CRYSTALLINE COMPARISON ISOMORPHISMS IN p-ADIC
HODGE THEORY: THE ABSOLUTELY UNRAMIFIED CASE

FUCHENG TAN, JILONG TONG

ABSTRACT. We construct the crystalline comparison isomorphisms for proper
smooth formal schemes over an absolutely unramified base. Such isomorphisms
hold for étale cohomology with nontrivial coefficients, as well as in the relative
setting, i.e. for proper smooth morphisms of smooth formal schemes. The
proof is formulated in terms of the pro-étale topos introduced by Scholze,
and uses his primitive comparison theorem for the structure sheaf on the pro-
étale site. Moreover, we need to prove the Poincaré lemma for crystalline
period sheaves, for which we adapt the idea of Andreatta and Iovita. Another
ingredient for the proof is the geometric acyclicity of crystalline period sheaves,
whose computation is due to Andreatta and Brinon.
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NOTATION

e Let p be a prime number.
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e Let k be a p-adic field, i.e., a discretely valued complete nonarchimedean
extension of @, whose residue field x is a perfect field of characteristic p.
(We often assume k to be absolutely unramified in this paper.)

e Let k be a fixed algebraic closure of k. Set C, := k the p-adic completion
of k. The p-adic valuation v on C, is normalized so that v(p) = 1. Write
the absolute Galois group Gal(k/k) as Gy.

e For a topological ring A which is complete with respect to p-adic topology,
let A(T},...,T4) be the PD-envelope of the polynomial ring A[Th, ..., Tq]
with respect to the ideal (Ty,...,Ty) C A[Th,...,T4] (with the requirement
that the PD-structure be compatible with the one on the ideal (p)) and then
let A{(Th,...,T4)} be its p-adic completion.

e We use the symbol ~ to denote canonical isomorphisms and sometimes
use ~ for almost isomorphisms (often with respect to the maximal ideal of
Oc,)-

1. INTRODUCTION

Let k be a discretely valued complete nonarchimedean field over QQ, which is
absolutely unramified.

Consider a rigid analytic variety over k, or more generally an adic space X over
Spa(k, O)) which admits a proper smooth formal model X over Spf O, whose
special fiber is denoted by &py. Let L be a lisse Z,-sheaf on X4;. On one hand, we
have the p-adic étale cohomology H*(X7, L) which is a finitely generated Z,-module
carrying a continuous G = Gal(k/k)-action. On the other hand, one may consider
the crystalline cohomology H. ;. (Xo/Ok,E) with the coefficient € being a filtered
(convergent) F-isocrystal on Xy/Ok. At least in the case that X comes from a
scheme and the coefficients L and & are trivial, it was Grothendieck’s problem of
mysterious functor to find a comparison between the two cohomology theories. This
problem was later formulated as the crystalline conjecture by Fontaine [Fon82].

In the past decades, the crystalline conjecture was proved in various generalities,
by Fontaine-Messing, Kato, Tsuji, Niziol, Faltings, Andreatta-Iovita, Beilinson and
Bhatt. Among them, the first proof for the whole conjecture was given by Falt-
ings [Fal]. Along this line, Andreatta-Iovita introduced the Poincaré lemma for the
crystalline period sheaf B..s on the Faltings site, a sheaf-theoretic generalization
of Fontaine’s period ring Beis. Both the approach of Fontaine-Messing and that of
Faltings-Andreatta-lovita use an intermediate topology, namely the syntomic topol-
ogy and the Faltings topology, respectively. The approach of Faltings-Andreatta-
Tovita, however, has the advantage that it works for nontrivial coefficients . and
E.

More recently, Scholze [Sch13] introduced the pro-étale site Xpyoct, which allows
him to construct the de Rham comparison isomorphism for any proper smooth
adic space over a discretely valued complete nonarchimedean field over Q,, with
coefficients being lisse Z,-sheaves on Xp.0s;. (The notion of lisse Z,-sheaf on X
and that on Xpro¢; are equivalent.) Moreover, his approach is direct and flexible
enough to attack the relative version of the de Rham comparison isomorphism, i.e.
the comparison for a proper smooth morphism between two smooth adic spaces.

It seems that to deal with nontrivial coefficients in a comparison isomorphism,
one is forced to work over analytic bases. For the generality and some technical
advantages provided by the pro-étale topology, we adapt Scholze’s approach to give
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a proof of the crystalline conjecture for proper smooth formal schemes over Spf O,
with nontrivial coefficients, in both absolute and relative settings. In a sequel paper
we shall construct crystalline comparison isomorphisms for arbitrary varieties over
p-adic fields.

Let us explain our construction of crystalline comparison isomorphism (in the
absolutely unramified case) in more details. First of all, Scholze is able to prove

the finiteness of the étale cohomology of a proper smooth adic space X over K = k
with coeflicient L” being an F,-local system. Consequently, he shows the follow-
ing “primitive comparison”, an almost (with respect to the maximal ideal of Ok)
isomorphism

H (X7 4, L) @5, O [p = H' (X3 4. L' @5, O% /).

k6t k6t
With some more efforts, one can produce the primitive comparison isomorphism in
the crystalline case:

Theorem 1.1 (See Theorem4.3). ForL a lisse Z,-sheaf on Xe, we have a canon-
ical isomorphism of Beris-modules

(1.0.1) H' (X7, ¢, L) ®z, Baris — H' (X3 L ® Beris)-

k,ét? k,proét>’

compatible with Gy-action, filtration, and Frobenius.

It seems to us that such a result alone may have interesting arithmetic appli-
cations, since it works for any lisse Z,-sheaves, without the crystalline condition
needed for comparison theorems.

Following Faltings, we say a lisse Z,-sheaf L on the pro-étale site Xy 04t is crys-
talline if there exists a filtered F-isocrystal £ on Xyp/Oy together with an isomor-
phism of OB;js-modules

(1.0.2) € ®ow OBeris = L ®z, OBeis

which is compatible with connection, filtration and Frobenius. Here, OY is the
pullback to Xprost of Ox,, and OB is the crystalline period sheaf of O-module
with connection V such that (’)Bcvri:so = Beis- When this holds, we say the lisse
Zy,-sheaf 1L and the filtered F-isocrystal £ are associated.

We illustrate the construction of the crystalline comparison isomorphism briefly.
Firstly, we prove a Poincaré lemma for the crystalline period sheaf Be.is on Xprogt.
It follows from the Poincaré lemma (Proposition that the natural morphism
from Beis to the de Rham complex DR(OB.,is) of OBeis is a quasi-isomorphism,
which is compatible with filtration and Frobenius. When L. and £ are associated,
the natural morphism

L ®Zp DR(OBcris) — DR(S) R OB¢ris

is an isomorphism compatible with Frobenius and filtration. Therefore we find a
quasi-isomorphism

L ®z, Beris = DR(E) ® OBcyis.
From this we deduce

(1.0.3) RF(XE,proéw L ®z, Beris) = RF(XE,proétv DR(E) ® OB.yis).
Via the natural morphism of topoi w : X%pmét — X2, one has
(1.0.4) RT (X7, roeer DR(E) ® OBeyis) ~ R (Xst, DR(E)®0, Beris))
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for which we have used the fact that the natural morphism

OX®Ok Bcris — Rm* Oﬁcris
is an isomorphism (compatible with extra structures), which is a result of Andreatta-
Brinon.

Combining the isomorphisms above, we obtain the desired crystalline comparison
isomorphism.

Theorem 1.2 (See Theorem. Let 1L be a lisse Z,-sheaf on X and & be a filtered
F-isocrystal on Xy/Of which are associated as in . Then there is a natural
isomorphism of Beyis-modules

HZ(X7 L) ® Bcris ’N‘> Hiris(XO/Oka 5) (292 Bcris

k,ét? c

which is compatible with Gy -action, filtration and Frobenius.

After obtaining a refined version of the acyclicity of crystalline period sheaf
OB,,is in we achieve the crystalline comparison in the relative setting, which
reduces to Theorem [T.2) when ) = Spf O:

Theorem 1.3 (See Theorem . Let f: X — Y be a proper smooth morphism of
smooth formal schemes over Spf Oy, with fr: X — Y the generic fiber and feis the
morphism between the crystalline topoi. Let L,E be as in Theorem [1.4 Suppose
that R’ fi..L is a lisse Z,-sheaf on'Y . Then it is crystalline and is associated to the
filtered F-isocrystal R feris:E.

Acknowledgments. The authors are deeply indebted to Andreatta, Iovita and
Scholze for the works [AI] and [Schi3]. They wish to thank Kiran Kedlaya and
Barry Mazur for their interests in this project.

2. CRYSTALLINE PERIOD SHEAVES

Let k be a discretely valued nonarchimedean extension of Q,,, with x its residue
field. Let X be a locally noetherian adic space over Spa(k, O ). For the fundamen-
tals on the pro-étale site Xpr0¢¢, we refer to [Schi3].

The following terminology and notation will be used frequently throughout the
paper. We shall fix once for all an algebraic closure k of k, and consider Xz =
X XSpa(k,0p) Spa(k, Or) as an object of Xproe. As in [Schl3l Definition 4.3], an
object U € Xpr04t lying above Xy is called an affinoid perfectoid (lying above X7,)
if U has a pro-étale presentation U = @Ui — X by affinoids U; = Spa(R;, R}")
above X7 such that, with RT the p-adic completion of h_n}R;Ir and R = RT[1/p],
the pair (R, R") is a perfectoid affinoid (k, O=)-algebra. Write U = Spa(R, R™).

By [Schi13l Proposition 4.8, Lemma 4.6], the set of affinoid perfectoids lying above
Xz of X0t forms a basis for the topology.

2.1. Period sheaves and their acyclicities. Following [Sch13], let

v: X;mét — X§&
be the morphism of topoi, which, on the underlying sites, sends an étale morphism
U — X to the pro-étale morphism from U (viewed as a constant projective system)
to X. Consider OF = u‘le(ét and Ox = v~ !0x,,, the (uncompleted) structural
sheaves on Xpo¢;. More concretely, for U = @Ui a qcgs (quasi-compact and
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quasi-separated) object of X 0¢, one has Ox(U) = lig(’)X(Ui) = hg@xét(Ui)
([Sch13l Lemma 3.16]). Set
O = 1lmOL/p", O% = lim O%/pOt.
X % X X x%p X X
For U = limU; € X0 an affinoid perfectoid lying above Xz with U =
Spa(R, RT), by [Sch13, Lemmas 4.10, 5.10], we have

(2.1.1) Ox(U)=R*, and O%(U)=R"* = lim R*/pR*.
TP
Denote
Rt = RY, = (xo,x1, ) ' := lim 77,

n—oo
for Z,, any lifting from R*/p to RT. We have the multiplicative homeomorphism
(induced by projection):
lim RY = RPY (af, (2P )
H
TP
which can be extended to a ring homomorphism.
Put Ajf = W(O?) and Bi,r = Ainf[%]. As R is a perfect ring, Ap(U) =
W(R”) has no p-torsions. In particular, A; ¢ has no p-torsions and it is a subsheaf
of Bi,s. Following Fontaine, define as in [Sch13l Definition 6.1] a natural morphism

(2.1.2) 0: At — O%
which, on an affinoid perfectoid U with U= Spa(R, RT), is given by

(2.13) 0(U): Ae(U) = W(R'F) — OL(U) = RY, (zo,a1,---) = > p"ah,
n=0

with 2, = (Tp)iey € R'T = fm  RT/p. As (R,R") is a perfectoid affinoid
algebra, 0(U) is known to be surjective (cf. [Bri, 5.1.2]). Therefore, 6 is also
surjective.

Definition 2.1. Let X be a locally noetherian adic space over Spa(k, O) as above.
Consider the following sheaves on Xproét.
(1) Define Agys to be the p-adic completion of the PD-envelope A of A,y
with respect to the ideal sheaf ker(#) C Aj,¢, and define ]E%:“ris = Agis[1/p].
(2) For r € Zs, set Fil" A%, = ker(9)TA%, < Al to be the r-th divided
power ideal, and Fil™" A2, = AY. . So the family {Fil" A%, :r € Z} gives
a descending filtration of A2,
(3) For r € Z, define Fil" A5 C Acs to be the image of the following mor-
phism of sheaves (we shall see below that this map is actually injective):
(214) @l(Fllr Agris)/pn — 1.&HA(C)ris/pn = AleiS7

n

and define Fil" B

cris — Fil" Aleis[l/p]'
Let p® = (pi)i>o be a family of elements of k such that pg = p and that pfﬂ =p;
for any ¢ > 0. Set

€=[p"] = p € Antx,-
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Lemma 2.2. We have ker(9)|XE =(§ C Ainf|XF. Furthermore, £ € Ainf|xz s not
a zero-divisor.

Proof. As the set of affinoids perfectoids U lying above Xz forms a basis for the
topology of X061/ X7, we only need to check that, for any such U, £ € Ay (U) is

not a zero-divisor and that the kernel of 0(U): Ajye(U) — O%(U) is generated by

¢. Write U = Spa(R, R*). Then Ay (U) = W(R*) and O% (U) = R*, hence we
reduce our statement to (the proof of) [Schl3, Lemma 6.3]. g

Corollary 2.3. (1) We have A% |x, = Aint|x, [£"/n!:n € N] C Bint|x,. More-

cris
over, forr >0, Fil” A? |x = Aint[x [§"/n!:n > 7] and grrAgris|XE = O;HXE'

cris
. L . . YN no~ ar .
(2) The morphism (2.1.4) is injective, hence lim Fil" A /p" — Fil" Acris.

cris

~ T
Moreover, forr >0, gr"Ais| x, — Ox|x,-

Proof. The first two statements in (1) are clear. In particular, for » > 0 we have
the following exact sequence
[x; — O%lx; —>0,

(2.1.5) 00— Fil" ™ A?

ar A0
cris ‘Xz Fil" A

cris
where the second map sends a&” /r! to 6(a). This gives the last assertion of (1).

As (’)} has no p-torsions, an induction on r shows that the cokernel of the
inclusion Fil" A2, < AC.. has no p-torsions. As a result, the morphism (2.1.4)

cris cris

0 Since OF is p-
adically complete, we deduce from also the following short exact sequence
after passing to p-adic completions:

is injective and Fil" A5 is the p-adic completion of Fil” AY

(2.1.6) 0 —— Fil"™ Agis|x, — Fil" Agris|x, —> OF[x, —=0
giving the last part of (2). O
Let € = (e(i))izo be a sequence of elements of k such that €(®©) = 1, (1) £ 1 and

(et )P = € for all i > 0. Then 1 — [¢] is a well-defined element of the restriction
Aint|x, to Xprost/ X5 of Ajys. Moreover 1 — [¢] € ker(@)\xz = Filt Acris|xp Let

(2.1.7) t :=log([e]) = —Z%,

n=1
which is well-defined in A Xr since Fil' A s 18 a PD-ideal.

Definition 2.4. Let X be a locally noetherian adic space over Spa(k, O). Define
Besis = B [1/t]. For r € Z, set Fil" Beyis = Y. ot * Fil' ™ BY, C Beyis. (As the

cris

canonical element ¢ € A5 exists locally, these definitions do make sense.)
Before investigating these period sheaves in details, we first study them over a
perfectoid affinoid (&, Oi)—algebra (R, RT). Consider
Amt(R,RT) := W(R™T), Bint(R, R") := Aint(R, RT)[1/p),
and define the morphism
(2.1.8) Or,r+): Aims(R,RT) — RT
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in the same way as in (2.1.3). It is known to be surjective as (R, RT) is perfectoid.
Furthermore, we have seen that the element ¢ € Ay (k, O%) generates ker(0(p r+))
and is not a zero-divisor in Aj,s(R, R"). Let Acis(R, RT) be the p-adic comple-
tion of the PD-envelope of Ain¢(R, RT) with respect to the ideal ker(f(g r+)). So
Ais(R, RT) is the p-adic completion of A, (R, RT) with

cris (

A% (R, RY) := Aume(R, RT) FT ne N] C Bint(R, RY).

cris

For r an integer, let Fil" A%, (R, RT) C A%, (R, RT) be the r-th PD-ideal, i.e., the
ideal generated by £"/n! for n > max{r,0}. Let Fil" A.is(R, RT) C Aqis(R, RT)
be the closure (for the p-adic topology) of Fil" A, (R, R") inside Agis(R, RT).
Finally, put B, (R, R") = Ais(R, R)[1/p], Bexis(R, RY) :== BL. (R, RM)[1/1],

and for r € Z, set
Fil" BY, (R, R") := Fil” Acuis(R, R7)[1/p] and

Cris

Fil" Beio (R, RY) 1= Y ¢t *Fil' " Bf (R, RT).
SEZL

In particular, taking Rt = Oc, with C, the p-adic completion of the fixed

algebraic closure k of k, we get Fontaine’s rings Acis, B, Beris as in [Fon94].

cris’

Lemma 2.5. Let X be a locally noetherian adic space over (k,O). Let U € Xproet
be an affinoid perfectoid above X with U = Spa(R, RT). Let F € {A%, Acris}.

~

Then for any r > Z, we have a natural almost isomorphism Fil” F(R, RT)* =
Fil" F(U)%, and have H (U, Fil" F)* = 0 for any i > 0.

Proof. As U is affinoid perfectoid, we have Of(U) = Rt, O%(U) = R** and
O(U) = 0(g,r+)- In particular, At (U) = Aint(R, R™), and the natural morphism
o: Aine(R, RT) = Aine(U) — A% (U) sends ker(6g z+)) into Fil' A%, (U). As a
consequence, we get a natural morphism A%, (R, RT) — A%, (U), inducing mor-
phisms Fil” A%, (R, RT) — Fil" A%, (U) between the filtrations. Passing to p-adic
completions, we obtain the natural maps Fil” Agis(R, RT) — Fil" Ags(U) for all
r e Z.

We need to show that the morphisms constructed above are almost isomor-
phisms. Recall that, as U is affinoid perfectoid, HY(U, Ajpg)® = 0 for i > 0 ([Schi3|

Theorem 6.5]). Consider Acm = % with a; = %, then one has the

following short exact sequence

0—= A0 "Foo 0 AL, 0.

cris cris cris

Since Agrls is a direct sum of Aj,f’s as an abelian sheaf and U is qcgs, we get

(U A, )a =0 for i > 0. Hence H*(U,A%,.)* = 0 for i > 0 and the short exact

cris cris

sequence above stays almost exact after taking sections over U:

(2.1.9) 0—— A0 () =0

Cris

AV (U)* ——= AV, (U)* ——=0.

cris
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On the other hand, set ASHS(R, RT) = %m with a; = g,;'; as above,

then the following similar sequence is exact:

(2.1.10) 0 —— AV (R, Rt)e &Y

cris

Smce U is qcas, AC“S(U) Crls(R R™). Combining (2.1.9) and (2.1.10)), we find
R,RT)* = A2. (U)®. This proves the statement for A

CrlS ( cris cris*

Next, as A .. C Byt (Corollary-, the sheaf AV . has no p-torsions. So we get

cris cris
the following tautological exact sequence

ki (R,R")* ——= Al (R,RT)* ——=0.

cris cris

0— A% P A0

cris cris

— AL /p" — 0.

By what we have shown for AY. we get from the exact sequence above that
(A(C)rls(R7 R+ /pn) (Agl‘lb( )/pn) ( Crlb/p ) ( and HZ(U Agrls/pn)a =
for i > 0. Therefore the transition maps of the projective system {(AY../p™)(U)}n>o0
are almost surjective, thus R! L m (A% /p™)(U ))a = 0. So the projective system

{A2. /p"} verifies the assumptions of (the almost version of )[Sch13 Lemma 3.18].
As a result, we find

(2.1.11) R im Al /p" =0, for any j >0,

ACYiS(R7 R+)a h (Agrlb(R’ R+)/pn)a ; lgl (( Crls/p ) ( )) = ACI‘iS(U)a7
and _
HZ(Ua ACTiS) HZ(U hm Acrls/p ) =0

for i > 0.

To prove the statements for Fil" A2, for r > 0, we shall use the exact se-

quence (2.15). As HY(U,0%)* = 0 for i > 0 ([Sch13, Lemma 4.10]), we find
H(U,Fil" A%, )® = 0 for all i > 2, and also the induced long exact sequence

cris

0 — Fil"t1 AO
HY(U,Fil"t AY

cris

(U)* — Fil" A (U)* — OL(U)* —

cris

)¢ — HY(U,Fil" A2 )* — 0.

cris

On the other hand, we have the analogous exact sequence for Fil" A%, (R, R™):

cris
0 — FiI"™ A% (R, RY) — Fil" A (R, RY) — R* — 0,

cris
where the second morphism sends af” /7! to 0(p g+y(a). Together with the two
exact sequences above and the vanishing H*(U, A2, )* = 0, an induction on r > 0

shows Fil" A% (R, RT)* 5 Fil" A% (U)® and H' (U, Fil" A%, )® = 0. This gives the

cris cris cris

statement for Fil" A2,  for r € Z (note that Fil" A%, = A%. when r < 0). The

statement for Fil” A.is can be done in the same way; one starts with (2.1.6) and
uses the vanishing of H (U, Aqis). O

Corollary 2.6. Keep the notation of Lemma[2.5,
(1) The morphism multiplication by t on Ay is almost injective. In particular,
t € Bl |x, is not a zero-divisor.

(2) Let F € {B . ,Beris}. Then for any r € Z, there is a natural isomorphism
Fil” F(R, R*) 5 Fil" F(U), and H(U,Fil" F) = 0 for i > 1.
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Proof. (1) By Lemma we are reduced to showing that t € As(R, RT) is not
a zero-divisor. So we just need to apply [Bri, Corollaire 6.2.2], whose proof works
for any such perfectoid (R, RT).

(2) As U is qegs, we deduce from Lemma the statement for B

cris
Fil" Bz,is on inverting p. Similarly, inverting ¢t we get the statement for B,is. Finally,
as Fil" Beyis|x, = lim ¢ Fil' ™ Bl |x, and as t—* Fil' ™ B, |x ~ Fil" " BS, | x. .

cris cris
passing to limits we get the statement for Fil" Bs. O

and for

2.2. Period sheaves with connections. In this section, assume that the p-adic
field k is absolutely unramified. Let X be a smooth formal scheme over Of. Set
X := X}, the generic fiber of X, viewed as an adic space over Spa(k, Q). For any
étale morphism Y — X', by taking the generic fibers, we obtain an étale morphism
Vi — X of adic spaces, hence an object of the pro-étale site Xj,0¢¢. In this way,
we get a morphism of sites Xgy — Xproet, With the induced morphism of topoi

w: X e — Xig -

proé
Let Oy,, denote the structure sheaf of the étale site Ag: for any étale morphism
Y — X of formal schemes over Oy, Ox,, (V) =T'(Y,Oy). Define (’)‘;<r+ = w04,

and OF := w™'Oux,, [1/p]. Thus OF " is the associated sheaf of the presheaf O%*:

Kproar 3 U+ limg O, (V) = OXF(U),
(¥,a)
where the limit runs through all pairs (Y,a) with ¥ € X4 and a: U — Yy a
morphism making the following diagram commutative

(2.2.1) U—>X =2,

Y.
The morphism a: U — Yy induces a map I'(Y,Oy) — Ox(U). There is then a
morphism of presheaves (’/)E?F — (9}, whence a morphism of sheaves
(2.2.2) oyxt — 0%.
Recall Ay := W(O%). Set OAiys := Ot ®0, Ainr and
(2.2.3) Ox: OAing — @
to be the map induced from 6: Aj; — @ of by extension of scalars.

Definition 2.7. Consider the following sheaves on Xpro¢t.
(1) Let OAqis be the p-adic completion of the PD-envelope QA% of OAjyy

cris

with respect to the ideal sheaf ker(0x) C OAius, OB = OAyis[1/p], and

OBeyis == OB, [1/t] with t = log([e]) defined in (2-1.7).
(2) For r € Zxo, define Fil” OAY,. C OA? . to be the r-th PD-ideal ker(fx)!"],
and Fil” OA;s the image of the canonical map
lim Fil” OA%. /p" — lim OA2. /p™ = OAyis.

cris

Also set Fil™" OAis = OAyis for r > 0.
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(3) Forr € Z, set
Fil" OB, := Fil" OAcyis[1/p] and  Fil” OBy := Y ¢t Fil'"* OB/,
SEZL

Remark 2.8. As t? = p!-tlPl in Ay == Ags (%, Oi)’ one can also define Fil” OB.is
as Y ent® Fil""® OAcyis. A similar observation holds equally for Fil” Beyis.

Remark 2.9. (1) As X is flat over Oy, the structure sheaf Ox,, has no p-
torsions. It follows that OAj.¢, OAgriS and OA;s have no p-torsions. So
OAgis C OB

cris”

(2) The morphism fx of (2.2.3)) extends to a surjective morphism from QA .

to OF with kernel Fil' OAY, , hence also a morphism from OAs to OF.

cris?
Let us denote these two morphisms again by Ox. As coker(Fil' OAY, —
OAY . ) ~ O} is p-adically complete and has no p-torsions, using the snake

lemma and passing to limits one can deduce the following short exact se-
quence

0 — lim(Fil' OA% /p") — Oheris =5 Of — 0.
n

In particular, Fil' OA s = ker(fx).

In order to describe explicitly the sheaf OA..s, we shall need some auxiliary
sheaves on Xprost-

Definition 2.10. Consider the following sheaves on Xproet.

(1) Let Acs{(u1,...,uq)} be the p-adic completion of the sheaf of PD poly-

nomial rings A% (u1,...,uq) C Bine[ur, ..., uq). Set BE, {(u1,...,uq)} =

Acris{{u1, ..., uq) }1/p] and Bepis{{u1, ..., ua)} := Acris{{u1, ..., uq) }1/t.
(2) For r € Z, let Fil" A%, (uq,...,ug) C A%, (u1,...,uq) be the ideal sheaf

cris cris

given by
Fﬂr(Agris<u1’ s aud>) = Z FﬂT_(il-‘_erid) Aglris : u[lh] U ugd]a
i1,enyia >0
and Fil" (Acus{(u1, ..., uq)}) C Acis{(u1,...,uq)} the image of the mor-
phism
@ (Filr Agris{<u1, . ,ud>}/p") — Acris{{u1, ..., uq)}.

The family {Fil" (Acrs{(u1,...,uq)}) : v € Z} gives a descending filtration
of Aeris{{u1,...,uq)}. Inverting p, we obtain Fil" (B}, {(u1,...,uq)}). Set
finally

Fil” Beris{ (1, ..., ua)}) 1= Yt Fil (B {(ur,. ., ua)}).
SEZ
The proof of the following lemma is similar to that of Lemma We omit the
details here.

