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1 Introduction
Our motivation to study toric varieties is P. Scholze's proof of Deligne's weight-
monodromy conjecture in the case of complete intersection subvarieties of pro-
jective smooth toric varieties over a local �eld ([4], Theorem 9.6).

The main reference for this text is Fulton [2]. Cox-Little-Schenck [1] treats
toric varieties in great details. Oda [3] is also useful. All these books consider
toric varieties only C, so we had to check that all proofs here are correct over
any �eld.
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2 Rational convex polyhedral cones
Notation
(1) N is a free Z-module of rank d;

(2) R+ is the set of non-negative real numbers;

(3) M = Hom(N,Z) is the linear dual of N ;

(4) NR = N ⊗Z R, and e1, . . . , ed is a basis of N .

2.1 Basic de�nitions
De�nition 2.1 A convex polyhedral cone in NR is a subset of the form

σ = R+v1 + · · ·+ R+vs

where v1, . . . , vs are some vectors in NR. If there are generators vi ∈ N , we say
σ is a rational convex polyhedral cone. We say σ is strongly convex if σ doesn't
contain a line Rv.

The set σ + (−σ) := {v + (−v′) | v, v′ ∈ σ} is a vector subspace of NR, its
dimension is called the dimension dimσ of σ.

Example 2.2 (1) σ = {0};
(2) σ =

∑
1≤i≤d′ R+ei for some d′ ≤ d;

(3) d = 2, σ = R+(2e1 − 3e2) + R+e2.
They are all strongly convex.

(4) σ = R+e1 + · · · + R+ed′ + Red′+1 + · · · + Red. It is not strongly convex if
d′ < d.

2.2 Dual
Recall M = N∗ is the dual of N . So MR is the dual of NR. Put

σ∨ := {u ∈MR | u(v) ≥ 0, ∀v ∈ σ}.
Note that if σ =

∑
iR+vi, then σ∨ = ∩i(R+vi)∨ and σ∨ is the intersection of

the half-spaces in (R+vi)∨ in MR.

Example 2.3 Denote by e∗1, . . . , e∗d the dual basis of e1, . . . , ed.

(1) {0}∨ = MR.

(2) We have
(

∑

1≤i≤d′
R+ei)∨ =

∑

1≤i≤d′
R+e

∗
i +

∑

d′+1≤j≤d
Re∗j .

It is not strongly convex if d′ < d.
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(3) d = 2, (R+(2e1 − 3e2) + R+e2)∗ = R+e
∗
1 + R+(3e∗1 + 2e∗2).

Let u ∈MR. Dente by u⊥ = {v ∈ NR | u(v) = 0}.

De�nition 2.4 Let σ be a rational convex polyheadral cone. A face τ of σ is
a subset of σ of the form

τ = σ ∩ u⊥

for some u ∈ σ∨.

Remark 2.5 Let τ be a face of σ. Then there exists u ∈M such that τ = σ∩u⊥
([2], �1.2, Prop. 2). We will always chose u ∈M when dealing with faces of σ.

Proposition 2.6. Let σ ⊂ NR be a rational convex polyhedral cone.

(1) (σ∨)∨ = σ.

(2) σ has �nitely many faces.

(3) A face τ of σ is a rational convex polyhedral cone, strongly convex if σ is
strongly convex.

(4) A face of a face of σ is a face of σ

(5) The intersection of two faces of σ is a face of σ.

Proof. (1) Clearly σ ⊆ (σ∨)∨. The converse is a classical theorem on convex
bodies in Rd: if σ is a convex subset of Rd and v0 ∈ Rd \ σ, then there exists a
half-space containing σ but not v0.

(2)-(3) Write τ = σ ∩ u⊥. We have σ =
∑

1≤i≤s R+vi. So

τ =
∑

i≤s,u(vi)=0

R+vi.

This implies (2) and that τ is a rational polyhedral cone. If σ is strongly convex,
it doesn't contain real line, so a �ortiori τ doesn't contain real line.

(4) Let τ = σ ∩ u⊥ and τ ′ = τ ∩ u′⊥ with u′ ∈ τ∨. There exists n ≥ 0, such
that u′ + nu ∈ σ∨ and u′(vi) + nu(vi) > 0 if vi /∈ τ . Indeed, if vi ∈ τ , then
u′(vi) ≥ 0 and u(vi) = 0, so (u′ + nu)(vi) ≥ 0 for all n ≥ 0. If vi /∈ τ , then
u(vi) > 0, so u′(vi)+nu(vi) > 0 if n is big enough. The linear form u′+nu ∈ σ∨.

We have clearly τ ′ ⊆ σ ∩ (u′ + nu)⊥. Conversely let v =
∑
i λivi ∈ σ ∩ (u′ +

nu)⊥ (so λi ∈ R+), as (u′ + nu)(vi) ≥ 0 and is > 0 for those vi ∈/∈ τ , we �nd
λi = 0 if vi /∈ τ . So v ∈ τ and then v ∈ u′⊥. Thus v ∈ τ ′.

(5) Let τ1 = σ ∩ u⊥1 , τ2 = σ ∩ u⊥2 . Then τ1 ∩ τ2 = σ ∩ (u1 + u2)⊥.

