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Φd(X) =
∏

k∈(Z/dZ)∗

(X − ζk
d ),where ζd is a d-th primitive root of unity. To fator integers of the form an − 1,it is advantageous to start from the algebrai fators

an − 1 =
∏

d|n

Φd(a).This trik generalizes to
an + 1 =

a2n − 1

an − 1
=

∏

d|2n, d∤n

Φd(a),and in fat to an ± bn for integers a and b sine rational fators of Φd(a/b) leadto integer fators of the requested integer.Less widely known but still lassial, it is often possible to re�ne further thesealgebrai fatorization. An Aurifeuillian fatorization exists if a ∈ Q is suh thatDate: Otober 28th 2008. 1



2 BILL ALLOMBERT AND KARIM BELABAS
aζd =: α2 is a square in Q(ζd). In that ase, let Nx denote the absolute normfrom Q(ζd) to Q; then(1) Φd(a) = N(a− ζd) = ±N(ζda− ζ2

d) = ±N(α− ζd)N(α + ζd),where we have used Nζd ∈ Z∗ = {−1, 1}. (In fat, Nζd = 1 for d 6= 2.) Wethus get two rational fators, the so-alled Aurifeuillian fators of Φd(a). For allomplex embeddings σ : Q(ζd)→ C, we have |σ(α± ζd)| >
√

a−1 by the triangleinequality. If a ∈ Z satis�es |a| > 4, then √a− 1 > 1 and we obtain a non-trivialfatorization of Φd(a): both Aurifeuillian fators are integers larger than 1. Infat, essentially the same argument proves that both fators have roughly thesame size.Usually, Aurifeuille's trik is presented as polynomial identities of the form
Φd(X) = U2

c,d(X)− cXV 2
c,d(X),for various onstants c and polynomials U, V depending on c, d (Shinzel [9℄).Stevenhagen [10℄ and Brent [2℄ give algorithms to ompute U and V , using aEulidean algorithm and Newton sums identities respetively. Both algorithmsuse O(d2) integer operations, and Õ(d) using asymptotially fast arithmeti. Wedo not know a referene for their bit omplexity but, as remarked by Brent,a straightforward implementation of Stevenhagen's Eulidean algorithm su�ersfrom intermediate expression swell.In this short note, we propose an algorithm to �nd Aurifeuillian fators, whihis easier to desribe and implement than the polynomial approahes skethedabove. It is also more expliit in the sense that extrating from the literaturea polynomial formula yielding a fator for a given fatorization problem is notobvious, whereas we obtain diretly an Aurifeuillian fator of Φd(a), wheneverone exists.1. When does an Aurifeuillian fatorization exist ?Proposition 1.1 (Granville-Pleasants [5℄). Let a ∈ Q∗ and let ζd be a primitive

d-th root of unity. Let a∗ be the squarefree integer, whih is the anonial repre-sentative of a in Q∗/(Q∗)2. Then aζd is a square in Q(ζd) if and only if a∗ | dand one of the following is true:
• a∗ ≡ 1 (mod 4) and d is odd.
• a∗ ≡ 3 (mod 4) and v2(d) = 1.
• a∗ is even and v2(d) = 2.Note that the seond ase v2(d) = 1 redues to the �rst, beause Φd(X) =

Φd/2(−X) in that ase. Less obvious, but even more interesting: if
D = 2v2(d)

∏

p|d,p 6=2

p and A = ad/D,we have Φd(a) = ΦD(A) and (d, a) satis�es the above onditions if and only if
(D, A) does; in fat A∗ = a∗ and v2(D) = v2(d). On the other hand, if D′ =

∏

p|d p



PRACTICAL AURIFEUILLIAN FACTORIZATION 3and A′ = ad/D′ , we still have Φd(a) = ΦD′(A′), but the pair (D′, A′) never satis�esthe above onditions when 4 | d: indeed D′ is even but (A′)∗ = 1.The proof of the Proposition is a straightforward ase by ase analysis, andprovides an expliit square root in eah ase in terms of Gaussian sums. Namely,for p an odd prime and (