Lemma 2.11. Let V € X060 be an affinoid perfectoid lying above X3 with V=
Spa(R, RT). Then the following natural map is an almost isomorhpism

Acris(R, R+){<U1, e ,ud>} i} (Acris{<u1, e ,ud>})(V)
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Under this identification, Fil" (Acpis{{(u1, ..., uq)})(V)* consists of series
Z Ay, ,ldu[lll] : [Zd € Acris (R, RY){(ua, . ua)}
11,584 >0
such that a;, . ;, € Fil7—(ateFia) Acis(R,RT) and a;, .. ;, tends to 0 for the p-adic
topology when the sum i1 + ...+ iq tends to infinity. Furthermore
HY(V,Fil" (Aeris{ (w1, ..., uq)}))* =0, fori>0.
We want to describe QA more explicitly . For this, assume there is an étale
morphism X — Spf(OR{T{, ..., TF'}) =: T% of formal schemes over Oy,. Let T¢

denote the generic fiber of 7% and T4 be obtained from T? by adding a compatible
system of p"™-th root of T; for 1 <i<dandn > 1:

Td .= Spa(k{TV/P™ . TEVP™ ) O 1=V L TEVPTY,
Set X := X deil:E. Let T} € Ogﬂg be the element (Ti,Til/p, ... ,Til/pn, ...). Then
O0x(T;21—-1® [Tib]) = 0, which allows us to define an A is-linear morphism
(2.2.4) a: Aais{(ut, .., ud) g — Oharislz, wi— T, ®@1—1®[T7].

Proposition 2.12. The morphism « of (2.2.4) is an almost isomorphism. Fur-
thermore, it respects the filtrations on both sides.

Lemma 2.13. Let k be an algebraic closure of k. Then Acpig{{u1, ... ,ud>}|);AT has a

natural Oggﬂiz-algebm structure, sending Ty to u;+[T?], such that the composition

% —
OurJr‘)}i — Acris{<u17 - ,ud>}|5§;7 — O;b}i

is the map (2.2.2)) composed wzth (’)+ — (’)*. Here 0": Acris{{u1,...,uq)} — O}
s induced from the map Acyis % (9+ by sending U;’s to 0.

—_—

Proof. As O is the associated sheaf of O™, and as the affinoids perfectoids
lying above X form a basis for the topology of Xprost/ X+ o We only need to define
naturally, for any affinoid perfectoid U € Xpo4t lying above Xr 7> & morphism of
rings: -
O (U) — (A (ur, - ua) H(U),
sending T; to u; + [T7].
Write U = Spa(R, Rt). Let p’ € (’)% C R’* be the element given by a compatible
system of p™-th roots of p. Then we have (see [Bri, Proposition 6.1.2])
Agis(R, RT) ~ (R /(0°)")[60, 01, - - ]
) (65,015 --) ’
where §; is the image of 4**1(¢) with v : z — 2P /p. So
Acris(R, RN {(u1, ..., uq)} N (Agris(R, RT) /p)uisu;j: 1 <i<d,j=0,1,...]

(») - (uf,ug ;)
R'*tlug,..., u . .
Bl 1< <d g =01,
(5§’7 u; ;)
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Set I := (p°,u1,...,uq) C RF[uy,...,uq)/((p°)P,u},...,ub): this is an nilpotent
ideal with cokernel R**/(p”) ~ R* /p. Furthermore, there is a canonical morphism
of schemes

- <Ams(R, R*)(;{qul, . ,ud>}> _, Spec <((JZE;[E%; “;%))

bt ) +
induced from the natural inclusion ((I;)IE“J;'“’UJ,])) C Aeris(BR ()If;ul’“"“d)}.
sUp ey
Let )Y be a formal scheme étale over X together with a factorization a: U — Y

as in . We shall construct a natural morphism of Og-algebras
(225) Oy(y) — (Acris{<u1, . ,ud>}) (U)

sending T; to u; + [T?]. Assume firstly that the image a(U) is contained in the
generic fiber Spa(A[1/p], A) of some affine open subset Spf(A) C Y. In particular,
there exists a morphism of Oy-algebras A — RT, whence a morphism of x-schemes

(2.2.6) Spec(R™ /p) — Spec(A/p) — Y ®p, k =: V1.

Composing ) — X with the étale morphism X — 7%, we obtain an étale morphism
Y — T%, hence an étale morphism V,,: =Y ® O /p" — T ® Op/p" =: T for
each n. As T? +u; € RF[uy,...,uql/(p°)P,u}, ..., uh) is invertible, one deduces
a map

Spec(R*F [u, ... ual /(0°)P,uh, ... ub)) — T Ty T + .

But we have the following commutative diagram

(2.2.6)
Spec(R*/p) ——— Spec(R* /(1)) 22— 3,
nil-immersion B Hg étale morphism
R fuy. .
Spec (((pb)if‘;g,___7jé)) T

from which we deduce a morphism, denoted by g;:

41 : Spec <Acris(R, R*)é);ul, e ,Ud>}) . Spec <((JZE;[?‘;%, :.”“5]5)) NRYS

Then we have the following commutative diagram

. + UL yeee, U L
Spec (Acr,s(R,R ();)( 1yees d>}) g %S e In

nil-immersion R Létale morphism

Spec (Acr;s(R,RL))igul ..... ud>}> Tdn

with the bottom map T; — Tib + u;. These g,’s are compatible with each other, so
that they give rise to a morphism Spf(Acyis(R, RT){{u1,...,uq)}) — Y of formal
schemes over Oy, inducing a morphism of O-algebras

Oy(Y) = Auis(R, RN {(uy, ..., uq)}
sending 7; to u; + [T?]. Combining it with the natural morphism

Acris(Ra R+){<U1, Ce ,ud>} — Acris{<u1, - ,Ud>}(U)
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we obtain the desired map (2.2.5)). For the general case, i.e., without assuming
that a(U) is contained in the generic fiber of some affine open of Y, cover U by
affinoids perfectoids V; such that each a(V}) is contained in the generic fiber of
some affine open subset of ). The construction above gives, for each j, a morphism
of O-algebras
Oy(¥) — (Aens{ (w1, ua)}) (V3), T wis + [T7).

As the construction is functorial on the affinoid perfectoid V;, we deduce the mor-
phism (2.2.5)) in the general case using the sheaf property of Acus{(u1,...,uq)}-

Finally, since O (U) = lim Oy () with the limit runs through the diagrams
(2.2.1), we get a morphism of Og-algebras

5§(EF(U) — Acris(lj){<ul7 et 7ud>}’ TZ U T [/T’Lb]

which is functorial with respect to affinoid perfectoid U € Xi,,0¢¢ lying above XE'

Passing to the associated sheaf, we obtain finally a natural morphism of sheaves

of O-algebras OF|s  — Acris| g {(u1,...,uq)} sending T} to u; + [Tf] The last
k k

statement follows from the assignment ¢’ (U;) = 0 and the fact that 0([T7]) = T;. O
Proof of Proposition[2.13 As )?E S Xisa covering in the pro-étale site Xp o4,
we only need to show that «f % is an almost isomorphism. By the lemma above,
there exists a morphism of sheaves of Oy-algebras (’);‘(”r ‘X% = Acpis{{u1,. .. ’ud>}|55§
sending T} to u; + [T?]. By extension of scalars, we find the following morphism
B OAinf|);E = (OY" ®0, Aint) |)}E — Agis{(u1, ..., ud>}|)?E
which maps T; @ 1 to u; + [T?]. Consider the composite (with 6 as in Lcmma
+

9/|)?E o B: OAinf')?E — Acris{<u1, .. .,ud>}|)}z—>ox‘)}z,

which is simply 9X|)?z by Lemma [2.13] Therefore, S (ker(@xb?;)) C ker(9’|§z).
Since ker(#’) has a PD-structure, the map /3 extends to the PD-envelope OAY | %

C

of the source. Furthermore, A¢is{(u1,. .., uq)}* is by definition p-adically complete:
Acris{{u1, ..., ug)}* = yLnn(Acris{(ul, ..y ug)}*/p™). The map § in turn extends

0,a

to the p-adic completion of OA i |5 . So we obtain the following morphism, still
k

denoted by S:
B: OALilz, — Acis{(ur,. . ua)}olz, Ti® 1w+ [T7).

Cris
Then one shows that 5 and « are inverse to each other, giving the first part of our
proposition.

It remains to check that o respects the filtrations. As x|y o a = 0| and
as o is an almost isomorphism, « induces an almost isomorphism a: ker(6'| ) 5
ker(0x|5). Therefore, since ker(6') = Fil! (Acris{{u1,...,uq)}) and Fil' OAgis =
ker(fx) (Remark [2.9), a gives an almost isomorphism

a: Fil'(Acis{(u1, ... ua) ) g — Fil' OAL |5
As Fil! OAqis| g C OAqis| ¢ is a PD-ideal, we can consider its i-th PD ideal sub-
sheaf 7l ¢ OA s %- Using the almost isomorphism above and the explicit de-
scription in Lemma one checks that the p-adic completion of Z[! is (almost)
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equal to a(Fil’ (Aeris{ (u1, . . . ,uq)})|5). As the image of the morphism
Fil' OAY |5 — Olais

cris
is naturally contained in Z[, on passing to p-adic completion, we obtain
Fil' OA%, | 5 C a(Fil’ Acyis{(u1, ..., ua)}* 5)-

cris

On the other hand, we have the following commutative diagram

Fﬂi(Acris{<ul, PN ud>})|55 2 0Acris|_§{

] i

Fil? (Ao (u1 . ua))| 5 a ‘m Fil' OAY % — Fil' OA®
]L p

Therefore a(Fili Acris{(u1, ..., ua)}t ) C Fil® OAis| 5, whence the equality

a(Fil’ (Acris{ (u1, - . ., ua) )| 5) = Fil' OAZ, | .

[0 cris|X'

O

Corollary 2.14. Keep the notation above. There are natural filtered isomorphisms

B$is|§{<u1,...,ud>}l>015%+ lg, and Bcris|§{<u1,...,ud>}l)OIB%criS|X

both sending u; to T; @ 1 — 1 ® [T7].

Corollary 2.15. Let X be a smooth formal scheme over Oy. Then the morphism
of multiplication by t on OAcis|x, is almost injective. In particular t € OB*

cris|Xg
is not a zero-divisor and OBT .. C OBis.

cris

Proof. This is a local question on X. Hence we may and do assume there is an
étale morphism X — Spf(Ok{Tlﬂ, e ,T;ﬂ}). Thus our corollary results from

Proposition and Corollary (1). O

An important feature of OA s is that it has an A, js-linear connection on it. To
see this, set Qi(‘/‘?' = 11)_1(2},(ét /0,» Which is locally free of finite rank over oxT.
Let

wLur+ A4 1,ur+ ,ur ,_ ol,ur+ .
Qy ) = /\zgl)?JrQX/k »oand Q) =0y, [1/p] ¥i>0.

Then OA;,; admits a unique Aj,¢-linear connection
V: OAint — Ohint @ gurr QA"
0

cris

induced from the usual one on Oy,,. This connection extends uniquely to OA
and to its completion

V: OAcris — OAcrjs ®Ol)1(r+ Q;’,;Z*F
+

This extension is Acs-linear. Inverting p (resp. t), we get also a B, -linear (resp.

B is-linear) connection on O]B%jris (resp. on OB.s):

V: OBY, — OBY, ®oy Oy}, and Vi OBeis — OBeris @0y Q)
From Proposition we obtain
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Corollary 2.16 (Crystalline Poincaré lemma). Let X be a smooth formal scheme
of dimension d over Oy. Then there is an exact sequence of pro-étale sheaves:

0B — OBY. % OB’ @Omgl/k% .Y OBF ®ow QX — 0,

cris cris cris cris X/k

which is strictly exact with respect to the filtration giving QL ¥ /k degree i. In particu-

lar, the connection V is mtegmble and satisfies Griffiths tmnsversalzty with respect
to the filtration on OB, i.e. V(Fil' OB ) c Fil' ' OB ®our QL

cris’? cris cris X/k"

Proof. We just need to establish the almost version of our corollary for OA.,is. This
is a local question on X, hence we may and do assume there is an étale morphism
from X to Spf(OR{T!, .. Til}). Then under the almost isomorphism of
Proposition Fil' OA° . | ¢ is the p-adic completion of

cris

Z Fllz (io+-...+iq) A |Xu[’b1] . .ugd]

cris
11,...54 >0

with T; ® 1 — 1 ® [T?] sent to u;. Moreover V(ul™) = ul" ™" @ dT; for any i,n > 1,
since the connection V on QA 18 Aqis-linear. The strict exactness and Griffiths
transversality then follow. |

Using Proposition we can also establish an analogous acyclicity result for
OAis as in Lemma Let U = Spf(R™) be an affine subset of X admitting
an étale morphism to 7% = Spf(Ox{T:,... ,Téﬂ}). Let U be the generic fiber,
and set U = U Xpd T, Let V be an affinoid perfectoid of Xy,.¢ lying above
ﬁ' Write V' = Spa($,S7). Let OAqis(S,ST) be the p-adic completion of the
PD-envelope OA%, (S, S%) of RT ®p, W(S**) with respect to the kernel of the
following morphism induced from 65 g+ by extending scalars to R™:

Op+: RT @0, W(S"T) — ST,
Set OB (S,87) := OAwis(S, ST)[1/p], OBeris(S, ST) := OB (S,ST)[1/t]. For

cris Cris

r € Z, define Fil” OA5(S, ST) to be the closure inside OAis(S, ST) for the p-adic
topology of the r-th PD-ideal of OA. (S, S*). Finally, set Fil” OBZ. (S, ST) :=

cris ( cris

Fil” OAis(S, S1)[1/p] and Fil” OBeyis(S, S1) 1= 3, t* FiI'™* OB/, (S, ST).

cris

O]B%ms} and

any v € Z, there exists a natural almost isomorphism Fil” F(S,ST) 3 Fil" F(V).
Moreover, H'(V,Fil" F)® = 0 whenever i > 0.

Lemma 2.17. Keep the notation above. For any F € {OAqis, OB

cris’

Proof. Consider the following morphism, again denoted by «
i Aaris(S, ST {(ug, . . ug)} — OAqis(S,S1), wi— T @1 —1@[T7].
One checks similarly as in Proposition that this morphism is an isomorphism.

Moreover, if we define Fil" (Acis(S, ST){(u1,...,uq)}) to be the p-adic completion
of

ST Fr OO A0 (8 5 ) ui -l C Aai(S, S {(un, - ua)

i1,..,%4 20
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then « respects the filtrations of both sides. The first part of our lemma can be
deduced from the following commutative diagram

Fil" (Acris (S, ST {(ur, . . ., ua)}) —> Fil” OAcyis (S, S*)

~

Fil" (Acris{ (U1, . . ., ug) (V) —— Fil” OA (V)

(03

where the left vertical almost isomorphism comes from Lemma [2.11} Using the
last part of Lemma and the almost isomorphism Fil" (Acyis{(u1, ..., ua)})| 5 it
Fil” OAqyis| ¢ of Proposition we deduce H(V,Fil" OAqis)* = 0 for i > 0.
Inverting respectively p and ¢, we obtain the statements for Fil" OIBS;;S and for
Fil” OB yis- O
2.3. Frobenius on crystalline period sheaves. We keep the notations in the
previous §. So k is absolutely unramified and X is a smooth formal scheme of di-
mension d over Oy,. We want to endow Frobenius endomorphisms on the crystalline
period sheaves.

On Ajys = W((’)?‘), we have the Frobenius map

©: Ains — Aing, (a0, a1,...,0n,...) = (ab,al,... b, . .).

y Oy s
Then for any a € Aj,¢, we have p(a) = a? mod p. Thus, () = & + p - b with
b € Aint|x,- In particular p(§) € A% | x has all divided powers. As a consequence
we obtain a Frobenius ¢ on A%, extending that on Aj,s. By continuity, ¢ extends
to Ais and BT, . Note that o(t) = log([e?]) = pt. Consequently ¢ is extended to
Beris by setting ¢(1) = ﬁ.

To endow a Frobenius on OA.,s, we first assume that the Frobenius of Xy =
X ®o, k lifts to a morphism ¢ on X, which is compatible with the Frobenius on

Op. Then for Y € X, consider the following diagram:

Vi >
E|O'y
absolute Frobenius L - étale
RS yi—sx s Xx.

As the right vertical map is étale, there is a unique dotted morphism above making
the diagram commute. When ) varies in Xy, the oy’s give rise to a o-semilinear
endomorphism on Oy,, whence a o-semilinear endomorphism ¢ on O .

Remark 2.18. In general & does not admit a lifting of Frobenius. But as X
is smooth over O, for each open subset Y C X admitting an étale morphism
U — Spf(Op{T{, ..., T7'}), a similar argument as above shows that there exists
a unique lifting of Frobenius on & mapping T; to T7.

We deduce from above a Frobenius on OA;,; = (9‘;<r+ ®o, Aint given by ¢ ® ¢.
Abusing notation, we will denote it again by . A similar argument as in the
previous paragraphs shows that o extends to OAY . | hence to OA ;s by continuity,
and finally to OB and OB..;s. Moreover, under the almost isomorphism ,

cris

the Frobenius on Acps{(u1,...,uq)} X OAis sends u; to o(u;) =o(T;) — [Tf]p.
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Lemma 2.19. Assume as above that the Frobenius of Xy = X ®p, k lifts to a
morphism o on X compatible with the Frobenius on Oy. The Frobenius ¢ on OB

cris
is horizontal with respect to the connection V: OB, — OBt ® Q;‘/‘Z

Proof. We just need to check Voo = (¢ ®do) oV on OA;s in the almost sense.

It is enough to do this locally. Thus we may assume there exists an étale morphism
X = Spf((’)k{Tlil, . ,Tfl}). Recall the almost isomorphism (2.2.4). By Acps-

linearity it reduces to check the equality on the Ui[n]. We have

(Vo)) = V(pu)™) = oun) "IV (p(u;))
Meanwhile, note that ¢(u;) — o(T;) = —[T?]P € Awis, hence V(p(u;)) = do(T;).
Thus

(p@do)oV) (W) = (p@do)ul" Ve dD)

= ") @do(T;)

= (Vop)(u),
as desired. O

Clearly, the Frobenius on (’)IB%j;iS above depends on the initial lifting of Frobenius
on X. For different choices of liftings of Frobenius on X, it is possible to compare
explicitly the resulting Frobenius endomorphisms on OB;S with the help of the

connection on it, at least when the formal scheme X is small, i.e. when it admits
an étale morphism to Spf(OR{TE!, ..., TE'}).

Lemma 2.20. Assume there is an étale morphism X — Spf(OR{TE", ... T'}).
Let 01, 09 be two Frobenius liftings on X, and let o1 and @2 be the induced Frobenius
maps on OB:‘ris, respectively. Then for any quasi-compact U € X106, we have the
following relation on OB}, (U):

d

d
(2.3.1) Py = Z (H(U2(Ti) — o (T)™ ) (1 o (H N™))
i=1

(N1, mg) €N i=1

where the N;’s are the endomorphisms of OB} such that V = Z?zl N, ® dT;.

Cris

Proof. We only need to check the almost analogue for QA .. To simplify the
notations, we shall use the multi-index: for m = (mq,...,uq) € N set N :=
Hle N/™" and |m| := ), m;. Let us remark first that for any a € OA.s(U) and
any r € N, N™(a) € p" - OAqis(U) when |m| is sufficiently large. As U is quasi-
compact, we may and do assume U is affinoid perfectoid with U = Spa(R, RT). As
OA_ ;s has no p-torsions, up to replacing a by p - a, we may and do assume that a
is of the form

a= Y by-u™, by € Auis(R R")and lim by, =0.
mend |m|—o0
Here we have again used the almost isomorphism ([2.2.4)). An easy calculation shows
N%(a) = Z bﬂg[m*ﬂ] — Z bm+@2[m]'

m>n meNd

As the coefficient by, tends to 0 for the p-adic topology when |m| goes to infinity, it
follows that N™(a) € p"- OAis(U) when |n| > 0, as desired. Meanwhile, note that
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02(T;) — 01(T;) € pOYT(U), hence their divided powers lie in O% T (U). Therefore

the series of the righthand side of (2.3.1

It remains to verify the formula (2.3.1

applied to a converges.
for any a € OAqis(U). Assume again U

is affinoid perfectoid. Since both sides of (2.3.1) are semilinear with respect to the
Frobenius of A, it suffices to check the equality for a = w™ In fact, we have

wyens (T (0 (T )—m(T»[m])(wo(m LN ()

.....

= Yuena(02(D) — o1 (D) (o1 (N (ul™)))
= Ynena(p2(w) —pr(u ))U(sol(N"(u[m )
= ZneNdbt ﬂgm(‘@(u) p1(u )) (M)[m ol
= (p2(u) —pi1(u )+@1(U))[m]
= po(ulm).
This finishes the proof. O

2.4. Comparison with de Rham period sheaves. Let X be a locally noether-
ian adic space over Spa(k, O,) and recall the map (2-1.2)). Set BJ; = lim Biye / (ker 6)",
Bqr = Bz [1/t]. For r € Z, let Fil" Bqr = (ker )"B};. By its very definition, the
filtration on Byr is decreasing, separated and exhaustive. Similarly, with OB;,¢
in place of Bi,¢, we define OIBIR and OBgr. Define Fil” OIB%:;R = (ker HX)TOIB%:;R
and Fil" OBqr = > ., t *Fil'"* OBJ;. The filtration on OBy is decreasing,
separated and exhaustive. Moreover, as in [Bri, 5.2.8, 5.2.9], one can also show
that
OB NFil" OB4r = Fil" OB/,
which in particular implies that the filtration on OBggr is also (decreasing and)
separated and exhaustive.
In the rest of this subsection, assume k/Q, is absolutely unramified.

Lemma 2.21. Let X be a smooth formal scheme over O.

(1) There are natural injective morphisms

]:B(—;‘IS - BjR’ O]B%:rls = OB(TR
In the followmg, we will view B, (resp. OBL..) as a subring ofIB% (resp.
of OB}, iR
(2) For any integer i > 0, one has
Fil' BY, = Fil' OB}, NB! Fil' OB}, = Fil' OB}, N OB, _.
In particular, the filtration {Fil'B}. :i € Z} (resp. {Fil' OB, :i € Z})

on BY,. (resp. on OBL, ) is decreasing, separated and ezhaustive.

(3) Fori >0, the following canonical morphisms are isomorphisms:
gr'OBY,

gr BT oris = griOIB%j'R

cris

= griBjR,
Proof. (1) We will first construct the two natural morphisms claimed in our lemma.
Recall that we have the natural mophism 6: W((’)g?') — 0%, and that Bl is a
sheaf of Q,-algebras. In particular, under the natural morphism

At = W(O) — W(O)[1/p] — B,
the ideal of Bl generated by the image of ker(d) has a PD-structure. Therefore,
— BZ{R. On

the composed morphism above extends to a unique morphism AZ



Crystalline comparison isomorphism in p-adic Hodge theory 19

the other hand, for each n, the quotient B/ Fil” B is p-adically complete, the
composite

Als — Bl — Bip/Fil" By
factors through the p-adic completion A of Agris, giving a morphism A —
]B%ji'R / Fil" IBE(TR. On passing to limit with respect to n, we get a morphism A.;5 —
IBSIR, whence the required natural morphism Bjﬁs — IB%IR by inverting p € Agys-
The natural morphism from OB..s — O]B%IR is constructed in a similar way.

The two morphisms constructed above are compatible with the isomorphisms in
Corollary and its de Rham analogue [Sch13l Proposition 6.10]. To finish the
proof of (1), we only need to show the morphism IB%(;S — IB%;R constructed above
is injective. Let k be an algebraic closure of k. We only need to check that for
any affinoid perfectoid U lying above Xz, the induced map B, (U) — B, (U) is
injective. Write U= Spa(R, RT). Using the identification in Lemma together
with its de Rham analogue ([Sch13| Theorem 6.5]), we are reduced to showing that
the map h: BY (R, R*) — Bz (R, R") is injective, where h is constructed analo-
gously as the natural map IB%;;S — IB%?{R above. This is proved in [Bri, Proposition
6.2.1], and we reproduce the proof here for the sake of completeness.

As Bl (R,R") = Ais(R, RY)[1/p], we only need to show the following com-
posite I’ is injective:

Wi Acis(R, RY)— B

h

cris(R’ R+) - BCJ{R(R’ R+) .
For n > 0, let J" Agis(R, RT) denote the closure for the p-adic topology of
the ideal generated by &l = ¢7/il (i > n), with & := [p’] — p € Aes generating
the kernel of . We claim first that A~ (Fil" Bz (R, RT)) = JM. Clearly only
the inclusion 2~ (Fil" B (R, RT)) C JI" requires verification. The case n = 1
is obvious from the definition. For general n > 2, we will proceed by induction.
Let x € h'_l(Fﬂ" BIR(R, R™)). By induction hypothesis, = € J= Write 2 =
zo&l=U + 21 with o € W(R’*) and z; € J™. Under the identification

Fil" ' B (R, RT)

Fil" BI; (R, RT)

the class of #'(z) € Fil" !B} (R, R") corresponds to 0(z0)¢"~!/(n — 1)l. As
B (z) lies in Fil"B; (R, R"), it follows that 6(z¢) = 0. So ¢ € J and thus
z =& 4+ 2y € JI. Consequently JI"l = A= (Fil" B} (R, R*)).

To conclude the proof of injectivity of A’, it remains to show 1, J "] = 0 in
Aqis(R, RT). Recall from the proof of Lemma

b+ /(P \P
hens (R /() = /<(§; )5,13 [(.s? 351 -

for 0; the image of v*T1(¢), where y(z) = 2P/p. Under this isomorphism, for
any n > 1, the image of JP"! in A.i(R, RY)/(p) is generated by (8;)isn_1.
This implies that (e, J C pAais(R, RT). Take z = pa’ € (5, JI with
2 € Awis(R,RT). Then h'(2') € N, Fil' Bl (R, R) as p € B is invertible.
Thus 2’ € N, W~ (Fil' Bar (R, RT)) = N; 7 C pAcris(R, RT). Hence x = pa’ €
p?Ais(R, RY). Repeating this argument, one sees that Nicz-, J c prAge for
any n > 1. So JH = {0} as Ay is p-adically separa_ted. Thus we have

SR afnles G(a)ﬁnfl,

iEZZl
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constructed a natural injection B}, < BI.. The claim OB, < OB}, follows
from this: this is a local question on Xi,,04¢, thus we may assume that our formal
scheme X' admits an étale map to Spf(OR{T5", ..., TF'}), and then conclude by
Corollary and its de Rham analogue [Sch13l Proposition 6.10].

