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Abstract. We describe practical algorithms from computational algebraic number
theory, with applications to class field theory. These include basic arithmetic, ap-
proximation and uniformizers, discrete logarithms and computation of class fields.
All algorithms have been implemented in the Pari/Gp system.
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1. Introduction and notations

Let K be a number field given by the minimal polynomial P of a primitive element,
so that K = Q[X]/(P ). Let OK its ring of integers, f = f0f∞ a modulus of K, where f0
is an integral ideal and f∞ is a formal collection of real Archimedean places (we write
v | f∞ for v ∈ f∞). Let Clf(K) = If(K)/Pf(K) denote the ray class group modulo f

of K; that is, the quotient group of non-zero fractional ideals coprime to f0, by principal
ideals (x) generated by x ≡ 1 mod∗f. The latter notation means that

• vp(x− 1) > vp(f0) for all prime divisors p of f0.
• σ(x) > 0 for all σ | f∞.

The ordinary class group corresponds to f0 = OK , f∞ = ∅ and is denoted Cl(K).
Class field theory, in its classical form and modern computational incarnation1, de-

scribes all finite abelian extensions of K in terms of the groups Clf(K). This description
has a computational counterpart via Kummer theory, developed in particular by Co-
hen [10] and Fieker [17], relying heavily on efficient computation of the groups Clf(K)
in the following sense:

Definition 1.1. a finite abelian group G is known algorithmically when its Smith
Normal Form (SNF)

G =
r⊕

i=1

(Z/diZ) gi, with d1 | · · · | dr in Z, and gi ∈ G,

is given, and we can solve the discrete logarithm problem in G. For G = Clf(K),
this means writing any a ∈ If(K) as a = (α)

∏r
i=1 g

ei

i , for some uniquely defined
(e1, . . . , er) ∈

∏r
i=1(Z/diZ) and (α) ∈ Pf(K).

In this note, we give practical versions of most of the tools from computational
algebraic number theory required to tackle these issues, with an emphasis on realistic
problems and scalability. In particular, we point out possible precomputations, strive
to prevent numerical instability and coefficient explosion, and to reduce memory usage.
All our algorithms run in deterministic polynomial time and space, except 7.2, 7.7
(discrete log in Clf(K), which is at least as hard as the corresponding problem over
finite fields) and 6.15 (randomized with expected polynomial running time). All of
them are also efficient in practice, sometimes more so than well-known randomized
variants. None of them is fundamentally new: many of these ideas have been used
elsewhere, e.g. in the computer systems Kant/KASH [14] and Pari/Gp [29]. But, to
our knowledge, they do not appear in this form in the literature.

These techniques remove one bottleneck of computational class field theory, namely
coefficient explosion. Two major difficulties remain. First, integer factorization, which
is needed to compute the maximal order. This is in a sense a lesser concern, since fields
of arithmetic significance often have smooth discriminants; or else their factorization
may be known by construction. Namely, Buchmann and Lenstra [6] give an efficient
algorithm to compute OK given the factorization of its discriminant disc(K), in fact
given its largest squarefree divisor. (The “obvious” algorithm requires the factorization
of the discriminant of P .)

1Other formulations in terms of class formations, idèle class groups and infinite Galois theory are
not well suited to explicit computations, and are not treated here.
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And second, the computation of Cl(K) and O∗
K , for which one currently requires

the truth of the Generalized Riemann Hypothesis (GRH) in order to obtain a practical
randomized algorithm (see [9, §6.5]). The latter runs in expected subexponential time
if K is imaginary quadratic (see Hafner-McCurley [22]); this holds for general K under
further natural but unproven assumptions. Worse, should the GRH be wrong, no
subexponential-time procedure is known, that would check the correctness of the result.
Even then, this algorithm performs poorly on many families of number fields, and of
course when [K : Q] is large, say 50 or more. This unfortunately occurs naturally,
for instance when investigating class field towers, or higher class groups from algebraic
K-theory [4].

