
A FAST ALGORITHM TO COMPUTE CUBIC FIELDS

K. BELABAS

Abstract. We present a very fast algorithm to build up tables of cubic fields.
Real cubic fields with discriminant up to 1011 and complex cubic fields down
to −1011 have been computed.

The classification of quadratic fields up to isomorphism is trivial: they are
uniquely characterized by their discriminant, and we can compute tables as soon
as we know how to test if an integer is squarefree and how to check some simple
congruence modulo 16. We intend to show that cubic fields are essentially as easy
to deal with, and we will get a canonical representation for them. Contrary to
the quadratic case, the treatment depends on the signature but, the fundamental
ideas being the same, we shall expose as much as we can before splitting cases.

Almost all results in this paper are either ancient or elementary. I would like to
thank Professor H.Cohen for his interest when I first mentioned what I thought
was a trivial application of some well known results. Moreover, his careful reading
of successive drafts of this work and the many questions he had about it were
most helpful in giving it its present shape.

1. Preliminaries

Let (a, b, c, d) denote the integral binary cubic form F (x, y) = ax3 + bx2y +
cxy2 + dy3. We call as usual disc(F ) its discriminant:

disc(a, b, c, d) = b2c2 − 27a2d2 + 18abcd− 4ac3 − 4b3d .

We shall say a form F is complex whenever disc F < 0, and real otherwise. We
call roots of F , the complex roots of F (X, 1) = 0.

A form is said to be primitive if gcd(a, b, c, d) = 1, and irreducible if it is so
in Q[x, y]. The usual change of variables gives an action of GL2(Z) on the set of
binary cubic forms, which preserves discriminants, irreducibility and primitivity.
We call Φ the set of classes of integral, binary cubic forms under this action.
Please note that, contrary to the quadratic case, we do not restrict to SL2(Z).

Let Vp be the subset of Φ given by the following congruence conditions:

• If p = 2: disc F ≡ 1 (mod 4) or disc F ≡ 8, 12 (mod 16).
• If p 6= 2: p2 - disc F .
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So that forms in V = ∩Vp have fundamental discriminants (we call an integer ∆ a
fundamental discriminant either if ∆ = 1 or if it is the discriminant of a quadratic
field). Now we put U = ∩Up, where Up ⊂ Φ is given by: F ∈ Up if

• it belongs to Vp, or
• it factors as λ(αx + βy)3 modulo p, with λ ∈ F∗p, and α, β in Fp not both

zero. Furthermore, there exists an e ∈ F∗p such that the equation

F (x, y) ≡ ep (mod p2)

has a solution in x, y ∈ Z/p2Z.

Let C denote the set of non-isomorphic cubic extensions of Q. Given K ∈ C
and x ∈ K, we call d(x) the discriminant of the minimal polynomial of x, and
denote by x, x′, x′′ the three conjugates of x in K. Now put

FK(x, y) =
Norm[(α− α′)x− (β − β′)y]√

dK

=

√
d(αx− βy)

dK

,

where [1, α, β] is any Z-basis of the maximal order of K whose first element is 1,
and dK is its absolute discriminant.

The key ingredient is the following result establishing the link between cubic
forms and fields:

Theorem 1.1 (Davenport-Heilbronn [6]). Consider the following maps:

ϕCU : conjugacy class of K −→ class of FK(x, y)

ϕUC : {Q(θ1), Q(θ2), Q(θ3)} ←− class of F (x, y)

where the θi are the zeros of F (θ, 1) = 0. These are well defined inverse maps,
and induce a discriminant preserving bijection between the sets U and C.

This rather abstract statement has a very nice algorithmic translation. First,
reduction theory enables us to efficiently single out a canonical representative in
each equivalence class of irreducible cubic forms. We shall discuss this in great
detail in §3 (positive discriminants) and §4 (negative discriminants). We will call
such forms reduced in the sequel. For the time being, we only need to know
that if F = (a, b, c, d) is reduced, then any reduced form equivalent to F is equal
to F (see Lemmas 3.3 and 4.3). Hence, to a given field, we can associate a unique
companion form. And second, we shall see that, as their name imply, the reduced
forms have rather small coefficients, bounded in terms of their discriminant.

Denote by HF the Hessian form associated to F :

HF = −1

4

∣∣∣∣∣∣
∂2F
∂x∂x

∂2F
∂x∂y

∂2F
∂x∂y

∂2F
∂y∂y

∣∣∣∣∣∣ = Px2 + Qxy + Ry2 ,

where
P = b2 − 3ac, Q = bc− 9ad, and R = c2 − 3bd .



A FAST ALGORITHM TO COMPUTE CUBIC FIELDS 3

One can easily see that the Hessian is covariant with respect to GL2(Z): we
have HF◦M = HF ◦M for all M ∈ GL2(Z). Moreover, a simple calculation shows
that disc HF = −3 disc F .

We summarize in the next lemma the elementary properties of the set U , which
enable us to test easily whether a given form is associated to a cubic field or not.

Lemma 1.2. Let F = (a, b, c, d) be a cubic primitive form, and (P, Q,R) its
Hessian. We write (F, p) = (13) whenever, up to a scalar factor, F is a cube
modulo p.

(1) (F, p) = (13) if and only if p| gcd(P, Q,R).
(2) If (F, p) = (13) and p 6= 3, then F ∈ Up if and only if p3 - disc(F ).
(3) If F ∈ U3, then 36 - disc(F ).
(4) If (F, 3) = (13), the analogue of part 2. is completely described by the

following algorithm :

if 3|a, F ∈ U3 ⇐⇒ 9 - a and 3 - d,
else if 3|d, F ∈ U3 ⇐⇒ 9 - d,
else if 3|(a− d), F ∈ U3 ⇐⇒ a− b + c− d ≡ 0 (mod 9),
else if 3|(a + d), F ∈ U3 ⇐⇒ a + b + c + d ≡ 0 (mod 9).

(5) If a reduced form F belongs to U , then it is irreducible.

Proof.

• 1. One first notes that p divides disc(F ) if and only if (F, p) = (121)
or (13), with evident notations. This is clear when the point at infinity is
one of the roots, i.e. F (x, 1) has degree at most two, so we suppose this is
not the case. As the finite field Fp is perfect, disc F ≡ 0 (mod p) implies

that F is reducible modulo p, two of the roots in Fp being equal. As the
sum of the roots is in Fp, they all are (if p = 2, one uses their product
instead).

If F splits as

F (x, y) ≡ (αx + βy)2(γx + δy) (mod p) ,

one finds that H(x, y) ≡ (αx+βy)2(αδ−βγ)2 (mod p). As F is primitive,
α and β are not both zero modulo p, thus

H(x, y) ≡ 0 (mod p)⇔ αδ − βγ ≡ 0 (mod p)⇔ (F, p) = (13) .

• 2. and 3. are exactly [6, Lemma 6]. Replacing F by an equivalent form,
we can write F = (a, b, c, d), with F ≡ ax3 (mod p). So disc F = −27a2d2

modulo p3. The form F is primitive, thus p - a, and as p 6= 3, p3| disc F
is equivalent to p2 | d. Now F (x, y) ≡ ep (mod p2) implies that p divides
x, thus F (x, y) ≡ dy3 (mod p2) and our claim follows. The case p = 3 is
left to the reader.
• 4. is trivial once one remarks that 3 must divide b and c and thus F (x, y)

only depends on (x, y) modulo 3.
• 5. This last assertion will be proven later (Lemmas 3.3 and 4.3).
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�

We can now propose an efficient algorithm to test if a given cubic form is in
the image of the Davenport-Heilbronn map:

Algorithm 1.3

Input: a cubic form F = (a, b, c, d).
Output: true if and only if F corresponds to a cubic field.

(1)If F is not reduced, return false.
(2)If F is not primitive, return false.
(3)Compute (P, Q,R), the Hessian of F . Set D = 4PR − Q2 = 3 disc(F )

and fH = gcd(P, Q,R). Check whether F belongs to U2 and U3, else return
false.

(4)If p2|fH with p > 3 return false.
(5)Set t = D/f2

H . Remove all powers of 2 and 3 from t: at most 23 and 32. If
gcd(t, fH) > 1 return false.

(6)If t is squarefree return true, else return false.

Proof. We have to check that F is primitive, reduced, and belongs to Up for all p,
which implies it is irreducible. Steps 1 to 3 are straightforward, and we only have
to check that a form satisfying steps 4 to 6 belongs to Up, for all p > 5.

