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edure to �nd Aurifeuillian fa
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ated to Henri Cohen on his 60th birthday.Let Φd denote the d-th 
y
lotomi
 polynomial

Φd(X) =
∏

k∈(Z/dZ)∗

(X − ζk
d ),where ζd is a d-th primitive root of unity. To fa
tor integers of the form an − 1,it is advantageous to start from the algebrai
 fa
tors

an − 1 =
∏

d|n

Φd(a).This tri
k generalizes to
an + 1 =

a2n − 1

an − 1
=

∏

d|2n, d∤n

Φd(a),and in fa
t to an ± bn for integers a and b sin
e rational fa
tors of Φd(a/b) leadto integer fa
tors of the requested integer.Less widely known but still 
lassi
al, it is often possible to re�ne further thesealgebrai
 fa
torization. An Aurifeuillian fa
torization exists if a ∈ Q is su
h thatDate: O
tober 28th 2008. 1



2 BILL ALLOMBERT AND KARIM BELABAS
aζd =: α2 is a square in Q(ζd). In that 
ase, let Nx denote the absolute normfrom Q(ζd) to Q; then(1) Φd(a) = N(a− ζd) = ±N(ζda− ζ2

d) = ±N(α− ζd)N(α + ζd),where we have used Nζd ∈ Z∗ = {−1, 1}. (In fa
t, Nζd = 1 for d 6= 2.) Wethus get two rational fa
tors, the so-
alled Aurifeuillian fa
tors of Φd(a). For all
omplex embeddings σ : Q(ζd)→ C, we have |σ(α± ζd)| >
√

a−1 by the triangleinequality. If a ∈ Z satis�es |a| > 4, then √a− 1 > 1 and we obtain a non-trivialfa
torization of Φd(a): both Aurifeuillian fa
tors are integers larger than 1. Infa
t, essentially the same argument proves that both fa
tors have roughly thesame size.Usually, Aurifeuille's tri
k is presented as polynomial identities of the form
Φd(X) = U2

c,d(X)− cXV 2
c,d(X),for various 
onstants c and polynomials U, V depending on c, d (S
hinzel [9℄).Stevenhagen [10℄ and Brent [2℄ give algorithms to 
ompute U and V , using aEu
lidean algorithm and Newton sums identities respe
tively. Both algorithmsuse O(d2) integer operations, and Õ(d) using asymptoti
ally fast arithmeti
. Wedo not know a referen
e for their bit 
omplexity but, as remarked by Brent,a straightforward implementation of Stevenhagen's Eu
lidean algorithm su�ersfrom intermediate expression swell.In this short note, we propose an algorithm to �nd Aurifeuillian fa
tors, whi
his easier to des
ribe and implement than the polynomial approa
hes sket
hedabove. It is also more expli
it in the sense that extra
ting from the literaturea polynomial formula yielding a fa
tor for a given fa
torization problem is notobvious, whereas we obtain dire
tly an Aurifeuillian fa
tor of Φd(a), wheneverone exists.1. When does an Aurifeuillian fa
torization exist ?Proposition 1.1 (Granville-Pleasants [5℄). Let a ∈ Q∗ and let ζd be a primitive

d-th root of unity. Let a∗ be the squarefree integer, whi
h is the 
anoni
al repre-sentative of a in Q∗/(Q∗)2. Then aζd is a square in Q(ζd) if and only if a∗ | dand one of the following is true:
• a∗ ≡ 1 (mod 4) and d is odd.
• a∗ ≡ 3 (mod 4) and v2(d) = 1.
• a∗ is even and v2(d) = 2.Note that the se
ond 
ase v2(d) = 1 redu
es to the �rst, be
ause Φd(X) =

Φd/2(−X) in that 
ase. Less obvious, but even more interesting: if
D = 2v2(d)

∏

p|d,p 6=2

p and A = ad/D,we have Φd(a) = ΦD(A) and (d, a) satis�es the above 
onditions if and only if
(D, A) does; in fa
t A∗ = a∗ and v2(D) = v2(d). On the other hand, if D′ =

