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Our motivation to study toric varieties is P. Scholze’s proof of Deligne’s weight-
monodromy conjecture in the case of complete intersection subvarieties of pro-
jective smooth toric varieties over a local field ([4], Theorem 9.6).
The main reference for this text is Fulton [2]. Cox-Little-Schenck [1] treats
toric varieties in great details. Oda [3] is also useful. All these books consider
toric varieties only C, so we had to check that all proofs here are correct over
any field.



2 Rational convex polyhedral cones

Notation

(1) N is a free Z-module of rank d;
(2) Ry is the set of non-negative real numbers;
(3) M = Hom(N,Z) is the linear dual of N;
(4)

4) Nk = N ®zR, and eq,...,eq is a basis of N.

2.1 Basic definitions

Definition 2.1 A convez polyhedral cone in Ny is a subset of the form
c=Ryvi +---+Ryvs

where vy, ...,vs are some vectors in Ng. If there are generators v; € N, we say
o is a rational convex polyhedral cone. We say o is strongly convez if o doesn’t
contain a line Ro.

The set 0 4+ (—0) := {v+ (—v') | v,v’" € o} is a vector subspace of Ng, its
dimension is called the dimension dimo of o.

Example 2.2 (1) o = {0};

(2) 0 =231 <;ca Rye; for some d’ < d;

(3) d=2,0= R+(2€1 - 362) +Ryes.
They are all strongly convex.

(4) o =Ryes + -+ Ryeq + Regy1 + -+ + Rey. Tt is not strongly convex if
d <d.

2.2 Dual

Recall M = N* is the dual of N. So Mg is the dual of Ng. Put

o :={u€ Mg |u(v) >0, Vv €0}

Note that if 0 = ), Ryv;, then 0¥ = N;(Ryv;)¥ and oV is the intersection of
the half-spaces in (R v;)Y in Mg.

Example 2.3 Denote by e],...,e}; the dual basis of ey, ..., eq.
(1) {0} = M.
(2) We have

(> Rye)= > Ryef+ > Rl

1<i<d’ 1<i<d’ d'+1<j<d

It is not strongly convex if d’ < d.



(3) d=2, (R(2e1 — 3e) + Roen)* = Roet + Ry (3¢t + 2¢3).
Let u € Mg. Dente by u* = {v € Ng | u(v) = 0}.

Definition 2.4 Let o be a rational convex polyheadral cone. A face 7 of o is
a subset of o of the form
r=ocnNut

for some u € 0.

Remark 2.5 Let 7 be a face of 0. Then there exists u € M such that 7 = oNu™*
(2], §1.2, Prop. 2). We will always chose u € M when dealing with faces of o.

Proposition 2.6. Let 0 C Ny be a rational convez polyhedral cone.
(1) (V)Y =o0.
(2) o has finitely many faces.

(3) A face T of o is a rational convex polyhedral cone, strongly convez if o is
strongly conver.

(4) A face of a face of 0 is a face of o
(5) The intersection of two faces of o is a face of o.

Proof. (1) Clearly o C (¢¥)Y. The converse is a classical theorem on convex
bodies in RY: if o is a convex subset of R? and vy € R?\ o, then there exists a
half-space containing ¢ but not vy.

(2)-(3) Write 7 = o Nut. We have 0 = >, ... Riv;. So

T = Z R-&-”i-

1<s,u(v;)=0

This implies (2) and that 7 is a rational polyhedral cone. If ¢ is strongly convex,
it doesn’t contain real line, so a fiortiori T doesn’t contain real line.

(4) Let 7 = o Nut and 7/ = 7N/~ with o/ € 7V. There exists n > 0, such
that v/ 4+ nu € ¢¥ and u'(v;) + nu(v;) > 0 if v; ¢ 7. Indeed, if v; € 7, then
u'(v;) > 0 and u(v;) = 0, so (v + nu)(v;) > 0 for all n > 0. If v; ¢ 7, then
u(v;) > 0, so u'(v;)+nu(v;) > 0if n is big enough. The linear form v’ +nu € o".

We have clearly 7/ C o N (v +nu)t. Conversely let v =, \jv; € o N (v +
nu)t (so A\; € Ry), as (v + nu)(v;) > 0 and is > 0 for those v; €¢ 7, we find
ANi=0ifv; ¢ 7. So v € 7 and then v € w/'*. Thus v € 7.

