
Computing Cubic Fields in Quasi-Linear Time

K. Belabas

Département de mathématiques (A2X)
Université Bordeaux I

351, cours de la Libération, 33405 Talence (France)
belabas@math.u-bordeaux.fr

Cubic fields (over the rationals) are the simplest non-Galois number fields and
thus should be the ideal testing ground for most general “density” conjectures,
such as the Cohen-Martinet heuristics. We present an efficient algorithm to
generate them, up to a given discriminant bound, which we hope will prove a
useful tool in their computational exploration.

It all originates from the seminal paper [4] by Davenport and Heilbronn and
some reduction theory as was already known to Hermite. When no explicit
reference has been given, we refer the curious reader not wishing to consider the
proofs as (easy) exercises to [1].

The rationale is as follows: to a given cubic field, we associate first a class
of binary cubic forms, which shares the same discriminant, and then a canon-
ical representative in the class. The essential point is that we have an explicit
description of the image of this mapping, the set of companion forms, which
behaves nicely from the algorithmic point of view.

1. The Theory

We consider Φ the set of integral, irreducible, primitive, binary cubic forms.
One classically associates to the form F (x, y) = ax3 + bx2y + cxy2 + dy3, or
F = (a, b, c, d) in short, its discriminant

disc(F) = b2c2 − 27a2d2 + 18abcd− 4ac3 − 4b3d .

A linear change of variables defines a natural, discriminant-preserving, action of
GL2(Z) on Φ, and we call Φ the quotient set. Define the Hessian form of F ,

HF = −1
4

∣∣∣∣∣∣
∂2F
∂x∂x

∂2F
∂x∂y

∂2F
∂x∂y

∂2F
∂y∂y

∣∣∣∣∣∣ = Px2 + Qxy + Ry2 ,

with P = b2 − 3ac, Q = bc− 9ad, R = c2 − 3bd.
This is a covariant quadratic form (i.e. HF◦M = HF ◦M for all M in GL2(Z))
whose discriminant is −3 disc(F). We call fH(F) the Hessian content, that is
the gcd of (P,Q,R).

For every prime p, we introduce, following Davenport and Heilbronn, some
sets of classes of forms, Vp and Up. Vp denotes the subset of Φ whose elements
satisfy{

disc(F) ≡ 1 mod 4 or disc(F) ≡ 8 or 12 mod 16 if p = 2,

disc(F) 6≡ 0 mod p2 otherwise.

If p 6= 3, we take

Up =
{

F ∈ Φ : F ∈ Vp or
[
p|fH(F) and p3 - disc(F)

]}
.

The set U3 is a little more complicated. We decide whether the form F =
(a, b, c, d) belongs to U3 according to the following algorithm:

if F ∈ V3, then F ∈ U3,
else if 3 - fH , then F 6∈ U3,
else if 3|a, F ∈ U3 ⇐⇒ 9 - a and 3 - d,
else if 3|d, F ∈ U3 ⇐⇒ 9 - d,
else if 3|(a− d), F ∈ U3 ⇐⇒ a− b + c− d ≡ 0 (mod 9),
else if 3|(a + d), F ∈ U3 ⇐⇒ a + b + c + d ≡ 0 (mod 9).

Davenport and Heilbronn defined Up in a different (more elegant) way, but our
presentation is best-suited for our algorithmic purpose. One can show that a
primitive F does not belong to Up if and only if F (x, y) has a square factor
(βx− αy)2 modulo p, with F (α, β) ≡ 0 (mod p2). We set U = ∩Up.

Theorem 1 (Davenport-Heilbronn). The classes of U are in one-to-one cor-
respondence with the (isomorphism classes of) cubic extensions of Q. This bi-
jection associates to any representative F = a(x − τ1y)(x − τ2y)(x − τ3y) of a
class the set of fields {Q(τ1), Q(τ2), Q(τ3)}. Besides, the common discriminant
of these fields is equal to disc(F).

