 3.1.1.2. The formal sum div(f) is a divisor, and div(f) ≥ 0 if and only if f ∈ OX(X).
Moreover, if X is proper, then deg(div(f)) = 0. Such a divisor is called principal.

Proof. Since k(X) = OX,η with η ∈ X the generic point, for any f ∈ k(X), there exists some
open subset U ⊂ X such that f provides from an element of OX(U). Similarly, as f ∈ k(X)∗,
up to replace U by some smaller open subset, we may assume that f ∈ OX(U)∗. Thus vx(f) = 0
for any x ∈ U . Since the complement X−U of U is a finite set, we find that vx(f) = 0 for all but
finitely many points of X, which gives the first statement. The proof of the second statement
will be omitted for the moment.

85
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Definition 3.1.1.3. Let X be a connected smooth curve defined over k.

1. We define P(X) ⊂ Div(X) to be the set of principal divisors on X.

2. Two divisors D,D′ on X are said to be linearly equivalent if D−D′ is a principal divisor
on X.

3.1.2 Invertible sheaves

Definition 3.1.2.1. For X be a scheme.

1. An invertible sheaf on X is an OX -module L such that for each point x of X, there exists
an open neighborhood U of x such that L|U ' OX |U as an OX |U -module. We will denote
by Pic(X) the set of isomorphism classes of invertible sheaves on X.

2. For two invertible sheaves L and L′ on X, we can consider the tensor product : L⊗OX L′;
and the dual of L: L∨ := HomOX (L,OX). With these two operations, the set Pic(X)
becomes an abelian group, called the Picard group of X.

Let X be a smooth curve over k, and D a divisor on X. We define in the following way a
sheaf OX(D) on X: for any open subset U ⊂ X, we define

OX(D)(U) = {f ∈ K∗|(div(f) +D)|U ≥ 0} ∪ {0} ⊂ K,

which is naturally an OX(U)-module. Together with the usual restriction maps, we obtain in this
way a sheaf OX(D) such that for each open U ⊂ X, OX(D)(U) is naturally a OX(U)-modules.
Hence we get an OX -module.

Lemma 3.1.2.2. OX(D) is locally free of rank one over OX .

Proof. Write D =
∑

x nxx, and let supp(D) = {x : nx 6= 0}. Hence Supp(D) ⊂ X is a finite set,
and its complement U = X − Supp(D) ⊂ X is an open subset of X. Moreover, for any open
V ⊂ U , we have

OX(D)(V ) = {f ∈ K∗|(div(f) +D)|V ≥ 0} ∪ {0}
= {f ∈ K∗|div(f) ≥ 0} ∪ {0}
= OX(V ).

Hence, we find OX(D)|U ' OX |U . In particular, OX(D)|U is free over OX |U . It remains to
show that OX(D) is locally free around an open neighborhood of x ∈ Supp(D). Since the local
ring OX,x ⊂ K is a discrete valuation ring, let f ∈ OX,x be a uniformizing element. Then g is
an element of OX(W ) for some small open neighborhood of x. As a result, we can write

div(g) = x+
∑
y 6=x

nyy.

So we find D|W0 = div(gnx)|W0 = nxx, with

W0 = W − (Supp(D)− {x}) ∪ (div(g)− {x}) ,

which is an open neighborhood of x. Now for any V0 ⊂W0 open subset,

OX(D)(V0) = {f ∈ K∗|(div(f) +D)|V0 ≥ 0} ∪ {0}
= {f ∈ K∗|div(fgnx)|V0 ≥ 0} ∪ {0}
= {f ∈ K∗|fgnx ∈ OX(V0)} ∪ {0}
' OX(V0),
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where the last isomorphism is given by f 7→ fgnx . In this way, we find OX(D)|V0 ' OX |V0 ,
which is again free of rank one over OX |V0 . This finishes then the proof of the lemma.

In this way, we obtain the following map

ϕ : Div(X)→ Pic(X), D 7→ OX(D).

