PRACTICAL AURIFEUILLIAN FACTORIZATION
BILL ALLOMBERT AND KARIM BELABAS

ABSTRACT. We describe a simple procedure to find Aurifeuillian factors of
values of cyclotomic polynomials ®4(a) for integers a and d > 0. Assuming a
suitable Riemann Hypothesis, the algorithm runs in deterministic time O(dQL),
using O(dL) space, where L :=log(|a|] + 1).

CONTENTS
1. When does an Aurifeuillian factorization exist 7................... ... 2
2. A product formula for an Aurifeuillian factor 3
3. An f-adic algorithm and its complexity (a €Z)ccoovin... 5
4. Rational Inputs....... ... 8
5. A gratuitous example. ... 9
References 9

Dedicated to Henri Cohen on his 60th birthday.

Let &, denote the d-th cyclotomic polynomial
e4(X)= [(x-¢h.
ke(Z/dZ)*

where (4 is a d-th primitive root of unity. To factor integers of the form a™ — 1,
it is advantageous to start from the algebraic factors

a"—1= Hq)d(a).
din

This trick generalizes to
. a2n -1
a+1:an_1: H q)d(a)a
d|2n, dtn

and in fact to a™ 4+ b" for integers a and b since rational factors of ®4(a/b) lead
to integer factors of the requested integer.

Less widely known but still classical, it is often possible to refine further these
algebraic factorization. An Aurifeuillian factorization exists if a € Q is such that

Date: October 28th 2008.

2 BILL ALLOMBERT AND KARIM BELABAS

alqy =: a? is a square in Q(¢y). In that case, let Nx denote the absolute norm
from Q({y) to Q; then

(1) ®4(a) = N(a — () = £N(Caa — (7) = £N(a = Q)N (a + Ca),

where we have used N(; € Z* = {—1,1}. (In fact, N(; = 1 for d # 2.) We
thus get two rational factors, the so-called Aurifeuillian factors of ®4(a). For all
complex embeddings o : Q({y) — C, we have |o(a + (4)| = v/a—1 by the triangle
inequality. If a € Z satisfies |a| > 4, then \/a —1 > 1 and we obtain a non-trivial
factorization of ®4(a): both Aurifeuillian factors are integers larger than 1. In
fact, essentially the same argument proves that both factors have roughly the
same size.
Usually, Aurifeuille’s trick is presented as polynomial identities of the form

©q(X) = Ugy(X) — eXVE(X),

for various constants ¢ and polynomials U,V depending on ¢,d (Schinzel [9]).
Stevenhagen [10] and Brent [2] give algorithms to compute U and V, using a
Euclidean algorithm and Newton sums identities respectively. Both algorithms
use O(d?) integer operations, and O(d) using asymptotically fast arithmetic. We
do not know a reference for their bit complexity but, as remarked by Brent,
a straightforward implementation of Stevenhagen’s Euclidean algorithm suffers
from intermediate expression swell.

In this short note, we propose an algorithm to find Aurifeuillian factors, which
is easier to describe and implement than the polynomial approaches sketched
above. It is also more explicit in the sense that extracting from the literature
a polynomial formula yielding a factor for a given factorization problem is not
obvious, whereas we obtain directly an Aurifeuillian factor of ®4(a), whenever
one exists.

1. WHEN DOES AN AURIFEUILLIAN FACTORIZATION EXIST ?

Proposition 1.1 (Granville-Pleasants |5]). Let a € Q" and let {4 be a primitive
d-th root of unity. Let a* be the squarefree integer, which is the canonical repre-
sentative of a in Q*/(Q*)2. Then aly is a square in Q((q) if and only if a* | d
and one of the following is true:

e ¢* =1 (mod 4) and d is odd.

e ¢* =3 (mod 4) and vo(d) = 1.

e a* is even and vo(d) = 2.

Note that the second case vy(d) = 1 reduces to the first, because ®y(X) =
®4/2(—X) in that case. Less obvious, but even more interesting: if

D = 2v(d) H p and A=a¥P,
pld,p#2

we have ®,(a) = ®p(A) and (d, a) satisfies the above conditions if and only if
(D, A) does; in fact A = a” and v2(D) = va(d). On the other hand, if D" =[], p

PRACTICAL AURIFEUILLIAN FACTORIZATION 3

and A" = a¥/P’ | we still have ®4(a) = ®p/(A’), but the pair (D', A') never satisfies
the above conditions when 4 | d: indeed D’ is even but (A")* = 1.