The prime divisors of fH are exactly the ones for which (F, p) = (13). For all
of them we check in steps 4 and 5 whether p3 divides disc F or not. Finally, in
step 6, we check the other prime divisors of disc F , p > 5: F must belong to Vp

for all of them, which is the case if and only if t is squarefree. �

Remark 1.4. Step 2 is only necessary, as an “early-abort” strategy: if a prime p
divides all the coefficients of F , then p2|fH and step 3 (if p = 2, 3) or 4 (if p > 3)
would return false just as well. On average, if one uses the techniques described
hereafter, this step slows down the algorithm.

Remark 1.5. There is a real problem lying in steps 4 and 6. Squarefree factoriza-
tion of integers is presently as difficult as complete factorization, so we need to
factor fH and t and check all prime divisors for greater than one valuation. But
our aim here is to compute tables of fields and, calling X the discriminant bound,
we will need to factor X discriminants of size about X, which is not acceptable.
We shall see in §5 that simple hashing techniques reduce this to a sensible amount.

The discriminant of a cubic field K can be uniquely factored as f 2∆, where ∆
is a fundamental discriminant. The fH appearing in step 3 of the algorithm is
closely related to this one: it is known that a prime p is totally ramified in K if
and only if p divides f (see [8]). Lemma 1.2 and Proposition 2.2 imply that this
is equivalent to p|fH . Thus f and fH have the same prime divisors, but they may
differ by a factor 3, if 3|∆. The precise result is as follows:

Lemma 1.6. Let K be a cubic field, FK its companion reduced cubic form, and
∆f 2 their common discriminant. Let (P, Q,R) be the Hessian of FK, call fH
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its content and put (P, Q,R) = fH(P1, Q1, R1), where (P1, Q1, R1) is primitive.
We have fH = f if and only if −1

3
(Q2

1 − 4P1R1) is fundamental, and fH = 3f
otherwise. The latter only happens when 3 divides both f and ∆. It always
happens when v3(f) = 1.

Proof. Straightforward given the preceding discussion, except for the prime 3.
Lemma 1.2 tells us that 33 - f , and an easy computation shows that 3|fH if and
only if 9|fH . Now write that

f 2
H(Q2

1 − 4P1R1) = −3∆f 2 ,

and compare the valuations at 3. �

2. Properties of the Davenport-Heilbronn cubic form

First and foremost, adjoining a root of F (X, 1) to Q yields a representative of
the class of cubic fields associated to F , in the sense of Theorem 1.1. But what
we want to stress here is the ease with which one recovers the simple invariants
associated to K from FK .

Proposition 2.1. Let FK = (a, b, c, d) be a representative of the class of cubic
forms associated to the cubic field K by the Davenport-Heilbronn bijection. For
instance, the reduced one.

(1) We have disc K = disc FK.
(2) If θ is a root of FK belonging to K, then [1, aθ, aθ2 + bθ] is a basis of the

maximal order ZK.

Proof. 1. is part of the Davenport-Heilbronn theorem, and can be easily checked
from the definition of FK anyway.

As for 2, we use an idea attributed to H. Lenstra by H. Cohen [3, Exercise 15,
p. 216]. Let θ be an algebraic number, and P (X) = a0X

n + a1X
n−1 + · · · + an

be its minimal primitive polynomial, with integral coefficients. One defines

Zθ = Z[a0θ, a0θ
2 + a1θ, . . . , a0θ

n−1 + · · ·+ an−2θ] .

Then Zθ is easily seen to be an algebra of finite type over Z, and thus is an order
in ZK . Now, if we denote the roots of P by θ1, . . . , θn, then

disc Zθ = a2n−2
0

∏
i6=j

(θi − θj) = disc P .

Here, we have disc FK = disc K, so Zθ = ZK . �

The next proposition is an algorithmic restatement of [6, Lemma 11]:

Proposition 2.2. Call θ a root of FK belonging to K. A prime p ∈ Z decomposes
in K as FK = (a, b, c, d) factors in Fp[X, Y ]. More precisely, if we take an
irreducible decomposition

FK(X, Y ) ≡
∏

i

T ei
i (X,Y ) (mod p) ,
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we have

pZK =
∏

i

pei
i , with pi prime in ZK .

Moreover, we can take:

• If p - a, then

pi = pZ + Ti(θ, 1)ZK .

• If p|a but p - d, then

pi = pZ + Ti(θ, 1)/θdeg TiZK .

• If p|a and p|d, but p 6= 2 or F (X, Y ) 6≡ XY (X +Y ) (mod 2), there exists
u ∈ Z such that u 6≡ 0 (mod p), and, in the case p - c, u 6≡ −b/c (mod p).
Then we take:

pi = pZ + Ti(θ, 1)/(1− uθ)deg TiZK .

• Finally, if p = 2 and F (X, Y ) ≡ XY (X + Y ) (mod 2), then 2ZK =
p1p2p3, with

p1 = 2ZK + aθZK, p2 = 2ZK + (aθ2 + bθ + 1)ZK and

p3 = 2ZK + (aθ2 + (a + b)θ)ZK .

Proof.

(1) We suppose first that p - a and consider

f(X) = a2F (X/a, 1) = (1, b, ac, a2d) .

It is a monic irreducible integral polynomial with a root α in K. Localizing
at p above p in ZK , we find that α generates ZK,p over Z(p). Indeed
Z[α] ⊂ ZK and

disc(Z[α]/Z) = a2 disc(ZK/Z)

with gcd(a, p) = 1. Thus, if f(X) =
∏

U ei
i (X), we get

pZK =
∏

pei
i , with pi = pZK + Ui(α)ZK .

Now, we can take α = aθ and Ti(X,Y ) = εY deg UiUi(aX/Y ), with ε ∈ F∗p.
Hence, we have

pi = pZK + Ti(θ, 1)ZK .

(2) When this is not the case, we look for an M ∈ GL2(Z) such that we can
apply 1. to F ◦M . If p - d, we take

M =

(
0 1
1 0

)
,
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else F has at most one non-zero root α in Fp. If we are not in the last
special case of the theorem, there exists u ∈ F∗p, u−1 6= α, so that F (1, u)
is not 0 mod p. Then we take

M =

(
1 0
u 1

)
.

As F (1, u) is exactly the coefficient of x3 in G = F ◦M , we are back to the
preceding case. Of course, G is not reduced anymore, but still generates
the field K.

(3) In the last case, p divides the coefficient of x3 in all forms equivalent to FK .
Thus, from the definition of FK , p2dK |d(x) for all x ∈ ZK . This makes
of p a “non-essential divisor” which, in our cubic setting, happens if and
only if p equals 2 and is totally split in K/Q (see [9]). As 2 is unramified,
disc FK = disc K is odd. We know as well that 2|a and 2|d, so finally, we
get a ≡ d ≡ 0 (mod 2), b ≡ c ≡ 1 mod 2, and FK still factors as p.

To find an explicit decomposition, one has to split the étale algebra

A = ZK/2ZK ≈ (Z/2Z)3

whose elements are all idempotents. Now, if we put e1 = 1, e2 = aθ,
e3 = aθ2 + bθ, we find e2e3 = a2θ3 + abθ2 = −acθ− ad = aθ = e2 in A, as
aθ ∈ ZK and c ≡ 1 (mod 2), ad ≡ 0 (mod 2).

So e2, e1 + e3, and e2 + e3 are the orthogonal idempotents giving the
three factors.

�

3. Real cubic fields

If F is a class of positive discriminant, then disc(HF ) is negative. It is well
known that there is a nice reduction theory for definite binary quadratic form.
Recall that the Hessian is covariant with respect to the action of GL2(Z). We
shall get a canonical representative for F by specifying that its Hessian should
be a reduced quadratic form, with some extra care for those forms lying on the
boundary of the fundamental domain. This approach was initiated by Hermite,
see [10, 11].

We call a quadratic form with real coefficients (P, Q, R) reduced if

|Q| 6 P 6 R ,

and R > 0 to exclude the trivial form. Beware that this is not exactly the
standard notion. For instance our definition implies that (1,−1, 1) is reduced,
as well as (0, 0, 1) ! If H = (P, Q,R) is a definite binary quadratic form, we
call H−1 the quadratic form (P,−Q,R) and Aut(H) the set of matrix in GL2(Z)
stabilizing H. Furthermore, we set

σ =

(
1 0
0 −1

)
.
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Lemma 3.1. Let H = (P, Q, R) and H ′ = (P ′, Q′, R′) be two reduced definite
binary quadratic form, such that there exists M ∈ GL2(Z) with H ◦M = H ′.
Then, either H ′ = H and M ∈ Aut(H), or H ′ = H−1 and M belongs to Aut(H)σ.
Moreover, the only elements of Aut(H) are ± Id, except in the following special
cases, which can occur simultaneously:

• If P = R, add ±
(

0 1
1 0

)
.

