Three hours with toric varieties

Qing Liu

March 18, 2013
Contents
1 Introduction 1
2 Rational convex polyhedral cones 2
2.1 Basic definitions 2
2.2 Dual 2
3 Affine toric varieties 4
3.1 Algebra of a semigroup 5
3.2 Affine toric varieties 5
3.3 Local properties of U_{σ} 7
3.4 Torus action 8
4 Toric varieties 8
4.1 Construction from fans 9
4.2 Proper morphisms and proper toric varieties 11
5 Divisors on toric varieties 13
5.1 Structure of the class group of X_{Σ} 13
5.2 Action of $T_{N}(k)$ 14
5.3 Global sections of $\mathcal{O}_{X}(D)$ 15
6 Orbits under T_{N} 15

1 Introduction

Our motivation to study toric varieties is P. Scholze's proof of Deligne's weightmonodromy conjecture in the case of complete intersection subvarieties of projective smooth toric varieties over a local field ([4], Theorem 9.6).

The main reference for this text is Fulton [2]. Cox-Little-Schenck [1] treats toric varieties in great details. Oda [3] is also useful. All these books consider toric varieties only \mathbb{C}, so we had to check that all proofs here are correct over any field.

2 Rational convex polyhedral cones

Notation

(1) N is a free \mathbb{Z}-module of rank d;
(2) \mathbb{R}_{+}is the set of non-negative real numbers;
(3) $M=\operatorname{Hom}(N, \mathbb{Z})$ is the linear dual of N;
(4) $N_{\mathbb{R}}=N \otimes_{\mathbb{Z}} \mathbb{R}$, and e_{1}, \ldots, e_{d} is a basis of N.

2.1 Basic definitions

Definition 2.1 A convex polyhedral cone in $N_{\mathbb{R}}$ is a subset of the form

$$
\sigma=\mathbb{R}_{+} v_{1}+\cdots+\mathbb{R}_{+} v_{s}
$$

where v_{1}, \ldots, v_{s} are some vectors in $N_{\mathbb{R}}$. If there are generators $v_{i} \in N$, we say σ is a rational convex polyhedral cone. We say σ is strongly convex if σ doesn't contain a line $\mathbb{R} v$.

The set $\sigma+(-\sigma):=\left\{v+\left(-v^{\prime}\right) \mid v, v^{\prime} \in \sigma\right\}$ is a vector subspace of $N_{\mathbb{R}}$, its dimension is called the dimension $\operatorname{dim} \sigma$ of σ.

Example 2.2 (1) $\sigma=\{0\}$;
(2) $\sigma=\sum_{1 \leq i \leq d^{\prime}} \mathbb{R}_{+} e_{i}$ for some $d^{\prime} \leq d$;
(3) $d=2, \sigma=\mathbb{R}_{+}\left(2 e_{1}-3 e_{2}\right)+\mathbb{R}_{+} e_{2}$.

They are all strongly convex.
(4) $\sigma=\mathbb{R}_{+} e_{1}+\cdots+\mathbb{R}_{+} e_{d^{\prime}}+\mathbb{R} e_{d^{\prime}+1}+\cdots+\mathbb{R} e_{d}$. It is not strongly convex if $d^{\prime}<d$.

2.2 Dual

Recall $M=N^{*}$ is the dual of N. So $M_{\mathbb{R}}$ is the dual of $N_{\mathbb{R}}$. Put

$$
\sigma^{\vee}:=\left\{u \in M_{\mathbb{R}} \mid u(v) \geq 0, \forall v \in \sigma\right\} .
$$

Note that if $\sigma=\sum_{i} \mathbb{R}_{+} v_{i}$, then $\sigma^{\vee}=\cap_{i}\left(\mathbb{R}_{+} v_{i}\right)^{\vee}$ and σ^{\vee} is the intersection of the half-spaces in $\left(\mathbb{R}_{+} v_{i}\right)^{\vee}$ in $M_{\mathbb{R}}$.

Example 2.3 Denote by $e_{1}^{*}, \ldots, e_{d}^{*}$ the dual basis of e_{1}, \ldots, e_{d}.
(1) $\{0\}^{\vee}=M_{\mathbb{R}}$.
(2) We have

$$
\left(\sum_{1 \leq i \leq d^{\prime}} \mathbb{R}_{+} e_{i}\right)^{\vee}=\sum_{1 \leq i \leq d^{\prime}} \mathbb{R}_{+} e_{i}^{*}+\sum_{d^{\prime}+1 \leq j \leq d} \mathbb{R} e_{j}^{*}
$$

It is not strongly convex if $d^{\prime}<d$.
(3) $d=2,\left(\mathbb{R}_{+}\left(2 e_{1}-3 e_{2}\right)+\mathbb{R}_{+} e_{2}\right)^{*}=\mathbb{R}_{+} e_{1}^{*}+\mathbb{R}_{+}\left(3 e_{1}^{*}+2 e_{2}^{*}\right)$.

Let $u \in M_{\mathbb{R}}$. Dente by $u^{\perp}=\left\{v \in N_{\mathbb{R}} \mid u(v)=0\right\}$.
Definition 2.4 Let σ be a rational convex polyheadral cone. A face τ of σ is a subset of σ of the form

$$
\tau=\sigma \cap u^{\perp}
$$

for some $u \in \sigma^{\vee}$.
Remark 2.5 Let τ be a face of σ. Then there exists $u \in M$ such that $\tau=\sigma \cap u^{\perp}$ ([2], 11.2 , Prop. 2). We will always chose $u \in M$ when dealing with faces of σ.

Proposition 2.6. Let $\sigma \subset N_{\mathbb{R}}$ be a rational convex polyhedral cone.
(1) $\left(\sigma^{\vee}\right)^{\vee}=\sigma$.
(2) σ has finitely many faces.
(3) A face τ of σ is a rational convex polyhedral cone, strongly convex if σ is strongly convex.
(4) A face of a face of σ is a face of σ
(5) The intersection of two faces of σ is a face of σ.

Proof. (1) Clearly $\sigma \subseteq\left(\sigma^{\vee}\right)^{\vee}$. The converse is a classical theorem on convex bodies in \mathbb{R}^{d} : if σ is a convex subset of \mathbb{R}^{d} and $v_{0} \in \mathbb{R}^{d} \backslash \sigma$, then there exists a half-space containing σ but not v_{0}.
(2)-(3) Write $\tau=\sigma \cap u^{\perp}$. We have $\sigma=\sum_{1 \leq i \leq s} \mathbb{R}_{+} v_{i}$. So

$$
\tau=\sum_{i \leq s, u\left(v_{i}\right)=0} \mathbb{R}_{+} v_{i} .
$$

This implies (2) and that τ is a rational polyhedral cone. If σ is strongly convex, it doesn't contain real line, so a fiortiori τ doesn't contain real line.
(4) Let $\tau=\sigma \cap u^{\perp}$ and $\tau^{\prime}=\tau \cap u^{\perp \perp}$ with $u^{\prime} \in \tau^{\vee}$. There exists $n \geq 0$, such that $u^{\prime}+n u \in \sigma^{\vee}$ and $u^{\prime}\left(v_{i}\right)+n u\left(v_{i}\right)>0$ if $v_{i} \notin \tau$. Indeed, if $v_{i} \in \tau$, then $u^{\prime}\left(v_{i}\right) \geq 0$ and $u\left(v_{i}\right)=0$, so $\left(u^{\prime}+n u\right)\left(v_{i}\right) \geq 0$ for all $n \geq 0$. If $v_{i} \notin \tau$, then $u\left(v_{i}\right)>0$, so $u^{\prime}\left(v_{i}\right)+n u\left(v_{i}\right)>0$ if n is big enough. The linear form $u^{\prime}+n u \in \sigma^{\vee}$.

We have clearly $\tau^{\prime} \subseteq \sigma \cap\left(u^{\prime}+n u\right)^{\perp}$. Conversely let $v=\sum_{i} \lambda_{i} v_{i} \in \sigma \cap\left(u^{\prime}+\right.$ $n u)^{\perp}\left(\right.$ so $\left.\lambda_{i} \in \mathbb{R}_{+}\right)$, as $\left(u^{\prime}+n u\right)\left(v_{i}\right) \geq 0$ and is >0 for those $v_{i} \in \notin \tau$, we find $\lambda_{i}=0$ if $v_{i} \notin \tau$. So $v \in \tau$ and then $v \in u^{\prime \perp}$. Thus $v \in \tau^{\prime}$.
(5) Let $\tau_{1}=\sigma \cap u_{1}^{\perp}, \tau_{2}=\sigma \cap u_{2}^{\perp}$. Then $\tau_{1} \cap \tau_{2}=\sigma \cap\left(u_{1}+u_{2}\right)^{\perp}$.