The proof of the Proposition is a straightforward case by case analysis, and
provides an explicit square root in each case in terms of Gaussian sums. Namely,
for p an odd prime and (E> the Legendre-Jacobi symbol modulo the integer ¢ > 1,
we have

-1 T 2 d
s = (T where g) = % (2)¢; and 6=,
p zelF, p
g(2)? = —2i, where g(2):=i—1 and i:= 5/4,
assuming p | d and 4 | d respectively. Let
G(a*) = [T 9(p)-
pla*

If |a*| =[], p is odd, this yields for instance

-1 . la*]-1 ato1 a* ifa* =1 (mod 4),
6= (i)l = (-0 \a\=<—1>za={ mod

|la*| —a* ifa* =3 (mod 4).

Note that Proposition 1.1 implies that, if ay is a square, then a* | d, hence all
the primes p | a* also divide d; if further a* is even, then 4 | d.

Remark 1.2. The interesting special case a = p prime was our original motivation
for this work. Namely, to compute the order of elements in F., in particular to
test prospective primitive roots, we need to complete the factorization of

p"—1=[]2up).
din

If p divides n, Aurifeuille’s trick provides extra useful factors of the ®4(p), such
that p divides d.

2. A PRODUCT FORMULA FOR AN AURIFEUILLIAN FACTOR

There are beautiful and unexpected formulas for Aurifeuillian polynomials,
see |2, Theorem 1]. Our formula for Aurifeuillian factors is neither beautiful nor
unexpected, but algorithmically useful nevertheless. The Galois action on the
Gaussian sum G is explicit and we write down a variation on (1) optimized for
computational purposes:

Proposition 2.1. Let d > 2, and (d, a) satisfy the conditions of Proposition 1.1.
Write a = a* f*, f € Q* and let G(a) = f[,,- 9(p) € Q(Ca). Then

T «xhHe-¢)

je(z,/dz)*

4 BILL ALLOMBERT AND KARIM BELABAS
is an Aurifeuillian divisor of ®4(a), where

(L) ifa* odd,

|a*|

x(j) = (|a*j/2‘) if a* even and j =1 (mod 4),

(| j/m)z' if a* even and j =3 (mod 4).

Proof. The o : (g (), j € (Z/dZ)*, run over the Galois group of Gal(Q(¢y)/Q),
and Nz = []; oz for all z € Q(Ca)-

1) We first treat the case d odd, a* = 1 (mod 4): then a = G(a)? and (2 is a
primitive d-th root of 1. In particular

®4(a) = N(G* — (3) = N(G — C)N(G + Ca)-
Since 0,g(p) = (%)g(p) for all odd primes p, we obtain

o,G = <|L) G, hence 0;(G— () =x()G —

a*|
2) For completeness, we include the case vy(d) = 1 and a* = 3 (mod 4): then
a = —G(a)? and —(2 is a primitive d-th root of 1. In particular

®q4(a) = N(=G* + () = N(G = Ca)N(G + Ca).-
The computation of o,;(G — (4) is still valid.

3) Assume finally that vy(d) = 2 and a* even: then +i(? = sid/4 are primitive

d-th roots of 1, since ged(2+d/4,d) = 1: indeed 2+d/4 is odd and any odd prime
divisor of d and 2 4+ d/4 would divide 2. Reusing the previous computations,

G(a)® = f*(-2i)(-1) (a"/2) = (=1)
hence a = +iG(a)?. It follows
®q(a) = N(a — (£i)¢7) = N((£0)G* = (£i)¢(7) = N(G = C)N(G + Ca),

where we use N(£i) = 1 in the last equality. As for the Galois action, we have

5 9(2) _ o) = {1 if j=1 (mod 4)

2 2

at,

9(2) i if j =3 (mod 4),
and it follows that

010 =<0)([71)¢
]

Many analogous products can be written, involving terms of the form (*G+¢/;
our product is written so as to

e always multiply G by a trivial factor in a given term: x(j)G takes values
in {£G, £iG} which is easily precomputed.

PRACTICAL AURIFEUILLIAN FACTORIZATION 5

e require the powers of (in increasing order, so there is no need to precom-
pute and store them: they can be obtained by successive multiplications.

Remark 2.2. In fact, storing a few powers of (is still useful: if j; < j5 are two
consecutive integer representatives for elements in (Z/dZ)*, ¢’? is computed as
¢/t x (7279 and the latter lives in a small set which should be precomputed. As
an obvious example, when 2 | d is even, j, — j; is even and only powers of (?
occur, but we can be more thorough and store all (#2791,

Estimating the maximal gap j» — 7; in terms of d is a famous question of
Jacobstahl, and Iwaniec |7] proved that j, —j; < (rlog(r+1))? if d has r distinct
prime divisors. In particular, j,—j; = O(log d)? remains small. Consequently, the
(7 for j € (Z/dZ)* are obtained using ¢(d) + O(log d)? modular multiplications,
storing no more than O(log d)? values at a time.

