Master 2, Semestre 9

Algebraic Geometry - TD 1

In this TD, unless said otherwise, the letter k denotes always an algebraically closed field

Exo. 1.

- 1. Let A be a principal ideal domain, and we consider the polynomial ring A[X] of one variable with coefficients in A. Let $\mathcal{P} \subset A[X]$ be a prime ideal such that $\mathcal{P} \cap A = (0)$. Show that \mathcal{P} is then a principal ideal of A[X].
- 2. Let $\mathcal{P} \subset k[X,Y]$ be a prime ideal. Show that we are in one of the following two cases:
 - (a) \mathcal{P} is a principal ideal.
 - (b) $\mathcal{P} = (X x_0, Y y_0) \subset k[X, Y]$ for some $x_0, y_0 \in k$.
- 3. Describe all the *irreducible* closed subsets of \mathbb{A}^2_k .
- 4. Show that the underlying topological space of \mathbb{A}^2_k is *not* the same as the product of two copies of the underlying topological space of \mathbb{A}^1_k .

Exo. 2 A topological space X is called *noetherian* if it satisfies the descending chain condition for closed sets, namely let

$$Y_1 \supseteq Y_2 \supseteq \cdots \supseteq Y_i \supseteq \cdots$$

be a chain of closed subsets of X, there is then some integer $r \in \mathbb{Z}_{\geq 1}$ such that

$$Y_r = Y_{r+1} = \cdots$$
.

- 1. Show that if X is a noetherian topological space which is also Hausdorff, then X is a finite set with the discrete topology.
- 2. Show that a noetherian topological space X is quasi-compact, that is, for any open covering $\{U_i|i\in I\}$ of X, on can always find a finite subset $J\subset I$ such that

$$\bigcup_{j \in J} U_j = X.$$

3. Show that for a noetherian space X, any closed subset $Y \subset X$ can be written as a finite union of its irreducible closed subsets

$$Y = \bigcup_{i=1}^{n} Y_i$$

such that $Y_i \nsubseteq Y_j$ for $i \neq j$. Moreover this decomposition is unique. The Y_i 's are called the *irreducible components* of Y.

4. Show that \mathbb{A}_k^n is a noetherian topological space. Then deduce that the same conclusion holds for an affine algebraic set. In particular, we can apply the previous assertion to \mathbb{A}_k^n .

1

Exo. 3

- 1. Prove, without using Hilbert's Nullstellensatz, that $I(\mathbb{A}_k^n) = (0)$.
- 2. Let $Y \subset \mathbb{A}^n_k$ be a subset. Show that $V(I(Y)) = \overline{Y}$.

3. Consider the twisted cubic curve:

$$C = \{(t, t^2, t^3) \colon t \in k\} \subset \mathbb{A}_k^3.$$

Show that C is an irreducible closed subset of \mathbb{A}^3_k , and find generators of the ideal $I(C) \subset k[X,Y,Z]$. Same questions for $C' = \{(t^3,t^4,t^5) \colon t \in k\} \subset \mathbb{A}^3_k$.

- 4. Let $V = V(X^2 YZ, XZ X) \subset \mathbb{A}^3_k$. Show that V consists of three irreducible components, and determine the corresponding prime ideals.
- 5. We identify the space $M_2(k)$ of 2×2 -matrices over k with \mathbb{A}^4_k with coordinates a, b, c, d:

$$M_2(k) \simeq \mathbb{A}_k^4, \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto (a, b, c, d).$$

Show that the set of nilpotent matrices is an algebraic subset of \mathbb{A}^4_k , and determine its ideal.

Exo. 4 Let k be an algebraically closed field, and A be any k-algebra of finite type. Let $I \subsetneq A$ be an ideal. Show that

$$\sqrt{I} = \bigcap_{I \subset \mathfrak{m} \subset A \text{ maximal}} \mathfrak{m}.$$

What happen if k is *not* algebraically closed?