∏

p|d p



PRACTICAL AURIFEUILLIAN FACTORIZATION 3and A′ = ad/D′ , we still have Φd(a) = ΦD′(A′), but the pair (D′, A′) never satis�esthe above 
onditions when 4 | d: indeed D′ is even but (A′)∗ = 1.The proof of the Proposition is a straightforward 
ase by 
ase analysis, andprovides an expli
it square root in ea
h 
ase in terms of Gaussian sums. Namely,for p an odd prime and (

.
q

) the Legendre-Ja
obi symbol modulo the integer q > 1,we have
g(p)2 =

(−1

p

)

p, where g(p) :=
∑

x∈Fp

(

x

p

)

ζx
p and ζp := ζ

d/p
d ,

g(2)2 = −2i, where g(2) := i− 1 and i := ζ
d/4
d ,assuming p | d and 4 | d respe
tively. Let

G(a∗) =
∏

p|a∗

g(p).If |a∗| = ∏

p p is odd, this yields for instan
e
G2 =

(−1

|a∗|

)

|a∗| = (−1)
|a∗|−1

2 |a∗| = (−1)
a∗−1

2 a∗ =

{

a∗ if a∗ ≡ 1 (mod 4),

−a∗ if a∗ ≡ 3 (mod 4).Note that Proposition 1.1 implies that, if aζd is a square, then a∗ | d, hen
e allthe primes p | a∗ also divide d; if further a∗ is even, then 4 | d.Remark 1.2. The interesting spe
ial 
ase a = p prime was our original motivationfor this work. Namely, to 
ompute the order of elements in F∗
pn, in parti
ular totest prospe
tive primitive roots, we need to 
omplete the fa
torization of

pn − 1 =
∏

d|n

Φd(p).If p divides n, Aurifeuille's tri
k provides extra useful fa
tors of the Φd(p), su
hthat p divides d.2. A produ
t formula for an Aurifeuillian fa
torThere are beautiful and unexpe
ted formulas for Aurifeuillian polynomials,see [2, Theorem 1℄. Our formula for Aurifeuillian fa
tors is neither beautiful norunexpe
ted, but algorithmi
ally useful nevertheless. The Galois a
tion on theGaussian sum G is expli
it and we write down a variation on (1) optimized for
omputational purposes:Proposition 2.1. Let d > 2, and (d, a) satisfy the 
onditions of Proposition 1.1.Write a = a∗f 2, f ∈ Q∗ and let G(a) = f
∏

p|a∗ g(p) ∈ Q(ζd). Then
∏

j∈(Z/dZ)∗

(χ(j)G− ζj
d)



4 BILL ALLOMBERT AND KARIM BELABASis an Aurifeuillian divisor of Φd(a), where
χ(j) =











(

j
|a∗|

) if a∗ odd,
(

j
|a∗/2|

) if a∗ even and j ≡ 1 (mod 4),
(

j
|a∗/2|

)

i if a∗ even and j ≡ 3 (mod 4).Proof. The σj : ζd 7→ ζj
d, j ∈ (Z/dZ)∗, run over the Galois group of Gal(Q(ζd)/Q),and Nx =

∏

j σjx for all x ∈ Q(ζd).1) We �rst treat the 
ase d odd, a∗ ≡ 1 (mod 4): then a = G(a)2 and ζ2
d is aprimitive d-th root of 1. In parti
ular

Φd(a) = N(G2 − ζ2
d) = N(G− ζd)N(G + ζd).Sin
e σjg(p) =

(

j
p

)

g(p) for all odd primes p, we obtain
σjG =

(

j

|a∗|

)

G, hen
e σj(G− ζd) = χ(j)G− ζj
d.2) For 
ompleteness, we in
lude the 
ase v2(d) = 1 and a∗ ≡ 3 (mod 4): then

a = −G(a)2 and −ζ2
d is a primitive d-th root of 1. In parti
ular

Φd(a) = N(−G2 + ζ2
d) = N(G− ζd)N(G + ζd).The 
omputation of σj(G− ζd) is still valid.3) Assume �nally that v2(d) = 2 and a∗ even: then ±iζ2

d = ζ
2±d/4
d are primitive

d-th roots of 1, sin
e gcd(2±d/4, d) = 1: indeed 2±d/4 is odd and any odd primedivisor of d and 2± d/4 would divide 2. Reusing the previous 
omputations,
G(a)2 = f 2(−2i)(−1)