(2) To check Fil'BY, = B}, NFil'B;, it suffices to show Fil'B}, (U) =
(U) N Fil' B (U) for any affinoid perfectoid U above X7.. Write U= Spa(R, R™T).
Under the identifications Bl (R, RT) ~ B} (U) and B}, (R, RT) ~ B} (U), we
have Fil' B}, (U) = Fil' B}, (R, R"), and Fil' B} (U) = Fil' Bz (R, R) (Lemma
. On the other hand, from the proof of (1), we have Jl = h=1(Fil' B4qr (R, R1)) =
Acris(R, RT) N Fil' Bgr (R, RT), from which we deduce

BJr

cris

Fil' B), (R, RY) = BL (R, RT) [ |Fil' Bj (R, RY),
as desired. _ _ '
To show Fil' OB, = OB}, N Fil' OB};, we only need to check Fil' OBY, >
OB;S N Fil’ OIB%IR. For this we may again assume the formal scheme X admits an

étale map to Spf(@k{Tlil, . ,Tjﬂ}). Then we can conclude by Corollary and
its de Rham analogue.
(3) From (2), we know that the canonical morphism gr'B .
tive. Furthermore we have the identification
Fil' B:{R|X?
Fil'"' B, | x,

— griIBCTR is injec-

g Bl x, = 2 Oxlx, €, afl = 0(a)El.

A; & = q1¢ld € Fil' BY,., the injection gr'B . < gr'Bl, is also surjective. Thus
grlBjﬁs = gr’IEB(J{R. Using Corollary and its de Rham analogue, we see that
the latter isomorphism also implies that gr'OB},. = gr'OBJ;. O

Corollary 2.22. Let X be a smooth formal scheme over O.
(1) There are two natural injections
]Bcris — BdRa OBcris — OBdR-
(2) For any i € Z, we have Fil' Beyis = ]B%msﬂFili Bar and Fil' OB =
OB.is [ Fil' OBgR.

Furthermore, gr'Bes l> gr'Bar and griOBcriS = gr'OBar. In par-
ticular, the filtration {Fil' Beis bicz (resp. {Fil' OBeis biez) s decreasing,
separated and erhaustive.

Proof. These follow from the previous lemma, by inverting ¢. O

As a consequence, we can compute the cohomology of the graded quotients gr’F
for F € {IB%jris, Beyis, (’)IB%:;ris7 OB.,is}: one just reduces to its de Rham analogue such

as [Sch13, Proposition 6.16] etc.

Corollary 2.23. Let X be a smooth adic space over Spa(k,Oy) which admits a
smooth formal model X over Oy (so that we can define OB.is ), then

w*OBcris = Och [1/p]'

Proof. Let v : X . — X and v': X — X7 the natural morphisms of topoi.

proét
Then w = v’ o v. Therefore

Ox..[1/p] &= V.0x,, = V.v,Ox = w.Ox.
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By [Schi3l Corollary 6.19], the natural morphism Ox,, — v.OBg4g is an isomor-
phism. Thus, w.OBar = v, (¥OBar) ~ v.0x,, =~ Ox,[1/p]. On the other
hand, we have the injection of Ou,, [1/p]-algebras w,OBis — w.OBgr. Thereby
OXét [1/]7} = w*OBcris~ O

3. CRYSTALLINE COHOMOLOGY AND PRO-ETALE COHOMOLOGY

In this section, we assume k is absolutely unramified. Let o denote the Frobenius
on Oy and on k, lifting the Frobenius of the residue field x. Note that the ideal
(p) C Oy, is endowed naturally with a PD-structure and O, becomes a PD-ring in
this way.

3.1. A reminder on convergent F-isocrystals. Let &) be a x-scheme of finite
type. Let us begin with some general definitions about crystals on the small crys-
talline site (Xy/Ok),,;s endowed with étale topology. For basics of crystals, we refer
to [Ber96], [BOJ]. Recall that a crystal of Ox, 0,-modules is an Oy, ,o,-module
E on (Xy/Ok)eis such that (i) for any object (U, T) € (Xo/Ok)cris, the restriction
Er of E to the étale site of T is a coherent Or-module; and (ii) for any morphism
w: (U, T) = (U,T) in (Xy/O%) the canonical morphism u*Er — E7/ is an
isomorphism.

cris?

Remark 3.1. Write Xy the closed fiber of a smooth formal scheme X over Oy.
Then the category of crystals on (Xy/Ok)eis 18 equivalent to that of coherent Ox-
modules M equipped with an integrable and quasi-nilpotent connection V: M —
M®o, Q}\,’/Ok' Here the connection V is said to be quasi-nilpotent if its reduction
modulo p is quasi-nilpotent in the sense of [BO) Definition 4.10]. The correspon-
dence between these two categories is given as follows: for E a crystal on Xy/Oy, as
Xy — & is a p-adic PD-thickening, we can evalue E at it: set Ey := @n Exgo, /pn-
Let A; — & x & be the PD-thickening of order 1 of the diagonal embedding
X — X x X. The two projections p;: Ay — X are PD-morphisms. So we have two
isomorphisms piEx — Ea, := @n Ea, 00, /pn,» Whence a natural isomorphism
psEx = piEx. The latter isomorphism gives a connection V: Ex — Ey ® Qi{/ok

on Ey. Together with a limit argument, that V is integrable and quasi-nilpotent
is due to [BOL Theorem 6.6].

The absolute Frobenius F': Xy — A&} is a morphism over the Frobenius ¢ on O,
hence it induces a morphism of topoi, still denoted by F":

F: (X)Ok) e — (Xo/On)

cris cris *
An F-crystal on (Xy/Ok)ais i a crystal E equipped with a morphism ¢: F*E — E
of O, 0,-modules, which is nondegenerate, i.e. there exists a map V : E — I[*E
of Oy, /0,-modules such that pV = Vi = p™ for some m € N. In the following,
we will denote by F-Cris(Xp, Oy) the category of F-crystals on Xy/O.

Before discussing isocrystals, let us first observe the following facts.

Remark 3.2. Let X8 be a classical rigid analytic space over k, with associated
adic space X. Using [Sch13, Theorem 9.1], one sees that the notion of coherent
O xrig-modules on X8 coincides with that of coherent Ox, -modules on X,,, where

X.n denote the site of open subsets of the adic space X.
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Remark 3.3. Let X be a smooth formal scheme over Oy, with X its generic fiber
in the sense of Huber. Let Coh(Ox[1/p]) denote the category of coherent Ox[1/p]-
modules on X, or equivalently, the full subcategory of the category of Ox[1/p]-
modules on X consisting of Ox[1/p]-modules which are isomorphic to M™*[1/p] for
some coherent sheaf M™* on X. Denote also Coh(Ox, ) the category of coherent
Ox,,-modules on X. The analytification functor gives a fully faithful embedding
Coh(Ox[1/p]) — Coh(Ox,, ). Moreover, the essential image is stable under taking
direct summands (as Ox, -modules). Indeed, let £ be a coherent Oy, -module
admitting a coherent formal model £* over X, and £ C £ a direct summand. Let
f: € = & be the idempotent corresponding to £’: write £ = £’ @ £”, then f is the
composite of the projection from & to £’ followed by the inclusion £ C £. Therefore,
there exists some n > 0 such that p™f comes from a morphism fT: T — £T of

Ox-modules. Then the image of f* gives a formal model of £ over X, as desired.

Let Xy be a k-scheme of finite type. Asumme that it can be embedded as a
closed subscheme into a smooth formal scheme P. Let P be the associated adic
space of P and |Xy[pC P the pre-image of the closed subset Xy C P under the
specialization map. Following [Ber96, 2.3.2 (i)] (with Remark in mind), the
realization on P of a convergent isocrystal on Xy /Oy is a coherent Oy, [,-module £
equipped with an integrable and convergent connection V: & — & ®o, xolp Q]lxo (/K
(we refer to [Ber96, 2.2.5] for the definition of convergent connections). Being a
coherent O)y,[,-module with integrable connection, £ is locally free of finite rank
by [Ber96l 2.2.3 (ii)]. The category of realizations on P of convergent isocrystals
on Xy/Oy, is denoted by Isoc (Xy/Oy, P), where the morphisms are morphisms of
O)x,[p-modules which commute with connections.

Let Xy — P’ be a second embedding of Xy into a smooth formal scheme P’ over
Ok, and assume there exists a morphism u: P’ — P of formal schemes inducing
identity on Xy. The generic fiber of u gives a morphism of adic spaces ug: |Xo[pr—
]Xo[p, hence a natural functor

uj: Tsoc! (Xo /O, P) — Tsoc! (Xo/ Ok, P"),  (E,V) = (ui&,uiV).

By [Ber96, 2.3.2 (i)], the functor uj is an equivalence of categories. Furthermore,
for a second morphism v: P’ — P of formal schemes inducing identity on Xy, the
two equivalence uj,v; are canonically isomorphic ([Ber96l 2.2.17 (i)]). Now the
category of convergent isocrystal on Xy/Oy, denoted by Isoc (Xo/Ok), is defined as

Isoc! (X, /Oy) == 2—@ Isoc! (X, /O, P),
P

where the limit runs through all smooth formal embedding Xy < P of Xj.

Remark 3.4. In general, Xy does not necessarily admit a global formal embedding.
In this case, the category of convergent isocrystals on Xy/O) can still be defined
by a gluing argument (see [Ber96, 2.3.2(iii)]). But the definition recalled above will
be enough for our purpose.

As for the category of crystals on Xy/Oy, the Frobenius morphism F: Xy — &)
induces a natural functor (see [Ber96l 2.3.7] for the construction):

F*: Tsoc! (Xp/O) — Tsoc! (Xo/Oy).



Crystalline comparison isomorphism in p-adic Hodge theory 23

A convergent F-isocrystal on Xoy/Oy is a convergent isocrystal £ on Xy/Oy
equipped with an isomorphism F*€ =5 £ in Isoc'(Xy/Oy). The category of conver-
gent, F-isocrystals on Xy/Oj, will be denoted in the following by F-Isoc'(Xy/O%).

Remark 3.5. The category F-Isoc'(Xy/O}) has as a full subcategory the isogeny
category F-Cris(Xy/Oy)®Q of F-crystals E on (Xy/Oy).,;- To explain this, assume
for simplicity that Xy is the closed fiber of a smooth formal scheme X over Of. So
|X0[x= X, the generic fiber of X. Let (M, V) be the Ox-module with integrable
and quasi-nilpotent connection associated to the F-crystal E (Remark . Let
E2® := M, denote the generic fiber of M, which is a coherent (hence locally
free by [Ber96l 2.3.2 (ii)]) Ox,, -module equipped with an integrable connection
yan. fan __ [gan ®Q§(an/k’ which is nothing but the generic fiber of V. Because of
the F-crystal structure on E, the connection V" is necessarily convergent ([Ber96,
2.4.1]). In this way we obtain an F-isocrystal E*" on X;/Oj, whence a natural
functor

(3.1.1) (—)2: F-Cris(Xy/Oy) ® Q — F-Isoc'(Xy/Oy), E s E*".

By [Ber96, 2.4.2], this analytification functor is fully faithful, and for £ a convergent
F-isocrystal on Xy/Oy, there exists an integer n > 0 and an F-crystal E such that
& = E2%(n), where for F = (F,V,p: F*F = F) an F-isocrystal on Xy/Ok, F(n)
denotes the Tate twist of F, given by (F,V, %1 F*F = F) ([Bex96, 2.3.8 (i)]).

Our next goal is to give a more explicit description of the Frobenii on convergent
F-isocrystals on Xp/Oj. From now on, assume for simplicity that Xy is the closed
fiber of a smooth formal scheme X and we shall identify the notion of convergent
iscrystals on Xp/Oy with its realizations on X'. Let X be the generic fiber of X.
The proof of the following lemma is obvious.

Lemma 3.6. Assume that the Frobenius F': Xy — Xy can be lifted to a morphism
o: X — X compatible with the Frobenius on Oy. Still denote by o the endomor-
phism on X induced by o. Then there is an equivalence of categories between
(1) the category F-Tsoc'(Xo/Oy) of convergent F-isocrystals on Xo/Ok; and
(2) the category Modgz of Ox,, -vector bundles £ equipped with an integrable
and convergent connection V and an Ox,, -linear horizontal isomorphism
p: o€ = E&.
Consider two liftings of Froebnius o; (i = 1,2) on X. By the lemma above,
for ¢ = 1,2, both categories Modg’)’(v are naturally equivalent to the category of
convergent F-iscrystals on Xy/O:

Mod{;" <—= F-Isoc' (X/Oy) ~— ModZ," .
Therefore we deduce a natural equivalence of categories
(3.1.2) Fy\ 0t Mod3,Y — Mod,Y.

When our formal scheme X is small, we can explicitly describe this equivalence as
follows. Assume there is an étale morphism X — 7% = Spf(O{TE, ..., TY).
So QY /x is a free Ox,,-module with a basis given by dT; (i = 1,...,d). In the
following, for V a connection on an Ox, -module £, let N; be the endomorphism
of £ (as an abelian sheaf) such that V = E?Zl N; ® dT;.
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Lemma 3.7 (see also [Bri] 7.2.3). Assume X = Spf(A) is affine and that there
exists an étale morphism X — T as above. For (£,V,p;) € Moda’(v, with

E,V,p3) the corresponding object of Mod%" under the functor F,, ,,. Then on
12 Ox 1,02
E(X) we have

d d
(3.1.3) o= > (H(@(Ti) - Ul(Tz‘))[m]> (Wl ° (H Nf")) :
(n,...,ng)eNd \i=1 i=1
Furthermore, 1 and py coincide on (X)V=0.

Proof. To simplify the notations, we shall use the multi-index: so N™ := [[, N;"
for n. = (ny,...,nq) € N etc. We observe first that the right hand side of
converges. Indeed, by [Ber96, 2.4.2], there exists some n € N such that £(—n) lies in
the essential image of the functor (3.1.1). In particular, this implies that there exists
a coherent O y-module £ equipped with a quasi-nilpotent connection VT such that
(€,V) is the generic fiber of (€1,V™). In particular, for any e € ET := £1(X),
N™(e) € p- E* for all but finitely many n € N?. Furthermore, as o1, o5 are liftings
of Frobenius, oo (T;) — o1 (T;) € p-A. So the divided power (o2(T;) — o1 (T3)) ™ € A.
Thereby the right hand side of applied to an element of £(X) = ET[1/p]
converges for the cofinite filter on N¢.

Next we claim that the equality holds when £ = Oy, endowed with the
natural structure of F-isocrystal. Indeed, necessarily ¢; = o; in this case. Let o} be
the endomorphism of A defined by the right hand side of . Then both o9, o
are liftings of Frobenius on A, and it is elementary to check that they coincide
on the Op-subalgbra Op{T{, ..., TF'}. As A is étale over O {T{, ..., TF'Y,
we deduce o9 = o), giving our claim. By consequence, in the general case, the
right hand side of defines a oa-semilinear endomorphism ¢4 on £(X). In
particular, we obtain a morphism of Ox,_ -modules 03€ — &, still denoted by 5.
One checks that ¢h: 05€ — &£ is horizontal, hence it is a morphism of convergent
isocrystals.

Now one needs to verify the equality . Consider the fiber product X x X
and its generic fiber X x X. Let U =]Xp[xxxC X x X denote the pre-image of
the closed subset §(Xp) C Xy x Ay under the specialization map, and ¢;: U — X
(i = 1,2) the two projections. If we endow X x X with the Frobenius o := 01 X 09,
then o; 0 ¢; = g; o 0. In particular, the pull-back ¢;€ is endowed with a morphism

a1 0 gl E = ¢foiE — ¢iE.
Similarly, ¢5& is a convergent isocrystal on U endowed with a horizontal morphism

g3 ¢h. Consider the following Oy, -linear isomorphism induced by the connection
on &:

N n
1@m— Z 74(m)®z )

n: Ov,, ®ox,, € — & ®ox,, Ov n!
neNd =

an?

where 7 = (71, ...,74) with 7, = 1®T; — T; ® 1 (note that this formula makes sense
as the connection on £ is convergent (see [Ber96l 2.2.5])). By a direct calculation,
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one checks the commutativity of the following diagram:

o (Op,, ® &) —222 Ouv. ®E
o (n)l ln
o* (5 X OUau) o ER® OUan'

Indeed, taking m € &£, we find

N (ph(m)) @ T2 1(N"(m)) @ o (™
Z (p5(m)) :Zw( (m)) ().

| |
neNd n neNd o

Finally, let Z = (71,...,74) be the ideal defining the closed immersion X < U.
Then modulo the ideal Z in the above equality, the left hand side becomes just
wh(m). Moreover, as o(r;) = 02(T;) — 01(T;), we find the following equality in &:
p1(N"(m)) - T1(02(T3) — 01 (T3))™
pa(m) = Y

n!

neNd
as desired.

In particular, @h: 05€ — £ is a horizontal isomorphism, hence (€,V,h) is an
F-isocrystal. Moreover ¢ (€, V, ¢1) and ¢5(&,V, ¢h) are isomorphic as realizations
of F-isocrystals on the embedding Xy < X x X. Therefore, by definition [Ber96l,
2.3.2], (€,V, 1) and (&€, V, ¢h) realize the same F-isocrystal on Xy/Oj.

The last statement of our lemma is clear from the formula just proved as £(X)V=0
N, ker(N;). O

More generally, i.e. without assuming the existence of Frobenius lifts to X', for
(€,V) an Ox, -module with integrable and convergent connection, a compatible
system of Frobenii on &€ consists of, for any open subset Y C X equipped with a
lifting of Frobenius oy, a horizontal isomorphism ©(,4,,): 07, |, — €|u, satisfying
the following condition: for V C X another open subset equipped with a lifting of
Frobenius oy, the functor

F,

u,ov - Ou,. N vy, Ou,. N vy,

sends (8|Mk M Vi v, PU,ou) |Uk nd:) to (8|Uk N V> v, PV,ov) |Z/1k N Vk)' We denote a
compatible system of Frobenii on £ by the symbol ¢, when no confusion arises. Let
Modgj be the category of Oy, -vector bundles equipped with an integrable and
convergent connection, and with a compatible system of Frobenii. The morphism in
Modgz are the morphisms of Oy, -modules which commute with the connections,
and with the Frobenius morphisms on any open subset 4 C X equipped with a
lifting of Frobenius.

Remark 3.8. Let £ be a convergent isocrystal on Xp/Oy. To define a compatible
system of Frobenii on £, we only need to give, for a cover X = [J,U; of X by
open subsets U; equipped with a lifting of Frobenius o;, a family of Frobenius
morphisms ¢;: 0 €|y, = €|y, such that ¢;|y, nu, corresponds to ¢;|y, Ny, under
the functor Fy, o, : Modg"(’/iva_ — Modg[’]ivn 0, (Here Uy := U 1). Indeed, for
U any open subset equipped with a lifting of Frobenius oy, one can first use the
functor Fy, 5, of applied to (€|v,, V|v,, ¥i)lu,nuv to obtain a horizontal
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isomorphism ¢y ;¢ (07, (Elu)) ’s,
we deduce wy ilvnv, v, = vujilvnu.nu,- Consequently we can glue the ¢y ;s
(i € I) to get a horizontal isomorphism ¢y : 075(E|y) — E]u. One checks that these
wu’s give the desired compatible system of Frobenii on £.

Let £ be a convergent F-isocrystal on Xy/Ok. For U C X an open sub-
set equipped with a lifting of Frobenius oy, the restriction &£y, gives rise to a
convergent F-isocrystal on Uy/k. Thus there exists a V-horizontal isomorphism
Cwon): 05w, — Elu, - Varying (U, o) we obtain a compatible system of Frobenii
@ on &. In this way, (£,V,¢) becomes an object of Modgz. Directly from the
definition, we have the following

Corollary 3.9. The natural functor F-Isoc' (X/Ok) — Modgz s an equivalence
of categories.

In the following, denote by FMod%’Z the category of quadruples (£, V, ¢, Fil*(£))

with (€,V,¢) € Modgz and a decreasing, separated and exhaustive filtration
Fil*(€) on & by locally free direct summands, such that V satisfies Griffiths transver-
sality with respect to Fil*(£), i.e., V(Fil'(€)) C Fil''(€) ®o,, O} The

Xan/k"
da,v

morphisms are the morphisms in Mod which respect the filtrations. We call

the objects in FMOd%’Z filtered (convergent) F-isocrystals on Xy/Oy. By analogy

with the category F-Isoc'(Xy/O}) of F-isocrystals, we also denote the category of
filtered F-isocrystals on Xy/Oy by FF-Isoc' (Xy/Ok).

3.2. Lisse zp-sheaves and filtered F-isocystals. Let X be a smooth formal
scheme over Oy with X its generic fiber in the sense of Huber. Define Z,, := hm Z/p"

and Qp =7 »[1/p] as sheaves on Xpost. Recall that a lisse Z,, sheaf on Xet is an
inverse system of sheaves of Z/p™-modules L, = (L, )nen on Xg such that each

L,, is locally a constant sheaf associated to a finitely generated Z/p™-modules, and
such that the inverse system is 1somorph1c in the pro-category to an 1nverse system
for which L,41/p™ =~ L,. A lisse Z sheaf on Xpro¢t is a sheaf of Z -modules on
Xproet; which is locally isomorphic to Zp ®z, M where M is a finitely generated
Zp—module By [Sch13l Proposition 8.2] these two notions are equivalent via the
functor v*: X3 — X In the following, we use the natural morphism of topoi

proét*
w: X o =4 X & — X4 frequently. Before defining crystalline sheaves let us first

make the following observation.

Remark 3.10. (1) Let M be a crystal on Xp/Oy, viewed as a coherent O x-module
admitting an integrable connection. Then w~*M is a coherent (’)g(”r module with
an integrable connection w™'M — w™M our+ Q;‘;ﬁ If furthermore M is an
F-crystal, then w~' M inherits a system of Frobenii: for any open subset & C X
equipped with a lifting of Frobenius oy, there is naturally an endomorphism of
w~t M|y which is semilinear with respect to the Frobenius w= oy, on O% T |i (here
U := Uy). Indeed, the Frobenius structure on M gives a horizontal Oy-linear
morphism o7, M|y, — M|y, or equivalently, a oy-semilinear morphism ¢y : M|y —
M|y (as oy is the identity map on the underlying topological space). So we obtain
a natural endomorphism w1y of w™! M|y, which is w™loy-semilinear.
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(2) Let £ be a convergent F-isocrystal on Xy/Oy. By Remark there exists
an F-crystal M on Xy/O and n € N such that &€ ~ M?*(n). By (1), w™'M is
a coherent O}l(r+—m0dule equipped with an integrable connection and a compatible
system of Frobenii . Inverting p, we get an O%-module w~' M(1/p] equipped with
an integrable connection and a system of Frobenii ¢/p™, which does not depend
on the choice of the formal model M or the integer n. For this reason, abusing
notation, let us denote w~'M([1/p] by w™1€, which is equipped with an integrable
connection and a system of Frobenii inherited from &. If furthermore £ has a
descending filtration {FiliS} by locally direct summands, by Remark each
Fil’ £ has a coherent formal model £ on X'. Then {w~'&"[1/p]} gives a descending
filtration (by locally direct summands) on w €.

Definition 3.11. We say a lisse Zp—sheaf L on Xproee is crystalline if there exists
a filtered F-isocrystal £ together with an isomorphism of OB.,;s-modules

(321) w,15 ®(’)‘;(r O]Bcris ~ L ®Zp OEcris

which is compatible with connection, filtration and Frobenius. In this case, we say
that the lisse Z,-sheaf L. and the filtered F-isocrystal £ are associated.

Remark 3.12. The Frobenius compatibility of the isomorphism means
the following. Take any open subset U C & equipped with a lifting of Frobenius
o: U — U. By the discussion in we know that OB,isly, is naturally endowed
with a Frobenius ¢. Meanwhile, as £ is an F-isocrystal, by Remark w1 E |y,
is endowed with a w~!o-semilinear Frobenius, still denoted by (. Now the required
Frobenius compatibility means that when restricted to any such Uy, we have p®Rp =

id ® ¢ via the isomorphism (3.2.1).
Definition 3.13. For L a lisse Zp—sheaf and ¢ € Z, set
Deris(L) = ws(L ®; OBeris), and  Fil' Dorig(L) 1= wi (L @7 Fil' OBeyis).

All of them are Ox[1/p]-modules, and the Fil' Ds(LL) give a separated exhaustive
decreasing filtration on Dc,;s(IL) (as the same holds for the filtration on OB.,;s; see

Corollary [2.22)).

Next we shall compare the notion of crystalline sheaves with other related notions
considered in [Bri, Chapitre 8], [Fal] and [Sch13]. We begin with the following
characterization of crystalline sheaves, which is more closely related to the classical
definition of crystalline representations by Fontaine (see also [Bri, Chapitre 8]).

Proposition 3.14. Let L be a lisse Zp—sheaf on Xprost- Then L is crystalline if
and only if the following two conditions are verified:
(1) the Ox[1/p]-modules Deyis(L) and Fil' Deyis(LL) (i € Z) are all coherent.
(2) the adjunction morphism w~ ' Deys(IL) ®ou OB — L ®z, OBeis 15 an
isomorphism of OBc.is-modules.

Before proving this proposition, let us express locally the sheaf Dei5(IL) = w, (L®
OB.,is) as the Galois invariants of some Galois module. Consider i = Spf(R*) C X
a connected affine open subset admitting an étale map U — Spf(Op{T52, ..., TF}).
Write R = RT[1/p] and denote U the generic fiber of . As U is smooth and con-
nected, RT is an integral domain. Fix an algebraic closure 2 of Frac(R), and let

R be the union of finite and normal Rt -algebras QT contained in 2 such that
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Q*[1/p] is étale over R. Write R = R [1/p]. Write Gy := Gal(R/R), which is
nothing but the fundamental group of U = Uy. Let U"™V be the profinite étale
cover of U corresponding to (R, §+). One checks that U™ is affinoid perfectoid
(over the completion of k). As L is a lisse Zp—sheaf on X, its restriction to U
corresponds to a continuous Z,-representation Viy(L) := L(U"™V) of Gyy. Write

puniv — Spa(S, ST), where (S, S*) is the p-adic completion of (R, E+).
Lemma 3.15. Keep the notation above. Let L be a lisse 2p—5heaf on X. Then
there exist natural isomorphisms of R-modules
~ G
Dcris(L)(u) — (VU(L) ®Zp OBCI‘iS(Sv S+>> v = Dcris(VU(L))
and, for any r € Z,
(Fil" Dy (L)) (U) = (Vir (L) @z, Fil” OBy (S, S)) .
Moreover, the R-module De,is (L) (U) is projective of rank at most that of Viy (L)@Q,.