One can show that the following two formulas hold: for any two divisors D,D′ ∈ Div(X), we
have

OX(D)⊗OX OX(D′) ' OX(D +D′), OX(D)∨ ' OX(−D).

In particular, the map above is a morphism of groups.

Proposition 3.1.2.3. ϕ is surjective with kernel given by P(X). As a result, we obtain an
isomorphism of groups Div(X)/P(X) ' Pic(X).

Definition 3.1.2.4. Let X/k be a proper connected smooth curve, and L an invertible sheaf
on X. We define the degree of L, denoted by deg(L), to be deg(D) where D is an divisor on X
such that L = OX(D). Note that by our assumption, any principal divisor is of degree 0, hence
deg(L) is independent of the choice of D.

3.1.3 Čech cohomology of a topological space

We will discuss here the Čech cohomology. Consider first of all Y a topological space, and
U := {Ui|i ∈ I} an open covering of Y . Let F be an abelian sheaf on Y . For any integer n ≥ 0,
and for any sequence of indices i0, · · · , in ∈ I, let

Ui0···in = Ui0 ∩ · · · ∩ Uin .

We set

Cn(U ,F) =
∏

(i1,··· ,in)∈In+1

F(Ui0···in).

Now for f ∈ Cn(U ,F), we define df ∈ Cn+1(U ,F) to be the element given by

(df)i0···in+1 =
n+1∑
j=0

(−1)jfi0···̂ij ···in+1
|Ui0···in+1

,

where the symbol îj means to remove the index ij . For example, if n = 1, then

(df)i0i1i2 = fi1i2 |Ui0i1i2 − fi0i2 |Ui0i1i2 + fi0i1 |Ui0i1i2 .

In this way, we obtain a complex of abelian groups

C•(U ,F) = ( · · · // 0 // C0(U ,F)
d // C1(U ,F)

d // · · · ).

Now for any integer n ≥ 0, we set

Hn(U ,F) := Hn(C•(U ,F)) =
ker(d : Cn(U ,F)→ Cn+1(U ,F))

im(d : Cn−1(U ,F)→ Cn(U ,F))
,

by convention, C−1(U ,F) = 0.
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Proposition 3.1.3.1. The canonical map F(X)→ H0(U ,F) is an isomorphism.

Let V = {Vj |j ∈ I} be a second open covering of Y . We say that V is a refinement of
U if there exists a map σ : J → I such that Vj ⊂ Uσ(j) for every index j. We have then a
homomorphism, which will also denoted by σ:

σ : Cn(U ,F)→ Cn(V,F)

given by
σ(f)j0···jn = fσ(j0)···σ(jn)|Vj0···jn .

This homomorphism commutes with the differential operators, we obtain a morphism of com-
plexes

C•(U ,F)→ C•(V,F),

and hence a morphism between the cohomology groups

Hn(U ,F)→ Hn(V,F).

We have now the following important observation:

Lemma 3.1.3.2. The morphism above is independent of the choice of σ for all n ≥ 0.

Definition 3.1.3.3. Let Y be a topological space, and F be an abelian sheaf on Y . We set

Ȟn(Y,F)→ lim−→
U

Hn(U ,F),

where U runs through the classes of open coverings of Y . The group Ȟn(Y,F) is called the n-th
Čech cohomology group of F .

On applying this construction to a scheme X, we obtain the notion of Čech cohomology of
the scheme X. For separated schemes, the direct limit in the definition of Čech cohomology
above is even unnecessary. More precisely, we have the following result:

Proposition 3.1.3.4. Let X be a separated scheme, U = {Ui|i ∈ I} an open covering of X by
affine schemes. Let L be a line bundle on X.1 Then the canonical map