(5) Let m =0 N ui, 7o = o Nuy. Then 7y N7 = o N (ug +uz)™t. O

Proposition 2.7. (Farkas’s theorem) Let o be a rational convex polyhedral cone
in Nr. Then oV is a rational convex polyhedral cone in Mg.



Proof. First suppose that dimo = d. It is easy to see that any proper face is
contained in a face of dimension d — 1 ([2], 1.2(5)). Let o Nuf,...,o Nu; be
the faces of dimension d — 1. Then

0 =Mgj<r{v € Nr | u;(v) = 0}

(I2], 1.2(8)). Let S = >, Riu; C o”. Let v € SY. Then u;(v) > 0 for all
j <randwven{u; >0} =o. Therefore S¥ C o and 0¥ C (S¥)¥ = S. This
implies that ¢¥ = S is a rational convex polyhedral cone in Mg.

In general, let W = o + (—0). Then Mr/W+ = W* (linear dual space)
and oV (as a cone) is generated by the lifting of a system of generators of oy},
defined by the cone o C W§, and 4 a system of generators of W*. O

Definition 2.8 Let 0 C Ny be a rational convex polyhedeal cone. We define
S, i=0c'NM.
This is a sub-semigroup of M with 0.

Proposition 2.9. (Gordan’s lemma) S, is finitely generated.

Proof. By Farkas’s theorem, o = 37, Riu; with u; € M. Let K =
>;10,1]u; C o¥. Tt is compact. As K N M is discrete in a compact, it is finite.
As Ry = N+[0,1], we find S, C > ;Nu; + (K N M). Hence S, is finitely
generated. O

Example 2.10 (1) If 0 = {0}, then S, = M.

(2) Ifo = Zlgigd’ R, e;, then S, = Z1§z‘§d’ Ne! + Zd,HSTSdZe;?‘.
(3) Let o be the cone given in 2.2(3). Then S, = Nej+N(2e7+e5)+N(3ej+2¢3).

Proposition 2.11. The semigroup S, C M is saturated (if n > 1, uw € M
satisfy nu € Sy, then u € S, ), finitely generated. If o is strongly convex. Then
Se + (=S,) =M.

Proof. Only the last property has to be proved. First we have oV +(—0") = Mg.
Indeed, if this is not true, then ov C ker(v) for some non-zero linear form
v € M = Ng. Therefore Rv = (ker(v))Y C (¢¥)¥ = 0. Contradiction with o
strongly convex. U

3 Affine toric varieties

We define the affine scheme associated to a rational convex polyhedral cone.

We fix a (commutative unitary) ring R. Most of the time R is a field. But
in applications we have in mind (Scholze’s theorem), we have to deal with R a
discrete valuation ring.



3.1 Algebra of a semigroup
Let S be a commutative semigroup. We denote by R[S] the direct sum
R[S} = EBSESRXS

where x*® denotes the basis indexed by s. It has a natural structure of commu-
tative R-algebra by setting

XS'Xt — XSth'

Example 3.1 R[NY| ~ R[Ty,...,Ty); R[Z% ~ R[TE, ..., TF].
If S = 2N + 3N C N. Then R[S] = R[T?,T% C R[T].

Lemma 3.2. Let 51,52 be semigroups contained in M.

(1) If S1 C Sy, the we have canonically R[S1] C R[S2] C R[M].

(2) If S is finitely generated, then R[S|] is a finitely generated algebra over R.
(3) R[S1+ S2] = R[S1]R[S2];

(4) R[S1 N Ss] = R[S1] N R[Ss].

Proof. Immediate from the definition. O

Let X = Spec R[S]. Let us decribe the points of X. Let A be an R-algebra.
Consider a homomorphism ¢ : R[S] — A. Then we have a map

S— A, s d(x%).

It is a morphism of semigroups (A is considered as a semigroup with its multi-
plication law).

Proposition 3.3. The above process induces a canonical bijection
X (A) — Hom,y (S, A)

from the set of A-valued points of X to the set of morphisms of semigroups from
S to (A, x).

Proof. 1f ¢ : S — A is a morphism of semigroups, we define an R-linear map
¢ : R[S] — A by &(x*) = ¥(s). We check easily that ¢ is a morphism of
R-algebras, and 1) — ¢ is the reciprocal map of X(A) — Hom(S, A). O

3.2 Affine toric varieties

Let o be a rational convex polyhedral cone in Ng.
Definition 3.4 Let S, C M be the semigroup associated to o (2.8). We define
U, = Spec R[S,].