Proof. As LL is a lisse Zp—sheaf, it becomes constant restricted to U". In other
words, we have L|yuiv ~ V(L) ®z, Zp|Uuniv. For ¢ > 0 an integer, we denote by
Uwnivs the (i+1)-fold product of U™ over U. Then UMWY+t ~ UiV x G and it is
again an affinoid perfectoid. By the use of Lemma we find H7 (U"™V-4 L ®7,
OB.,is) = 0 for j > 0. Moreover

HO(Uuniv,i, L ®2p O]Bcris) = Homcont ( 7[;]7 VU (L) ®Zp OAcris(UuniV)) [1/t]

Again, as U™ is affinoid perfectoid, OBeis(U"Y) ~ OB..s(S, S*) by Lemma
Consider the Cartan-Leray spectral sequence (cf. [SGA4, V.3]) associated to
the cover U™ — U:

EV = HI (UYL ®;, OBeris) = H™ (U, L ®3, OBeris)-

As Eij = 0 for j > 1, we have Eg’o = H"(U,L ®; OBgs). Thus, we deduce a
natural isomorphism

HI(U,L @5 OBeis) = Hlono(Gu, Vi (L) ®z, Ohcris (S, 57))[1/1]

where the right hand side is the continuous group cohomology. Taking j = 0, we
obtain our first assertion. The isomorphism concerning Fil” OB,s can be proved
exactly in the same way. The last assertion follows from the first isomorphism and
[Bri, Proposition 8.3.1], which gives the assertion for the right hand side. |

The lemma above has the following two consequences.

Corollary 3.16. Let L be a lisse zp—sheaf on Xproét, Which satisfies the condition
(1) of Proposition|3.14} Let U = Spf(R™) be a small connected affine open subset
of X. Write R = R"[1/p] and U = Uy,. Then for any V € Xproet/U, we have

Dcris(]L) (Z/l) ®R OBcris (V) :> (U}ichris (]L) ®O‘)’(T OBcris)(V)-

Proof. By Lemma the R-module D, (IL)(U) is projective of finite type over
R, hence it is a direct summand of a finite free R-module. As D.;s(IL) is coherent
over Ox[1/p] and as U is affine, Deyis(L)|zs is then a direct summand of a finite free
Ox[1/p]lu-module. The isomorphism in our corollary then follows, since we have
similar isomorphism when D,is(IL) |/ is replace by a free Ox[1/p]|y-module. O
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Corollary 3.17. Let L be a lisse 2p—sheaf verifying the condition (1) of Proposition
3.14. Then the condition (2) of Pmposition holds for L if and only if for any
small affine connected open subset U C X (with U := Uy ), the Gy -representation
Vu (L) ®z, Qp is crystalline in the sense that the following natural morphism is an
isomorphism (|Bri, Chapitre 8])

Dcris(VU(L)) ORr O]BCI‘iS(Sa S+) L> VU(]L) ®Zp OBcris(Sv S+)7
where Gy, U““i",ﬁ = Spa(S, ST) are as in the paragraph before Lemma .

Proof. If L satisfies in addition the condition (2) of Proposition combining
with Corollary we find

Dcris (]L) (u) ®R OEcris (Uuniv) ; (wichris (L) ®O“Xr OBcris) (Uuniv)
N (]L ®Zp OBcris)(Uuniv)
= V(L) ®z, OBcris(U““iv).

So, by Lemmas and the Gy-representation Vi7 (L) ® Q, is crystalline.
Conversely, assume that for any small connected affine open subset U = Spf(R™)
of X, the Gy-representation V(L) ®z, Q, is crystalline. Together with Lemmas
and we get Deyis (L) (U) @ g OBerig (UM™Y) 55 Vi (L) @2, OBeyi(UM™Y) and
the similar isomorphism after replacing U™ by any V € Xoprost /U univ - Using
Corollary we deduce (w™ ' Deis(L) @ouw OBeis) (V) = (L ®3, OB.yis) (V) for
any V € Xproer/U™Y, d.e., (0 Deyis(LL) @0 OBeris) |guniv = (L ®3, OBeyis) | gruniv .
When the small opens U’s run through a cover of X, the U"V’s form a cover of
X for the pro-étale topology. Therefore, w ™ Deyis(L) @ OBeris — L @ OBeyis, as
desired. (]

Lemma 3.18. Let L be a lisse ip-sheaf on X satisfying the two conditions of
Proposition [3.14. Then (the analytification of) Deis(L) has a natural structure of
filtered convergent F-isocrystal on Xo/Oy.

Proof. First of all, the Fil' Deyis(LL)’s (i € Z) endow a separated exhaustive de-
creasing filtration on Deyis(IL) by Corollary [2.22] and the connection on Deyis(LL) =
w4 (L ® OBeis) can be given by the composite of

wy (IdRV)
—

W (IL ® O]Bcris) Wi (L ® OBcris ®(’)3‘{ Q;?Z)

; Wi (]L ® O]Bcris) ®(’);@[1/[)] Qi{/Ok [1/]9]

where the last isomorphism is the projection formula. That the connection satisfies
the Griffiths transversality with respect to the filtration Fil® D¢ follows from the
analogous assertion for OB, (Proposition .

Now consider the special case where X = Spf(R™) is affine connected admit-
ting an étale map X — Spf(Ok{Tlﬂ, . 7Tdﬂ})7 such that X is equipped with
a lifting of Frobenius o. As in the paragraph before Lemma |3.15, let X"V be
the univeral profinite étale cover of X (which is an affinoid perfectoid). Write

Xuniv — Spa(S,S*) and Gx the fundamental group of X. As X is affine, the
category Coh(Ox[1/p]) is equivalent to the category of finite type R-modules (here
R := R"™[1/p]). Under this equivalence, De,is(IL) corresponds to Deyis(Vx (L)) :=
(Vx (L) ® OBgis(S, S1))x | denoted by D for simplicity. So D is a projective
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R-module of finite type (Lemma equipped with a connection V: D — D ®
Q}% Ik Under the same equivalence, Fil’ Deris (L) corresponds to Fil' D := (Vx(L)®
Fil' OB.is(S, S7))9*, by Lemma again. By the same proof as in [Bri, 8.3.2],
the graded quotient gri(D) is a projective module. In particular, Fil' D C D is a
direct summand. Therefore, each Fil’ Dy (L) is a direct summand of D,5(L). Fur-
thermore, since X admits a lifting of Frobenius o, we get from §[2.3] a o-semilinear
endomorphism ¢ on OBeis(X “ni") ~ OBis(S,ST), whence a o-semilinear endo-
morphism on D, still denoted by ¢. From Lemma[2.19] One checks that the Frobe-
nius ¢ on D is horizontal with respect to its connection. Thus D¢,is(L) is endowed
with a horizontal o-semilinear morphism D¢y (L) — Deyis(IL), always denoted by ¢
in the following.

To finish the proof in the special case, one still needs to show that the triple
(Deris(LL), V, ) gives an F-isocrystal on Xy/Oy. As D is of finite type over R, there
exists some n € N such that D = DF[1/p] with DF := (Vx (L)®z,t " OAeis (S, 57))Cx.
The connection on t~"OAis(S, ST) induces a connection V*¥: DT — DT ®p+
Q}%/Ok on DT, compatible with that of Deyis(Vx (L)). Moreover, if we take N; to

be the endomorphism of DT so that V* = Z?Zl N; ® dT;, then for any a € DT,
N™(a) € p- D% for all but finitely many m € N? (as this holds for the connec-
tion on t~"OA,s, seen in the proof of Lemma . Similarly, the Frobenius on
OB..is(S, ST) induces a map (note that the Frobenius on OB.s(S, ST) sends ¢ to
p-t)
¢: DT — (Vx(L) @ p "t "OAeis(S, ST)) .

Thus 3 := p"p gives a well-defined o-semilinear morphism on DV. One checks
that 1) is horizontal with respect to the connection V™ on D™ and it induces an
R -linear isomorphism o*DT = D%. As a result, the triple (D*,V, ) will de-
fine an F-crystal on Uy/Ok, once we know DT is of finite type over R*. The
required finiteness of DT is explained in [AI, Proposition 3.6], and for the sake of
completeness we recall briefly their proof here. As D is projective of finite type
(Lemma , it is a direct summand of a finite free R-module T. Let Tt C T
be a finite free RT-submodule of 7" such that T*[1/p] = T. Then we have the
inclusion D @ g OBeis (S, ST) — TF Qg+ OBeris(S, ST). As Vx (L) is of finite type
over Z, and OBis(S, ST) = OAcyis(S, ST)[1/t], there exists m € N such that the
OAis(S, ST)-submodule V(L) @ t 7" OAqis(S, ST) of Vx (L) @ OBis(S, S+) =~
D ® OBs(S,S1) is contained in TT ®@pt+ t7™OALis(S, ST). By taking Gy-
invariants and using the fact that R' is noetherian, we are reduced to showing
that R’ = (t"™OAeis(S, ST))9x is of finite type over RT. From the construc-
tion, R’ is p-adically separated and RT C R’ C R = (OBeyis(S,51))9%. As RT
is normal, we deduce pV R’ C RT for some N € N. Thus pY R’ and hence R’ are
of finite type over RT. As a result, (D, V, ) defines an F-crystal D on Uy /Oy,
As D = D*[1/p] and V = V*[1/p], the connection V on Deis(L) is convergent;
this is standard and we refer to [Ber96, 2.4.1] for detail. Consequently, the triple
(Deris (L), V, ) is an F-isocrystal on Xy/Oy, which is isomorphic to D*+?"(n). This
finishes the proof in the special case.

In the general case, consider a covering X = |J,U; of X by connected small
affine open subsets such that each U; admits a lifting of Frobenius ¢; and an étale
morphism to some torus over Of. By the special case, we have seen that each
Fil? Deris(L) C Deyis(LL) is locally a direct summand, and that the connection on



Crystalline comparison isomorphism in p-adic Hodge theory 31

Deris(IL) is convergent ([Ber96, 2.2.8]). Furthermore, each Deyis(IL)|y; is equipped
with a Frobenius ¢;, and over U; NU;, the two Frobenii ¢;, ¢; on Deris(IL)|yy, Ny,
are related by the formula in Lemma as it is the case for ¢;, ¢; on OBcyis|y, nu;
(Lemma. So these local Frobenii glue together to give a compatible system of
Frobenii ¢ on Deis(IL) and the analytification of the quadruple (Deyis(IL), Fil® Deyis (L), V, )
is a filtered F-isocrystal on Xy/Oy, as wanted. O

Proof of Proposition[3.14 1If a lisse ip—sheaf L on X is associated to a filtered F-
isocrystal £ on X, then we just have to show £ ~ D,5(LL). By assumption, we have
L ®Zp OBeyis ~ w™ L€ @0y OBcris. Then

Wi (L ®2p O]Bcris) ™ Wy (w*15 ®o\)1(r OBcris) ~ & ®Oxét [1/p] w*OBcris ~ &

where the second isomorphism has used Remark and the last isomorphism is
by the isomorphism w,OBe,is ~ Ox,,[1/p] from Corollary

Conversely, let L. be a lisse 2p—sheaf verifying the two conditions of our propo-
sition. By Lemma Deis(L) is naturally a filtered F-isocrystal. To finish the
proof, we need to show that the isomorphism in (2) is compatible with the extra
structures. Only the compatibility with filtrations needs verification. This is a
local question, hence we shall assume X = Spf(R") is a small connected affine
formal scheme. As Fil’ Deris(IL) is coherent over Ox[1/p] and is a direct summand
of Deyis(IL), the same proof as that of Corollary @ gives

Fil’ Deyis (L) (X) ®p Fil? OBeyig (V) — (w™ ! Fil’ Deyis (L) @0y Fil! OBeyis ) (V)

for any V € Xpp06t. Consequently, the isomorphism in Corollary is strictly
compatible with filtrations on both sides. Thus, we reduce to show that, for any affi-
noid perfectoid V € Xproet/X ™Y, the isomorphism Deis(Vx (L)) @ g OBeyis(V) =
Vx (L) ® OBeis(V) is strictly compatible with the filtrations, or equivalently, the

induced morphisms between the graded quotients are isomorphisms:

(3.2.2) Ditj=n (88" Deris(Vx (L)) ®p gt/ OBeyis(V)) — L @ g1 OByis (V).
When V = X"V this follows from [Bri, 8.4.3]. For the general case, write
Xuwiv = Spa(S, ST) and V= Spa(Si,S;"). Then by [Sch13l Corollary 6.15] and
Corollary we have gr! OBis(V) >~ S1&7[UL /€, ..., Ua/€]. So the natural mor-
phism g7 OB i (X)) ®g S1 — g1/ OBeis(V) is an isomorphism. The required
isomorphism (3.2.2)) for general V' then follows from the special case for X"V, [

Let Lis%rpis(X ) denote the category of lisse crystalline ip—sheaves on X, and

Lisf(;s (X) the corresponding isogeny category. The functor

P

Deris : Lis(gis(X) — FF-Iso' (Xy/Ok), L Deys(LL)
P
allows us to relate Lisgis(X ) to the category FF-Iso' (Xy/Oy) of filtered convergent
P
F-isocrystals on Xy/Oy, thanks to Proposition A filtered F-isocrystal £ on
Xo/ Oy, is called admissible if it lies in the essential image of the functor above. The
full subcategory of admissible filtered F-isocrystals on Xy/Oy will be denoted by

FF-Tso' (Xy/ Oy )2dm,
Theorem 3.19. The functor Deis above induces an equivalence of categories
Deris : Lis™(X) = FF-Iso' (X /Og)*™.

P
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A quasi-inverse of Deys 18 given by
Veris 1 € 5 Fil’(w™'E @0y OBeys)V=0¢!
where ¢ denotes the compatible system of Frobenii on £ as before.

Proof. Observe first that, for £ a filtered convergent F-isocrystal, the local Frobenii
on £V=0 glue to give a unique o-semilinear morphism on £V=" (Lemma |3.7). In
particular, the abelian sheaf V,;5(&) is well-defined. Assume moreover € is admissi-

ble, and let L be a lisse zp—sheaf such that £ ~ Dy,5(L). So L and & are associated
by Proposition Hence L ®z, OByis ~ w™LE ®ow OBis, and we find

L®; @ — Lo Fil’(OBas) ="
Fil (L, 7, OBeris) V=091

Fil’ (1€ @ oy OBas,) V=04~
= Vcris(g),

where the first isomorphism following from the the fundamental exact sequence (by
Lemma [2.5] and [Bri, Corollary 6.2.19])

-,
-~

0 — Q, — Fil’ Beyig ——5 Beyis — 0.

In particular, V(&) is the associated @p—sheaf of a lisse Zp—sheaf. Thus V,is(€) €
LisgS (X) and the functor Vs is well-defined. Furthermore, as we can recover the

the lisse Zp—sheaf up to isogeny, it follows that De,s is fully faithful, and a quasi-
inverse on its essential image is given by V. O

Remark 3.20. Using [Bril, Theorem 8.5.2], one can show that the equivalence
above is an equivalence of tannakian category.

Next we compare Definition with the “associatedness” defined in [Fal|. Let
€ be a filtered convergent F-isocrystal £ on Xy/Oy, and M an F-crystal on Xy/Oy
such that M?" = £(—n) for some n € N (see Remark for the notations). Let
U = Spf(RT) be a small connected affine open subset of X, equipped with a lifting
of Frobenius 0. Write U = Spa(R, R™) the generic fiber of U. As before, let R
be the union of all finite normal RT-algebras (contained in some fixed algebraic
closure of Frac(R™1)) which are étale over R := RT[1/p], and R := §+[1/p]. Let
Gy = Gal(R/R) and (S, S*) the p-adic completion of (R, R'). Then (S, S*) is
an perfectoid affinoid algebra over the p-adic completion of k. So we can consider

the period sheaf A¢is(S, S1). Moreover the composite of the following two natural
morphisms

(3.2.3) Acris (8,87) L5 5 5 g+ /pst

defines a p-adic PD-thickening of Spec(S*/pS™). Evaluate our F-crystal M at it
and write M (Aqis(S, ST)) for the resulting finite type Acis(S, ST)-module. As an
element of Gy defines a morphism of the PD-thickening in the big crys-
talline site of Xp/Oy and M is a crystal, M(A(S,S™)) is endowed naturally with
an action of Gy. Similarly, the Frobenius on the crystal M gives a Frobenius
¥ on M(Aqis(S,S1)). Set EBeris(S, ST)) := M(Auis(S,57))[1/t], which is a
Beris (S, ST)-module of finite type endowed with a Frobenius ¢ = 1 /p" and an
action of Gy .



Crystalline comparison isomorphism in p-adic Hodge theory 33

On the other hand, as I is small, there exists a morphism a:: BT — A5(S, ST)
of Ok-algebras, whose composite with the projection Aqs(S, ST) — ST is the inclu-
sion R C S*. For example, consider an étale morphism I/ — Spf(Ok{Tlﬂ, e 7Tjﬂ}).
Let (Til/pn) be a compatible system of p”-th roots of T} inside B C S+, and T’
the corresponding element of S** := fm ST /pST. Then one can take o as the
unique morphism of Op-algebras Rt — Auis(S, ST) sending T; to [T?], such that
its composite with the projection Ags(S, S1) — ST /pS™T is just the natural map
Rt — S*/pS* (such a morphism exists as RT is étale over Op{Ti, ..., T+'}
and because of (3.2.3); see the proof of Lemma for a similar situation). Now
we fix such a morphism a. So we obtain a morphism of PD-thickenings from
Uy — U to the one defined by . Consequently we get a natural isomorphism
M(Auis(S,51)) = M(U) @R+ o Acris(S, ST), whence

5(IB%cris(Sa S+)) = g(u) ®R,a IBcris(Sv S+)

Using this isomorphism, we define the filtration on &(Beis(S, ST)) as the tensor
product of the filtration on £(U) and that on Bes(S, ST).

Remark 3.21. It is well known that the filtration on &(Beyis(S,ST)) does not
depend on the choice of a. More precisely, let o’ be a second morphism RT —
Aqis(S,ST) of Op-algebras whose composite with Agis(S,ST) — ST is the in-
clusion Rt C S*. Fix an étale morphism U — Spf(Op{TE, ..., TE'}). Denote
B=(a,a): RT ®0, R — Aeis(S, ST) and by the same notation the correspond-
ing map on schemes, and write pi,ps : Spec RT x Spec RT — Spec RT the two
projections. We have a canonical isomorphism (py o 3)*€ = (p1 o B)*E, as € is
a crystal. In terms of the connection V on &, this gives (cf. [Ber96, 2.2.4]) the
following Beyis(S, ST)-linear isomorphism

n: S(U) ®R,a IBg’cris(Sv S+) — g(u) ®R,a’ Bcris(sa S+)

sending e ® 1 to 3, cya N™(e) ® (a(T) — o/ (T))™), with N the endomorphism of
£ such that V = N ® dT. Here we use the multi-index to simplify the notations,
and note that a(T;) — o/ (T;) € Fil' Aqis(S, S1) hence the divided power (o(T;) —
o (T;))™] is well-defined. Moreover, the series converge since the connection on
M is quasi-nilpotent. Now as the filtration on £ satisfies Griffiths transversality,
the isomorphism 7 is compatible with the tensor product filtrations on both sides.
Since the inverse n~! can be described by a similar formula (one just switches o
and '), it is also compatible with filtrations on both sides. Hence the isomorphism
n is strictly compatible with the filtrations, and the filtration on &(Beyis(S, ST))
does not depend on the choice of a.

Let L be a lisse Zp—sheaf on X, and write as before V7 (L) the Z,-representation of
Gy corresponding to the lisse sheaf L|;. Following [Fal|, we say a filtered convergent
F-isocrystal £ is associated to 1L in the sense of Faltings if, for all small open subset
U C X, there is a functorial isomorphism:

(324) & (Ecris (S; S+)) L> VU(L) ®Qp Bcris (S’ S+)
which is compatible with filtration, Gy-action and Frobenius.

Proposition 3.22. Keep the notation above. If £ is associated to 1L in the sense
of Faltings then L is crystalline (not necessarily associated to £) and there is an
isomorphism Deis(IL) ~ £ compatible with filtration and Frobenius. Conversely,
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if L is crystalline and if there is an isomorphism Deis(L) ~ € of Oxan-modules
compatible with filtration and Frobenius, then L and £ are associated in the sense
of Faltings.

Before giving the proof of Proposition we observe first the following com-
mutative diagram in which the left vertical morphisms are all PD-morphisms:

R /pR* .

Oheris (S, 51) L2 5+ /pS+

canT

Acris (57 S+) 94) S+/ps+

Therefore, we have isomorphisms
M(U) QR+ OAis (Sv S+) - M (OAcris (S, S+))

— M (Acris (S, S+)) ®ACT;S(S,S+) OAcris (S, S+) )
where the second term in the first row denotes the evaluation of the crystal M at
the PD-thickening defined by the PD-morphism 6 in the commutative diagram
above. Inverting ¢, we obtain a natural isomorphism
(3.2.5) EU) @r OBeis (S, S+) =& (Bcris (S, S+)) ® OB¢is (S, S+) ,
where the last tensor product is taken over Be,is(S, ST). This isomorphism is clearly
compatible with Galois action and Frobenius. By a similar argument as in Remark
one checks that ([3.2.5]) is also strictly compatible with the filtrations. Further-
more, using the identification

Acris (8,8%) {{u, .., ug)} = Oheris (S,87), wy =Ty 01 - 1@ [17]
we obtain a section s of the canonical map Ags (S, ST) — OAgss (S, ST):
5: OAqis (S, SJr) — Acris (57 S+) u; — 0

which is again a PD-morphism. Composing with the inclusion RT™ C OA;5(S, ST),
we get a morphism ag: RT — Agis(S, ST) whose composite with the projection
Aqis(S,8T) — ST is the inclusion RT C ST.

Proof of Proposition|3.22. Now assume that £ is associated with L in the sense
of [Fall. Extending scalars to OBeis(S,S™) of the isomorphism and us-
ing the identification , we obtain a functorial isomorphism, compatible with
filtration, Gy-action, and Frobenius:

Vu (L) ®z, OBeis (S, S+) = E(U) @ OByis (S7 S+) )
Therefore, V7 (L) ®z, Q, is a crystalline Gy-representation (Corollary|3.17), and we

get by Lemma an isomorphism & () = Deyis (L) (U) compatible with filtrations
and Frobenius. As such small open subsets U/ form a basis for the Zariski topology of

X, we find an isomorphism & = De,is(IL) compatible with filtrations and Frobenius,
and that L is crystalline in the sense of Definition (Corollary [3.17)).
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Conversely, assume L is crystalline with De,is(IL) & £ compatible with filtrations
and Frobenius. As in the proof of Corollary[3.17] we have a functorial isomorphism
S(U) ®R OBcris (57 S+> ; VU(]L) ®Zp OBcris (57 S+)

which is compatible with filtration, Galois action and Frobenius. Pulling it back
via the section OBeyis (S, 57) — Beis (S, ST) obtained from s by inverting p, we
obtain a functorial isomorphism

S(Ecris(sa S+)) ~ g(u) ®R,a0 IBcris(Sa SJr) % VU(]L) ®Zp Bcris(S; S+)a

which is again compatible with Galois action, Frobenius and filtrations. Therefore
L and & are associated in the sense of Faltings. ([l

Finally we compare Definition with its de Rham analogue considered in
[Sch13].

Proposition 3.23. Let L be a lisse zp-sheaf on X and &€ a filtered convergent F'-
isocrystal on Xo/Oy. Assume that L and £ are associated as defined in Definition
then L is a de Rham in the sense of [Sch13l Definition 8.3] . More precisely,
if we view & as a filtered module with integrable connection on X (namely we forget
the Frobenius), there exists a natural filtered isomorphism that is compatible with
connections:

L ®zp OBar — € ®oy OBar

Proof. Let U = Spf(R*) C X be a connected affine open subset, and denote U
(resp. U"MV) the generic fiber of U (resp. the universal étale cover of U). Let V
be a affinoid perfectoid lying above U™V, As L and £ are associated, there exits a
filtered isomorphism compatible with connections and Frobenius

L ®Zp O]Bcris L> ’wilg (8(’);‘(,r OBcris~
Evaluate this isomorphism at V' € X0 and use the fact that the R-module £(U)

is projective (here R := R™[1/p]), we deduce a filtered isomorphism compatible
with all extra structures:

Vu (]L) Xz, OBcris(V) - E(U) ®R OBCriS(V)'

Taking tensor product — ®eg,,,.(v) OBar (V) on both sides, we get a filtered iso-
morphism compatible with connection:

Vi (L) @z, OBar(V) <> E(U) @ OBar(V).

Again, as £(U) is a projective R-module and as & is coherent, the isomorphism
above can be rewritten as

(L ®ZP OBdR)(V) = (5 Koy OBdR)(V),

which is clearly functorial in &/ and in V. Varying U/ and V, we deduce that L is
de Rham, hence our proposition. O
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3.3. From pro-étale site to étale site. Let A be a smooth formal scheme over
Oy. For O = Ox,0x[1/p], O% T, OF and a sheaf of O-modules F with connection,
we denote the de Rham complex of F as:

DR(F)=(0—=F 5 Foo Q' L ...

Let w be the composite of natural morphisms of topoi (here we use the same
notation to denote the object in X represented by Xz € Xprost):

~

proét
Xpvost/ Xz — X roet - X5
The following lemma is just a global reformulation of the main results of [AB]. As

we shall prove a more general result later (Lemma [5.3)), let us omit the proof here.

Lemma 3.24. Let X be smooth formal scheme over Of. Then the natural mor-
phism below is an isomorphism in the filtered derived category:

OX®Ok Bcris — M*(OBcris)-

Here Ox®0, Beris = (Ox®0, Acris) [1/t] with

OX®OkAcris = %in OX ®Ok Acris/pn;

neN
and O)(@Ok Be.is 1s filtered by the subsheaves
OR0, Fil" Bes = lim t " (Ox®o, FII'™" Acis), 7 € Z.
neN

Corollary 3.25. Let X be a smooth formal scheme over Oy. Let L be a crystalline
lisse Z,-sheaf associated with a filtered convergent F-isocrystal €. Then there exists
a natural quasi-isomorphism in the filtered derived category

Rw,(L ®; Beis) —+ DR(E)®k Boris-

If moreover X is endowed with a lifting of Frobenius o, then the isomorphism above
is also compatible with the Frobenii deduced from o on both sides.

