Three hours with toric varieties

Qing Liu

March 18, 2013

Contents

1	Introduction	1
2	Rational convex polyhedral cones2.1Basic definitions2.2Dual	2 2 2
3	Affine toric varieties3.1Algebra of a semigroup3.2Affine toric varieties3.3Local properties of U_{σ} 3.4Torus action	4 5 7 8
4	Toric varieties4.1Construction from fans4.2Proper morphisms and proper toric varieties	8 9 11
5	Divisors on toric varieties 5.1 Structure of the class group of X_{Σ}	13 13 14 15
6	Orbits under T_N	15

1 Introduction

Our motivation to study toric varieties is P. Scholze's proof of Deligne's weightmonodromy conjecture in the case of complete intersection subvarieties of projective smooth toric varieties over a local field ([4], Theorem 9.6).

The main reference for this text is Fulton [2]. Cox-Little-Schenck [1] treats toric varieties in great details. Oda [3] is also useful. All these books consider toric varieties only \mathbb{C} , so we had to check that all proofs here are correct over any field.

2 Rational convex polyhedral cones

Notation

- (1) N is a free \mathbb{Z} -module of rank d;
- (2) \mathbb{R}_+ is the set of non-negative real numbers;
- (3) $M = \text{Hom}(N, \mathbb{Z})$ is the linear dual of N;
- (4) $N_{\mathbb{R}} = N \otimes_{\mathbb{Z}} \mathbb{R}$, and e_1, \ldots, e_d is a basis of N.

2.1 Basic definitions

Definition 2.1 A convex polyhedral cone in $N_{\mathbb{R}}$ is a subset of the form

$$\sigma = \mathbb{R}_+ v_1 + \dots + \mathbb{R}_+ v_s$$

where v_1, \ldots, v_s are some vectors in $N_{\mathbb{R}}$. If there are generators $v_i \in N$, we say σ is a rational convex polyhedral cone. We say σ is strongly convex if σ doesn't contain a line $\mathbb{R}v$.

The set $\sigma + (-\sigma) := \{v + (-v') \mid v, v' \in \sigma\}$ is a vector subspace of $N_{\mathbb{R}}$, its dimension is called the *dimension* dim σ of σ .

Example 2.2 (1) $\sigma = \{0\};$

- (2) $\sigma = \sum_{1 \le i \le d'} \mathbb{R}_+ e_i$ for some $d' \le d$;
- (3) $d = 2, \sigma = \mathbb{R}_+(2e_1 3e_2) + \mathbb{R}_+e_2.$ They are all strongly convex.
- (4) $\sigma = \mathbb{R}_+ e_1 + \dots + \mathbb{R}_+ e_{d'} + \mathbb{R} e_{d'+1} + \dots + \mathbb{R} e_d$. It is not strongly convex if d' < d.

2.2 Dual

Recall $M = N^*$ is the dual of N. So $M_{\mathbb{R}}$ is the dual of $N_{\mathbb{R}}$. Put

$$\sigma^{\vee} := \{ u \in M_{\mathbb{R}} \mid u(v) \ge 0, \ \forall v \in \sigma \}.$$

Note that if $\sigma = \sum_i \mathbb{R}_+ v_i$, then $\sigma^{\vee} = \cap_i (\mathbb{R}_+ v_i)^{\vee}$ and σ^{\vee} is the intersection of the half-spaces in $(\mathbb{R}_+ v_i)^{\vee}$ in $M_{\mathbb{R}}$.

Example 2.3 Denote by e_1^*, \ldots, e_d^* the dual basis of e_1, \ldots, e_d .

- (1) $\{0\}^{\vee} = M_{\mathbb{R}}.$
- (2) We have

$$(\sum_{1 \le i \le d'} \mathbb{R}_+ e_i)^{\vee} = \sum_{1 \le i \le d'} \mathbb{R}_+ e_i^* + \sum_{d'+1 \le j \le d} \mathbb{R} e_j^*.$$

It is not strongly convex if d' < d.

(3) d = 2, $(\mathbb{R}_+(2e_1 - 3e_2) + \mathbb{R}_+e_2)^* = \mathbb{R}_+e_1^* + \mathbb{R}_+(3e_1^* + 2e_2^*).$

Let $u \in M_{\mathbb{R}}$. Dente by $u^{\perp} = \{v \in N_{\mathbb{R}} \mid u(v) = 0\}.$

Definition 2.4 Let σ be a rational convex polyheadral cone. A face τ of σ is a subset of σ of the form

 $\tau=\sigma\cap u^\perp$

for some $u \in \sigma^{\vee}$.

Remark 2.5 Let τ be a face of σ . Then there exists $u \in M$ such that $\tau = \sigma \cap u^{\perp}$ ([2], §1.2, Prop. 2). We will always chose $u \in M$ when dealing with faces of σ .

Proposition 2.6. Let $\sigma \subset N_{\mathbb{R}}$ be a rational convex polyhedral cone.

- (1) $(\sigma^{\vee})^{\vee} = \sigma$.
- (2) σ has finitely many faces.
- (3) A face τ of σ is a rational convex polyhedral cone, strongly convex if σ is strongly convex.
- (4) A face of a face of σ is a face of σ
- (5) The intersection of two faces of σ is a face of σ .

Proof. (1) Clearly $\sigma \subseteq (\sigma^{\vee})^{\vee}$. The converse is a classical theorem on convex bodies in \mathbb{R}^d : if σ is a convex subset of \mathbb{R}^d and $v_0 \in \mathbb{R}^d \setminus \sigma$, then there exists a half-space containing σ but not v_0 .

(2)-(3) Write $\tau = \sigma \cap u^{\perp}$. We have $\sigma = \sum_{1 \le i \le s} \mathbb{R}_+ v_i$. So

$$\tau = \sum_{i \le s, u(v_i) = 0} \mathbb{R}_+ v_i.$$

This implies (2) and that τ is a rational polyhedral cone. If σ is strongly convex, it doesn't contain real line, so a fiortiori τ doesn't contain real line. (4) Let $\tau = \sigma \cap u^{\perp}$ and $\tau' = \tau \cap u'^{\perp}$ with $u' \in \tau^{\vee}$. There exists $n \ge 0$, such

(4) Let $\tau = \sigma \cap u^{\perp}$ and $\tau' = \tau \cap u'^{\perp}$ with $u' \in \tau^{\vee}$. There exists $n \ge 0$, such that $u' + nu \in \sigma^{\vee}$ and $u'(v_i) + nu(v_i) > 0$ if $v_i \notin \tau$. Indeed, if $v_i \in \tau$, then $u'(v_i) \ge 0$ and $u(v_i) = 0$, so $(u' + nu)(v_i) \ge 0$ for all $n \ge 0$. If $v_i \notin \tau$, then $u(v_i) > 0$, so $u'(v_i) + nu(v_i) > 0$ if n is big enough. The linear form $u' + nu \in \sigma^{\vee}$.

We have clearly $\tau' \subseteq \sigma \cap (u' + nu)^{\perp}$. Conversely let $v = \sum_i \lambda_i v_i \in \sigma \cap (u' + nu)^{\perp}$ (so $\lambda_i \in \mathbb{R}_+$), as $(u' + nu)(v_i) \ge 0$ and is > 0 for those $v_i \in \notin \tau$, we find $\lambda_i = 0$ if $v_i \notin \tau$. So $v \in \tau$ and then $v \in u'^{\perp}$. Thus $v \in \tau'$.