.
q

) the Legendre-Jaobi symbol modulo the integer q > 1,we have
g(p)2 =

(−1

p

)

p, where g(p) :=
∑

x∈Fp

(

x

p

)

ζx
p and ζp := ζ

d/p
d ,

g(2)2 = −2i, where g(2) := i− 1 and i := ζ
d/4
d ,assuming p | d and 4 | d respetively. Let

G(a∗) =
∏

p|a∗

g(p).If |a∗| = ∏

p p is odd, this yields for instane
G2 =

(−1

|a∗|

)

|a∗| = (−1)
|a∗|−1

2 |a∗| = (−1)
a∗−1

2 a∗ =

{

a∗ if a∗ ≡ 1 (mod 4),

−a∗ if a∗ ≡ 3 (mod 4).Note that Proposition 1.1 implies that, if aζd is a square, then a∗ | d, hene allthe primes p | a∗ also divide d; if further a∗ is even, then 4 | d.Remark 1.2. The interesting speial ase a = p prime was our original motivationfor this work. Namely, to ompute the order of elements in F∗
pn, in partiular totest prospetive primitive roots, we need to omplete the fatorization of

pn − 1 =
∏

d|n

Φd(p).If p divides n, Aurifeuille's trik provides extra useful fators of the Φd(p), suhthat p divides d.2. A produt formula for an Aurifeuillian fatorThere are beautiful and unexpeted formulas for Aurifeuillian polynomials,see [2, Theorem 1℄. Our formula for Aurifeuillian fators is neither beautiful norunexpeted, but algorithmially useful nevertheless. The Galois ation on theGaussian sum G is expliit and we write down a variation on (1) optimized foromputational purposes:Proposition 2.1. Let d > 2, and (d, a) satisfy the onditions of Proposition 1.1.Write a = a∗f 2, f ∈ Q∗ and let G(a) = f
∏

p|a∗ g(p) ∈ Q(ζd). Then
∏

j∈(Z/dZ)∗

(χ(j)G− ζj
d)



4 BILL ALLOMBERT AND KARIM BELABASis an Aurifeuillian divisor of Φd(a), where
χ(j) =











(

j
|a∗|

) if a∗ odd,
(

j
|a∗/2|

) if a∗ even and j ≡ 1 (mod 4),
(

j
|a∗/2|

)

i if a∗ even and j ≡ 3 (mod 4).Proof. The σj : ζd 7→ ζj
d, j ∈ (Z/dZ)∗, run over the Galois group of Gal(Q(ζd)/Q),and Nx =

∏

j σjx for all x ∈ Q(ζd).1) We �rst treat the ase d odd, a∗ ≡ 1 (mod 4): then a = G(a)2 and ζ2
d is aprimitive d-th root of 1. In partiular

Φd(a) = N(G2 − ζ2
d) = N(G− ζd)N(G + ζd).Sine σjg(p) =

(

j
p

)

g(p) for all odd primes p, we obtain
σjG =

(

j

|a∗|

)

G, hene σj(G− ζd) = χ(j)G− ζj
d.2) For ompleteness, we inlude the ase v2(d) = 1 and a∗ ≡ 3 (mod 4): then

a = −G(a)2 and −ζ2
d is a primitive d-th root of 1. In partiular

Φd(a) = N(−G2 + ζ2
d) = N(G− ζd)N(G + ζd).The omputation of σj(G− ζd) is still valid.3) Assume �nally that v2(d) = 2 and a∗ even: then ±iζ2

d = ζ
2±d/4
d are primitive

d-th roots of 1, sine gcd(2±d/4, d) = 1: indeed 2±d/4 is odd and any odd primedivisor of d and 2± d/4 would divide 2. Reusing the previous omputations,
G(a)2 = f 2(−2i)(−1)

(a∗/2)−1
2 (a∗/2) = (−1)

(a∗/2)+1
2 ai,hene a = ±iG(a)2. It follows

Φd(a) = N(a− (±i)ζ2
d) = N((±i)G2 − (±i)ζ2

d ) = N(G− ζd)N(G + ζd),where we use N(±i) = 1 in the last equality. As for the Galois ation, we have
σj g(2)

g(2)
= ε(j) :=

{

1 if j ≡ 1 (mod 4)

i if j ≡ 3 (mod 4),and it follows that
σjG = ε(j)

(

j

|a∗/2|

)

G.