(a∗/2)−1
2 (a∗/2) = (−1)

(a∗/2)+1
2 ai,hen
e a = ±iG(a)2. It follows

Φd(a) = N(a− (±i)ζ2
d) = N((±i)G2 − (±i)ζ2

d ) = N(G− ζd)N(G + ζd),where we use N(±i) = 1 in the last equality. As for the Galois a
tion, we have
σj g(2)

g(2)
= ε(j) :=

{

1 if j ≡ 1 (mod 4)

i if j ≡ 3 (mod 4),and it follows that
σjG = ε(j)

(

j

|a∗/2|

)

G.

�Many analogous produ
ts 
an be written, involving terms of the form±ζ iG±ζj;our produ
t is written so as to
• always multiply G by a trivial fa
tor in a given term: χ(j)G takes valuesin {±G,±iG} whi
h is easily pre
omputed.



PRACTICAL AURIFEUILLIAN FACTORIZATION 5
• require the powers of ζ in in
reasing order, so there is no need to pre
om-pute and store them: they 
an be obtained by su

essive multipli
ations.Remark 2.2. In fa
t, storing a few powers of ζ is still useful: if j1 < j2 are two
onse
utive integer representatives for elements in (Z/dZ)∗, ζj2 is 
omputed as

ζj1 × ζj2−j1 and the latter lives in a small set whi
h should be pre
omputed. Asan obvious example, when 2 | d is even, j2 − j1 is even and only powers of ζ2o

ur, but we 
an be more thorough and store all ζj2−j1.Estimating the maximal gap j2 − j1 in terms of d is a famous question ofJa
obstahl, and Iwanie
 [7℄ proved that j2−j1 ≪ (r log(r+1))2 if d has r distin
tprime divisors. In parti
ular, j2−j1 = Õ(log d)2 remains small. Consequently, the
ζj for j ∈ (Z/dZ)∗ are obtained using ϕ(d) + Õ(log d)2 modular multipli
ations,storing no more than Õ(log d)2 values at a time.Compared to the obvious algorithm using d − 1 modular multipli
ations, wesave a fa
tor (d − 1)/ϕ(d) whi
h 
an be of the order of log log d (when d is aprodu
t of small primes). Of 
ourse this te
hnique be
omes less useful if d hasfew prime fa
tors, in parti
ular it is useless if d is prime!Remark 2.3. If d is an odd prime su
h that 2 is a primitive root mod d, a dif-ferent optimization applies, even though we no longer save on the number ofmultipli
ations: we write j ∈ (Z/dZ)∗ as 2k, and 
ompute

∏

k∈Z/(d−1)Z

((

2

|a∗|

)k

G− ζ2k

d

)

,where the ζ2k

d are 
omputed by su

essive squarings, whi
h are slightly fasterthan general multipli
ations. Of 
ourse, (

2
|a∗|

)

= ±1 is 
onstant and 
omputedonly on
e. The 
ondition on d implies d ≡ 3, 5 (mod 8) (otherwise 2 is a square),and is not very restri
tive otherwise: out of the 332365 primes 
ongruent to 3, 5
(mod 8) and less than 107, 248491 satisfy it, about 74%.Remark 2.4. In the 
ase v2(d) = 2, repla
ing our ad ho
 g(2) by the 
ustomary
g(2) := ζ2d + ζ−1

2d yields ni
er formulas sin
e we then have σj g(p) =
(

j
p

)

g(p) forall primes p and g(2)2 = 2. Unfortunately, we would then fa
tor
Φd(a)2 = NQ(ζ2d)/Q(G2 − ζ2

2d) = NQ(ζ2d)/Q(G− ζ2d)NQ(ζ2d)/Q(G + ζ2d),produ
ing essentially the squares of the requested Aurifeuillian fa
tors, whi
hwould for
e us to work at double a

ura
y in the next se
tion.3. An ℓ-adi
 algorithm and its 
omplexity (a ∈ Z)There are two main ideas to implement easily and e�
iently the previous for-mula. The �rst one is to 
ompute the produ
t as an ℓ-adi
 number for a suitable ℓ,not as a 
omplex number: as usual, this avoids tedious estimates of roundo� er-rors. The se
ond one is to 
ompute the produ
t of lo
al Gaussian sums G dire
tly,as a single ℓ-adi
 square root of a known number. We now restri
t to a ∈ Z, anddefer the general 
ase a ∈ Q to the next se
tion.