Proposition 2.7. (Farkas's theorem) Let σ be a rational convex polyhedral cone
in NR. Then σ∨ is a rational convex polyhedral cone in MR.
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Proof. First suppose that dimσ = d. It is easy to see that any proper face is
contained in a face of dimension d − 1 ([2], 1.2(5)). Let σ ∩ u⊥1 , . . . , σ ∩ u⊥r be
the faces of dimension d− 1. Then

σ = ∩1≤j≤r{v ∈ NR | uj(v) ≥ 0}

([2], 1.2(8)). Let S =
∑
j≤r R+uj ⊆ σ∨. Let v ∈ S∨. Then uj(v) ≥ 0 for all

j ≤ r and v ∈ ∩j{uj ≥ 0} = σ. Therefore S∨ ⊆ σ and σ∨ ⊆ (S∨)∨ = S. This
implies that σ∨ = S is a rational convex polyhedral cone in MR.

In general, let W = σ + (−σ). Then MR/W⊥ = W ∗ (linear dual space)
and σ∨ (as a cone) is generated by the lifting of a system of generators of σ∨W
de�ned by the cone σ ⊂W ∗

R , and ± a system of generators of W⊥.

De�nition 2.8 Let σ ⊆ NR be a rational convex polyhedeal cone. We de�ne

Sσ := σ∨ ∩M.

This is a sub-semigroup of M with 0.

Proposition 2.9. (Gordan's lemma) Sσ is �nitely generated.

Proof. By Farkas's theorem, σ∨ =
∑

1≤j≤r R+uj with uj ∈ M . Let K =∑
j [0, 1]uj ⊂ σ∨. It is compact. As K ∩M is discrete in a compact, it is �nite.

As R+ = N + [0, 1], we �nd Sσ ⊆
∑
j Nuj + (K ∩M). Hence Sσ is �nitely

generated.

Example 2.10 (1) If σ = {0}, then Sσ = M .

(2) If σ =
∑

1≤i≤d′ R+ei, then Sσ =
∑

1≤i≤d′ Ne∗i +
∑
d′+1≤r≤d Ze∗i .

(3) Let σ be the cone given in 2.2(3). Then Sσ = Ne∗1+N(2e∗1+e
∗
2)+N(3e∗1+2e∗2).

Proposition 2.11. The semigroup Sσ ⊆ M is saturated (if n ≥ 1, u ∈ M
satisfy nu ∈ Sσ, then u ∈ Sσ), �nitely generated. If σ is strongly convex. Then
Sσ + (−Sσ) = M .

Proof. Only the last property has to be proved. First we have σ∨+(−σ∨) = MR.
Indeed, if this is not true, then σ∨ ⊆ ker(v) for some non-zero linear form
v ∈ M∗

R = NR. Therefore Rv = (ker(v))∨ ⊆ (σ∨)∨ = σ. Contradiction with σ
strongly convex.

3 A�ne toric varieties
We de�ne the a�ne scheme associated to a rational convex polyhedral cone.

We �x a (commutative unitary) ring R. Most of the time R is a �eld. But
in applications we have in mind (Scholze's theorem), we have to deal with R a
discrete valuation ring.
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3.1 Algebra of a semigroup
Let S be a commutative semigroup. We denote by R[S] the direct sum

R[S] = ⊕s∈SRχs

where χs denotes the basis indexed by s. It has a natural structure of commu-
tative R-algebra by setting

χs.χt = χs+t.

Example 3.1 R[Nd] ' R[T1, . . . , Td]; R[Zd] ' R[T±1 , . . . , T
±
d ].

If S = 2N+ 3N ⊂ N. Then R[S] = R[T 2, T 3] ⊆ R[T ].

Lemma 3.2. Let S1, S2 be semigroups contained in M .

(1) If S1 ⊆ S2, the we have canonically R[S1] ⊆ R[S2] ⊆ R[M ].

(2) If S is �nitely generated, then R[S] is a �nitely generated algebra over R.

(3) R[S1 + S2] = R[S1]R[S2];

(4) R[S1 ∩ S2] = R[S1] ∩R[S2].

Proof. Immediate from the de�nition.

Let X = SpecR[S]. Let us decribe the points of X. Let A be an R-algebra.
Consider a homomorphism φ : R[S] → A. Then we have a map

S → A, s 7→ φ(χs).

It is a morphism of semigroups (A is considered as a semigroup with its multi-
plication law).

Proposition 3.3. The above process induces a canonical bijection

X(A) → Homsg(S,A)

from the set of A-valued points of X to the set of morphisms of semigroups from
S to (A,×).

Proof. If ψ : S → A is a morphism of semigroups, we de�ne an R-linear map
φ : R[S] → A by φ(χs) = ψ(s). We check easily that φ is a morphism of
R-algebras, and ψ 7→ φ is the reciprocal map of X(A) → Hom(S,A).

3.2 A�ne toric varieties
Let σ be a rational convex polyhedral cone in NR.

De�nition 3.4 Let Sσ ⊆M be the semigroup associated to σ (2.8). We de�ne

Uσ = SpecR[Sσ].

If necessary, we add R in the subscript to indicate the scheme is de�ned over R.
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Example 3.5 (1) U{0} = SpecR[M ] ' Gdm,R. Denote by TN := U{0}.