If necessary, we add R in the subscript to indicate the scheme is defined over R.



Example 3.5 (1) Uy = Spec RIM] ~ G, 5. Denote by Ty := Uyqy.

(2) If 0 =Y i Rye; in Ny, then U, ~ A% x5 G 1

(3) Let o be the cone given in 2.2(3). The semigroup S, has been computed in
2.10(3). Denote by T1 = x°',T» = x°2. Then

R[S,] = R[T1, T7T», T T3] C RIT{, T57).

Denote by U = T?T, and V = T$T2, then R[S,] = R[Ty,U, V] with the
relation T1V —U?2. Soif k is a field, then Uy, 1. is a rational surface isomorphic
to Spec k[T, U, V]/(TV — U?).

Lemma 3.6. Let 7 = o Nu' be a face of o with u € S,. Then
(1) ™ = 0¥+ Ry(—u);
(2) S; =S, + N(—u).

(3) The inclusion S, C S, induces an open immesion U, — U, which identifies
U, with the principal open subset D(x*) of U,.

(4) If R is an integral domain, then U, is integral. If moreover o is strongly
convex, then Ty — U, is birational.

Proof. (1) We have
™V =0"4+Ru=0"+Riu+Ri(—u)=0" +Ry(-u).

(2) Obviously S, + N(—u) C S;. Let v’ € S;. We saw in the proof of 2.6(4)
that there exists n > 1 such that v’ +nu € ¥ N M. So v’ € S, + N(—u).
(3) follows from

R[S-] = R[Se][x™"] = RIS,][(x") "] = R[Sc]x~-

(4) As S; + (—=S,) = M (Proposition 2.11), for any u € M, there exist
uy,uz € S, such that u = u; — uz. So x* = x“(x“2)~!. This implies that
Frac(R[M]) = Frac(R[S,]). O

The next lemma, will be used in §4.

Lemma 3.7. (|2], §1.2, Proposition 3) Let o, 0’ be two rational convex polyhedral
cones sharing a common face 7. Then S; = S, + S,

Remark 3.8 The R-scheme U, has a distinguished section x, € U,(R) defined
by the morphism of semigroups S, — R, u +— 1 if u|, = 0 and u — 0 otherwise.
If 0 = {0}, then z, correspond to the unit section (1,...,1) € Gﬁ%R. If
0= 1<icy Ryei, then 5, = (0,..,0,1,...,1) (with O repeated d' times and 1
repeated d — d’ times). In Example 3.5.(3) it corresponds to T3 = U =V = 0.



3.3 Local properties of U,

Proposition 3.9. The scheme U, is smooth over R if and only if o is generated
by a subset of a basis of N.

Proof. Suppose o is generated by a basis of N. Then U, is isomorphic to a
product of A% and a Gf;g by Example 3.5(2). So it is smooth over R.

Suppose U, r is smooth over R. Base change to a residue field, we find
that U, is regular for some field k. Suppose first dimo = d. Consider the
distinguished rational point =, (Remark 3.8). The maximal ideal m, of k[S,]
corresponding to z, is generated by all x* for u € S, non-zero. By hypothesis,
m,/m2 has dimension d = dim U, over k. So there exist uy,...,uq € Sy such
that m, = >, kx“ + m2. For any u € S, non-zero, X* = >, \ix" + > fi95,
fi»9; € mo. This implies that

u€ {ug,...,ugt U (T +T)

where T' = S, \ {0} and v € (3, Nu;)U(T+---+T). As 0 is a strongly convex
rational polyhedral cone in Mg, the sum of r vectors in 7" has norm tending
to +o0o when r tends to +00, s0 4 € Y .cyNu; andd S, = >, Nu;. As S,
generates M, this forces {uj,...,uq} to be free over R, hence free over Z. Up
to scaling, we see that o is generated by a basis of M, therefore o = (o) is
generated by a basis of V.

In the general case, let L be the sub-module of N generated by c N IN. Then
N/L is free. Let Write N = N’ & L with N’ ~ N/L. Then S, = (S) & M’
where S’ is defined by o viewed as a polyhedral cone in Lg of dimension equal
to dim Lg. As schemes we than have U, = U, x Gf,:k with d’ = d — dim Lg.
This implies that U! is regular, hence o is generated by a basis of L. The latter
can be completed into a basis of V. U

Proposition 3.10. Suppose R is integral and integrally closed. Then U, is
integral and normal.