Proof. Using the Poincaré lemma (Corollary , we get first a quasi-isomorphism
which is strictly compatible with filtrations:

L®Beis — L ® DR(OBeyis) = DR(L ® OBeyis).-

As L and & are associated, there is a filtered isomorphism L ® OBgis — w™'E Royr
OB.,is compatible with connection and Frobenius, from which we get the quasi-
isomorphisms in the filtered derived category

(3.3.1) L ® Beris — DR(L @ OBeris) — DR(w '€ @ OBeyis).

On the other hand, as R'w,OBs = 0 for j > 0 (Lemma [3.24)), we obtain using
projection formula that R/w.((w '€ ® OBeis)|x,) = £ ® RIW.OBeis = 0 (note
that £ is locally a direct factor of a finite free Oy [1/p]-module, hence one can apply
projection formula here). In particular, each component of DR(w ™€ ® OBg,is) is
wy-acyclic. Therefore,

DR(E @ W,OBeis) — We(DR(w™'E @ OBeyis)) — Rw,(DR(w ™€ @ OBeyis)).
Combining this with Lemma we deduce the following quasi-isomorphisms in
the filtered derived category

(3.32)  DR(E)®)Beris — DR(E @ W.OBeyis) — Rw.(DR(w™'E @ OBeris))-
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The desired quasi-isomorphism follows from (3.3.1) and (3.3.2). When fur-
thermore X admits a lifting of Frobenius o, one checks easily that both quasi-
isomorphisms are compatible with Frobenius, hence the last part of our corol-
lary. [

Remark 3.26. Recall that G denotes the absolute Galois group of k. Each
element of G, defines a morphism of Uy in the pro-étale site X0 for any U €
Xprost With U := Uy,. Therefore, the object Rw, (L ® Bes) comes with a natural
Galois action of G. With this Galois action, one checks that the quasi-isomorphism
in Corollary is also Galois equivariant.

Let € be a filtered convergent F-isocrystal on Xp/Op, and M an F-crystal on
Xo/ Oy, (viewed as a coherent O y-module equipped with an integrable connection)
such that & ~ M**(n) for some n € N (Remark [3.5)). The crystalline cohomology
group H! . (Xo/Ok, M) is an Og-module of finite type endowed with a Frobenius
1. In the following, the crystalline cohomology (or more appropriately, the rigid
cohomology) of the convergent F-isocrystal £ is defined as

Héris(‘XO/Okv g) = Héris(XO/0k7 M)[l/p}
It is a finite dimensional k-vector space equipped with the Frobenius v /p™. More-

over, let u = uy, 0, be the following morphism of topoi
(X0/Ok)eris — X&

cris
such that w,(F)U) = H((Uo/Ok) s F) for U € Xg. With the étale topology
replaced by the Zariski topology, this is precisely the morphism X0/8 (with S =
Spf(Oy)) considered in [BOL Theorem 7.23]. By loc.cit., there exists a natural

quasi-isomorphism in the derived category

(3.3.3) Ru,M 5 DR(M),

which induces a natural isomorphism H ; (Xo/Ok, M) = H{(X, DR(M)). Thereby

(3.3.4) H! (X)) Ok, &) = H (X, DR(E)).

On the other hand, the de Rham complex DR(E) of £ is filtered by its subcomplexes
Fil' DR(E) := (Fil' € 5 Fil' ' €@ Q) — ..).

So the hypercohomology H!(X, DR(E)) has a descending filtration given by
Fil" H'(X, DR(E)) := Im (H'(X,Fil" DR(E)) — H'(X, DR(E))) .
Consequently, through the isomorphism (3.3.4)), the k-space H! . (Xy/Ok, &) is en-

cris
dowed naturally with a decreasing filtration.

Theorem 3.27. Assume further that the smooth formal scheme X is proper over
Ok. Let € be a filtered convergent F-isocrystal on Xo/O and L a lisse Zp—sheaf
on Xprost- Assume that £ and L are associated. Then there is a natural filtered
isomorphism of Beyis-modules

(3.3.5) H'(X; L ®z, Beris) — H' o (X0/ O, E) @k Beris

k,proét’

which is compatible with Frobenius and Galois action.
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Proof. By Corollary[3.25] we have the natural Galois equivariant quasi-isomorphism
in the filtered derived category:

RF(XE,proétv L ® Beis) = RI(X, R, (L @ Beyis)) — RT(X, DR(E)®p Bexis)-
We first claim that the following natural morphism in the filtered derived category
is an isomorphism:

RT(X,DR(E)) ®0, Acxis — RT(Xey, DR(E)@0, Acris)-

Indeed, as A is flat over Ok, the morphism above is an isomorphism respecting
the filtrations in the derived category. Thus to prove our claim, it suffices to check
that the morphism above induces quasi-isomorphisms on gradeds. Further filtering
the de Rham complex by its naive filtration, we are reduced to checking the following
isomorphism for A a coherent Oy-module:

RI(X, A) ®0, Oc, — RI(X, AB0, Oc,),

which holds because again Oc, is flat over Ox. Consequently, inverting ¢ we obtain
an isomorphism in the filtered derived category

RT(X,DR(E)) @y Beris — RI(Xsy, DR(E)®5 Beris).

In this way, we get a Galois equivariant quasi-isomorphism in the filtered derived
category

RTU(X7, rostr L ® Bexis) = RT(X,DR(E)) @k Beris.
Combining it with , we obtain the isomorphism verifying the required
properties except for the Frobenius compatibility.

To check the Frobenius compatibility, we only need to check that the restriction
to H s (Xo/Ok, &) — H!;(Xo/Ok, E) @) Bexis of the inverse of is Frobenius-
compatible. Let M be an F-crystal on Xp/Oy such that € = M?**(n). Via the
identification HZ i (Xy/Ok,E) = H. ;. (Xo/Ok, M)[1/p], the restriction map in ques-
tion is induced from the following composite of morphisms at the level of derived
category:

RU*M L> DR(M) — DR(M)®Ochris =~ DR(S)®chris ;> RE*(L & Bcris)a

where the first quasi-isomorphism is , and the last morphism is just the
inverse in the derived category of the quasi-isomorphism in Corollary Let us
denote by 6 the composite of these morphisms. Let ¢ (resp. ¢) be the induced
Frobenius on Ru.M (resp. on Rw,(L®Bis)). One only needs to check that ¢of =
p%ﬁ o 1. This can be checked locally on X'. So let «f C X be a small open subset
equipped with a lifting of Frobenius . Thus M|y (resp. &|y) admits naturally
a Frobenius, which we denote by ¢y (resp. ¢y). Then all the morphisms above
except for the identification in the middle are Frobenius-compatible (see Corollary
for the last quasi-isomorphism). But by definition, under the identification
M([1/pllu = E|u, the Frobenius ¢ on € corresponds exactly to iy /p™ on M[1/p].
This gives the desired equality ¢ o 6 = p—lnﬁ o1 on U, from which the Frobenius

compatibility in (3.3.5) follows. O
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4. PRIMITIVE COMPARISON ON THE PRO-ETALE SITE

Let X be a proper smooth formal scheme over Oy, with X (resp. Ap) its generic
(resp. closed) fiber. Let L be a lisse zp—sheaf on Xpro¢t- In this section, we will con-
struct a primitive comparison isomorphism for any lisse Zp—sheaf L on the pro-étale
site Xprost (Theorem . In particular, this primitive comparison isomorphism
also holds for non-crystalline lisse 2p—sheaves, which may lead to interesting arith-
metic applications. On the other hand, in the case that L. is crystalline, such a
result and Theorem [3:27] together give rise to the crystalline comparison isomor-
phism between étale cohomology and crystalline cohomology.

We shall begin with some preparations. The first lemma is well-known.

Lemma 4.1. Let (Fn)nen be a projective system of abelian sheaves on a site T,
such that R’ l'&l}"n = 0 whenever j > 0. Then for any object Y € T and any i € Z,
the following sequence is exact:

0 — R'lim H (Y, F,,) — H'(Y,lim F,,) — lim H(Y, F,,) — 0.

Proof. Let Sh (resp. PreSh) denote the category of abelian sheaves (resp. abelian
presheaves) on T', and Sh™ (resp. PreShN) the category of projective systems of
abelian sheaves (resp. of abelian presheaves) indexed by N. Let Ab denote the
category of abelian groups. Consider the functor

7:Sh" — Ab,  (G,) = Im I (Y,Gn).
Clearly 7 is left exact, hence we can consider its right derived functors. Let us
compute R7(F,) in two different ways.
Firstly, one can write 7 as the composite of the following two functors
lim nU,—
Sh - sh DO A

Since the projective limit functor @1 ShY — Sh admits an exact left adjoint given
by constant projective system, it sends injectives to injectives. Thus we obtain a
spectral sequence

By’ = H'(Y, R lim F,,) = R"™7(Fy).
By assumption, le'&n}'n = 0 whenver j > 0. So the spectral sequence above

degenerates at Ey and we get H'(Y, %in]:n) ~ Rit(Fp,).
Secondly, one can equally decompose 7 as follows:

ShY —% > ABN = Ab ,
where the functor « sends (G,,) to the projective system of abelian groups (I'(Y, G,,)).
Let I, = (I,) be an injective object of Sh". By [Janl, Proposition 1.1], each com-
ponent I, is an injective object of Ab and the transition maps I,,41 — I,, are split
surjective. Therefore, the transition maps of the projective system «(I,) are also
split surjective. In particular, the projective system «(l,) is @—acyclity. So we
can consider the following spectral sequence

Ey’ = R'lim HY (Y, F,)) = R™I7(Fy).

Since the category Ab satisfies the axiom (AB5*) of abelian categories (i.e., infinite
products are exact), R’ I'&nAn =0 (i ¢ {0,1}) for any projective system of abelian
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groups (A, ),. So the previous spectral sequence degenerates at Eo, from which we
deduce a natural short exact sequence for each i € Z

0 — R'im H'Y(Y, Fy) — R'7(Fn) — Im H'(Y, ) — 0.
As we have seen H(Y, 1&1]:”) ~ Ri7(F,), we deduce the short exact sequence as

asserted by our lemma. 0
Lemma 4.2. Let L be a lisse Zp-sheaf on X% sroet- Then forieZ, Hi(XE proct? L)
is a Zp-module of finite type, and H' (X, 4, L) = 0 whenever i ¢ (0,2 dim(X)].

Proof. Since all the cohomology groups below are computed in the pro-étale site,
we shall omit the subscript “proét” from the notations.

Let L;,, denote the torsion subsheaf of I.. Then our lemma follows from the
corresponding statements for Lo, and for L/Lio,. Therefore, we may assume either
L is torsion or is locally on X7 | free of finite rank over Zp. In the first case, we
reduce immediately to the finiteness statement of Scholze (Theorem 5.1 of [Sch13]).

So it remains to consider the case when L is locally on Xz | . free of finite rank

over Zp. Let L,, := L/p"L. We have the tautological exact sequence

0L L L, —0,

inducing the following short exact sequence
(4.0.6) 0 — H' (X%, L)/p" — H (X%, L,) — HHY (X7, L)[p"] — 0.

We shall show that the following natural morphism is an isomorphism:
(4.0.7) H'(Xg, L) — lim H' (X, Ly,).
Indeed, as L is locally free, using [Sch13, Proposition 8.2], we find R’ kinn L,=0
for j > 0. Moreover, as H'~' (X, L) are finite Z/p™Z-modules by [Sch13, Theorem
5.1], R! @Hi’l(Xg, L,) = 0. Consequently, by Lemma the morphism (4.0.7)
is an isomorphism.

In particular, H'(Xz,L) = ]'ngi(XE7 L,) is a pro-p abelian group, hence it
does not contain any element infinitely divisible by p. Thus, m(H (X7, L)[p") =0

(where the transition map is multiplication by p). From the exactness of (4.0.6)),
we then deduce a canonical isomorphism

lim (H'(X7, L)/p") = lim H' (X, Ly).

So H'(X#,L) = Linn H'(X%,L)/p™. Consequently the Z,-module H*(Xz,L) is p-
adically complete, and it can be generated as a Zj,-module by a family of elements
whose images in H*(X,L)/p generate it as an Fj,-vector space. Since the latter is
finite dimensional over F,, the Z,-module H i(XE, L) is of finite type, as desired. O

The primitive form of the comparison isomorphism on the pro-étale site is as
follows.

Theorem 4.3. Let L be a lisse Zp—sheaf on Xprost- There is a canonical isomor-
phism of BI. -modules

cris

(4.0.8) HY(X+

k,proét’

L) ®z, BY,, = H' (X%

. +
cris k,proét’ L ®Zp B

cris)

compatible with Galois action, filtration and Frobenius.
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Proof. In the following, all the cohomologies are computed on the pro-étale site,
hence we omit the subscript “proét” from the notations.
The proof begins with the almost isomorphism in [Sch13, Theorem 8.4]:
H' (X3, L) @z, Aing — H'(X5, L @5 Aing).
Therefore, setting
Ain Xz N Ain Xz N
ASI‘IS = 14 f[ ZE' ] and Agrls = p f[ ZE' ]
(Xz — aiXi+1 S N) (Xz — a/iXiJrl € N)

with a; = % and using the fact that X7 is qcqgs, we find the following almost
isomorphism

(4.0.9) H' (X7, L) ®z, A0

cris

A (XE,]L®Z A )

cris

On the other hand, from the tautological short exact sequence

00— A0 FomE Q0 A0 0

cris cris cris

and the fact that A%, is flat over Z,, we deduce a short exact sequence:

Do Hi(Xp, L) @y, AV — 0.

cris

0 — H'(Xg, L) ®z, A0

cris

As aresult, together with the almost isomorphism (|4 , we see that the morphism
o H' (Xp Lo A%,) — H' (X L®A3m>

cris

—>Hi(XE,]L) ®z, A

cris

induced by multiplication-by-(Xo — ) is almost injective for all ¢ € Z. Similarly,
since A is flat over Z,, the following sequence of abelian sheaves on Xprost /X5
is exact:

Xo

0— (L ®Z Crm)'X* (]L ®Z crls)lX* (L ®Z crls)‘X* — O

giving the associated long exact sequence on the cohomology:

~—>Hi(XE,]L®Z Ay o, H"(XE,IL,@Z A0 )—>Hi(XE,L®Z A% ) —

cris cris cris

As the a;’s are almost injective for all 4, the previous long exact sequence splits
into short almost exact sequences

0—>Hi(XE,L®Z AD ) 25, Hi(XE,IL®Z AT )—>Hi(XE,IL®Z Al

cris cris CI'IS)

— 0.
Thus the following natural morphism is an almost isomorphism

(4.0.10) H'(Xz,L) ®z, A2 —>HZ(X,€,]L®Z Al

cris cris)’

Vi > 0.

To pass to p-adic completion, we remark that, by Lemma the Z,-module
H'(X3,LL) is of finite type and vanishes when ¢ ¢ [0,2dim X]. Let N be an integer
such that the torsion part Lo, of L and for all ¢ the torsion parts H* (X7, L)or of
H'(X7,L) are annilated by pV. For n > N an integer, we claim that the following
natural morphism has kernel and cokernel killed by p*":

(4011) Hz(XEJL) ®Z ( CrlS/pn — Hz(Xle@Z Crls/p )

or equivalently (via the isomorphism (4.0.10)), that the natural morphism below
has kernel and cokernel killed by p?V

(4.0.12) H (X, L ® Al /p" — H(Xp, L@y Al/p").



42 FUCHENG TAN, JILONG TONG

To see this, consider the following tautological exact sequence

LA, ZSLeAd LAl /p" — 0.

cris cris

Let K, := ker(L®A2, N L®Ag,;,). Then K, is isomorphic to Tory, (L, Ay, /p") =~

Tor%p (Ltor, A /p™), thus is killed by pV. Let I,, := p"(L® AY,.) CL®A%... So

cris cris®
we have two short exact sequences:

0—K, —-LeA. —1I, —0,

cris

and
0

cris

0—1I, LA, — LA /p" — 0.
Taking cohomology one gets exact sequences

oo HY (X7, K,,) — HY(Xg, LAl 25 Hi(XE, 1) — HFY(XE K,) — ..

cris

and

o HY(X L) 25 (X L@ AY,) — HY(X, L@ AL /p") — ...,

which give rise to the exact sequence below:
H'(X7,L® Al /p" — H' (X7 L® Al /p") — ker(Biz1) — 0,

cris cris
such that the kernel of the first morphism is killed by p’V. On the other hand, we
have the following commutative diagram

ﬁi«i»l

H™ (X, 1) HH (X5, L @ Acis/P") -

Yi41 -
p

HiJrl (XEv L& Acris)

Note that ker(H (X3, L ® A2,) N H (X, L ®AY,)) is, via the almost iso-

Cris Cris
morphism for H**!, almost isomorphic to Tor%p (H*H (X5, L)tor, A24s/P™),
hence is killed by p". Moreover, coker(v;41) is contained in H**(X%,K,), thus
is also killed by pV. As a result, from the commutative diagram above we deduce
that ker(B;41) is killed by p?", giving our claim.

Now we claim that the following canonical map
(4.0.13) H' (X7, L ®5 Acis) — Im H' (X, L ®g Aciis/p")

is almost surjective with kernel killed by p?V. Since L is a lisse Zp—sheaf7 it is locally
a direct sum of a finite free Z,-module and a finite product of copies of Z,/p™’s.
In particular, R’ @1(]]_, ® A%../p") = 0 whenever j > 0 as the same holds for the

cris
projective system {A%. /p™}, (recall (2.1.11)). As a result, by the almost version
of Lemma [4.1] we dispose the following almost short exact sequence for each i:
0 — R'lim H'™ 1 (Xz, L&Acris /p") — H'(Xz, LOAcris) — lim H' (X, LOAcris/p") — 0
On the other hand, the morphisms (4.0.11)) for all n give rise to a morphism of
projective systems whose kernel and cokernel are killed by p?V:
{H'™H (X5 L) @z, (Alis/P")}nzo = {H' T (X5 L@z Adie/P") bnz0

Therefore R! lim H7(X, L ®z, AV, /p™) is killed by p?>N. This concludes the

cris

proof of the claim.
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Consequently, by the following commutative digram

Hi (XE’ L) ®Zp A@ can Hz (XE7 L ®Zp A2

cris cris)

(4.0.13))
Ym (4.0.11)

@ Hi (XE, L ®Zp Acris/pn)

we deduce that the kernel and the cokernel of the horizontal canonical morphism
are killed by p*V. On inverting p, we obtain the desired isomorphism .

We still need to check that is compatible with the extra structures.
Clearly only the strict compatibility with filtrations needs verification, and it suf-
fices to check this on gradeds. So we reduce to showing that the natural morphism
is an isomorphism:

H'(X7,L) ®z, Cp(j) — H'(Xz,L® Ox(5)).

Twisting, one reduces to j = 0, which is given by the following lemma. (I
Lemma 4.4. Let L be a lisse 2p-sheaf on Xz rost- Then the following natural
morphism is an isomorphism:

Hi(XE,proéu L) ®z, (o = H' (XE,proéw LL ®2p 6X> )
where Ox is the completed structural sheaf of X7 proct and C, = i

Proof. The proof is similar to that of the first part of Theorem Let L, :=
L/p"L. Using the (finite) filtration {p™ - L, },, of L, and by induction on m, we
get from [Sch13] Theorem 5.1] the following natural almost isomorphisms

H'(X3,Ly,) ®z, Oc, — H' (XE» Ly ®; (5}) .

We need to look at the project limits (with respect to n) of both sides of the previous
morphisms. Pick N € N such that p” kills Ly, and H"(XE7 L)tor for all 4 € N. For
n > N, there is a tautological exact sequence

OHLtor—)Li)L—)LnHO.

Splitting it into two short exact sequences and taking cohomology, we obtain exact
sequences

oo — H'(X7,p"L) — H' (X4, L) — H (X%, Ly) — ...
and ' 4 4
oo — H' (X3, Lyoy) — H'(X3, L) — H' (X, p"L) — ...,
from which we deduce the exact sequence below:
H'(Xz,L)/p" — H'(Xg,Ln) — ker(H ™ (X%, p"L) — H'"" (X7, L)) — 0.
As in the proof of Theorem the kernel of the first morphism in the sequence

above is killed by p" while the last abelian group is killed by p*~. Consequently,
the kernel and the cokernel of the following natural morphism are killed by p?V:

H' (X3, L) ® Oc, /p" — H' (X3, L,) ® O, .



44 FUCHENG TAN, JILONG TONG

Passing to projective limits, we find a natural morphism with kernel and cokernel
killed by p2¥:

H'(X7,L) ® Oc, ~ lim (H'(Xz L) ® Oc, /p") — lim (H' (X7 Ln) ® Oc,),
and R! lim m (H(Xz,L,) ® Oc,) ~ R LHl(Xk,L ®(’)+) are both killed by p?V
On the other hand, as L is a lisse Z -sheaf, R/ L(]L ® (’)+) = 0 for j > 0 since

the same holds for {(’) /D" }n; for this, apply [Schl3l Lemma 3.18] to Lemma 4.10
loc.cit.. Hence by Lemma [£.1] we deduce a short exact sequence

0 — R'lim H'"(Xp, L,20%) — H' (X, LoOk) — lim H'(Xz, L,®0%) — 0.
So we get the following commutative diagram

H(X7,L) ® Oc, — H Xz, L® OF).

iso. up to p2N—t0rsi0n
iso. up to pzN—torsion

lim H'(Xg, L, © O%)

In particular, the horizontal morphism is an isomorphism up to p*"¥-torsions. On
inverting p, we get our lemma. (I

Recall that the notion of lisse Z,-sheaf on X¢; and lisse Zp—sheaf on Xyt are
equivalent. We finally deduce the following crystalline comparison theorem:

Theorem 4.5. Let X be a proper smooth formal scheme over Oy, with X (resp.
Xo) its generic (resp. closed) fiber. Let L be a lisse ip-sheaf on Xprosr- Assume
that I is associated to a filtered F-isocrystal € on Xo/Oy. Then there exists a
canonical isomorphism of Byis-modules

Hi (XE,étyL) ®Z Bcrls _> Hcrls(XO/Oky 5) ®Ok Bcris
compatible with Galois action, filtration and Frobenius.

Proof. This is just the composition of the isomorphisms in Themorem and
Theorem 3] O

5. COMPARISON ISOMORPHISM IN THE RELATIVE SETTING

Let f: X = Y be a smooth morphism between two smooth formal schemes over
Spf(Oy) of relative dimension d > 0. The induced morphism between the generic
fibers will be denoted by fr: X — Y. We shall denote by wy (resp. wy) the natural
morphism of topoi X7, ., — X5 (resp. Y ). By abuse of notation, the

proét proét

morphism of topoi X7 . — Y« will be stlll denoted by fx-

Let Vx,y : OIB%C“S’X — OBCUS’X Roy QXI/”;/ be the natural relative derivation,

lLur 1
where €2y 3= w2y .

Proposition 5.1. (1) (Relative Poincaré lemma) The following sequence of pro-

€tale sheaves is exact and strict with respect to the filtration giving Qquer degree
+ VX/Y

fitOBY. , — OB

cris,

0— B, x® o, OBL., x ®ow Q;‘;;

cris, Y cris, X cris,

VX/Y VX/Y
H ..

OB(J:rrls X ®Our QX)L/l§/ - O
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Furthermore, the connection V x /vy is integrable and satisfies Griffiths transversality
. . . .1 i—1 1,
with respect to the filtration, i.e. Vx vy (Fil' (’)IB%jriS’X) C Fil’ OIB%;S’X ®our QXI/“;,
(2) Suppose the Frobenius on Xy (resp. Vo) lifts to a Frobenius ox (resp. oy)
on the formal scheme X (resp. Y) and they commute with f. Then the induced
Frobenius px on OB x 18 horizontal with respect to Vx v .

cris,
Proof. The proof is routine (cf. Proposition [2.12)), so we omit the detail here. O

For the relative version of the crystalline comparison, we shall need the following
primitive comparison in the relative setting.

Proposition 5.2. Let f: X — ) be a proper smooth morphism between two smooth
formal schemes over Oy. Let 1L be a lisse Zp-sheaf on Xprost- Suppose that R fr. L
is a lisse ip—sheaf on Yproer for all i > 0. Then the following canonical morphism
is an isomorphism:

(5.0.14) (R’ frsL) ®3, B

cris,Y

% R fin(L®3, Bl x)
which is compatible with filtration and Frobenius.

Proof. Remark first that R’fy. . = 0 for i > 2d where d denotes the relative
dimension of f. To show this, write L’ and L” the Fp-local system on Xpoet
defined by the following exact sequence

(5.0.15) 0—L —-L5SL—L"—0.

We claim that R'f, L' = R'fr,L” = 0 for ¢ > 2d. Indeed, as L' is an F,-local
system of finite presentation, it comes from an F,-local system of finite presentation
on X, still denoted by L'. By [Sch13| Corollary 3.17(ii)], we are reduced to
showing that R'fy ¢/ = 0 for i > 2d, which follows from [Sch13, Theorem 5.1]
and [Hubl 2.6.1] by taking fibers of R’fy, 4./ at geometric points of Y. Similarly
Rifp., " = 0 for i > 2d. Then, splitting the exact sequence into two short
exact sequences as in the proof of Theorem and applying the higher direct
image functor Rfy., we deduce that the multiplication-by-p morphism on R’ fy.LL
is surjective for i > 2d. But R’ f}.L is a lisse Zp-sheaf on Y4t by our assumption,
necessarily R’ fy,L = 0 for i > 2d. Consequently, we can choose a sufficiently large
integer N € N such that p" kills the torsion part of I and also the torsion part of
Rif;, L for all i € Z.

Then, it is shown in the proof of [Schi3l Theorem 8.8 (i)], as a consequence
of the primitive comparison isomorphism in the relative setting ([Schi3l Corollary
5.11]), that the following canonical morphism is an almost isomorphism:

(5.0.16) R il @5 Aty — R fin(L ®; Aintx).

With this in hand, the proof of Theorem applies and gives the result. Indeed,
consider the PD-envelope AY (resp. AY. ) of Ajnr x (resp. of Ainry) with

cris, X cris,Y
respect to the ideal ker(fx : Ainr,x — (’)}) (resp. to the ideal ker(fy : Ay —

(9;&)) Then Agis, x and Agisy are respectively the p-adic completions of Agris’ x
and AY As in the proof of Theorem we obtain from ([5.0.16|) the following

cris,Y "
canonical almost isomorphism

(5.0.17) R [l ®; Alisy — R fin(L ®g Al x),
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from which we deduce that for each n the kernel and the cokernel of the natural
morphism below are killed by p?/:

(5.0.18) R frL @5 Aoy /p" — Rfun(L @3, Al x/p").