(2) If σ =
∑

1≤i≤d′ R+ei in NR, then Uσ ' Ad′R ×R Gd−d
′

m,R .

(3) Let σ be the cone given in 2.2(3). The semigroup Sσ has been computed in
2.10(3). Denote by T1 = χe1 , T2 = χe2 . Then

R[Sσ] = R[T1, T
2
1 T2, T

3
1 T

2
2 ] ⊆ R[T±1

1 , T±1
2 ].

Denote by U = T 2
1 T2 and V = T 3

1 T
2
2 , then R[Sσ] = R[T1, U, V ] with the

relation T1V −U2. So if k is a �eld, then Uσ,k is a rational surface isomorphic
to Spec k[T,U, V ]/(TV − U2).

Lemma 3.6. Let τ = σ ∩ u⊥ be a face of σ with u ∈ Sσ. Then

(1) τ∨ = σ∨ + R+(−u);
(2) Sτ = Sσ + N(−u).
(3) The inclusion Sσ ⊆ Sτ induces an open immesion Uτ → Uσ which identi�es

Uτ with the principal open subset D(χu) of Uσ.

(4) If R is an integral domain, then Uσ is integral. If moreover σ is strongly
convex, then TN → Uσ is birational.

Proof. (1) We have

τ∨ = σ∨ + Ru = σ∨ + R+u+ R+(−u) = σ∨ + R+(−u).

(2) Obviously Sσ + N(−u) ⊆ Sτ . Let u′ ∈ Sτ . We saw in the proof of 2.6(4)
that there exists n ≥ 1 such that u′ + nu ∈ σ∨ ∩M . So u′ ∈ Sσ + N(−u).

(3) follows from

R[Sτ ] = R[Sσ][χ−u] = R[Sσ][(χu)−1] = R[Sσ]χu .

(4) As Sσ + (−Sσ) = M (Proposition 2.11), for any u ∈ M , there exist
u1, u2 ∈ Sσ such that u = u1 − u2. So χu = χu1(χu2)−1. This implies that
Frac(R[M ]) = Frac(R[Sσ]).

The next lemma will be used in �4.

Lemma 3.7. ([2], �1.2, Proposition 3) Let σ, σ′ be two rational convex polyhedral
cones sharing a common face τ . Then Sτ = Sσ + S′σ.

Remark 3.8 The R-scheme Uσ has a distinguished section xσ ∈ Uσ(R) de�ned
by the morphism of semigroups Sσ → R, u 7→ 1 if u|σ = 0 and u 7→ 0 otherwise.

If σ = {0}, then xσ correspond to the unit section (1, . . . , 1) ∈ Gdm,R. If
σ =

∑
1≤i≤d′ R+ei, then xσ = (0, .., 0, 1, . . . , 1) (with 0 repeated d′ times and 1

repeated d− d′ times). In Example 3.5.(3) it corresponds to T1 = U = V = 0.
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3.3 Local properties of Uσ

Proposition 3.9. The scheme Uσ is smooth over R if and only if σ is generated
by a subset of a basis of N .

Proof. Suppose σ is generated by a basis of N . Then Uσ is isomorphic to a
product of Ad′R and a Gd−d′m,R by Example 3.5(2). So it is smooth over R.

Suppose Uσ,R is smooth over R. Base change to a residue �eld, we �nd
that Uσ,k is regular for some �eld k. Suppose �rst dimσ = d. Consider the
distinguished rational point xσ (Remark 3.8). The maximal ideal mσ of k[Sσ]
corresponding to xσ is generated by all χu for u ∈ Sσ non-zero. By hypothesis,
mσ/m

2
σ has dimension d = dimUσ over k. So there exist u1, . . . , ud ∈ Sσ such

that mσ =
∑
i kχ

ui + m2
σ. For any u ∈ Sσ non-zero, χu =

∑
i λiχ

ui +
∑
j fjgj ,

fj , gj ∈ mσ. This implies that

u ∈ {u1, . . . , ud} ∪ (T + T )

where T = Sσ \{0} and u ∈ (
∑
i Nui)∪(T + · · ·+T ). As σ∨ is a strongly convex

rational polyhedral cone in MR, the sum of r vectors in T has norm tending
to +∞ when r tends to +∞, so u ∈ ∑

1≤i≤d Nui andd Sσ =
∑
i Nui. As Sσ

generates M , this forces {u1, . . . , ud} to be free over R, hence free over Z. Up
to scaling, we see that σ∨ is generated by a basis of M , therefore σ = (σ∨)∨ is
generated by a basis of N .

In the general case, let L be the sub-module of N generated by σ∩N . Then
N/L is free. Let Write N = N ′ ⊕ L with N ′ ' N/L. Then Sσ = (S′σ) ⊕M ′

where S′σ is de�ned by σ viewed as a polyhedral cone in LR of dimension equal
to dimLR. As schemes we than have Uσ = U ′σ × Gd

′
m,k with d′ = d − dimLR.

This implies that U ′σ is regular, hence σ is generated by a basis of L. The latter
can be completed into a basis of N .

Proposition 3.10. Suppose R is integral and integrally closed. Then Uσ is
integral and normal.