Proof. Write 0 = Y ;. Ryv;. So 0¥ = Mj(Ryv;)Y and S, = NS, where
7, = Ryv;. We can replace v; by a suitable vector in Q,v; so that v; can be
completed into a basis of N over Z. So U, is smooth over R (Proposition 3.9),

hence normal. Therefore
R[S;] = NiR[S-,]

is integrally closed. 0

Remark 3.11 One can show that U, over a field satisfies further the following
properties:

(1) U, is Cohen-Macaulay ([2], page 30).

(2) U, is monomial (i.e., closed subscheme of an affine space defined by equa-
tions of the type one monomial = other monomial ([1], Proposition 1.1.9).
For example the U, in 3.5(3) is defined by T3V = U?.



(3) U, has only rational singularities ([1], Theorem 11.4.2; [2], §3.5, p. 76).

(4) Every projective module of finite type over k[S,] (k can be replaced by any
PID) is free (Gubeladze, The Anderson conjecture and a mazimal class of
monoids over which projective modules are free, (Russian) Mat. Sb. (N.S.)
135(177) (1988), 169-185, ). This generalizes Quillen-Suslin’s theorem for
polynomial rings.

3.4 Torus action

Recall Ty = Uy =~ Gﬁ% - This is a group scheme over R, the co-multiplication
law is given by

R[M] — R[M]®r RIM], X" +— x"® y"
For any o, the inclusion R[S,] C R[M] induces
R[S;] = R[S;] @r R[M], X"+~ x"®x",

hence a morphism
TN XR Uo’ - Uo’

which satisfies all axioms of an action of T on U, (we have to check that some
diagrams are commutative, but it is enough to see they are commutative with
R[M)).

On the sections, the action

Tn(R) x ) = Us(R)

Us (R
is described as follows. Let t € Tn(R) = Homgy(M, R) (morphisms of semi-
groups, see Prop. 3.3), z € U,(R) = Hom,y(S,, R), then tx € U,(R) is
u— t(u)z(u).
Let S, = >, Nu;. Then each point € U, has coordinates (z1,...,z,)
when U, is embedded in A’ using the x“’s. Write u; = li1ef + -+ + ligel.
Then the above action is

((F1y s ta), (T, oy ap)) e (00t thrigy).

Remark 3.12 The morphism R[S,] — R[S,;|®rR[S,] defined by x* — x*®@x"
induces a morphism U, X g U, — U, which makes U, into a “monoidal scheme”
(the law is associative, commutative with unit).

4 Toric varieties

A toric variety is obtained by glueing suitable sets of affine toric varieties U, .
Recall that N is a free Z-module of rank d.



4.1 Construction from fans

Definition 4.1 A fan 3 in Ny is a finite and non-empty set of strongly convex
rational polyhedral cones in Ny with the following properties:

(i) If 0 € X, then all faces of o belong to X;

(if) If 0,0’ € X, then o N ¢’ is a face of o and of o’.
Example 4.2 Any o induces a fan ¥ which consists in all faces of .

Let ¥ be a fan. Let 0,0’,0” € ¥. By Lemma 3.6(3), we have canonical open
immersions py o : Upnoer — Uy and pyr o 1 Uginer — Uyr. It is easy to check
that on Usnonor, the open immersions Do o/, Po,o and pyr o coincide. This
allows us to define a unique scheme by glueing the U,’s.

Definition 4.3 Let ¥ be a fan in Ng. We denote by Xs r or simply by Xx
the R-scheme obtained by glueing as above.

Proposition 4.4. (1) The R-scheme Xx r is separated.
(2) If R — R’ is ring homomorphism, then Xs, p = Xx, p X Spec R'.

(3) The morphism X r — Spec R is faithfully flat with integral and normal
geometric fibers.

Proof. (1) It is enough to show that for any pair of 0,0’ € X, the canonical map
R[S,;]) ®r R[Ss'] — R[Ssnoe]

is surjective. By Lemma 3.7, Synor = So + Syr. S0 R[Syne] is generated by
R[S,] and R[S,/] and the above map is surjective.
(2) is immediate and (3) follows from (2) and Proposition 3.10. O

Definition 4.5 Le k be a field. A toric variety over k is an integral normal
separated variety X over k, endowed with the action of a torus T ~ G}, ,:

pT xp X — X

and a rational point zo € X (k) such that T ~ T x {zo} % X is an open
immersion. In other words, T endowed with the natural action of T extends
equivariantly to X.