(5) Let
$$\tau_1 = \sigma \cap u_1^{\perp}, \tau_2 = \sigma \cap u_2^{\perp}$$
. Then $\tau_1 \cap \tau_2 = \sigma \cap (u_1 + u_2)^{\perp}$.

Proposition 2.7. (Farkas's theorem) Let σ be a rational convex polyhedral cone in $N_{\mathbb{R}}$. Then σ^{\vee} is a rational convex polyhedral cone in $M_{\mathbb{R}}$. *Proof.* First suppose that dim $\sigma = d$. It is easy to see that any proper face is contained in a face of dimension d - 1 ([2], 1.2(5)). Let $\sigma \cap u_1^{\perp}, \ldots, \sigma \cap u_r^{\perp}$ be the faces of dimension d - 1. Then

$$\sigma = \bigcap_{1 \le j \le r} \{ v \in N_{\mathbb{R}} \mid u_j(v) \ge 0 \}$$

([2], 1.2(8)). Let $S = \sum_{j \leq r} \mathbb{R}_+ u_j \subseteq \sigma^{\vee}$. Let $v \in S^{\vee}$. Then $u_j(v) \geq 0$ for all $j \leq r$ and $v \in \cap_j \{u_j \geq 0\} = \sigma$. Therefore $S^{\vee} \subseteq \sigma$ and $\sigma^{\vee} \subseteq (S^{\vee})^{\vee} = S$. This implies that $\sigma^{\vee} = S$ is a rational convex polyhedral cone in $M_{\mathbb{R}}$.

In general, let $W = \sigma + (-\sigma)$. Then $M_{\mathbb{R}}/W^{\perp} = W^*$ (linear dual space) and σ^{\vee} (as a cone) is generated by the lifting of a system of generators of σ_W^{\vee} defined by the cone $\sigma \subset W_{\mathbb{R}}^*$, and \pm a system of generators of W^{\perp} .

Definition 2.8 Let $\sigma \subseteq N_{\mathbb{R}}$ be a rational convex polyhedeal cone. We define

 $S_{\sigma} := \sigma^{\vee} \cap M.$

This is a sub-semigroup of M with 0.

Proposition 2.9. (Gordan's lemma) S_{σ} is finitely generated.

Proof. By Farkas's theorem, $\sigma^{\vee} = \sum_{1 \leq j \leq r} \mathbb{R}_+ u_j$ with $u_j \in M$. Let $K = \sum_j [0,1] u_j \subset \sigma^{\vee}$. It is compact. As $K \cap M$ is discrete in a compact, it is finite. As $\mathbb{R}_+ = \mathbb{N} + [0,1]$, we find $S_{\sigma} \subseteq \sum_j \mathbb{N} u_j + (K \cap M)$. Hence S_{σ} is finitely generated.

Example 2.10 (1) If $\sigma = \{0\}$, then $S_{\sigma} = M$.

(2) If $\sigma = \sum_{1 \le i \le d'} \mathbb{R}_+ e_i$, then $S_\sigma = \sum_{1 \le i \le d'} \mathbb{N} e_i^* + \sum_{d'+1 \le r \le d} \mathbb{Z} e_i^*$.

(3) Let σ be the cone given in 2.2(3). Then $S_{\sigma} = \mathbb{N}e_1^* + \mathbb{N}(2e_1^* + e_2^*) + \mathbb{N}(3e_1^* + 2e_2^*)$.

Proposition 2.11. The semigroup $S_{\sigma} \subseteq M$ is saturated (if $n \geq 1$, $u \in M$ satisfy $nu \in S_{\sigma}$, then $u \in S_{\sigma}$), finitely generated. If σ is strongly convex. Then $S_{\sigma} + (-S_{\sigma}) = M$.

Proof. Only the last property has to be proved. First we have $\sigma^{\vee} + (-\sigma^{\vee}) = M_{\mathbb{R}}$. Indeed, if this is not true, then $\sigma^{\vee} \subseteq \ker(v)$ for some non-zero linear form $v \in M_{\mathbb{R}}^* = N_{\mathbb{R}}$. Therefore $\mathbb{R}v = (\ker(v))^{\vee} \subseteq (\sigma^{\vee})^{\vee} = \sigma$. Contradiction with σ strongly convex.

3 Affine toric varieties

We define the affine scheme associated to a rational convex polyhedral cone.

We fix a (commutative unitary) ring R. Most of the time R is a field. But in applications we have in mind (Scholze's theorem), we have to deal with R a discrete valuation ring.

3.1 Algebra of a semigroup

Let S be a commutative semigroup. We denote by R[S] the direct sum

$$R[S] = \bigoplus_{s \in S} R\chi^s$$

where χ^s denotes the basis indexed by s. It has a natural structure of commutative R-algebra by setting

$$\chi^s.\chi^t = \chi^{s+t}$$

Example 3.1 $R[\mathbb{N}^d] \simeq R[T_1, \ldots, T_d]; R[\mathbb{Z}^d] \simeq R[T_1^{\pm}, \ldots, T_d^{\pm}].$ If $S = 2\mathbb{N} + 3\mathbb{N} \subset \mathbb{N}$. Then $R[S] = R[T^2, T^3] \subseteq R[T].$

Lemma 3.2. Let S_1, S_2 be semigroups contained in M.

- (1) If $S_1 \subseteq S_2$, the we have canonically $R[S_1] \subseteq R[S_2] \subseteq R[M]$.
- (2) If S is finitely generated, then R[S] is a finitely generated algebra over R.
- (3) $R[S_1 + S_2] = R[S_1]R[S_2];$
- (4) $R[S_1 \cap S_2] = R[S_1] \cap R[S_2].$

Proof. Immediate from the definition.

Let $X = \operatorname{Spec} R[S]$. Let us decribe the points of X. Let A be an R-algebra. Consider a homomorphism $\phi : R[S] \to A$. Then we have a map

$$S \to A, \quad s \mapsto \phi(\chi^s).$$

It is a morphism of semigroups (A is considered as a semigroup with its multiplication law).

Proposition 3.3. The above process induces a canonical bijection

$$X(A) \to \operatorname{Hom}_{sq}(S, A)$$

from the set of A-valued points of X to the set of morphisms of semigroups from S to (A, \times) .

Proof. If $\psi : S \to A$ is a morphism of semigroups, we define an *R*-linear map $\phi : R[S] \to A$ by $\phi(\chi^s) = \psi(s)$. We check easily that ϕ is a morphism of *R*-algebras, and $\psi \mapsto \phi$ is the reciprocal map of $X(A) \to \operatorname{Hom}(S, A)$.

3.2 Affine toric varieties

Let σ be a rational convex polyhedral cone in $N_{\mathbb{R}}$.

Definition 3.4 Let $S_{\sigma} \subseteq M$ be the semigroup associated to σ (2.8). We define

$$U_{\sigma} = \operatorname{Spec} R[S_{\sigma}].$$

If necessary, we add R in the subscript to indicate the scheme is defined over R.

Example 3.5 (1) $U_{\{0\}} = \operatorname{Spec} R[M] \simeq \mathbb{G}_{m,R}^d$. Denote by $T_N := U_{\{0\}}$.