Hn(U ,L)→ Ȟn(X,L)

is an isomorphism for any n. Moreover, we have

1. If X is projective of dimension d, then Ȟn(X,L) = 0 for n > d.

2. If X is affine, then Ȟn(X,L) = 0 for any n > 0.

Remark 3.1.3.5. The more correct notion of cohomology is defined by using derived functors.
But for quasi-coherent sheaf F on a separated scheme (for example, when F = L is an invertible
sheaf), the Čech cohomology is the same as the cohomology group defined by using derived
functors. Hence, for this reason, for the following, we will also use the notation Hn(X,L) to
denote Ȟn(X,L) for an invertible sheaf on X. As a result, by a theorem of Grothendieck, we
have Hn(X,L) = 0 for n ≥ dim(X) + 1. Moreover, if X/k is proper over a field k, Hn(X,L) is
a k-vector space of finite dimension.

1or more generally, a quasi-coherent sheaf on X.
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3.1.4 Riemann-Roch theorem for a curve (first form)

In this subsection, let X/k be proper a smooth connected curve. In particular, for an invertible
sheaf L on X, for each n, the cohomology group Hn(X,L) is a k-vector space of finite dimension.
Moreover, Hn(X,L) = 0 for n 6= 0, 1.

Definition 3.1.4.1. Let L be an invertible sheaf on X. Its Euler-Poincaré characteristic is
defined to be the following alternative sum

χ(L) =
∑
i∈Z

(−1)idimk(H
i(X,L)) = dimk(H

0(X,L))− dimk(H
1(X,L)).

Lemma 3.1.4.2. If X is a connected smooth proper curve over k. Then the canonical map
k → OX(X) is an isomorphism of rings.

Proof. As X is connected and smooth, OX(X) is a integral domain. Since X is proper over k,
OX(X) is finite as a k-module. In particular, OX(X) is a field, hence is a finite extension of k.
As we assume k algebraically closed, we must have k = OX(X).

Example 3.1.4.3. We take L = OX the trivial invertible sheaf. According to H0(X,OX) ' k.
We set g = dim(H1(X,OX)), called the genus of the curve X/k. So we obtain χ(OX) = 1− g,
which is sometimes referred to be the Euler-Poincaré characteristic of X.

Theorem 3.1.4.4 (Riemann-Roch theorem–first form). Let L be an invertible sheaf of degree
d. Then

χ(L) = χ(OX) + deg(L) = 1− g + deg(L).

But this theorem is not enough “compute” dimk(H
0(X,L)). We need some information

about dimk(H
1(X,L)), which will be furnished by the Serre’s duality theorem.

3.2 Serre’s duality theorem

3.2.1 Differentials

Let k be a field, A be an k-algebra and M an A-module. A k-derivation of A into M is a k-linear
map d : A→M such that the Leibniz rule

d(a1a2) = a1d(a2) + a2d(a1), ∀ai ∈ A

is verified, and that d(λ) = 0 for any λ ∈ k. Sometimes the set of k-derivations of A into M is
denoted by Derk(A,M).

Definition 3.2.1.1. With the notations above. The module of relative differential forms of A
over k is an A-module Ω1

A/k endowed with a k-derivation d : A → Ω1
A/k having the following

universal property: for any A-module M , and for any k-derivation D : A → M , there exists a
unique homomorphism of A-modules φ : Ω1

A/k → M such that D = d ◦ φ. In other words, the
map below is an bijection.

HomA(Ω1
A/k,M)→ Derk(A,M), φ 7→ d ◦ φ.

Proposition 3.2.1.2. The module of relative differential forms (Ω1
A/k, d) exists and is unique

up to unique isomorphism.
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Proof. Let F be the free A-module generated by the symbols da for a ∈ A. Let E ⊂ F be the
submodule of F generated by the elements of the form d(λ), λ ∈ k; d(a1 + a2)− da1 − da2, and
d(a1a2)− a1da2 − a2da1 with ai ∈ A. Now we define Ω1

A/k = F/E, and d : A→ Ω1
A/k sending a

to the image of da in Ω1
A/k. Then it’s clear that (Ω1

A/k, d) has the required properties.