The torus Ty acts on each U, (§3.4). By construction, this action is com-
patible with its action on U, if 7 is a face of 0. Therefore Ty acts on Xy
compatibly with its action on the U,. As the action of Ty on Uy, is free, if zg
denotes the distinguished section of Uyg), we see that

Tn ~Tn Xg{zo} — U{O}

is an isomorphism. By Proposition 4.4, X5 is a toric variety when R is a field.



Conversely, one can show that any toric variety is isomorphic to some X,
(|1], Corollary 3.1.8").

Example 4.6 (1) Any affine U, is a toric variety: just consider the fan con-
sisting in all faces of 0. In particular affine spaces (0 =) ;.,,R1€;) and
split tori are toric varieties.

(2) Let d = 1 and let ¥ be generated by Rie; and Ri(—ey). Then Xy is
obtained by glueing two copies of A': Spec R[x¢!] and Spec R[(x°*)™}], so
Xs = PL.

(3) One dimensional toric varieties over a field are G,,,, A' and P! (each U, is
normal and contains a copy of G,,).

(4) Let d =2, let ¥ be generated by Rie; + Ryeq, Ri(—e1) + Ries, Ryeg +
Ry (—e3) and Ry (—e1) + Ry (—ez). Then Xy = P! x P!,

(5) Products of toric varieties are toric varieties.

Example 4.7 (Projective space) Let N = Z4+1/(1,...,1)Z. Let eg,...,eq be
the canonical basis of Z¢t!. The canonical pairing

23N x 72 S 7 (u,v) — u(v
(

induces a perfect pairing
MxN —7Z

where M = {zoe{+---+xqe) | >, i = 0}. Let v; be the image of e; in N. For
any i < d, {v;};xi is a basis of N and its dual basis is {€} — e} } ;2 C M.
Let 0, =3, ,; Ryv;. Then Sy, =37, N(ej —€}) and
R[Ss,] = RIT;/Ti)j2 C RIZ™Y,  Tj =X,

Now any face of o; is generated by a subset of {v;};2; (see the proof of Propo-
sition 2.6(2)). So the set ¥ of the faces of the various o; is a fan. The scheme
X is obtained by just glueing the U,,, 0 < i < d. The above presentation of
R[S,,] shows that Xx = P4,

In this example, the torus T is Urpy = Spec R[X‘E:_E;]m. In terms of
rational points over a field k, the action is

((toy-- - ta)s[To,- - xa]) — [toxo, .- -, taxal.

!The book [1] only treats varieties over C. I have not checked whether the proof works
over any field. Anyway this result is not need in the sequel.
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4.2 Proper morphisms and proper toric varieties

Let ¢ : N — N’ be a linear map of free Z-modules of finite ranks. Let ¢* :
M’ — M be the dual of ¢. The map ¢ extends to ¢r : Ng — Ng. Similarly for

o
Let X, %' be respectively fans in Ng and N. Suppose:
for any o €%, ¢r(o) is contained in some o' € Y.

Then ¢*(S,/) C S, and we get a morphism of schemes U, — U,s. This mor-
phism is clearly independent on the choice of ¢/ O ¢g (o), and we have a mor-
phism U, — Xy and finally a morphism f : X5, — Xsv. We have a canonical
morphism T — T+ and f is compatible with the action of Ty on Xy and that
of Ty on Xy

When N’ =0, we have Xy = Spec R and f is just the structure morphism.

Definition 4.8 For any fan ¥ in Ng, the support of X is |X| := Uyeno C Ng.

Proposition 4.9. Let £,% be as above (this implies that |%| C ¢z (|1%])).
Then the induced morphism

fi:Xs — X5
is proper if and only if ¢5 ' (|1X']) = |%|. In particular, X5 is proper over R if
and only if |X| = Ng.

Proof. First suppose f is proper. Then it is proper when base changed to a
residue field k£ of R. So we suppose R = k. Let o/ € ¥'. Then f~1(Uy/) — Uy
is proper. Let v € ¢z '(0"). We have to show v € |S|. Consider the evaluation

map
ey k[M] — k[Z], x"— u(v).