- (2) If $\sigma = \sum_{1 \le i \le d'} \mathbb{R}_+ e_i$ in $N_{\mathbb{R}}$, then $U_{\sigma} \simeq \mathbb{A}_R^{d'} \times_R \mathbb{G}_{m,R}^{d-d'}$.
- (3) Let σ be the cone given in 2.2(3). The semigroup S_{σ} has been computed in 2.10(3). Denote by $T_1 = \chi^{e_1}, T_2 = \chi^{e_2}$. Then

$$R[S_{\sigma}] = R[T_1, T_1^2 T_2, T_1^3 T_2^2] \subseteq R[T_1^{\pm 1}, T_2^{\pm 1}].$$

Denote by $U = T_1^2 T_2$ and $V = T_1^3 T_2^2$, then $R[S_{\sigma}] = R[T_1, U, V]$ with the relation $T_1 V - U^2$. So if k is a field, then $U_{\sigma,k}$ is a rational surface isomorphic to Spec $k[T, U, V]/(TV - U^2)$.

Lemma 3.6. Let $\tau = \sigma \cap u^{\perp}$ be a face of σ with $u \in S_{\sigma}$. Then

- (1) $\tau^{\vee} = \sigma^{\vee} + \mathbb{R}_+(-u);$
- (2) $S_{\tau} = S_{\sigma} + \mathbb{N}(-u).$
- (3) The inclusion $S_{\sigma} \subseteq S_{\tau}$ induces an open immession $U_{\tau} \to U_{\sigma}$ which identifies U_{τ} with the principal open subset $D(\chi^u)$ of U_{σ} .
- (4) If R is an integral domain, then U_{σ} is integral. If moreover σ is strongly convex, then $T_N \to U_{\sigma}$ is birational.

Proof. (1) We have

$$\tau^{\vee} = \sigma^{\vee} + \mathbb{R}u = \sigma^{\vee} + \mathbb{R}_+ u + \mathbb{R}_+ (-u) = \sigma^{\vee} + \mathbb{R}_+ (-u).$$

(2) Obviously $S_{\sigma} + \mathbb{N}(-u) \subseteq S_{\tau}$. Let $u' \in S_{\tau}$. We saw in the proof of 2.6(4) that there exists $n \ge 1$ such that $u' + nu \in \sigma^{\vee} \cap M$. So $u' \in S_{\sigma} + \mathbb{N}(-u)$.

(3) follows from

$$R[S_{\tau}] = R[S_{\sigma}][\chi^{-u}] = R[S_{\sigma}][(\chi^{u})^{-1}] = R[S_{\sigma}]_{\chi^{u}}.$$

(4) As $S_{\sigma} + (-S_{\sigma}) = M$ (Proposition 2.11), for any $u \in M$, there exist $u_1, u_2 \in S_{\sigma}$ such that $u = u_1 - u_2$. So $\chi^u = \chi^{u_1}(\chi^{u_2})^{-1}$. This implies that $\operatorname{Frac}(R[M]) = \operatorname{Frac}(R[S_{\sigma}])$.

The next lemma will be used in §4.

Lemma 3.7. ([2], §1.2, Proposition 3) Let σ, σ' be two rational convex polyhedral cones sharing a common face τ . Then $S_{\tau} = S_{\sigma} + S'_{\sigma}$.

Remark 3.8 The *R*-scheme U_{σ} has a distinguished section $x_{\sigma} \in U_{\sigma}(R)$ defined by the morphism of semigroups $S_{\sigma} \to R$, $u \mapsto 1$ if $u|_{\sigma} = 0$ and $u \mapsto 0$ otherwise. If $\sigma = \{0\}$, then x_{σ} correspond to the unit section $(1, \ldots, 1) \in \mathbb{G}_{m,R}^d$. If $\sigma = \sum_{1 \leq i \leq d'} \mathbb{R}_+ e_i$, then $x_{\sigma} = (0, \ldots, 0, 1, \ldots, 1)$ (with 0 repeated d' times and 1 repeated d - d' times). In Example 3.5.(3) it corresponds to $T_1 = U = V = 0$.

3.3 Local properties of U_{σ}

Proposition 3.9. The scheme U_{σ} is smooth over R if and only if σ is generated by a subset of a basis of N.

Proof. Suppose σ is generated by a basis of N. Then U_{σ} is isomorphic to a product of $\mathbb{A}_{R}^{d'}$ and a $\mathbb{G}_{m,R}^{d-d'}$ by Example 3.5(2). So it is smooth over R.

Suppose $U_{\sigma,R}$ is smooth over R. Base change to a residue field, we find that $U_{\sigma,k}$ is regular for some field k. Suppose first dim $\sigma = d$. Consider the distinguished rational point x_{σ} (Remark 3.8). The maximal ideal \mathfrak{m}_{σ} of $k[S_{\sigma}]$ corresponding to x_{σ} is generated by all χ^{u} for $u \in S_{\sigma}$ non-zero. By hypothesis, $\mathfrak{m}_{\sigma}/\mathfrak{m}_{\sigma}^{2}$ has dimension $d = \dim U_{\sigma}$ over k. So there exist $u_{1}, \ldots, u_{d} \in S_{\sigma}$ such that $\mathfrak{m}_{\sigma} = \sum_{i} k \chi^{u_{i}} + \mathfrak{m}_{\sigma}^{2}$. For any $u \in S_{\sigma}$ non-zero, $\chi^{u} = \sum_{i} \lambda_{i} \chi^{u_{i}} + \sum_{j} f_{j}g_{j}$, $f_{j}, g_{j} \in \mathfrak{m}_{\sigma}$. This implies that

$$u \in \{u_1, \ldots, u_d\} \cup (T+T)$$

where $T = S_{\sigma} \setminus \{0\}$ and $u \in (\sum_{i} \mathbb{N}u_{i}) \cup (T + \dots + T)$. As σ^{\vee} is a strongly convex rational polyhedral cone in $M_{\mathbb{R}}$, the sum of r vectors in T has norm tending to $+\infty$ when r tends to $+\infty$, so $u \in \sum_{1 \leq i \leq d} \mathbb{N}u_{i}$ and $S_{\sigma} = \sum_{i} \mathbb{N}u_{i}$. As S_{σ} generates M, this forces $\{u_{1}, \dots, u_{d}\}$ to be free over \mathbb{R} , hence free over \mathbb{Z} . Up to scaling, we see that σ^{\vee} is generated by a basis of M, therefore $\sigma = (\sigma^{\vee})^{\vee}$ is generated by a basis of N.

In the general case, let L be the sub-module of N generated by $\sigma \cap N$. Then N/L is free. Let Write $N = N' \oplus L$ with $N' \simeq N/L$. Then $S_{\sigma} = (S'_{\sigma}) \oplus M'$ where S'_{σ} is defined by σ viewed as a polyhedral cone in $L_{\mathbb{R}}$ of dimension equal to dim $L_{\mathbb{R}}$. As schemes we than have $U_{\sigma} = U'_{\sigma} \times \mathbb{G}_{m,k}^{d'}$ with $d' = d - \dim L_{\mathbb{R}}$. This implies that U'_{σ} is regular, hence σ is generated by a basis of L. The latter can be completed into a basis of N.