Let now X be a smooth connected curve defined over k, and let K be its function field. Let
x ∈ X. Consider now Ω1

K/k (resp. Ω1
OX,x/k) the K-space (resp. the OX,x-module) of relative

differential forms of K over k (resp. of OX,x over k).

Remark 3.2.1.3. Let k be a field, and A a k-algebra.

1. Let α : A → B be a morphism of k-algebras. There exists then a canonical morphism of
B-modules:

B ⊗A Ω1
A/k → Ω1

B/k, b⊗ da 7→ b · d(α(a)).

2. Let S ⊂ A be a multiplicative subset. The canonical map A → S−1A induces then an
isomorphism of S−1A-modules

S−1Ω1
A/k = S−1A⊗A Ω1

A/k → Ω1
S−1A/k.

Indeed, we have Derk(S
−1A,S−1M) ' Derk(A,S

−1M), and

HomA(Ω1
A/k, S

−1M) ' HomS−1A(S−1Ω1
A/k, S

−1M).

As a result, S−1Ω1
A/k ' Ω1

S−1A/k.

3. Let I ⊂ A be an ideal, and put B = A/I. We have then the following exact sequence

I/I2 → B ⊗A Ω1
A/k → Ω1

B/k → 0.

4. Now, we take A = k[T1, · · · , Tn]. Then Ω1
A/k is the free A-module with a base given by

{dTi|i = 1 · · · , n}. For B = k[T1, · · · , Tn]/(F1, · · · , Fm) with Fi ∈ k[T1, · · · , Tn], by (3),
Ω1
B/k is given by

⊕iBdTi
< image of dFj in ⊕i BdTi >

' coker(β : Bm → Bn)

where the matrix in the canonical basis of the A-linear morphism β above is given by(
∂Fj
∂Ti

)
1≤i≤n,1≤j≤m

∈ Mn×m(B).

Lemma 3.2.1.4. Ω1
OX,x/k is free of rank one over OX,x. In particular, Ω1

k(X)/k is a k(X)-vector

space of dimension one.

Proof. Let U = Spec(B) be an affine neighborhood of x with B = k[T1, · · · , Tn]/(F1, · · · , Fm).
Then B is an integral domain. Consider moreover the following matrix with coefficient in B:

M =

(
∂Fj
∂Ti

)
1≤i≤n,1≤j≤m

∈ Mn×m(B).
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As X is regular of dimension one at x, by the jacobian criterion, the matrix

M(x) =

(
∂Fj
∂Ti

(x)

)
1≤i≤n,1≤j≤m

∈ Mn×m(k(x))

is of rank n− 1. As a result, there exists a minor of order n− 1 of M which is invertible in Bp

with p ⊂ B the prime ideal corresponding to x. Hence there is a submatrix N of order n − 1
which is invertible as a matrix with coefficients in Bp. Hence, there exists an element b ∈ B − p
such that, viewed as a matrix with coefficients in Bb, the matrix N is invertible. Hence, we can
find invertible matrix P ∈ GLn(Bb) and Q ∈ GLm(Bb) such that the matrix PMQ has the form(

N 0
0 N ′

)
with N ′ ∈ M1×(m−n)(Bb). But since X/k is smooth of dimension 1, we must have N ′(y) = 0
for any closed point y ∈ Spec(Bb) ⊂ Spec(B). Hence, we find that the coefficients of N ′ are all
contained in ⋂

m∈Max(Bb)

m

which, by Hilbert’s zero theorem, is the nilpotent radical of Bb. But Bb is integral, so we find
finally N ′ = 0. In this way, we find that Ω1

Bb/k
is a free Bb-module of rank 1. As a result, the

Bp-module Ω1
Bp/k

is equally free of rank 1.

Remark 3.2.1.5. According to (2) of the previous remark, the notion of module of differential
forms can be globalized. So we can define the sheaf of differential forms Ω1

X/k, and by the last

lemma, this is an OX -module locally free of rank 1. In other words, Ω1
X/k is an invertible module

on X.