6 BILL ALLOMBERT AND KARIM BELABASAlgorithm 3.1 (Aurifeuillian fa
torization)Input: Integers d ∈ Z>0 and a ∈ Z, a 6= 0.Output: An Aurifeuillian fa
tor of Φd(a), if one exists.(1) [Handle trivial 
ases d 6 2℄. If d > 2, goto (2).If d = 2, set a← −a.Return A + 1 if a =: A2 is a square in Z and fail otherwise.(2) Use Sub-Algorithm 3.2: fail if (d, a) does not satisfy the Granville-Pleasants
riterion. Repla
e (d, a) by the simpler pair returned by the algorithm; atthis point we also know a∗ and ϕ(d).(3) Find ℓ, the smallest prime ≡ 1 mod d, and ζ ∈ F∗
ℓ of exa
t order d.(4) Let B = (

√

|a|+ 1)ϕ(d) and e the smallest integer su
h that ℓe > B.(5) ζ lifts to a primitive d-th root of 1 in Zℓ, still denoted ζ . Using Hensel lifting,
ompute z ∈ (Z/ℓeZ) su
h that z ≡ ζ (mod ℓe).[End of ℓ-adi
 initializations.℄(6) De�ne γ ∈ (Z/ℓeZ) in the following way: if d is odd, let γ ← a; else let
i← zd/4 and γ ← (−1)

(a∗/2)+1
2 ai.(7) Compute an approximate ℓ-adi
 square root G of γ: an integer 0 6 G < ℓe,su
h that G2 ≡ γ (mod ℓe) (Hensel lift).(8) Let χ as in Proposition 2.1 and 
ompute the integer 0 6 F < ℓe su
h that

F ≡
∏

j∈(Z/dZ)∗

(

χ(j)G− zj
)

(mod ℓe).[Compute zj by su

essive multipli
ations; if d is even, pre
ompute iG.℄(9) Return F .Sub-Algorithm 3.2 Input: Integers d ∈ Z>0 and a ∈ Z, a 6= 0.Output: Fail if the Granville-Pleasants 
riterion is not satis�ed. Otherwise returns apair (D, A) with ΦD(A) = Φd(a), admitting an Aurifeuillian fa
tor; D = δ or 4δ,where δ is odd and squarefree. Byprodu
ts: 
omputes a∗ = A∗, and ϕ(D).(1) If d ≡ 2 (mod 4) set d← d/2, a← −a. [Now d is odd or divisible by 4.℄(2) [Early abort.℄ Fail if 8 | d, or if d ≡ v2(a) (mod 2), or if (d odd and
a/2v2(a) 6≡ 1 (mod 4)).(3) Fa
tor d =

∏

pdp .(4) Compute the ap := vp(a) for the above p | d, to obtain a partial fa
torization
a = sign(a)

∏

papb, where b > 0, (b, d) = 1. Fail if b is not a square in Z.(5) Let a∗ = sign(a)
∏

ap odd p. Fail if a∗ ≡ 3 (mod 4), or a∗ 6≡ d (mod 2).(6) Compute D = 2d2
∏

p|d,p 6=2 p, and let A = ad/D.(7) Compute ϕ(D); note that the fa
torization of D is known.(8) Return (D, A, a∗, ϕ(D)).Proof. Sub-Algorithm 3.2 is a straightforward implementation of Proposition 1.1.Now on to the main Algorithm.Sin
e d > 2 from step (2) on, the d-th 
y
lotomi
 �eld has no real embeddingsand the norm has non-negative values. In parti
ular, the Aurifeuillian fa
tors



PRACTICAL AURIFEUILLIAN FACTORIZATION 7
N(α± ζd) are non-negative. Sin
e they are obviously less than B < ℓe, knowingthem mod ℓe is enough to re
onstru
t them.For d > 2, a primitive d-th root of 1 exists in Zℓ if and only if ℓ ≡ 1 (mod d);Hensel lifting a solution of Xd = 1 of exa
t order d in F∗