The first three sections introduce some further notations and define fundamental
concepts like Archimedean embeddings, the T2 quadratic form and LLL reduction.
Section §5 deals with mundane chores, implementing the basic arithmetic of K. Sec-
tion §6 describes variations on the approximation theorem over K needed to implement
efficient ideal arithmetic, in particular two-element representation for ideals, and a cru-
cial ingredient in computations mod∗f. In Section §7, we introduce a representation
of algebraic numbers as formal products, which are efficiently mapped to (OK/f)

∗ us-
ing the tools developed in the previous sections. We demonstrate our claims about
coefficient explosion in the examples of this final section.

All timings given were obtained using the Pari library version 2.2.5 on a Pentium
III (1GHz) architecture, running Linux-2.4.7; we allocate 10 MBytes RAM to the pro-
grams, unless mentioned otherwise.

Acknowledgements : It is hard to overestimate what we owe to Henri Cohen’s
books [9, 10], the state-of-the-art references on the subject. We shall constantly refer
to them, supplying implementation details and algorithmic improvements as we go
along. Neither would this paper exist without Igor Schein’s insistence on computing
“impossible” examples with the Pari/Gp system, and it is a pleasure to acknowledge
his contribution. I also would like to thank Bill Allombert, Claus Fieker, Guillaume
Hanrot and Jürgen Klüners for enlightening discussions and correspondences. Finally,
it is a pleasure to thank an anonymous referee for a wealth of useful comments and the
reference to [5].

2. Further notations and conventions

Let P a monic integral polynomial and K = Q[X]/(P ) = Q(θ), where θ = X (mod P ).
We let n = [K : Q] the absolute degree, (r1, r2) the signature of K, and order the n
embeddings of K in the usual way: σk is real for 1 6 k 6 r1, and σk+r2 = σk for
r1 < k 6 r1 + r2.

Definition 2.1. The R-algebra E := K ⊗Q R, which is isomorphic to Rr1 × Cr2 , has
an involution x 7→ x induced by complex conjugation. It is a Euclidean space when
endowed with the positive definite quadratic form T2(x) := TrE/R(xx), with associated

norm ‖x‖ :=
√
T2(x). We say that x ∈ K is small when ‖x‖ is so.

If x ∈ K, we have explicitly

T2(x) =

n∑

k=1

|σk(x)|2 .
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We write d(Λ, q) for the determinant of a lattice (Λ, q); in particular, we have

(1) d(OK , T2)
2 = |discK| .

Given our class-field theoretic goals, knowing the maximal order OK is a prerequisite,
and will enable us not to worry about denominators2. In our present state of knowl-
edge, obtaining the maximal order amounts to finding a full factorization of discK,
hence writing discP = f2

∏
pei

i , for some integer f coprime to discK, and prime num-
bers pi. In this situation, see [6, 20] for how to compute a basis. We shall fix a Z-basis
(w1, . . . , wn) of the maximal order OK . Then we may identify K with Qn: an element∑n

i=1 xiwi in K is represented as the column vector x := (x1, . . . , xn). In fact, we store
and use such a vector as a pair (dx, d) where d ∈ Z>0 and dx ∈ Zn. The minimal such
d does not depend on the chosen basis (wi), but is more costly to obtain, so we do not
insist that the exact denominator be used, i.e. dx is not assumed to be primitive. For
x in K, Mx denotes the n by n matrix giving multiplication by x with respect to the
basis (wi). For reasons of efficiency, we shall impose that

• w1 = 1 (see §4.3),
• (wi) is LLL-reduced for T2, for some LLL parameter 1/4 < c < 1 (see §4).

Our choice of coordinates over the representatives arising from K = Q[X]/(P ) is justi-
fied in §5.1.

The letter p denotes a rational prime number, and p/p is a prime ideal of OK above p.
We write Nα and Trα respectively for the absolute norm and trace of α ∈ K. Finally,
for x ∈ R, ⌈x⌋ := ⌊x+ 1/2⌋ is the integer nearest to x; we extend this operator
coordinatewise to vectors and matrices.

3. Archimedean embeddings

Definition 3.1. Let σ : K → Rr1 × Cr2 be the embeddings vector defined by

σ(x) := (σ1(x), . . . , σr1+r2(x)),

which fixes an isomorphism between E = K ⊗Q R and Rr1 × Cr2 .

