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Introduction

The theory of unipotent algebraic groups, and in particular that of com-
mutative unipotent algebraic groups, over a field represents a very beautiful
theory (see for example [3] [10] [14] [16]), which plays also an important role
of in the study of algebraic groups over a field. Hence we can also expect that
over a general base scheme, a study of unipotent group scheme can give appli-
cations in the study of family of algebraic groups. On the other hand, family
of unipotent group arises also naturally in practice, and leads to interesting
questions of affine schemes.

In Exposé XVII of [5], a general theory of unipotent groups over a field or
over a general base scheme is given. Besides of this, one can still find in
Exposé XXVI of [6] some studies of family of unipotent groups, but only in
a very special case, namely, the unipotent radical of a parabolic subgroup of
some reductive group. In [20], Dolgachev and Weisfeiler proposed a theory of
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unipotent groups in a more general setting. More precisely, the authors of loc.
cit. considered affine unipotent group schemes G flat over an affine integral
scheme S = Spec(R) such that the generic fiber is isomorphic to an affine
space as scheme, and they got many interesting properties about such group
schemes. For example, if R is a discrete valuation ring, the authors were able to
find a family of good generators of the affine ring R[G] of G/S and determined
all the relations between these generators. When R is of equal characteristic
p > 0 and if Gx ~ G}, they proved that the group scheme G/S is a so-
called p-polynomial S-scheme. With this result and suppose moreover that
G/S has smooth connected fibers, together with some computations with the
p-polynomials, the authors proved that the groups scheme G/S is isomorphic
to Gy ¢ after an eventual extension of discrete valuation rings of R. Besides
of these, one finds in loc. cit. also many results concerning deformations and
cohomology of such group schemes.

The present report is then an attempt to understand the papers [20] of
Dolgachev-Weisfeiler. Since the majority of the results in loc. cit. are based on
the assumption that the base scheme S is the spectrum of a discrete valuation
ring, in this report, we will work mainly over such a base. This report contains
no original result, and every statement in this report is contained in [20] (or [3],
[11]), though in some places, the treatments given here are slightly different
from the original ones in [20]. But of course, I am responsible for any error in
this report.

This is the expanded version of a talk given in the summer school in Luminy
organized in the occasion of the reprint of SGA3. The author wants to thank P.
Gille for the kind invitation. During the preparation of this notes, the author
benefits from the communications with M. Raynaud, Q. Liu and D. Tossici, he
thanks them sincerely.

1. Notations and reviews
1.1. Notations and conventions. —

1.1.1. Unless mentioned explicitly, in this report, the letter R denotes always a
discrete valuation ring, with K its fraction field and k it residue field. Moreover,
we note by S the spectrum of R.

1.1.2. Let Xg be a scheme of finite type over K. In this report, a model of
Xk over S will be a flat S-morphism of finite type X /S whose generic fiber is
Xk.

1.1.8. For m,n € 7Z tow integers such that m < n, we will denote by [m,n]
the set {m,m+1,--- ,n} C Z.



UNIPOTENT GROUPS OVER A DISCRETE VALUATION RING (AFTER DOLGACHEV-WEISFEILER3

1.1.4. Let i€ [1,n], and for any r € Z>(, we will denote by
m(i,7) = (0,---,0,7,0,---,0) € ZZ,
where the integer r is located in the i-th component.

1.1.5. For G an affine group scheme over an affine scheme Spec(A), we denote
by A[G] the function ring of G, and by

w: AlG] — A[G] ®4 A[G]

its map of comultiplication. Moreover, we denote by n : A[G] — A[G]®4 A[G]
the morphism obtained by

r—pz)—rel-1 .

1.2. Unipotent groups over a field: definitions and examples. —

1.2.1. Let k be a algebraically closed field, and G be a group scheme over k.
Recall that the group scheme G is unipotent if it verifies one of the following
two equivalent conditions:

— G has a central composition series of the form

0=HycH,Cc---H,_1CH, =G

whose successive quotients H;/H;_; for i = 1,2,--- | r are isomorphic to
an algebraic subgroup of G, (5] Exposé XVII, Définition 1.1).
— G is affine, and in its function ring k[G], there exist generators t1,--- ,t,

of k[G] as k-algebra such that the comultiplication map p verifies

,u(ti):ti®1+1®ti+2aij®bij, Vi=1,---,n
J
with a;j,b;; € k[t1,--- ,t;—1] (|]15] Chap. VI § 1.6, Remarque 2).

1.2.2. More generally, until the end of §1.2, let k be an arbitrary field, with
k an algebraic closure of k. A group scheme G/k is called unipotent if the
k-group scheme G = G Xgpec(k) Spec(k) is unipotent in the sense of § 1.2.1.
When the group scheme G/k is smooth and connected group scheme, then the
condition that G/k is unipotent is also equivalent to the following condition
([5] Exposé XVI, Proposition 4.1.1):

— G has a composition series whose successive quotients are forms of G, .

In particular, once the base field k is perfect, since there is no non trivial form
of Gg 1 over k (loc. cit., Lemme 2.3 bis), G has a composition series whose
successive quotients are isomorphic to G, ;. As a result, its underlying scheme
is isomorphic to some affine space Ajl. More generally, without the perfectness
of the field k, we have the following result due to Lazard.
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Proposition 1.1 (Lazard 3| IV § 4 n° 4, Théoréme 4.1)
Let G/k be an affine k-group scheme. The following three assertions are
equivalents:
— There is an isomorphism of k-schemes G ~ A} with n = dim(G);
— G has a composition series with successive quotients isomorphic to G j;
— G is reduced and solvable. Moreover, there exists integer N > 1 and a
dominant morphism of k-schemes AkN —G.

Definition 1.2 (|17] Chapter IV Definition 4.1.2)
A connected k-unipotent group scheme G/k is call k-split (or split over k),
if G/k verifies one of the three equivalent conditions in Proposition 1.1.

Hence, for G/k split over k of dimension n, one can find generators
x1,- -+, %y of k[G] such that the comultiplication map satisfies

p(z;) =$i®1+1®$i+zazj®bz’j
(]
with aij,bi; € klx1,--- ,2;—1]. In the following, such a family of generators of
k[G] will be called primitive. In this report, we are mainly interested in such
unipotent groups and their affine models over a discrete valuation ring.

1.2.3. Some examples of unipotent groups. — Let G be a smooth connected
unipotent group over a field k of characteristic p > 0.

1. If G is of one dimensional, then G is a form of the additive group G .
Hence if k is perfect, G ~ G, 1. But over an imperfect field, there exists
non trivial form of G, ;. For example, let a € k — kP, and consider the
following closed subgroup scheme of Gi = Spec(k[z,y]) defined by the
following equation

z+aP +ay? =0
which can be trivialized by the inseparable extension k C k(a'/P).
2. For r € Z>1, let

pT_l T . .

®u3=p§:<i)v®xwﬂemm®zwy
i=1

We consider the k-algebra of polynomials in two variables k[z,y], and

define the following map p : k[z,y] — klz,y] ® klz,y] by:

pr)=z@l+1ez, py) =y1+10y+> a®(z)
r>1
for a, € k such that a, = 0 for almost all r. We verify that this gives a
structure of Hopf algebra on k[z,y|, and the group scheme obtained in
this way is an extension of Spec(k[z]) = G, by Spec(k[z,y]/(x)) = Gak,
which is also commutative. Conversely, any k-split two dimensional
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(connected) commutative unipotent group is given by such formulas ([3|
IT § 3 4.6 théoréme).

Finally, we refer to [10] for a detail discussion of unipotent groups over
general fields. See also [3] [14] and [16].

1.3. Characteristic zero case. — Let S be an arbitrary noetherian base
scheme, and G/S be a flat S-group scheme of finite type. Recall that G/S
is unipotent if the geometric fibers of G/S are unipotent groups in the sense
of §1.2. In this section, we will briefly review the results of unipotent group
schemes when the base S is of characteristic zero, i.e., is a scheme over Q.
Under this assumption, according to a result of Cartier, the group scheme
G/S has smooth fibers, and hence G/S is smooth by the flatness of G/S.
Moreover, over an algebraically closed field of characteristic zero, the only
subgroup scheme of G, is (0) and G, itself (|5] Exposé XVI Proposition 1.5),
the group scheme G/S has hence connected fibers. As a result, the group
scheme G/S is separated (|4] Exposé VI Corollaire 5.5).

1.3.1. Exponential maps. — Let S be a noetherian scheme of characteristic
zero, and G be a group scheme flat of finite type over S. Let Spec(R) be
an affine scheme over S, we will denote by an element of G(R][[T]]) (resp.
of G(R[T])) by the functional symbol like f(7'). For any complete linear
topology R-algebra A (resp. any R-algebra A), and any element ¢ € A which
is topologically nilpotent (resp. any element ¢ € A), we denote by f(t) € G(A)
the image of f(T') € G(R[[T]]) in G(A) (resp. of f(T) € G(R[T]) in G(A)) by
the canonical map G(R][[T]]) — G(A), which is induced by R[[T]] — A sending
T tote A (resp. by R[T] — R sending T' to t € A).

Proposition 1.3 (3] L § 6 n° 3). — 1. Pour each =z € Lie(Ggr) =
ker(G(R[e]) — G(R)), there evists a unique element e'* € G(R][[T]])
such that

— " =z € G(R[e]);
— eTHTz — Tz T'v ¢ Q(R[[T,T]]).
Moreover, let x,y € Lie(GR) be two elements verifying [x,y] = 0, then

T(z+y) Tz Ty

e =€

2. Let V be a vector bundle on S, and G = GL(V'). Then for any element
z € Lie(Gr) = Endr(V ®o4 R), we have

" Tiz?
et =30 € GL(V @oy RIT))
i>0

In particular, if v € Endg(V®04 R) is nilpotent, we have eI* € G(R[T)).
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Corollary 1.4 (|3] I § 6 n° 3 Corollaire 3.5). — Let p: G — GL,, (V) be
a faithful representation of G on a vector bundle V of finite rank over S. If
x € Lie(Ggr) C End(VRg) is nilpotent. Then e'® € G(R[T]) C G(R[[T])).

Let G/S be a unipotent group scheme which can be realized as subgroup
scheme of some GL(V') for some vector bundle V on S by the morphism
p: G — GL(V). This latter morphism induces a morphism between their
Lie-algebras:

Lie(p): Lie(G) — Lie(GL(V)) = End(V)

Since G/S has unipotent fibers and the base S is noetherian, the image of
the previous map Lie(p) is contained in the set of nilpotent endomorphisms
of V. In particular, we can apply the construction that we sketched here.
Hence, for any affine scheme Spec(R) over S, and for any = € Lie(Gr), we
have e7® € G(R[T]). Now, we consider the morphism of R-algebras R[T] — R
sending T to 1 € R, and the inducing morphism of groups

G(R[T]) = G(R)

we get hence an element e := ¢%'! € G(R), and hence a map Lie(Gg) — G(R).
More generally, we get in such a way a morphism of S-schemes (called the
exponential map of the unipotent group scheme G/S):

(1) exp: W(Lie(G)) - G, x> e”.

whose geometric fibers are isomorphisms of schemes ([3] IV § 2 n® 4 Proposi-
tion 4.1). Since the two S-schemes are smooth of finite type, this implies then
the exponential map (1) is an isomorphism of S-schemes.

1.3.2. Ezponential map over a normal base. — With the help of [11], it is
possible to extend the construction of exponential map in the previous § to
unipotent group schemes over a general normal base scheme. Recall that S of
characteristic zero, and for G/S a (flat) unipotent group scheme, its Lie-algebra
Lie(G) is nilpotent. Hence, by using the Baker-Campbell-Hausdorff formula,
W(Lie(G)) becomes an S-group scheme which is in general not commutative
(see for example [2] Chapter I § 6.5 Remark (3)).

Proposition 1.5. — Let S be a noetherian normal scheme of characteristic
zero, and G/S be a flat unipotent group. Then there is a unique morphism of
S-schemes

exp: W(Lie(G)) — G
which can be characterized by the following condtions:

(a) exp sends the zero section of W(Lie(G)) to the neutral element e of G/S;
(b) exp(n - x) = exp(z)™ € G for any local section x of W(Lie(G));
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(c) The induced map of exp between the tangent spaces
To(exp): Lie(G) ~ To(W(Lie(G))) — T.(G) = Lie(G)

18 identity.
Moreover, if we impose the group scheme structure on W(Lie(G)) given by the

Baker-Campbell-Hausdorff formula as in [2]| (Chapter I § 6.5), the exponential
map above is an isomorphism of S-group schemes.