Proposition 3.10. Suppose R is integral and integrally closed. Then U_{σ} is integral and normal.

Proof. Write $\sigma = \sum_{1 \leq i \leq s} \mathbb{R}_+ v_i$. So $\sigma^{\vee} = \bigcap_i (\mathbb{R}_+ v_i)^{\vee}$ and $S_{\sigma} = \bigcap_i S_{\tau_i}$ where $\tau_i = \mathbb{R}_+ v_i$. We can replace v_i by a suitable vector in $\mathbb{Q}_+ v_i$ so that v_i can be completed into a basis of N over \mathbb{Z} . So U_{τ_i} is smooth over R (Proposition 3.9), hence normal. Therefore

$$R[S_{\sigma}] = \cap_i R[S_{\tau_i}]$$

is integrally closed.

Remark 3.11 One can show that U_{σ} over a field satisfies further the following properties:

- (1) U_{σ} is Cohen-Macaulay ([2], page 30).
- (2) U_{σ} is monomial (*i.e.*, closed subscheme of an affine space defined by equations of the type one monomial = other monomial ([1], Proposition 1.1.9). For example the U_{σ} in 3.5(3) is defined by $T_1V = U^2$.

- (3) U_{σ} has only rational singularities ([1], Theorem 11.4.2; [2], §3.5, p. 76).
- (4) Every projective module of finite type over k[S_σ] (k can be replaced by any PID) is free (Gubeladze, *The Anderson conjecture and a maximal class of monoids over which projective modules are free*, (Russian) Mat. Sb. (N.S.) 135(177) (1988), 169–185,). This generalizes Quillen-Suslin's theorem for polynomial rings.

3.4 Torus action

Recall $T_N = U_{\{0\}} \simeq \mathbb{G}^d_{m,R}$. This is a group scheme over R, the co-multiplication law is given by

$$R[M] \to R[M] \otimes_R R[M], \quad \chi^u \mapsto \chi^u \otimes \chi^u.$$

For any σ , the inclusion $R[S_{\sigma}] \subseteq R[M]$ induces

$$R[S_{\sigma}] \to R[S_{\sigma}] \otimes_R R[M], \quad \chi^u \mapsto \chi^u \otimes \chi^u,$$

hence a morphism

$$T_N \times_R U_\sigma \to U_\sigma$$

which satisfies all axioms of an action of T_N on U_{σ} (we have to check that some diagrams are commutative, but it is enough to see they are commutative with R[M]).

On the sections, the action

$$T_N(R) \times U_\sigma(R) \to U_\sigma(R)$$

is described as follows. Let $t \in T_N(R) = \operatorname{Hom}_{sg}(M, R)$ (morphisms of semigroups, see Prop. 3.3), $x \in U_{\sigma}(R) = \operatorname{Hom}_{sg}(S_{\sigma}, R)$, then $tx \in U_{\sigma}(R)$ is $u \mapsto t(u)x(u)$.

Let $S_{\sigma} = \sum_{i \leq r} \mathbb{N}u_i$. Then each point $x \in U_{\sigma}$ has coordinates (x_1, \ldots, x_r) when U_{σ} is embedded in \mathbb{A}_R^r using the χ^{u_i} 's. Write $u_i = \ell_{i1}e_1^* + \cdots + \ell_{id}e_d^*$. Then the above action is

$$((t_1,\ldots,t_d),(x_1,\ldots,x_r)) \mapsto (t_1^{\ell_{11}}\cdots t_d^{\ell_{1d}}x_1,\ldots,t_1^{\ell_{r1}}\cdots t_d^{\ell_{rd}}x_d).$$

Remark 3.12 The morphism $R[S_{\sigma}] \to R[S_{\sigma}] \otimes_R R[S_{\sigma}]$ defined by $\chi^u \mapsto \chi^u \otimes \chi^u$ induces a morphism $U_{\sigma} \times_R U_{\sigma} \to U_{\sigma}$ which makes U_{σ} into a "monoidal scheme" (the law is associative, commutative with unit).

4 Toric varieties

A toric variety is obtained by glueing suitable sets of affine toric varieties U_{σ} . Recall that N is a free Z-module of rank d.

4.1 Construction from fans

Definition 4.1 A fan Σ in $N_{\mathbb{R}}$ is a finite and non-empty set of strongly convex rational polyhedral cones in $N_{\mathbb{R}}$ with the following properties:

- (i) If $\sigma \in \Sigma$, then all faces of σ belong to Σ ;
- (ii) If $\sigma, \sigma' \in \Sigma$, then $\sigma \cap \sigma'$ is a face of σ and of σ' .

Example 4.2 Any σ induces a fan Σ which consists in all faces of σ .

Let Σ be a fan. Let $\sigma, \sigma', \sigma'' \in \Sigma$. By Lemma 3.6(3), we have canonical open immersions $p_{\sigma,\sigma'}: U_{\sigma\cap\sigma'} \to U_{\sigma}$ and $p_{\sigma',\sigma''}: U_{\sigma'\cap\sigma''} \to U_{\sigma'}$. It is easy to check that on $U_{\sigma\cap\sigma'\cap\sigma''}$, the open immersions $p_{\sigma,\sigma'}, p_{\sigma,\sigma''}$ and $p_{\sigma',\sigma''}$ coincide. This allows us to define a unique scheme by glueing the U_{σ} 's.

Definition 4.3 Let Σ be a fan in $N_{\mathbb{R}}$. We denote by $X_{\Sigma,R}$ or simply by X_{Σ} the *R*-scheme obtained by glueing as above.

Proposition 4.4. (1) The R-scheme $X_{\Sigma,R}$ is separated.

- (2) If $R \to R'$ is ring homomorphism, then $X_{\Sigma,R'} = X_{\Sigma,R} \times_R \operatorname{Spec} R'$.
- (3) The morphism $X_{\Sigma,R} \to \operatorname{Spec} R$ is faithfully flat with integral and normal geometric fibers.

Proof. (1) It is enough to show that for any pair of $\sigma, \sigma' \in \Sigma$, the canonical map

$$R[S_{\sigma}] \otimes_R R[S_{\sigma'}] \to R[S_{\sigma \cap \sigma'}]$$

is surjective. By Lemma 3.7, $S_{\sigma\cap\sigma'} = S_{\sigma} + S_{\sigma'}$. So $R[S_{\sigma\cap\sigma'}]$ is generated by $R[S_{\sigma}]$ and $R[S_{\sigma'}]$ and the above map is surjective.

(2) is immediate and (3) follows from (2) and Proposition 3.10. \Box

Definition 4.5 Le k be a field. A *toric variety over* k is an integral normal separated variety X over k, endowed with the action of a torus $T \simeq \mathbb{G}_{m k}^{d}$:

$$\mu: T \times_k X \to X$$

and a rational point $x_0 \in X(k)$ such that $T \simeq T \times \{x_0\} \xrightarrow{\mu} X$ is an open immersion. In other words, T endowed with the natural action of T extends equivariantly to X.

The torus T_N acts on each U_{σ} (§3.4). By construction, this action is compatible with its action on U_{τ} if τ is a face of σ . Therefore T_N acts on X_{Σ} compatibly with its action on the U_{σ} . As the action of T_N on $U_{\{0\}}$ is free, if x_0 denotes the distinguished section of $U_{\{0\}}$, we see that

$$T_N \simeq T_N \times_R \{x_0\} \to U_{\{0\}}$$

is an isomorphism. By Proposition 4.4, X_{Σ} is a toric variety when R is a field.