Proposition 2.7. (Farkas's theorem) Let σ be a rational convex polyhedral cone in $N_{\mathbb{R}}$. Then σ^{\vee} is a rational convex polyhedral cone in $M_{\mathbb{R}}$.

Proof. First suppose that $\operatorname{dim} \sigma=d$. It is easy to see that any proper face is contained in a face of dimension $d-1$ ([2], 1.2(5)). Let $\sigma \cap u_{1}^{\perp}, \ldots, \sigma \cap u_{r}^{\perp}$ be the faces of dimension $d-1$. Then

$$
\sigma=\cap_{1 \leq j \leq r}\left\{v \in N_{\mathbb{R}} \mid u_{j}(v) \geq 0\right\}
$$

([2], 1.2(8)). Let $S=\sum_{j \leq r} \mathbb{R}_{+} u_{j} \subseteq \sigma^{\vee}$. Let $v \in S^{\vee}$. Then $u_{j}(v) \geq 0$ for all $j \leq r$ and $v \in \cap_{j}\left\{u_{j} \geq 0\right\}^{=}=\sigma$. Therefore $S^{\vee} \subseteq \sigma$ and $\sigma^{\vee} \subseteq\left(S^{\vee}\right)^{\vee}=S$. This implies that $\sigma^{\vee}=S$ is a rational convex polyhedral cone in $M_{\mathbb{R}}$.

In general, let $W=\sigma+(-\sigma)$. Then $M_{\mathbb{R}} / W^{\perp}=W^{*}$ (linear dual space) and σ^{\vee} (as a cone) is generated by the lifting of a system of generators of σ_{W}^{\vee} defined by the cone $\sigma \subset W_{\mathbb{R}}^{*}$, and \pm a system of generators of W^{\perp}.

Definition 2.8 Let $\sigma \subseteq N_{\mathbb{R}}$ be a rational convex polyhedeal cone. We define

$$
S_{\sigma}:=\sigma^{\vee} \cap M
$$

This is a sub-semigroup of M with 0 .
Proposition 2.9. (Gordan's lemma) S_{σ} is finitely generated.
Proof. By Farkas's theorem, $\sigma^{\vee}=\sum_{1 \leq j \leq r} \mathbb{R}_{+} u_{j}$ with $u_{j} \in M$. Let $K=$ $\sum_{j}[0,1] u_{j} \subset \sigma^{\vee}$. It is compact. As $K \cap \bar{M}$ is discrete in a compact, it is finite. As $\mathbb{R}_{+}=\mathbb{N}+[0,1]$, we find $S_{\sigma} \subseteq \sum_{j} \mathbb{N} u_{j}+(K \cap M)$. Hence S_{σ} is finitely generated.

Example 2.10 (1) If $\sigma=\{0\}$, then $S_{\sigma}=M$.
(2) If $\sigma=\sum_{1 \leq i \leq d^{\prime}} \mathbb{R}_{+} e_{i}$, then $S_{\sigma}=\sum_{1 \leq i \leq d^{\prime}} \mathbb{N} e_{i}^{*}+\sum_{d^{\prime}+1 \leq r \leq d} \mathbb{Z} e_{i}^{*}$.
(3) Let σ be the cone given in 2.2(3). Then $S_{\sigma}=\mathbb{N} e_{1}^{*}+\mathbb{N}\left(2 e_{1}^{*}+e_{2}^{*}\right)+\mathbb{N}\left(3 e_{1}^{*}+2 e_{2}^{*}\right)$.

Proposition 2.11. The semigroup $S_{\sigma} \subseteq M$ is saturated (if $n \geq 1, u \in M$ satisfy $n u \in S_{\sigma}$, then $u \in S_{\sigma}$), finitely generated. If σ is strongly convex. Then $S_{\sigma}+\left(-S_{\sigma}\right)=M$.

Proof. Only the last property has to be proved. First we have $\sigma^{\vee}+\left(-\sigma^{\vee}\right)=M_{\mathbb{R}}$. Indeed, if this is not true, then $\sigma^{\vee} \subseteq \operatorname{ker}(v)$ for some non-zero linear form $v \in M_{\mathbb{R}}^{*}=N_{\mathbb{R}}$. Therefore $\mathbb{R} v=(\operatorname{ker}(v))^{\vee} \subseteq\left(\sigma^{\vee}\right)^{\vee}=\sigma$. Contradiction with σ strongly convex.

3 Affine toric varieties

We define the affine scheme associated to a rational convex polyhedral cone.
We fix a (commutative unitary) ring R. Most of the time R is a field. But in applications we have in mind (Scholze's theorem), we have to deal with R a discrete valuation ring.

3.1 Algebra of a semigroup

Let S be a commutative semigroup. We denote by $R[S]$ the direct sum

$$
R[S]=\oplus_{s \in S} R \chi^{s}
$$

where χ^{s} denotes the basis indexed by s. It has a natural structure of commutative R-algebra by setting

$$
\chi^{s} \cdot \chi^{t}=\chi^{s+t}
$$

Example 3.1 $R\left[\mathbb{N}^{d}\right] \simeq R\left[T_{1}, \ldots, T_{d}\right] ; R\left[\mathbb{Z}^{d}\right] \simeq R\left[T_{1}^{ \pm}, \ldots, T_{d}^{ \pm}\right]$.
If $S=2 \mathbb{N}+3 \mathbb{N} \subset \mathbb{N}$. Then $R[S]=R\left[T^{2}, T^{3}\right] \subseteq R[T]$.
Lemma 3.2. Let S_{1}, S_{2} be semigroups contained in M.
(1) If $S_{1} \subseteq S_{2}$, the we have canonically $R\left[S_{1}\right] \subseteq R\left[S_{2}\right] \subseteq R[M]$.
(2) If S is finitely generated, then $R[S]$ is a finitely generated algebra over R.
(3) $R\left[S_{1}+S_{2}\right]=R\left[S_{1}\right] R\left[S_{2}\right]$;
(4) $R\left[S_{1} \cap S_{2}\right]=R\left[S_{1}\right] \cap R\left[S_{2}\right]$.

Proof. Immediate from the definition.
Let $X=\operatorname{Spec} R[S]$. Let us decribe the points of X. Let A be an R-algebra. Consider a homomorphism $\phi: R[S] \rightarrow A$. Then we have a map

$$
S \rightarrow A, \quad s \mapsto \phi\left(\chi^{s}\right)
$$

It is a morphism of semigroups (A is considered as a semigroup with its multiplication law).

Proposition 3.3. The above process induces a canonical bijection

$$
X(A) \rightarrow \operatorname{Hom}_{s g}(S, A)
$$

from the set of A-valued points of X to the set of morphisms of semigroups from S to (A, \times).

Proof. If $\psi: S \rightarrow A$ is a morphism of semigroups, we define an R-linear map $\phi: R[S] \rightarrow A$ by $\phi\left(\chi^{s}\right)=\psi(s)$. We check easily that ϕ is a morphism of R-algebras, and $\psi \mapsto \phi$ is the reciprocal map of $X(A) \rightarrow \operatorname{Hom}(S, A)$.

3.2 Affine toric varieties

Let σ be a rational convex polyhedral cone in $N_{\mathbb{R}}$.
Definition 3.4 Let $S_{\sigma} \subseteq M$ be the semigroup associated to σ (2.8). We define

$$
U_{\sigma}=\operatorname{Spec} R\left[S_{\sigma}\right] .
$$

If necessary, we add R in the subscript to indicate the scheme is defined over R.