Recall from the proof of Theorem that R/ @(IL ® Al x/p") = 0 whenever
7 > 0, hence a spectral sequence:

By = RIim R fro (L ® Al x/p") = B fia(L® Al x)-

cris, X cris, X
As R fy,L is a lisse Z,-sheaf, RJ lm (R fr(L) ® Ay y/p") = 0 for j > 0. It
follows that R’ Jim Rifi(L ® Agrist/p") is killed by p?" for any 5 > 0. In
particular, p*V - EL = 0 whenever j > 0. With i fixed, let H := R’ f. (L® A2y x).
From the theory of spectral sequences, we know that H is endowed with a finite
filtration
0=F*HcFHCc.. . FHc F'H=H,

such that F9H/FIt'H ~ E%i~%. Therefore, F'H is killed by p?V?. On the other
hand, ES"* has a filtration of length i

EY = B3}, CEy 1) C ... CEY' =lm R’ fi(L @ Acris x /p")-

Since in general By, = ker(d,: E" — Ei="+1) it follows that all the successive
quotients of the filtration above are killed by p*"V. So the inclusion E% C ES " has
cokernel killed by p?N?. To summarize, we have a commutative diagram

lek*(L ® A&cris,X) —— ES’Z - @szk* (]L ® Acris,X/pn)

kernel killed by p?N? )
ckernel killed by p2™V?

Eo,i
Hence the natural morphism
(5019) lek* (L ® Agris,X) - I&H lek* (L ® Agrls,X/pn)

has kernel and cokernel killed by p?>V?. Therefore we deduce like in the proof of
Theorem [£.3] that the kernel and the cokernel of the following canonical morphism

are killed by p?N+2NVi;
(5020) szk:*L ®Zp ACJris,Y — Rifk*(]L ®2p Acri&X)-

Inverting p in the above morphism, we obtain the desired isomorphism of our
lemma.

It remains to verify the compatibility of the isomorphism with the extra
structures. It clearly respects Frobenius structures. To check the (strict) compati-
bility with respect to filtrations, by taking grading quotients, we just need to show
that for each r € N, the following natural morphism

Rfi @ Oy (r) — Rfpu(L @ Ox (1))
is an isomorphism: it is a local question, hence it suffices to show this after restrict-
ing the latter morphism to Yz. As Ox(r)|x; ~ Ox|x, and Oy (7)|y. =~ Oyly., we
then reduce to the case where » = 0. The proof of the latter statement is similar
to that of Lemma |4.4] so we omit the details here. [l
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For a sheaf of Oy-modules F with an Oy-linear connection V: F - F ® Ol
we denote the de Rham complex of F as:

xX/y

DRy/y(F):= (... — 0 — F 5 FRoy, Ok y — ...

The same rule applies if we consider an O%'-module endowed with an Oy"-linear
connection etc.
In the lemma below, assume ) = Spf(A) is affine and is étale over a torus

S = Spf(OR{SE, ..., SF}). For each 1 < j < 4, let (S;/pn)neN be a compatible
family of p-power roots of S;. As in Proposition set

V= (y xs, Spa (k{slil/p", LLSEVPY osEY L sgﬂ/p"}))neN € Yorost.

Lemma 5.3. Let V € Y06t be an affinoid perfectoid which is pro-étale over ?P
with V = Spa(R, RY). Let wy be the composite of natural morphisms of topoi

/Xv—)X

w x>
wy : proet proét ét *

Then
(1) for any j >0 and r € Z, R wy.OBeis = RIwy . (Fil" OBeis) = 0; and
(2) the natural morphisms
OX®AOBcris,Y(V) — wV*(OBcris,X)
and
Ox®4 Fil” OBerisy (V) — wy(Fil” OBeyis x)  for allr € Z
are isomorphisms. Here (’)X@AOBCHS’y(V) = ((’)X@)AOAms’y(V)) [1/t] with

OX®AOAcris,Y(V) = 1£1 (OX XA OAcris,Y(V)/pn) 5
and
Ox®a Fil" OBeis,y (V) := lim t7" (Ox @4 FiI™™ Ohcris v (V) -
neN

In particular, if we filter Ox@aOBeyis y (V) using {Ox&a Fil” OBeisy (V) }rez,

the natural morphism
OX@)AOBcris}Y(V) — RwV*(OBcris,X)
is an isomorphism in the filtered derived category.
Proof. (1) Recall that for j > 0, ijV*OIBCI—iS’X is the associated sheaf on Xz of
the presheaf sending U € X, to H'(Uy, OBeyis x ), where Uy := Uy, X x Xv. Now we
take U = Spf(B) € X to be affine such that the composition of U — X together
with f: X — ) can be factored as
u—7T—),

where the first morphism is étale and that 7 = Spf(A{T!,.. Til}) is a d-
dimensional torus over Y. Write 7y = T xy V. Then Ty = Spa(S St with
St = R{TF, ..., T} and S = St[1/p]. Write also Uy = Spa(S,St). For each

1 <4 <d,let (T, /p Jnen be a compatible family of p-power root of T;, and set
_ +1/p> +1/p> S+ . Bo
S =RHTT" ... TP}, S =B, 1y Sas

Seo := St [1/p] and So = S [1/p]. Then (Ss, L) and (Su, SL) are two affinoid
perfectoid algebras over (k, Of)' Let Z:{\\// € Xprosr (resp. 7/:‘; € Tk prost) be the
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affinoid perfectoid corresponding to (Sas, St) (resp. to (S, SE)). So we have the
following commutative diagram of ringed spaces

Uy = Spt(Sa, S%) ——= Uy = Spa(S, S*) —= U = Spf(B) .

| |

Ty = Spa(Ses, L) — Ty = Spa(S,5F) —— =T

|

V = Spa(R, R*) —= Y = Spf(4)

The morphism Z:IT/ — Uy is a profinite Galois cover, with Galois group I" isomorphic
to Z,(1)%.

For ¢ € N, let Z:{\x//q be the (¢ + 1)-fold fiber product of ZZ/ over Uy . So Z/{qu ~
Z;{T/ x I'? is affinoid perfectoid. In particular, for j > 0, Hj(Z:lT/q,OAcris,X)“ =0
(Lemma and

(5.0.21) HO (z];q, OAcﬂS,X) = Homeont (rq, OAmS,X(&;)) .

Consequently, the Cartan-Leray spectral sequence associated with the cover Z:{T/ —
Uy almost degenerates at Fo:

Etlbj - Hj (Z:[“-//qa OAcris,X) = HQ+j (Z/[V, OAcris,X)a

giving an almost isomorphism Eg’o ~ HY(Uy,OAqis,x) for each ¢ € Z. Using
, we see that Eg’o is the continuous group cohomology HY(T, OACIiS’X(Z:{;)).
On the other hand, OA;s x (Z:l\‘//) ~ OAcriS(goo, 5;) by Lemma SO
HY(Uy,OBeis,x) =~ HY(Uy,OAgis,x)[1/1]
~  HYT, OAeris x Uy))[1/1]
HYT, OAeris(Seo, SE))[1/1].
By definition, the last cohomology group is precisely H?(T', (’)Bms(goo, 5;)) com-

puted in Namely, from Theorem we deduce HY(Uy , OBeris, x ) = 0 whenever
q > 0, and that the natural morphism

Ox (U)B 4OBeis(V) = BEAOBeis(R, RY) — HY(T, OByis(Soo, SL)) = H Uy, OBeris x)

is an isomorphism. Varying U in Xy and passing to associated sheaf, we obtain
Ox®40Beisy (V) — wyOBeyis, x,

where by definition, Ox® AOIB%gisyy(V) is the associated sheaf of the presheaf over

Xet sending U € Xyt 10 Ox (U)R4OByis (V).

To concludes the proof of (1) it remains to check that the canonical morphism
below is an isomorhpism:

(5.0.22) Ox@40Beisy (V) — Ox@40Beris,y (V).
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Indeed, using wy.OAgyis x = l'glwv*(OAcri& x/p"™) and Proposition we de-

duce a natural morphism which is injective with cokernel killed by (1 — [¢])2?:

OX@AOACHS,Y (V) — Wy« OAcris,X .
Therefore inverting ¢, we get an isomorphism

OX ®A0Bcris,Y (V) ;> Wy x OBcris,X,
from which the desired isomorphism (|5.0.22)) follows, since the objects on both sides
of loc. cit. are isomorphic in a natural way to wy.(OBeris, x ).

(2) For r € Z, define O 4 Fil" OAqisy (V) and (’)XéAgr’”(’)Acris,y(V) in the
same way as is done for OX®AﬁcriS,y(V). Like the proof above, we have the natural
isomorphism below

OX@A Fllr OBcris,Y (V) L> WY « Fllr OIBcris,Xa

and we need to check that the following canonical morphism is an isomorphism:

Ox®@4Fil" OBy y (V) — Ox&a Fil” OBeigy (V).
To see this, remark first that the morphism above is injective since both sides of the
morphism above are naturally subsheaves of Ox® 4OBeis y (V) ~ Ox @ 4 OByisy (V).
For the surjectivity, by taking the graded quotients, we are reduced to showing that
the natural morphism below is an isomorphism:
(5.0.23) OxéAngOBcris7y (V) — Oxé%AgrrOBcris)y(V).
But gr" OAcyis y (V) & gr" OAqis(R, RT), while the latter is a free module over RY.
Furthermore RT is almost flat over A by the almost purity theorem (recall that V/
is pro-étale over )7? which is an affinoid perfectoid over (k, Oi)) So, for U € Xy
an affine formal scheme,

OxU)BART = lim ((Ox@)/p") @4 RY) ~ (im ((Ox/p") @4 R) ) ).

Inverting p and passing to associated sheaves, we get the required isomorphism
(15.0.23)), which concludes the proof of our lemma. ([l

Lemma 5.4. Let & be a filtered convergent F-isocrystal on X, Y = Spf A, and V' €
Yioross an affinoid perfectoid which is pro-étale over Yi. The canonical morphism
RI(X,DRx;y(£)) ®4 OBuyis,y (V) — RT(X, DRx/y (£)®4O0Beyis y (V)

s an isomorphism in the filtered derived category.

Proof. Write V = Spa(R, RT). To show our lemma, remark first that the morphism
above respects clearly the filtration on both sides. Secondly, since OAqisy (V) =~
OAqis(R, RT) while the latter is Z2-flat over A with Z C OAis(R, RT) the ideal
generated by ([¢]'/?" —1),en (we refer to Definition for this notion and to [Bril,
Section 6.3] for the proof of this assertion), for any coherent sheaf F on X, the
kernel and the cokernel of the natural morphism below are killed by some power of
pZ? (Proposition :
HY (X, F) @4 OAcyis(R, RT) — HY(X, F&4O0Ais(R, RT)).
Inverting ¢ (recall that this inverts also p and [e] — 1), we get an isomorphism

HY(X,F) @4 OBerisy (V) — H(X, FOAOBeis v (V).
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By some standard devissage, we deduce that the morphism in our lemma is an
isomorphism in the derived category. To conclude, we only need to check that the
induced morphisms between the graded quotients are all quasi-isomorphisms. As
in the proof of Corollary we are reduced to checking the almost isomorphism
below for any coherent sheaf F on X:

RT(X,F) @4 gt" OAgisy (V) — RU(X, F&agr" OAgisy (V)),

which is clear since gr"OAyis y (V) is free over R*, which is almost flat over A by
the almost purity theorem. O

From now on, assume f: X — ) is a proper smooth morphism (between smooth
formal schemes) over Oy. Its closed fiber gives rise to a morphism between the
crystalline topoi,

ferist (X0/Ok)eris — (Vo/ Ok ) cris-
Let &€ be a filtered convergent F-isocrystal on Xp/Oy, and M an F-crystal on Xy/Oy,
such that & ~ M?®(n) for some n € N (cf. Remark [3.5). Then M can be viewed
naturally as a coherent Oy-module endowed with an integrable and quasi-nilpotent
Op-linear connection M — M ® Q}Y/Ok.

In the following we consider the higher direct image R’ f.risxM of the crystal
M. One can determine the value of this abelian sheaf on Vy/Oy at the p-adic PD-
thickening )y <+ ) in terms of the relative de Rham complex DRy /y (M) of M.
To state this, take V = Spf(A) an affine open subset of ), and put X4 := f~1(V).
We consider A as a PD-ring with the canonical divided power structure on (p) C A.
In particular, we can consider the crystalline site (X4 ,0/A)eis of Xa,0 =X xy3 Vo
relative to A. By [Ber96, Lemme 3.2.2], the latter can be identified naturally to the
open subsite of (Xp/Oy) whose objects are objets (U, T) of (Xy/Of)cris such that
f(U) C Vo and such that there exists a morphism a: T — V,, :=V @4 A/p"*! for
some n € N, making the square below commute

U——T .

V0(—> Vn

Using [Ber96l Corollaire 3.2.3] and a limit argument, one finds a canonical identi-
fication 4 4

lecris* (M)(VO7 V) L> Hl((XA,O/A)Crisu M)
where we denote again by M the restriction of M to (Xa,0/A)eris. Let u = Uy, o/A
be the morphism of topoi

(Xa,0/A)qis — XA et

such that u.(F)U) = H(Uy/A) i, F) for U € Xae. By [BOL Theorem 7.23],
there exists a natural quasi-isomorphism in the derived category

(5.0.24) Ru.M — DRx /vy (M),
inducing an isomorphism H! (Xa,0/A, M) = H' (X4, DRx,y(M)). Thereby
(5.0.25) H i (Xa0/A,M) = H'(Xa, DRy )y (M)).

Passing to associated sheaves, we deduce that

R furiss(M)y = R' f.(DRx,y(M)).
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On the other hand, as f: X — ) is proper and smooth, Rif*(DRx/y(g)), viewed
as a coherent sheaf on the adic space Y, is the i-th relative convergent cohomology
of £ with respect to the morphism fy: Xy — Vo. Thus, by [Ber86, Théoreme 5] (see
also [Tsu, Theorem 4.1.4]), if we invert p, the Oy[1/p]-module R’ f,(DRx vy (£)) ~
R f.(DRx/y(M))[1/p], together with the Gauss-Manin connection and the nat-
ural Frobenius structure inherited from R?fepise (M)y =~ R"f*(DRX/Y(/\/l))7 is a
convergent F-isocrystal on Vy/Oy, denoted by R f s« (€) in the following (this is
an abuse of notation, a more appropriate notation should be R!fq conv«(£)). Using
the filtration on €, one sees that R’ feis.(€) has naturally a filtration, and it is
well-known that this filtration satisfies Griffiths transversality with respect to the
Gauss-Manin connection.

Proposition 5.5. Let X — Y be a proper smooth morphism between two smooth
formal schemes over Oy. Let € be a filtered convergent F-isocrystal on Xy/Oy and
L a lisse 2p—sheaf on Xpross- Assume that € and L are associated. Then there is a
natural filtered isomorphism of OB s,y -modules

(5~0-26) szk*(L ®2p Bcris,X®fk_1(I)Bcris,)’) ; wj_}l(Rifcris*(g)) & OBcris,Y
which is compatible with Frobenius and connection.

Proof. Using the relative Poincaré lemma (Proposition[5.1] (1)) and the fact that L
and & are associated, we have the following filtered isomorphisms compatible with
connection:
R fro (L @ Beyis x D f5, ' OBeyis v)
— R'fr(L® DRx/y(OBesis x))
(5.0.27) = Rifk*(DRx/y(]L ® OBeyis, x))
L) Rifk* (DRX/y(w;(lé' X O]Ecris,X))

~

— Rifk* (w;c-lDRx/y((‘:) & OBcris,X)~

On the other hand, we have the morphism below given by adjunction which respects
also the connections on both sides:

(5.0.28) w},"R'f.(DRx/y(€)) ® OBerisy — R’ fru(wy ' DRx )y (€)@OBeris x)-

We claim that the morphism (5.0.28) is a filtered isomorphism. This is a local
question, we may and do assume first that J = Spf(A) is affine and is étale over
some torus defined over Oy. Let V' € Y04t be an affinoid perfectoid pro-étale over

Vi, As R'f.(DRx/y (€)) = R’ feris«(€) is a locally free Oy[1/p]-module over ) and
as OBcis(V) is flat over A (|Bri, Théoreme 6.3.8]),

('R f.(DRx )y (€)) ® OBeisy ) (V) = H (X, DRx/y (€)) ®a OBcyis y (V).
So we only need to check that the natural morphism below is a filtered isomorphism
HZ(X, DRx/y(g)) XA OBcris,Y(v) — Hi(X\/, ’w;leRx/y(g)@O]Bcris,X).

By Lemma one has the following identifications that are strictly compatible
with filtrations:

H'(Xv,wy'DRx/y () ® OBeis x) =~ H' (X, Rwy.(wy' DRx/y () ® OBeyis x))
H’L(X7 DRX/Y(g)(/g\)AOIBcris,Y(V))-
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Thus we are reduced to proving that the canonical morphism below is a filtered
isomorphism:

Hl(XvDRX/Y(g)) X4 OBcris,Y(V) — HZ(Xa DRX/Y(5)®AOBcris,Y(V))a

which follows from Lemma [5.4l

Composing the isomorphisms in (5.0.27) with the inverse of (5.0.28)), we get the
desired filtered isomorphism is compatible with connections on both
sides. It remains to check the Frobenius compatibility of . For this, we may
and do assume again that Y = Spf(A) is affine and is étale over some torus over
Oy, and let V' € Y104 some affinoid perfectoid pro-étale over Y. In particular, A
admits a lifting of the Frobenius on ), denoted by o. Let M be an F-crystal on
Xo/Oy, such that & = M*(n) for some n € N (Remark [3.5). Then the crystalline
cohomology H®(Xy/A, M) is endowed with a Frobenius which is o-semilinear. We
just need to check the Frobenius compatibility of composition of the maps below
(here the last one is induced by the inverse of (5.0.26))):

Héris(XO/AJM) — H (Xo/A,M)[l/p] — Hi(XﬂDRX/Y(g)) —

cris

(U};l(Rifcris* (5) ® OBcris,Y) (V) — HZ (XVa L & ]Bgcris,X@fk_lOBcris,Y)a
which can be done exactly in the same way as in the proof of Theorem 3.2 [

The relative crystalline comparison theorem then can be stated as follows:

Theorem 5.6. Let L be a crystalline lisse ip—sheaf on X associated to a filtered
F-isocrystal £ on Xo/Oy. Assume that, for any i € Z, R'fi.LL is a lisse Zp—sheaf
on'Y. Then R fi.L is crystalline and is associated to the filtered convergent F-
isocrystal R ferig:&.

Proof. Let us first observe that the filtration on R’ f.,i.€ is given by locally direct
summands (so R f.is+& is indeed a filtered convergent F-isocrystal on Vy/Oy). To
see this, one uses [Schi3, Theorem 8.8]: by Proposition m the lisse 2p—sheaf
L is de Rham with associated filtered Ox-module with integrable connection .
Therefore the Hodge-to-de Rham spectral sequence

E}7 = R f, (gt (DRx/y (£))) = R f.(DRx,v(€))

degenerates at E;. Moreover Eiﬂ , the relative Hodge cohomology of £ in [Sch13|
Theorem 8.8], is a locally free Oy-module of finite rank for all 7,5 by loc. cit.
Therefore the filtration on R’ f,(DRx/y (€)) = R’ feris«(€), which is the same as
the one induced by the spectral sequence above, is given by locally direct summands.

To complete the proof, we need to find filtered isomorphisms that are compatible
with Frobenius and connections:

Rifk* (]L) ® OBcris,Y ; w)_}lRifcris* (5) ® OBCriS,Y7 i€ Z.

By Proposition [5.2] and Proposition [5.5] we only need to check that the natural
morphism below is a filtered almost isomorphism compatible with Frobenius and
connections:

Rifk* (]L 02y Acris,X)®OAcris7Y — szk* (L & Acris,X®f];10Acris,Y)-
The proof of this is similar to that of Proposition [5.2f one just remarks that for
each n € N, OAcisy /0"y =~ Acris,y |3 (w1, ..., ws) /p" hence OAcis y |5 /p™ is free
over Acisy/p™ with a basis given by the divided powers wl® with o € N (recall
that for 1 < j <6, w; = S; — [57] € Oheris v |5)- O
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6. APPENDIX: GEOMETRIC ACYCLICITY OF OBy

In this section, we extend the main results of [AB] to the setting of perfectoids.
The generalization is rather straightforward. Although one might see here certain
difference from the arguments in [AB], the strategy and technique are entirely
theirs.

Let f: X = Spf(B) — Y = Spf(A) be a smooth morphism between two smooth
affine formal scheme over Oy. Write X (resp. Y) the generic fiber of X' (resp. of
V). By abuse of notation the morphism X — Y induced from f is still denoted by

!
Assume that ) is étale over the torus S := Spf(Or{S:, ..., Sgﬂ}) defined over

Oy and that the morphism f: X — ) can factor as
i N Y,

so that 7 = Spf(C) is a torus over ) and the first morphism X — T is étale.

Write C = A{Tlﬂ,...,Tfl}. For each 1 < ¢ < d (resp. each 1 < j <), let
{Til/p" tnen (resp. {S;/pn}neN) be a compatible family of p-power roots of T; (resp.
of S;). As in Proposition we denote by Y the following fiber product over the
generic fiber Sy of S:

Y xs, Spa(k{ST/"" .. SEVPTY O {SEVPT L ST,
Let V' € Yprost be an affinoid perfectoid over f’g with V = Spa(R, RY). Let Ty =
Spa(S,ST) be the base change T; xy V and Xy = Spa(S,S™) the base change
X xy V. Thus St = RH{TE, ..., T} and S = S*[1/p]. Set
St =RT {letl/p“7... 7Tdi1/p°°}7 g;ro = B®¢ST,

Se = SE[1/p] and Ss := SL[1/p]. Then (Sa,SE) and (Ss,STL) are affinoids
perfectoids and
SZ: = Rb"r {(le)il/poc,. ] (T(z)il/poc} )

where T} := (E,Til/p,Til/p2,...) € S°F. The inclusions ST C St and St c S
define two profinite Galois covers. Their Galois groups are the same, denoted by T,
which is a profinite group isomorphic to Z,(1)¢. One can summarize these notations
in the following commutative diagramme

T

ST S+ B
T T étale
St i S+ C

RH{TEYPT L TEPTY L RHTE T —— A{TE, L TEY

R

Rt
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The group I' acts naturally on the period ring OBeis(Seo, SE) and on its filtration
Fil” OB.yis(Soo, SL). The aim of this appendix is to compute the group cohomology

HY (r, OBeyis (S*OO, ST;)) = HL (F, OAcris (500, 5;)) [1/1]

and
9 (F,Fir‘ OBeris (5‘00,?;)) = lim HY, <F,;Fil"+” Oheris (§OO,§O+O))
n>|r|
for q,r € Z.

In the following, we will omit systematically the subscript “cont” whenever there
is no confusion arising. Moreover, we shall use the multi-index to simplify the
notation: for example, for a = (a1,...,aq) € Z[1/p)¢, TS := T - Ty? -+ Tg4.

6.1. Cohomology of OB.,;s. We will first compute H?(T'; OA is(Soo, SEL)/p™) up
to (1 — [¢])*°-torsion for all g,n € N.

Lemma 6.1. Forn € Z>, there are natural isomorphisms
Beris(By RO /0" @ oy e WSS/ = Aeris (S0, S5 /1"
and
(Acris(Sac, S30)/P" ® Oharis (R, RY) /p") (ua, ..., ua) — Oharis(So0; S3) /0"
sending u; to Ty — [T?]. Here the tensor product in the last isomorphism above is

taken over Agis(R, RY)/p™.
Moreover, the natural morphisms

Acris(R, R+)/pn = Acris (oo, S:o)/pnv OAcris(R, R+)/pn — OAuis(Seo, S;ro)/pn
are both injective.
Proof. Recall ¢ = [p°] —p. We know that Ais(Seo, SE) is the p-adic completion of

W (82 [Xo, X1, -]
(m'Xm — fm tm e Zzo) ’
Note that we have the same expression with R in place of So.. We then have

W (R"F)[Xo, X1, -]
(m'Xm — §m|m S ZZO)

= W(ng) <X)W(I%bJr) Agris(R7 R+)
The first isomorphism follows.
Secondly, as V lies above Yz, by Proposition we have

Aais(R, R {(wr,...,ws)} — OAcis(R,RT), w; +— S; —[S7]

Agris(SOO7S;ro) = W(SQ) %\m:(),l, =

Al (S0, ST) ¢ W(SID) @ oy

where Sg = (5, SVP,S;/Z’Q, ...) € R°*. Similarly

7

Acris(Soc, SE){(u1, ... ug,wi, ... ws)} = Oharis(Soos SL),  us = Ti—[T7], w; = S;—[S7].
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Thus (the isomorphisms below are all the natural ones)

Oheris (S, 5%)  ~ <1w°°’s‘>+°)><u1...udw1...w5>
pn pn ? 9 ) ) 3
~ A1ris Soovs;_o Ari' R7R+
— ¥®Acris(RvR+) (Cs(n)wl,...,ud,wl,...,w@)
p P p
~ Acris(scxw S;_o) OAcris(R7 R+)
— —_— ®Acris(R=R+) T — <’LL1, .. ,ud>
p P p
~ Acris Soo; S:o OAcris Rv R+
<(n) ®Acris(R,R+) (n)> <u1,...,ud>.
p P p

So our second isomorphism is obtained.
Next we prove that the natural morphism Aqs(R, RT)/p" — Acris(Soo, ST)/P"
is injective. When n = 1, we are reduced to showing the injectivity of
(RbJr/(pb)p)[leXQ’ - } N (Sb+/(pb)p)[X17X2’ - }
(Xt x0,..) (Xt x0,..) ’
or equivalently the injectivity of

R/ — 87 /00y = (R /) ) ()=, (e

which is clear. The general case follows easily since A ris(Seo, ST;) is p-torsion free.
One deduces also the injectivity of OAcis(R,")/p"™ = OAcris(Soo, ST)/p™ by using
the natural isomorphisms OA (R, RT)/p" =~ (Auis(R, RT)/p™) (w1, ..., ws), and
OAris(So0, SL) /D™ =~ (Acris(Soos SL)/p™) (U1, - . ., ug, w1, ..., ws). This concludes
the proof of our lemma. (I
Proposition 6.2. Ais(Se0, ST)/p" is free over Agis(R, RT)/p™ with a basis give
by {[1")%|a € Z[1/p)*}.
Proof. By Lemma Acris(Soo, SE)/p" is generated over Agis(R, RT)/p™ by el-
ements of the form [z] with x € S%F = RVF{(T?)*V/P™ ... (T%)*/P™}. Write
By, C Agis(Seo, SE)/p" for the Acyis(R, RT)/p"-submodule generated by elements
of the form [z] with @ € S := R [(T})XV/P™, ... (T))F/P™] c S°F. We claim
that B, = Acis(Sso, SL)/p™.