Proof. Write σ =
∑

1≤i≤sR+vi. So σ∨ = ∩i(R+vi)∨ and Sσ = ∩iSτi where
τi = R+vi. We can replace vi by a suitable vector in Q+vi so that vi can be
completed into a basis of N over Z. So Uτi is smooth over R (Proposition 3.9),
hence normal. Therefore

R[Sσ] = ∩iR[Sτi ]

is integrally closed.

Remark 3.11 One can show that Uσ over a �eld satis�es further the following
properties:

(1) Uσ is Cohen-Macaulay ([2], page 30).

(2) Uσ is monomial (i.e., closed subscheme of an a�ne space de�ned by equa-
tions of the type one monomial = other monomial ([1], Proposition 1.1.9).
For example the Uσ in 3.5(3) is de�ned by T1V = U2.
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(3) Uσ has only rational singularities ([1], Theorem 11.4.2; [2], �3.5, p. 76).

(4) Every projective module of �nite type over k[Sσ] (k can be replaced by any
PID) is free (Gubeladze, The Anderson conjecture and a maximal class of
monoids over which projective modules are free, (Russian) Mat. Sb. (N.S.)
135(177) (1988), 169�185, ). This generalizes Quillen-Suslin's theorem for
polynomial rings.

3.4 Torus action
Recall TN = U{0} ' Gdm,R. This is a group scheme over R, the co-multiplication
law is given by

R[M ] → R[M ]⊗R R[M ], χu 7→ χu ⊗ χu.

For any σ, the inclusion R[Sσ] ⊆ R[M ] induces

R[Sσ] → R[Sσ]⊗R R[M ], χu 7→ χu ⊗ χu,

hence a morphism
TN ×R Uσ → Uσ

which satis�es all axioms of an action of TN on Uσ (we have to check that some
diagrams are commutative, but it is enough to see they are commutative with
R[M ]).

On the sections, the action

TN (R)× Uσ(R) → Uσ(R)

is described as follows. Let t ∈ TN (R) = Homsg(M,R) (morphisms of semi-
groups, see Prop. 3.3), x ∈ Uσ(R) = Homsg(Sσ, R), then tx ∈ Uσ(R) is
u 7→ t(u)x(u).

Let Sσ =
∑
i≤r Nui. Then each point x ∈ Uσ has coordinates (x1, . . . , xr)

when Uσ is embedded in ArR using the χui 's. Write ui = `i1e
∗
1 + · · · + `ide

∗
d.

Then the above action is

((t1, . . . , td), (x1, . . . , xr)) 7→ (t`111 · · · t`1d

d x1, . . . , t
`r1
1 · · · t`rd

d xd).

Remark 3.12 The morphismR[Sσ] → R[Sσ]⊗RR[Sσ] de�ned by χu 7→ χu⊗χu
induces a morphism Uσ ×R Uσ → Uσ which makes Uσ into a �monoidal scheme�
(the law is associative, commutative with unit).

4 Toric varieties
A toric variety is obtained by glueing suitable sets of a�ne toric varieties Uσ.
Recall that N is a free Z-module of rank d.
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4.1 Construction from fans
De�nition 4.1 A fan Σ in NR is a �nite and non-empty set of strongly convex
rational polyhedral cones in NR with the following properties:

(i) If σ ∈ Σ, then all faces of σ belong to Σ;

(ii) If σ, σ′ ∈ Σ, then σ ∩ σ′ is a face of σ and of σ′.

Example 4.2 Any σ induces a fan Σ which consists in all faces of σ.

Let Σ be a fan. Let σ, σ′, σ′′ ∈ Σ. By Lemma 3.6(3), we have canonical open
immersions pσ,σ′ : Uσ∩σ′ → Uσ and pσ′,σ′′ : Uσ′∩σ′′ → Uσ′ . It is easy to check
that on Uσ∩σ′∩σ′′ , the open immersions pσ,σ′ , pσ,σ′′ and pσ′,σ′′ coincide. This
allows us to de�ne a unique scheme by glueing the Uσ's.

De�nition 4.3 Let Σ be a fan in NR. We denote by XΣ,R or simply by XΣ

the R-scheme obtained by glueing as above.

Proposition 4.4. (1) The R-scheme XΣ,R is separated.

(2) If R→ R′ is ring homomorphism, then XΣ,R′ = XΣ,R ×R SpecR′.

(3) The morphism XΣ,R → SpecR is faithfully �at with integral and normal
geometric �bers.

Proof. (1) It is enough to show that for any pair of σ, σ′ ∈ Σ, the canonical map

R[Sσ]⊗R R[Sσ′ ] → R[Sσ∩σ′ ]

is surjective. By Lemma 3.7, Sσ∩σ′ = Sσ + Sσ′ . So R[Sσ∩σ′ ] is generated by
R[Sσ] and R[Sσ′ ] and the above map is surjective.

(2) is immediate and (3) follows from (2) and Proposition 3.10.

De�nition 4.5 Le k be a �eld. A toric variety over k is an integral normal
separated variety X over k, endowed with the action of a torus T ' Gdm,k:

µ : T ×k X → X

and a rational point x0 ∈ X(k) such that T ' T × {x0} µ→ X is an open
immersion. In other words, T endowed with the natural action of T extends
equivariantly to X.