Conversely, one can show that any toric variety is isomorphic to some X_{Σ} ([1], Corollary 3.1.8¹).

- **Example 4.6** (1) Any affine U_{σ} is a toric variety: just consider the fan consisting in all faces of σ . In particular affine spaces $(\sigma = \sum_{1 \le i \le d} \mathbb{R}_+ e_i)$ and split tori are toric varieties.
- (2) Let d = 1 and let Σ be generated by \mathbb{R}_+e_1 and $\mathbb{R}_+(-e_1)$. Then X_{Σ} is obtained by glueing two copies of \mathbb{A}^1 : Spec $R[\chi^{e_1}]$ and Spec $R[(\chi^{e_1})^{-1}]$, so $X_{\Sigma} = \mathbb{P}^1_R$.
- (3) One dimensional toric varieties over a field are \mathbb{G}_m , \mathbb{A}^1 and \mathbb{P}^1 (each U_{σ} is normal and contains a copy of \mathbb{G}_m).
- (4) Let d = 2, let Σ be generated by $\mathbb{R}_+e_1 + \mathbb{R}_+e_2$, $\mathbb{R}_+(-e_1) + \mathbb{R}_+e_2$, $\mathbb{R}_+e_1 + \mathbb{R}_+(-e_2)$ and $\mathbb{R}_+(-e_1) + \mathbb{R}_+(-e_2)$. Then $X_{\Sigma} = \mathbb{P}^1 \times \mathbb{P}^1$.
- (5) Products of toric varieties are toric varieties.

Example 4.7 (*Projective space*) Let $N = \mathbb{Z}^{d+1}/(1, \ldots, 1)\mathbb{Z}$. Let e_0, \ldots, e_d be the canonical basis of \mathbb{Z}^{d+1} . The canonical pairing

$$(\mathbb{Z}^{d+1})^* \times \mathbb{Z}^{d+1} \to \mathbb{Z}, \quad (u,v) \mapsto u(v)$$

induces a perfect pairing

$$M \times N \to \mathbb{Z}$$

where $M = \{x_0 e_0^* + \dots + x_d e_d^* \mid \sum_i x_i = 0\}$. Let v_i be the image of e_i in N. For any $i \leq d$, $\{v_j\}_{j \neq i}$ is a basis of N and its dual basis is $\{e_j^* - e_i^*\}_{j \neq i} \subset M$. Let $\sigma_i = \sum_{j \neq i} \mathbb{R}_+ v_i$. Then $S_{\sigma_i} = \sum_{j \neq i} \mathbb{N}(e_j^* - e_i^*)$ and

$$R[S_{\sigma_i}] = R[T_j/T_i]_{j \neq i} \subset R[(\mathbb{Z}^{d+1})^*], \quad T_j = \chi^{e_j^*}.$$

Now any face of
$$\sigma_i$$
 is generated by a subset of $\{v_j\}_{j\neq i}$ (see the proof of Proposition 2.6(2)). So the set Σ of the faces of the various σ_i is a fan. The scheme X_{Σ} is obtained by just glueing the U_{σ_i} , $0 \leq i \leq d$. The above presentation of

 $R[S_{\sigma_i}]$ shows that $X_{\Sigma} = \mathbb{P}^d$. In this example, the torus T_N is $U_{\{0\}} = \operatorname{Spec} R[\chi^{e_i^* - e_j^*}]_{i,j}$. In terms of rational points over a field k, the action is

$$((t_0,\ldots,t_d),[x_0,\ldots,x_d])\mapsto [t_0x_0,\ldots,t_dx_d].$$

¹The book [1] only treats varieties over \mathbb{C} . I have not checked whether the proof works over any field. Anyway this result is not need in the sequel.

4.2 Proper morphisms and proper toric varieties

Let $\phi : N \to N'$ be a linear map of free \mathbb{Z} -modules of finite ranks. Let $\phi^* : M' \to M$ be the dual of ϕ . The map ϕ extends to $\phi_{\mathbb{R}} : N_{\mathbb{R}} \to N'_{\mathbb{R}}$. Similarly for ϕ^* .

Let Σ, Σ' be respectively fans in $N_{\mathbb{R}}$ and $N'_{\mathbb{R}}$. Suppose:

for any $\sigma \in \Sigma$, $\phi_{\mathbb{R}}(\sigma)$ is contained in some $\sigma' \in \Sigma'$.

Then $\phi^*(S_{\sigma'}) \subseteq S_{\sigma}$ and we get a morphism of schemes $U_{\sigma} \to U_{\sigma'}$. This morphism is clearly independent on the choice of $\sigma' \supseteq \phi_{\mathbb{R}}(\sigma)$, and we have a morphism $U_{\sigma} \to X_{\Sigma'}$ and finally a morphism $f: X_{\Sigma} \to X_{\Sigma'}$. We have a canonical morphism $T_N \to T_{N'}$ and f is compatible with the action of T_N on X_{Σ} and that of $T_{N'}$ on $X_{\Sigma'}$

When N' = 0, we have $X_{\Sigma'} = \operatorname{Spec} R$ and f is just the structure morphism.

Definition 4.8 For any fan Σ in $N_{\mathbb{R}}$, the support of Σ is $|\Sigma| := \bigcup_{\sigma \in \Sigma} \sigma \subseteq N_{\mathbb{R}}$.

Proposition 4.9. Let Σ, Σ' be as above (this implies that $|\Sigma| \subseteq \phi_{\mathbb{R}}^{-1}(|\Sigma'|)$). Then the induced morphism

$$f: X_{\Sigma} \to X_{\Sigma'}$$

is proper if and only if $\phi_{\mathbb{R}}^{-1}(|\Sigma'|) = |\Sigma|$. In particular, X_{Σ} is proper over R if and only if $|\Sigma| = N_{\mathbb{R}}$.

Proof. First suppose f is proper. Then it is proper when base changed to a residue field k of R. So we suppose R = k. Let $\sigma' \in \Sigma'$. Then $f^{-1}(U_{\sigma'}) \to U_{\sigma'}$ is proper. Let $v \in \phi_{\mathbb{R}}^{-1}(\sigma')$. We have to show $v \in |\Sigma|$. Consider the evaluation map

$$e_v: k[M] \to k[\mathbb{Z}], \quad \chi^u \mapsto u(v).$$

The composition of $k[S_{\sigma'}] \subseteq k[M'] \to k[M]$ with e_v takes values in $k[\mathbb{N}]$ because $\phi_{\mathbb{R}}(v) \in \sigma'$. Therefore we have a commutative diagram

$$k[\mathbb{Z}] \xleftarrow{e_v} k[M]$$

$$\uparrow \qquad \uparrow$$

$$k[\mathbb{N}] \xleftarrow{k[S_{\sigma'}]} k[S_{\sigma'}]$$

As $f(T_N) \subseteq T_{N'} \subseteq U_{\sigma'}$, we have $T_N \subseteq f^{-1}(U_{\sigma'})$ and a commutative diagram

which, by the valuative criterion of properness, can be completed with a morphism $\bar{\psi}_v : \mathbb{A}^1 \to f^{-1}(U_{\sigma'})$. Let $U_{\sigma} \subseteq X_{\Sigma}$ containing $\bar{\psi}_v(0)$. Then $\bar{\psi}_v : \mathbb{A}^1_k \to$ U_{σ} . So $e_v: k[M] \to k[\mathbb{Z}]$ restricts to $k[S_{\sigma}] \to k[\mathbb{N}]$. This means that $e_v(u) \ge 0$ for all $u \in S_{\sigma}$, therefore $v \in (\sigma^{\vee})^{\vee} = \sigma \subseteq |\Sigma|$. So $\phi_{\mathbb{R}}^{-1}(|\Sigma'|) = |\Sigma|$.

