Contents

Preface ix

Chapter 1. Introduction 1
 1.1. Subject matter 1
 1.2. Experimental protocols 2
 1.3. Multiprecision algorithms and working accuracy 2
 1.4. Comments on the GP language 3
 1.5. Warnings 7
 1.6. Examples 8

Chapter 2. Numerical extrapolation 11
 2.1. Introduction 11
 2.2. Richardson extrapolation 14
 2.3. Interlude: Estimating the number \(N \) of nodes 17
 2.4. Extrapolating by interpolation: Lagrange 22
 2.5. Extrapolation using Sidi’s mW algorithm 34
 2.6. Computing asymptotic expansions 37
 2.7. Sample timings for Limit programs 43
 2.8. Conclusion 48

Chapter 3. Numerical integration 51
 3.1. Numerical differentiation 51
 3.2. Integration of rational functions 57
 3.3. Generalities on numerical integration 65
 3.4. Newton–Cotes type methods 73
 3.5. Orthogonal polynomials 81
 3.6. Gaussian integration methods 99
 3.7. Gaussian Integration on \([a, \infty]\) 121
 3.8. Doubly-exponential integration methods (DE) 126
 3.9. Integration of oscillatory functions 138
 3.10. Sample timings for integrals on \([a, b]\) 154
 3.11. Sample timings for integrals on \([0, \infty]\) 157
 3.12. Sample timings for oscillatory integrals 162
 3.13. Final conclusion on numerical integration 164

Chapter 4. Numerical summation 165
 4.1. Introduction 165
 4.2. Euler–Maclaurin summation methods 166
 4.3. Pinelis summation 201
 4.4. Sums and products of rational functions 204
4.5. Summation of oscillating series 206
4.6. Summing by extrapolation 219
4.7. Van Wijngaarden’s method 223
4.8. Monien summation 224
4.9. Summing functions defined only on integers 235
4.10. Multiple sums and multizeta values 236
4.11. Sample timings for summation programs 245
4.12. Sample timings for Sumalt programs 249

Chapter 5. Euler products and Euler sums 253
5.1. Euler sums 253
5.2. Euler products 256
5.3. Variants involving log(p) or log(log(p)) 257
5.4. Variants involving quadratic characters 260
5.5. Variants involving congruences 262
5.6. Hardy–Littlewood constants: Quadratic polynomials 263
5.7. Hardy–Littlewood constants: General polynomials 267

Chapter 6. Gauss and Jacobi sums 273
6.1. Gauss and Jacobi sums over \(\mathbb{F}_q\) 273
6.2. Practical computations of Gauss and Jacobi sums 278
6.3. Using the Gross–Koblitz formula 284
6.4. Gauss and Jacobi sums over \(\mathbb{Z}/N\mathbb{Z}\) 290

Chapter 7. Numerical computation of continued fractions 297
7.1. Generalities 297
7.2. Naïve numerical computation 298
7.3. Speed of convergence of infinite continued fractions 300
7.4. Examples of each convergence case 310
7.5. Convergence acceleration of continued fractions 319
7.6. The quotient-difference algorithm 324
7.7. Evaluation of the quotient-difference output 327

Chapter 8. Computation of inverse Mellin transforms 331
8.1. Introduction 331
8.2. Gamma products 332
8.3. Compendium of possible methods 335
8.4. Using the power series around \(x = 0\) 336
8.5. Using the asymptotic expansion 338
8.6. Generalized incomplete Gamma functions 343

Chapter 9. Computation of \(L\)-functions 345
9.1. The basic setting and goals 345
9.2. The associated Theta function 346
9.3. Computing \(\Lambda(s)\) and \(L(s)\) 357
9.4. Booker–Molin’s idea for computing \(\Lambda(s)\): Poisson summation 360
9.5. The Fourier error 363
9.6. The truncation errors 365
9.7. Implementation 368
9.8. A possible program for computing \(\Lambda(s)\) and \(L(s)\) 371
CONTENTS

9.9. Applications ... 374
9.10. Examples .. 379
9.11. Shifting the line of integration in the Booker–Molin method 386
9.12. Computing $L(s)$ for large $\Im(s)$ 387
9.13. Explicit formulas .. 403

Appendix A. List of relevant GP programs 415

Bibliography .. 417

Index of Programs .. 421

General Index .. 425