The torus TN acts on each Uσ (�3.4). By construction, this action is com-
patible with its action on Uτ if τ is a face of σ. Therefore TN acts on XΣ

compatibly with its action on the Uσ. As the action of TN on U{0} is free, if x0

denotes the distinguished section of U{0}, we see that

TN ' TN ×R {x0} → U{0}

is an isomorphism. By Proposition 4.4, XΣ is a toric variety when R is a �eld.
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Conversely, one can show that any toric variety is isomorphic to some XΣ

([1], Corollary 3.1.81).

Example 4.6 (1) Any a�ne Uσ is a toric variety: just consider the fan con-
sisting in all faces of σ. In particular a�ne spaces (σ =

∑
1≤i≤d R+ei) and

split tori are toric varieties.

(2) Let d = 1 and let Σ be generated by R+e1 and R+(−e1). Then XΣ is
obtained by glueing two copies of A1: SpecR[χe1 ] and SpecR[(χe1)−1], so
XΣ = P1

R.

(3) One dimensional toric varieties over a �eld are Gm, A1 and P1 (each Uσ is
normal and contains a copy of Gm).

(4) Let d = 2, let Σ be generated by R+e1 + R+e2, R+(−e1) + R+e2, R+e1 +
R+(−e2) and R+(−e1) + R+(−e2). Then XΣ = P1 × P1.

(5) Products of toric varieties are toric varieties.

Example 4.7 (Projective space) Let N = Zd+1/(1, . . . , 1)Z. Let e0, . . . , ed be
the canonical basis of Zd+1. The canonical pairing

(Zd+1)∗ × Zd+1 → Z, (u, v) 7→ u(v)

induces a perfect pairing
M ×N → Z

where M = {x0e
∗
0 + · · ·+xde

∗
d |

∑
i xi = 0}. Let vi be the image of ei in N . For

any i ≤ d, {vj}j 6=i is a basis of N and its dual basis is {e∗j − e∗i }j 6=i ⊂M .
Let σi =

∑
j 6=i R+vi. Then Sσi =

∑
j 6=i N(e∗j − e∗i ) and

R[Sσi ] = R[Tj/Ti]j 6=i ⊂ R[(Zd+1)∗], Tj = χe
∗
j .

Now any face of σi is generated by a subset of {vj}j 6=i (see the proof of Propo-
sition 2.6(2)). So the set Σ of the faces of the various σi is a fan. The scheme
XΣ is obtained by just glueing the Uσi , 0 ≤ i ≤ d. The above presentation of
R[Sσi ] shows that XΣ = Pd.

In this example, the torus TN is U{0} = SpecR[χe
∗
i−e∗j ]i,j . In terms of

rational points over a �eld k, the action is

((t0, . . . , td), [x0, . . . , xd]) 7→ [t0x0, . . . , tdxd].

1The book [1] only treats varieties over C. I have not checked whether the proof works
over any �eld. Anyway this result is not need in the sequel.
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4.2 Proper morphisms and proper toric varieties
Let φ : N → N ′ be a linear map of free Z-modules of �nite ranks. Let φ∗ :
M ′ →M be the dual of φ. The map φ extends to φR : NR → N ′

R. Similarly for
φ∗.

Let Σ,Σ′ be respectively fans in NR and N ′
R. Suppose:

for any σ ∈ Σ, φR(σ) is contained in some σ′ ∈ Σ′.

Then φ∗(Sσ′) ⊆ Sσ and we get a morphism of schemes Uσ → Uσ′ . This mor-
phism is clearly independent on the choice of σ′ ⊇ φR(σ), and we have a mor-
phism Uσ → XΣ′ and �nally a morphism f : XΣ → XΣ′ . We have a canonical
morphism TN → TN ′ and f is compatible with the action of TN on XΣ and that
of TN ′ on XΣ′

When N ′ = 0, we have XΣ′ = SpecR and f is just the structure morphism.

De�nition 4.8 For any fan Σ in NR, the support of Σ is |Σ| := ∪σ∈Σσ ⊆ NR.

Proposition 4.9. Let Σ,Σ′ be as above (this implies that |Σ| ⊆ φ−1
R (|Σ′|)).

Then the induced morphism

f : XΣ → XΣ′

is proper if and only if φ−1
R (|Σ′|) = |Σ|. In particular, XΣ is proper over R if

and only if |Σ| = NR.
Proof. First suppose f is proper. Then it is proper when base changed to a
residue �eld k of R. So we suppose R = k. Let σ′ ∈ Σ′. Then f−1(Uσ′) → Uσ′

is proper. Let v ∈ φ−1
R (σ′). We have to show v ∈ |Σ|. Consider the evaluation

map
ev : k[M ] → k[Z], χu 7→ u(v).