Remark.. The reciprocal mapping is also explicit, given by the index form.

Let F = (a, b, c, d) be a cubic form of positive discriminant, and (P,Q,R) its
Hessian. We call F reduced if |Q| 6 P 6 R and

• a > 0, b > 0 and d < 0 whenever b = 0.
• If Q = 0, d < 0.
• If P = Q, b < |3a− b|.
• If P = R, a 6 |d|, and b < |c| whenever |d| = a.

The corresponding notion for forms of negative discriminant is given by the
following inequalities:

a > 0, b > 0 and d > 0 whenever b = 0,
d2 − a2 + ac− db > 0,

−(a− b)2 − ac < ad− bc < (a + b)2 + ac.

Theorem 2. A reduced cubic form belonging to U is irreducible. Any irreducible
cubic form is equivalent to a unique reduced one.

Let X be a positive real number and F = (a, b, c, d) a reduced form. Call
θ(a, b, X) the unique positive real solution of the equation

−4θ3 + (3a + 2b)2θ2 + 27a2X = 0 .

Lemma 3. If d(F) lies in]0, X], we have:

1 6 a 6
2X1/4

3
√

3
, 0 6 b 6

3a

2
+

√
√

X − 27a2

4
,

and
b2 − θ(a, b, X)

3a
6 c 6 b− 3a .

Lemma 4. If d(F) belongs to [−X, 0[, we have

1 6 a 6

(
16X

27

)1/4

, 0 6 b 6
3a

2
+

√(
X

3

)1/2

− 3a2

4
,

and 1− b 6 c 6
b2

3a
+

(
X

4a

)1

/3.

By means of Theorems 1 and 2, we know we can associate a canonical com-
panion form to each cubic field. Lemmas 3 and 4 tell us where to look, given
a bound for the field discriminant. Incidentally, this process yields a canonical
basis for the maximal order:

Lemma 5. Let K be a cubic field, generated by a root θ of the cubic form
F = (a, b, c, d). Suppose the discriminants of F and K are equal. Then

[1, aθ, aθ2 + bθ]

is a Z-basis of the maximal order of K.

The lemma remains true, and no harder to prove, for fields of arbitrary de-
gree n (consider binary n-forms with the correct discriminant instead). The
cubic and quadratic cases are peculiar in that such forms always exist !

2. The Algorithms

2.1. Common Routines. We shall see that the algorithm implicit in the pre-
ceding section is linear in the discriminant bound X save for the time spent
checking whether about X integers, of size bounded by X, are square-free. In
order to reduce this factoring time, we pre-compute lists of “square-full” numbers
(satisfying p2|∆ for some p > P). Thus, the check for square-freeness reduces
to a binary search in a sorted list followed by a few trial divisions: about π(P),
where π(x) is the number of primes up to x. This reduces tremendously com-
putational time.

Call M the maximum memory one is willing to spend for the list. This means
we keep at most M 32-bit integers in ram. This works nicely when X < 232.
For larger X, we use 2k lists and a primitive hashing technique, storing only the
lowest order words, using the k highest order bits to choose the right list (k = 10
is more than enough). This leads to the following initialization routine:

Sub-Algorithm 1 (init)

(1)[Initialize primes]: Input X, the discriminant bound. Compute a table of

primes up to
√

X, p[], as well as their squares pp[]. Using a binary
search, find the minimal prime p such that:

X

p log p
·
(

1 +
1

2 log p

)
6 3M .

If p 6 53, find the minimal prime p such that∑
p6l653
l prime

l−2 6
3M

X
− 1

59 log 59
·
(

1 +
1

2 log 59

)
.

If p < 5, set p = 5. Set index such that p[index]=p.
(2)[Initialize sieve]: Store in list[] all the integers less than X, prime to 6,

and admitting a divisor pp[i] for some i > index, as explained above. Fill
in boolean array sqfull[] up to n =

√
3X, such that sqfull[n] is true

if and only if n has a square factor prime to 6.