Since S°F is the p’-adic completion of S, for each z € S°* we can write z =
Yo + p’x’ with 2’ € S. Tteration yields

r=yo+p Y+ + @) o + ()P
with y; € S and 2 € S°F. Then in W (S%F):
(7] ol + P’ 1ln] + -+ + [(0")P lyp—1] + [(¢°)P][2"] mod pW (SL)
[yo] + &[] + -+ + & ypa] +€7[2"] mod  pW(SZH).

As ¢ € Acris(SooaS:_o) has divided power, &P = p!- g[p] € pAcris(Soovs;_o)' So we
obtain in Ais(Seo, SE)

[2] = [yo] +€[ya] + - + € yp—1] mod  pAeris(Ses, SL)-

1"
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For any a € Aqis(Seo, SE)/P™ = Acris (R, RT) /™ @ (go+) jpn W(S°+)/p", we may
write

a= Z Nilzi] +po/,  x € 8% N € Aris(R, RY) /", 0 € Acris(Sso, ST) /"
i=0
The observation above tells us that one can write
a =B +pa//a Bo € B, o € Acris (Soo, S;ro)/pn'
By iteration again, we find
o = /80 +p51 + - 'pn_lﬁn—l +pn&7 607 T 7671—1 S Bnyd € ACris(S<>07 S:o)/pn
Thus
o = BO +p61 +-- 'Pn_lﬁn—l S Bn - Acris<Sc>oz S;)/pn
This shows the claim, i.e. Agis(Soo, SE)/p" is generated over Aqis(R, RY)/p™ by
the elements of the form [z] with € S = R*F[(TP)*V/P™ ... (T3)*V/P™) C S°F.
Furthermore, as for any z,y € S%F
[z +y] =[z] + [y] mod pW(ST),

a similar argument shows that Acyis(Seo, ST)/p™ is generated over Ais(R, RT)/p™
by the family of elements {[T°]%|a € Z[1/p]?}.

It remains to show the freeness of the family {[T°]%|a € Z[1/p]?} over Aqis(R, RY)/p".

S
For this, suppose there exist A1, -+, Ap € Acris(R, R+) and distinct elements
a, ,a,, € Z[1/p]? such that

Z /\z [Tb]gi € pnAcris(Sooa S;)

i=1
One needs to prove A; € p"Aqis(R, RT) for each . Modulo p we find in Acyis(Seo, ST)/p

that .

Z)T’ (Tb)gi =0,

i=1
with \; € Agis(R, RT)/p the reduction modulo p of A;. On the other hand, the
family of elements {(7°)2: a € Z[1/p]¢} in

oS, Sy fp = SL@)N2: 05, ]

(08,0%,...)
B[P I(T)EP™ o (T35 6,8,
- (68,6%,...)
is free over Aqs(R, RT)/p ~ R/ ((((%b )62’) [.‘?_2)’53""] . Therefore, \; = 0, or equivalently,

i = p\; for some N, € Agis(R, RT). In particular,
Z Ai [Tb]% =r (Z )‘; [Tb]ai> € p"Acris(Soos S;_o)
i=1 i=1

But Auis(Ss, S1L) is p-torsion free, which implies that

3TN € p" Acris(Soo, SL).
=1
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This way, we may find \; = p”j\i for some 5\1- € Auis(R, RT), which concludes the
proof of the freeness. ([

Recall that I' is the Galois group of the profinite cover (Sx,S%) of (S, S™). Let
e= (9 M )€ (9% be a compatible system of p-power roots of unity such that

€® =1 and that e # 1. Let {71,...,74} be a family of generators such that for
each 1 <7 < d, v; acts trivially on the variables T; for any index j different from i
and that v;(T7) = €T?.

Lemma 6.3 ([AB] Lemme 11). Let 1 < ¢ < d be an integer. Then one has
’Yi([Tz‘b]p ) = [Tib]p i OAcris(Soo, SL) /P

Proof. By definition, ~;([T?]P n) = [P [T?P" in OAeqis(Seo, SEL). So our lemma
follows from the fact that [¢]?” — 1 = exp(p"t) — 1 = ZTle"Tt[T] € p" Acris- O

Let A, be the OA.s(R, RT)-subalgebra of OAqis(Se,SE)/p" generated by
[Tib]ipn for 1 < i < d. The previous lemma shows that I' acts trivially on A,,.
Furthermore, by the second isomorphism of Lemma [6.1] and by Proposition we
have

OA ris SooaS+ ~
om0 Toor (n =) ~, P AT (uns . ug),  Ti— [T7] = .
p a€Z[1/pN[0.p)?

Transport the Galois action of T' on OAyis(Seo, SE)/p™ to the righthand side of
this isomorphism. It follows that

Yilui) = u; + (1 — [e)[T7].

Therefore,
([n] +ZTb 1— [V [n Jl.
For other index j # ¢, v;i(u;) = u; and hence ~;(u g ]) [  for any n. Set
X, = P Ap[T°]%, and A, b A

a€(Z[1/p]N[0,p™)) 4\ 24 a€ezn[o,pm)?
Then we have the following decomposition, which respects the I'-actions:
OAris(So0, SL) /" = X (g, ..., ug) @ Aplu, ... ug).

Proposition 6.4 (J[AB] Proposition 16). For any integer ¢ > 0, HY(T', X, (u1, ..., uq))
is killed by (1 — [e]'/P)2.

Proof. Let A,[T"]¢ be a direct summand of X,, with a € (Z[1/p] N [0,p"))? \ Z.
Write @ = (ay, .. .,aq). Clearly we may assume that a; ¢ Z.

We claim first that cohomology group H?(T'y, A,[T°]2) is killed by 1 — [¢]'/? for
any ¢, where I'y C I is the closed subgroup generated by ;. As I'; is topologically
cyclic with a generator ;, the desired cohomology HY(I'y, A,, - [T°]%) is computed
using the following complex

An- [T 25 A, - (1),

We need to show that the kernel and the cokernel of the previous map are both
killed by 1 — [¢]'/?. We have (y; — 1)([T"]%) = ([e)** — 1)[T’]. Since a; ¢ Z, its
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p-adic valuation is < —1. Therefore, 1 — [e]'/? is a multiple of 1 — [¢]**, which

implies that coker(y — 1: X,, — X,,) is killed by 1 — [e]'/?. On the other hand,

let = X\ [T°]2 be an element in ker(y; — 1: A, - [T°]¢ — A, - [T°]%). Then

(y1 — 1)(x) = A([]* — 1)[T"]* and necessarily A([e]** —1) = 0. Since 1 — [e]'/? is a

multiple of [e]* — 1, (1 — [e])A = 0 and thus (1 — [¢]'/?)x = 0, giving our claim.
Now for each 1 < i < d, let

B0 . {a: (a1,...,aq) € (Z[l/p]ﬂ[(),pn))d Can,. .. a1 € Zya; & z}

and
X = @ AT
acE{)
Then we have the following decompositions which respect also the I'-action:

d d
Xn:@Xg), Xn(ul,...,ud>:@X?(uh...,u@.
i=1 i=1

So we are reduced to proving that for each 1 < i < d, Hq(F,Xsf) (U1, ... uq)) is
killed by (1 — [¢]'/?)? for all ¢ > 0. By what we have shown in the beginning of
the proof, H4(Z,i, ng)) is killed by 1 — [¢]'/P. As ; acts trivially on u; for j # i,
one computes as in [AB| Lemme 15] and then finds that H(Z,;, X (uy,...,uq))
is killed by 1 — [¢]'/?. Finally, one uses the Hochschild-Serre spectral sequence to
conclude that Hq(F,ng) (uy ..., uq)) is killed by (1 — [¢]'/P)? for any ¢ > 0, as
desired. (]

The computation of H4(T', A, (u1,...,uq)) is more subtle. Note that we have
the following decomposition

d
Anurs ) = R)(Oheris (R, B /p") 11775 (w),
i=1
where the tensor products above are taken over OAis(R, RT)/p™.
We shall first treat the case where d = 1. We set T := Ti,u := u; and
v := ;. Let A{™ be the A,-submodule of OAris(Soo, SE) /p™ generated by the
ul™*al /[T°]%’s with m 4+ a >0 and 0 < a < p". Then

A, (u) = A, [[Tb]} (=" A,

m>—_pn
Consider the following complex:

(6.1.1) Ay [ () 2= A, [17°7] ¢,
which computes HY(T', A, (u)) = H? (T, A, [[T°]] (u)).

Lemma 6.5 ([AB] Proposition 20). The cokernel of (6.1.1)), and hence H (T, A, (u))
for any q > 0, are killed by 1 — [e].

Proof. We will proceed by induction on m > —p™ to show that (1 — [e])Aglm) is
contained in the image of (6.1.1). Note first AGPY) = A, -

w—mww%ﬁ=u—mﬁﬁf?

W’ while
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Thus (1—[¢e]) {77 i contained in the image of (6.1.1)). Let m > —p™ be a fixed in-
teger. Then A i generated over A,, by % fori=1,...,D :=min(p",p"+
m). On the other hand, for u[™*4/[T"]* € A, [[T"]] (u) with max(0, —m) < a <
p", we have

a m+a a (u+ (1 — 1€ ) Tb )[m+a] — e]au[m—i-a]
"y~ D@l DD - |

7]

ylm+al

SRS ESp MR ) e
ig_mjra

|
—~
—

" u[m«#afi]

+ Z (1= DU R

at+1<i<a+p"™
i<m-+a

+...
As for n > 2, (1 —[¢]))[" is a multiple of 1 —[¢] (JAB, Lemme 18]), and all the terms

from the second line of the last equality belong to A%mfrpn) forr =1,2,.... By
induction hypothesis, we may assume that all these terms belong to the image of

(6.1.1). Write

L[ (1-19)Y
P i d B =1V
4= 10 W A=
Modulo the image of , we find for max(0,—m) <a < p"
U[m+a] U[erafl] U[m+a72] U[erp"fD] B
(1= (% T T et PR +-~-+5a<an>[Tb]pn_D) =0;
and for a = p”, as [e]?” = 1 in Ags/p", modulo the image of (6.1.1)) we have
[m+p™—1] [m+p™—2] [m+p™—D]
u u u
(1160 (s + s+ 90 ) =0
Therefore, combining these congruences and modulo the image of (6.1.1) we have
[m+p"—1] [m+p”—D]
u u
_ M) =

(-1 (e sy ) - M =0
where My(Lm) is the matrix

1 G,pn,1 0 e 0

B2 1 apn_2 ... 0

- : S MD (Acris/pn)~
Bp-1 Bp-2 Bp-3 ... ap_p
Bp  Bp-1 Bp-2 ... 1

One can check that this matrix is invertible ([ABl Lemme 19]), so modulo the image
of (6.1.1)) we have (1— [e})%r:n—j =0for 1 <i < D. In other words, (1—[e]) {m)

is contained in the image of (6.1.1)). (I

One still needs to compute H° (T', A,,(u)). One remarks first that we have the
following isomorphism

(Oheris (R, BH) /") [T (1) =5 Anfu) = (Oheris( R, BY) /p") [[T°] ()
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sending T to u + [T°]. Endow an action of I' on (OAuis(R, RT)/p™)[T* ] (u) via
the isomorphism above. So H°(T, A,,{u)) is naturally isomorphic to the kernel of
the morphism

(6.1.2) v —1: (Oheuis(R, BY) /p") [T (1) — (Oheris(R, RT)/p") [T ](u),
and there is a natural injection
C ®4 Oleris(R,RY) /p" = (OAeris(R, RT) /p")[T*'] — HO(T, A, (u)).
Lemma 6.6 ([AB] Lemme 29). The cokernel of the last map is killed by 1 — [e].
Proof. We have vy(u) =T — [][T"] = (1 — [e])T + [Ju. Therefore
(y=D@™) = (1= [T+ [u)"™ —ulm

= ([¢" - 1)u[m] + Z(l _ [d)[ﬂTj[E]m—ju[m_j]
Jj=1

(1= [e]) [ pmul™ + 3" BT =T ulm =30 |

j=1

where pt,, = [61}:;]1, B = (11__[5[}6)][” (so f1 =1). For N > 0 an integer, consider the
matrix

0O T T8, ... TNgy

0y Tl ... TV 'Bn-ale]

G =1 D : € My N (Acris n[TY).
00 0 .. THN!
00 0 e

Then we have
(v = DLl . u) = (1= ) (1wl uMH GO,

o) _ ( 0 HWM >

Write

0 D
with D = (0,...,0, uy) a matrix of type 1 x N. On checks that the matrix HW) ¢
My (Acris o [TF1]) is invertible.
Now let o € (OAgis(R, RY)/p™) [T*'] (u) be an element contained in the kernel

of (6.1.2)). Write

N

a = Zasu[s] € (((’)Acris(R, R+)/p") [Til]) (u), as € (OAqis(R, R+)/p")[Ti1].
s=0

As « is contained in the kernel of (6.1.2)),

(7_ 1)(17u7‘"7u[N])(aO7a17...,aN)t = 0

(1= D)L, .., ul™) ( H"Ma ) —0

Unan
with @ = (a1, ...,ayn). As the family {1,u,..., u[N]} is linearly independent, (1 —
[()HMNa = 0. Since HN) is invertible, we deduce (1 — [¢])a = 0. In other words,
(1 —[e])a; = 0 for ¢ > 1 and the lemma follows. O

It follows that
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Now we are ready to prove

Proposition 6.7. For anyd >0,n >0 andq >0, H1 (I, A, (u1,...,uq)) is killed
by (1 — [€])??~1. Moreover, the natural morphism

(6.1.3)  C ®4 OAuis(R, RT)/p" — HO(T, Ap(ur,...,uq)), Tir u;+ [T7]

is injective with cokernel killed by (1 — [¢])??71.

Proof. Recall that we have the decomposition

d
Anurs. o ua) = QROhens (R RY)/p") [T+ (ws).
i=1
We shall proceed by induction on d. The case d = 1 comes from the previous two
lemmas. For integer d > 1, one uses Hochschild-Serre spectral sequence

Ey’ = H'(T/Ty, HY (U1, A un, . ug))) = HH (T, Apfun, . ua)).

Using the decomposition above, the group H7(T'y, A, (uy, ..., uq)) is isomorphic to
HY (T, Oherio(R, B /" [T | (1)) @ (9 (Oherie (B, RY) /0" | [T ()
So by the calculation done for the case d = 1, we find that, up to (1 — [e])-torsion,
HY (T, An{uq,...,uq)) is zero when j > 0, and is equal to

(Oheris(R, R [p")TE) @ (@1y(Oharis(B, RY) /5") [T (i)
when j = 0. Thus, up to (1 — [¢])-torsion, E5? = 0 when j > 0 and E2° is equal to
(Oheris(B, B4) /)11 @ HY (T, (@ (Oheris(R, RY)/p) [T ] (ui)) ).

2(d—1)—1+1

Using the induction hypothesis, we get that, up to (1—[e]) -torsion, E;O =

0 when ¢ > 0 and
ES® = (Oheis(R, RY)/p™)TEL, ... TE] = C ©4 Oheris(R, RY) /p".
As Ey’ =0 for j > 1, we have short exact sequence
0 — ELY — HYT, A, (u1,...,uqg)) — BELH1 —0.

By what we have shown above, E4 1! is killed by (1 — [€]) (as this is already
the case for B~ "), and E20 is killed by (1 — [¢])2¢2 for ¢ > 0 (as this is the
case for EX?), thus HY(L, A, (uy,...,ug)) is killed by (1 — [¢])2¢~1. For q = 0,

HOT, A (uy, ... ug)) ~ B9 = ES°. So the cokernel of the natural injection
C @4 OAqis(R, RY) /p" — HY(T, A, {uy, ..., uq))
is killed by (1 — [€])29=2, hence by (1 — [¢])??~L. .

Remark 6.8. With more efforts, one may prove that HY(T', A, (u1,...,uq)) is
killed by (1 — [¢])? for ¢ > 0 ([AB| Proposition 21]), and that the cokernel of the
morphism (6.1.3) is killed by (1 — [¢])? ([ABl Proposition 30]).

Corollary 6.9. For anyn >0 and any q > 0, HY(T', OAis(Soo, SL)/p") is killed
by (1 — [e])??. Moreover, the natural morphism

C@AOAcris(Ra R+)/pn — HO(Pa OAcris(Soov S:o)/pn)
is injective, with cokernel killed by (1 — [€])??.
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Recall that we want to compute H?(I', OBeis(Sso, S5)). For this, one needs

Lemma 6.10. Keep the notations above and assume that the morphism fv: X =Y
is étale; thus V. = Spa(R, RT) and X xy V = Spa(S,S™) = Spa(Se,SL). The
natural morphism

B®AOAcris (Ra R+) — OAcris(gwy 5:0)

is an tsomorphism.

Proof. By Lemma we are reduced to showing that the natural map (here
w; = S; - [53])
B®AACriS(R7 R+>{<w17 AR ,'LU5>} —> Acris(ga §+){<'LU1, MR U}§>}

is an isomorphism. Since both sides of the previous maps are p-adically complete
and without p-torsion, we just need to check that its reduction modulo p

B/p ®A/p (Acris(Ra R+)/p)<w17 e ,’U}5> — (Acris(ga §+)/p)<w17 e ,’U}5>
is an isomorphism. Note that we have the following expression

R /((0°))[0m i Ziml1<i<s,men
A (R, Rt Wy, ..., ws) ~ ( my Wi, Lim[1<i<,me
(Avcris ( )/p)(wr 5) T A

)

and the similar expression for (Aeis(S, S1)/p)(ws, ..., ws), where 8, is the image
of M+ () with 7y : 2 + 2P /p. One sees that both sides of the morphism above are
p’-adically complete (in fact p° is nilpotent). Moreover R** has no p’-torsion. So
we are reduced to showing that the morphism

(RF/9°) [0 Wiy Zim)1<i<s,meN (S /%) O, wi, Zim)1<i<s,meN

P D P 4 D P
(6, Wy, Zir, ) 1<i<8,meN (Om,w!, Z} )i<i<s,meN

B/p ®A/p
is an isomorphism. But R"T/p’ ~ R /p and 5% /p’ ~ St /p, so we just need to
show that the following morphism is an isomorphism:

(R™ /D)0 Wiy Zim|1<i<s,men . (§+/p) [0 s Wiy Zim|1<i<s,meN
(6, wl, Z8 )i<i<smen (0, Wl ZP )i<i<smen

a:B/p®asm
To see this, we consider the following diagram

ST /l0m wi, Zim)1<i<s,men
P p P
(0%, w27, )1<i<5,meN

R /pl0m wi, Zim]1<i<s,men
(6%, w} , ZY )1<i<s,men

B/p——=B/p®ayp

étale
étale étale

A/ RY /pldm wi, Zim]1<i<smen
p (Omw?, ZY )1<i<s,meN

It follows that « is étale. To see that « is an isomorphism, we just need to show
that this is the case after modulo some nilpotent ideals of both sides of «. Hence
we are reduced to showing that the natural morphism

B/p@as R /p — 5% /p

is an isomorphism, which is clear from the definition. (Il
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Apply the previous lemma to the étale morphism f: X — 7, we find a canonical
I'-equivariant isomorphism
BRcOAis(Seo, 55) —+ Oeris (S0, 52).
In particular, we find
H(T, B¢ OAais(Soc, 5%)) = H(T, Ohcris(Soc, 5L))-
Now consider the following spectral sequence
Ey? = R'lim HY (T, B ®¢ OAeris(Soo, SL)/p") = H'H (T, BEoOAcris(Soc, SL))

which induces a short exact sequence for each i:
(6.1.4)

0— R! @1” H' YT, B®¢ OAuis(Ssos Soo) /") — HY(T', B¢ OAnis(Seo, S1))
— lgln Hi(F,B Re OAcris(Som SOO)/p") — 0.
As B is flat over C, it can be written as a filtered limit of finite free C-modules,

and as I' acts trivially on B, the following natural morphism is an isomorphism for
each i:

B ®c H'(T, OAgqis(Soc; Soo)/p") — HI(T, B ®¢ OAcris(Socs Sso) /™).
Therefore, fori > 1, H(T', BRc OAis (S, ST) /p™) is killed by (1—[€])2¢ by Corol-
lary Moreover, by the same corollary, we know that the following morphism is
injective with cokernel killed by (1 — [¢])?%:

C ®4 Ocris(R, RT) /p" — H(T, OAcris(Seor SL)/07)-
Thus the same holds if we apply the functor B ® c — to the morphism above
B®4 OAeris(R,RY)/p" — B®c H(T', OAcris(Sos, SL) /0™).
Passing to limits we obtain an injective morphism
BRAOAuis(R,RT) — lim (B®c H(T', OAuis(Soc, SL) /p™))

whose cokernel is killed by (1 — [¢])??, and that
Rl &El (B Rc HO(F7 OAcris(Sooa S;_o)/pn))

is killed by (1—[¢])2?. As a result, using the short exact sequence (6.1.4]), we deduce
that for i > 1, H'(T, B&cOAris(Seo, SE)) =~ HY(T, OAeris(Seo, SL)) is killed by
(1 — [e])*?, and that the canonical morphism

B(/g\)AOAcris(Rv R+) — HO(Fa B®COAcris(Swv S;)) = HO(Fa OAcris(goov 5;))

is injective with cokernel killed by (1 — [¢])?¢. One can summarize the calculations
above as follows:

Proposition 6.11. (i) For any n > 0 and ¢ > 0, HY(T, OAcis(Seo, SL)/p™) is
Killed by (1 — [¢])??, and the natural morphism

B®4 Oheris(R, RY) /p" — HO(T', OAw1is(Soo, S)) /0"

is injective with cokernel killed by (1 — [€])?<.

(ii) For any q > 0, HY(T, OAris(Soo, SL)) is killed by (1— [€])*¢ and the natural
morphism o
B®4O0Ais(R, RT) = H°(T, OAcyis(Soc, SL))
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is injective, with cokernel killed by (1 — [¢])?<.
From this proposition, we deduce the following

Theorem 6.12. Keep the notations above. Then HY(T, OBeyis(Ss0, S5)) = 0 for
q > 1, and the natural morphism

B&AOBeyis(R, RY) — H(T, OBeyis(Seo, ST))
is an tsomorphism.

Proof. By the previous proposition, we just need to remark that to invert 1 — [e]
one just needs to invert ¢, as

RN
t=log(le) = =S (n=1)!- (A= Y = =1 = [h T (n—1)!- (11_[[])

€
n>1 n>1 }
1— [y —~

Here, by [ABl Lemme 18], % € ker(Acis RN Or), hence the last summation

€
above converges in Acps. =

6.2. Cohomology of Fil" OB..;s. We keep the notations at the beginning of the
appendix. In this §, for simplicity, we will denote OAcriS(goo, gjo) (resp. Fil" OAmS(gom gjo))
by OAgis (resp. Fil" OA.s). This part is entirely taken from [ABl §5], which we

keep here for the sake of completeness.

Lemma 6.13. Let g € Ny, and n an integer > 4d + r. The multiplication-by-t™
morphism of H1(T,Fil" OAs) is trivial.

Proof. Let gr" QA = Fil” OAcris/FilTH OAqis. As 0(1 — [¢]) = 0, gr"OAys is
killed by 1 — [¢]. So using the tautological short exact sequence below
0 — Fil""! OAeris — Fil” OAeris — 81" OAeris — 0

and by induction on the integer r > 0, one shows that H?(T', Fil” OA.;s) is killed by
(1 — [e])*¥*+7; the r = 0 case being Proposition ii). So the multiplication-by-t"
with n > 4d + r is zero for HY(T', OAyis). ]

Recall that for ¢ € Z, we have defined

HY(T, Fil” OBeyis (S0, 5L)) := lim H(T,¢" Fil""" Oens),
neN
or, in an equivalent way,

H(D, Fil” OBeyis(Soc, S%)) = lim HY(T, il OA i),
neN
where for each n, the transition map

HIY,Fil"™™™ OAgis) — HIT, Fil" " OA i)
is induced from the map
Fil"™ OAqis — FII' " T OA s, 0 t- 2.
We have the following easy observation.

Lemma 6.14 ([AB] Lemme 33). For each q € Z, HI(T, Fil” OBeyis(Soc, SL)) is a
vector space over Q,.

The first main result of this section is the following.
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Proposition 6.15 ([AB] Proposition 34). H%(T, Fil” OBeyis(Soo, S1)) = 0 for any
q>0.
Proof. By Lemma the cohomology group H4(T', Fil" OBcris(§OO7 §O+o)) is a vec-
tor space over Q,. Hence to show the desired annihilation, we just need to show
that for any € H9(T, =" Fil"™" A ), there exists m > n such that the image of
zin HY(T,t~™ Fil"™™ OAs) is p-torsion. In view of Lemma [6.13] we are reduced
to showing that the kernel of the map

HY(T,Fil"™ OAis) = HID, Fil” OAgis)
is of p-torsion, or equivalently, the cokernel of the map

HY YD, Fil” OAers) — HTHT, gr" OA i)
is of p-torsion for any g > 1. This assertion is verified in the following lemma. O
Lemma 6.16 ([AB] Lemme 35, Lemme 36). For each ¢ € N, the cokernel of the
map
(6.2.1) HY(T,Fil" OAgris) — HI(T, gr" OAcyis)

is of p-torsion.

Proof. Recall that & := [E]E]/;il is a generator of ker(6: W (SF) — SL). Moreover,

there exists a canonical isomorphism

OAcris = Acris(§OO7 §j@){<u1a cee,Ud, Wy - w5>}

For n = (ng,n1,-..,n4rs) € N'TIH9 a multi-index, we set
ul = u[lnl] . uL"d]’ w? = wg"d“] .. .wg”dﬁ].

In particular gr" OA.s is a free §;—module with a basis given by
glol oy where n € N't49 guch that |n| = .
Recall that St ¢ St . Let
D, = @ SHérol .yl wl € " OA .

In|=r

For each 1< i < d, 7i(us) = Ty — [e[T7] = u; — (] = V[T?] = u, — (/7 = DET3).
Viewed as element in gr” OA s, we have v;(u;) = u; — (e — 1)§~Ti. In particular,
D, C gr"OA.;s is stable under the action of I'. Similarly, one checks that the
S*-submodule T2 - D,. C gr"OAs is again stable under the action of T'.