Compared to the obvious algorithm using d — 1 modular multiplications, we
save a factor (d — 1)/¢(d) which can be of the order of loglogd (when d is a
product of small primes). Of course this technique becomes less useful if d has
few prime factors, in particular it is useless if d is prime!

Remark 2.3. If d is an odd prime such that 2 is a primitive root mod d, a dif-
ferent optimization applies, even though we no longer save on the number of
multiplications: we write j € (Z/dZ)* as 2*, and compute

H 2 kG N 2k
@] t)
ke€Z/(d—1)Z

where the 4"3’“ are computed by successive squarings, which are slightly faster
than general multiplications. Of course, (ﬁ) = =41 is constant and computed

only once. The condition on d implies d = 3,5 (mod 8) (otherwise 2 is a square),
and is not very restrictive otherwise: out of the 332365 primes congruent to 3,5
(mod 8) and less than 107, 248491 satisfy it, about 74%.

Remark 2.4. In the case vy(d) = 2, replacing our ad hoc g(2) by the customary
9(2) := Coa + ¢, yields nicer formulas since we then have o; g(p) = (%)g(p) for
all primes p and ¢(2)? = 2. Unfortunately, we would then factor

®q(a)? = No(eon)/o(G? = €31) = No(eon/o(G — ¢aa) No(en) /o (G + Cad),s

producing essentially the squares of the requested Aurifeuillian factors, which
would force us to work at double accuracy in the next section.

3. AN (-ADIC ALGORITHM AND ITS COMPLEXITY (a € Z)

There are two main ideas to implement easily and efficiently the previous for-
mula. The first one is to compute the product as an f-adic number for a suitable £,
not as a complex number: as usual, this avoids tedious estimates of roundoff er-
rors. The second one is to compute the product of local Gaussian sums G directly,
as a single (-adic square root of a known number. We now restrict to a € Z, and
defer the general case a € QQ to the next section.

6 BILL ALLOMBERT AND KARIM BELABAS

Algorithm 3.1 (Aurifeuillian factorization)
Input: Integers d € Z~g and a € Z, a # 0.
Output: An Aurifeuillian factor of ®4(a), if one exists.

(1) [Handle trivial cases d < 2]. If d > 2, goto (2).
If d =2, set a «— —a.
Return A+ 1 if a =: A% is a square in Z and fail otherwise.

(2) Use Sub-Algorithm 3.2: fail if (d, a) does not satisfy the Granville-Pleasants
criterion. Replace (d,a) by the simpler pair returned by the algorithm; at
this point we also know a* and ¢(d).

(3) Find ¢, the smallest prime =1 mod d, and ¢ € F; of exact order d.

) Let B = (y/la] +1)¢ and e the smallest integer such that ¢ > B.

) (lifts to a primitive d-th root of 1 in Zj, still denoted (. Using Hensel lifting,

compute z € (Z/(°Z) such that z = ¢ (mod ¢¢).
[End of (-adic initializations.]

(6) Define v € (Z/¢°Z) in the following way: if d is odd, let v < a; else let

: (@*/2)+1
i 2%t and v — (=1)" 2 ai.

(7) Compute an approximate ¢-adic square root G of v: an integer 0 < G < (¢,
such that G = v (mod ¢¢) (Hensel lift).
(8) Let x as in Proposition 2.1 and compute the integer 0 < F' < £¢ such that

F= H (x(/))G = 27) (mod ¢°).

je(z,/dz)*

[Compute 27 by successive multiplications; if d is even, precompute iG]
(9) Return F'.

Sub-Algorithm 3.2 Input: Integers d € Z~(and a € Z, a # 0.
Output: Fail if the Granville-Pleasants criterion is not satisfied. Otherwise returns a
pair (D, A) with ®p(A) = P4(a), admitting an Aurifeuillian factor; D = § or 40,
where ¢ is odd and squarefree. Byproducts: computes a* = A*, and ¢(D).

(1) Ifd=2 (mod 4) set d «— d/2, a < —a. [Now d is odd or divisible by 4.]

(2) [Early abort.] Fail if 8 | d, or if d = ve(a) (mod 2), or if (d odd and

a/2%@ #£ 1 (mod 4)).

(3) Factor d =[] p.

(4) Compute the a, := v,(a) for the above p | d, to obtain a partial factorization
a = sign(a) [[p*b, where b > 0, (b,d) = 1. Fail if b is not a square in Z.
Let a* = sign(a) [],, o4 p- Fail if a* =3 (mod 4), or a” # d (mod 2).
Compute D =2%=T] , _,p, and let A= a®".
Compute ¢(D); note that the factorization of D is known.
Return (D, A, a*, p(D)).