Lemma 2. The choice of p[index] given in step 1 ensures that list[] will
contain less than M integers.

We use the following general purpose subalgorithm:
Sub-Algorithm 3 (test(fH , a, b, c, d,∆))

Input: F = (a, b, c, d) a reduced cubic form belonging to U2, fH the content of its
Hessian H, and ∆ = |disc(H)| (recall that ∆ = −3 disc(F)).
Output: F if it belongs to U , nothing otherwise.

(1)If (a, b, c, d) does not belong to U3 or sqfull[fH] is true, return.
(2)Set t = ∆/f2

H , and remove all powers of 2 and 3 from the factorization
of t. If gcd(t, fH) > 1, return.

(3)Return if t is not square-free. This test should be done as follows: if n is

small enough (n 6
√

3X) return if sqfull[n] is true. Else search the
(sorted by construction) list for n, then trial divide n by pp[i], 2 6 i <
index, returning as soon as n is found or one pp[i] divides n

(4)Output (a, b, c, d).

Lemma 4.
• The integer fH is less than

√
3X. Thus, if |disc(F)| 6 X, the test for

sqfull[fH] in step 1 is meaningful.
• If F = (a, b, c, d) belongs to U2 and U3, then gcd(t, 6∞)|72 in step 2.

2.2. Real Cubic Fields. The following sub-algorithm checks whether the bi-
nary cubic form ax3 + bx2y + cxy2 + dy3 corresponds to a cubic field, using
reduction theory specific to the real case:
Sub-Algorithm 5 (is real field(a, b, c, d, P, Q, R))

Input: a real cubic form F = (a, b, c, d), and its reduced Hessian (P,Q,R).
Output: F , if it corresponds to a (real) cubic field.

(1)[Check special cases]:
•if P = Q: if |b| > |3a− b|, return.
•if P = R: if a > |d|, return. If a = |d| and |b| > |c|, return.
•if |Q| = R: if 4|P return. Execute test(P, a, b, c, d, 3P 2), then re-
turn.

(2)[F ∈ U2 ?] Set ∆ = 4PR −Q2. If 16|∆ or [∆ ≡ 12 (mod 16) and either
P or R is odd], return.

(3)Set fH = gcd(P,Q,R), then execute test(fH , a, b, c, d,∆).

Remark.. Step 1 ensures that F is reduced. When |Q| = R, which implies
|Q| = P = R, we are in the cyclic case, i.e. the companion field of F , if it exists,
is cyclic (this is a necessary and sufficient condition). As we already know that
fH will be equal to P , we take a shortcut.

It only remains to loop on the coefficients (a, b, c, d) of the cubic form, each
time calling this procedure to check for cubic fields. Given a bound X for the
discriminant, the constants (a, b, c) appearing next shall satisfy the inequalities
in Lemma 3. Finally, given a, b, c and X, the integer d satisfies

(1) |bc− 9ad| 6 b2 − 3ac 6 c2 − 3bd, d < 0 if b = 0

for we want (a, b, c, d) to be reduced, and

(2) (−27a2) · d2 + 2(9ac− 2b2)b · d + c2(b2 − 4ac) 6 X ,

because of the discriminant bound (given (1), expression (2) is non-negative).
Algorithm 6 (crfcrf1)

Input: a discriminant bound X.
Output: the forms associated to the real cubic fields whose discriminants are less
than X.

(1)Execute init.

(2)[Special case b = 0] Execute three embedded loops on a, c, d, in this nesting
order. Set the bounds using the preceding inequalities (which are much
simpler in this case). Compute the Hessian (P,Q,R). which is reduced by
construction, then execute is real field (a, 0, c, d, P, Q, R).