We first claim that, for any o € (Z[1/p]]0,1))? such that a; # 0 for some
1 < i < d, the cohomology HY(I',T2D, /p"T2D,) is killed by (e() — 1)? for any
q, h. Using Hochschild-Serre spectral sequence, we are reduced to showing that the
cohomology of the complex

i =30 — T2D, /p"T2D, =5 T2D, /p"TD, — 0 —» - --

is killed by €* — 1 (as o # 0, a® — 1|¢() — 1), or in an equivalent way, the
cohomology of the complex

-~-—)0—>Dr/phDT€uil>_1DT/phDr—)0—)---
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is killed by €** — 1. By definition,
(eini — 1)(Elrolullypl)
= exiglnol(y; — (e —1)ETy)mil . H#i ug,"ﬂ‘] clnl — glnolynlyln]
= (e — 1)¢lmolylnlylnl 4 (M) — 1)y
= (e — 1) (Elolylnlyln] 4 gy
where 7 and 7/ are linear combinations of elements of the form &olylmly(m) with

27

|m| = r such that m; < n;. Note that we have the last equality because (e® —
1)](e™ —1). So if we write down the matrix M of €*y; — 1 with respect to the
basis {£"0u™w®! : |n| = r} (the elements of this basis is ordered by the increasing
value of the number n;), then M = (¢* — 1) - U with U a unipotent matrix.
In particular U is invertible and hence the kernel and the cokernel of the map
¢*iv; —1: D, /p"D, — D,./p" D, are killed by €* — 1, and hence by ) — 1.
Now set _ _
X = &y St.1ec St
a€(z[1/p] N[0,1))\{(0,+-,0)}
By what we have shown above, H4(I', X ®g, D, /p") is killed by () —1)? for all
q, h. Hence a standard use of spectral sequence involving the higher derived functor
of lim shows that {JQ(F,X®§+DT) is killed by (e — 1)i for all g. On the other
hand, as D, is an ST-module of finite rank, X ®g+ Dy = X ®g4 D, and one checks
easily that gr"OA..s = D, @()? ®g+ Dy). Therefore, the canonical map
HYT,D,) — HYT,gr" OAsis)
is injective with cokernel killed by (e® — 1)*, hence by some power of p.
It remains to show that H4(T', D,.) C HY(T', gr" OA.s) is contained in the image
of (6.2.1). To see this, we shall use a different basis for the free ST-module D,.
For each 1 < i < d, set

v = log (@) — i(_nm*l(m Y (%W - 1) g

m=1 v
Then v; = —T[lui mod Fil? Ags, and vi(v;) = v; +t. Moreover, as t = (6(1) —
1)¢ Fil® Agyis, we see that
M, = @ §+(6(1) _ 1)no£[no]g[ﬂw[ﬂ] — @ g-‘rt[no]y[ﬂ]w[ﬂ]
[n|=r |n|=r

Let MS = @‘mzr Zpt[”o]y[mw[ﬂ]. Then M, ~ S+ ®z, MB. In particular we find

HYT, M,) ~ St ®z, HI(T,M?).
On the other hand, let M, (resp. Mf) be the B® 4OAqis( R, RT)-submodule (resp.
the Z,-submodule) of Fil” OA;s generated by {t[”o]y[ﬂ]w[m}‘m:r. Since v;(v;) =
v; +t, M, and M0 are both stable under the action of I'. Moreover, the natural

morphism Fil” OA s — gr"OA.s induces a surjective morphism M, — M,.. Now
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we have the following tautological commutative diagram

(B AOAis(R, RY)) @z, HI(T, MP) 25> S+ @5 HI(T, MY) .

| i=

Hq(F’MT) Hq(F7MT)

L Lk

HY(T, Fil” OA i) ——————— HY(T, gt" OA oyis)

But the morphism £ can be decomposed as the composite of two morphisms
HYT,M,) — HY(T,D,) — HYT, gr" OAyis)
which is killed by (e —1)"+%. This concludes the proof of our lemma. O

It remains to compute the I-invariants of Fil” OBc,is(Sso, Seo ). For this, we shall
first prove HO(T, Fil” OAqis) = B4 Fil” OAeis(R, RT).
Recall that € := ~9=L_ Put

CRESE
el —1)P1 _
ni= ([]p) c Acris[p 1]'

For each # € ker(0: OAgis(Ss0, S5) — S1), set y(z) := 2P /p. One checks that
v(x) € OAqis and 0(y(z)) = 0.
We have the following observation.

Lemma 6.17 ([AB|] Lemme 37). There exists A € gW(Oi.,) such that n = (p —
1)!5[17} + A. In particular, n € ker(0: Acis — (9%). Furthermore, v¥(n) € p~"nAcris
for any integers 0 < v <.

Lemma 6.18 ([AB]| page 1011). There exists isomorphism

(S22 /€9) [, Wy, ZjmyWis Tim)1<i j<d;meN

p D P p /g
(77m7 'UJJ 9 Zj7m7 ui 9 Tz,m)

OAcris /p =

where 1, denotes the image of Y™(n) in OAgis/p. We have a similar assertion for
OAcris(R7 R+)/p

Proof. Recall that € is a generator of the kernel ker(f: W (S%+) — S%), hence we
have isomorphism

(S22 /EP)[0m, wj, Zjoms i, Tym)1<ij<dimen

D D 7D D D
(5m’wjvzj7m7ui’Ti,m)

OAcris /p =~

where ¢, represents the image in OA.;s/p of the elemfiltfy"”‘l(g). Asn=(p—
pe ~ P
DIEPT 4 X for some \ € fW(O%), it follows that 7, € (See /ENBosvsm OAis/p,

~ (02)o<v<m

and 7P, = 0, giving a morphism of S°F /¢P-algebras
S/ W locvam ., (SEE/E)0Jo<vsm
e (Wf)ogugm (55)0SV§TI‘L ’

W, = .
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On the other hand, for any v € N,
7 ((p =P =47 (n =) Za UL

(Sii/awj <ve o
(6;))0Sj]§01/§—1§ ' (as i< p ) By

induction on v, one checks that §, € Im(a,,), hence a,, is an isomorphism for the

for some coefficients a; € ng/ép, and M e

reason of length. Taking direct limits, one deduces that the morphism of S°F /ép—
algebras

. (Scb;/gp)[wm}meN (Sg:/gp)[ém]mel\f
“ (erl)MEN — (&fn)meN ’

is an isomorphism, proving our lemma. (Il

Lemma 6.19 ([AB] Lemme 38). For any r € N, we have (p" OAgyis) (1 nOAcris =
ZZ:O Py (1) OAcis.
Proof. The proof is done by induction on . The case » = 0 is trivial. So we may

and do assume that r > 0. Let € p"OAqis [11OAeis. By induction hypothesis,
one can write

W = i

x = Zprfl'y”(n)x,,, with z, € OAgis.

Set ' = Z;;(l) v (m)z,. Then 2’ € pOA s since x € p"OAqis. So in OAis/p, we

have
r—1
Z MT, = Ou
=0

where for a € QA5 we denote by @ its reduction modulo p and 7, the image of
v (n) in OAqis/p. Let

A= (Sb+/§p)[77h7 wy, Z]Tl’h Usj, sz]1<z<d 1<5<8,meN, h>7
(s wh, Z5ui T ) 1<i<d, 1< <6,meN hr

124,170,

Then OAis/p =~ A[nm]o<m<r 1/ (M2, )o<m<r—1 by the previous lemma In par-
ticular, OAqs/p is a free A-module with a basis given by {Hm oMo Lo €
{0,...,p — 1}7}. Thus up to modifying the z,’s for 0 < v < r — 2, we may
assume that T, € A[no,...,m]/(nh,...,nE).
Next we claim that T, € 7271 (OAis/p), which is also done by induction on v.
When v =0, as Tg € Alno]/(nh), we just need to show nyzo = 0. But
r—1

NoTo = — Zﬂhﬁ € Alno,nu, -y me—1)/ (g7 - mb_1),
h=1
we have necessarily 7oZg = 0, giving our claim for v = 0. Let now v € {1,...,r—1}
such that for any 0 < h < v, Ty € nﬁfl(OAms/p). So npxy, =0 for 0 < h <wv and
r—1
My =— Y WL
l=v+1

So necessarily 1,7, = 0, and hence 7, € 72~ (OAcis/p). This shows our claim for
any 0<v<r-—1.
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As a result, for any 0 < v <7 — 1, we have x, € v/ (7)P " OAis + pOAis, and
hence
pr—l,yu(n)x S pr ! V( )pOAcrls +pr7y( )OAcris'
But p" 19" (n)P = p"y*T1(n), so we get finally x € > _ p"7"(n) OAcis. O

Recall that we have an injection B& A OA s (R, RT) C OAcyis (Proposition|6.11]).
The key lemma is the following

Lemma 6.20 ([AB] Lemme 39). Inside OAs, we have
(BB AOAais(R, B)) [\ nOhais = n(B&AOAwis (R, RY)).
Proof. The proof of the lemma is divided into several steps. First we remark that,
as B®4 OAqis(R, RY)/p < OAqis/p, we have
(B&AOAeris(R, RY)) (\pOAcris = p(BE4OAais(R, RT)).
Secondly, we claim that, to show our lemma, it is enough to prove that
(6.2.2)  (B®4OAwis(R, RN))[\nOAais C n(BEAOAwis(R, R)) + pnOAcris.
Indeed, once this is done, we obtain
(B&AOA s (R, R+)) N nOAeis
C  N(B®aOAuis(R, RY)) + pOAcris N(BEaOAuis(R, RY))
N(B&AOAais(R, RY)) + p (1O0Acis N(BE4OAis (R, RY)))
N(BBAOAis(R, RY)) + p (n(B&aOAais(R, RY)) + pnOAcyis)
C N(BRAOAcis(R, RY)) 4+ p*nOAcris.
An iteration of this argument shows that
(B&AOAis(R, RT)) ﬂ NOAcris C N(BOAOA s (R, RT)) + p"nOA ris

for any r € N. Thus (B@AOAcris(R, R+)) N nOAeis C n(B@AOACﬂS(R,R*)) as
OAgyis and B® A0Ais(R, RT) are p-adically complete.

N

Next we claim that for any » € N we have
(62.3)  (BEAOAcis (R, RY)) [ 10Acris C n(BEAOAis(R, RY)) + p" Oheis.
When r = 0, this is trivial. Assume now the inclusion above holds for some r € N.
So by Lemma [6.19

(BRAOA s (R, RT)) N NOAcris

C N(B&4O0Awis(R, RY)) + (BRAOAeis(R, RT)) N p" Olcris N 1OAeris
C  N(B4O0Ais(R, RT)) + (B&AOAqis(R, RT) N p" (31_07" (1) Ohcris)
C N(BRAOAGis(R, RY)) 4+ p" ((BRaOAis(R, RT)) N (X, —0 7" (1) OAeris)) -

So we are reduced to showing that

((B®AOACI‘1§ R R+ m (Z 7 OAcrm)) C p_rn(B®AOAcris (R7 R+))+pOAcris-

Put ~
(R**/€P)[wj, Zjm)1<j<6.men

(w Z )1<]<§ meN

A(R,R*) := C Ohais(R, B /p,
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and L
S /€9 w;, Zjm]1<j<s.men
(,w;n, me)léjgé,meN
We claim that the natural morphism A — OAis(R, RT)/p (resp. B — OAgis/p)
factors through A(R, Rt) (resp. through A(Ss, St)[uili<ica/(u?)1<i<q). Indeed,
we consider the reduction modulo p of the morphism 6
0: OAuis(R,RT)/p — RT /p.

Then all elements of ker(#) are nilpotent, and (A(R, RT)) = Rt /p. Recall that A
is étale over O {ST', ..., SF!} and the composite

OR{SEY, ..., S5} = A — OAens(R,RT) /p

sends S; to the reduction modulo p of w; + Sg € OAgis(R, RT)/p, which factors
through A(R, RT) and hence so does the morphism A — OA.is(R, R1)/p by the
étaleness of the morphism Ok{Sfﬂ, RN Sgﬂ} — A. In a similar way, one sees that
the morphism B — OA;s/p factors through A(goo,gjo)[ui]lgigd/(uf)lgigd. In
particular, it makes sense to consider the map

AR, B nmlmen 5 A(Soo, S3)[i; hm]1<i<dmen
(1) men (uf, Min)1<i<dmen
which is injective. Now for @ € (B&4OAwis(R, RT)) N 0_o 7" (1) OAeris, its re-
duction T modulo p lies in EZ:O 7, OAqis/p- On the other hand, as a module
OAyis/p is free over A and the inclusion A C OA s /p is a direct factor of OAs/p
as K—modules7 the fact that T appears in the image of the morphism above (note
that OAcis(R, RT)/p = A(R, R")[nm]men/ (M2, )men) implies that

S z’": nl,K.
v=0

A(goo,gjo) = ( C OAyis/p-

B®a

)

Thus ,
T e Z nu(B®AA(R7 R+>)[77m]m€N/(77£z)m€N
v=0
as (B@a AR, RT))[m]men/ (2, )men and A are frec over B4 A(R, RT) and over
A(R, RT)[u)1<i<a/(uf)1<i<q respectively , with a basis given by {[],,cnno 1 @ €
{0,...,p— 1}M}. In other words, this shows

2 €Y7/ ()(BEAOAuis(R, R)) + pOhcris.
v=0

By Lemma v (n) € p~"(B&AOAqis(R, RY)), we obtained finally
© € p~'n(BEAOAis(R, RY)) + pOhcris,
as desired.
To complete the proof, it remains to show that the inclusions (6.2.3) for all
r € N implies (6.2.2). For v > —1 an integer, set 8, := [[._, " (n)?~*. A direct
calculation shows 13, = p*T1y**1(n) for any v > —1. Let
A(Soo, SE) [us, Tim)i<i<d,meN

A=
(’U,?, szm)lgigd,mEN
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Then OAgis/P = A[Nm]men/ (B, )men. Recall also that
OAcris(Rv R+) = A(R7 R+)[nm]m€N/(n7€z)m€N

For v > —1, let M, (resp. N,) be the sub-A-module (resp. sub-B ®4 A(R, R1)-
module) of OAis/p (resp. of B ®4 OAqis(R, RT)/p) generated by the family

{HU%” :gE{O,...,pfl}(N),am:p—lfor()gmgy,ozu_H <p1}.
m=0

Clearly N, C M,,, OAqis/p = ®y>_1M,, and B®4 OAis(R, RT)/p = ®u>_1N,.
Let z € (B@AOAMS(R, RT)) N nOAuis, and write z = 1z’ with 2’ € OAqys. Let
N be an integer such that
N
7e @ M,.
v=—1

By (6.2.3) for r = N + 2, one can write
z=n-y+w, with y€ BBAOAwis(R,RY)and w € pN T OAcsis [ | 1OAcris.

By Lemma w = pNt? 21‘1\:52 *(n)ay; with a; € OAis. So we find

N+2 N+42
w=> pNTpiy ey = Y pN B .
=0 =0

Therefore 2/ =y + Zf\;ﬁ pNt2713,_ 1, and thus 2/ = 5§ + fyi1aN2. But by the
definition of the integer N,
N
Ze @ M,

v=—1

while -

7€ @ N, and Byiianae P M.

v=— v>N
So necessarily MW €®,~NN, €B®y4 OAcriS(R,>R+)/p. In other words, we
find Syi1ant2 € BRAOAGis(R, RT) 4+ pOAgyis. So finally
2 €1y + Bry1an12) € N(BOAOAGis(R, RY)) + pnOAcs,
as required by . This finishes the proof of this lemma. O
Corollary 6.21 ([AB] Corollaire 40). Inside OAgis, we have
(B&AOAeris(R, R)) (€] = 1)P ' OAeris = ([e] = P~ (BE4OAais(R, RT)).

Proof. Let © € (B®AOAqis(R, RT))N([e] = 1P OAis. As pn = ([ —1)P~1, x €
B® 4 Fil” OAcris(R, RT)) N pOAeris = p(B&AOAis(R, RT)). Thus, by Lemma
we find z/p € (B&AOAcis(R, RT)) N 1OAcris = N(B&AOAeis(R, RT)). There-

fore z € pn(B@AOAcriS(R, R™)) = ([le] — 1)p_1(B®AOAcriS(R, RY)). ]

Finally, we can assemble the previous results to get the main result about the
I'-invariants.
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Proposition 6.22 ([AB] Proposition 41). For each r € N, the natural injection
tp: BRAFI" OAgis(R, RT) — HO(I', Fil” OAis)
is an tsomorphism.

Proof. We shall begin with the case where » = 0. By Proposition (ii), the
natural morphism B®AOAqis(R, RT) — HO(I', OAs) is injective with cokernel
killed by (1 — [¢])??. Tt remains to show that the latter map is also surjective. Let
x € HO(T,OAeis). So (1 —[€])?%x € B&4OAwis(R, RY). In particular,

(1= [)** P Dz € (BEAOAis(R, RT)) ()1 = [€]) 2P~ OAcris.

By Corollary the last intersection is just (1 — [¢])2?®P~Y(B® 4OAqis(R, RY)).
In particular, z € B@AOAcriS(R, R™); note that 1 — [¢] is a regular element. This
concludes the proof of our proposition for » = 0. Assume now r > 0 and that
the statement holds for Fil" ! OAis- Then we have the following commutative
diagram with exact rows

0 —— B4 Fil” OAgis(R, RTY) —> BOA Fil" ! OAqis(R, RT) —— B agr" ' OAqis(R, RT) ——=0

0 HO(T', Fil” OAris) HO(T,Fil" ! OAepis)

HO (F7 ng_IOAcris)

One checks easily that the last vertical morphism is injective as B®sRT = St c
ST . So by snake lemma, that ¢, is an isomorphism implies that the morphism
Lt is also an isomorphism. This finishes the induction and hence the proof of our
proposition. ([

Corollary 6.23 ([AB] Corollaire 42). The natural morphism
B® 4 Fil” OBgis(R, RY) — H(I', Fil” OBeyis)
is an isomorphism, where
B®4Fil” OBgis(R, RT) := lim B® 4 Fil"™ OAqis(R, RT)
n>0

with transition maps given by multiplication by t.

7. APPENDIX: [-FLATNESS AND BASE CHANGE

Definition 7.1 (Fontaine, see [AB| Définition 9.2.1). Let A be a ring, B an A-
algebra and I C B an ideal. We say that B is I-flat over A if for any injection of
A-modules u: M — M’, the B-module ker(1 @ u: M @4 B — M’ ®4 B) is killed
by I.
In the following, let A be a ring, B an A-algebra and I C B an ideal.

Lemma 7.2. The following assertions are equivalent:

(1) B is I-flat over A;

(2) for any A-module, the B-module Tori (M, B) is killed by I;

(3) for any A-module and any i > 1, the B-module Tor:(M, B) is killed by I.

Proof. For the equivalence between (1) and (2), see [ABl, Proposition 9.2.3 (iii)].
The equivalence between (2) and (3) is standard. O



Crystalline comparison isomorphism in p-adic Hodge theory 73

Proposition 7.3. Assume A noetherian and that B is I-flat over A. Let X be
a finite type separated scheme over Spec(A) and F a coherent sheaf on X. Then
there exists N € N which does not depend on F, such that the canonical morphism

H'(X,F)®a B — H'(X,F ®a B)
has kernel and cokernel killed by IV .

Proof. If B is free as an A-module, since X is qcgs, the canonical morphism in
our proposition is an isomorphism. In general, by using a free resolution of B (as
A-module), we have a natural isomorphism in the derived category:

RI(X,F) @4 B =5 RI(X, F @4 B),

inducing an isomorphism for each i € Z:

HY(RT(X,F) % B) = H'(X, F @4 B).

We claim that the kernel and the cokernel of the natural morphism below are

killed by 791 (here d := dim(X)):

HY(X,F)®a B — H' (RI(X,F) ®4 B).
To see this, consider the spectral sequence

By = Tor? (H*(X, F), B) = H*" (R[(X, F) @4 B).
The cokernel of the canonical injection
a: BE% — HY(RI'(X,F)®% B)

has a filtration with successive quotients E% =% with a < 0. As X has dimension d,
Ey'™" = E%=% = () whenever i —a ¢ [0, d]. Furthermore, as B is I-flat over A and
as a < 0, E$"% hence E%~% is killed by I (Lemma . It follows that coker(a)

is killed by I¢t1. On the other hand, as ES"” = 0 for a > 0, for cach r > 2, one has
E% =0 for a > 0 and a tautological exact sequence:

Byl B B 0.
Since ES" = B = 0 for any b ¢ [0,d] and any r > 2, we find E;"*+"~1 = ( for
r>rg :=max{d+ 2 —i,2}. Thus E% = E%" and the kernel of the surjection

Ey' — B = EY)
is annihilated by I?t!. By consequence, the morphism
B: EY' = H(X,F)®4 B — H'(RU(X,F) @4 B)
has kernel and cokernel killed by 791,
Next we claim that the natural morphism

HY(X,F @4 B) — H'(X,F @4 B)
has kernel and cokernel killed by I™ for some integer n that does not depend on
the choice of F. Indeed, we fix a free resolution (concentrated in negative degrees)
B*® of B as A-module: so F ®4 B~ F®4 B®. Let K be the kernel of the surjective
morphism of complexes F @4 B®* —+ F ®4 B. Then

, 0 j=0

J =
B (K) { Tor (F,B) j<0.
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On the other hand, each abelian sheaf on X for the Zariski topology has a resolution
of length d with RT'(X, —)-acyclic components (recall that d = dim(X)). Therefore,
HI(X,K) = H¥(X,75;_4K) for j € {i,i + 1}. Applying truncations again on the
two-side bounded complex 7>;_4K and using the fact that H7(1>;_4K) is killed by
I for all j (Lemma 7 we deduce the existence of an integer n > 0, depending
only on i and d, such that H/(X,K) = H’(X,7>;_4K) is annihilated by I" for
j € {i,i+ 1}. So the kernel and the cokernel of the morphism
v: H(X,F ®%4 B) — H'(X,F ®4 B)

are killed by I".
Finally, consider the following commutative square

HY(RT(X,F) ®4 B) =— H'(X,F @4 B)
iso. up to IdJrl-torsionTﬂ ’Yliso. up to I"™-torsion
Hi(X,f) ®aB——— H (X,F®4 B)

It follows that the lower horizontal map has kernel and cokernel killed by I?+4+1,
So the integer N := n + d + 1 satisfies the property that we need. |

From now on, assume moreover that A and B are p-adically complete.

Proposition 7.4. Assume A noetherian and that B is I-flat over A. Let X —
Spf(A) be a proper morphism between p-adic formal schemes. Let F be a coherent
sheaf on X. Then for all i, the kernel and cokernel of the natural morphism

HY(X,F)®4 B — H'(X,F&4B)
are killed by some power of pl.

Proof. Let G C F be the subsheaf formed by elements killed by some power of p. As
F is coherent and as X is quasi-compact, G is killed by a large power of p. Therefore
G and the quotient F/G are again coherent sheaves on X'. Hence the natural
morphism H*(X,F) — H'(X,F/G) has kernel and cokernel killed by some large
power of p, thus so is the induced morphism H*(X, F)®4 B — H (X, F/G) ® B.
Similarly, the kernel of the surjection F ® 4 B — (F/G)®4 B is killed by some large
power of p, thus so is the kernel of the following surjective morphism of projective

systems
F®aB (F/G)®a B
n-+1 — n+1 .
p n>0 p n>0
In particular, the kernel and the cokernel of the map between the completion

F&AB — (f/g)@)AB are killed by some large power of p. Thus, the same holds
for the induced map between the cohomology groups

H' (X, F&4B) — H' (X,(F/G)®4B) .
Consequently, in order to prove our proposition, we are reduced to showing that
the kernel and the cokernel of the analogous morphism with F replaced by F/G
are killed by some power of pI. Therefore, up to replace F by F/G, we may and
do assume that F is p-torsion free.
Let F,, = F/p"*!. By Proposition there is some large integer N such that,
for all n > 0, the natural morphisms below have kernel and cokernel killed by I'V:

HY(X,F,) ®a B — H'(X,F, ®4 B).
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As the two cohomology groups above vanish when ¢ ¢ [0,dim(X)], enlarging N if
necessary, we may assume that the same holds for all ¢ € Z. Passing to projective
limits, we obtain, for each 7, a morphism whose kernel and cokernel are killed by
I?N thus also by (pI)2V:

a: lim (H'(X, F,) ®4 B) — m H' (X, F,, @4 B).

On the other hand, as A is neotherian, the projective system (H'~'(X,F,)), .,
satisfies the (ML) condition ([Grol Corollaire 3.4.4]), hence so is the induced projec-
tive system (H'~'(X,F,) ®a B), .. Asaresult, R' @n(Hi_l(X,}"n) ®aB)=0
and R! l&nn H=Y(X,F, ®4 B) is killed by IV for all i. Moreover using the set
of affine open formal subschemes of X and [Sch13, Lemma 3.18], one checks that
R! @n(}—” ®4 B) = 0. So the natural morphism below is surjective with kernel

R! fm H=Y(X,F, ®a B) killed by IV hence also by (pI)":
B: H'(X,F@4B) — lm H'(X, F, @4 B).
Next we claim that the following natural morphism
Hi(x,F B ,
(pn+)1®A — HY(X,F,)®4 B

has kernel and cokernel killed by p® for some large integer a which does not depend
on n. To see this, using the following tautological short exact sequence (recall that
F has no p-torsion)
n+1
0— F2s F— F, —0,
we obtain a short exact sequence
0 — H'(X,F)/p"™" — HY(X,F,) — H'(X,F)p"*'] — 0.
As HY(X,F) is an A-module of finite type, its A-submodule H®(X,F), torsion
formed by elements killed by some power of p is finitely generated over A. In partic-
ular, there exists a € N such that p® kills H* (X, F)p-torsion and thus H* (X, F)[p"*!]
for all n € N. Applying the functor — ® 4 B, we get the exact sequence
Tor{ (H (X, F)[p" ™), B) — H'(X,F) @4 B/p"

— HY(X, F,) ®4 B — H(X, F)[p""] @4 B — 0.
Consequently, for all n, the kernel and the cokernel of the following map are killed
by p*:

HY(X,F)®a B/p"™" — H'(X,F,)®4 B.
Passing to projective limits, one deduces that the morphism
v: H(X,F) ®a B =lim (H'(X, F) @4 B/p"*") — lim (H'(X, F,)) ®4 B)

has kernel and cokernel killed by p2?, hence by (pI)22.

Finally from the commutative diagram below

H{(X,F)®aB HY(X,F®aB)
vi J{ﬂ
lim (H' (X, F,) ®a B) : lim H'(X, F, ®4 B)
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and the fact that all of the «, 8,7 have kernel and cokernel killed by some large
power of pI, we obtain that the upper horizontal morphism

HY(X,F)®a B — HY(X,F&4B)

has kernel and cokernel killed by a large power of pI, as wanted. (I
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