Proof. — Since G/S is separated and W(Lie(G)) is flat over S, to prove
the uniqueness, we only need to verify the corresponding statement over the
generic point of S. Hence, we are reduced to the case where S = Spec(K)
is the spectrum of a field of characteristic zero. By Galois descent, we can
even assume that K is algebraically closed. Let f,g two morphism of S-
schemes verifying the three properties (a)-(c) of the proposition. Since K
is algebraically closed, we only need to show that f(z) = g(x) for for any
x € Lie(G) = W(Lie(G))(K). Let g = K - = C Lie(G) be the linear subspace
generated by such a x € Lie(G). This gives a Lie-subalgebra of Lie(G). We
consider then the compositions f’, ¢’ of f, g with the following canonical map

W(g) — W(Lie(G)).

According to our assumption on f and g, the two maps f’ and ¢’ induces the
same morphisms between the tangent spaces on 0, and also verify

finy) = f')", ¢'(ny) =4 )" VyeW(g).

As a result, both maps are morphisms of groups schemes over S. Hence, the
kernel H of the double morphism

f/

is an algebraic subgroup of W(g). On the other hand, since f’, ¢’ have the
same induced map bwtween the tangent spaces, this implies that Lie(H) =
Lie(W(g)) = g. Since K is of characteristic zero, we get H = W(g). Hence
' =¢. In particular, f(z) = g(z), as is required.

It remains to prove the existence of such a morphism under our assumption
on the base. Recall that by the Baker-Campbell-Hausdorff formula, W(Lie(G))
becomes a smooth group scheme over S with connected fibers. We will first
construct the exponential map when the base S is local normal of dimension
one. In this case, on applying the Lemma IX 2.2 of [11], G/S can be realized as
a closed subgroup scheme of GL,, for some integer n. Hence one can construct
the exponential map as in § 1.3.1

exp: W(Lie(G@)) — G.
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By the Proposition 1.3, the morphism of schemes exp verifies the properties
(a)-(c) of the proposition. To see that exp is a morphism of groups, since our
group scheme G/ is separated and W(Lie(G)) is flat over S, we are reduced to
show the similar result between the generic fibers, which is then well-known (|3]
IV § 2, 4.3). Finally, we proceed to the general case. According to the Corollary
IX 1.4 of [11] and the fact that W(Lie(G))/S is smooth with connected fibers,
we only need to construct the morphism exp over an open subset W C S
contain every point of S of depth < 1. Hence, we are reduced to prove that for
any point s € S of depth < 1, there exists some open subset V' C S containing
s, and a morphism W(Lie(Gw)) — Gw inducing the usual exponential map
on the generic fibers. Hence, up to replace S by its localization at s € S, we
are reduced to the previous case. This finishes the proof. O

2. Generators of the R-algebra R[G]

In this part, S = Spec(R) is the spectrum of a discrete valuation ring. Let
G be a flat affine group scheme of finite type over S such that its generic
fiber Gk is K-split in the sense of Definition 1.2. The aim of this section is
to explain the existence of good generators of R[G] as an R-algebra. Let us
begin with some preparations on the lexicographic order defined on the ring of
polynomials.

2.1. Lexicographic orders. — Let n > 0 be an integer, we consider the
ring K|x1,x9, -+ ,x,] of polynomials in n variables with coefficients in K.
To denote a monomial z{*z5? - .-z, we will use the usual abbreviation z",
where = (21, ,2n) and o = (a1, , ) € Z2%,. For any a, o’ € Z%,

we introduce the so-called lezicographic order: o > o' if there is some integer
i € [1,n] such that ; > a; and that a; = o} for any j € [i + 1,n]. In
particular, this gives a total order on ZZ%,, and (1,0,---,0) is the minimal
element different from 0 = (0,0,---,0) in Z2,. In this report, the maximum
“max” is always taken relative to this order.

Lemma 2.1. — The lexicographic order of ZY, satisfies the decreasing chain
condition: for o € ZY such that
(2) Q)2 Q1 2202 Qg 2,
there exists some ig € Z>q sufficiently large such that o; = o for any i > 1.
Proof. — Let a; = (a;1,0a:2, -+ ,a;in). According to the definition of lexico-
graphic order, we must have the following descending sequence of non negative
integers:

Aln 2 Q25 2 " 2 Qi =+ -
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As a result, for some 7o > 0, and for any ¢ > iy, we must have a;,, = a;,n.
Up to remove all the first iy terms of the sequence (2), we may assume that
a;pn = aip, for all > 0. Hence, one must have

AUp-12A2p-12 """ 2 Qip-1 = """
The same argument shows that up to remove again finitely many first terms
in the sequence (2), we may assume further more that a;,—1 = a1,—1 for all
1 > 0. After at most n repetitions of this argument, and up to remove finitely

many terms of the sequence (2), we find that a; = ag for any ¢ > 0. This gives
the lemma. ]

Corollary 2.2. — Any non empty subset of Z%, has a minimal element rel-
ative to the lexicographic order.

Definition 2.3. — For any polynomial f = > aq.z® € Kz, -+, xy), we
define its degree, denoted by deg(f), by the element of ZZ, given by the
following formula -

deg(f) = max{a | an # 0}.
Now, let X be an affine model (1.1.2) of the affine space
A% = Spec(K[z1,z2, -+ ,zy]),

with R[X] its affine ring, which is an R-algebra of finite type. From the
flatness of R[G] over R, we can view R|G| naturally as an R subalgebra of

K[zy1,x9, -+ ,xy]. Hence, for any f € R[X], we have the well-defined notion
deg(f). Following [20], for any a € Z%, we define
Fo ={f € R[X] | deg(f) < a}, and P, = {f € RIX] | deg(f) < a}.

We have P!, C P,, its cokernel will be denoted by P,.

Lemma 2.4. — 1. These three R-modules are torsion free.
2. dimg(Po ®4 K) = 1.
3. Suppose that the origin ox = (0,0, --,0) € A% can be extended to a S-
section of X/S. Then the R-module Py, is also of finite type. In particular,
the R-module P, is free of rank 1 over R.

Proof. — Only the third statement needs a verification. We will introduce
some notations for this proof: for any a = (a1, -+ ,ap,) € Z%, we put

n
loo| = Z Q.
i=1

and define d(f) = min{|a| : an # 0} for a polynomial f. In particular,
d(f) > 0 with equality holds if and only if the polynomial f has non zero
constant term.
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Now, let us begin the proof. Since R[X] is an R-algebra of finite type,
there exist fi, fo, -+, fm € Klx1,---,x,] such that R[X]| = R[f1, -, fm]-
We claim that the constant term of each f; is contained in R. According to
our assumption, the origin ox of Xx = A’ can be extended to an S-section
of X/S, hence there exists an epimorphism of R-algebras p : R[X] — R, such
that its induced map on the generic fiber is the epimorphism of K-algebras
given by

pi Kz, 29, x| > K, z;— 0.

If we write f; = ¢; + f/ such that ¢; € K and f] € (z1,z2, -+ ,zy), we find
that px(fi) = pr(ci) = ¢;. On the other hand, since pr(f;) = p(fi) € R C K,
we must have ¢; € R. Hence, up to modify f; by f; — ¢;, we may assume that
each f; has zero constant term. In particular, d(f;) > 0.

Now as an R-modules, R[X] is generated by the elements f* := fi* f32 ... flm
for f = (f1,---, fm) and t = (t1, - ,tm) € ZZ,. For each t € ZZ, let \; be
the coefficient of the term z® of the polynomial f' € K[zy, - ,x,], et AC K
be the R-submodule generated by these coefficients. Then A is also the set of
coefficients of the term z® of the elements in R[G]. Since d(f*) = >, d(f;)-ti,
we find that Ay = 0 once the following inequality is satisfied:

Y ti-d(fi) > |al.
=1

Since the complement of the elements ¢ € ZZ, verifying the inequality above
is finite (because d(f;) > 0 for all 7), there is only finitely many ¢ € Z7, such
that \¢ # 0. As a result, the R-module A is of finite type over R. Now we
consider the subset A’ of K formed by the element A\ € K such that, there
exist an element g € P, with A\ as its coefficient of the term z®. This is a
R-submodule of K, which is also contained in A. Hence A’ is also of finite
type over R, this means exactly that the R-module P, is of finite type. This
finishes the proof. O

2.2. Linear unipotence of affine group models of a unipotent group.

2.2.1. Let G/S be an affine flat group scheme of finite type over S, such
that its generic fiber is split (Definition 1.2). In particular, we can find
x1,- - ,xn € K[Gk]| such that K[Gg| = K[z, 22, ,zy] and that

(3) M(xi)ziﬁz‘@l—l-l@wi-i—zazj@bij
J

with g the comultiplication map, and a;;, b;; € K[z1,--- ,2;—1]. In the follow-
ing, we will fix once for all such a primitive family of generators of K[G].
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Since G/ S is a affine group scheme and because of the choice of the primitive
family {x1,---,x,}, the zero section of Gx = Spec(K|z1, -+ ,x,]) can be
extended to a section of G over S (i.e., the neutral element of G/S), the S-
scheme satisfies hence the assumption of Lemma 2.4 (3). In particular, for each
a € Z%, the corresponding R-module P, is free of rank 1. For each o € VA

let z, € P, an element whose image in P, gives a basis over R. Then R[G] is
a free R-module with a basis given by the family {2z, : v € ZZ,}. Moreover, as
an R-module, R[G|®pg R[G] is free with a basis given by {2, ®25 : a, 8 € Z2,}.
This family gives also a basis of K[G ] ® K[G[] over K, and an element

Zaa’gza@)ZgEK[GK]@K[GK], aaﬂEK
a76

is contained in R[G] ® R[G] C K[Gk]| ® K[Gk] if and only if the coefficients
aa,p € R for any a, 8 € Z%,. In the following, to simplify the presentation, we
will use the following notations: let a € 7%, we put

— M := R[G] ®RR[G],’VMK =M®@rK =Kz, - 2, Qr K[z1, -+, 24);
— Mg, C Mg (resp. M o) the subspace generated over K by the elements
a ® b verifying the following properties:

deg(a) < a, deg(b) <, and
deg(a) + deg(b) < a (resp. deg(a) + deg(b) < ).

— My := Mg N M, and Ma = ]/\ZK,QOM.
For any a ® b € Mg, we define deg(a ® b) := deg(a) + deg(b).

Lemma 2.5. — Let p: R|G] — R[G]| ® R[G]| the comultiplication map of the
group scheme G/S. Then for any y € R[G], we have

wy) =y@1+1®y mod Mye(y)-
Proof. — Let ag = deg(y). According to the formula (3), we have
W)~ @14 19y) =Y e @by € Koy, o0 @ Kler, - ]
4

such that the following two conditions are satisfied: (1) deg(as) < ao, deg(by) <
ap; (2) deg(ay) + deg(be) < ap. Since z, € P, which generates also P, @p K
over K, there exist ¢, 3 € K such the following equality holds:

Zaz ® by = Z Ca,B%a ® 28
¢

a<aq,B<ag
a+B<ag
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On the other hand, since y € R[G], u(y) —y® 1 —-1®y € R[G] ® R[G].
Moreover, since the family {z, ® 23 : o, 8 € Z%,} is a basis of the free R-

module R[G]| ® R[G], the coefficients c, s in the previous equality must lie in
R. From this, we get the conclusion. O

Corollary 2.6. — Leta = (t1,t2,- -+ ,15,0,---,0), B=1(0,---,0,t551," 1)
two elements in ZZ,. Then the image of z - 23 € Poyp in Poip gives also a
basis of this free R-module of rank 1.

Proof. — By the Lemma 2.4 (iii), there exists a € R such that azq4p — 2025 €
Pl 5 C R[G]. We only need to prove that a € R*. According to the previous

Lemma 2.5, we have n(azot+s — 2028) € MaJrg. On the other hand, since
Zat+p € R[G], it follows that 7(za45) € R[G] ® R[G] = M, hence

1 1 —
577 (za28) = N(2asp) + Eﬁ(za«zﬁ —aZayp) € M+ Mg o1 8.

Now

N(zazg) = (za)p(28) — 2028 @1 —1® 2423
= (2a®14+1® 24 +1(2)) - (23 @1+ 1® 25 + 1(23))
—2a2801—1® 2428
= 2a®28+28®@ 20+ (2a ®14+1® 24) - 1(28)
+(zg @1+ 1® 25) - n(a) + nla) -n(B).

By the assumptions on « and 3, for any o < «, and any ' < 3, we have
o + ' < B, and since 1(zq) € My n(2g) € Mg, the following sum

(2 ®1+1®za) n(28) + (28 ® 1 +1® 25) - n(a) + n(a) - n(B).

does not contain the term z, ® z3. As a result, the coefficient of the term
Za ® 28 in 1)(2423) is equal to 1. Hence, in order that 1n(zaz,) € M + Mg a4,
it is necessary that i € R. This proves that a € R is a unit. O

2.2.2. Since R[G] is finitely generated as an R-algebra, there exist finitely
many aq,- -, o such that R[G] is generated by these z,, (1 < i < t) as an
R-algebra. In fact, we can do better here.