Now let us prove the converse. We can suppose $R = \mathbb{Z}$ because f over R is obtained by base change from f over \mathbb{Z} . So we can suppose R integral. We will again use the valuative criterion of properness. Let \mathcal{O}_K be a discrete valuation ring with field of fractions K and consider a commutative diagram

We have to show that it can be completed with a morphism $\bar{\rho}$: Spec $\mathcal{O}_K \to X_{\Sigma}$. By EGA, II.7.3.10, we can restrict to those ρ with image equal to the generic point of X_{Σ} . Let $U_{\sigma'} \supseteq g(\operatorname{Spec} \mathcal{O}_K)$. So we have a commutative diagram

where $R[S_{\sigma'}] \to R[M]$ is the restriction of $R[M'] \to R[M]$. The map

$$v: M \to \mathbb{Z}, \quad u \mapsto \nu_K(\rho^{\#}(\chi^u)),$$

where $\nu_K : K \to \mathbb{Z} \cup \{+\infty\}$ is the valuation of K, is a linear form on M, so $v \in N$. Moreover, the above commutative diagram implies that for all $u' \in \sigma'$, we have $v(\phi_{\mathbb{R}}^*(u')) \geq 0$, so $v \in \phi_{\mathbb{R}}^{-1}(\sigma') \subseteq |\Sigma|$. Let $\sigma \in \Sigma$ be a face containing v. Then for all $u \in S_{\sigma}$, we have $\nu_K(\rho^{\#}(\chi^u)) = v(u) \geq 0$ hence $\rho^{\#}(\chi^u) \in \mathcal{O}_K$. So $\rho^{\#}$ restricts to $R[S_{\sigma}] \to \mathcal{O}_K$. This means we succeed to complete our original diagram (1) into a diagram

whose upper triangle is commutative. The lower triangle is commutative because $f \circ h$ and g coincide on the generic point and $X_{\Sigma'}$ is separated (Proposition 4.4).

Example 4.10 Let N = N'. Suppose that any $\sigma \in \Sigma$ is contained in a $\sigma' \in \Sigma'$ and any $\sigma' \in \Sigma'$ is a union of $\sigma \in \Sigma$ (Σ is called a *refinement of* Σ'). Then $f: X_{\Sigma} \to X_{\Sigma'}$ is proper, T_N -equivariant, and (fiberwise) birational.

Remark 4.11 (*Resolution of singularities*) Using successive proper birational morphisms $X_{\Sigma} \to X_{\Sigma'}$ induced by refinements of fans, one can solve the singularities of a given toric variety ([2], §2.6).

Remark 4.12 Let X_{Σ} be a proper toric variety over a field k. A natural question is under which condition X_{Σ} is projective. There are criteria using either polytopes or the notion of strictly convex functions. An example of proper smooth non-projective toric variety of dimension 3 can be found in [2], §3.4, p. 71.

5 Divisors on toric varieties

The aim of this section is to compute the global sections of the sheaf $\mathcal{O}_{X_{\Sigma}}(D)$ associated to some special Weil divisor D on X_{Σ} (Proposition 5.5).

5.1 Structure of the class group of X_{Σ}

Recall that if X is a normal integral noetherian scheme, a Weil divisor on X is a formal linear combination of integral closed subschemes of codimension 1 in X. The group of Weil divisors is denoted by $Z^1(X)$. Modulo linear equivalence, they define the Chow group $A^1(X)$, also denoted by Cl(X) and called the class group of X).

We fix a fan Σ in $N_{\mathbb{R}}$. We consider $X = X_{\Sigma}$ the associated toric variety over a field k. There are some remarkable Weil divisors on X.

Example 5.1 Let τ be a ray (cone of dimension 1) in Σ . Then $\tau = \mathbb{R}_+ v$ for some $v \in N$ a generator of $\tau \cap N$. This v can be completed into a basis of N. So $U_{\tau} \simeq \mathbb{A}^1 \times \mathbb{G}_m^{d-1}$ (Example 3.5(2)) and $U_{\tau} \setminus T_N \simeq \{0\} \times \mathbb{G}_m^{d-1}$ is an integral Weil divisor in U_{τ} . Let $V(\tau)$ be the Zariski closure of $U_{\tau} \setminus T_N$ in X, endowed with the structure of a reduced closed subvariety. Note that $V(\tau)$ is geometrically integral over k because $U_{\tau} \setminus T_N$ is geometrically integral.

Proposition 5.2. Let $\tau_1, \ldots, \tau_\ell$ be the rays in Σ . Write $D_i = V(\tau_i)$ and denote by v_i a generator of $\tau_i \cap N$ over \mathbb{N} . We have

(1) $\cup_{1 \leq i \leq \ell} D_i = X \setminus T_N.$

(2) For any $u \in M$, $\operatorname{div}(\chi^u) = \sum_{1 \le i \le l} u(v_i) D_i$.

Proof. (1) postponed to Theorem 6.4.

(2) Let τ be a ray in Σ . The generic point of $V(\tau)$ belongs to U_{τ} and it is enough to compute the order of $\operatorname{div}(\chi_u)$ in U_{τ} . Let v_1, \ldots, v_d be a basis of Nsuch that $\tau = \mathbb{R}_+ v_1$. Write $u = a_1 v_1^* + \cdots + a_d v_d^*$ in the dual basis. We saw in the example above that $V(\tau) \cap U_{\tau}$ is defined by $\chi^{v_1^*}$. So the order (of zero or pole) of χ^u at the generic point of $V(\tau)$ is $a_1 = u(v_1)$. **Proposition 5.3.** We have an exact sequence

$$M \to \bigoplus_{1 \le i \le \ell} \mathbb{Z}D_i \to \operatorname{Cl}(X) \to 0.$$

It is exact at left if $|\Sigma|$ is not contained in a proper subspace of $N_{\mathbb{R}}$.

Proof. The map $M \to Z^1(X)$, $u \mapsto \operatorname{div}(\chi^u)$ is \mathbb{Z} -linear and has image in $\oplus_i \mathbb{Z}D_i$ by Proposition 5.2(2). If $D = \sum_i a_i D_i = \operatorname{div}(f)$ for some $f \in k(X)^*$, then $f|_{T_N} \in \mathcal{O}_X(T_N)^* = k[M]^*$ and $f|_{T_N} = \lambda \chi^u$ for some $\lambda \in k^*$ and $u \in M$. So $D = \operatorname{div}(\chi^u)$. This proves the exactness at middle.