The composition of k[S,/] C k[M'] — k[M] with e, takes values in k[N] because
¢r(v) € o’. Therefore we have a commutative diagram

(&

k[Z] << K[M]

]

k[N] <— k[So]
As f(T) € Tn' C Uy, we have Ty C f~1(U,/) and a commutative diagram

Gy — % f~1(U,)

Lk

Al U(T/

which, by the valuative criterion of properness, can be completed with a mor-
phism ¢, : A — f~1(U,). Let U, C X5 containing ¢,(0). Then 1, : A} —

11



Uy. So e, : k[M] — E[Z] restricts to k[S,] — k[N]. This means that e,(u) > 0
for all u € S,,, therefore v € (6V)" = o C || So ¢z (|1X']) = ||

Now let us prove the converse. We can suppose R = Z because f over R is
obtained by base change from f over Z. So we can suppose R integral. We will
again use the valuative criterion of properness. Let Ok be a discrete valuation
ring with field of fractions K and consider a commutative diagram

Spec K ——= X, (1)

Lk

SpeC OK L> XE/

We have to show that it can be completed with a morphism p : Spec O — Xs.
By EGA, 11.7.3.10, we can restrict to those p with image equal to the generic
point of Xyx. Let Uy 2 g(Spec Ok ). So we have a commutative diagram

#

K <2 R[M]

]

OK < R[Sgl}
where R[S,/] — R[M] is the restriction of R[M'] — R[M]. The map
viM =7, ue vl ("),

where vk : K — Z U {400} is the valuation of K, is a linear form on M, so
v € N. Moreover, the above commutative diagram implies that for all v’ € o”,
we have v(¢%(u')) > 0, 50 v € ¢ (0") C |Z|. Let 0 € ¥ be a face containing v.
Then for all u € Sy, we have v (p™(x*)) = v(u) > 0 hence p*(x*) € Ok. So
p? restricts to R[S,] — Ok. This means we succeed to complete our original
diagram (1) into a diagram

Spec K L U,

h
l / lf
SpeC OK L> XE/
whose upper triangle is commutative. The lower triangle is commutative because

foh and g coincide on the generic point and Xy is separated (Proposition
4.4). O

Example 4.10 Let N = N’. Suppose that any o € X is contained in a ¢’ € ¥’

and any ¢’/ € ¥’ is a union of o € ¥ (3 is called a refinement of ¥’ ). Then
f: Xy — Xy is proper, Ty-equivariant, and (fiberwise) birational.

12



Remark 4.11 (Resolution of singularities) Using successive proper birational
morphisms Xy — Xy induced by refinements of fans, one can solve the singu-
larities of a given toric variety ([2], §2.6).

Remark 4.12 Let Xy be a proper toric variety over a field k. A natural
question is under which condition Xy is projective. There are criteria using
either polytopes or the notion of strictly convex functions. An example of proper
smooth non-projective toric variety of dimension 3 can be found in [2], §3.4, p.
71.

5 Divisors on toric varieties

The aim of this section is to compute the global sections of the sheaf Ox,, (D)
associated to some special Weil divisor D on X5 (Proposition 5.5).

5.1 Structure of the class group of Xy,

Recall that if X is a normal integral noetherian scheme, a Weil divisor on X is
a formal linear combination of integral closed subschemes of codimension 1 in
X. The group of Weil divisors is denoted by Z!(X). Modulo linear equivalence,
they define the Chow group A'(X), also denoted by C1(X) and called the class
group of X).

We fix a fan ¥ in Ng. We consider X = X, the associated toric variety over
a field k. There are some remarkable Weil divisors on X.

Example 5.1 Let 7 be a ray (cone of dimension 1) in ¥. Then 7 = Ryv for
some v € N a generator of 7N N. This v can be completed into a basis of V. So
U, ~ Al x G4~ (Example 3.5(2)) and U, \ Ty ~ {0} x G4~ is an integral Weil
divisor in U,. Let V(7) be the Zariski closure of U, \ T in X, endowed with
the structure of a reduced closed subvariety. Note that V(7) is geometrically

integral over k because U, \ T is geometrically integral.

Proposition 5.2. Let 71,...,7¢ be the rays in X. Write D; = V(7;) and denote
by v; a generator of ;, "N over N. We have

(1) UlgigEDi =X \ Tn.
(2) For anyue M, div(x") = > <;<; u(vi)D;.

Proof. (1) postponed to Theorem 6.4.