(3)[General case] We now have four loops on a, b, c, d in this order, with the
additional inequality b > 0. Compute the Hessian (P,Q,R), then execute
is real field (a, b, c, d, P, Q, R).

Remark.. Great care must be taken in setting the bounds for the various loops
to avoid round-off errors. Also, many computations can be done at an early
stage. For instance P = b2 − 3ac can – and should – be computed before d is
known. This is tedious but essentially straightforward, so we chose not to hide

1stands for Cubic Real Fields Counting Reduced Forms.

the simplicity of the algorithm behind scores of auxiliary variables and explicit
complicated bounds.

2.3. Complex Cubic Fields. Looking for complex cubic fields whose (neg-
ative) discriminant is greater than −X, we arrange for (a, b, c) to satisfy the
inequalities of Lemma 4. Now d must satisfy

(3) d2 − a2 + ac− db > 0 ,

(4) −(a− b)2 − ac < ad− bc < (a + b)2 + ac ,

d > 0 whenever b = 0 and, finally,

(5) −X 6 (−27a2) · d2 + 2(9ac− 2b2)b · d + c2(b2 − 4ac) < 0 .

This time, the reduction inequalities do not imply that the discriminant is neg-
ative.
Sub-Algorithm 7 (is complex field(a, b, c, d, P, Q, R))

(1)[F ∈ U2 ?] Set ∆ = Q2 − 4PR. If 16|∆ or [∆ ≡ 4 (mod 16) and either
P or R is odd], return.

(2)Set fH = gcd(|P |, |Q|, |R|), then execute test(fH , a, b, c, d,∆).

The shape of the algorithm is the same as in the real case. One must change
the bounds as indicated above and use is complex field instead of its real
counterpart. The new acronym is ccfccf2.

3. Complexity and General Remarks

3.1. Recall that Davenport ([2] and [3]) proved that the number of reduced
forms whose discriminants are bounded by X is equivalent to

(6)
π2

72
X in the real case,

π2

24
X in the complex case.

It does happen that for given (a, b, c) satisfying our reduction bounds, there does
not exist d such that the form (a, b, c, d) is both reduced and has a discriminant
in the expected interval. One can show the number of these “empty loops” is
a O(X3/4). Thus the number of loops in our algorithms is equivalent to the
number of reduced forms in the same discriminant range, given by (6).

Asymptoticaly, most of the time spent in a given loop will be taken by the
index trial divisions used to locate small square factors when all else has failed.
This number is bounded by a (small) constant times

min
(

X

3M log2 X
,
X1/2

log X

)
,

where M is the number of integers we can afford to store in the pre-computed
list. As M is typically around 107, this remains small for the practical range of
the method (less than 120 divisions for X 6 1011 in our implementation). Thus
we claim the algorithm will run in quasi-linear time.

2Cubic Complex Fields Counting Companion Forms.

3.2. Davenport and Heilbronn [4] later proved that, given a bound X for their
discriminants, the number of cubic fields is equivalent to

1
12ζ(3)

X in the real case,
1

4ζ(3)
X in the complex case.

This is about one half the corresponding values for reduced forms. Thus among
our loops, only about one half will yield incorrect forms. Hence, there is very
little waste.

3.3. One can sensibly compute the number of (isomorphism class of) cubic fields
up to X ≈ 1011 in this way. As one can see from Table 4.1 below, the overhead
computations in subroutine init take a negligible time, thus the algorithm can
easily be distributed.

The intermediate results all fit in single precision (long) integers on 64-bit
machines for reasonable X: say, less than 1012 in the real case, and 5.1010 in the
complex case.

3.4. It is easy to compute fields whose discriminants lie in an interval [X, X+Y],
for large X (say 1014), when Y is small enough (say 106). We incorporate
the relevant discriminant inequality in the loops and, instead of using lists of
square-full numbers, we factor the discriminant using a suitable probabilistic
factorization method. The running time is then essentially the time needed to
factor around Y numbers of size X. There are still at most O(X3/4) “empty”
loops though, and this can become dominant if X is too large.