Example 3.5 (1) $U_{\{0\}}=\operatorname{Spec} R[M] \simeq \mathbb{G}_{m, R}^{d}$. Denote by $T_{N}:=U_{\{0\}}$.
(2) If $\sigma=\sum_{1 \leq i \leq d^{\prime}} \mathbb{R}_{+} e_{i}$ in $N_{\mathbb{R}}$, then $U_{\sigma} \simeq \mathbb{A}_{R}^{d^{\prime}} \times{ }_{R} \mathbb{G}_{m, R}^{d-d^{\prime}}$.
(3) Let σ be the cone given in 2.2(3). The semigroup S_{σ} has been computed in 2.10(3). Denote by $T_{1}=\chi^{e_{1}}, T_{2}=\chi^{e_{2}}$. Then

$$
R\left[S_{\sigma}\right]=R\left[T_{1}, T_{1}^{2} T_{2}, T_{1}^{3} T_{2}^{2}\right] \subseteq R\left[T_{1}^{ \pm 1}, T_{2}^{ \pm 1}\right]
$$

Denote by $U=T_{1}^{2} T_{2}$ and $V=T_{1}^{3} T_{2}^{2}$, then $R\left[S_{\sigma}\right]=R\left[T_{1}, U, V\right]$ with the relation $T_{1} V-U^{2}$. So if k is a field, then $U_{\sigma, k}$ is a rational surface isomorphic to Spec $k[T, U, V] /\left(T V-U^{2}\right)$.

Lemma 3.6. Let $\tau=\sigma \cap u^{\perp}$ be a face of σ with $u \in S_{\sigma}$. Then
(1) $\tau^{\vee}=\sigma^{\vee}+\mathbb{R}_{+}(-u)$;
(2) $S_{\tau}=S_{\sigma}+\mathbb{N}(-u)$.
(3) The inclusion $S_{\sigma} \subseteq S_{\tau}$ induces an open immesion $U_{\tau} \rightarrow U_{\sigma}$ which identifies U_{τ} with the principal open subset $D\left(\chi^{u}\right)$ of U_{σ}.
(4) If R is an integral domain, then U_{σ} is integral. If moreover σ is strongly convex, then $T_{N} \rightarrow U_{\sigma}$ is birational.

Proof. (1) We have

$$
\tau^{\vee}=\sigma^{\vee}+\mathbb{R} u=\sigma^{\vee}+\mathbb{R}_{+} u+\mathbb{R}_{+}(-u)=\sigma^{\vee}+\mathbb{R}_{+}(-u)
$$

(2) Obviously $S_{\sigma}+\mathbb{N}(-u) \subseteq S_{\tau}$. Let $u^{\prime} \in S_{\tau}$. We saw in the proof of 2.6(4) that there exists $n \geq 1$ such that $u^{\prime}+n u \in \sigma^{\vee} \cap M$. So $u^{\prime} \in S_{\sigma}+\mathbb{N}(-u)$.
(3) follows from

$$
R\left[S_{\tau}\right]=R\left[S_{\sigma}\right]\left[\chi^{-u}\right]=R\left[S_{\sigma}\right]\left[\left(\chi^{u}\right)^{-1}\right]=R\left[S_{\sigma}\right]_{\chi^{u}}
$$

(4) As $S_{\sigma}+\left(-S_{\sigma}\right)=M$ (Proposition 2.11), for any $u \in M$, there exist $u_{1}, u_{2} \in S_{\sigma}$ such that $u=u_{1}-u_{2}$. So $\chi^{u}=\chi^{u_{1}}\left(\chi^{u_{2}}\right)^{-1}$. This implies that $\operatorname{Frac}(R[M])=\operatorname{Frac}\left(R\left[S_{\sigma}\right]\right)$.

The next lemma will be used in $\S 4$.
Lemma 3.7. ([2], §1.2, Proposition 3) Let σ, σ^{\prime} be two rational convex polyhedral cones sharing a common face τ. Then $S_{\tau}=S_{\sigma}+S_{\sigma}^{\prime}$.

Remark 3.8 The R-scheme U_{σ} has a distinguished section $x_{\sigma} \in U_{\sigma}(R)$ defined by the morphism of semigroups $S_{\sigma} \rightarrow R, u \mapsto 1$ if $\left.u\right|_{\sigma}=0$ and $u \mapsto 0$ otherwise.

If $\sigma=\{0\}$, then x_{σ} correspond to the unit section $(1, \ldots, 1) \in \mathbb{G}_{m, R}^{d}$. If $\sigma=\sum_{1<i<d^{\prime}} \mathbb{R}_{+} e_{i}$, then $x_{\sigma}=(0, . ., 0,1, \ldots, 1)$ (with 0 repeated d^{\prime} times and 1 repeated $\bar{d}-d^{\prime}$ times). In Example 3.5.(3) it corresponds to $T_{1}=U=V=0$.

3.3 Local properties of U_{σ}

Proposition 3.9. The scheme U_{σ} is smooth over R if and only if σ is generated by a subset of a basis of N.

Proof. Suppose σ is generated by a basis of N. Then U_{σ} is isomorphic to a product of $\mathbb{A}_{R}^{d^{\prime}}$ and a $\mathbb{G}_{m, R}^{d-d^{\prime}}$ by Example 3.5(2). So it is smooth over R.

Suppose $U_{\sigma, R}$ is smooth over R. Base change to a residue field, we find that $U_{\sigma, k}$ is regular for some field k. Suppose first $\operatorname{dim} \sigma=d$. Consider the distinguished rational point x_{σ} (Remark 3.8). The maximal ideal \mathfrak{m}_{σ} of $k\left[S_{\sigma}\right]$ corresponding to x_{σ} is generated by all χ^{u} for $u \in S_{\sigma}$ non-zero. By hypothesis, $\mathfrak{m}_{\sigma} / \mathfrak{m}_{\sigma}^{2}$ has dimension $d=\operatorname{dim} U_{\sigma}$ over k. So there exist $u_{1}, \ldots, u_{d} \in S_{\sigma}$ such that $\mathfrak{m}_{\sigma}=\sum_{i} k \chi^{u_{i}}+\mathfrak{m}_{\sigma}^{2}$. For any $u \in S_{\sigma}$ non-zero, $\chi^{u}=\sum_{i} \lambda_{i} \chi^{u_{i}}+\sum_{j} f_{j} g_{j}$, $f_{j}, g_{j} \in \mathfrak{m}_{\sigma}$. This implies that

$$
u \in\left\{u_{1}, \ldots, u_{d}\right\} \cup(T+T)
$$

where $T=S_{\sigma} \backslash\{0\}$ and $u \in\left(\sum_{i} \mathbb{N} u_{i}\right) \cup(T+\cdots+T)$. As σ^{\vee} is a strongly convex rational polyhedral cone in $M_{\mathbb{R}}$, the sum of r vectors in T has norm tending to $+\infty$ when r tends to $+\infty$, so $u \in \sum_{1 \leq i \leq d} \mathbb{N} u_{i}$ andd $S_{\sigma}=\sum_{i} \mathbb{N} u_{i}$. As S_{σ} generates M, this forces $\left\{u_{1}, \ldots, u_{d}\right\}$ to be free over \mathbb{R}, hence free over \mathbb{Z}. Up to scaling, we see that σ^{\vee} is generated by a basis of M, therefore $\sigma=\left(\sigma^{\vee}\right)^{\vee}$ is generated by a basis of N.

In the general case, let L be the sub-module of N generated by $\sigma \cap N$. Then N / L is free. Let Write $N=N^{\prime} \oplus L$ with $N^{\prime} \simeq N / L$. Then $S_{\sigma}=\left(S_{\sigma}^{\prime}\right) \oplus M^{\prime}$ where S_{σ}^{\prime} is defined by σ viewed as a polyhedral cone in $L_{\mathbb{R}}$ of dimension equal to $\operatorname{dim} L_{\mathbb{R}}$. As schemes we than have $U_{\sigma}=U_{\sigma}^{\prime} \times \mathbb{G}_{m, k}^{d^{\prime}}$ with $d^{\prime}=d-\operatorname{dim} L_{\mathbb{R}}$. This implies that U_{σ}^{\prime} is regular, hence σ is generated by a basis of L. The latter can be completed into a basis of N.

Proposition 3.10. Suppose R is integral and integrally closed. Then U_{σ} is integral and normal.