We also map E to Rn via one of the following R-linear maps from Rr1 × Cr2 to
Rr1 × Rr2 × Rr2 = Rn:

φ : (x,y) 7→ (x,Re(y), Im(y)),
ψ : (x,y) 7→ (x,Re(y) + Im(y),Re(y)− Im(y)).

The map ψ identifies the Euclidean spaces (E, T2) and (Rn, ‖ ‖22), and is used in §4.2 to
compute the LLL-reduced basis (wi). The map φ is slightly less expensive to compute
and is used in §3.2 to recognize algebraic integers from their embeddings (ψ could be
used instead).

We extend φ and ψ : Hom(Rn,Rr1 × Cr2)→ End(Rn) by composition, as well as to
the associated matrix spaces.

2Low-level arithmetic in K could be handled using any order instead of OK , for instance if we only
wanted to factor polynomials over K (see [3]). Computing OK may be costly: as mentioned in the
introduction, it requires finding the largest squarefree divisor of disc K.
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3.1. Computation. Let σi : K → C be one of the n embeddings of K and α ∈ K =
Q[X]/(P ). Then σi(α) can be approximated by evaluating a polynomial representa-
tive of α at (floating point approximations of) the corresponding complex root of P ,
computed via a root-finding algorithm with guaranteed error terms, such as Gourdon-
Schönhage [21], or Uspensky [30] for the real embeddings.

Assume that floating point approximations (σ̂(wi))16i6n of the (σ(wi))16i6n have
been computed in this way to high accuracy. (If higher accuracy is later required,
refine the roots and cache the new values.) From this point on, the embeddings of an
arbitrary α ∈ K are computed as integral linear combinations of the (σ̂(wi)), possibly
divided by the denominator of α. In most applications (signatures, Shanks-Buchmann’s
distance), we can take α ∈ OK so no denominators arise. We shall note σ̂(α) and σ̂i(α)
the floating point approximations obtained in this way.

The second approach using precomputed embeddings is usually superior to the ini-
tial one using the polynomial representation, since the latter may involve unnecessary
large denominators. A more subtle, and more important, reason is that the defining
polynomial P might be badly skewed, with one large root for instance, whereas the
LLL-reduced σ̂(wi) (see §4.2) have comparable L2 norm. Thus computations involving
the σ̂(wi) are more stable than evaluation at the roots of P . Finally, in the applications,
‖α‖ is usually small, hence α often has small coordinates. In general, coefficients in the
polynomial representation are larger, making the latter computation slower and less
stable.

In the absence of denominators, both approaches require n multiplications of floating
point numbers by integers for a single embedding (and n floating point additions).
Polynomial evaluation may be sped up by multipoint evaluation if multiple embeddings
are needed and is asymptotically faster, since accuracy problems and larger bitsizes
induce by denominators can be dealt with by increasing mantissa lengths by a bounded
amount depending only on P .

3.2. Recognition of algebraic integers. Let α ∈ OK , known through floating point
approximations σ̂(α) of its embeddings σ(α); we want to recover α. This situation
occurs for instance when computing fundamental units [9, Algorithm 6.5.8], or in the
discrete log problem for Cl(K), cf. Algorithm 7.2. In some situations, we are only
interested in the characteristic polynomial χα of α, such as when using Fincke-Pohst
enumeration [19] to find minimal primitive elements of K (α being primitive if and
only if χα is squarefree). The case of absolute norms (the constant term of χα) is of
particular importance and is treated in §5.2.

Let Y = σ(a) and W the matrix whose columns are the (σ(wj))16j6n; Ŷ and Ŵ

denote known floating point approximations of Y and W respectively. Provided Ŷ is
accurate enough, one recovers

χα =

n∏

i=1

(
X − σi(α)

)
,

by computing an approximate characteristic polynomial

χ̂α =

n∏

i=1

(
X − σ̂i(α)

)
,
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then rounding its coefficients to the nearest integers. This computation keeps to R
by first pairing complex conjugate roots (followed by a divide and conquer product in
R[X]). We can do better and recover α itself: if α =

∑n
i=1 αiwi is represented by the

column vector A = (αi) ∈ Zn, we recover A from WA = Y as A = ⌈φ(Ŵ )−1φ(Ŷ )⌋.
Of course, it is crucial to have reliable error bounds in the above to guarantee proper
rounding.