ℓ , we 
an approximate itto any desired ℓ-adi
 a

ura
y (note that (d, ℓ) = 1).Sin
e the 
omputed G has the 
orre
t square, it is equal to the one de�ned inProposition 2.1 up to sign, but 
hanging G into −G 
orresponds to swapping theAurifeuilian fa
tors, i.e. 
omputing N(G + ζd) instead of N(G− ζd). �Remark 3.3. Re
all that a = p a small prime is an important spe
ial 
ase, usefulin basi
 
omputations involving F∗
pn. In the 
ase a = 2, Step (7) of the mainAlgorithm simpli�es sin
e a = a∗ = 2 and an ℓ-adi
 square root G of −ai is i− 1.An analogous simpli�
ation applies if we only assume a∗ = 2, sin
e a square root

G of −ai is f(i− 1), where a = a∗f 2.Theorem 3.4. Let L := log(|a| + 1), and M(n) an upper bound for the bit
omplexity of multipli
ation of two n-bits integers. Assume that for all d > 1,there exists a prime ℓ ≡ 1 (mod d) satisfying ℓ 6 DdC for some 
onstants
C < 8 and D. Given su
h an ℓ, Algorithm 3.1 runs in deterministi
 time
O(dM(dL) + dC/4+ε) = Õ(d2L), using O(dL) spa
e.Proof. The Sub-Algorithm handles numbers 6 d for a negligible time O(dε) (in-
luding the fa
torization of d), then 
omputes O(log d) valuations of a at smallprimes p 6 d in time O((log d)2L), then 
omputes an approximate square root of
b 6 |a| in time O(M(L)).Finding an element of order o in F∗

ℓ is done qui
kly using randomization. Todo it in deterministi
 time, we may look for a primitive root and raise it to the
(ℓ − 1)/o-th power. Un
onditionally, the least primitive root mod ℓ is ≪ ℓ1/4+εby Burgess's famous result [3℄.Hensel lifting a root of Xd = 1 to a

ura
y ℓe is done in time Õ(dM(log ℓe)),and the square root 
omputation yielding G in time O(M(log ℓe)). Finally wehave O(ϕ(d)) = O(d) multipli
ations in Z/ℓeZ, in time O(dM(log ℓe)), and O(d)Ja
obi symbols mod a∗, ea
h in time Õ(d) (note that a∗ 6 d at this point).From ℓe > B > ℓe−1, we obtain ℓe 6 ℓB, hen
e

log ℓe 6 log ℓ + log B ≪ log d + ϕ(d)L≪ dL,using ℓ 6 DdC, whi
h implies log ℓ≪C,D log d.The spa
e 
omplexity follows from noting that the 
omputation stores O(1)integers less than ℓe, provided we 
ompute the zj su

essively. Note that usingRemark 2.2 in
reases our spa
e requirements by a fa
tor r2+ε if d has r primedivisors. �The existen
e of ℓ 6 DdC as in the Theorem is ensured by Linnik's theorem,and the best un
onditional bound so far is C = 5.5 (Heath-Brown [6℄), whi
h isindeed less than 8. Obviously, su
h an ℓ 
an be found in deterministi
 polynomialtime Õ(dC−1) by applying primality tests to su

essive members of the arithmeti




8 BILL ALLOMBERT AND KARIM BELABASprogression 1+d, 1+2d, . . . . Unfortunately, this be
omes dominant, and in orderto obtain a realisti
 estimate, we must make it 
onditional:Corollary 3.5. Assuming the Generalized Riemann Hypothesis, Algorithm 3.1runs in time Õ(d2L).Proof. Assuming the Riemann Hypothesis, ℓ 6 2(d log d)2, see [1, Theorem 5.3℄,and may be found using Õ(d) 
ompositeness tests. �Remark 3.6. For a pra
ti
al randomized way to �nd ζ ∈ F∗
ℓ of order d, fa
tor ℓ−1(noti
e that the fa
torization of d | ℓ − 1 is known and the 
ofa
tor (ℓ − 1)/d isexpe
ted to be small). Then pi
k z ∈ [1, ℓ − 1] uniformly at random until thefollowing test su