3.5. If one compares with methods originating from Hunter’s theorem, the gain
is gigantic: no irreducibility check, no need to factor the discriminant, no search
for automorphisms and thus no need to keep all the fields found so far in memory.
As a matter of fact, sorting the field by increasing discriminant (which is utterly
impossible if X is large) actually takes much more time than computing them.

4. Results

This algorithm has been implemented in ansi c on a dec alpha (a fast 64-bit
machine). The following tables give an idea of computational time and memory
usage in this case. First, we consider the init routine, which does not depend
on the signature. Most of the time in there is spent building sieves. We call
P = p[index] the prime chosen to build the hashing lists. For instance, P = 5
means that no trial division actually takes place in sqfree. The “Square-full
ints” column corresponds to the number of 32-bit integers stored in the hashing
lists:

X P Square-full ints Sieving time
104 5 290 0.001 s
105 5 2935 0.01 s
106 5 29370 0.1 s
107 5 293674 1.0 s
108 5 2936998 7.0 s
109 17 5474664 43 s
1010 97 6409864 356 s (5 min 56 s)
1011 661 6644929 3427 s (58 min 15 s)

table 4.1: Overhead Computations

Next, we give the data corresponding to the computation of real and complex
cubic fields. “a” denotes the maximal value for the first coefficient of the cubic
form. These happen to be the ones given respectively by the bound in Lemma
3 and one less than the ones in Lemma 4 (with the exception X = 104 for the
latter where we get the exact bound).

We get a roughly linear behavior as long as P = 5, which quickly “diverges”
as P increases. Up to the same discriminant bound, time spent for the complex
computations compared to the real ones should be in the same ratio as the
number of fields found (slowly decreasing in the given examples, equal to 3
at infinity due to Davenport and Heilbronn’s result). Hence they should be
about three times slower (not exactly so, the initializing step being exactly the
same). But the situation is a little worse, due to the extra square roots arising
in the complex case: given (a, b, c, X), d must satisfy three quadratic inequalities
instead of one (compare (2) with (5), and (1) with (3), (4)).

X # of fields Elapsed time a

101 0 0.000 s 0
102 2 0.000 s 1
103 27 0.000 s 2
104 382 0.005 s 3
105 4,804 0.05 s 6
106 54,600 0.5 s 12
107 592,922 5.7 s 21
108 6,248,290 64.6 s (1 min 05 s) 38

P > 5 109 64,659,361 774 s (12 min 54 s) 68
1010 661,448,081 18,641 s (5 h 11 min) 121
1011 6,715,824,025 797,373 s (9 days 5 h) 216

table 4.2: Real cubic fields

X # of fields Elapsed time a

101 0 0.000 s 0
102 7 0.000 s 1
103 127 0.004 s 3
104 1520 0.04 s 7
105 17,041 0.3 s 14
106 182,417 2.2 s 26
107 1,905,514 21.6 s 49
108 19,609,185 224 s (3 min 44 s) 86

P > 5 109 199,884,780 2,575 s (42 min 55 s) 155
1010 2,024,660,098 58,803 s (16 h 20 min) 276
1011 20,422,230,540 2,427,276 s (28 days 2 h) 492

table 4.3: Complex cubic fields

References

1. Belabas, K. A fast algorithm to compute cubic fields (to appear in Math. Comp.).

2. Davenport, H. On the class number of binary cubic forms (I), J. Lond. Math. Soc.
26 (1951), pp. 183–192. (erratum, ibid 27, p. 512).

3. Davenport, H. On the class number of binary cubic forms (II), J. Lond. Math. Soc.

26 (1951), pp. 192–198.
4. Davenport, H. & Heilbronn, H. On the density of discriminants of cubic fields (II)

Proc.Roy.Soc.Lond.A 322 (1971), 405-420.