The composition of k[Sσ′ ] ⊆ k[M ′] → k[M ] with ev takes values in k[N] because
φR(v) ∈ σ′. Therefore we have a commutative diagram

k[Z] k[M ]
evoo

k[N]

OO

k[Sσ′ ]oo

OO

As f(TN ) ⊆ TN ′ ⊆ Uσ′ , we have TN ⊆ f−1(Uσ′) and a commutative diagram

Gm
ψv //

²²

f−1(Uσ′)

f

²²
A1 // Uσ′

which, by the valuative criterion of properness, can be completed with a mor-
phism ψ̄v : A1 → f−1(Uσ′). Let Uσ ⊆ XΣ containing ψ̄v(0). Then ψ̄v : A1

k →
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Uσ. So ev : k[M ] → k[Z] restricts to k[Sσ] → k[N]. This means that ev(u) ≥ 0
for all u ∈ Sσ, therefore v ∈ (σ∨)∨ = σ ⊆ |Σ|. So φ−1

R (|Σ′|) = |Σ|.
Now let us prove the converse. We can suppose R = Z because f over R is

obtained by base change from f over Z. So we can suppose R integral. We will
again use the valuative criterion of properness. Let OK be a discrete valuation
ring with �eld of fractions K and consider a commutative diagram

SpecK
ρ //

²²

XΣ

f

²²
SpecOK g // XΣ′

(1)

We have to show that it can be completed with a morphism ρ̄ : SpecOK → XΣ.
By EGA, II.7.3.10, we can restrict to those ρ with image equal to the generic
point of XΣ. Let Uσ′ ⊇ g(SpecOK). So we have a commutative diagram

K R[M ]
ρ#oo

OK

OO

R[Sσ′ ]oo

OO

where R[Sσ′ ] → R[M ] is the restriction of R[M ′] → R[M ]. The map

v : M → Z, u 7→ νK(ρ#(χu)),

where νK : K → Z ∪ {+∞} is the valuation of K, is a linear form on M , so
v ∈ N . Moreover, the above commutative diagram implies that for all u′ ∈ σ′,
we have v(φ∗R(u′)) ≥ 0, so v ∈ φ−1

R (σ′) ⊆ |Σ|. Let σ ∈ Σ be a face containing v.
Then for all u ∈ Sσ, we have νK(ρ#(χu)) = v(u) ≥ 0 hence ρ#(χu) ∈ OK . So
ρ# restricts to R[Sσ] → OK . This means we succeed to complete our original
diagram (1) into a diagram

SpecK
ρ //

²²

Uσ

f

²²
SpecOK g //

h

::uuuuuuuuuu
XΣ′

whose upper triangle is commutative. The lower triangle is commutative because
f ◦ h and g coincide on the generic point and XΣ′ is separated (Proposition
4.4).

Example 4.10 Let N = N ′. Suppose that any σ ∈ Σ is contained in a σ′ ∈ Σ′

and any σ′ ∈ Σ′ is a union of σ ∈ Σ (Σ is called a re�nement of Σ′ ). Then
f : XΣ → XΣ′ is proper, TN -equivariant, and (�berwise) birational.
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Remark 4.11 (Resolution of singularities) Using successive proper birational
morphisms XΣ → XΣ′ induced by re�nements of fans, one can solve the singu-
larities of a given toric variety ([2], �2.6).

Remark 4.12 Let XΣ be a proper toric variety over a �eld k. A natural
question is under which condition XΣ is projective. There are criteria using
either polytopes or the notion of strictly convex functions. An example of proper
smooth non-projective toric variety of dimension 3 can be found in [2], �3.4, p.
71.

5 Divisors on toric varieties
The aim of this section is to compute the global sections of the sheaf OXΣ(D)
associated to some special Weil divisor D on XΣ (Proposition 5.5).

5.1 Structure of the class group of XΣ

Recall that if X is a normal integral noetherian scheme, a Weil divisor on X is
a formal linear combination of integral closed subschemes of codimension 1 in
X. The group of Weil divisors is denoted by Z1(X). Modulo linear equivalence,
they de�ne the Chow group A1(X), also denoted by Cl(X) and called the class
group of X).

We �x a fan Σ in NR. We consider X = XΣ the associated toric variety over
a �eld k. There are some remarkable Weil divisors on X.

Example 5.1 Let τ be a ray (cone of dimension 1) in Σ. Then τ = R+v for
some v ∈ N a generator of τ ∩N . This v can be completed into a basis of N . So
Uτ ' A1×Gd−1

m (Example 3.5(2)) and Uτ \TN ' {0}×Gd−1
m is an integral Weil

divisor in Uτ . Let V (τ) be the Zariski closure of Uτ \ TN in X, endowed with
the structure of a reduced closed subvariety. Note that V (τ) is geometrically
integral over k because Uτ \ TN is geometrically integral.

Proposition 5.2. Let τ1, . . . , τ` be the rays in Σ. Write Di = V (τi) and denote
by vi a generator of τi ∩N over N. We have

(1) ∪1≤i≤`Di = X \ TN .
(2) For any u ∈M , div(χu) =

∑
1≤i≤l u(vi)Di.

Proof. (1) postponed to Theorem 6.4.
(2) Let τ be a ray in Σ. The generic point of V (τ) belongs to Uτ and it is

enough to compute the order of div(χu) in Uτ . Let v1, . . . , vd be a basis of N
such that τ = R+v1. Write u = a1v

∗
1 + · · ·+ adv

∗
d in the dual basis. We saw in

the example above that V (τ) ∩ Uτ is de�ned by χv∗1 . So the order (of zero or
pole) of χu at the generic point of V (τ) is a1 = u(v1).
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Proposition 5.3. We have an exact sequence

M → ⊕1≤i≤`ZDi → Cl(X) → 0.