For x ∈ X a closed point, let t ∈ OX,x ⊂ k(X) be the uniformizing element of the discrete
valuation ring OX,x. The differential dt gives a base of the one dimension k(X)-space Ω1

k(X)/k.

Hence, for any element ω ∈ Ω1
k(X)/k, it can be written as ω = f ·dt with f ∈ k(X). When ω 6= 0,

we define
vx(ω) = vx(f) ∈ Z, and div(ω) =

∑
x

vx(ω)x.

Definition 3.2.1.6. The k(X)-space Ω1
k(X)/k is sometimes called the space of meromorphic

differential forms. An element ω ∈ Ω1
k(X)/k is called holomorphic if it’s either zero, or vx(ω) ≥ 0

for all closed point x ∈ X.

Lemma 3.2.1.7. The formal sum div(ω) above is a divisor.

Proof. Indeed, take a closed point x ∈ X, and U = Spec(A) an open neighborhood of x. Let
t ∈ OX,x a uniformizing element. We write ω = fdt with f ∈ OX,x. Up to replace U by a
smaller open neighborhood, we may assume that f, t ∈ OX(U). Moreover, we may assume Ω1

A/k

is free of rank 1 with a base given by dt. As a result, t− t(y) is a uniformizing element of OX,y
for any y ∈ U , and ω = fd(t− t(y)). Hence vy(ω) = vy(f). Since vy(f) = 0 for almost all y ∈ U ,
we find vy(ω) = 0 for almost all y ∈ X. This finishes the proof.

Definition 3.2.1.8. For D a divisor on X, we define Ω(D) to be

Ω(D) := {ω ∈ Ω1
k(X)/k|div(ω) ≥ D} ∪ {0}.

When D = 0, Ω := Ω(0) is then the space of holomorphic differentials on X.
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3.2.2 Residues

Recall that, for a noetherian local ring (A,m), its (m-adic) completion is defined to be

Â := lim←−
n

A/mn.

Moreover, the canonical map A→ Â is injective. Hence we can identify A to a subring of Â.

Lemma 3.2.2.1. Let X/k be a smooth curve, and x ∈ X a closed point. Let t ∈ OX,x be a

uniformizing element. Then the canonical map k[[X]] → ÔX,x sending X to the image of t is
an isomorphism.

Proof. To be added later.

By using this lemma, we can deduce another local invariant of ω, its residue: let t be a
uniformizing element of OX,x, we write ω = fdt. As f ∈ K, there exists an integer n such that

tnf ∈ OX,x. Hence viewed as an element in ÔX,x, we find tnf ∈ k[[t]]. As a result, f ∈ k((t)).
Note that this description is independent of the choice of t. So we can write f ∈ k((t)) as

f(t) =
∑

n�−∞
ant

n.

Hence the residue of the differential form ω at the point x is defined to be

Resx(ω) := a−1 ∈ k.

We have the following two fundamental propositions.

Proposition 3.2.2.2 (Invariance of the residue). The preceding definition is independent of the
choice of the local uniformizing element t.

Proof. To be added later.

Proposition 3.2.2.3 (Residue formula). For every meromorphic differential forms ω ∈ Ω1
K/k,

we have
∑

x∈X(k) Resx(ω) = 0.

Proof. To be added later.

3.2.3 Classes of répartitions

Following Weil, introduce the following definition of répartitions (or adèles)

Definition 3.2.3.1. 1. A répartition r is a family {rx}x∈X(k) of elements of k(X) such that
rx ∈ OX,x for almost all x ∈ X. The répartitions form an algebra R over the field k.

2. For D a divisor, we write R(D) for the vector subspace of R formed by the r = {rx} such
that vx(rx) ≥ −vx(D).

As D runs through the ordered set of divisors of X, the R(D) form an increasing filtered
family of subspaces of R whose union is R itself. Moreover, we have a natural injection from
the function field k(X) to the algebra of répartitions over k.