Proof. Write $\sigma=\sum_{1 \leq i \leq s} \mathbb{R}_{+} v_{i}$. So $\sigma^{\vee}=\cap_{i}\left(\mathbb{R}_{+} v_{i}\right)^{\vee}$ and $S_{\sigma}=\cap_{i} S_{\tau_{i}}$ where $\tau_{i}=\mathbb{R}_{+} v_{i}$. We can replace v_{i} by a suitable vector in $\mathbb{Q}_{+} v_{i}$ so that v_{i} can be completed into a basis of N over \mathbb{Z}. So $U_{\tau_{i}}$ is smooth over R (Proposition 3.9), hence normal. Therefore

$$
R\left[S_{\sigma}\right]=\cap_{i} R\left[S_{\tau_{i}}\right]
$$

is integrally closed.
Remark 3.11 One can show that U_{σ} over a field satisfies further the following properties:
(1) U_{σ} is Cohen-Macaulay ([2], page 30).
(2) U_{σ} is monomial (i.e., closed subscheme of an affine space defined by equations of the type one monomial $=$ other monomial ([1], Proposition 1.1.9). For example the U_{σ} in $3.5(3)$ is defined by $T_{1} V=U^{2}$.
(3) U_{σ} has only rational singularities ([1], Theorem 11.4.2; [2], §3.5, p. 76).
(4) Every projective module of finite type over $k\left[S_{\sigma}\right]$ (k can be replaced by any PID) is free (Gubeladze, The Anderson conjecture and a maximal class of monoids over which projective modules are free, (Russian) Mat. Sb. (N.S.) 135(177) (1988), 169-185,). This generalizes Quillen-Suslin's theorem for polynomial rings.

3.4 Torus action

Recall $T_{N}=U_{\{0\}} \simeq \mathbb{G}_{m, R}^{d}$. This is a group scheme over R, the co-multiplication law is given by

$$
R[M] \rightarrow R[M] \otimes_{R} R[M], \quad \chi^{u} \mapsto \chi^{u} \otimes \chi^{u}
$$

For any σ, the inclusion $R\left[S_{\sigma}\right] \subseteq R[M]$ induces

$$
R\left[S_{\sigma}\right] \rightarrow R\left[S_{\sigma}\right] \otimes_{R} R[M], \quad \chi^{u} \mapsto \chi^{u} \otimes \chi^{u},
$$

hence a morphism

$$
T_{N} \times{ }_{R} U_{\sigma} \rightarrow U_{\sigma}
$$

which satisfies all axioms of an action of T_{N} on U_{σ} (we have to check that some diagrams are commutative, but it is enough to see they are commutative with $R[M])$.

On the sections, the action

$$
T_{N}(R) \times U_{\sigma}(R) \rightarrow U_{\sigma}(R)
$$

is described as follows. Let $t \in T_{N}(R)=\operatorname{Hom}_{s g}(M, R)$ (morphisms of semigroups, see Prop. 3.3), $x \in U_{\sigma}(R)=\operatorname{Hom}_{s g}\left(S_{\sigma}, R\right)$, then $t x \in U_{\sigma}(R)$ is $u \mapsto t(u) x(u)$.

Let $S_{\sigma}=\sum_{i \leq r} \mathbb{N} u_{i}$. Then each point $x \in U_{\sigma}$ has coordinates $\left(x_{1}, \ldots, x_{r}\right)$ when U_{σ} is embedded in \mathbb{A}_{R}^{r} using the $\chi^{u_{i}}$,s. Write $u_{i}=\ell_{i 1} e_{1}^{*}+\cdots+\ell_{i d} e_{d}^{*}$. Then the above action is

$$
\left(\left(t_{1}, \ldots, t_{d}\right),\left(x_{1}, \ldots, x_{r}\right)\right) \mapsto\left(t_{1}^{\ell_{11}} \cdots t_{d}^{\ell_{1 d}} x_{1}, \ldots, t_{1}^{\ell_{r_{1}}} \cdots t_{d}^{\ell_{r d}} x_{d}\right)
$$

Remark 3.12 The morphism $R\left[S_{\sigma}\right] \rightarrow R\left[S_{\sigma}\right] \otimes_{R} R\left[S_{\sigma}\right]$ defined by $\chi^{u} \mapsto \chi^{u} \otimes \chi^{u}$ induces a morphism $U_{\sigma} \times{ }_{R} U_{\sigma} \rightarrow U_{\sigma}$ which makes U_{σ} into a "monoidal scheme" (the law is associative, commutative with unit).

4 Toric varieties

A toric variety is obtained by glueing suitable sets of affine toric varieties U_{σ}. Recall that N is a free \mathbb{Z}-module of rank d.

4.1 Construction from fans

Definition 4.1 A fan Σ in $N_{\mathbb{R}}$ is a finite and non-empty set of strongly convex rational polyhedral cones in $N_{\mathbb{R}}$ with the following properties:
(i) If $\sigma \in \Sigma$, then all faces of σ belong to Σ;
(ii) If $\sigma, \sigma^{\prime} \in \Sigma$, then $\sigma \cap \sigma^{\prime}$ is a face of σ and of σ^{\prime}.

Example 4.2 Any σ induces a fan Σ which consists in all faces of σ.
Let Σ be a fan. Let $\sigma, \sigma^{\prime}, \sigma^{\prime \prime} \in \Sigma$. By Lemma 3.6(3), we have canonical open immersions $p_{\sigma, \sigma^{\prime}}: U_{\sigma \cap \sigma^{\prime}} \rightarrow U_{\sigma}$ and $p_{\sigma^{\prime}, \sigma^{\prime \prime}}: U_{\sigma^{\prime} \cap \sigma^{\prime \prime}} \rightarrow U_{\sigma^{\prime}}$. It is easy to check that on $U_{\sigma \cap \sigma^{\prime} \cap \sigma^{\prime \prime}}$, the open immersions $p_{\sigma, \sigma^{\prime}}, p_{\sigma, \sigma^{\prime \prime}}$ and $p_{\sigma^{\prime}, \sigma^{\prime \prime}}$ coincide. This allows us to define a unique scheme by glueing the U_{σ} 's.

Definition 4.3 Let Σ be a fan in $N_{\mathbb{R}}$. We denote by $X_{\Sigma, R}$ or simply by X_{Σ} the R-scheme obtained by glueing as above.

Proposition 4.4. (1) The R-scheme $X_{\Sigma, R}$ is separated.
(2) If $R \rightarrow R^{\prime}$ is ring homomorphism, then $X_{\Sigma, R^{\prime}}=X_{\Sigma, R} \times{ }_{R} \operatorname{Spec} R^{\prime}$.
(3) The morphism $X_{\Sigma, R} \rightarrow \operatorname{Spec} R$ is faithfully flat with integral and normal geometric fibers.

Proof. (1) It is enough to show that for any pair of $\sigma, \sigma^{\prime} \in \Sigma$, the canonical map

$$
R\left[S_{\sigma}\right] \otimes_{R} R\left[S_{\sigma^{\prime}}\right] \rightarrow R\left[S_{\sigma \cap \sigma^{\prime}}\right]
$$

is surjective. By Lemma 3.7, $S_{\sigma \cap \sigma^{\prime}}=S_{\sigma}+S_{\sigma^{\prime}}$. So $R\left[S_{\sigma \cap \sigma^{\prime}}\right]$ is generated by $R\left[S_{\sigma}\right]$ and $R\left[S_{\sigma^{\prime}}\right]$ and the above map is surjective.
(2) is immediate and (3) follows from (2) and Proposition 3.10.

Definition 4.5 Le k be a field. A toric variety over k is an integral normal separated variety X over k, endowed with the action of a torus $T \simeq \mathbb{G}_{m, k}^{d}$:

$$
\mu: T \times_{k} X \rightarrow X
$$

and a rational point $x_{0} \in X(k)$ such that $T \simeq T \times\left\{x_{0}\right\} \xrightarrow{\mu} X$ is an open immersion. In other words, T endowed with the natural action of T extends equivariantly to X.

The torus T_{N} acts on each U_{σ} (§3.4). By construction, this action is compatible with its action on U_{τ} if τ is a face of σ. Therefore T_{N} acts on X_{Σ} compatibly with its action on the U_{σ}. As the action of T_{N} on $U_{\{0\}}$ is free, if x_{0} denotes the distinguished section of $U_{\{0\}}$, we see that

$$
T_{N} \simeq T_{N} \times_{R}\left\{x_{0}\right\} \rightarrow U_{\{0\}}
$$

is an isomorphism. By Proposition 4.4, X_{Σ} is a toric variety when R is a field.