�Many analogous produts an be written, involving terms of the form±ζ iG±ζj;our produt is written so as to
• always multiply G by a trivial fator in a given term: χ(j)G takes valuesin {±G,±iG} whih is easily preomputed.



PRACTICAL AURIFEUILLIAN FACTORIZATION 5
• require the powers of ζ in inreasing order, so there is no need to preom-pute and store them: they an be obtained by suessive multipliations.Remark 2.2. In fat, storing a few powers of ζ is still useful: if j1 < j2 are twoonseutive integer representatives for elements in (Z/dZ)∗, ζj2 is omputed as

ζj1 × ζj2−j1 and the latter lives in a small set whih should be preomputed. Asan obvious example, when 2 | d is even, j2 − j1 is even and only powers of ζ2our, but we an be more thorough and store all ζj2−j1.Estimating the maximal gap j2 − j1 in terms of d is a famous question ofJaobstahl, and Iwanie [7℄ proved that j2−j1 ≪ (r log(r+1))2 if d has r distintprime divisors. In partiular, j2−j1 = Õ(log d)2 remains small. Consequently, the
ζj for j ∈ (Z/dZ)∗ are obtained using ϕ(d) + Õ(log d)2 modular multipliations,storing no more than Õ(log d)2 values at a time.Compared to the obvious algorithm using d − 1 modular multipliations, wesave a fator (d − 1)/ϕ(d) whih an be of the order of log log d (when d is aprodut of small primes). Of ourse this tehnique beomes less useful if d hasfew prime fators, in partiular it is useless if d is prime!Remark 2.3. If d is an odd prime suh that 2 is a primitive root mod d, a dif-ferent optimization applies, even though we no longer save on the number ofmultipliations: we write j ∈ (Z/dZ)∗ as 2k, and ompute

∏

k∈Z/(d−1)Z

((

2

|a∗|

)k

G− ζ2k

d

)

,where the ζ2k

d are omputed by suessive squarings, whih are slightly fasterthan general multipliations. Of ourse, (

2
|a∗|

)

= ±1 is onstant and omputedonly one. The ondition on d implies d ≡ 3, 5 (mod 8) (otherwise 2 is a square),and is not very restritive otherwise: out of the 332365 primes ongruent to 3, 5
(mod 8) and less than 107, 248491 satisfy it, about 74%.Remark 2.4. In the ase v2(d) = 2, replaing our ad ho g(2) by the ustomary
g(2) := ζ2d + ζ−1

2d yields nier formulas sine we then have σj g(p) =
(

j
p

)

g(p) forall primes p and g(2)2 = 2. Unfortunately, we would then fator
Φd(a)2 = NQ(ζ2d)/Q(G2 − ζ2

2d) = NQ(ζ2d)/Q(G− ζ2d)NQ(ζ2d)/Q(G + ζ2d),produing essentially the squares of the requested Aurifeuillian fators, whihwould fore us to work at double auray in the next setion.3. An ℓ-adi algorithm and its omplexity (a ∈ Z)There are two main ideas to implement easily and e�iently the previous for-mula. The �rst one is to ompute the produt as an ℓ-adi number for a suitable ℓ,not as a omplex number: as usual, this avoids tedious estimates of roundo� er-rors. The seond one is to ompute the produt of loal Gaussian sums G diretly,as a single ℓ-adi square root of a known number. We now restrit to a ∈ Z, anddefer the general ase a ∈ Q to the next setion.