(2) Let 7 be a ray in ¥. The generic point of V(1) belongs to U, and it is
enough to compute the order of div(x,) in U,. Let vy,...,vq be a basis of N
such that 7 = Ryvy. Write u = a1v] + - - - 4+ aqv} in the dual basis. We saw in
the example above that V(7) N U, is defined by x"1. So the order (of zero or
pole) of x* at the generic point of V(7) is a; = u(vy). O
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Proposition 5.3. We have an exact sequence
M — ®1<i<eZD; — CI(X) — 0.
It is exact at left if |X| s not contained in a proper subspace of Ng.

Proof. The map M — Z'(X), u — div(x") is Z-linear and has image in &;ZD;
by Proposition 5.2(2). If D = ) . a;D; = div(f) for some f € k(X)*, then
flry € Ox(Tw)* = k[M]* and f|1, = Ax™ for some A € k* and u € M. So
D = div(x™). This proves the exactness at middle.

By general results, we have an exact sequence

By Proposition 5.2(1), X \U;D; = Ty. As Cl(Tx) = {1} because k[M] is UFD,
we have the exactness at right.

Finally, suppose div(x®) = 0. Then u(v;) = 0. As we see easily that every o
is generated by some one-dimensional cones in 3, this implies that u vanishes at
the vector subspace of Ny generated by 3. So if ¥ is not contained in a proper
subspace of Ng, then w =0 and M — &;ZD; is injective. O

5.2 Action of Ty (k)

As Ty acts on X = Xy by some morphism p : Ty x X — X, we have a
morphism of groups T (k) — Auty(X), the image of t € Ty (k) is

X =X, zr~ ut).
So Ty (k) also acts on Z!(X) and on k(X) the function field of X.

Lemma 5.4. Let t € T (k).

(1) Let we M. Then
X" =t (w)x",
where t~1(u) is t1 € T (k) = Homgy (M, k) applied to u.

(2) Let D; be a divisor on X as in Proposition 5.2. Then t.D; = D;.

Proof. (1) Let us use a basis eq,...,eq of N. Then t = (t1,...,tq) with ¢; € k*.
Write v = ), a;ef with a;, € Z. We have

et =[xy = [T %) = ([T e x™
i @ ‘

where t.x% = t;x% because the action of ¢t on the coordinates is multiplication
by t; on the i-th coordinate.
(2) As t acts on U, and on Ty = Uyoy C Uy, t fixes U, \ T, hence t fixes

D; = U,, \ Tw. O
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5.3 Global sections of Ox(D)
Keep the notation of Proposition 5.2.
Proposition 5.5. Let D = Zlgige a;D;. Let
Pp ={ue Mg |u(v)>—a;,i=1,...,0}.

Then
H°(X,0x (D)) = Guerpnmkx".

Proof. Asthe D; are defined independently of k, H°(X, Ox (D)) commutes with
base change. It is thus enough to show the equality for some extension of k. In
particular we can suppose k is infinite.

The restriction to T induces a canonical map

HO(X’ OX(D)) - HO(TN’OTN(DlTN)) = HO(TNvoTN) = k[M]

of subspace of k(X). So we can view H°(X,Ox (D)) as a subspace of k[M] =
Guenmkx®. If u € M, then x* € HY(X,Ox (D)) if and only if u € Pp N M by
Proposition 5.2(2). In particular ®y,ep,nakx® € HO(X, Ox(D)).

Let f € H°(X,Ox(D)). There exists a finite subset F of M such that f €
E := @yerkx™. The commutative group Ty (k) acts on the finite dimensional
vector space E through diagonalizable automorphisms. Moreover, as T (k)
fixes each D; (Lemma 5.4), it acts on H°(X,Ox(D)). So EN H°(X,0x (D))
is a subspace of F globally invariant by T (k). As Ty (k) is commutative with
diagonalizable actions, ENH"(X, Ox (D)) is a direct sum of common eigenspaces
of T (k). Using the description of the action of T (k) on x* (Lemma 5.4) and
the hypothesis that k is infinite, we find E N H°(X,Ox (D)) is a direct sum of
kx“. But x* € H°(X,Ox(D)) implies that u € Pp N M (Proposition 5.2(2)),
S0

f€ ENH(X,0x(D)) C ©uepprarkx™.

6 Orbits under Tl

This section is added after the three hours talks. Here we prove Proposition 5.2,
see Theorem 6.4. We work over a field k.

We saw in §3.4 that Ty acts on X = Xy. This action will allows us to
decompose X as a union of finitely many orbits. Denote by p: Ty x X — X
the morphism defining the action.