By general results, we have an exact sequence

$$\oplus_i \mathbb{Z}D_i \to \operatorname{Cl}(X) \to \operatorname{Cl}(X \setminus \cup_i D_i) \to 0.$$

By Proposition 5.2(1), $X \setminus \bigcup_i D_i = T_N$. As $Cl(T_N) = \{1\}$ because k[M] is UFD, we have the exactness at right.

Finally, suppose div $(\chi^u) = 0$. Then $u(v_i) = 0$. As we see easily that every σ is generated by some one-dimensional cones in Σ , this implies that u vanishes at the vector subspace of $N_{\mathbb{R}}$ generated by Σ . So if Σ is not contained in a proper subspace of $N_{\mathbb{R}}$, then u = 0 and $M \to \bigoplus_i \mathbb{Z}D_i$ is injective.

5.2 Action of $T_N(k)$

As T_N acts on $X = X_{\Sigma}$ by some morphism $\mu : T_N \times X \to X$, we have a morphism of groups $T_N(k) \to \operatorname{Aut}_k(X)$, the image of $t \in T_N(k)$ is

$$X \to X, \quad x \mapsto \mu(t, x).$$

So $T_N(k)$ also acts on $Z^1(X)$ and on k(X) the function field of X.

Lemma 5.4. Let $t \in T_N(k)$.

(1) Let $u \in M$. Then

$$t.\chi^u = t^{-1}(u)\chi^u$$

where $t^{-1}(u)$ is $t^{-1} \in T_N(k) = \operatorname{Hom}_{sg}(M, k)$ applied to u.

(2) Let D_i be a divisor on X as in Proposition 5.2. Then $t.D_i = D_i$.

Proof. (1) Let us use a basis e_1, \ldots, e_d of N. Then $t = (t_1, \ldots, t_d)$ with $t_i \in k^*$. Write $u = \sum_i a_i e_i^*$ with $a_i \in \mathbb{Z}$. We have

$$t \cdot \chi^{u} = \prod_{i} (t \cdot \chi^{e_{i}^{*}})^{a_{i}} = \prod_{i} (t_{i}^{-1} \chi^{e_{i}^{*}})^{a_{i}} = (\prod_{i} t_{i}^{-a_{i}}) \chi^{u},$$

where $t \cdot \chi^{e_i^*} = t_i \chi^{e_i^*}$ because the action of t on the coordinates is multiplication by t_i on the *i*-th coordinate.

(2) As t acts on U_{τ_i} and on $T_N = U_{\{0\}} \subset U_{\tau_i}$, t fixes $U_{\tau_i} \setminus T_N$, hence t fixes $D_i = \overline{U_{\tau_i} \setminus T_N}$.

5.3 Global sections of $\mathcal{O}_X(D)$

Keep the notation of Proposition 5.2.

Proposition 5.5. Let $D = \sum_{1 \le i \le \ell} a_i D_i$. Let

$$P_D = \{ u \in M_{\mathbb{R}} \mid u(v_i) \ge -a_i, i = 1, \dots, \ell \}.$$

Then

$$H^0(X, \mathcal{O}_X(D)) = \bigoplus_{u \in P_D \cap M} k \chi^u.$$

Proof. As the D_i are defined independently of k, $H^0(X, \mathcal{O}_X(D))$ commutes with base change. It is thus enough to show the equality for some extension of k. In particular we can suppose k is infinite.

The restriction to T_N induces a canonical map

$$H^0(X, \mathcal{O}_X(D)) \to H^0(T_N, \mathcal{O}_{T_N}(D|_{T_N})) = H^0(T_N, \mathcal{O}_{T_N}) = k[M]$$

of subspace of k(X). So we can view $H^0(X, \mathcal{O}_X(D))$ as a subspace of $k[M] = \bigoplus_{u \in M} k\chi^u$. If $u \in M$, then $\chi^u \in H^0(X, \mathcal{O}_X(D))$ if and only if $u \in P_D \cap M$ by Proposition 5.2(2). In particular $\bigoplus_{u \in P_D \cap M} k\chi^u \subseteq H^0(X, \mathcal{O}_X(D))$.

Let $f \in H^0(X, \mathcal{O}_X(D))$. There exists a finite subset F of M such that $f \in E := \bigoplus_{u \in F} k\chi^u$. The commutative group $T_N(k)$ acts on the finite dimensional vector space E through diagonalizable automorphisms. Moreover, as $T_N(k)$ fixes each D_i (Lemma 5.4), it acts on $H^0(X, \mathcal{O}_X(D))$. So $E \cap H^0(X, \mathcal{O}_X(D))$ is a subspace of E globally invariant by $T_N(k)$. As $T_N(k)$ is commutative with diagonalizable actions, $E \cap H^0(X, \mathcal{O}_X(D))$ is a direct sum of common eigenspaces of $T_N(k)$. Using the description of the action of $T_N(k)$ on χ^u (Lemma 5.4) and the hypothesis that k is infinite, we find $E \cap H^0(X, \mathcal{O}_X(D))$ is a direct sum of $k\chi^u$. But $\chi^u \in H^0(X, \mathcal{O}_X(D))$ implies that $u \in P_D \cap M$ (Proposition 5.2(2)), so

$$f \in E \cap H^0(X, \mathcal{O}_X(D)) \subset \bigoplus_{u \in P_D \cap M} k \chi^u.$$

6 Orbits under T_N

This section is added after the three hours talks. Here we prove Proposition 5.2, see Theorem 6.4. We work over a field k.

We saw in §3.4 that T_N acts on $X = X_{\Sigma}$. This action will allows us to decompose X as a union of finitely many orbits. Denote by $\mu : T_N \times X \to X$ the morphism defining the action.

Definition 6.1 Let $x \in X(k)$. We define the orbit of x under T_N or T_N -orbit of x the image of the canonical morphism $\tau_x : T_N \to T_N \times \{x\} \xrightarrow{\mu} X$.

Notation Let $\sigma \in \Sigma$ and let x_{σ} be the distinguished rational point of U_{σ} (Remark 3.8). We denote by O_{σ} the orbit of x_{σ} under T_N . As $T_N \times U_{\sigma} \to U_{\sigma}$, we have $O_{\sigma} \subseteq U_{\sigma}$.

Example 6.2 (1) If $\sigma = \{0\}$. Then $O_{\sigma} = T_N$.

- (2) If dim $\sigma = 1$, then we saw that $U_{\sigma} = \mathbb{A}^1 \times \mathbb{G}_m^{d-1}$, $x_{\sigma} = (0, 1, \dots, 1)$ and so $O_{\sigma} = \{0\} \times \mathbb{G}_m^{d-1} \simeq \mathbb{G}_m^{d-1}$.
- (3) If dim $\sigma = d$, then $x_{\sigma} : u \mapsto 0$ for all $u \in S_{\sigma}$ non-zero because $u \notin \sigma^{\perp} = \{0\}$. For all $t \in T_N(k)$, we have then $t.x_{\sigma} = x_{\sigma}$ and $O_{\sigma} = \{x_{\sigma}\}$.

In all these cases, O_{σ} is a subvariety of U_{σ} of dimension dim $O_{\sigma} = d - \dim \sigma$.