• If Q = 0, add ±
(

1 0
0 −1

)
.

• If P = R and Q = 0, add ±
(

0 1
−1 0

)
.

• If P = εQ, add ±
(

1 ε
0 −1

)
.

• If P = εQ = R, add ±
(
−1 0
ε 1

)
, ±

(
0 −1
1 ε

)
, ±

(
ε 1
−1 0

)
.

Where, in the last two cases, ε is either 1 or −1.

Proof. Being equivalent, H and H ′ represent the same numbers and share the
same discriminant. As they are reduced, their first and last coefficients respec-
tively correspond to their minimum over Z2 − {(0, 0)} and their next minimal
value. Thus they are equal. Equality of discriminants then yield Q2 = Q′2.
Hence H ′ = H or H ′ = H−1 = H ◦ σ, and we only need to compute Aut(H).

We call as usual S and T the following two generators of the modular group:

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
and let

M =

(
a b
c d

)
be an automorphism of (P, Q,R). We call F the usual fundamental domain
for SL2(Z) in Poincaré’s half-plane. If M ∈ PSL2(Z), it fixes a point in F , and
so is either Id, S if H = (P, 0, P ), ST or (ST )2 if H = (P, P, P ), TS or (TS)2 if
H = (P,−P, P ).

If det M = −1, then M swaps the two complex roots τ and τ of H. That is

aτ + b

cτ + d
= τ ⇒ aτ + b = cττ + dτ

Taking imaginary parts, we get a = −d and then bP = aQ+ cR, the determinant
value giving a2 + bc = 1. Putting things together we get: H(a, c) = P . On the
other hand, H(a, c) > (P − |Q| + R) min(a2, c2), and, as H is reduced, we have
|Q| 6 P 6 R. It follows:
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• If ac 6= 0, then a2 = c2 = 1 and P = |Q| = R. We have a = −d = ±1 and
b = 0. If P = εQ, we have a = −εc, where ε = ±1.

• If c = 0, then a2 = 1, and bP = aQ. This implies either b = 0, Q = 0, or
b = εa, P = εQ, with ε = ±1.

• If a = 0, then Rc2 = P , so R = P , c2 = 1. We deduce b = c = ±1,
a = d = 0.

Which concludes our proof. �

Definition 3.2. A binary integral cubic form F = (a, b, c, d) of positive discrim-
inant is called reduced whenever its Hessian (P, Q, R) is so and

• a > 0, b > 0, where d < 0 whenever b = 0.
• If Q = 0, d < 0.
• If P = Q, b < |3a− b|.
• If P = R, a 6 |d|, and b < |c| whenever |d| = a.

It then comes as no surprise that:

Corollary 3.3.

(1) Two equivalent reduced real cubic forms are equal.
(2) A reduced real cubic form belonging to U is irreducible.
(3) Any irreducible real cubic form is equivalent to a unique reduced one.

Proof.

(1) Tedious but straightforward: as their Hessians are equal or inverse of one
another, one only needs to check the possible automorphisms as listed in
Lemma 3.1. Some side notes though: it is well known that the automor-
phisms of positive determinant of a quadratic form correspond to units
in the quadratic field defined by its discriminant. These in turn act on
the cubic form according to the cube of the unit. Thus TS and (TS)2,
which correspond to cube roots of unity, act trivially on any cubic form.
A brute force calculation readily confirms this anyway. Also, P = Q = R,
resp. P = −Q = R, if and only if F is of the form (a, b, b − 3a,−a),
resp. (a, b,−b− 3a, a).

(2) Suppose F is reducible. Then there exists a form G = (a, b, c, d) equivalent
to F , with a = 0, b > 0, and 0 6 c 6 b, which of course belongs also to U .
We are going to show that the Hessian of this last form is reduced; checking
its automorphisms will then lead us to a contradiction. We compute the
discriminant of G, ∆ = b2c2 − 4b3d, and its Hessian

(P, Q, R) = (b2, bc, c2 − 3bd) .

We see that b2|∆, thus for all odd primes p dividing b, we have p| gcd(P, Q, R)
by Lemma 1.2/1. So p divides (c2 − 3bd) and b, hence p|c, and p3|∆. We
must then have p = 3 by Lemma 1.2/2. But 9|a so G cannot belong to
U3\V3, thus 3 - b.



10 K. BELABAS

Now, if 2|b, then ∆ ≡ b2c2 (mod 16) thus G does not belong to V2. We
must then have 2|c, hence 16|∆, which is absurd. Moreover, b 6= 0 else
∆ = 0 and G does not belong to Up, for all p. Thus b = 1, and c = 0
or c = 1. It follows that the Hessian of (a, b, c, d) is either (1, 1, 1 − 3d)
or (1, 0,−3d). But ∆ = c2 − 4d > 0, so d 6 −1 and thus both 1 − 3d
and −3d are greater than 1. Thus both our possible Hessians are reduced,
and whichever is the correct one is equal to the Hessian HF of F or to
its inverse. This implies that G is obtained from F by an automorphism
of HF , modulo σ. As the only automorphisms of HF , as well as σ, fix a
which is 0, we see that the first coefficient of F is 0, which is forbidden
for a reduced form. Here is our contradiction.

(3) Any real cubic form is equivalent to a form F whose Hessian H is reduced.
Now, if this Hessian has one of the aforementioned special forms, the
patient reader will check that either F or F ◦M is reduced, where M is
an automorphism of H. Note that it is vital that F be irreducible here.
More precisely, we need the trivial fact that F is reducible whenever a or
d equals 0, Q = b = 0, P = Q and b = |3a − b|, or P = R, a = |d| and
b = |c|.

�

Remark 3.4. In those cases where the Hessian has some non-trivial automor-
phisms, we needed to fix a representative in the corresponding orbits of cubic
forms. There, all the possible choices are equivalent. Furthermore, Lemma 3.5
will imply that these special cases, as listed in Lemma 3.1, occur at most O(X3/4)
times. But there is another choice we had to make, taking into account that we
needed GL2(Z) and not SL2(Z) to operate on our set of forms. There are two
natural ideas: b > 0 as we have just seen, or Q > 0. The latter one was aesthet-
ically more pleasing because we did not have to bother with ε or σ, and things
were a little more “canonical”. They still are, but not in a very natural way.

In both cases, the algorithm would run roughly as follows: execute four enclosed
loops for the four coefficients of the form, taking advantage of every possible
inequality, testing each time if we had a field or not. And the choice Q > 0 now
became awkward. For instance the condition Q > 0 could not be exploited before
at least three of the four defining coefficients had been set. In fact, the general
algorithm was much more complicated in this case, because the sign of b had to be
considered at times, and disregarded at others. The most obvious example would
be the computation of b2 which should only be done once. Thus, the b-loop had
to actually be on the absolute value of b, sometimes executing two instructions,
sometimes one, depending on whether the sign of b had any importance. This
led to a rather obscure and slightly less efficient program. Thus, the opposite
choice was made, but it should not be considered as the “right” one. In fact, the
normalization Q > 0 being best-suited for theoretical purpose, we shall use it in
Proposition 3.9.

We can in a very explicit way find bounds for the coefficients of a reduced form:
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Lemma 3.5. Let F = (a, b, c, d) be a reduced form whose discriminant lies in
]0, X]. We have:

(1) |a| 6 2X1/4

3
√

3
,

(2) 0 6 b 6
3a

2
+

√
√

X − 27a2

4
.

Call P2 the unique positive real solution of the equation

−4P 3
2 + (3a + 2b)2P 2

2 + 27a2X = 0 ,

then

(3)
b2 − P2

3a
6 c 6 b− 3a .

Proof. Let H = (P, Q, R) be the Hessian of F , 3∆ = 4PR−Q2. Recall that

|Q| 6 P 6 R .

As in the classical quadratic case, we remark:

(4) P 2 6 PR 6 ∆ 6 X .

On the other hand, the formulas defining H yield:

P 2 = Pb2 − 3Qab + 9Ra2 .

This quadratic equation in b has discriminant

9a2(Q2 − 4PR) + 4P 3 = 4P 3 − 27a2D .

Thus it has a solution if and only if

a2 6
4P 3

27D
6

4P

27
6

4
√

X

27
,

and (1) is proved.
The largest of these two solutions is :

b =
3Qa +

√
4P 3 − 27a2D

2P
=

3aQ

2P
+

√
P − 27a2D

4P 2
6

3a

2
+

√
P − 27a2D

4P 2
.