Definition 2.7. — We define by induction a family of element {y;} C R[G]
verifying the following two properties: (i) y1 = 2(10,... 0); (ii) for i > 1, y;41 is
the first z, such that deg(z,) > deg(y;) and z4 ¢ Rly1,y2,- - ,vi] (here if such
a z, does not exist, then we stop and get a finite family).

Lemma 2.8. — The construction in 2.7 stops after finitely many steps.
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In order to prove this lemma, we need some preparations. Recall that we

have chosen {z1,---,z,} is a primitive family of generators of K[Gk|/K,
hence for any integer r € [1,n], the K-scheme Hyx = Spec(K|z1, - ,z,]) has
a group scheme structure. Moreover, the canonical injection K[zy,- -, x,] C
Kz, -+ , x| gives us a surjective morphism of K-algebraic groups:

Gk — Hg.

Its kernel is the subgroup scheme Fix of Gk defined by the ideal
(1,29, ,xy) C Klz1, -+ ,2z5]. Let F be the schematic closure of Fi
in GG, which is a flat finite type subgroup scheme of G.

Lemma 2.9. — With the notations as above.

1. The quotient G/F is representable by a group scheme H flat affine of
finite type over S, and its generic fiber is Hig = Spec(K[x1,- -+ ,zy]).

2. If we identify R[H]| as a subalgebra of K[H| which itself is contained in
Klxy, -+ ,xy], then

R[H] = R[G]N K[z1, -+ ,z,].
In particular, the last intersection is of finite type over R as an R-algebra.

Proof. — The first assertion (1) follows from the general result of Artin and
Raynaud. More precisely, according to 8.4/9 of [1], the fppf quotient H = G/ F
is representable by an algebraic space over S. Since F' — G is a closed subgroup
scheme over S, it follows that the quotient H is separated. By by a theorem
of Raynaud (Théoréme 3.3.1 of [12]), this algebraic space is representable
by an S-group scheme, necessarily flat and of finite type over S. Since our
basis S is normal of dimension 1, the affineness of H/S follows then from the
Lemma IX 2.2 of [11] since the generic fiber Hg, being a quotient of an affine
K-group scheme G, is affine.
For (2), since H = G/F, H is the cokernel of the double morphism

pTa
FxG—/=G
m

where pry : F'X G — G is the projection to the second factor, and m : ' xG —
G is the multiplication map. As a result, a morphism h : G — A}g can factor
through the surjection G — F' if and only if h o pry = h om. Since G/S is
separated, the last condition is equivalent to the corresponding equality in the
generic fiber: hj opry - = hi omy, which is again equivalent to the fact that
hi : Gk — Al can factor through Hy. Hence, if we identify K[Hf] and R[G]
as subset of K[Gk] = K[z1, - ,zy], h € K[Gk] lies in R[H] if and only if
h € R|G]N K[Hg]|. This last statement means exactly R[H] = R[G] N K[Hg],
and hence finishes the proof of the lemma. O
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Proof of Lemma 2.8. — Let {y1,y2, -} be a family (finite or infinite) pro-
duced by the construction in Definition 2.7. Since R[G] is finitely generated
over R, to prove the lemma, we only need to verify that R[G] = Rly1,y2, - ].
This follows that there exists some integer N such that R[G] = R[y1,- - ,yn],
hence the construction in Definition 2.7 must stop after finitely steps.

We will prove the last statement by induction on n. The case where n =1
is clear. Supposons now the lemma has been proven for the integer n — 1 > 1.
We consider the subalgebra R|G]NK[xy,- - ,xn—1]. According to Lemma 2.9,
this subalgebra is finitely generated with generic fiber K[z, - ,2,—1], which
is also the affine ring of the unipotent group H/S. Moreover, Hx ~ A?{l.
Hence the construction in Definition 2.7 applying to this subalgebra, to-
gether with induction hypothesis, yield finitely many elements y1,y2, - ,ys €
R[GINK[zy1,- -+ ,zn—1] such that Rly1,--- ,ys] = R[G]NK[z1,--- ,z,-1]. The
next element ysy1 € {y1,¥y2, -} given by the contruction is then of degree
(0,--+,0,1). We will prove by induction that the elements ysi1,yst2, -+ (if
exist) are all of the form (0,---,0, ). Suppose that we have shown this asser-
tion for y; with i > s+ 1. If R[y1,v2,- - ,yi] = R[G], then there is nothing to
prove. So we suppose in the following that Rly1,y2, - ,yi] # R[G]. Now let
7 € Z>3 be the first integer such that z( ... o) € R[y1,- -, s, yi]. We claim
that, for o = (t1,- -+ ,tp—1,tn) < (0,0,--- ,r), we have P, C Rly1,- -+ ,y:]. In-
deed, let 8 = (t1,- - ,tp—1,0), then « — 5 = (0,--- ,0,¢,) with ¢, < r. Hence
z2g € R[IGINKz1, -+ ,Zn-1] = Rly1, -+ ,ys), and zq—p € Rly1, -, Ys, - Yi
(since t, < r). Moreover, according to Corollary 2.6, the image of z3z4_p
in P, generates the R-module P,. Hence, for any f € P,, there exists
a € R such that f — az,_pzg € P with aza_pz3 € Ry1,---,yi]. Now
by repeating this argument and taking account Lemma 2.1, we find that
f € Rly1,--- ,yi]. Hence z(.... o) is the first zo ¢ R[y1,--- ,yi], and we have
Yi+1 = 2(0,... 0,r)- Finally, because of this and for the reason of degree, we find
R[G] = Rly1, -+ ,Ys,Ys+1, - -|. This finishes the proof. O

Corollary 2.10. — One can find a finite family {y1,y2, - ,yn} C RG]
verifying the following properties:

1. R[G] = R[yla e 7yN];

2. deg(y1) < deg(y2) <--- < deg(yn);

3. For eachi >0 Péeg(yi) C Rly1,- -+ ,yi—1] (here, by convention, let y_1 =

0).

Remark 2.11. — In the following, a family of generators in Corollary 2.10 is
said to be a family of good generators. Clearly, good generators are not unique.
For example, let {y; : 1 <i < N} a family of good generators, and let

y;:)‘lyl—'_fl) fori:lv"'aN7
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with \; € R* and f; € Rly1,- -+ ,yi—1], then {y, : 1 <i < N} is still a family
of good generators. Conversely, any two families of good generators can be
related in the previous way.

Recall that an affine group scheme U/S is called linearly unipotent if there
exist generators uy, - - ,us of R[U]/R such that
) =u; @1+ 1®u; + Z)\ijaij ® bij
J
with a;;,b;; € Rluq, -+ ,uj—1]. With this terminology, we have
Theorem 2.12. — Let G be an affine group model over R of a unipotent

group, where the generic fiber of G is split over K (Definition 1.2). Then G
is linearly unipotent. In particular, G/S is a unipotent group scheme.

Proof. — We consider a family of good generators {yi, -+ ,yn} given in Corol-
lary 2.10. For each y;, according to Lemma 2.5, we have

p(y) =y @1+ 1@y + Y _a; @by € RG] @ RG],

with deg(a;;) < deg(y;) and deg(b;;) < deg(y;). Hence by the properties of the
generators {y1,---,yn}, we find that a;;,b;; € Rly1, - ,yi—1]. This implies
exactly that G/S is linearly unipotent. O

2.3. Relations between the good generators. —

2.8.1. Statement of the main result. — We use the notations as in the previous
§. Moreover, for r € [1, N|, we set

Qr:{j:yjeK[:Ela"'7$T]}a QU:(ba
ﬁr: Q, _Qrfla Q, = [1atr+1 - 1]
I={ti=1,ta,- ,tp}, I=[1,N]—1, N=tp4 — 1.

If t € Q;, then we put w(t) = i.

Proposition 2.13. — Keeping the notations as above.

1. If t € I, then there exist a; € K — {0}, and an element f; €
Ky, -+ ,yi—1] such that

Yt = @) + Jt-
2. Ift e 1, then there exists d; € Z>1 such that

™y € Rlyt, - ,ye—1), 7 'y & Rlyn, -, ye—1].
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Proof. — If t € I, y; is then the first among the family {yi,- - ,yx} which is
contained in K[x1, -+, 2] Hence, its degree must be m(w(t),1). Let a; € K
be the leading coefficient of y;, then y — ayx, () € Klzq,--- ,xw(t)_l]. Now we
only need to use the fact that Rlyi,- - ,y—1] ®p K = K[z1, -+ , 7,041 to
get the assertion (1). Suppose now t € I, let r € I be the biggest integer such
that » < t. Then we have

R[yh'" 7y7"] - R[yla 7yt—1] - R[y17 7yt]'

Moreover, by the first assertion, the generic fibers of these three R-algebras
are all equal to K[r1,- -+ ,x,(]. In particular,

R[ylv'" aytfl] ®RK = R[?/l, 7yt] ®R K.

As a result, for some integer d > 0, we have 7% -y € R[yi,---,yi_1].
The integer d; that we need in the second statement is then the minimal
non negative integer d with this property. Moreover, since R[yi,- -+ ,y1—1] #
R[y1,- - ,y], we find d; > 1. This finishes the proof. O

The main result of this section can be stated as follows:

Theorem 2.14. — Keeping the notations as before, and let p = char(R/m) #
0. Then we can find a family of good generators {yi,--- ,yn} such that

d; (1) . =
Ty =yl + Z a;ioy*, Viel
a<m(i—1,pr(®)

with the following two properties:
(a) r(i) € Z>1 for alli € I;
(b) The sum

Z ai,ozya

a<m(i—1,pr(®)

has coefficients a; o € R, and it is reduced with respect to the integers (i)
(Vi € 1) in the sense of the Definition 2.15 below.
(¢) 7%|p, where d; € Z is the integer in Proposition 2.13.

Moreover, these relations are the only ones between these good generators.

2.8.2. Preliminary of the proof: reduced written forms. — The notion of re-
duced written form is used to produce some nice basis of the free R-modules
R[G] and R[G] ®gr R[G]. In this §, let B be an R-algebra of finite type with
generators u; (i € [1,t]). We assume that [1,#] = I U T with 1 € I. For each
i € I, we associate it with a number r(i) € Z>1.
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Definition 2.15. — With the notations as before. A written form of an

element b € B
b= Z aqu”

t
aGZZO

is called reduced (with respect to the integers r(i) for i € I) if for a =
(a1, -+ ,0q) from aqy # 0, it follows that

a; < pr(i-l—l)
for all 4 € [1,¢ — 1] such that i +1 € I.

Suppose further more that B is the quotient of the polynomial algebra
R[U1,- -+ ,U;] modulo the ideal generated by the following elements

) (1) . =
rhU; — ur, + Z aigUﬁ , foriel
where a;3 € R, and the sum
Z awUﬁ € R[Ul,"' ,Ui—l]
is reduced in the sense of Definition 2.15 with respect to the integers r(i) (for
i € I), and we will denote by u; the image of U; in the quotient B.
Lemma 2.16. — Write [ = {1 =11 <iy < --- <.}, let v; = ;.
(i) The generic fiber B := BQrK of B is the polynomial ring in r variables

v1, V9, -+, U with coefficients in K.

(ii) Let b = u* € B be a monomial with & = (o, -+ ,04). Let b be its
image in By, and deg(ax) = (01, ,0,) the degree of by with respect
to the variables vy,--- ,v,.. Then we have

o= X (w I
iq<i<igi1 ig<j<i
(iii) Let a = u® and b = u” be two reduced monomials in B = Rluy,--- ,uy].

Then if a < B, we have deg(ax) < deg(bx).

Proof. — The first assertion is clear from the definition of B. In order to prove
(ii), without loss of generality, we may assume that I = {1} C [1,¢]. Let u®
be a monomial, or more generally, we consider a polynomial

() S agul
B

satisfying the following two properties:
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(a) o :=max{f : ag # 0} = (a1,--- ,4 + p"a) for some a > 0 r > 0, and
(ab"' ,Oét) GZt>();

(b) For each g = (Bi1,---,B:) such that ag # 0, there exist integers
b1, -+ ,by > 0 verifying by + - - - 4+ by = a, and such that

B<(ar+bip"@ o+ bap™® bip")M)

We only need to reduce the sum (4) into a polynomial in w1, and compute its
degree. To do this, we will first reduce the sum (4) into an expression which
involves only u;, - --u;—1 by replacing in (4) the variable u; by

_ (1) _
s dtuf_l — . Z asu’
d<m(t—1,p"(®))

Now we claim that after this reduction, the new sum in wuq,--- ,us_1 satisfies
again the similar properties (a) and (b). More precisely, let 4” be a monomial
appearing after applying the reduction to u? for 8 = (81,82, ,B¢), then

since the sum
Z agsu’
S<m(t—1,p7(®)
is reduced, there exist cq,---, c;—1 such that Ef;% ¢; = (B¢, and that
v < B+, Br+ep™ o By + ™, 0)

Hence,

v < (a1 + (e1 + bl)pr@), o1+ (o1 + btfl)pr(t)a 0)
The highest term of the new sum is of degree

(al, g, 1+ (o apr)pr(t)70)

Hence, to finish the proof, we only need to show that

t—1
d bitea)<arta-p
j=1
But, since
t t—1
ij:a, and ch_ﬁt<at+btp
Jj=1 Jj=1
we find
t—1
Z(b] + Cj) <a-—b + o+ btpr
j=1

WFor v = (v1,- s ), 6 = (01, -+ ,0n) € Z%y, we define v < ¢ if ; < 6; for all i € [1,n].
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So, we are reduced to show that
at—i-btp’"—i-a—bt §at+apr
or equivalently
a—b < (a—by)p"
which is clear. Hence, after repeating this reduction t—1 times to the monomial
u®, we get a polynomial in u; with degree given by the formula

t
Zai H pr)
i=1 2<;5<t
As is required. Now the proof of (iii) is immediate from the degree formula.
Indeed, let u® and u” be two reduced written form. Let i € [1,¢] such that
a; > B;, and o = B; for all j > i. Moreover, suppose iy <7 < i441. Let § and
v be the degree of u® and u®. We claim that we have

5q > Yq» and 5q’ =y vg/ >q.