Proposition 3.2.3.2. For a divisor D on X. There is a canonical isomorphism between
H1(X,OX(D)) and R/(R(D) + k(X)).
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Proof. We consider the constant presheaf sheaf K defined as follows: for any non empty subset
U ⊂ X, K(U) = k(X). As our scheme X is irreducible, K is a sheaf on X. Consider now the
following short exact sequence of abelian sheaves on X:

0→ OX(D)→ K → K/OX(D)→ 0.

The Čech cohomology gives then a long exact sequence

0→ H0(X,OX(D))→ K → H0(X,K/OX(D))→ H1(X,OX(D))→ H1(X,K).

As X is irreducible, and K is constant, we find H1(X,K) = 0.2 Hence H1(X,OX(D)) is the
cokernel of the morphism K → H0(X,K/OX(D)). On the other hand, for any element s ∈
H0(X,K/OX(D)), let s̃x ∈ Kx be a lifting of the stalk sx ∈ (K/OX(D))x. We obtain hence a
family {s̃x}x∈X(k) ∈ R whose image in the quotient R/R(D) is independent of the choice of s̃x.
So we get in this way a morphism

α : H0(X,K/OX(D))→ R/R(D).

This map is bijective. Indeed, for any r = {rx} ∈ R, let

Y = {x ∈ X(k)|rx ∈ OX,x} ∪ Supp(D), and U = X − Y.

For any element y ∈ Y , let Vy ⊂ X be an open such that ry|Vy−{y} ∈ OX(D)(Vy). As a result,
the class {(ry, Vy), (0, U) defines a global section of K/OX(D). As a result, the morphism α
above is surjective. It’s also clear that α is injective. Hence α gives an isomorphism. As a
result, the cokernel of the morphism K → H0(X,K/OX(D)) is the same as the cokernel of the
morphism K → R/R(D), that is, R/(R(D) +K), as desired.

3.2.4 Duality theorem

Let D be a divisor, recall that we write Ω(D) the set of meromorphic differential forms formed
by 0 and the differentials ω 6= 0 such that div(ω) ≥ D. Now for any ω ∈ Ω1

K/k, and any r ∈ R,
we define

< ω, r >:=
∑

x∈X(k)

Resx(rxω).

Since rxω ∈ Ω1
OX,x/k for almost all r, the previous sum is a finite sum. We obtain in this way

the following pairing

< ·, · > : Ω1
K/k ×R→ k.

Moreover, one can verify the following properties:

(a) < ω, r >= 0 if r ∈ K by the residue formula.

(b) < ω, r >= 0 if r ∈ R(D) and ω ∈ Ω(D), since rPω ∈ Ω1
OX,x/k for all x ∈ X(k).

(c) If f ∈ K, then < fω, r >=< ω, fr >

As a result of (a) and (b), we obtain the following pairing

< ·, · > : Ω(D)×R/(R(D) +K)→ k.

2Details to be added later.
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Theorem 3.2.4.1 (Serre’s duality theorem). For every divisor D, the previous pairing is perfect.

Now, for ω ∈ Ω1
K/k, we denote by

θ(ω) : R→ k

the map induced by the pairing above.

Lemma 3.2.4.2. If ω is a differential such that θ|R(D)+K = 0, then ω ∈ Ω(D).

Proof. Indeed, otherwise there would be a point x ∈ X(k) such that vx(ω) < vx(D). Put
n = vx(ω) + 1, and let r be the répartition whose components are

ry =

{
0 if y 6= x,
1/tn y = x

where t is a uniformizing element of OX,x. As a result, vx(rxω) = −1, whence Resx(rxω) 6= 0
and < ω, r >6= 0; but since n ≤ vx(D), r ∈ R(D), and we arrive at a contradiction since θ(ω) is
assumed to vanish on R(D).

Proof of duality theorem. To be added later.