This is an increasing function of P , which is thus maximal when P 2 = D. As the
resulting expression increases with D, we finally obtain

b 6
3a

2
+

√
√

X − 27a2

4
,

which is (2). Note that these two bounds are actually sharp, as they are reached
whenever P = Q = R.
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The last one is a little more intricate: given a, b, P and D, we need to know
at what condition there exists Q such that:

(5) f(Q) = Pb2 − 3Qab + 9a2

(
3D + Q2

4P

)
− P 2 = 0 ,

(6) −P 6 Q 6 P 6
3D + Q2

4P
.

Of course, (3D+Q2)/4P is equal to R, but we do not want too many variables
in there. Given (5), and if we recall that both a and b are non-negative, the
rightmost inequality in (6) becomes

Q >
P

3ab
(b2 + 9a2 − P ) =: U .

Let’s study (5) as a quadratic equation in Q: its discriminant is

∆ = 4P 3 − 27a2D ,

and we have

f(−P ) = P 2(3a + 2b)2 −∆ ,

f(P ) = P 2(3a− 2b)2 −∆ ,

f(U) =
P 2

b2
(b2 − 9a2 + P )2 −∆ .

Finally, its minimum is reached at Qmin = 2bP/3a > 0, the sign of the minimal
value being opposite to the sign of ∆, and thus negative.

Call respectively P1(D) and P2(D) the positive real solution of the equations:

−4P 3 + (3a− 2b)2P 2 + 27a2D = 0 ,

−4P 3 + (3a + 2b)2P 2 + 27a2D = 0

(these always exist) and P3(D) 6 P4(D) the two positive solutions of

P 2(b2 − 9a2 + P )2 − 4b2P 3 + 27a2b2D = 0 .

Both P3 and P4 only exist when 4P 2 > 3D, otherwise the left-hand expression
remains positive. Of course, these three equations correspond to F (P ) = 0,
F (−P ) = 0 and F (U) = 0 respectively. There are two cases:

• 0 6 b 6 3a/2. Then Qmin 6 P . There is a solution in [−P, Qmin] if and
only if f(−P ) > 0, U 6 Qmin, and f(U) > 0. And a solution in [Qmin, P ]
if and only if f(P ) > 0, and either f(U) 6 0 or U 6 Qmin.

• b > 3a/2. Now Qmin > P , thus any solution will lie in [−P, Qmin]. The
corresponding statement from the preceding case holds verbatim, save
that U 6 Qmin can be replaced by U 6 P , which is a little more precise
but is a consequence of the other two inequalities.
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Because of the trivial equality c = (b2−P )/3a, we only need to bound P . This
will involve the quantities Pi(D) defined above. Applying the implicit function
theorem yields that P1(D), P2(D), and P3(D) are increasing with D, while P4(D)
decreases. Recalling that P 2 6 D 6 X, we call, we call Pi(X) = Pi, for all
1 6 i 6 4. We have P1(P

2) = P3(P
2) = 9a2 − 3ab + b2 and P2(P

2) = P4(P
2) =

9a2 + 3ab + b2.

Remark first that, in the case U 6 Qmin, i.e. P + b2 − 9a2 > 0, we have
f(−P ) 6 f(U) if and only if P 6 9a2 + 3ab + b2, i.e. c > −3a − b. Now we
enumerate.

Suppose first that b > 3a/2.
As U 6 Qmin, we have P + b2 − 9a2 > 0, that is c 6 2b2/3a− 3a. But U 6 P

yields c 6 b−3a which is better. We see that P 2(b2−9a2 +P )2 > b2P 2(3a+2b)2

if and only if c 6 −3a− b, in which case only f(−P ) is involved.

• If −3a − b < c 6 b − 3a, we have P 6 P3 or P > P4 and this implies
P 6 P2.

• If c 6 −3a− b, we have P 6 P2.

Now, we consider 0 6 b < 3a/2.

• If c > −3a + 2b2/3a, then U > Qmin. And we have f(U) 6 0 6 f(P ),
that is P3(P

2) 6 P 6 P4(P
2), i.e. −3a − b 6 c 6 b − 3a, and P 6 P1,

which implies that P 6 P2.

• If −3a−b 6 c 6 −3a+2b2/3a, we need f(U) > 0, i.e. P 6 P3 or P > P4.

• If c 6 −3a− b, we still have P 6 P2.

All of these imply that P 6 P2. �

Remark 3.6. As far as c is concerned, we proved a much more precise statement
than (3). But we will have no use for it, as it would only affect a small range of c,
of the order of b, that is at most X1/4). And we would then have to solve several
extra equations involving cube roots. It turns out this is not a fair trade.

We now recall some of the densities computed by Davenport and Heilbronn in
[4] and [6] :

Theorem 3.7. Let H+
3 (X), resp. N+

3 (X) denote the number of classes of equiv-
alent cubic forms, resp. of isomorphism classes of real cubic fields, with positive
discriminant less than X. As X tends to +∞, we have:

H+
3 (X) =

π2X

72
+ C+ ·X5/6 + O(X2/3+ε) ≈ 0.137 ·X ,(7)

N+
3 (X) =

X

12ζ(3)
+ o(

X

log2 X
) ≈ 0.0693 ·X .(8)

Remark 3.8. The non principal part in (7) is actually due to Shintani [15], im-
proving on Davenport’s original result [4]. The error term in (8) was proved
in [2].
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Once a, b, c are set as in Lemma 3.5, the coefficient d satisfies:

(9) (−27a2)d2 + 2(9abc− 2b3)d + (b2c2 − 4ac3 −X) 6 0

as well as

(10) |bc− 9ad| 6 b2 − 3ac 6 c2 − 3bd ,

and the number of such (a, b, c, d) is then about H+
3 (X). Now, due to

H+
3 (X)

N+
3 (X)

−→ 12ζ(3)π2

72
≈ 1.97

as X tends to infinity, only about half of these quadruplets will be eliminated
for congruence reasons. So there is very little waste among the polynomials we
produce.

Our reduction theory being so explicit, it is very easy to characterize subclasses
of cubic fields:

Proposition 3.9. Let K be a real cubic field, FK be the associated reduced form,
with the normalization Q > 0, and HK = (P, Q,R) its Hessian. Then

(1) K is cyclic (i.e. disc(K) = f 2 ) if and only if HK = fH(1, 1, 1).
(2) disc(K) = 5f 2 if and only if HK = fH(1, 1, 4) or HK = fH(2, 1, 2).
(3) disc(K) = 8f 2 if and only if HK = fH(1, 0, 6) or HK = fH(2, 0, 3).
(4) disc(K) = 12f 2 if and only if HK = fH(1, 0, 9) or HK = fH(2, 2, 5), or

HK = fH(1, 0, 1).
(5) Let ∆ > 0 be a fundamental discriminant, then disc(K) = ∆f 2 if and

only if HK is a multiple of a primitive reduced form whose discriminant
is −3∆ (f = fH) or −∆/3 (fH = 3f and 3 | f ).

Proof. Part 5 is a simple consequence of Lemma 1.6 and our definition of reduced
forms. The other assertions follow easily from this one. �

Due to the trivial equality

(11) H(b,−3a) = P 2 ,

we can “easily” build back the fields from a given discriminant. The preceding
proposition gives all the possible Hessians. For all of them equation (11) has
finitely many solutions, and given a, b and the Hessian, the cubic form is com-
pletely determined. An explicit study of the Hessian’s automorphisms would even
yield a complete one-to-one parametrization for the fields whose discriminant has
the form ∆f 2.

4. Complex cubic fields

In the complex case, our version of Hermite reduction does not work anymore:
there can be many reduced forms in a given class of indefinite quadratic forms,
and selecting one among these is awkward. We use instead an even simpler idea
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of Mathews and Berwick: if an irreducible cubic form F = (a, b, c, d) has negative
discriminant, it has a unique real root θ 6∈ Q, and we can factor F (in R[x, y] !):

F (x, y) = (x− θy)(Ax2 + Bxy + Cy2) .

One easily computes

disc F = (B2 − 4AC)(Aθ2 + Bθ + C)2 .

As disc F < 0, the “quadratic factor”, QF = (A, B, C), has negative discriminant
and we can impose A > 0 by changing the signs of x and y. We have:

a = A, b = B − θA, c = C − θB and d = −θC .

Apart from a proportionality factor, (A, B, C) is covariant under GL2(R). Indeed
given

M =

(
a b
c d

)
,

we have

QF◦M = |a− θc| ·QF ◦M .