Proof. Sub-Algorithm 3.2 is a straightforward implementation of Proposition 1.1.
Now on to the main Algorithm.

Since d > 2 from step (2) on, the d-th cyclotomic field has no real embeddings
and the norm has non-negative values. In particular, the Aurifeuillian factors

5

6

7
8

NN SN S
— ' —

PRACTICAL AURIFEUILLIAN FACTORIZATION 7

N(a £ (4) are non-negative. Since they are obviously less than B < (¢, knowing
them mod ¢¢ is enough to reconstruct them.

For d > 2, a primitive d-th root of 1 exists in Z, if and ounly if £ =1 (mod d);
Hensel lifting a solution of X4 = 1 of exact order d in F}, we can approximate it
to any desired f-adic accuracy (note that (d,¢) = 1).

Since the computed G has the correct square, it is equal to the one defined in
Proposition 2.1 up to sign, but changing GG into —G corresponds to swapping the
Aurifeuilian factors, i.e. computing N (G + (;) instead of N(G — (y). O

Remark 3.3. Recall that a = p a small prime is an important special case, useful
in basic computations involving Fy.. In the case a = 2, Step (7) of the main
Algorithm simplifies since a = a* = 2 and an f-adic square root G of —ai is i — 1.

An analogous simplification applies if we only assume a* = 2, since a square root
G of —ai is f(i — 1), where a = a* f2.

Theorem 3.4. Let L := log(|a] + 1), and M(n) an upper bound for the bit
complexity of multiplication of two n-bits integers. Assume that for all d > 1,
there ewists a prime { = 1 (mod d) satisfying ¢ < Dd° for some constants
C < 8 and D. Given such an (, Algorithm 3.1 runs in deterministic time

O(dM(dL) + d°/*+¢) = O(d?L), using O(dL) space.

Proof. The Sub-Algorithm handles numbers < d for a negligible time O(d®) (in-
cluding the factorization of d), then computes O(logd) valuations of a at small
primes p < d in time O((logd)?L), then computes an approximate square root, of
b < |al in time O(M(L)).

Finding an element of order o in F} is done quickly using randomization. To
do it in deterministic time, we may look for a primitive root and raise it to the
(¢ — 1)/o-th power. Unconditionally, the least primitive root mod ¢ is < ¢'/4+*
by Burgess’s famous result [3].

Hensel lifting a root of X? = 1 to accuracy £° is done in time O(dM(log (¢)),
and the square root computation yielding G in time O(M(log¢¢)). Finally we
have O(¢(d)) = O(d) multiplications in Z/¢(°Z, in time O(dM(log ¢¢)), and O(d)
Jacobi symbols mod a*, each in time O(d) (note that a* < d at this point).

From ¢¢ > B > (°~!, we obtain /¢ < {B, hence

log ¢¢ <log ¢ +log B < logd+ ¢(d)L < dL,

using ¢ < Dd®, which implies log ¢ <, p logd.

The space complexity follows from noting that the computation stores O(1)
integers less than ¢¢, provided we compute the 27 successively. Note that using
Remark 2.2 increases our space requirements by a factor r?*¢ if d has r prime
divisors. 0

The existence of £ < Dd® as in the Theorem is ensured by Linnik’s theorem,
and the best unconditional bound so far is C' = 5.5 (Heath-Brown [6]), which is
indeed less than 8. Obviously, such an ¢ can be found in deterministic polynomial
time O(d°~!) by applying primality tests to successive members of the arithmetic

8 BILL ALLOMBERT AND KARIM BELABAS

progression 1+d, 1+2d,.... Unfortunately, this becomes dominant, and in order
to obtain a realistic estimate, we must make it conditional:

Corollary 3.5. Assuming the Generalized Riemann Hypothesis, Algorithm 3.1
runs in time O(d?L).

Proof. Assuming the Riemann Hypothesis, £ < 2(dlogd)?, see [1, Theorem 5.3],
and may be found using O(d) compositeness tests. U

Remark 3.6. For a practical randomized way to find ¢ € I} of order d, factor £ —1
(notice that the factorization of d | £ — 1 is known and the cofactor (¢ —1)/d is
expected to be small). Then pick z € [1,¢ — 1] uniformly at random until the
following test succeeds: compute the order o of z, using |4, Algorithm 1.4.3]; if
d | o, set ¢ = 2°/% and stop. The probability to find an element whose order is a
multiple of d in a cyclic group of order n = /¢ — 1 is

1 1 p(d)

=D olkd) > =3 p(k)p(d) ===,

kg kg

with equality when ged(n/d, d) = 1. This lower bound does not depend on /.
Remark 3.7. The (-adic initialization is almost independent from a. To ob-
tain Aurifeuillian factors of ®4(a;) for fixed d and varying a;, we can set B =
(v/max; |a;| + 1)#@: the corresponding z may be reused in all computations.