eeds: 
ompute the order o of z, using [4, Algorithm 1.4.3℄; if

d | o, set ζ = zo/d and stop. The probability to �nd an element whose order is amultiple of d in a 
y
li
 group of order n = ℓ− 1 is
1

n

∑

k|n
d

ϕ(kd) >
1

n

∑

k|n
d

ϕ(k)ϕ(d) =
ϕ(d)

d
,with equality when gcd(n/d, d) = 1. This lower bound does not depend on ℓ.Remark 3.7. The ℓ-adi
 initialization is almost independent from a. To ob-tain Aurifeuillian fa
tors of Φd(ai) for �xed d and varying ai, we 
an set B =

(
√

maxi |ai|+ 1)ϕ(d); the 
orresponding z may be reused in all 
omputations.Remark 3.8. Our straightforward upper bound B = (
√

|a|+1)ϕ(d) is rather sharpsin
e both fa
tors are also > (
√

|a| − 1)ϕ(d). This also means that, even if onlyone fa
tor is desired, the output size is of order Ld; thus our runtime Õ(Ld2) isessentially optimal in the L aspe
t, but d times slower than an optimal, as yetunknown, quasi-linear algorithm.4. Rational inputsTo fa
tor Φ(a) where a ∈ Q, essentially the same algorithm applies with thefollowing modi�
ations:(1) We now 
ompute expli
itly f ∈ Q∗ su
h that a = a∗f 2, say f = u/v for
oprime integers u, v.(2) Our prime ℓ ≡ 1 (mod d) must now also satisfy ℓ ∤ v.(3) The produ
t
F =

∏

j∈(Z/dZ)∗

(χ(j)G− ζj
d)is now a rational number, whose denominator divides vϕ(d). So we usethe bound B =

(

v(
√

a + 1)
)ϕ(d) and 
ompute Fvϕ(d) mod ℓe as before.This is an integer whi
h we 
an now re
ognize, and divide by vϕ(d) toobtain a rational fa
tor of Φd(a).



PRACTICAL AURIFEUILLIAN FACTORIZATION 95. A gratuitous exampleRe
all that Henri Cohen's favourite small integer is 49; to 
elebrate Henri's60th birthday, we let our PARI/GP [8℄ implementation 
ompute the Aurifeuillianfa
tors of Φ6049(6049):? install(fa
tor_Aurifeuille, GL);? d = a = 6049;? F = fa
tor_Aurifeuille(a,d); \\ one fa
tor. Output suppressed!time = 13,760ms? pol
y
lo(d, a) / F; \\ the 
ofa
tor.time = 0ms.The 
omputation was run on an Opteron 880 at 2.4Ghz using PARI/GP ver-sion 2.4.3 (with GMP-4.1.4 multipre
ision kernel), produ
ing two fa
tors having
10899 and 10900 de
imal digits in about 14 se
onds.In
reasing d by a fa
tor about 10, our implementation 
omputes the Aurifeuil-lian fa
tors of Φ60049(60049) (126726 and 126727 de
imal digits) in about 99minutes on the same ma
hine. Referen
es[1℄ E. Ba
h & J. Sorenson, Expli
it bounds for primes in residue 
lasses, Math. Comp. 65(1996), no. 216, pp. 1717�1735.[2℄ R. P. Brent, Computing Aurifeuillian fa
tors, in Computational algebra and numbertheory (Sydney, 1992), Math. Appl., vol. 325, Kluwer A
ad. Publ., 1995, pp. 201�212.[3℄ D. A. Burgess, On 
hara
ter sums and primitive roots, Pro
. London Math. So
. (3) 12(1962), pp. 179�192.[4℄ H. Cohen, A 
ourse in 
omputational algebrai
 number theory, Graduate Texts in Math-emati
s, vol. 138, Springer-Verlag, Berlin, 1993.[5℄ A. Granville & P. Pleasants, Aurifeuillian fa
torization, Math. Comp. 75 (2006),no. 253, pp. 497�508.[6℄ D. R. Heath-Brown, Zero-free regions for Diri
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