We define:

Definition 4.1. An integral binary complex cubic form F is reduced if 0 < |B| <
A < C, and

• a > 0.
• b > 0, with d > 0 if b = 0.

Note that if F is irreducible, then θ is an irrational number, and this excludes
our former special cases: B = 0, A = |B| or A = C. Another nice feature is that
we do not have to factor F at all:

Lemma 4.2. A complex cubic form F = (a, b, c, d) is reduced if and only if:

d2 − a2 + ac− db > 0 ,(12)

−(a− b)2 − ac < ad− bc < (a + b)2 + ac ,(13)

a > 0, b > 0 and d > 0 whenever b = 0 .(14)

Proof. See [13]. �

Lemma 4.3. (1) A reduced complex cubic form belonging to U is irreducible.
(2) Any irreducible complex cubic form is equivalent to a unique reduced one.

Proof.

(1) Just as in the proof of Corollary 3.3, a complex reducible form belonging
to U is equivalent to G = y(x2 +δy2) or G′ = y(x2 +xy+δy2), with δ > 1.
If a reduced form F = (x − θy)(Ax2 + Bxy + Cy2) is equivalent to G or
G′, then (A, B, C) is equivalent to a multiple of either (1, 0, δ) or (1, 1, δ).
As both are reduced, (A, B, C) is equal to one of them or their inverse,
thus B = 0 or A = ±B, all of which are forbidden.
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(2) We only need to show that two reduced irreducible equivalent forms are
equal. Let F = G ◦M , M ∈ GL2(Z) be two equivalent reduced forms.
Then there exists λ ∈ R∗

+ such that λQF = QG ◦M . We deduce λQF =
QG, thus M is an automorphism of QF . The proof then goes as before
save that, as the forms are irreducible, all special cases are excluded.

�

The equivalent of Lemma 3.5 is much simpler :

Lemma 4.4. Let F = (a, b, c, d) be a reduced form whose discriminant lies in
[−X, 0[. We have:

(15) 1 6 a 6

(
16X

27

)1/4

,

(16) 0 6 b 6
3a

2
+

√(
X

3

)1/2

− 3a2

4
,

(17) 1− b 6 c 6 U(a, b) +

(
X

4a

)1/3

,

where U(a, b) = b2/3a if a > 2b/3, and b− 3a/4 otherwise.

Proof. Write F = (x− θy)(Ax2 + Bxy + C), and recall that

a = A, b = B − θA, c = C − θB .

Setting 3∆ = 4AC −B2, we have

|B| < A < C and A2 < ∆ .

We set D = | disc F |. From the equality D = 3∆(Aθ2 + Bθ + C)2, we get

2aθ = −B ±

√
4a

(
D

3∆

)1/2

− 3∆ .

The expression under the square root must be positive, so we obtain

(18) 16a2D > 27∆3 > 27a6

and, recalling that D 6 X, we get (15). From b = B − Aθ, we derive

b =
3B

2
∓

√
a

(
D

3∆

)1/2

− 3∆

4
.

The square root is a decreasing function of ∆. Hence, using |B| 6 a and ∆ > a2,
(16) follows.
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We have c = R− θB > A− θC > A−|θ|A. From |B| < A, we get |b+ θa| < a,
which implies |θa| < a + b. Thus c > −b, which is the left-hand side of (17). To
get the right-hand side, we use the explicit formulas for b and c, which yield

4ac = −3B2 + 4bB + 3∆ =: Q(B) .

The quadratic form Q(B) reaches its maximum 4b2/3 when B = B0 = 2b/3. But,
as we must have B < A = a, this has to be replaced by U(a) whenever B0 > a,
and we are done. �

As before, we get a linear number of loops, and the corresponding theoretical
values, as given in [2, 5, 6, 15], are as follows:

Theorem 4.5. Let H−
3 (X), resp. N−

3 (X), denote the number of classes of equiv-
alent cubic forms, resp. of isomorphism classes of cubic fields, with negative dis-
criminant greater than −X. As X tends to +∞, we have:

H−
3 (X) =

π2X

24
+ C− ·X5/6 + O(X2/3+ε) ≈ 0.411 ·X ,(19)

N−
3 (X) =

X

4ζ(3)
+ o

( X

log2 X

)
≈ 0.208 ·X .(20)

Remark 4.6. If we want an equivalent to Proposition 3.9, the complex situation
is not as favorable as the real one. The possible quadratic covariants are difficult
to list directly in a practical computational sense: their coefficients are not even
rational. Thus we resort to Hermite reduction. Let K be a complex cubic field
and suppose that disc(K) = ∆f 2 (∆ negative). We choose a system S of repre-
sentatives for the classes (modulo GL2(Z)!) of quadratic forms of discriminant
−3∆ and −∆/3. Then the canonical form FK is equivalent to a cubic form whose
Hessian HK is a multiple of a primitive form H in S.

Now another problem arises: (11) has positive discriminant, and thus an infinite
number of solutions. This can be circumvented as we only need to find the
solutions (a, b) modulo the cubes in Aut H. Namely, a simple computation shows
that when M belongs to Aut H, replacing F by F ◦M multiplies (b,−3a) by M3.
The cubic forms obtained can now easily be reduced in our former sense.

5. Implementation

Let P be some integer. Using an elementary sieve, we need to precompute the
list of “non-squarefree” numbers n 6 X, such that there exists a prime p > P ,
with p2|n. One can trivially bound their number by:

∑
p>P

X

p2
6 X

∫ +∞

P

dπ(t)

t2
.
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The following well-known inequalities, due to Rosser and Schoenfeld [14, Theo-
rem 1], give us a simple uniform bound:

x

log x

(
1 +

1

2 log x

)
6 π(x) 6

x

log x

(
1 +

3

2 log x

)
,

where the left-hand side is valid for x > 59, and the right-hand side for x > 1.
Thus, if P > 59:∫ +∞

P

dπ(t)

t2
= −π(P )

P 2
+

∫ +∞

P

2π(t)dt

t3

6 − 1

P log P

(
1 +

1

2 log P

)
+

∫ +∞

P

2dt

t2 log t
+

∫ +∞

P

3dt

t2 log2 t

=
1

P log P

(
1− 1

2 log P

)
+

∫ +∞

P

dt

t2 log2 t

6
1

P log P

(
1 +

1

2 log P

)
.

Thus, depending on available memory and X, one can fix a P such that we
can test if an integer bounded by X is squarefree in at most π(P ) divisions and a
quick binary search, which can itself be optimized with hashing techniques. For
instance, we can sort the lists according to the high-order bits of the discriminant;
as we now only need to store the low-order bits, a careful implementation will
keep to 32-bit integers far beyond the practical range of the algorithm. Having
decided to use at most 32Mo in ram for the hashing lists, we took P = 97 to
compute a table up to X = 1010 and P = 661 up to X = 1011, trial division up
to P still taking most of the computational time.

Call M the maximum memory one is willing to spend for the hashing lists, i.e.
we will keep at most M 32-bit integers in ram. We use the following initialization
routine:

Sub-Algorithm 5.1 (init)

(1)[Initialize primes] Input X, the discriminant bound. Compute a table of primes
up to

√
X, p[ ], as well as their squares pp[ ]. Using a binary search, find

the minimal prime p such that:

X

p log p
·
(

1 +
1

2 log p

)
6 3M .

If p 6 53, find the minimal prime p such that

p−2 + · · ·+ 53−2 6
3M

X
− 1

log 59
·
(

1 +
1

2 log 59

)
.

If p < 5, set p = 5. Set index such that p[index]=p.
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(2)[Initialize sieve] Put in list[ ] all the integers less than X, prime to 6, and
admitting a divisor pp[i], i > index. Fill in boolean array sqfull[ ] up to
n =
√

3X, such that sqfull[n] is true if and only if p2|n for some prime
p > 5.

The primes 2 and 3 are special cases anyway and can be readily suppressed
from the discriminant factorization: a single division modulo 72 is enough. Thus,
one can restrict the lists to integers prime to 6, and there are then 6/ϕ(6) = 3
times less numbers to keep in memory. Hence the 3 ·M instead of M in Step 1,
as well as the test for p < 5. The bound

√
3X in the definition of sqfull was

chosen because we primarily want to test fH with it.
The following common subroutine checks whether a reduced form belongs to Up,

for p > 2.

Sub-Algorithm 5.2 (test(fH , a, b, c, d, ∆))

Input: (a, b, c, d) a reduced cubic form belonging to U2, fH and ∆ respectively the
content and discriminant of its Hessian (recall that ∆ = −3 disc(a, b, c, d)).
Output: F if it belongs to U , nothing otherwise.