According to the degree formula, for ¢’ > ¢, the number 6, (respectively for
v¢) only involves oy (respectively ;) for j > iy > i, hence according to the
definition of the integer 7, on must have d, = 7,. We only need to show
dq > 7. Since oy > (;, and the monomials u® uP are reduced, hence

0g =7 = Z (aj = Bj) H p

1q<j<ig4+1 19<j3'<j
= 2 (=g II »
ig<j<i iq<j'<j
> I »v9- 3 oo -n| [ »©
ig<j<i g <j<i ig<j'<j
-y () X (I
ig<jSi \ig<j'<j i H1<j<i \ig<j'<j
= 1>0

Hence 0, < 74, this proves (iii).

Proposition 2.17. — With the notations as before.

1. Any element b € B has a unique reduced written form in B.
2. B is a flat R-algebra.
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Proof. — We only need to show the existence of the reduced written form for
any element b € B. Indeed, let b € B with two reduced written form

b= Z agu® and b= Z a,u®

Define

ap =max{a:a, # 0}, and o) =max{a:a, # 0}.
According to Lemma 2.16 (iii), we have deg(bx) = deg(u}’), and deg(bx) =
deg(u?{o). Applying again Lemma 2.16 (iii), we find oy = af,. Now, we consider
the element b — aj, u®°, it has then the following two reduced written form

/ _ o / Qg __ !/, «
b—aaouﬁo— g AU + (Aag — gy )Ju™ = g ayu.

a<ap a<oap

Hence the same argument applying to the element b — b[gouﬁ , we find that
aoy = bg,. Now we continue the proof with the element b — a,u®, we find
finally that a, = a’,, hence the two reduced written form are the same.

Now, we proceed to the proof of the existence of reduced written form. This
will be done by induction on ¢. First we consider the case where ¢ = 1. Recall
that 1 € I, hence in this case, B is the polynomial ring in one variable wu;
with coefficients in R. Hence, any polynomial ) uf is already in its reduced
written form. Now suppose t > 2, and the existence of reduced written form
is proven for B’ = Ruy, - ,us—1] with respect to the relations

iy, = ufi(li) + Z ajqu®, forallie[l,t—1]NI

a<m(i—1,pr()

Let now u® = uf* - uy"7'ug® be a monomial in B, by induction hypothesis,
we may assume that the monomial u?l . u?_t‘ll is reduced as element in B’.
We only need to find a reduced written for u®. Clearly, if ¢ € I, then there is
nothing to prove since u® is already reduced in B in this case. Hence, from
now on, we suppose that ¢t € I. We will describe in the following an algorithm
acting on u® as follows:

1. If u® is reduced, i.e., ay_1 < p"), then the algorithm stops, and the

monomial u® is reduced.
2. If not, i.e., ay_1 > p"®. We replace u® by the following

Q. ar_1—pr(®)
uft S T | iy — E Ainu™
a<m(t—1,pr®)
Then for each term v’ = uf! ---ufﬁ’lluf * appearing in the previous

expression, replace the monomial uf oo ufi’ll by its reduced written form

in Rluy,--- ,ui—1] (here, we apply our induction hypothesis). Then for
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each monomial appeared in the new expression after this reduction, we
return to step 1.
To finish the proof, we must show that this algorithm stops after finitely many

iterations. Indeed, we only need to show that each monomial ul“ . qull uzt

in the new expression of step 2 verifies the following inequality:

(5) (717' o 7715*1) < (alv to 705t*1)'

Then, apply Lemma 2.1, we find that this algorithm stops after finitely many
steps. To prove our statement, we claim that for any two reduced monomials

u® and u? of R[uy,--- ,us_1] such that o < m(t — 1,pr(t)) and 31 > p'®,
each monomial of the reduced written form in Rluy,--- ,us—1] of the product
(6) uﬁ*m(t*Lpr(”) cu® € R[ty, - ,us_1]

is of degree < . But note that
deg(uﬁ_m(t_l’pr(t)) cu®) = deg(u’) — deg(uf:?) + deg(u®) < deg(u”)

where the last inequality follows from the fact that deg(uf:(?) > deg(u®) since
(t)

both the monomials “;1 and u® are reduced in B’ = Rluy, -+ ,us—1] and we
have a < m(t — 1,p"®). Hence by Lemma 2.16 (iii), for each monomial u” in
the reduced form of the product (6), one must have v < 8. In this way, the
inequality (5) is verified, and this finishes the proof.

Now, once we show the existence and the uniqueness of the reduced written
form, the flatness of B over R follows. In fact, we only need to show that B
has no m-torsion. Let b € B such that #b = 0. Let

b= Z aqu®
«
be its reduced written form. Hence

g Tagu”
(0%

is the reduced written form of wb. The fact that 7b = 0 implies then wa, = 0
by the uniqueness of reduced written form. As a result, we find b = 0. O

Remark 2.18. — Keeping the notations as before.

1. By using Proposition 2.17, we find that the set of reduced monomials
gives a basis of the free R-module B over R.
2. The notion of reduced form still has a sense in Bk . In particular, the set
of reduced monomials gives also a basis of the K-space By.
3. Let
P:Zdijui@)quBK@KBK, dijEK.

Y]
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We say that this written form is reduced if the for d;; # 0, the monomials
u' and v’ are reduced. By using Proposition 2.17, one shows that any
element P € Bg ® By has a unique reduced written form. Moreover, if
P € BQr B C Bg ®k Bk, we may require that its reduced written form
has coefficients in R. In particular, B ® g B is free over R, with a basis
given by the family

{v'@u! : u',uw’ reduced }.

2.3.8. A reformulation of Lemma 2.5. — The proof of the Theorem 2.14 can
be seen as a more careful examination of the linear unipotence established in
Theorem 2.12. Hence, before coming into the details of the proof, we will first
reformulate lemma 2.5 in a more precise way.

In the following, we suppose that the (part of the) generators {yi,- -,y }
is properly chosen, namely, these generators {yi,-- -,y } satisfy the properties
of the Theorem 2.14. In particular, the notion of reduced written form (in
R[y1, - ,y]) can be applied. Moreover, because of Proposition 2.13, the
degree function with respect to the variables u; (i € I) in the ring R[G]®@r K =
K[Gk] is the same as the degree function with respect to the variables z; as
is considered in § 2.1.

Proposition 2.19. — Keeping the notations as before. Let m € tho a multi-
index. Let
(7) ny™) = capy® @y°

a7/8

be the reduced written form of n(y™).

1. Suppose m = m(i,r) with i € [1,t] and r € Z>1. Ifi+1 € INJl,1,
suppose further more that r < p Y In particular, forany j € [1,r—1],

the monomial yf ® yzf*j 1s reduced.

(a) Ifi € I. Then for any j € [1,r — 1], we have

r
Cm(ivj)vm(ivr_j) = J :

(b) Ifi € I. Then for any j € [1,7 — 1], we have

r> mod .

Cm(ivj)vm(i7r_j) = <]

(c) Ifi € I and r = p**! for some integer a > 0. Then

Con(i,pa),m(i(p—1)pa) = P mod 7p.
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2. Suppose m = m/ + m(i,r) with r > 0 and m' < m(i,1) a multi-index
different from zero. Moreover, suppose that y™ is reduced. Then

Crn/m(iy) = 1 mod 7.

Proof. — (1) Suppose first of all i € I. With the notations of Proposition 2.13,
we have

Yt = Qi) + fil@1, 0 T -1)
with a; € K, and f; € K[z1,- -+, ;1] As a result,
n(Yi) = am(@u@) + (P, Tw@y-1)) € Kz, 2w -1]-
by the definition of the primitive generators xy, - - -z, of K[Gk]. Hence
n(yi) =0 m0d M1 = Macg(y)-

As a result, we find

Ny = Wiel+ley) —yiol-10y" mod My
r—1 r ) ) N
= > <> v, @y; 7 mod Maegyy).
=1

By our assumption on m = m(i,r), each monomial y/ ® y; 7 in the previous

sum is reduced. By comparing the coefficient with (7), we find

r
cm(ivj)vm(iarfj) = 7/ :

This finishes the proof of (1.a).
Next, suppose ¢ € I. Let

N(yi) = Y aapy® ©y’ mod Mgegy,)
o,B

be the reduced written form for n(y;), such that for those aq g # 0, we have
deg(y®) < deg(yi), deg(y”) < deg(ys) and deg(y™ @y”) = deg(y,)-

hence we must have o, 8 < m(i, 1) since all the monomials y, y?, y; are reduced
(Lemma 2.16 (iii)). In particular, the monomial y® (resp. y®) contains a factor
yp for some £ < i (resp. a factor yp for some ¢ < i). On the other hand,

T

W) = [10u+301+) ans® @y’ | —yf ©1 1@y mod Mye)
a7ﬁ
7‘71 "" . . —~—
= > <J> vl @y 7+ ) bysy” @y mod Maeg(yy)

Jj=1 V7,6
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where for b, 5 # 0, we have either y7 or y® contain a factor y, for some ¢ < i.
Hence, after we replace y? @ y° by its reduced written form, once a term of
the form y] ®@ y; = appears, the coefficient of the term y] @ y; 7 must be a
multiple of 7. As a result, in the reduced written form of n(y] ), the coefficient
of y @y~

To get (1.c), we need a more careful examination of the coefficients of (7).

is equal to (;) modulo 7. This gives (1.b).

First of all, since for any integer j € [1, p®*!], the binomial coefficient (pa;rl) is

divisible by p, the arguments before shows that the form y? ®y? whose reduced

—p®

form gives the term y? ® vy, with coefficient not contained in 7p must be

contained in the follovvlng sum

(8) oy +Za sy @y’

" we claim that we

Now, suppose y™® ® y"? after reduction gives yl ® y
have
a=m(i—1,prOh.

Indeed, by Proposition 2.13, and since the family {yj,---,y:} is properly
chosen, for each y; € {y1,---,y:}, its degree is of the form m(w(j),p*). It
follows that .

deg(y™) = deg(y} ) = m(w(i),p")
for some integer b > 0. Hence

deg(y™) = m(w(i),p" 7).

Hence, according to the degree formula (Lemma 2.16 (ii)), there exists some
j < i, such that y® = y? for some integer c. Since pdeg(y®) = deg(yP®) =
" i)—1

b=a) = deg(y;), and since y* is reduced, we find that y® = =y (1

m(w(i), p
As a result,

o <> 1 r(i)-1

1
9) oy =y oyP

For simplicity, we put

i = (i1 pr(D=1) m(i-1,(p—1)pr D~ 1)
We will prove (1.c) by induction on the integer i — i,(; the following two
statements:
(M) N € 7 %pR
(IT) The conclusion (1.c) holds for the index i.
We claim first that for an index 4, the statement (I) implies (II). Indeed, if we

compute the coefficient of the term yl Qy; P* of the reduced written of the

term () ()1
r(1)—1 (1) —
Tp r(p—1)p
ALYt @Y,
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in (8), by (I), this coefficient is divisible by
(,ﬂ._dtp)'f Cpdep® | pde(pt(p—1)) — "

a+1

Since r = p > p > 2, this gives

Crm(ipa),m(ir—pe) = 1 mod 7p.

and hence the conclusion of (1.c) holds for the index i. That is (II) is verified
once (I) is proven.

Suppose first that ¢ — i, =1, hence i — 1 = i;y € I. Moreover, the family
{y1,--- ,yt} is properly chosen, this implies that

d; (1)
hyi=yl — Y aay®
a<m(i—1,p7(®)

Hence
() = ) mod Myeyy,
Hence, according to (1.a), the coefficient \; of the term
r(i)—1 r(i)—p (D=1
Yiir ®Yl

in the reduced form of 7(y;) is equal to

r (@)
% p )
<pr(z)—1>

In particular, we get \; € m~%pR. As a result, the statement (I) is proven for
i, and so (II) for the same index 1.