Remark 3.8. Our straightforward upper bound B = (y/]a|+1)#@ is rather sharp
since both factors are also > (y/|a] — 1)#(9). This also means that, even if only

one factor is desired, the output size is of order Ld; thus our runtime O(Ld2) is
essentially optimal in the L aspect, but d times slower than an optimal, as yet
unknown, quasi-linear algorithm.

4. RATIONAL INPUTS

To factor ®(a) where a € Q, essentially the same algorithm applies with the
following modifications:
(1) We now compute explicitly f € Q* such that a = a*f?, say f = u/v for
coprime integers u, v.
(2) Our prime £ =1 (mod d) must now also satisfy ¢ { v.
(3) The product

F=] &thG-¢)
je(z/dz)*
is now a rational number, whose denominator divides v¥(?. So we use
the bound B = (v(\/a + 1))¢(d) and compute Fv?@ mod (¢ as before.

This is an integer which we can now recognize, and divide by v¥@ to
obtain a rational factor of ®4(a).

PRACTICAL AURIFEUILLIAN FACTORIZATION 9

5. A GRATUITOUS EXAMPLE

Recall that Henri Cohen’s favourite small integer is 49; to celebrate Henri’s
60th birthday, we let our PARI/GP [8] implementation compute the Aurifeuillian
factors of ®gog9(6049):

? install(factor_Aurifeuille, GL);

7?7 d=a = 6049;

? F = factor_Aurifeuille(a,d); \\ one factor. Output suppressed!
time = 13,760ms

? polcyclo(d, a) / F; \\ the cofactor.

time = Oms.

The computation was run on an Opteron 880 at 2.4Ghz using PARI/GP ver-
sion 2.4.3 (with GMP-4.1.4 multiprecision kernel), producing two factors having
10899 and 10900 decimal digits in about 14 seconds.

Increasing d by a factor about 10, our implementation computes the Aurifeuil-
lian factors of Pgooa9(60049) (126726 and 126727 decimal digits) in about 99
minutes on the same machine.

REFERENCES

[1] E. BAcH & J. SORENSON, Explicit bounds for primes in residue classes, Math. Comp. 65
(1996), no. 216, pp. 1717-1735.

[2] R. P. BRENT, Computing Aurifeuillian factors, in Computational algebra and number
theory (Sydney, 1992), Math. Appl., vol. 325, Kluwer Acad. Publ., 1995, pp. 201-212.

[3] D. A. BURGESS, On character sums and primitive roots, Proc. London Math. Soc. (3) 12
(1962), pp. 179-192.

[4] H. COHEN, A course in computational algebraic number theory, Graduate Texts in Math-
ematics, vol. 138, Springer-Verlag, Berlin, 1993.

[5] A. GRANVILLE & P. PLEASANTS, Aurifeuillian factorization, Math. Comp. 75 (2006),
no. 253, pp. 497-508.

[6] D. R. HEATH-BROWN, Zero-free regions for Dirichlet L-functions, and the least prime in
an arithmetic progression, Proc. London Math. Soc. (3) 64 (1992), no. 2, pp. 265-338.

[7] H. IwaNIEC, On the problem of Jacobsthal, Demonstratio Math. 11 (1978), no. 1, pp. 225—
231.

[8] PARI/GP, version 2.4.3, Bordeaux, 2008, http://pari.math.u-bordeaux.fr/.

[9] A. SCHINZEL, On primitive prime factors of a™ — b™, Proc. Cambridge Philos. Soc. 58
(1962), pp. 555-562.

[10] P. STEVENHAGEN, On Aurifeuillian factorizations, Nederl. Akad. Wetensch. Indag. Math.

49 (1987), no. 4, pp. 451-468.

UNIVERSITE BORDEAUX I, DEPARTEMENT DE MATHEMATIQUES (A2X), 351 COURS DE LA
LiBERATION, F-33405 TALENCE CEDEX, FRANCE
E-mail address: Karim.Belabas@math.u-bordeaux.fr

UNIVERSITE MONTPELLIER 2, PLACE EUGENE BATAILLON F-34095 MONTPELLIER CEDEX,
FRANCE
E-mail address: ballombe@math.univ-montp2.fr