(1)If (a, b, c, d) does not belong to U3, as in Lemma 1.2, or sqfull[fH] is true,
then return.

(2)Set t = ∆/f2
H , and t = t/ gcd(t, 72) so that now t is prime to 6. If

gcd(t, fH) > 1, return.
(3)Return if t is not squarefree. The test should be done as follows: if n is small

enough (n 6
√

3X) return if sqfull[n] is true. Else search the sorted
by construction list for n, then trial divide n by pp[i], 2 6 i < index,
returning as soon as n is found or one pp[i] divides n.

(4)Output (a, b, c, d).

5.a. Real cubic fields. The actual algorithms are now simple to write:

Sub-Algorithm 5.3 (is real field(a, b, c, d, P,Q,R))

Input: a real cubic form F = (a, b, c, d), and its reduced Hessian (P, Q,R).
Output: F , if it corresponds to a real cubic field.

(1)[Check special cases]
•if P = Q: if |b| > |3a− b|, return.
•if P = R: if a > |d|, return. If a = |d| and |b| > |c|, return.
•if |Q| = R: if 4|P return. Execute test(P, a, b, c, d, 3P 2), then return.

(2)Set ∆ = 4PR − Q2. If 16|∆ or [∆ ≡ 12 (mod 16) and either P or R is
odd], return.

(3)Set fH = gcd(P, Q,R), then execute test(fH , a, b, c, d, ∆).

Algorithm 5.4 (crfcrf1)

1stands for Cubic Real Fields Counting Reduced Forms.
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(1)Execute init.

(2)[Special case b = 0] Execute three embedded loops on a, c, d in this nesting
order. Set the bounds using the reduction inequalities a > 0, b > 0 and (10),
as well as (9) and Lemma 3.5. Compute the Hessian (P, Q,R), then execute
is real field (a, 0, c, d, P, Q,R).

(3)[General case] We now have four loops on a, b, c, d in this order, with the
additional inequality b > 0. Compute the Hessian (P, Q,R), then execute
is real field (a, b, c, d, P,Q,R).

Remark 5.5. Great care must be taken in setting the bounds for the various loops
to avoid round-off errors. Also, many computations can be done at an early stage.
For instance, P = b2−3ac can be computed before d is known. This is tedious but
straightforward, so we chose not to hide the simplicity of the algorithm behind
scores of auxiliary variables and explicit complicated bounds.

5.b. Complex cubic fields. Though it is now easier to test whether a form
corresponds to a field, the general algorithm is a little more complicated than the
previous one. First, because our reduction inequalities now involve solving (12)
which is quadratic in d. And second, they do not imply anymore that the form
discriminant has the expected sign: a test run of the algorithm after removing
the sign condition will produce scores of counter-examples. Thus, we will have
to deal with three quadratic inequalities instead of one.

Sub-Algorithm 5.6 (is complex field(a, b, c, d, P,Q,R))

(1)Set ∆ = Q2− 4PR. If 16|∆ or [∆ ≡ 4 (mod 16) and either P or R is odd],
return false.

(2)Set fH = gcd(|P |, |Q|, |R|), then execute test(fH , a, b, c, d, ∆).

The shape of the algorithm is the same:

Algorithm 5.7 (ccfccf2)

(1)Execute init.

(2)[Special case b = 0] Execute three embedded loops on a, c, d in this nesting
order. The bounds are set using the reduction inequalities a > 0, b > 0 and
Lemma 4.2, and the discriminant ones arising from −X 6 disc F < 0 and
Lemma 4.4. Compute the Hessian (P, Q, R).
Execute is complex field (a, 0, c, d, P,Q,R).

(3)[General case] We now have four loops on a, b, c, d in this order, with the
additional inequality b > 0. Compute the Hessian (P, Q,R), then execute
is complex field (a, b, c, d, P,Q,R).

2stands for Cubic Complex Fields Counting Companion Forms.
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5.c. General remarks. All these algorithms have been implemented in ansi C
on a dec alpha (64-bit machine) with the help of the pari library – see [1] for
details on this useful number theory package.

• One can sensibly compute the number of (isomorphism class of) cubic fields
up to X ≈ 1011 in this way. As one can see from Table 6.1, the overhead
computations in subroutine init take a negligible time, thus the algorithm can
easily be distributed.

• The intermediate results all fit in single precision long integers on 64-bit
machines for reasonable X: say, less than 1012 in the real case, and 5.1010 in the
complex case.

• It might happen that for given (a, b, c) satisfying our bounds, there does not
exist d such that the form (a, b, c, d) is both reduced and has a discriminant in the
expected range. One can prove the number of these “empty loops” is a O(X3/4).

• If one compares with methods originating from Hunter’s theorem, the gain
is gigantic: no irreducibility check, no discriminant factorization, no search for
automorphisms and thus, no need to keep all the fields found so far in memory.
We get an essentially linear algorithm. The main loop is executed less than
C · X + o(X) times, with C = π2/72 in the real case and C = π2/24 in the
complex case. And all the rest is overhead computations, dominated by the
main loop, save for the time spent searching the lists for non-squarefree numbers,
or trial dividing to locate small square factors, which remains reasonable for the
practical range of the method. As a matter of fact, sorting the fields by increasing
discriminant takes much more time than actually computing them.

• It is feasible to compute fields whose discriminants lie in an interval [X,X+Y ],
for very large X, say 1015, when Y is small enough, say 106. We incorporate
the relevant discriminant inequality in the loops and, instead of using lists of
precomputed numbers, we factor the discriminant using a suitable probabilistic
factorization method. The running time is then more or less the time needed
to factor around Y numbers of size X. Of course, the empty loops become a
problem if X is too large.

6. Results

The following tables give an idea of computational time and memory usage.
First, we consider the init routine, which does not depend on the signature.
Most of the time in there is spent building sieves. We call P = p[index] the prime
chosen to build the hashing lists. For instance, P = 5 means that no trial division
actually takes place in sqfree. The “Square-full ints” column corresponds to the
number of 32-bit integers stored in the lists:
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X P Square-full ints Sieving time

104 5 290 0.001 s

105 5 2935 0.01 s

106 5 29370 0.1 s

107 5 293674 1.0 s

108 5 2936998 7.0 s

P > 5 109 17 5474664 43 s

1010 97 6409864 356 s (5min 56 s)

1011 661 6644929 3427 s (58min 15 s)

Table 6.1. Overhead Computations.

Next, we give the data corresponding to the computation of real and complex
cubic fields. Here, a is the maximal value for the first coefficient of the cubic
form. They happen to be the ones given by the bound in Lemma 3.5 in the real
case. And one less than the ones in Lemma 4.4 in the complex case, with the
exception X = 104 where we get the exact bound. As was expected, we get a
roughly linear behavior as long as P = 5, which quickly “diverges” as P increases.
Up to the same discriminant bound, time spent for the complex computations
compared to the real ones should be in the same ratio as the number of fields
found: slowly decreasing in the given examples, equal to 3 at infinity due to
Davenport-Heilbronn’s result (not exactly so, the initializing step being exactly
the same). But, as pointed out at the beginning of §5.b, the complex situation is
a little worse, due to the extra square roots:

X # of fields Elapsed time a

101 0 0.000 s 0

102 2 0.000 s 1

103 27 0.000 s 2

104 382 0.005 s 3

105 4,804 0.05 s 6

106 54,600 0.5 s 12

107 592,922 5.7 s 21

108 6,248,290 64 s (1min 04 s) 38

P > 5 109 64,659,361 774 s (12min 54 s) 68

1010 661,448,081 18,641 s (5 h 11min) 121

1011 6,715,824,025 714,488 s (8 days 7 h) 216

Table 6.2. Real cubic fields.
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X # of fields Elapsed time a

101 0 0.000 s 0

102 7 0.000 s 1

103 127 0.004 s 3

104 1520 0.04 s 7

105 17,041 0.3 s 14

106 182,417 2.2 s 26

107 1,905,514 21.3 s 49

108 19,609,185 224 s (3min 44 s) 86

P > 5 109 199,884,780 2,575 s (42min 55 s) 155

1010 2,024,660,098 58,247 s (16 h 11min) 276

1011 20,422,230,540 2,207,413 s (25 days 13 h) 492

Table 6.3. Complex cubic fields.