Suppose now @ — i,;) > 2, and suppose that (I) and hence (II) have been
shown for the index i — 1. We must show that the statement (I) holds for 1.
Indeed, since {yi,---,y:} is properly chosen, we have

d; T (4)
™y =y + Z @i, 0y
a<m(i—1,pm(®)
we find

iy () — mo(a,7 (D) M .
T n(yi) = n(y;—;) mod deg@? )’
Now applying the statement (II) for the index ¢ — 1, we find that the coefficient

r(i)— _ r(i)—1 (i
of yf_(l) ' ®y§f 1 bp of the reduced form of n(yf_(l ) is congruent to p modulo

mp. Hence we have

P mod 2

A = — .
v 7Tdi 7Tdi

Hence we get finally \; € 7~%pR. This proves (I) for i, and hence finishes the
proof of (1.c)
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The proof of (2) is similar to that of (1.b) Since y™ = y™ -y, we have
ny™) = ™) wyi)"
= (y"e1+1ey™ +n™) - (4 @110y + ()
= PRI+ +y @y +y™ @y + (" @1+ 12y n(y))
+(yi @1+ 1@y)ny™) +ny™ )n(y;)-

Hence
W™ = yey +y" @y + ™ @l+ 10y Iny)
+Hyr @ 1+ 1@y nly™ )+ n(y™ ny)).
Let
Nl) =Y aasy® @y’ mod Myegryry, and n(y™) =Y bapy® @y® mod Myeg,m)
P o

be their reduced written forms, such that deg(y® ® y?) = deg(y!') for ans # 0,
and that deg(y® ® y?") = deg(y™') for bagr # 0. We find

") = YT Oy Y0y + Y aas (y(”m' 2y’ +y* ® yﬁ*’”’)

a76
+ 3 bwg (5 2y + o™ @37y}
a/’ﬁ/
+ Z aagba/ﬁ/y“+a/ X y5+5/ mod Mdeg(ym)'
a’ﬂ?a/7ﬂ/

Now let y? ®4° be any monomial in the previous sum, which is neither vy Qy™
nor " ® yI', then we have either v < m(i,r), or § < m/. Hence, once
a monomial of the form y; ® ym/ appears in its reduced written form, its
coefficient must be a multiple of 7. This gives (2). O

2.8.4. Proof of the main result. — Let us now begin the proof of the theorem.
Let {y; : 1 <i < N} be an arbitrary family of good generators, we will prove
by induction on the integer ¢ > 0 that up to modify these generators, we can
assume that the generators {y; : 1 < i < t} verify the properties required by
the theorem (i.e., the family {y1,--- ,y:} is properly chosen).

First, since 1 ¢ I, hence we can keep 7. Suppose now that the family
{y1,--- ,y:} has been properly chosen with ¢ < N. To finish the induction, we
only need to modify yy11 by yiy1 + f with f € R[y1, -+ ,y] such that with
this new y;41, the family {y1, -, v, Y141} satisfies again the property of the
theorem. If ¢ + 1 € I, then there is nothing to do. Hence, in the following, we
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may assume that ¢t + 1 € I. In particular, according to 2.13, we have

¥y = ay’ € Rlyr,- - i
i

Moreover, we may assume that the sum
i
E aiy
i

is reduced (Proposition 2.17).
Lemma 2.20. — Keeping the notations as above. Then a,, € R*.

Proof. — Assume that a,, = 7 - b with b € A, and let
2= a1y — byn € R[G]

Then deg(z) < deg(y;+1), which implies z € R[y1,- - ,y:] by the definition of
good generators. Hence n%+1y, 1 = 7wby™ + 7z, and we get

mle =ty = by™ 4z € Rlyr, -,y

in view of the flatness of A[G]. But this equality contradicts the definition of
the integer d;yq. Therefore a,, € R*.
O

According to this lemma, up to replace y;11 by a,,'yir1, we may assume
that a,, = 1, and that a; ¢ 7%+ A for any i < m.

Lemma 2.21. — With the notations as before. We have
7T_dt+177(ym) e M+ MK,deg(ym)-
Proof. — By Lemma 2.16, we have

) = ) = @™ + S aan(y®)

a<m

n(ym) IIlOd Mng(y’”)‘

Hence

7T_dt+1"7(ym) = 77(3/t+1) MK,deg(ym)'
Hence the lemma follows once we remark that n(y.41) € M = R[G] ® R[G]
since yi4+1 € R[G]. O

Let m = (mq,--+ ,my,0---,0), and

n(y™) =) aapy® @y’
a?/B



28 JILONG TONG

be its reduced written form. According to Lemma 2.21, for those (a, 8) such
that deg(y® ® %) = deg(y™) = deg(ys1+1), we must have

(10) U .

In the following, we will show that m = m(t,p®), and 7%+1|p.
First of all, we claim that m; # 0. Indeed, otherwise m < m(t,1), and
we find the following contradiction with the construction of good generators

(Corollary 2.10)

deg(yr+1) = deg(y™) < deg(y™"V) = deg(y:)

where the inequality follows from the fact that the two monomials y™ and
y™ D are reduced, and that m < m(t,1) (Lemma 2.19). Hence, we find
my # 0. Next, we claim that m; = 0 for any ¢ < t. Otherwise, let m' =

(mq,--+,my_1,0,---,0), then we have m’ # 0, and
ym — ym’ . ym(t,mt) — ym’y;rnt

According to Proposition 2.19 (2), we have
A (t,me)m = 1 mod .

In particular, 7%+t ¢ Qrn(t,me),m’- Lhis gives us a contradiction with the
divisibility condition (10). Hence we must have m’ = 0.

Now, we will show that m; must be a power of p. Otherwise, let m; = p®-b
with b > 1 prime to p. Let § = m(t, my — p®), and v = m(t, p®). According to
Proposition 2.19 (1.b), we must have

b
Oy = (p ) mod 7.
pa

Since, the binomial coefficient above is prime to p, we find 7%+ fays. Thus,
this gives us a contradiction with (10). Hence m; must be a power of p.
Let m; = p®!, with @ > 0. To finish the proof, we only need to show
nd+1|p. We consider again v = m(t,m; — p?), and 6 = m(t, p®). According to
Proposition 2.19 (1.c), we have
ays =p mod pr.
Hence the divisibility condition (10) implies
a1 p.

This shows the existence of y;41 such that the family {y1,- -, ys, Y41} satisfies
the relations as indicated in the theorem for all i € I N [1,¢+ 1].

Now to complete the proof of Theorem 2.14, it remains to show that these
relations are the only ones verified by y1,--- ,yrr1. Let B be the quotient of

the polynomial ring R[Y7,---,Y;41] by the ideal generated by the relations
indicated in the theorem for i € I N [1,¢+ 1]. Then by Proposition 2.17 (1),
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we note that B is flat over R. The previous arguments show that there exists
a surjective morphism of R-algebras

B — Rly1,- -+ ,yt+1], classof ¥; — y;.

Since both of this two R-algebras are flat, with the same generic fiber
K[wy,- -+, y441)], this surjection must be an isomorphism of R-algebras.
This completes then the proof of the theorem.

2.8.5. Variants and applications of the main result. — Let {y1, - ,yn} a
family of good generators with the properties in Theorem 2.14, this allows us
to realize G as a closed subscheme of AY. The proof of the following corollary
can be found in [20] (Corollary 3.2).

Corollary 2.22. — The subscheme G — Ag s a complete intersection.

Once the discrete valuation ring is of equal characteristic p > 0, because of
the following fundamental property in characteristic p:
(X+Y)P=XP4YP
it is possible to get some more precise information on the generators of R[G].

To avoid some further notations, we will assume that G ~ G ,, and refer
to [20] Theorem 2.4.0 for a more general statement.

Theorem 2.23. — Suppose Char(K) = p > 0, and Gx ~ Gy ic- Then there

exists a family of good generators {yi,--- ,yn} such that for each i € I we
have
(11) Ty =Y D aijay;

i<i «

for some aijo € R, and for i € I we have
(12) Vi = iy + 3 > bijalh
i<i «
for bijo € K. Here, setting r(i) = max{«a : ajj—1, # 0} forie I, we have

— Qi) =1 forieI;
— The following two sums in (11) and (12)

D P
> > aijey . and D> Y biat)
j<i « j<i «

are reduced.

Proof. — 1In this proof, we say that the family {yi,--- , v} is properly chosen,
if it satisfies the properties of this theorem. As before, we proceed by induction.
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We begin with the case ¢ = 1. Hence t € I. On can find a; € K — {0} such
that

y1=a1x1+b, a,beK
As proved in the proof of the Lemma 2.4, we have b € R. Hence up to replace
y1 by y1 — b € R[G], we may assume that b = 0. Hence, {y;} is properly
chosen. Suppose now for an integer ¢ < N, the family {y1,---,y:} has been
properly chosen. In particular, one finds that each y; are of the form

yi= > > bt biua €K VielLt].

L<w(i) «@
In particular, we find 7(y;) = 0 for any ¢ € [1,¢] by our assumption. We
want to modify y;11 so that the new family {y1, - ,y.+1} satisfies again the
conclusion of the theorem. Let
(13) Y41 = QTg(41) + anyo‘, ar € K,cq € K,
[0

where we put a; = 0 if t +1 € I, and the sum
anya € K[yla 7yt]

[0}

is reduced (but with coefficients in K'). We enumerate increasingly the follow-
ing finite set

{(X:Ca#O}:{)\l <)\2---}
and we suppose that for an integer ¢ > 1, we have shown that
. s
Doy’ =2 by
i>q Jj<t B

We claim that if A, is not of the form m(j, p*) for some j < ¢ and some integer
a >0, then ay, € R. Indeed, from (13), we find

"7 Z C)\iyki + 77 (C)\qy)\q) + 77 Z C)\iy/\i = n(yt"!‘l) E M
1<q 1>q

Together with the property n(y;) = 0 for all i € [1,¢], we find
A

7 (c,\qy 4) € M + Myeg(pay

Now a similar argument as in the proof of Theorem 2.14 (with the help of
Proposition 2.19), we see that if A, is not of the form of m(j,p*) for some
J € [1,t] and some integer a > 0, we must have cy, € R. Now up to replace

Yer1 DY Yep1 — c/\qy)‘q € R[G], we may remove the term c/\qy)‘q in the sum

A
e
)
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After repeating finitely many times of this argument, we find finally that
2o =) > ey
j>t «
In particular, the family {yi,--- ,vy:4+1} is properly chosen. This finishes then
the proof. O

Corollary 2.24. — Under the assumption of Theorem 2.23, there exists a
sequence of commutative group schemes over S:

(14) 0—G—GYg—GYy" —0.

which is exact for the fppf-topology.

Proof. — For each i € I, let

Fi = ﬂ-diYi - Zzaija}/jpa € R[}/la te 7YN]

j<i «
This is a p-polynomial. Consider now the following morphism of S-schemes
given by the N — n = #(I) polynomials F; (VI):

f Ga,s — Ga’s_”.

Since the polynomials F; (i € I) are all p-polynomial, the morphism f is a
morphism of S-group schemes. Moreover, we have ker(f) ~ G. It remains to
show that f is a flat morphism Indeed, we only need to verify this assertion

over thie special fibers f; : G s GN ™. After reduction by modulo w, we

get
F, = _Zzaija YP e kVi, - Y]
j<i «
Moreover, we have a; ;@ = 1, this implies then f is an epimorphism. As
is required. O

Corollary 2.25. — Suppose Char(K) = p > 0, and G/S is an affine flat
commutative group scheme of finite type such that Gx ~ A%. Let 7 €
{quc fopf} be one of these two Grothendieck topologies, and we denote by
H. the corresponding T-cohomology. Then we have Hi(S,G) = 0 for i > 2.
If further more the residue field k of R is algebraically closed, then we have
moreover HL(S, G) = 0.

Proof. — By Lazard’s theorem (Theorem 1.1), G admits a composition series
0=GroC-,Ggn-1CGxgn=Gk

whose successive quotients are isomorphic to G, . Let G; be the schematic
closure of Gk ; in G. As shown in the proof of Lemma 2.9 (1), the fppf-quotient
H; = G;/G;_1 is representable by a flat affine S-group scheme of finite type
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with generic fiber ~ G, . Now, in order to prove the corollary for G/S, we
only need to prove the corollary for each H; for i € [1,n]. Hence, up to replace
G/S by H;/S, we are reduced to the case where Gx = G, k. Hence our
unipotent group scheme G/S satisfies the assumption of Corollary 2.24. Now
the first part of this corollary follows directly from the short exact sequence
(14) and the fact that H.(S,G,g) = 0 for any i > 0. To get the second
statement, it remains to show that the morphism

£(8) : GYg(S) = GL5™(S)

is surjective when the residue field k£ of R is algebraically closed. Indeed, for
any (ai,---,an—n) € Gixgn(S), since k is algebraically closed, we can find

b= (b1,---,bn) € RN such that
Fl'(bl,-" ,bN) = a; mod 7.