3.3 Riemann-Roch theorem – Definitive form

3.3.1 Riemann-Roch theorem

Let X/k be a connected proper smooth curve. Recall that for a meromorphic differential form
ω ∈ Ω1

k(X)/k, div(ω) is a divisor on X. We will denote this divisor by Kω, called a canonical

divisor of X. If ω′ is another meromorphic differential form, the corresponding divisor Kω′ is
different from Kω by a principal divisor, hence the class of Kω in Div(X)/P(X) is independent
of the choice of ω, as a result, OX(Kω) is independent of the choice of ω. Because of this reason,
by abuse of notation, we will denote by K a canonical divisor, called the canonical divisor of X.
With this terminology, we have trivially the following

Lemma 3.3.1.1. For each divisor D on X, there is a k-linear bijection between H0(X,OX(K−
D)) and Ω(D).

Hence, on combining 3.1.4.4, 3.2.3.2 and 3.2.4.1, we obtain the following

Theorem 3.3.1.2 (Riemann-Roch theorem – Definitive form). Let X/k be a proper connected
smooth curve, and D a divisor on X. Then

dimk(H
0(X,OX(D)))− dimk(H

0(X,OX(K −D))) = 1− g + deg(D).

3.3.2 Some applications

Lemma 3.3.2.1. Let X/k be a proper connected smooth curve, and D a divisor of degree < 0.
Then H0(X,OX(D)) = 0.

Proof. Otherwise, let f ∈ k(X)∗ such that div(f) +D ≥ 0. As a result, we have

0 ≤ deg(div(f) +D) = deg(D),

whence a contradiction.
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Lemma 3.3.2.2. Let K be the canonical divisor of X/k, then deg(K) = 2g − 2.

Proof. Recall that H0(X,OX) = k. As a result, we obtain by Riemann-Roch theorem that

1− dimkH
0(X,OX(K)) = 1− g + 0.

Similarly, on applying the Riemann-Roch theorem to the divisor K, we obtain

dimkH
0(X,OX(K))− 1 = 1− g + deg(K).

As a result, deg(K) = 2g − 2.

Corollary 3.3.2.3. Let X/k a proper smooth connected curve, and D a divisor of X. If
deg(D) > 2g − 2, then dimk H0(X,OX(D)) = 1− g + deg(D).

Now, we give the following characterization of projective line.

Proposition 3.3.2.4. The genus of P1
k is equal to 0. Conversely, for any proper smooth con-

nected curve of genus 0 is k-isomorphic to P1
k.

Proof. Indeed, consider let t be the uniformizing element of OP1
k,0

, then k(P1
k) = k(t). We

consider the differential form dt, then we find

vx(dt) =

{
0 if x 6=∞;
−2 if x =∞.

Hence div(dt) = −2 · ∞. As a result, 2g − 2 = deg(div(dt)) = −2, which implies g = 0.
Conversely, X be a smooth proper connected curve of genus 0. In particular, 2g − 2 < 0. Let
x ∈ P1

k be a closed point. By Riemann-Roch theorem, the k-space H0(X,OX(x)) is of dimension
2. Hence there exists a element f ∈ k(X)− k such that

div(f) + x ≥ 0.

As f /∈ k, div(f) 6= 0. Hence we must have vx(f) = −1. Now using f , we can define a morphism
of k-schemes α : X → P1

k. Now the fact that vx(f) = −1 implies that α is an isomorphism.

We now comes to curves of genus 1. Such a curve (with a marked point) is called an elliptic
curve. For elliptic curves, we have the following

Proposition 3.3.2.5. Let X = E/k be an elliptic curve. Then one can realize X as a closed
subscheme P2

k whose (inhomogeneous) equation can be given by the following Weierstrass equa-
tion:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Proof. To be added later.

Remark 3.3.2.6. When the field k is of characteristic 6= 2, 3, the Weierstrass equation can be
further simplified. The details will be added later..The interested readers can refer to the book
of Silverman Arithmetic of elliptic curves.

More should be discussed..But we don’t have time......