It is exact at left if |Σ| is not contained in a proper subspace of NR.

Proof. The map M → Z1(X), u 7→ div(χu) is Z-linear and has image in ⊕iZDi

by Proposition 5.2(2). If D =
∑
i aiDi = div(f) for some f ∈ k(X)∗, then

f |TN
∈ OX(TN )∗ = k[M ]∗ and f |TN

= λχu for some λ ∈ k∗ and u ∈ M . So
D = div(χu). This proves the exactness at middle.

By general results, we have an exact sequence

⊕iZDi → Cl(X) → Cl(X \ ∪iDi) → 0.

By Proposition 5.2(1), X \∪iDi = TN . As Cl(TN ) = {1} because k[M ] is UFD,
we have the exactness at right.

Finally, suppose div(χu) = 0. Then u(vi) = 0. As we see easily that every σ
is generated by some one-dimensional cones in Σ, this implies that u vanishes at
the vector subspace of NR generated by Σ. So if Σ is not contained in a proper
subspace of NR, then u = 0 and M → ⊕iZDi is injective.

5.2 Action of TN(k)

As TN acts on X = XΣ by some morphism µ : TN × X → X, we have a
morphism of groups TN (k) → Autk(X), the image of t ∈ TN (k) is

X → X, x 7→ µ(t, x).

So TN (k) also acts on Z1(X) and on k(X) the function �eld of X.

Lemma 5.4. Let t ∈ TN (k).

(1) Let u ∈M . Then
t.χu = t−1(u)χu,

where t−1(u) is t−1 ∈ TN (k) = Homsg(M,k) applied to u.

(2) Let Di be a divisor on X as in Proposition 5.2. Then t.Di = Di.

Proof. (1) Let us use a basis e1, . . . , ed of N . Then t = (t1, . . . , td) with ti ∈ k∗.
Write u =

∑
i aie

∗
i with ai ∈ Z. We have

t.χu =
∏

i

(t.χe
∗
i )ai =

∏

i

(t−1
i χe

∗
i )ai = (

∏

i

t−ai
i )χu,

where t.χe∗i = tiχ
e∗i because the action of t on the coordinates is multiplication

by ti on the i-th coordinate.
(2) As t acts on Uτi and on TN = U{0} ⊂ Uτi , t �xes Uτi \ TN , hence t �xes

Di = Uτi \ TN .
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5.3 Global sections of OX(D)

Keep the notation of Proposition 5.2.

Proposition 5.5. Let D =
∑

1≤i≤` aiDi. Let

PD = {u ∈MR | u(vi) ≥ −ai, i = 1, . . . , `}.
Then

H0(X,OX(D)) = ⊕u∈PD∩Mkχ
u.

Proof. As the Di are de�ned independently of k, H0(X,OX(D)) commutes with
base change. It is thus enough to show the equality for some extension of k. In
particular we can suppose k is in�nite.

The restriction to TN induces a canonical map

H0(X,OX(D)) → H0(TN ,OTN
(D|TN

)) = H0(TN ,OTN
) = k[M ]

of subspace of k(X). So we can view H0(X,OX(D)) as a subspace of k[M ] =
⊕u∈Mkχu. If u ∈ M , then χu ∈ H0(X,OX(D)) if and only if u ∈ PD ∩M by
Proposition 5.2(2). In particular ⊕u∈PD∩Mkχ

u ⊆ H0(X,OX(D)).
Let f ∈ H0(X,OX(D)). There exists a �nite subset F of M such that f ∈

E := ⊕u∈F kχu. The commutative group TN (k) acts on the �nite dimensional
vector space E through diagonalizable automorphisms. Moreover, as TN (k)
�xes each Di (Lemma 5.4), it acts on H0(X,OX(D)). So E ∩ H0(X,OX(D))
is a subspace of E globally invariant by TN (k). As TN (k) is commutative with
diagonalizable actions, E∩H0(X,OX(D)) is a direct sum of common eigenspaces
of TN (k). Using the description of the action of TN (k) on χu (Lemma 5.4) and
the hypothesis that k is in�nite, we �nd E ∩H0(X,OX(D)) is a direct sum of
kχu. But χu ∈ H0(X,OX(D)) implies that u ∈ PD ∩M (Proposition 5.2(2)),
so

f ∈ E ∩H0(X,OX(D)) ⊂ ⊕u∈PD∩Mkχ
u.

6 Orbits under TN

This section is added after the three hours talks. Here we prove Proposition 5.2,
see Theorem 6.4. We work over a �eld k.

We saw in �3.4 that TN acts on X = XΣ. This action will allows us to
decompose X as a union of �nitely many orbits. Denote by µ : TN ×X → X
the morphism de�ning the action.

De�nition 6.1 Let x ∈ X(k). We de�ne the orbit of x under TN or TN -orbit
of x the image of the canonical morphism τx : TN → TN × {x} µ→ X.