Such tables had previously been given by Fung-Willams [7] in the complex
case (discriminant greater than −106) and Llorente-Quer [12] in the real case
(discriminant lower than 107). Our results are in accordance with the former but
disagree by one field with the latter. As these authors already pointed out, the
density of cubic discriminants slowly increases up to the Davenport-Heilbronn
limit. Recall that it is respectively 1/12ζ(3) ≈ 0.0693 and 1/4ζ(3) ≈ 0.2080 in
the real and complex case. Thus in our computations, up to X = 1011, the third
decimal is already wrong.

But not so slowly if one considers the best proven error term in (8) or (20):
O(X/ log2 X). In fact, if we write the experimental remainder as X/ logα X,
and use the least square method to guess a “correct” value for α, we obtain an
unstable behaviour: α increases steadily with the bound X, up to α ≈ 3.9 when
X = 1011. Thus, for all we know, this error term might even decrease faster than
all negative powers of log X.

Appendix A. Table of Real Cubic Fields

The following lists the first hundred real cubic fields sorted by increasing dis-
criminant. We give the following data from left to right: the discriminant, the
canonical defining cubic form (instead of the binary form F (x, y), we give F (x, 1)),
its Hessian written as fH(P1, Q1, R1), with (P1, Q1, R1) primitive, and the factor f
from the discriminant (Disc=f 2∆2, with ∆2 a fundamental discriminant). Up to
a factor 3, f corresponds to the content fH of the Hessian. Starred discriminants
denote cyclic fields, i.e. the ones whose Hessian is of the form (P,±P, P ).

Disc F (X) Hessian f
49∗ X3 + X2 − 2X − 1 7(1, 1, 1) 7
81∗ X3 − 3X − 1 9(1, 1, 1) 9
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148 X3 + X2 − 3X − 1 2(5, 3, 6) 2
169∗ X3 + X2 − 4X + 1 13(1,−1, 1) 13
229 X3 − 4X − 1 (12, 9, 16) 1
257 X3 + 2X2 − 3X − 1 (13, 3, 15) 1
316 X3 + 2X2 − 3X − 2 (13, 12, 21) 1
321 X3 + X2 − 4X − 1 (13, 5, 19) 1
361∗ X3 + 2X2 − 5X + 1 19(1,−1, 1) 19
404 X3 + X2 − 5X + 1 2(8,−7, 11) 2
469 X3 + 2X2 − 4X − 1 (16, 1, 22) 1
473 X3 − 5X − 1 (15, 9, 25) 1
564 X3 + 2X2 − 4X − 2 2(8, 5, 14) 2
568 X3 + 4X2 −X − 2 (19, 14, 25) 1
621 X3 + 3X2 − 3X − 2 9(2, 1, 3) 3
697 X3 + 3X2 − 4X − 1 (21,−3, 25) 1
733 X3 + 2X2 − 6X + 1 (22,−21, 30) 1
756 X3 − 6X − 2 18(1, 1, 2) 6
761 X3 + X2 − 6X + 1 (19,−15, 33) 1
785 X3 + 2X2 − 5X − 1 (19,−1, 31) 1
788 X3 + 4X2 − 2X − 2 2(11, 5, 14) 2
837 X3 − 6X − 1 9(2, 1, 4) 3
892 X3 + 5X2 − 2 (25, 18, 30) 1
940 X3 + 3X2 − 4X − 2 (21, 6, 34) 1
961∗ 2X3 + X2 − 5X − 2 31(1, 1, 1) 31
985 X3 + X2 − 6X − 1 (19, 3, 39) 1
993 X3 + 2X2 − 5X − 3 (19, 17, 43) 1

1016 X3 + X2 − 6X − 2 (19, 12, 42) 1
1076 X3 + 3X2 − 5X − 1 2(12,−3, 17) 2
1101 X3 + 5X2 −X − 2 (28, 13, 31) 1
1129 X3 + 3X2 − 4X − 3 (21, 15, 43) 1
1229 X3 + 2X2 − 6X − 1 (22,−3, 42) 1
1257 X3 + 2X2 − 7X + 1 (25,−23, 43) 1
1300 X3 + 3X2 − 7X + 1 10(3,−3, 4) 10
1304 2X3 + 3X2 − 4X − 2 (33, 24, 34) 1
1345 X3 − 7X − 1 (21, 9, 49) 1
1369∗ X3 + 4X2 − 7X + 1 37(1,−1, 1) 37
1373 X3 + 3X2 − 5X − 2 (24, 3, 43) 1
1384 X3 + 5X2 − 2X − 2 (31, 8, 34) 1
1396 X3 + 2X2 − 6X − 2 2(11, 3, 24) 2
1425 X3 + 4X2 − 3X − 3 5(5, 3, 9) 5
1436 X3 + 6X2 + X − 2 (33, 24, 37) 1
1489 X3 + 4X2 − 5X − 1 (31,−11, 37) 1
1492 X3 + 4X2 − 4X − 2 2(14, 1, 20) 2
1509 X3 + 2X2 − 6X − 3 (22, 15, 54) 1
1524 X3 + X2 − 7X − 1 2(11, 1, 26) 2
1556 X3 + 5X2 −X − 3 2(14, 11, 23) 2
1573 X3 + X2 − 7X − 2 11(2, 1, 5) 11
1593 X3 + 3X2 − 6X − 1 9(3,−1, 5) 3
1620 X3 + 6X2 − 2 18(2, 1, 2) 18
1708 X3 + 4X2 − 3X − 4 (25, 24, 57) 1
1765 X3 + 5X2 − 3X − 2 (34, 3, 39) 1
1772 2X3 + X2 − 6X − 2 (37, 30, 42) 1
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1825 X3 + 2X2 − 7X − 1 5(5,−1, 11) 5
1849∗ 2X3 + X2 − 7X + 2 43(1,−1, 1) 43
1901 X3 + 4X2 − 4X − 3 (28, 11, 52) 1
1929 X3 + 5X2 − 2X − 3 (31, 17, 49) 1
1937 X3 + X2 − 8X + 1 (25,−17, 61) 1
1940 X3 − 8X − 2 2(12, 9, 32) 2
1944 X3 + 3X2 − 6X − 2 27(1, 0, 2) 9
1957 X3 + 2X2 − 8X + 1 (28,−25, 58) 1
2021 X3 − 8X − 1 (24, 9, 64) 1
2024 X3 + 4X2 − 5X − 2 (31,−2, 49) 1
2057 X3 + 3X2 − 8X + 1 11(3,−3, 5) 11
2089 2X3 + 3X2 − 5X − 2 (39, 21, 43) 1
2101 X3 + 4X2 − 6X − 1 (34,−15, 48) 1
2177 X3 + 2X2 − 7X − 3 (25, 13, 67) 1
2213 X3 + 7X2 + 3X − 2 (40, 39, 51) 1
2228 2X3 + 2X2 − 6X − 1 2(20, 3, 21) 2
2233 X3 + X2 − 8X − 1 (25, 1, 67) 1
2241 X3 + 3X2 − 6X − 3 9(3, 1, 7) 3
2292 2X3 + 4X2 − 4X − 3 2(20, 19, 26) 2
2296 X3 + 7X2 + 2X − 2 (43, 32, 46) 1
2300 X3 + X2 − 8X − 2 5(5, 2, 14) 5
2349 X3 + 6X2 − 3 9(4, 3, 6) 9
2429 2X3 + X2 − 7X + 1 (43,−25, 46) 1
2505 X3 + 4X2 − 5X − 3 (31, 7, 61) 1
2557 X3 + X2 − 9X + 2 (28,−27, 75) 1
2589 2X3 + 5X2 − 3X − 3 (43, 39, 54) 1
2597 X3 + 2X2 − 8X − 1 7(4,−1, 10) 7
2636 2X3 − 7X − 1 (42, 18, 49) 1
2673 X3 − 9X − 3 27(1, 1, 3) 9
2677 X3 + 3X2 − 7X − 2 (30,−3, 67) 1
2700 X3 + 6X2 − 3X − 2 45(1, 0, 1) 15
2708 X3 + 4X2 − 6X − 2 2(17,−3, 30) 2
2713 X3 + 6X2 −X − 3 (39, 21, 55) 1
2777 X3 + 5X2 − 6X − 1 (43,−21, 51) 1
2804 X3 + X2 − 9X + 1 2(14,−9, 39) 2
2808 X3 − 9X − 2 9(3, 2, 9) 3
2836 X3 + 2X2 − 8X − 2 2(14, 1, 38) 2
2857 X3 + 2X2 − 9X + 1 (31,−27, 75) 1
2917 X3 + 5X2 − 5X − 2 (40,−7, 55) 1
2920 2X3 + 4X2 − 5X − 2 (46, 16, 49) 1
2941 2X3 + X2 − 7X − 1 (43, 11, 52) 1
2981 X3 + 5X2 − 3X − 4 (34, 21, 69) 1
2993 X3 + 5X2 − 4X − 3 (37, 7, 61) 1
3021 X3 + 2X2 − 8X − 3 (28, 11, 82) 1
3028 X3 + 3X2 − 7X − 3 2(15, 3, 38) 2
3124 2X3 + 6X2 − 2X − 3 2(24, 21, 29) 2
3132 2X3 + 3X2 − 6X − 2 9(5, 2, 6) 3