Definition 6.1 Let € X (k). We define the orbit of x under T or Tn-orbit
of x the image of the canonical morphism 7, : Ty — Ty X {z} £ X.

Notation Let ¢ € ¥ and let x, be the distinguished rational point of U,
(Remark 3.8). We denote by O, the orbit of z, under Ty. As Ty x Uy — Us,,
we have O, C U,.
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Example 6.2 (1) If 0 = {0}. Then O, = T.

(2) If dimo = 1, then we saw that U, = Al x G4 z, = (0,1,...,1) and so
O, = {0} x G4t ~ G411,

(3) If dimo = d, then z,, : u — 0 for all u € S, non-zero because u ¢ o+ = {0}.
For all t € Tx(k), we have then t.z, = 2, and O, = {z,}.

In all these cases, O, is a subvariety of U, of dimension dim O, = d—dimo.
Let 0 C Ng be a strongly convex rational polyhedral cone. Denote by
N(o)=N/(cNN+ (-ocNN))
the quotient by the submodule of N generated by o N N. Denote by
ot = {u € Mg | u(o) = {0}}.
The canonical pairing M x N — Z induces a perfect pairing
(6 N M) x N(o) — Z.
Lemma 6.3. Let 0 € 3.

(1) Consider the linear projection p, : k[S,] — k[ot N M], x* — x" if u €
ot N M and 0 otherwise. Then p, is a surjective homomorphism of k-
algebras.

(2) The orbit Oy is V(ker ps) =~ T (yy. This is a closed subvariety of dimension
d—dimo.

(3) O,(k) = {z € U,(k) = Homgy (0, k) | x(u) = 0,Yu € S, \ (- N M)}.

Proof. (1) Let uy,uy € S,. Then uj + us € ot if and only if uy,us € ot.
This implies that the map S, — k[o+ N M] defined by u — x* if u € ot N M
and u — 0 otherwise is a morphism of semigroups, so the induced map p, is a
morphism of k-algebras.

(2) The morphism 7, (see 6.1) corresponds to

k[So] — E[M] ® k(xy) ~ k[M], X" X" ®x"(2s) — zq(u)X".

This is nothing but p,. So 7., factorizes into the surjective morphism T —
TN(s) = Uy and the closed immersion Ty () — U, defined by p,.

(3) Let € Uy(k). Then x € O, = V(kerp,) if and only if ker p, C ker f,
where f, : k[S,] — k is defined by x* — z(u) (when x is viewed as an element
of Homgy(S,,k)). This is equivalent to z(u) = 0 for all x* € kerp,, but the
latter condition is nothing but u € S, \ (- N M). O

Theorem 6.4. Let X = Xy, be a toric variety over a field k. Let 0 € X.

(1) The orbit O, C U, is a closed subvariety of dimension d — dimo.
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(2) We have U, = U;<,0~, where the union runs through the faces 7 of 0.

(3) Let 71,...,7¢ be the rays (one-dimensional cones) of ¥. Let D; = U,, \ Ty
(Zariski closure). Then

X\ Tn = Ui<i<eD;.

Proof. (1) This is Lemma 6.3.
(2) As the construction of O, is compatible with base changes, we can sup-
pose k is algebraically closed. Let z € U, (k) = Homgy (S5, k). Consider

e (k) = {u € S, | x(u) € k*}.

Let u1,us € Sy, then x(u; + uz) = x(uy)z(uz) and uy + us € x~1(k*) if and
only if uy,us € x71(k*). Such a sub-semigroup of S, is automatically equal to
7+ NS, for some face 7 of o ([2], page 15, Exercise and [1], Proposition 1.2.10).
Asz(u)=0for allu € S, \ (N M), x € O, by Lemma 6.3.

(3) For any 7, U, \ Ty C X \ Tn. The latter being closed, we have
D; C X5\ Ty. On the other hand, for any o € X, by (2), U, is the union of
Tn = Oyoy and locally closed subsets O, of dimension dimO, = d — dim7 <
d — 1. Therefore the points of codimension 1 in U, \ T are in the orbits of rays
7. For a ray 7, we have O, = U, \ T by (2). Hence U, \ Ty is contained in
UngDi and Xy, \TN - UlgiSZDi~ This proves (3) O

Remark 6.5 It follows from the theorem that the orbit of any rational point
in U, is of the form O, for some face 7 of o (take 7 such that x € O,).
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