Moreover, if we replace, for i € I, each b; by b; + m* for some integer e;
sufficiently large, and then modify accordingly the value of b; (i € I) by some

b; + wfi for some suitable fi, we may find b; such that
Fl(l;iavi)—;/V):al
This gives the corollary. O

3. Geometry of unipotent groups

3.1. The main result. — In § 3, R is a discrete valuation of residue char-
acteristic p > 0.

Definition 3.1. — An affine S-scheme X/S is called p-polynomial if there
exist some integer N > 1, and I C [1,N] with 1 € I such that X is the
subscheme of Ag given by the equations:

(15) why; =3 aieyt”,  Viel:=[L,N|-1I,
i<i «
where
— @ijo € R such that a;;_; ;) = 1 where 7(i) := max(a : a;i—1,a # 0);
— d; > 0 is an integer such that 7%|p.

Remark 3.2. — With the notations as before.

1. Let n = §(I), then the generic fiber X of X is isomorphic to A%.

2. Suppose Char(K) = p > 0, and let G/S be an affine unipotent groups
flat over S such that Gx ~ Gy ;. Then according to Theorem 2.23, the
scheme G/S is p-polynomial.
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Theorem 3.3. — Let X/S be a smooth p-polynomial S-scheme with connected
fibers of dimension n. Then there exists a sequence of finite extensions of
discrete valuation rings:

R:ROC"'CRiCRZ‘+1C"'CRn:R/7

such that

— For each i, the extension R; C R;11 is defined by an equation of the form
P = a for some element a € R; whose reduction a in the residue field is
not a p-th power.

— Xg =X xg 5 ~ A as 5'-scheme with S’ = Spec(R').

In particular, if the residue field of R is perfect, we have X ~ A%.

Corollary 3.4. — Suppose that K is of characteristic p > 0. Let G/S be a
smooth group scheme G /S with connected fibers such that G ~ 0K Then
there exists an extension R C R’ of discrete valuation rings as indicated in
Theorem 3.3 such that Ggr ~ G} g with S’ = Spec(R'). In particular, if R has
perfect residue field, then G ~ G;‘}S.

From these last two results, we can show the corresponding global analogue
(namely, over a locally regular integral scheme of dimension < 1 of character-
istic p), we refer to [20] 3.5 and 3.6 for the precise statements. The rest of this
§ is then devoted to the proof of Theorem 3.3 and its corollary.

3.2. Some preliminaries of the proof. — In this §, we suppose that the
residue field of the discrete valuation ring R is perfect. In particular, for any
element a € R, one can find an element ¢’ € R such that a’?" — a € 7R.

Definition 3.5. — Let A be any ring.

1. A polynomial P € A[Xy,---,X,] is called a p-polynomial, if it can be
written of the form

P(Xy, -+ Xp) =Y a XY € A[Xy, -, X].
0.
2. A morphism of A-algebras f: A[Xy, -+, X,] = A[T1, -+, )] is called a
p-polynomial morphism if f(X;) € A[T1,--- ,Ty] is a p-polynomial for all
i € [1,n]. If moreover f is an isomorphism with f~! also a p-polynomial
morphism, then f is called a p-polynomial isomorphism.

Note that in general, the composition of two p-polynomial morphisms is
not necessarily still p-polynomial. But because of the following well-known
congruence relation

(X +Y)P =XP +Y?  (mod p)
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the reduction modulo p of the composition of two p-polynomial morphisms are
again p-polynomial.

Lemma 3.6. — If P € R[X4, -, X,] is a polynomial such that its reduction
modulo m is irreducible (hence non zero) and p-polynomial. Then there exists
an isomorphism of R-algebras f : R[Xy,---,X,] — R[T1,---,T,] such that
f is a composition of some p-polynomial isomorphisms, and that f(P) — T €
TR[Ty, -, Ty).

Proof. — Remark first that if P(X) = P, (X)+7Q(X) with P;, Q two polyno-
mials, then P and P; have the same reduction modulo 7, and if the conclusion
of the lemma holds for P;, the same happens for P. Hence to prove the lemma,
here, we may assume that P is p-polynomial such that all the non zero coef-
ficients of P are invertible. Let p™ be the degree of the P of P with respect
to the variable T; if T; appears in the expression of P. Up to renumbering the
variables X;, we may assume that P can be written as:

room; )
PX) =" ayx?,

i=1 j=0

such that (i) a;; € R are either 0 or invertible, with a;,,, # 0; (ii) mi >
mg -+ > m, > 0. Note that since the reduction modulo 7 of P is non zeron,
we have necessarily » > 1. We will prove this lemma by induction on the
integer m := >, m; > 0.

If m = 0, then we must have m; = --- = m, = 0, hence the polynomial P
is of the form

P(X) = aloXl + agng + - arer

We consider the following p-polynomial isomorphism (note that ajp € R is
invertible):

f:R[Xy1,---,X,] — R, - ,T,],

T
Xl — al_ol(Tl — ZaioTj),
=2
X, — T; foralli>2.

Then f(P) = T, as required. This finishes the proof when m = 0.
Suppose next m > 0. Since P € k[X1,---,X,] is irreducible, we must have
r > 2. Since R has perfect residue field, one can find b; € R such that

m al;
W - Y crR

i
aA2mqy
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for each i € [ma, m1]. Now define the following p-polynomial isomorphism
f/:R[Xl)"'7Xn] - R[T17’Tn]
X, — T;fori=1o0ri>3,

Xo = T — bm2T1 — = bmle)mlimz
Since
(T2 = b Ty =+ = b 17 "
= TP TP TP (mod p)
= a2_,in2 (azmQTng — aljszfW . al,mlem) (mod )
Hence we find
m1—1 ) r o mg )
P = f(P)= Z CL/MTiDZ + ZZaﬂijl (mod )
i=0 j=2 i=0
Note that the polynomial P’ € R[Ty,--- ,T),] has irreducible reduction modulo

7 since f’ is an isomorphism of R-algebras. Moreover, if we look at the degree
m/ of P’ with respect to the variable T1, we have either the variable T} does
not appear, or mj < mj — 1. Since

m’1+§:mi§—1+§:mi<imi:m
i=2 i=1 i=1

Finally, the reduction modulo 7 of P’ is again p-polynomial since f’ is a p-
polynomial isomorphism. Hence we can apply our induction hypothesis to the
polynomial P’; and we find an isomorphism of R-algebras f” : R[Ty,--- ,T,] —
R[Sy, ,Sp], which is a composition of p-polynomial isomorphisms, such that

f”(P/) — Sl € TFR[Sl, s ,Sn]

Now, we put f = "o f': R[X1,---,X,] = R[S1,---,S,]. The morphism f
is then a composition of p-polynomial isomorphisms such that

f(P) =Sy = f'(P)) = S1 € mR[S1, -+, S,
as desired. 0
Lemma 3.7. — Let
F=1'Xp1— (Po+7P +---7%P;) € RIX1, -, Xpi1]
be a polynomial with each P; € R[ Xy, -+, Xy]. Let Yy =0, and
Fli=nY;— Py —Yi1 € R[X1, -, Xo, Vi, , Y]
fori e [1,d]. Then there is an isomorphism

f:R[Xla"' 7XTL+1]/(F) _>R[X17 7Xn7Y1>"' aYd]/(Fllv 7Fc/l)
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Proof. — This isomorphism can be defined directly as follows: we first define
FiRXy, - Xpp1] = R[Xy,-oo, Xo, V1,00, Y]
X, — X;, forie][l,n]
Xn+1 — Yd =+ Pd(Xl, ce ,Xn)
Then
f(F) = a4Yy+Py)— (Po+ 7P+ -+ 7lPy)
= 71'de — (P() +7TP 4+ -+ Wd_lpd_l)
= Yo (0 (xYi — Py — Yi))
= YL F
Hence the morphism f induces a morphism of R-algebras:
f : R[Xla ;Xn+1] — R[Xla aXTL)Yla"' aYd]/(Flla ?Fc/l)v

which is an isomorphism. O

Lemma 3.8. — Let
FZ?TXn_H —P(Xl,'” ,Xn) —WQ(Xl,‘-' ,Xn) S R[Xl,”- 7Xn+1]

a polynomial, where P = P(Xy,---,X,) € R[ X1, -, X,] a p-polynomial such
that its reduction modulo 7 is irreducible. There exists an isomorphism

f:R[Xy, , Xps1]/(F) — R[Y1,---,Y,]
such that

f(X;)=Ri(Y1,---,Y,) +7P;(Y1, -+, Yn)
with R; a p-polynomial.

Proof. — Since P € R[X1,---,X,] is a p-polynomial with irreducible reduc-
tion modulo p and the residue field of R is perfect, there exists an isomorphism

fiR[Xla"' 7Xn] _>R[T17"' 7Tn]

such that f(P)—Ty € nR[Ty,---,T,]. Since fis a composition of p-polynomial
isomorphism, its reduction modulo 7 is a p-polynomial isomorphism. Hence

for each X;, f(X;) is of the form
F(Xi) = Ri(Ty, -+, T) + w®i(Ty, -+, T)

with R; some p-polynomials and P, € R[Ty,---,T,]. The isomorphism f can
be extended to another isomorphism

fl . R[X17 7Xn+1] — R[T17' te 7TnaXn+1]

Xi — f(Xz) fOI‘iE[l,n];
Xpy1 = Xpg1
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Hence fi(F) = nXp41 — Th — 7Q'(T1,--- ,T),) for some Q' € R[Ty,---,T,].
Let us write the polynomial @’ under the form of

QT -\ Tn) = Q\(Ta, -\ Tp) + TWQ5(Th, - -+ , Tn)
and consider the following isomorphism:
fo:R[Ty, -+ Ty, Xn+1] — R[Th,---,Ty, S|
T, — T, forie[l,n];
Xnt1 = S—TiQy(Ty,--- ,Tn).
Then
f2ofi(F) = fo(n Xp1—Tv—7Q'(Th, -+, Tp)) = m(S—QY(To, -+ , Tp))-T1 =: F.
Hence we obtain an isomorphism, denoted by f’:
f i R[Xy,- , Xp1]/(F) = R[Ty, - , Ty, S|/ (Fy).

Next, we consider the morphism

f3: R[T1,-- ,Tn,S] — R[Yi,-- Y
T, — Y,y forie[2n]
S = Yy
Ty — 7Y, —7Qy (Y1, -, Y 1).

Then
fa(Fo) = (Yo — Qu(Y1, -+, Y1) — (7¥n — Q1 (Y1, -+, Y1) = 0.
Hence it induces a map
" R[T,--- Ty, S]/(Fy) = R[Y1, -+, Yy].
which is also an isomorphism. Finally, let f = f” o f/, then this is an
isomorphism of R-algebras. Moreover, for i € [1,n],

[(Xi) = fzofao fi(Xy)

= SRy, Ty) +7@i(Th, -, Th)))

- f3(R’L(T17 aT’n)+7r(PZ(T17 ’Tn))
= R’L(Y17 )Yn—l)—'_ﬂ-(pi(ylu"' ’Yn)

with R; a p-polynomial, and for f(X,1), we have

J(Xng1) = fzofao fi(Xny1)
= f3(fa(Xny1))
= f3(S—T1Q5T1, - ,Tn))
= Yn+7T(I)n+1(}/ia"' 7Yn>

with ®,,41 € R[Y1,---,Y,]. This finishes then the proof. O
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Remark 3.9. — In this remark, we suppose that K is of characteristic p > 0.
As a result, the composition of two p-polynomial morphisms with coefficients
in K is again p-polynomial.

1. In Lemma 3.6, suppose further more that P is a p-polynomial. Let
f: R[X1, -, X,] = R[TY,---,T,] be the isomorphism in loc. cit., then
f is a p-morphism. In particular, f(P) is again a p-polynomial.

2. In Lemma 3.7, if we suppose moreover that F' is a p-polynomial. Then
the isomorphism f given in loc. cit. is p-polynomial, and the F are all
p-polynomials.