6 BILL ALLOMBERT AND KARIM BELABASAlgorithm 3.1 (Aurifeuillian fatorization)Input: Integers d ∈ Z>0 and a ∈ Z, a 6= 0.Output: An Aurifeuillian fator of Φd(a), if one exists.(1) [Handle trivial ases d 6 2℄. If d > 2, goto (2).If d = 2, set a← −a.Return A + 1 if a =: A2 is a square in Z and fail otherwise.(2) Use Sub-Algorithm 3.2: fail if (d, a) does not satisfy the Granville-Pleasantsriterion. Replae (d, a) by the simpler pair returned by the algorithm; atthis point we also know a∗ and ϕ(d).(3) Find ℓ, the smallest prime ≡ 1 mod d, and ζ ∈ F∗
ℓ of exat order d.(4) Let B = (

√

|a|+ 1)ϕ(d) and e the smallest integer suh that ℓe > B.(5) ζ lifts to a primitive d-th root of 1 in Zℓ, still denoted ζ . Using Hensel lifting,ompute z ∈ (Z/ℓeZ) suh that z ≡ ζ (mod ℓe).[End of ℓ-adi initializations.℄(6) De�ne γ ∈ (Z/ℓeZ) in the following way: if d is odd, let γ ← a; else let
i← zd/4 and γ ← (−1)

(a∗/2)+1
2 ai.(7) Compute an approximate ℓ-adi square root G of γ: an integer 0 6 G < ℓe,suh that G2 ≡ γ (mod ℓe) (Hensel lift).(8) Let χ as in Proposition 2.1 and ompute the integer 0 6 F < ℓe suh that

F ≡
∏

j∈(Z/dZ)∗

(

χ(j)G− zj
)

(mod ℓe).[Compute zj by suessive multipliations; if d is even, preompute iG.℄(9) Return F .Sub-Algorithm 3.2 Input: Integers d ∈ Z>0 and a ∈ Z, a 6= 0.Output: Fail if the Granville-Pleasants riterion is not satis�ed. Otherwise returns apair (D, A) with ΦD(A) = Φd(a), admitting an Aurifeuillian fator; D = δ or 4δ,where δ is odd and squarefree. Byproduts: omputes a∗ = A∗, and ϕ(D).(1) If d ≡ 2 (mod 4) set d← d/2, a← −a. [Now d is odd or divisible by 4.℄(2) [Early abort.℄ Fail if 8 | d, or if d ≡ v2(a) (mod 2), or if (d odd and
a/2v2(a) 6≡ 1 (mod 4)).(3) Fator d =

∏

pdp .(4) Compute the ap := vp(a) for the above p | d, to obtain a partial fatorization
a = sign(a)

∏

papb, where b > 0, (b, d) = 1. Fail if b is not a square in Z.(5) Let a∗ = sign(a)
∏

ap odd p. Fail if a∗ ≡ 3 (mod 4), or a∗ 6≡ d (mod 2).(6) Compute D = 2d2
∏

p|d,p 6=2 p, and let A = ad/D.(7) Compute ϕ(D); note that the fatorization of D is known.(8) Return (D, A, a∗, ϕ(D)).Proof. Sub-Algorithm 3.2 is a straightforward implementation of Proposition 1.1.Now on to the main Algorithm.Sine d > 2 from step (2) on, the d-th ylotomi �eld has no real embeddingsand the norm has non-negative values. In partiular, the Aurifeuillian fators
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N(α± ζd) are non-negative. Sine they are obviously less than B < ℓe, knowingthem mod ℓe is enough to reonstrut them.For d > 2, a primitive d-th root of 1 exists in Zℓ if and only if ℓ ≡ 1 (mod d);Hensel lifting a solution of Xd = 1 of exat order d in F∗

ℓ , we an approximate itto any desired ℓ-adi auray (note that (d, ℓ) = 1).Sine the omputed G has the orret square, it is equal to the one de�ned inProposition 2.1 up to sign, but hanging G into −G orresponds to swapping theAurifeuilian fators, i.e. omputing N(G + ζd) instead of N(G− ζd). �Remark 3.3. Reall that a = p a small prime is an important speial ase, usefulin basi omputations involving F∗
pn. In the ase a = 2, Step (7) of the mainAlgorithm simpli�es sine a = a∗ = 2 and an ℓ-adi square root G of −ai is i− 1.An analogous simpli�ation applies if we only assume a∗ = 2, sine a square root