Let $\sigma \subseteq N_{\mathbb{R}}$ be a strongly convex rational polyhedral cone. Denote by

$$N(\sigma) = N/(\sigma \cap N + (-\sigma \cap N))$$

the quotient by the submodule of N generated by $\sigma \cap N$. Denote by

$$\sigma^{\perp} := \{ u \in M_{\mathbb{R}} \mid u(\sigma) = \{0\} \}.$$

The canonical pairing $M \times N \to \mathbb{Z}$ induces a perfect pairing

$$(\sigma^{\perp} \cap M) \times N(\sigma) \to \mathbb{Z}$$

Lemma 6.3. Let $\sigma \in \Sigma$.

- (1) Consider the linear projection $p_{\sigma} : k[S_{\sigma}] \to k[\sigma^{\perp} \cap M], \ \chi^{u} \mapsto \chi^{u}$ if $u \in \sigma^{\perp} \cap M$ and 0 otherwise. Then p_{σ} is a surjective homomorphism of k-algebras.
- (2) The orbit O_{σ} is $V(\ker p_{\sigma}) \simeq T_{N(\sigma)}$. This is a closed subvariety of dimension $d \dim \sigma$.

(3)
$$O_{\tau}(k) = \{x \in U_{\sigma}(k) = \operatorname{Hom}_{sq}(\sigma, k) \mid x(u) = 0, \forall u \in S_{\sigma} \setminus (\sigma^{\perp} \cap M)\}.$$

Proof. (1) Let $u_1, u_2 \in S_{\sigma}$. Then $u_1 + u_2 \in \sigma^{\perp}$ if and only if $u_1, u_2 \in \sigma^{\perp}$. This implies that the map $S_{\sigma} \to k[\sigma^{\perp} \cap M]$ defined by $u \mapsto \chi^u$ if $u \in \sigma^{\perp} \cap M$ and $u \mapsto 0$ otherwise is a morphism of semigroups, so the induced map p_{σ} is a morphism of k-algebras.

(2) The morphism $\tau_{x_{\sigma}}$ (see 6.1) corresponds to

$$k[S_{\sigma}] \to k[M] \otimes k(x_{\sigma}) \simeq k[M], \quad \chi^u \mapsto \chi^u \otimes \chi^u(x_{\sigma}) \mapsto x_{\sigma}(u)\chi^u.$$

This is nothing but p_{σ} . So $\tau_{x_{\sigma}}$ factorizes into the surjective morphism $T_N \to T_{N(\sigma)} = U_{\sigma^{\perp} \cap M}$ and the closed immersion $T_{N(\sigma)} \to U_{\sigma}$ defined by p_{σ} .

(3) Let $x \in U_{\sigma}(k)$. Then $x \in O_{\sigma} = V(\ker p_{\sigma})$ if and only if $\ker p_{\sigma} \subseteq \ker f_x$ where $f_x : k[S_{\sigma}] \to k$ is defined by $\chi^u \mapsto x(u)$ (when x is viewed as an element of $\operatorname{Hom}_{sg}(S_{\sigma}, k)$). This is equivalent to x(u) = 0 for all $\chi^u \in \ker p_{\sigma}$, but the latter condition is nothing but $u \in S_{\sigma} \setminus (\sigma^{\perp} \cap M)$.

Theorem 6.4. Let $X = X_{\Sigma}$ be a toric variety over a field k. Let $\sigma \in \Sigma$.

(1) The orbit $O_{\sigma} \subseteq U_{\sigma}$ is a closed subvariety of dimension $d - \dim \sigma$.

- (2) We have $U_{\sigma} = \bigcup_{\tau < \sigma} O_{\tau}$, where the union runs through the faces τ of σ .
- (3) Let $\tau_1, \ldots, \tau_\ell$ be the rays (one-dimensional cones) of Σ . Let $D_i = \overline{U_{\tau_i} \setminus T_N}$ (Zariski closure). Then

$$X_{\Sigma} \setminus T_N = \bigcup_{1 \le i \le \ell} D_i.$$

Proof. (1) This is Lemma 6.3.

(2) As the construction of O_{σ} is compatible with base changes, we can suppose k is algebraically closed. Let $x \in U_{\sigma}(k) = \operatorname{Hom}_{sg}(S_{\sigma}, k)$. Consider

$$x^{-1}(k^*) := \{ u \in S_{\sigma} \mid x(u) \in k^* \}.$$

Let $u_1, u_2 \in S_{\sigma}$, then $x(u_1 + u_2) = x(u_1)x(u_2)$ and $u_1 + u_2 \in x^{-1}(k^*)$ if and only if $u_1, u_2 \in x^{-1}(k^*)$. Such a sub-semigroup of S_{σ} is automatically equal to $\tau^{\perp} \cap S_{\sigma}$ for some face τ of σ ([2], page 15, Exercise and [1], Proposition 1.2.10). As x(u) = 0 for all $u \in S_{\sigma} \setminus (\tau^{\perp} \cap M), x \in O_{\tau}$ by Lemma 6.3.

(3) For any τ_i , $U_{\tau_i} \setminus T_N \subseteq X_{\Sigma} \setminus T_N$. The latter being closed, we have $D_i \subseteq X_{\Sigma} \setminus T_N$. On the other hand, for any $\sigma \in \Sigma$, by (2), U_{σ} is the union of $T_N = O_{\{0\}}$ and locally closed subsets O_{τ} of dimension dim $O_{\tau} = d - \dim \tau \leq d-1$. Therefore the points of codimension 1 in $U_{\sigma} \setminus T_N$ are in the orbits of rays τ . For a ray τ , we have $O_{\tau} = U_{\tau} \setminus T_N$ by (2). Hence $U_{\sigma} \setminus T_N$ is contained in $\cup_{i \leq \ell} D_i$ and $X_{\Sigma} \setminus T_N \subseteq \cup_{1 \leq i \leq \ell} D_i$. This proves (3).

Remark 6.5 It follows from the theorem that the orbit of any rational point in U_{σ} is of the form O_{τ} for some face τ of σ (take τ such that $x \in O_{\tau}$).

References

- D. Cox, J. Little and H. Schenck: Toric varieties, Graduate Studies in Mathematics, AMS, 124 (2010).
- [2] W. Fulton: Introduction to Toric varieties, Annals of Mathematical Studies, Princeton University Press, 131 (1993).
- [3] T. Oda: Convex bodies and algebraic geometry, an introduction to the theory of Toric varieties. (Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge; 15), Springer Verlag, (1988).
- [4] P. Scholze: Perfectoid spaces, Publications Mathématiques de l'IHÉS, 116 (2012), 245-313.

Index

class group, 13 convex polyhedral cone, 2

dimension of a cone, 2 distinguished section, 6

face, 3 fan, 9

 $\operatorname{Hom}_{sg}(S, A)$ set of morphisms of semigroups, 5

morphisms of toric varieties, 11

orbit, 15

projective spaces are toric, 10 proper and non-projective toric varieties, 13 proper morphism of toric varieties, 11

ray, 13 refinement of fans, 12

 $|\Sigma|$, support of Σ , 11 S_{σ} , semigroup associated to σ , 4 σ^{\vee} , 2 strongly convex, 2 support of a fan, 11

 $T_N,\,{\rm torus}$ associated to $N,\,6$

 $u^{\perp}, 3$

 $V(\tau),$ Weil divisor associated to a ray, 13

Weil divisors, 13

 X_{Σ} , toric variety associated to Σ , 9 x_{σ} , distinghuished section of σ , 6