Conversely, one can show that any toric variety is isomorphic to some X_{Σ} ([1], Corollary 3.1.8 ${ }^{1}$).

Example 4.6 (1) Any affine U_{σ} is a toric variety: just consider the fan consisting in all faces of σ. In particular affine spaces $\left(\sigma=\sum_{1 \leq i \leq d} \mathbb{R}_{+} e_{i}\right)$ and split tori are toric varieties.
(2) Let $d=1$ and let Σ be generated by $\mathbb{R}_{+} e_{1}$ and $\mathbb{R}_{+}\left(-e_{1}\right)$. Then X_{Σ} is obtained by glueing two copies of $\mathbb{A}^{1}: \operatorname{Spec} R\left[\chi^{e_{1}}\right]$ and $\operatorname{Spec} R\left[\left(\chi^{e_{1}}\right)^{-1}\right]$, so $X_{\Sigma}=\mathbb{P}_{R}^{1}$.
(3) One dimensional toric varieties over a field are $\mathbb{G}_{m}, \mathbb{A}^{1}$ and \mathbb{P}^{1} (each U_{σ} is normal and contains a copy of \mathbb{G}_{m}).
(4) Let $d=2$, let Σ be generated by $\mathbb{R}_{+} e_{1}+\mathbb{R}_{+} e_{2}, \mathbb{R}_{+}\left(-e_{1}\right)+\mathbb{R}_{+} e_{2}, \mathbb{R}_{+} e_{1}+$ $\mathbb{R}_{+}\left(-e_{2}\right)$ and $\mathbb{R}_{+}\left(-e_{1}\right)+\mathbb{R}_{+}\left(-e_{2}\right)$. Then $X_{\Sigma}=\mathbb{P}^{1} \times \mathbb{P}^{1}$.
(5) Products of toric varieties are toric varieties.

Example 4.7 (Projective space) Let $N=\mathbb{Z}^{d+1} /(1, \ldots, 1) \mathbb{Z}$. Let e_{0}, \ldots, e_{d} be the canonical basis of \mathbb{Z}^{d+1}. The canonical pairing

$$
\left(\mathbb{Z}^{d+1}\right)^{*} \times \mathbb{Z}^{d+1} \rightarrow \mathbb{Z}, \quad(u, v) \mapsto u(v)
$$

induces a perfect pairing

$$
M \times N \rightarrow \mathbb{Z}
$$

where $M=\left\{x_{0} e_{0}^{*}+\cdots+x_{d} e_{d}^{*} \mid \sum_{i} x_{i}=0\right\}$. Let v_{i} be the image of e_{i} in N. For any $i \leq d,\left\{v_{j}\right\}_{j \neq i}$ is a basis of N and its dual basis is $\left\{e_{j}^{*}-e_{i}^{*}\right\}_{j \neq i} \subset M$.

Let $\sigma_{i}=\sum_{j \neq i} \mathbb{R}_{+} v_{i}$. Then $S_{\sigma_{i}}=\sum_{j \neq i} \mathbb{N}\left(e_{j}^{*}-e_{i}^{*}\right)$ and

$$
R\left[S_{\sigma_{i}}\right]=R\left[T_{j} / T_{i}\right]_{j \neq i} \subset R\left[\left(\mathbb{Z}^{d+1}\right)^{*}\right], \quad T_{j}=\chi^{e_{j}^{*}}
$$

Now any face of σ_{i} is generated by a subset of $\left\{v_{j}\right\}_{j \neq i}$ (see the proof of Proposition 2.6(2)). So the set Σ of the faces of the various σ_{i} is a fan. The scheme X_{Σ} is obtained by just glueing the $U_{\sigma_{i}}, 0 \leq i \leq d$. The above presentation of $R\left[S_{\sigma_{i}}\right]$ shows that $X_{\Sigma}=\mathbb{P}^{d}$.

In this example, the torus T_{N} is $U_{\{0\}}=\operatorname{Spec} R\left[\chi^{e_{i}^{*}-e_{j}^{*}}\right]_{i, j}$. In terms of rational points over a field k, the action is

$$
\left(\left(t_{0}, \ldots, t_{d}\right),\left[x_{0}, \ldots, x_{d}\right]\right) \mapsto\left[t_{0} x_{0}, \ldots, t_{d} x_{d}\right] .
$$

[^0]
4.2 Proper morphisms and proper toric varieties

Let $\phi: N \rightarrow N^{\prime}$ be a linear map of free \mathbb{Z}-modules of finite ranks. Let ϕ^{*} : $M^{\prime} \rightarrow M$ be the dual of ϕ. The map ϕ extends to $\phi_{\mathbb{R}}: N_{\mathbb{R}} \rightarrow N_{\mathbb{R}}^{\prime}$. Similarly for ϕ^{*}.

Let Σ, Σ^{\prime} be respectively fans in $N_{\mathbb{R}}$ and $N_{\mathbb{R}}^{\prime}$. Suppose:
for any $\sigma \in \Sigma, \quad \phi_{\mathbb{R}}(\sigma)$ is contained in some $\sigma^{\prime} \in \Sigma^{\prime}$.
Then $\phi^{*}\left(S_{\sigma^{\prime}}\right) \subseteq S_{\sigma}$ and we get a morphism of schemes $U_{\sigma} \rightarrow U_{\sigma^{\prime}}$. This morphism is clearly independent on the choice of $\sigma^{\prime} \supseteq \phi_{\mathbb{R}}(\sigma)$, and we have a morphism $U_{\sigma} \rightarrow X_{\Sigma^{\prime}}$ and finally a morphism $f: X_{\Sigma} \rightarrow X_{\Sigma^{\prime}}$. We have a canonical morphism $T_{N} \rightarrow T_{N^{\prime}}$ and f is compatible with the action of T_{N} on X_{Σ} and that of $T_{N^{\prime}}$ on $X_{\Sigma^{\prime}}$

When $N^{\prime}=0$, we have $X_{\Sigma^{\prime}}=\operatorname{Spec} R$ and f is just the structure morphism.
Definition 4.8 For any fan Σ in $N_{\mathbb{R}}$, the support of Σ is $|\Sigma|:=\cup_{\sigma \in \Sigma} \sigma \subseteq N_{\mathbb{R}}$.
Proposition 4.9. Let Σ, Σ^{\prime} be as above (this implies that $|\Sigma| \subseteq \phi_{\mathbb{R}}^{-1}\left(\left|\Sigma^{\prime}\right|\right)$). Then the induced morphism

$$
f: X_{\Sigma} \rightarrow X_{\Sigma^{\prime}}
$$

is proper if and only if $\phi_{\mathbb{R}}^{-1}\left(\left|\Sigma^{\prime}\right|\right)=|\Sigma|$. In particular, X_{Σ} is proper over R if and only if $|\Sigma|=N_{\mathbb{R}}$.

Proof. First suppose f is proper. Then it is proper when base changed to a residue field k of R. So we suppose $R=k$. Let $\sigma^{\prime} \in \Sigma^{\prime}$. Then $f^{-1}\left(U_{\sigma^{\prime}}\right) \rightarrow U_{\sigma^{\prime}}$ is proper. Let $v \in \phi_{\mathbb{R}}^{-1}\left(\sigma^{\prime}\right)$. We have to show $v \in|\Sigma|$. Consider the evaluation map

$$
e_{v}: k[M] \rightarrow k[\mathbb{Z}], \quad \chi^{u} \mapsto u(v) .
$$

The composition of $k\left[S_{\sigma^{\prime}}\right] \subseteq k\left[M^{\prime}\right] \rightarrow k[M]$ with e_{v} takes values in $k[\mathbb{N}]$ because $\phi_{\mathbb{R}}(v) \in \sigma^{\prime}$. Therefore we have a commutative diagram

As $f\left(T_{N}\right) \subseteq T_{N^{\prime}} \subseteq U_{\sigma^{\prime}}$, we have $T_{N} \subseteq f^{-1}\left(U_{\sigma^{\prime}}\right)$ and a commutative diagram

which, by the valuative criterion of properness, can be completed with a morphism $\bar{\psi}_{v}: \mathbb{A}^{1} \rightarrow f^{-1}\left(U_{\sigma^{\prime}}\right)$. Let $U_{\sigma} \subseteq X_{\Sigma}$ containing $\bar{\psi}_{v}(0)$. Then $\bar{\psi}_{v}: \mathbb{A}_{k}^{1} \rightarrow$
U_{σ}. So $e_{v}: k[M] \rightarrow k[\mathbb{Z}]$ restricts to $k\left[S_{\sigma}\right] \rightarrow k[\mathbb{N}]$. This means that $e_{v}(u) \geq 0$ for all $u \in S_{\sigma}$, therefore $v \in\left(\sigma^{\vee}\right)^{\vee}=\sigma \subseteq|\Sigma|$. So $\phi_{\mathbb{R}}^{-1}\left(\left|\Sigma^{\prime}\right|\right)=|\Sigma|$.