3. In Lemma 3.8, suppose further more that F' is a p-polynomial. Then the
isomorphism f in loc. cit. is p-polynomial.

3.3. Proof of the Theorem 3.3 and its corollary. —

3.8.1. We use the same notation as in § 3.1. We suppose first of all that the
residue field of R is perfect. Let I = {i; < is < --- < in_n} C [1,N]. By
using 3.7, we will first reduce to the case where d;; = 1, and the non zero
coefficients a;j, in (15) are invertible. More precisely, for each j € [1, N — n],
let P; € R[Xy,---, X, 1] be the p-polynomial appeared in the equality (15),
and we note

Fj=n%X;, — Pj(X1, -, Xi;-1) € R[X1,-+, Xijo- -, Xn]-

We represent first the polynomial P; in the form

! + i Pl(dil)

P =PO +7PM 4. ppdutplaT
where the Pl(i) (for i € [0,d; —1]) are all p-polynomials with invertible nonzero
coefficients. Applying Lemma 3.7, we obtain a morphism

fl:R[Xla'”aXN] — R[}/Vla"'ayvilflaml""7n1+dila"'7YN+di1]

X, = Y for 1 <i < iy;
X, = Y;eril for i1 < i < N;
X Yz’1+di1 +P(d“)(Y1,--- Yi 1),

inducing an isomorphism
d;
fi: RIX1, XN)/(F1) = RV, Yaa )/ (FL), - >F1( 1))
where by definition,
Fl(Z) - ﬂ-}/;—‘ril—l - }/7;—&-1'1—2 - Pl(i_1)<Y17 T 7}/;1—1) 2 S ] S d217
Fl(l) = W}/;'l - Pl(O)()/l’ o v}/h*l)'
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By definition, fl is a p-polynomial morphism, hence for ¢ > 2, we have

Fi: = fi(F))
= 7Y a0, —Pi (Y1 Yo, Yira—P T 00, Vi) Y s Yigrds, 1)
= 7Y 4, — Pj(YV1, - Yipa;, 1) — pQG(Y1, -+, Yiia, 1)

for some p-polynomial P} € R[Y1,---,Yi; 44, —1], and some polynomial Q} €

R[Y1, -+ ,Yi 44, —1]. By Definition 3.1, we have 7% |p, hence F] can be written
again as

Fl =YY 14, — P} — "R}
with R’ € R[Y7, - Y5 +d;, —1]. Now, we write

Py =P + 7PV + ... 4 nhe P2

such that PQ(j ) are p-polynomials for j € [0,d;,], moreover for those j < dj,,
the nonzero coefficients of PQ(j ) are all invertible. In this way
dipy—1
Fy = iz Yiptd,, — Z ijz(j) — miz (P(di2) + R’2>
j=0

Now, we consider

fo: R[Yi, Ynta, ] = R[Z1, -, ZN+td; +ds,]
Y, — Z; for1§i<dil+i2;
Y, — Zi+di2 for diy +12 <1 < N;
d;
Ydi1+i2 = Zdil—l—ig-‘rdzé +P2( 2)(Z17"' 7Zdi1+i2—1)‘

which induces an isomorphism
d;
RIVi, Y, Yvsay )/ (FS) = RIZ1,— Zivsay v ) (B, o ™))

where

dis) diy—1) /

( (
F, = 7rZi2+di1 +di, Zi1+di1 +diy—1 P, — TR,
j j—1 .
FyY) = T iy tdiy+§ = Zirtdiy +(i—1) — Y e l2idy - 1)
1 0
FY =721y 0a, 41— P
Hence by considering the composition fs o fi, we get an isomorphism

R[Xy, -, XN] R[Zy1, , ZN+td; +ds,)]
TR diy) (1) (diy)
(F1, F») <F1(1),---,F1(”,F2( e Fy ’2>
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Moreover, since fa is a p-polynomial morphism, for each j > 3, fao( F’ J’) is of the
following form:

d;. i "
T Zij+di1+di2 o Pj - ij

with P!, Q7 € R[Z1,-++ , Zi;+d;, +d;,—1] such that P/ is p-polynomial. Hence,
if we continue this process, we eventually obtain an isomorphism

R[Xla"' vXN]/(Fla"' ’FN*TL) — R[Tl"" 7TN+d]/(F1,7F2,"" 7F]/V—d+d)7
where d = d;, +d;, +---+d;,_,, and for some
I={i} <iy< - <iy_pyq} C[L,N+d]
we have
(16) Fj=nTy — P{(Ty, -, Ty 1) = 7Qj(T1, -+, Ty ).

and the Pj’ are p-polynomials whose non zero coefficient are invertible. There-
fore, we are reduced to the case where d;; = 1, and the F} are of the form (16)
such that the nonzero coefficients of the p-polynomial P; are invertible.

8.3.2. We claim that for the p-polynomial P;, its reduction P; modulo 7 is
irreducible. Indeed, let Xg be the special fiber of the affine S-scheme X, then
its affine ring

k[X()] >~ ]{?[Xl, ,XN]/(E,- e 7FN—n)-

But by our assumption, X is integral and smooth of dimension n over k, hence
all these P; must be irreducible.

3.8.8. Since the reduction modulo 7 of P; is irreducible, there exists an
isomorphism

fioo=R[Xy, X3, )/(F) = R[Y1,-- Vi, 4]
such that
(17) Ni(Xi) = Ri(Y, -+ Y1) +7@(Ya, -0 Y -1), 1<i<a.

where the R;(Y1,---,Y;,—1) are p-polynomials. Next, we extends f1 to be an
isomorphism

.]71 . R[Xla 7Xi17Xi1+17"' aXN]/(Fl) — R[YI aYN—l]
Xi = fi(Xs) 1<d<ig
X, — X,.1 i>1.
Moreover for j > 2,

Fj = AE) = 71— Pi(fi(X1), - fi(Xi), Yy, o, Yiya)
—mQ;(f1(X1), -+, [u(Xiy), Yay, -+, Y, —2)
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Now using the equality (17), there exist a p-polynomial P; € R[Y1,---, Y} o],
and a polynomial Q; € R[Y7,---,Y;, 2] such that

Fj/ = ﬂ-Yij—l _-Pj(Yla 7Y:Zj—2) _Ter(Ylv'” 7}/723'—2)
hence
R[Xl"" 7XN]/(F17"' ,FN—n) ZR[YD aYN—l]/(Féa"' 7F]/V—n)‘

Hence the theorem follows by induction on N — n. This finishes the proof of
Theorem 3.3 when R has perfect residue field.

3.3.4. To treat the general case of Theorem 3.3, by [7]| (Chapitre Oy 10.3.1),
there exists an extension R C R of discrete valuation rings such that é/ Ris
integral (but in general, this extension is not finite) and that R has perfect
residue field. Moreover }N%/ R is obtained as the direct limit of some inductive
system whose transition maps are extensions of the form indicated in the
statement of Theorem 3.3. Now, according to what we have shown, there exists
an isomorphism of S := Spec(é)—schemes X — A%. Since both schemes are

of finite presentation over S , the general case of Theorem 3.3 follows by a limit
argument.

3.8.5. It remains to prove the Corollary 3.4. Indeed, by Remark 3.9, all the
isomorphisms in the proof of Theorem 3.3 in § 3.3.1-§ 3.3.4 are p-polynomial.
As a result, what we obtain finally is an isomorphism of S-groups Gfx s =G
This gives Corollary 3.4.

3.4. Remarks. — In G/S is of one dimensional, it is possible to prove a
more general statement.

Proposition 3.10. — Let T be a locally noetherian normal integral scheme
with n € T its generic point. Then every smooth group model of Gg, over T
with connected fibers is a form of G, 1 in the Zariski topology.

The key point in the proof of the proposition is the following lemma, which
treats the local version of the previous proposition. See also [18]| (Theorem
2.2) for another proof of the following lemma by using the notion of Néron
blow-ups (or dilatation).

Lemma 3.11. — Let S = Spec(R) with R a discrete valuation ring. Let G
be a smooth model of G, over R with connected fibers. Then G ~ Gg 5.

Proof. — Remark first that since G/S is flat of finite presentation with con-
nected fibers, it follows that G/S is separated (|4] Exposé VI Corollaire 5.5).
Further more, G/S is smooth with connected fibers such that Gg is affine,
hence G/S is quasi-affine ([11] VI 2.2). Finally, by applying [11] X 2.2, we
find that G/S is affine. From now on, we will use the notations of § 2.3. Hence
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let R[G] = Ry1,---,yn] be its coordinate ring. Since Gx = G,k is of one
dimensional, we have I = [2, N]. We only need to show I = (). Assume that
I # (. Then R[G] is given by the relations

) (1) .
(18) ﬂ-dlyi:yf_l +B(yl) 7yi—1)a 1€ [25N]

where
Py, yi-1) = Z aigy”
B<m(i—1,pr)

is in reduced form. Moreover, by the choice {y;}, the S-scheme Spec(R[y1, y2])
has a group scheme structure. Let y; € k[G)] = R[G]/7 be the reduction
modulo 7 of y;, and we put B = k[y;] C k[Gx]. Then H := Spec(B) is a
k-group scheme, and the canonical morphism of k-algebras k[y;] — R[G]/7m =
k[Gk] gives an epimorphism of k-group schemes:

GQ — H.
Now, according to (18), 7, satisfies only the the relation

— Pa(y1) =0
with Py(Y1) € k[Y1] a polynomial of degree < p"®. In particular, k[y;] =
/@[Yl]/(Ylpr(Q) — P3(Y1)) is not integral. But since Gg is smooth and integral,
the group scheme H, being a quotient of G, must be integral. This gives us a
contradiction. Hence I = (). Hence R[G] = R[y1]. Moreover, by the definition
of y1, we have y; = Az for some A € K — {0}, hence

py) =y @1+ 1.

We find in this way an isomorphism of S-group schemes G ~ G, g. O

r(2)
p
Y1

Proof of Proposition 3.10. — This is a local question, hence we may assume
T noetherian regular and local. Let & € T any point of codimension 1 in T,
and T¢ = Spec(Or¢). Then Lemma 3.11 implies that G x7T¢ ~ Ga,1,- Hence,
there exists some neighborhood U of ¢, and an isomorphism of U-group schemes
fu : Glu = Gqu = Spec(Oy[Y]). By considering the same construction for
each points of codimension 1 of Y, we can find a family of open subsets {U,, : a}
of T, such that its union U = U,U, contains all the points of codimension 1
of T'. Moreover, for each «, there exists an isomorphism of U,-group schemes

fOt : G|Ua — Ga7Ua = SpeC(OUa [Y])
By consider the restriction

1
falvanus © (f8lusnve)  : Gavanvs = GaUanus

is then given as the multiplication by an element pn5 € I'(Uy NUg, OF.) (since
the base scheme is regular). The datum {Uag, ptag} gives us then a 1-cocycle
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of the multiplicative group, and hence an element of H*(U, Of;) = Pic(U). On
the other hand, we claim that the canonical map

Pic(T") — Pic(U)

is surjective. Indeed, the scheme 71" being regular, and T — U of codimension
> 2 in T, any Cartier divisor of U can be extended, by taking the schematic
closure, to a unique Cartier divisor in 7. In particular, the map above is
surjective. Now, using the fact that 7" is local, hence Pic(T') = 0, so is Pic(U).
In particular, the 1-cocycle {Ua, tiag} is then actually a 1-coboundary. From
this, there exist p1o € I'(Uq, O7) such that uaugl = tap. Now we define

Go = 115" - fo: Gluy, = Gapv., avr ug'- fala)

we have then ga]UamUB = gg\UamUﬁ. Hence the isomorphisms g, can be glued
to a morphism of U-group schemes g : G|y — Ggp. Now we apply the
Corollaire IX 1.4 of [11] to see that this isomorphism can be extended to an
isomorphism of groups schemes G — G, . This finishes the proof. O

To finish this section, we state the following conjectures given in [20], which
are still open, thought some special cases are known (see for example [19] [8]
[9] [13]).

Conjecture 3.12. — Let S be a normal locally noetherian integral scheme
and G a smooth affine unipotent S-group scheme with connected fibers. Then
G is a form of A with respect to the fppf topology. If in addition S is of
characteristic p, then same holds with respect to the radical topology.

Congecture 3.13. — Let R be a discrete valuation ring. Then every unipo-
tent group model of affine space is a p-polynomial R-scheme.

Note that the Conjecture 3.12 is also a special case of the following more
general one

Conjecture 3.14. — Let S as in the Conjecture 3.12 and X /S be a flat affine
S-scheme such that the fiber Xg ~ AT for all s € S. Then X/S is a form of
A% for the Zariski topology.

4. Some explicit models of GZ’K

In this section, we will construct some affine S-models of a unipotent group
Gk such that G ~ A%.
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4.1. Extension of G, by G,. — In § 1.2.3, we have seen that how to
describe the extension of G, by G, over a field. We will prove a similar result
over S. Recall that S = Spec(R) is the spectrum of a discrete valuation ring.
Moreover, for a ring A of characteristic p > 0, we will denote by A[F] the non
commutative A-algebra generated by one element F' with respect to the usual
relations:

F-a=daP-F, foranyacé€A.

Theorem 4.1. — Let G be a commutative extension of G, 5 by G, 5. Then
one can find x,y € R[G| such that R|G] = Rz, y], and such that the comulti-
plication map is given

pr)=re1+1ez, py) =yel+loy+ ) adi(z).
7

with a; € R. In particular, there exists an isomorphism of groups
R/plF] = Exty(Ga,s, Ga.s)
where the Extg(—, —) is taken in the category of abelian fppf-sheaves on S.