G of −ai is f(i− 1), where a = a∗f 2.Theorem 3.4. Let L := log(|a| + 1), and M(n) an upper bound for the bitomplexity of multipliation of two n-bits integers. Assume that for all d > 1,there exists a prime ℓ ≡ 1 (mod d) satisfying ℓ 6 DdC for some onstants
C < 8 and D. Given suh an ℓ, Algorithm 3.1 runs in deterministi time
O(dM(dL) + dC/4+ε) = Õ(d2L), using O(dL) spae.Proof. The Sub-Algorithm handles numbers 6 d for a negligible time O(dε) (in-luding the fatorization of d), then omputes O(log d) valuations of a at smallprimes p 6 d in time O((log d)2L), then omputes an approximate square root of
b 6 |a| in time O(M(L)).Finding an element of order o in F∗

ℓ is done quikly using randomization. Todo it in deterministi time, we may look for a primitive root and raise it to the
(ℓ − 1)/o-th power. Unonditionally, the least primitive root mod ℓ is ≪ ℓ1/4+εby Burgess's famous result [3℄.Hensel lifting a root of Xd = 1 to auray ℓe is done in time Õ(dM(log ℓe)),and the square root omputation yielding G in time O(M(log ℓe)). Finally wehave O(ϕ(d)) = O(d) multipliations in Z/ℓeZ, in time O(dM(log ℓe)), and O(d)Jaobi symbols mod a∗, eah in time Õ(d) (note that a∗ 6 d at this point).From ℓe > B > ℓe−1, we obtain ℓe 6 ℓB, hene

log ℓe 6 log ℓ + log B ≪ log d + ϕ(d)L≪ dL,using ℓ 6 DdC, whih implies log ℓ≪C,D log d.The spae omplexity follows from noting that the omputation stores O(1)integers less than ℓe, provided we ompute the zj suessively. Note that usingRemark 2.2 inreases our spae requirements by a fator r2+ε if d has r primedivisors. �The existene of ℓ 6 DdC as in the Theorem is ensured by Linnik's theorem,and the best unonditional bound so far is C = 5.5 (Heath-Brown [6℄), whih isindeed less than 8. Obviously, suh an ℓ an be found in deterministi polynomialtime Õ(dC−1) by applying primality tests to suessive members of the arithmeti



8 BILL ALLOMBERT AND KARIM BELABASprogression 1+d, 1+2d, . . . . Unfortunately, this beomes dominant, and in orderto obtain a realisti estimate, we must make it onditional:Corollary 3.5. Assuming the Generalized Riemann Hypothesis, Algorithm 3.1runs in time Õ(d2L).Proof. Assuming the Riemann Hypothesis, ℓ 6 2(d log d)2, see [1, Theorem 5.3℄,and may be found using Õ(d) ompositeness tests. �Remark 3.6. For a pratial randomized way to �nd ζ ∈ F∗
ℓ of order d, fator ℓ−1(notie that the fatorization of d | ℓ − 1 is known and the ofator (ℓ − 1)/d isexpeted to be small). Then pik z ∈ [1, ℓ − 1] uniformly at random until thefollowing test sueeds: ompute the order o of z, using [4, Algorithm 1.4.3℄; if

d | o, set ζ = zo/d and stop. The probability to �nd an element whose order is amultiple of d in a yli group of order n = ℓ− 1 is
1

n

∑

k|n
d

ϕ(kd) >
1

n

∑

k|n
d

ϕ(k)ϕ(d) =
ϕ(d)

d
,with equality when gcd(n/d, d) = 1. This lower bound does not depend on ℓ.Remark 3.7. The ℓ-adi initialization is almost independent from a. To ob-tain Aurifeuillian fators of Φd(ai) for �xed d and varying ai, we an set B =