Now let us prove the converse. We can suppose $R=\mathbb{Z}$ because f over R is obtained by base change from f over \mathbb{Z}. So we can suppose R integral. We will again use the valuative criterion of properness. Let \mathcal{O}_{K} be a discrete valuation ring with field of fractions K and consider a commutative diagram

We have to show that it can be completed with a morphism $\bar{\rho}: \operatorname{Spec} \mathcal{O}_{K} \rightarrow X_{\Sigma}$. By EGA, II.7.3.10, we can restrict to those ρ with image equal to the generic point of X_{Σ}. Let $U_{\sigma^{\prime}} \supseteq g\left(\operatorname{Spec} \mathcal{O}_{K}\right)$. So we have a commutative diagram

where $R\left[S_{\sigma^{\prime}}\right] \rightarrow R[M]$ is the restriction of $R\left[M^{\prime}\right] \rightarrow R[M]$. The map

$$
v: M \rightarrow \mathbb{Z}, \quad u \mapsto \nu_{K}\left(\rho^{\#}\left(\chi^{u}\right)\right)
$$

where $\nu_{K}: K \rightarrow \mathbb{Z} \cup\{+\infty\}$ is the valuation of K, is a linear form on M, so $v \in N$. Moreover, the above commutative diagram implies that for all $u^{\prime} \in \sigma^{\prime}$, we have $v\left(\phi_{\mathbb{R}}^{*}\left(u^{\prime}\right)\right) \geq 0$, so $v \in \phi_{\mathbb{R}}^{-1}\left(\sigma^{\prime}\right) \subseteq|\Sigma|$. Let $\sigma \in \Sigma$ be a face containing v. Then for all $u \in S_{\sigma}$, we have $\nu_{K}\left(\rho^{\#}\left(\chi^{u}\right)\right)=v(u) \geq 0$ hence $\rho^{\#}\left(\chi^{u}\right) \in \mathcal{O}_{K}$. So $\rho^{\#}$ restricts to $R\left[S_{\sigma}\right] \rightarrow \mathcal{O}_{K}$. This means we succeed to complete our original diagram (1) into a diagram

whose upper triangle is commutative. The lower triangle is commutative because $f \circ h$ and g coincide on the generic point and $X_{\Sigma^{\prime}}$ is separated (Proposition 4.4).

Example 4.10 Let $N=N^{\prime}$. Suppose that any $\sigma \in \Sigma$ is contained in a $\sigma^{\prime} \in \Sigma^{\prime}$ and any $\sigma^{\prime} \in \Sigma^{\prime}$ is a union of $\sigma \in \Sigma$ (Σ is called a refinement of Σ^{\prime}). Then $f: X_{\Sigma} \rightarrow X_{\Sigma^{\prime}}$ is proper, T_{N}-equivariant, and (fiberwise) birational.

Remark 4.11 (Resolution of singularities) Using successive proper birational morphisms $X_{\Sigma} \rightarrow X_{\Sigma^{\prime}}$ induced by refinements of fans, one can solve the singularities of a given toric variety ([2], §2.6).

Remark 4.12 Let X_{Σ} be a proper toric variety over a field k. A natural question is under which condition X_{Σ} is projective. There are criteria using either polytopes or the notion of strictly convex functions. An example of proper smooth non-projective toric variety of dimension 3 can be found in [2], §3.4, p. 71.

5 Divisors on toric varieties

The aim of this section is to compute the global sections of the sheaf $\mathcal{O}_{X_{\Sigma}}(D)$ associated to some special Weil divisor D on X_{Σ} (Proposition 5.5).

5.1 Structure of the class group of X_{Σ}

Recall that if X is a normal integral noetherian scheme, a Weil divisor on X is a formal linear combination of integral closed subschemes of codimension 1 in X. The group of Weil divisors is denoted by $Z^{1}(X)$. Modulo linear equivalence, they define the Chow group $A^{1}(X)$, also denoted by $\mathrm{Cl}(X)$ and called the class group of X).

We fix a fan Σ in $N_{\mathbb{R}}$. We consider $X=X_{\Sigma}$ the associated toric variety over a field k. There are some remarkable Weil divisors on X.

Example 5.1 Let τ be a ray (cone of dimension 1) in Σ. Then $\tau=\mathbb{R}_{+} v$ for some $v \in N$ a generator of $\tau \cap N$. This v can be completed into a basis of N. So $U_{\tau} \simeq \mathbb{A}^{1} \times \mathbb{G}_{m}^{d-1}$ (Example 3.5(2)) and $U_{\tau} \backslash T_{N} \simeq\{0\} \times \mathbb{G}_{m}^{d-1}$ is an integral Weil divisor in U_{τ}. Let $V(\tau)$ be the Zariski closure of $U_{\tau} \backslash T_{N}$ in X, endowed with the structure of a reduced closed subvariety. Note that $V(\tau)$ is geometrically integral over k because $U_{\tau} \backslash T_{N}$ is geometrically integral.

Proposition 5.2. Let $\tau_{1}, \ldots, \tau_{\ell}$ be the rays in Σ. Write $D_{i}=V\left(\tau_{i}\right)$ and denote by v_{i} a generator of $\tau_{i} \cap N$ over \mathbb{N}. We have
(1) $\cup_{1 \leq i \leq \ell} D_{i}=X \backslash T_{N}$.
(2) For any $u \in M, \operatorname{div}\left(\chi^{u}\right)=\sum_{1 \leq i \leq l} u\left(v_{i}\right) D_{i}$.

Proof. (1) postponed to Theorem 6.4.
(2) Let τ be a ray in Σ. The generic point of $V(\tau)$ belongs to U_{τ} and it is enough to compute the order of $\operatorname{div}\left(\chi_{u}\right)$ in U_{τ}. Let v_{1}, \ldots, v_{d} be a basis of N such that $\tau=\mathbb{R}_{+} v_{1}$. Write $u=a_{1} v_{1}^{*}+\cdots+a_{d} v_{d}^{*}$ in the dual basis. We saw in the example above that $V(\tau) \cap U_{\tau}$ is defined by $\chi^{v_{1}^{*}}$. So the order (of zero or pole) of χ^{u} at the generic point of $V(\tau)$ is $a_{1}=u\left(v_{1}\right)$.

Proposition 5.3. We have an exact sequence

$$
M \rightarrow \oplus_{1 \leq i \leq \ell} \mathbb{Z} D_{i} \rightarrow \mathrm{Cl}(X) \rightarrow 0
$$

It is exact at left if $|\Sigma|$ is not contained in a proper subspace of $N_{\mathbb{R}}$.
Proof. The map $M \rightarrow Z^{1}(X), u \mapsto \operatorname{div}\left(\chi^{u}\right)$ is \mathbb{Z}-linear and has image in $\oplus_{i} \mathbb{Z} D_{i}$ by Proposition 5.2(2). If $D=\sum_{i} a_{i} D_{i}=\operatorname{div}(f)$ for some $f \in k(X)^{*}$, then $\left.f\right|_{T_{N}} \in \mathcal{O}_{X}\left(T_{N}\right)^{*}=k[M]^{*}$ and $\left.f\right|_{T_{N}}=\lambda \chi^{u}$ for some $\lambda \in k^{*}$ and $u \in M$. So $D=\operatorname{div}\left(\chi^{u}\right)$. This proves the exactness at middle.