Appendix B. Table of Complex Cubic Fields

The following gives the corresponding data for complex cubic fields.
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Disc F (X) Hessian f
−23 X3 + X2 + 2X + 1 (−5,−7, 1) 1
−31 X3 + X + 1 (−3,−9, 1) 1
−44 X3 + 2X2 + 2X + 2 2(−1,−7,−4) 2
−59 X3 + 2X + 1 (−6,−9, 4) 1
−76 X3 + X2 + 3X + 1 2(−4,−3, 3) 2
−83 X3 + X2 + X + 2 (−2,−17,−5) 1
−87 X3 + 2X2 + 3X + 3 (−5,−21,−9) 1
−104 2X3 + 2X2 + 3X + 1 (−14,−12, 3) 1
−107 X3 + X2 + 3X + 2 (−8,−15, 3) 1
−108 X3 + 3X2 + 3X + 3 18(0,−1,−1) 6
−116 X3 + X2 + 2 (1,−18,−6) 1
−135 X3 + 3X + 1 9(−1,−1, 1) 3
−139 X3 + 2X2 + 2X + 3 (−2,−23,−14) 1
−140 X3 + 2X + 2 2(−3,−9, 2) 2
−152 2X3 + 3X2 + 4X + 2 (−15,−24,−2) 1
−172 2X3 + 2X + 1 2(−6,−9, 2) 2
−175 X3 + X2 + 2X + 3 5(−1,−5,−1) 5
−199 X3 + X2 + 4X + 1 (−11,−5, 13) 1
−200 X3 + 2X2 + 3X + 4 5(−1,−6,−3) 5
−204 X3 + X2 + X + 3 2(−1,−13,−4) 2
−211 2X3 + X2 + 3X + 1 (−17,−15, 6) 1
−212 X3 + X2 + 4X + 2 (−11,−14, 10) 1
−216 X3 + 3X + 2 9(−1,−2, 1) 3
−231 X3 + 2X2 + X + 3 (1,−25,−17) 1
−239 X3 + 3X2 + 2X + 3 (3,−21,−23) 1
−243 X3 + 3X2 + 3X + 4 27(0,−1,−1) 9
−244 2X3 + 2X2 + 3X + 2 (−14,−30,−3) 1
−247 X3 + 3X2 + 4X + 5 (−3,−33,−29) 1
−255 X3 + X2 + 3 (1,−27,−9) 1
−268 2X3 + 4X2 + 4X + 3 2(−4,−19,−10) 2
−283 X3 + 4X + 1 (−12,−9, 16) 1
−300 2X3 + 2X2 + 4X + 1 10(−2,−1, 1) 10
−307 X3 + 2X2 + 4X + 5 (−8,−37,−14) 1
−324 2X3 + 3X + 1 9(−2,−2, 1) 9
−327 3X3 + 3X2 + 4X + 1 (−27,−15, 7) 1
−331 X3 + X2 + 3X + 4 (−8,−33,−3) 1
−335 X3 + 2X2 + 5X + 5 (−11,−35,−5) 1
−339 X3 + 2X2 + 3 (4,−27,−18) 1
−351 X3 + 3X + 3 9(−1,−3, 1) 3
−356 2X3 + X2 + 2X + 2 (−11,−34,−2) 1
−364 X3 + 4X + 2 2(−6,−9, 8) 2
−367 X3 + 2X2 + 3X + 5 (−5,−39,−21) 1
−379 X3 + X2 + X + 4 (−2,−35,−11) 1
−411 X3 + X2 + 5X + 2 (−14,−13, 19) 1
−419 2X3 + X2 + 3X − 1 (−17, 21, 12) 1
−424 3X3 + 4X2 + 5X + 2 (−29,−34, 1) 1
−431 2X3 + X2 + 3X + 2 (−17,−33, 3) 1
−436 X3 + 3X2 + 4X + 6 (−3,−42,−38) 1
−439 X3 + 2X2 −X + 3 (7,−29,−17) 1
−440 2X3 + X + 2 (−6,−36, 1) 1
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−451 2X3 + 3X2 + 5X + 3 (−21,−39,−2) 1
−459 2X3 + 3X2 + 3X + 3 9(−1,−5,−2) 3
−460 X3 + X2 + 5X + 3 2(−7,−11, 8) 2
−472 2X3 + 4X2 + 5X + 4 (−14,−52,−23) 1
−484 X3 + 2X2 + 5X + 6 11(−1,−4,−1) 11
−491 X3 + 2X2 + 2X + 5 (−2,−41,−26) 1
−492 X3 + 2X2 + 4X + 6 2(−4,−23,−10) 2
−499 X3 + 4X + 3 (−12,−27, 16) 1
−503 2X3 + 5X2 + 5X + 4 (−5,−47,−35) 1
−515 X3 + 4X2 + 4X + 5 (4,−29,−44) 1
−516 3X3 + 3X2 + 4X + 2 (−27,−42,−2) 1
−519 3X3 + 5X2 + 6X + 3 (−29,−51,−9) 1
−524 X3 + X2 + 3X + 5 2(−4,−21,−3) 2
−527 X3 + 5X + 1 (−15,−9, 25) 1
−543 X3 + X2 + 2X + 5 (−5,−43,−11) 1
−547 3X3 + 2X2 + 4X + 1 (−32,−19, 10) 1
−563 X3 + X2 + 5X + 4 (−14,−31, 13) 1
−567 3X3 + 3X + 1 9(−3,−3, 1) 9
−588 X3 + 2X2 + 6X + 6 14(−1,−3, 0) 14
−620 2X3 + 4X + 1 2(−12,−9, 8) 2
−628 2X3 + 5X2 + 6X + 5 (−11,−60,−39) 1
−643 X3 + 3X2 + X + 4 (6,−33,−35) 1
−648 2X3 + 3X + 2 9(−2,−4, 1) 9
−652 2X3 + 2X2 + 4X + 3 2(−10,−23,−1) 2
−655 X3 + 2X2 + X + 5 (1,−43,−29) 1
−671 X3 + 3X2 + 2X + 5 (3,−39,−41) 1
−675 X3 + 3X2 + 3X + 6 45(0,−1,−1) 15
−676 2X3 + 2X2 + 5X + 2 13(−2,−2, 1) 13
−679 X3 + 3X2 + 4X + 7 (−3,−51,−47) 1
−680 2X3 + 2X2 + 5X + 1 (−26,−8, 19) 1
−687 X3 + 2X2 + 5X + 7 (−11,−53,−17) 1
−695 X3 + 4X2 + 5X + 7 (1,−43,−59) 1
−696 X3 + 2X2 −X + 4 (7,−38,−23) 1
−707 X3 + 3X2 + 5X + 8 (−6,−57,−47) 1
−716 3X3 + X2 + 3X − 1 2(−13, 15, 6) 2
−728 X3 + X2 + 6X + 2 (−17,−12, 30) 1
−731 X3 + 2X2 + 4X + 7 (−8,−55,−26) 1
−743 X3 + 5X + 3 (−15,−27, 25) 1
−744 2X3 + X2 + 4X − 1 (−23, 22, 19) 1
−748 X3 + 2X2 + 2X + 6 2(−1,−25,−16) 2
−751 X3 + X2 + 6X + 1 (−17,−3, 33) 1
−755 X3 + 2X2 + 6X + 7 (−14,−51,−6) 1
−756 2X3 + 3X2 + 6X + 3 9(−3,−4, 1) 3
−759 X3 + X2 + 6X + 3 (−17,−21, 27) 1
−771 X3 + X2 + 3X + 6 (−8,−51,−9) 1
−780 X3 + 4X2 + 4X + 6 2(2,−19,−28) 2
−804 X3 + X2 + 4X + 6 (−11,−50,−2) 1
−808 X3 + X2 + 2X + 6 (−5,−52,−14) 1
−812 2X3 + 4X2 + 6X + 5 2(−10,−33,−12) 2
−815 3X3 + 4X2 + 5X + 3 (−29,−61,−11) 1
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