Notation Let σ ∈ Σ and let xσ be the distinguished rational point of Uσ
(Remark 3.8). We denote by Oσ the orbit of xσ under TN . As TN × Uσ → Uσ,
we have Oσ ⊆ Uσ.
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Example 6.2 (1) If σ = {0}. Then Oσ = TN .

(2) If dimσ = 1, then we saw that Uσ = A1 × Gd−1
m , xσ = (0, 1, . . . , 1) and so

Oσ = {0} ×Gd−1
m ' Gd−1

m .

(3) If dimσ = d, then xσ : u 7→ 0 for all u ∈ Sσ non-zero because u /∈ σ⊥ = {0}.
For all t ∈ TN (k), we have then t.xσ = xσ and Oσ = {xσ}.
In all these cases, Oσ is a subvariety of Uσ of dimension dimOσ = d−dimσ.

Let σ ⊆ NR be a strongly convex rational polyhedral cone. Denote by

N(σ) = N/(σ ∩N + (−σ ∩N))

the quotient by the submodule of N generated by σ ∩N . Denote by

σ⊥ := {u ∈MR | u(σ) = {0}}.

The canonical pairing M ×N → Z induces a perfect pairing

(σ⊥ ∩M)×N(σ) → Z.

Lemma 6.3. Let σ ∈ Σ.

(1) Consider the linear projection pσ : k[Sσ] → k[σ⊥ ∩M ], χu 7→ χu if u ∈
σ⊥ ∩ M and 0 otherwise. Then pσ is a surjective homomorphism of k-
algebras.

(2) The orbit Oσ is V (ker pσ) ' TN(σ). This is a closed subvariety of dimension
d− dimσ.

(3) Oτ (k) = {x ∈ Uσ(k) = Homsg(σ, k) | x(u) = 0,∀u ∈ Sσ \ (σ⊥ ∩M)}.
Proof. (1) Let u1, u2 ∈ Sσ. Then u1 + u2 ∈ σ⊥ if and only if u1, u2 ∈ σ⊥.
This implies that the map Sσ → k[σ⊥ ∩M ] de�ned by u 7→ χu if u ∈ σ⊥ ∩M
and u 7→ 0 otherwise is a morphism of semigroups, so the induced map pσ is a
morphism of k-algebras.

(2) The morphism τxσ (see 6.1) corresponds to

k[Sσ] → k[M ]⊗ k(xσ) ' k[M ], χu 7→ χu ⊗ χu(xσ) 7→ xσ(u)χu.

This is nothing but pσ. So τxσ factorizes into the surjective morphism TN →
TN(σ) = Uσ⊥∩M and the closed immersion TN(σ) → Uσ de�ned by pσ.

(3) Let x ∈ Uσ(k). Then x ∈ Oσ = V (ker pσ) if and only if ker pσ ⊆ ker fx
where fx : k[Sσ] → k is de�ned by χu 7→ x(u) (when x is viewed as an element
of Homsg(Sσ, k)). This is equivalent to x(u) = 0 for all χu ∈ ker pσ, but the
latter condition is nothing but u ∈ Sσ \ (σ⊥ ∩M).

Theorem 6.4. Let X = XΣ be a toric variety over a �eld k. Let σ ∈ Σ.

(1) The orbit Oσ ⊆ Uσ is a closed subvariety of dimension d− dimσ.
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(2) We have Uσ = ∪τ≤σOτ , where the union runs through the faces τ of σ.

(3) Let τ1, . . . , τ` be the rays (one-dimensional cones) of Σ. Let Di = Uτi \ TN
(Zariski closure). Then

XΣ \ TN = ∪1≤i≤`Di.

Proof. (1) This is Lemma 6.3.
(2) As the construction of Oσ is compatible with base changes, we can sup-

pose k is algebraically closed. Let x ∈ Uσ(k) = Homsg(Sσ, k). Consider

x−1(k∗) := {u ∈ Sσ | x(u) ∈ k∗}.

Let u1, u2 ∈ Sσ, then x(u1 + u2) = x(u1)x(u2) and u1 + u2 ∈ x−1(k∗) if and
only if u1, u2 ∈ x−1(k∗). Such a sub-semigroup of Sσ is automatically equal to
τ⊥ ∩Sσ for some face τ of σ ([2], page 15, Exercise and [1], Proposition 1.2.10).
As x(u) = 0 for all u ∈ Sσ \ (τ⊥ ∩M), x ∈ Oτ by Lemma 6.3.

(3) For any τi, Uτi \ TN ⊆ XΣ \ TN . The latter being closed, we have
Di ⊆ XΣ \ TN . On the other hand, for any σ ∈ Σ, by (2), Uσ is the union of
TN = O{0} and locally closed subsets Oτ of dimension dimOτ = d − dim τ ≤
d− 1. Therefore the points of codimension 1 in Uσ \TN are in the orbits of rays
τ . For a ray τ , we have Oτ = Uτ \ TN by (2). Hence Uσ \ TN is contained in
∪i≤`Di and XΣ \ TN ⊆ ∪1≤i≤`Di. This proves (3).

Remark 6.5 It follows from the theorem that the orbit of any rational point
in Uσ is of the form Oτ for some face τ of σ (take τ such that x ∈ Oτ ).
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