By general results, we have an exact sequence

$$
\oplus_{i} \mathbb{Z} D_{i} \rightarrow \mathrm{Cl}(X) \rightarrow \mathrm{Cl}\left(X \backslash \cup_{i} D_{i}\right) \rightarrow 0
$$

By Proposition 5.2(1), $X \backslash \cup_{i} D_{i}=T_{N}$. As $\mathrm{Cl}\left(T_{N}\right)=\{1\}$ because $k[M]$ is UFD, we have the exactness at right.

Finally, suppose $\operatorname{div}\left(\chi^{u}\right)=0$. Then $u\left(v_{i}\right)=0$. As we see easily that every σ is generated by some one-dimensional cones in Σ, this implies that u vanishes at the vector subspace of $N_{\mathbb{R}}$ generated by Σ. So if Σ is not contained in a proper subspace of $N_{\mathbb{R}}$, then $u=0$ and $M \rightarrow \oplus_{i} \mathbb{Z} D_{i}$ is injective.

5.2 Action of $T_{N}(k)$

As T_{N} acts on $X=X_{\Sigma}$ by some morphism $\mu: T_{N} \times X \rightarrow X$, we have a morphism of groups $T_{N}(k) \rightarrow \operatorname{Aut}_{k}(X)$, the image of $t \in T_{N}(k)$ is

$$
X \rightarrow X, \quad x \mapsto \mu(t, x) .
$$

So $T_{N}(k)$ also acts on $Z^{1}(X)$ and on $k(X)$ the function field of X.
Lemma 5.4. Let $t \in T_{N}(k)$.
(1) Let $u \in M$. Then

$$
t \cdot \chi^{u}=t^{-1}(u) \chi^{u}
$$

where $t^{-1}(u)$ is $t^{-1} \in T_{N}(k)=\operatorname{Hom}_{s g}(M, k)$ applied to u.
(2) Let D_{i} be a divisor on X as in Proposition 5.2. Then $t . D_{i}=D_{i}$.

Proof. (1) Let us use a basis e_{1}, \ldots, e_{d} of N. Then $t=\left(t_{1}, \ldots, t_{d}\right)$ with $t_{i} \in k^{*}$. Write $u=\sum_{i} a_{i} e_{i}^{*}$ with $a_{i} \in \mathbb{Z}$. We have

$$
t \cdot \chi^{u}=\prod_{i}\left(t \cdot \chi^{e_{i}^{*}}\right)^{a_{i}}=\prod_{i}\left(t_{i}^{-1} \chi^{e_{i}^{*}}\right)^{a_{i}}=\left(\prod_{i} t_{i}^{-a_{i}}\right) \chi^{u}
$$

where $t . \chi^{e_{i}^{*}}=t_{i} \chi^{e_{i}^{*}}$ because the action of t on the coordinates is multiplication by t_{i} on the i-th coordinate.
(2) As t acts on $U_{\tau_{i}}$ and on $T_{N}=U_{\{0\}} \subset U_{\tau_{i}}, t$ fixes $U_{\tau_{i}} \backslash T_{N}$, hence t fixes $D_{i}=\overline{U_{\tau_{i}} \backslash T_{N}}$.

5.3 Global sections of $\mathcal{O}_{X}(D)$

Keep the notation of Proposition 5.2.
Proposition 5.5. Let $D=\sum_{1 \leq i \leq \ell} a_{i} D_{i}$. Let

$$
P_{D}=\left\{u \in M_{\mathbb{R}} \mid u\left(v_{i}\right) \geq-a_{i}, i=1, \ldots, \ell\right\} .
$$

Then

$$
H^{0}\left(X, \mathcal{O}_{X}(D)\right)=\oplus_{u \in P_{D} \cap M} k \chi^{u}
$$

Proof. As the D_{i} are defined independently of $k, H^{0}\left(X, \mathcal{O}_{X}(D)\right)$ commutes with base change. It is thus enough to show the equality for some extension of k. In particular we can suppose k is infinite.

The restriction to T_{N} induces a canonical map

$$
H^{0}\left(X, \mathcal{O}_{X}(D)\right) \rightarrow H^{0}\left(T_{N}, \mathcal{O}_{T_{N}}\left(\left.D\right|_{T_{N}}\right)\right)=H^{0}\left(T_{N}, \mathcal{O}_{T_{N}}\right)=k[M]
$$

of subspace of $k(X)$. So we can view $H^{0}\left(X, \mathcal{O}_{X}(D)\right)$ as a subspace of $k[M]=$ $\oplus_{u \in M} k \chi^{u}$. If $u \in M$, then $\chi^{u} \in H^{0}\left(X, \mathcal{O}_{X}(D)\right)$ if and only if $u \in P_{D} \cap M$ by Proposition 5.2(2). In particular $\oplus_{u \in P_{D} \cap M} k \chi^{u} \subseteq H^{0}\left(X, \mathcal{O}_{X}(D)\right)$.

Let $f \in H^{0}\left(X, \mathcal{O}_{X}(D)\right)$. There exists a finite subset F of M such that $f \in$ $E:=\oplus_{u \in F} k \chi^{u}$. The commutative group $T_{N}(k)$ acts on the finite dimensional vector space E through diagonalizable automorphisms. Moreover, as $T_{N}(k)$ fixes each D_{i} (Lemma 5.4), it acts on $H^{0}\left(X, \mathcal{O}_{X}(D)\right)$. So $E \cap H^{0}\left(X, \mathcal{O}_{X}(D)\right)$ is a subspace of E globally invariant by $T_{N}(k)$. As $T_{N}(k)$ is commutative with diagonalizable actions, $E \cap H^{0}\left(X, \mathcal{O}_{X}(D)\right)$ is a direct sum of common eigenspaces of $T_{N}(k)$. Using the description of the action of $T_{N}(k)$ on χ^{u} (Lemma 5.4) and the hypothesis that k is infinite, we find $E \cap H^{0}\left(X, \mathcal{O}_{X}(D)\right)$ is a direct sum of $k \chi^{u}$. But $\chi^{u} \in H^{0}\left(X, \mathcal{O}_{X}(D)\right)$ implies that $u \in P_{D} \cap M$ (Proposition 5.2(2)), so

$$
f \in E \cap H^{0}\left(X, \mathcal{O}_{X}(D)\right) \subset \oplus_{u \in P_{D} \cap M} k \chi^{u} .
$$

6 Orbits under T_{N}

This section is added after the three hours talks. Here we prove Proposition 5.2, see Theorem 6.4. We work over a field k.

We saw in $\S 3.4$ that T_{N} acts on $X=X_{\Sigma}$. This action will allows us to decompose X as a union of finitely many orbits. Denote by $\mu: T_{N} \times X \rightarrow X$ the morphism defining the action.

Definition 6.1 Let $x \in X(k)$. We define the orbit of x under T_{N} or T_{N}-orbit of x the image of the canonical morphism $\tau_{x}: T_{N} \rightarrow T_{N} \times\{x\} \xrightarrow{\mu} X$.

Notation Let $\sigma \in \Sigma$ and let x_{σ} be the distinguished rational point of U_{σ} (Remark 3.8). We denote by O_{σ} the orbit of x_{σ} under T_{N}. As $T_{N} \times U_{\sigma} \rightarrow U_{\sigma}$, we have $O_{\sigma} \subseteq U_{\sigma}$.