(
√

maxi |ai|+ 1)ϕ(d); the orresponding z may be reused in all omputations.Remark 3.8. Our straightforward upper bound B = (
√

|a|+1)ϕ(d) is rather sharpsine both fators are also > (
√

|a| − 1)ϕ(d). This also means that, even if onlyone fator is desired, the output size is of order Ld; thus our runtime Õ(Ld2) isessentially optimal in the L aspet, but d times slower than an optimal, as yetunknown, quasi-linear algorithm.4. Rational inputsTo fator Φ(a) where a ∈ Q, essentially the same algorithm applies with thefollowing modi�ations:(1) We now ompute expliitly f ∈ Q∗ suh that a = a∗f 2, say f = u/v foroprime integers u, v.(2) Our prime ℓ ≡ 1 (mod d) must now also satisfy ℓ ∤ v.(3) The produt
F =

∏

j∈(Z/dZ)∗

(χ(j)G− ζj
d)is now a rational number, whose denominator divides vϕ(d). So we usethe bound B =

(

v(
√

a + 1)
)ϕ(d) and ompute Fvϕ(d) mod ℓe as before.This is an integer whih we an now reognize, and divide by vϕ(d) toobtain a rational fator of Φd(a).



PRACTICAL AURIFEUILLIAN FACTORIZATION 95. A gratuitous exampleReall that Henri Cohen's favourite small integer is 49; to elebrate Henri's60th birthday, we let our PARI/GP [8℄ implementation ompute the Aurifeuillianfators of Φ6049(6049):? install(fator_Aurifeuille, GL);? d = a = 6049;? F = fator_Aurifeuille(a,d); \\ one fator. Output suppressed!time = 13,760ms? polylo(d, a) / F; \\ the ofator.time = 0ms.The omputation was run on an Opteron 880 at 2.4Ghz using PARI/GP ver-sion 2.4.3 (with GMP-4.1.4 multipreision kernel), produing two fators having
10899 and 10900 deimal digits in about 14 seonds.Inreasing d by a fator about 10, our implementation omputes the Aurifeuil-lian fators of Φ60049(60049) (126726 and 126727 deimal digits) in about 99minutes on the same mahine. Referenes[1℄ E. Bah & J. Sorenson, Expliit bounds for primes in residue lasses, Math. Comp. 65(1996), no. 216, pp. 1717�1735.[2℄ R. P. Brent, Computing Aurifeuillian fators, in Computational algebra and numbertheory (Sydney, 1992), Math. Appl., vol. 325, Kluwer Aad. Publ., 1995, pp. 201�212.[3℄ D. A. Burgess, On harater sums and primitive roots, Pro. London Math. So. (3) 12(1962), pp. 179�192.[4℄ H. Cohen, A ourse in omputational algebrai number theory, Graduate Texts in Math-ematis, vol. 138, Springer-Verlag, Berlin, 1993.[5℄ A. Granville & P. Pleasants, Aurifeuillian fatorization, Math. Comp. 75 (2006),no. 253, pp. 497�508.[6℄ D. R. Heath-Brown, Zero-free regions for Dirihlet L-funtions, and the least prime inan arithmeti progression, Pro. London Math. So. (3) 64 (1992), no. 2, pp. 265�338.[7℄ H. Iwanie, On the problem of Jaobsthal, Demonstratio Math. 11 (1978), no. 1, pp. 225�231.[8℄ PARI/GP, version 2.4.3, Bordeaux, 2008, http://pari.math.u-bordeaux.fr/.[9℄ A. Shinzel, On primitive prime fators of an − bn, Pro. Cambridge Philos. So. 58(1962), pp. 555�562.[10℄ P. Stevenhagen, On Aurifeuillian fatorizations, Nederl. Akad. Wetensh. Indag. Math.49 (1987), no. 4, pp. 451�468.Université Bordeaux I, Département de mathématiques (A2X), 351 ours de laLibération, F-33405 Talene edex, FraneE-mail address : Karim.Belabas�math.u-bordeaux.frUniversité Montpellier 2, Plae Eugène Bataillon F-34095 Montpellier edex,FraneE-mail address : ballombe�math.univ-montp2.fr