Proof. — Let G be an extension of G, 5 by G, g5. Since G, g is an affine
scheme, we have HI(G;S, Og,s) = 0. In particular, G ~ A% as S-schemes.
Hence there exist generators x,y € R[G]| such that R[G] = R|z,y], and the
comultiplication on R[G] is given by

(19) wr)=z1l+1z, pwy =y1+1xy+n(x)

which n(z) € R[z]®g R[x]. In the following, we consider the case Char(K) =0
and the case Char(K) = p > 0 separately.

First suppose that Char(K) = 0. Then G ~ Gg’ > and hence one can find
generator u,v € K[Gk| such that u = z, and that

pu)=u®l+1®1, p)=v0l+1lx®w.

Since y € R[G] C K[Gk] = K]|u,v], there exists some two variable polynomial
such that y = Q(u,v). Because of the formula (19), one must have Q(u,v) =
Au + P(v) with P a polynomial in v, and A € K. We will show that up to
replace y by some element of the form y—3> " a,z" with a, € R, we may assume
that

P(v) = vapi € K|v]

such that p-r; € R. The proof of this statement is similar to that of Theo-
rem 2.23. Assume that we have proved that

Z bt = Z rixpi

i>q i
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such that p-r; € R (to start with, we can take ¢ > 0 so that Zizq bixt = 0).
We claim first that if ¢ — 1 is not a power of p, then b,—; € A. Indeed, let

z = Z bizt = Zrixpi,
i>q i
then we have
p(z) =2@1+1@ 2+ pri®i(x)
i

Hence, we have

n(y) = n|bv+ Z bt +bq_1xq71 + z
i<qg—1
= > bhi(zel+iel)-deol-1xa)
1<qg—1
theo1 (@ 1+102) " 27 @1 —1@a® )+ pridy(z).
%

Since n(y) € R[G] ® R[G], we find for the reason of degree that
b1 (r@1+1®2)7 " 297 @1 - 1029 € RG] ® R[G).

Hence, we must have
—1

(20) bq_1<q , )eZ, j=1,2,-,q—2.
J

If ¢ — 1 is not a power of p, there exists some j such that (qgl) is prime to p.
From this, we must have b,—; € R. Up to modify y by y — bq_lxqfl, we may
assume that b;,_1 = 0 in this case. To complete the proof, it remains to show
that if ¢ — 1 = p**! is a power of p for some a > 0, then pbg—1 € R. Indeed,
by using again the condition (20), we have in particular bq_l(q];ll) € R. Since
this binomial coefficient is congruent to p modulo p?, we get finally pby—1 € R.

Hence
q _ ! .p"
g by = g ;T
i

i>q—1
This finishes the proof when Char(K) = 0.
For the case Char(K) = p. One can find generater u,v € K[Gk] such that
u = x, and that

wu(v) = 1®v+v®1+2ai®,~(a:), a; € K
i
We have similarly y = bv + P(u) with P(u) = Y, bu’ € K[u] a polynomial.
Up to replace v by bv, we may assume b = 1. By the same induction, we get
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that up to change y by some element of the form y — ), a;x’ with a; € R, we
may assume that
Z bz = Z riaP"
i i

Hence
ply) = p(v) = Z a;®;(z) € R[G] ® R[G]

Hence a; € R, and the formula of Theorem is proved.

To finish the proof of the theorem, we need to establish a bijection between
the group R/p[F] and the group Ext§(G, s, Gas). Now, asin [3] I § 3, 4.6, this
group of extensions can be described by the following (symmetric) Hochschild
cohomology group:
fX)Y) = f(V, X)

{f(X,Y) crixy): {VD—fX+Y. )+ (XY +2)— f(X,Y) =0 }

H2(Gas5,Ga5) =

{ P(X+Y)-P(X)-P(Y)€R[X,Y] : PeR[X] }
The previous proof shows that this cohomology group is generated over R by
the classes of the polynomials

1 T T T
Wo(X,Y):==((X+Y) — XV —Y?), r=12,--
p

Since more over pW,. = P(X +Y) — P(X) — P(Y) with P = X?" € R[X], the
R-module H%(G, s, G, s) is killed by p. Hence, it is naturally a R/p-module,
which is free with a basis given by the family {W, : 7 =1,2,---}. On can also
define an action of Frobenius F' on this R/p-module by the following formula:

P
F. (Z arVVT> = (Z arVVT> = Zaf@, ar € R/p.

T

Hence H2(Gg 5, Gq,s) becomes an R/p[F]-module. Since
WP =W,11 modp

we find F - W, = W,,1. In this way, we get that HE(G&S, Gq,s5) is an R/p[F -
module free of rank 1, with a basis given by {W;}. This completes the proof.
O

4.2. More explicit models of G2 in mixed characteristic. — In this
section, let R be a discrete valuation ring of mixed characteristic (0, p).

Definition 4.2. — Let a = (a; : i € Z>¢) and b = (b; : i € Z>) be two series
of elements in R, such that at least one of the elements a;,b; (i,7 € Z>g) is
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invertible. Let d > 0 be an integer such that 7%+ |p. We define G/S to be the
affine group scheme Spec(R[G]) with

R[G] = R[X7 Y7 Z]/<7Td+1Z - ZaiXpi - szsz)
i>0 i>0

where the comultiplication given by (here, we denote by x,y, z the image of
X,Y,Z in R|G])

n(@)=n(y) =0, nz)=7"""p- [ D adi(x) + Y bidi(y)

i>1 i>1
Such a group scheme will be denoted by G qp-

Remark 4.3. — These models can also be constructed by using successive
dilatations on G? g. For example, we consider first G = G2 ¢ = Spec(R[X,Y]),
and the closed group subscheme H C G} defined by the 1deal

<7r,2a2Xp +Zpr> C RIX,Y]

Then Gy qp is the dilatation of G along H.
Lemma 4.4. — Let {a = (a;),b = (b;)} and {a’ = (a}),V = (b))} be two pairs
of series as in Definition 4.2. If
a; = a, mod 7rd+1, and b; = b, mod 7rd+1 1=20,1,2,---
Then Gd,a,b =~ Gd,a’,b’-

Proof. — Let a; — a; = 7! . ¢; and b; — b, = 791 . d;. We define the
isomorphism R[Gd,a,b] = R[QT, Y, Z] - R[Gd,a’,b/] = R[wla y/7 Z/] by

z—=a, y—=v, z'—>2’+Zci:c'p+Zdiy’p.
i i

O]

Let Ry = R/7%*!, and R2[F] be the additive group of noncommutative
polynomials of F with coefficient in R2. Hence, an element of R2[F] can be
written as

> ri-F', withr; € R,

i>0
Finally, let II; C R2[F] be the pre-image of k*[F] — {0} by the canonical map
R2[F] — K*[F]. As a result of the previous lemma, for any group Gg,p in
Definition 4.2, let

Wa b = ZriFi € Ily, with r; = (a;,b;) € Rfl

)
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Then any group schemes Gg,; with the same element w = w,; € II; are
isomorphic. Hence, for any element w € II;, we will denote by G, the
corresponding isomorphic class.

Definition 4.5. — Let Autr,(R4[X,Y]) be the group of automorphisms of
the Rg-algebra Ry[X,Y]. We define Hy C Autp,(R4[X,Y]) be the subgroup
generated by the following two kinds of automorphisms

(i) ¢p: Ra[X,Y] — R4[X,Y] such that

X X X Y
(5) o0 (X) = (X2, o= (22 cctuim

(i) ¥: Ry[X,Y] — R4[X,Y] such that
X X+7Y aXP, a; € Ry

(A
Yr—>Y+7TZBtii+Z%Xpi, Bi vi € Rq
; ;

We will denote by #H!, C Hq the subgroup of H, generated by the automor-
phisms ¢p in (i). In particular, H}, ~ GLa(R)

Remark 4.6. — If we consider vasd = Spec(Ry4[X,Y]), then the group Hy

considered in the Definition 4.5 is precisely the group of automorphisms of this
group scheme over Sj.

We define an action of R} x Hg on R2[F] by the following formula:
— For A € R}, and D € GLy(Ry), define

(A ¢p) - <Z riFi> = Z)\—l (i - D/Pi) P

— For A € R}, and ¢ an automorphism of second kind as given in Defini-

tion 4.5, then
(A 9) - <Z7%Fl> = ZﬁFi

: : / " ~ =~ =1
where if we write r; = (v}, 77), and r; = (7},77), then

SN CE S ]

s+t=i stt=i
~f/ —1 /! 1 S
;= A (ri + E s (mB)P ) .
Ss+t=1

One verifies that these formulas give an action of R x Hy4 on R2[F], inducing
an action of this group on Il;.
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Proposition 4.7. — For any two elements w,w’ € Ilg.

1. The groups G, and G,y are isomorphic if and only if there exist (A, ¢p)
for some D € GLa(Ry) such that (X, ¢p) - w =uw'.

2. If g-w =W for some g € R x Hq. Then there is an isomorphism of
group schemes over Sy

G, ® Ry~ G, ® Ry.

Proof. — Put w = wqp and w’ = wy p with (a, ) and (a’, ") two pairs of series
as in the Definition 4.2. Since K is of characteristic zero, the only primitives
elements in R[G,,] (i.e., the elements u € R[G,] such that n(u) = 0) are those
contained in Rz + Ry € R[G,]. Hence any isomorphism ¢ : G, — G, must
be given by a substitution of the following form:

x—ax+ Py, y—yxr+0oy, z=Az+ P(zx,y),
with
a p *
D:(7 5)EGL2(R), A€ R", PeR[zx,y.

In order that this map can gives an isomorphism between R[G,] and R[G,],
we must have the following equality

(v + Play) = ¥ (ailaz + By + biha + o))
= X (7Td+12 -> (a;-:vpi + b;ypi)> )
for some A € R*. As a result, we find \' = \ and
\a; = a;a?" + bi’ypi mod 71 b = a; B + b;o? mod L.

Hence w’ = (X, ¢p) -w, with X € Ry (resp. D € GLa(Ry)) the image of A (resp.
D) in Ry (resp. in GLa(Ry)). Conversely, if w’ = (X, ¢5) - w for some matrix

(21)

D:(i‘ §>€GL2(R) and \ € R.

We define then an isomorphism R[G,,] — R[G,| given by
(22) r—ar+ Py, y—yr+dy, z—z+ Px,y)
with P(X,Y) € K[X,Y] the polynomial defined by the equality (21)

P(X,Y) =70 (Z (ai(@X + BY)" + bi(yX +6Y ) ) = S (X" + b;YpU) -
Since (A, ¢5) - w = ', and 7 |p, we find P € R[X,Y]. Hence the morphism
(22) is well-defined, and gives indeed an isomorphism between R[G,] and

R[G,/]. This finishes the proof of (1). To prove (2), suppose that g -w = &’
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with g € R}, x Hq4, we need to construct an isomorphism of Hopf-algebras over
Rd:

Rd[Gw] — Rd[Gw/].
By the proof of (1), we only need to consider the case of g = (1,) with 1 the
isomorphism given in the second case of Definition 4.5. We put

FXY)=X+7) GXY, g(X,Y)=Y +7Y BYP +> 5x7
with ag, B;, ~; be any lifting of «;, £;,;, and define

P(X.Y):=n""". (Z (a(FX YD+ bilg(X, )P ) = D (@ x? + ngpi)> :
Since p@*!|p and since (1,7) -w = w’, the polynomial P(X,Y") has coefficients
in R. Finally, we put P(X,Y") the reduction of P € R[X,Y] modulo 7%+, and

we define the morphism R4[G,] — Rq|Gw| by
zs flo,y), g gy 22+ Ply).

One verifies that this gives an isomorphism of groups schemes over Sy between
G, ® Ry and G,y ® Ry. This finishes then the proof. O

Corollary 4.8. — Let w € 1ly. There exists infinitely many isomorphism
classes over S of the family of S-groups {Gaqp} which over Sy are isomorphic
to G, ® Ry.

As an application of these computations, suppose the residue field k£ of R is
perfect and p = wfu with u € R*. Let G be a smooth commutative connected
two dimensional unipotent over k. Then there exist coordinates of G such that
G = Speck[U, V] such that the comultiplication is given by

pU)=U@1+10U, p(V)=Vel+laV+> a®(U)
(2
For each i such that a; # 0, let a; € R be a lifting of a;. Let b = (1,0,---).
Then Ge_14p is a lifting of G over S. Hence, there is infinitely many non
isomorphic unipotent groups G, such that G, ® Re—1 ~ Ge_1,4p @ Re_1.
Moreover, inside these non isomorphic groups, there is exactly one G,,, which
admits a composition series with quotients isomorphic to G, g.
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