Example 6.2 (1) If $\sigma=\{0\}$. Then $O_{\sigma}=T_{N}$.
(2) If $\operatorname{dim} \sigma=1$, then we saw that $U_{\sigma}=\mathbb{A}^{1} \times \mathbb{G}_{m}^{d-1}, x_{\sigma}=(0,1, \ldots, 1)$ and so $O_{\sigma}=\{0\} \times \mathbb{G}_{m}^{d-1} \simeq \mathbb{G}_{m}^{d-1}$.
(3) If $\operatorname{dim} \sigma=d$, then $x_{\sigma}: u \mapsto 0$ for all $u \in S_{\sigma}$ non-zero because $u \notin \sigma^{\perp}=\{0\}$. For all $t \in T_{N}(k)$, we have then $t . x_{\sigma}=x_{\sigma}$ and $O_{\sigma}=\left\{x_{\sigma}\right\}$.
In all these cases, O_{σ} is a subvariety of U_{σ} of dimension $\operatorname{dim} O_{\sigma}=d-\operatorname{dim} \sigma$.
Let $\sigma \subseteq N_{\mathbb{R}}$ be a strongly convex rational polyhedral cone. Denote by

$$
N(\sigma)=N /(\sigma \cap N+(-\sigma \cap N))
$$

the quotient by the submodule of N generated by $\sigma \cap N$. Denote by

$$
\sigma^{\perp}:=\left\{u \in M_{\mathbb{R}} \mid u(\sigma)=\{0\}\right\}
$$

The canonical pairing $M \times N \rightarrow \mathbb{Z}$ induces a perfect pairing

$$
\left(\sigma^{\perp} \cap M\right) \times N(\sigma) \rightarrow \mathbb{Z}
$$

Lemma 6.3. Let $\sigma \in \Sigma$.
(1) Consider the linear projection $p_{\sigma}: k\left[S_{\sigma}\right] \rightarrow k\left[\sigma^{\perp} \cap M\right], \chi^{u} \mapsto \chi^{u}$ if $u \in$ $\sigma^{\perp} \cap M$ and 0 otherwise. Then p_{σ} is a surjective homomorphism of k algebras.
(2) The orbit O_{σ} is $V\left(\operatorname{ker} p_{\sigma}\right) \simeq T_{N(\sigma)}$. This is a closed subvariety of dimension $d-\operatorname{dim} \sigma$.
(3) $O_{\tau}(k)=\left\{x \in U_{\sigma}(k)=\operatorname{Hom}_{s g}(\sigma, k) \mid x(u)=0, \forall u \in S_{\sigma} \backslash\left(\sigma^{\perp} \cap M\right)\right\}$.

Proof. (1) Let $u_{1}, u_{2} \in S_{\sigma}$. Then $u_{1}+u_{2} \in \sigma^{\perp}$ if and only if $u_{1}, u_{2} \in \sigma^{\perp}$. This implies that the map $S_{\sigma} \rightarrow k\left[\sigma^{\perp} \cap M\right]$ defined by $u \mapsto \chi^{u}$ if $u \in \sigma^{\perp} \cap M$ and $u \mapsto 0$ otherwise is a morphism of semigroups, so the induced map p_{σ} is a morphism of k-algebras.
(2) The morphism $\tau_{x_{\sigma}}$ (see 6.1) corresponds to

$$
k\left[S_{\sigma}\right] \rightarrow k[M] \otimes k\left(x_{\sigma}\right) \simeq k[M], \quad \chi^{u} \mapsto \chi^{u} \otimes \chi^{u}\left(x_{\sigma}\right) \mapsto x_{\sigma}(u) \chi^{u} .
$$

This is nothing but p_{σ}. So $\tau_{x_{\sigma}}$ factorizes into the surjective morphism $T_{N} \rightarrow$ $T_{N(\sigma)}=U_{\sigma^{\perp} \cap M}$ and the closed immersion $T_{N(\sigma)} \rightarrow U_{\sigma}$ defined by p_{σ}.
(3) Let $x \in U_{\sigma}(k)$. Then $x \in O_{\sigma}=V\left(\operatorname{ker} p_{\sigma}\right)$ if and only if $\operatorname{ker} p_{\sigma} \subseteq \operatorname{ker} f_{x}$ where $f_{x}: k\left[S_{\sigma}\right] \rightarrow k$ is defined by $\chi^{u} \mapsto x(u)$ (when x is viewed as an element of $\operatorname{Hom}_{s g}\left(S_{\sigma}, k\right)$). This is equivalent to $x(u)=0$ for all $\chi^{u} \in \operatorname{ker} p_{\sigma}$, but the latter condition is nothing but $u \in S_{\sigma} \backslash\left(\sigma^{\perp} \cap M\right)$.

Theorem 6.4. Let $X=X_{\Sigma}$ be a toric variety over a field k. Let $\sigma \in \Sigma$.
(1) The orbit $O_{\sigma} \subseteq U_{\sigma}$ is a closed subvariety of dimension $d-\operatorname{dim} \sigma$.
(2) We have $U_{\sigma}=\cup_{\tau \leq \sigma} O_{\tau}$, where the union runs through the faces τ of σ.
(3) Let $\tau_{1}, \ldots, \tau_{\ell}$ be the rays (one-dimensional cones) of Σ. Let $D_{i}=\overline{U_{\tau_{i}} \backslash T_{N}}$ (Zariski closure). Then

$$
X_{\Sigma} \backslash T_{N}=\cup_{1 \leq i \leq \ell} D_{i}
$$

Proof. (1) This is Lemma 6.3.
(2) As the construction of O_{σ} is compatible with base changes, we can suppose k is algebraically closed. Let $x \in U_{\sigma}(k)=\operatorname{Hom}_{s g}\left(S_{\sigma}, k\right)$. Consider

$$
x^{-1}\left(k^{*}\right):=\left\{u \in S_{\sigma} \mid x(u) \in k^{*}\right\} .
$$

Let $u_{1}, u_{2} \in S_{\sigma}$, then $x\left(u_{1}+u_{2}\right)=x\left(u_{1}\right) x\left(u_{2}\right)$ and $u_{1}+u_{2} \in x^{-1}\left(k^{*}\right)$ if and only if $u_{1}, u_{2} \in x^{-1}\left(k^{*}\right)$. Such a sub-semigroup of S_{σ} is automatically equal to $\tau^{\perp} \cap S_{\sigma}$ for some face τ of σ ([2], page 15, Exercise and [1], Proposition 1.2.10). As $x(u)=0$ for all $u \in S_{\sigma} \backslash\left(\tau^{\perp} \cap M\right), x \in O_{\tau}$ by Lemma 6.3.
(3) For any $\tau_{i}, U_{\tau_{i}} \backslash T_{N} \subseteq X_{\Sigma} \backslash T_{N}$. The latter being closed, we have $D_{i} \subseteq X_{\Sigma} \backslash T_{N}$. On the other hand, for any $\sigma \in \Sigma$, by (2), U_{σ} is the union of $T_{N}=O_{\{0\}}$ and locally closed subsets O_{τ} of dimension $\operatorname{dim} O_{\tau}=d-\operatorname{dim} \tau \leq$ $d-1$. Therefore the points of codimension 1 in $U_{\sigma} \backslash T_{N}$ are in the orbits of rays τ. For a ray τ, we have $O_{\tau}=U_{\tau} \backslash T_{N}$ by (2). Hence $U_{\sigma} \backslash T_{N}$ is contained in $\cup_{i \leq \ell} D_{i}$ and $X_{\Sigma} \backslash T_{N} \subseteq \cup_{1 \leq i \leq \ell} D_{i}$. This proves (3).

Remark 6.5 It follows from the theorem that the orbit of any rational point in U_{σ} is of the form O_{τ} for some face τ of σ (take τ such that $x \in O_{\tau}$).

References

[1] D. Cox, J. Little and H. Schenck: Toric varieties, Graduate Studies in Mathematics, AMS, 124 (2010).
[2] W. Fulton: Introduction to Toric varieties, Annals of Mathematical Studies, Princeton University Press, 131 (1993).
[3] T. Oda: Convex bodies and algebraic geometry, an introduction to the theory of Toric varieties. (Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge; 15), Springer Verlag, (1988).
[4] P. Scholze: Perfectoid spaces, Publications Mathématiques de l'IHÉS, 116 (2012), 245-313.

Index

class group, 13
convex polyhedral cone, 2
dimension of a cone, 2
distinguished section, 6
face, 3
fan, 9
$\operatorname{Hom}_{s g}(S, A)$ set of morphisms of semigroups, 5
morphisms of toric varieties, 11
orbit, 15
projective spaces are toric, 10
proper and non-projective toric varieties, 13
proper morphism of toric varieties, 11
ray, 13
refinement of fans, 12
$|\Sigma|$, support of $\Sigma, 11$
S_{σ}, semigroup associated to $\sigma, 4$
$\sigma^{\vee}, 2$
strongly convex, 2
support of a fan, 11
T_{N}, torus associated to $N, 6$
$u^{\perp}, 3$
$V(\tau)$, Weil divisor associated to a ray, 13

Weil divisors, 13
X_{Σ}, toric variety associated to $\Sigma, 9$ x_{σ}, distinghuished section of $\sigma, 6$

[^0]: ${ }^{1}$ The book [1] only treats varieties over \mathbb{C}. I have not checked whether the proof works over any field. Anyway this result is not need in the sequel.