Remark 3.2. Using φ, we keep computations to R and disregard redundant information
from conjugates, contrary to [9, Chapter 6], which inverts Ω := (σi(wj))16i,j6n in
Mn(C). We could just as well use ψ instead, or more generally compose φ with any
automorphism of Rn. Using ψ would have the slight theoretical advantage that the
columns of ψ(Ŵ ) are LLL-reduced for the L2 norm (see §4.2).

Remark 3.3. The matrix inversion φ(Ŵ )−1 is performed only once, until the accuracy

of Ŵ needs to be increased. The coordinates of α are then recovered by a mere matrix
multiplication, the accuracy of which is determined by a priori estimates, using the
known φ(Ŵ )−1 and φ(Ŷ ), or a preliminary low precision multiplication with proper
attention paid to rounding so as to guarantee the upper bound. Since ‖φ(Y )‖2 6

‖ψ(Y )‖2 = ‖α‖, the smaller ‖α‖, the better a priori estimates we get, and the easier it
is to recognize α.

Remark 3.4. The coefficients of χα are bounded by C ‖Ŷ ‖n∞, for some C > 0 depending
only on K and (wi), whereas the vector of coordinates A is bounded linearly in terms

of Ŷ . So it may occur that Ŷ is accurate enough to compute A, but not χα. In which
case, one may use A for an algebraic resultant computation or to recompute σ̂(α) to
higher accuracy.

Remark 3.5. In many applications, it is advantageous to use non-Archimedean embed-
dings K → K ⊗Q Qp = ⊕p|pKp which is isomorphic to Qn

p as a Qp-vector space. This
cancels rounding errors, as well as stability problems in the absence of divisions by p.
In some applications (e.g., automorphisms [1], factorization of polynomials [3, 18]), a
single embedding K → Kp is enough, provided an upper bound for ‖α‖ is available.

4. T2 and LLL reduction

We refer to [26, 9] for the definition and properties of LLL-reduced bases, and the
LLL reduction algorithm, simply called reduced bases and reduction in the sequel. In
particular, reduction depends on a parameter c ∈]1/4, 1[, which is used to check the
Lovász condition and determines the frequency of swaps in the LLL algorithm. A larger
c means better guarantees for the output basis, but higher running time bounds. We
call c the LLL parameter and α := 1/(c− 1/4) > 4/3 the LLL constant.

Proposition 4.1 ([9, Theorem 2.6.2]). Let (wi)16i6n a reduced basis of a lattice (Λ, q)
of rank n, for the LLL constant α. Let (w∗

i )16i6n the associated orthogonalized Gram-
Schmidt basis, and linearly independent vectors (bi)16i6n in Λ. For 2 6 i 6 n, we have
q(w∗

i−1) 6 αq(w∗
i ); for 1 6 i 6 n, we have

q(wi) 6 αi−1q(w∗
i ), and q(wi) 6 αn−1 max

16j6i
q(bj).

4.1. T2 and ‖ ‖. It is algorithmically useful to fix a basis (wi) which is small with
respect to T2. This ensures that an element with small coordinates with respect to
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(wi) is small, and in particular has small absolute norm. More precisely, we have

|Nx|2/n
6 T2(x)/n by the arithmetic-geometric mean inequality and

(2) n |Nx|2/n
6 T2

( n∑

i=1

xiwi

)
6

( n∑

i=1

x2
i

)( n∑

i=1

T2(wi)
)
.

If (wi) is reduced, Proposition 4.1 ensures that picking another basis may improve the
term

∑n
i=1 T2(wi) at most by a factor nαn−1.

4.2. Integral versus floating point reduction. We first need to compute a reduced
basis (wi)16i6n for OK , starting from an arbitrary basis (bi)16i6n. When K is totally
real, T2 is the natural trace pairing, whose Gram matrix is integral and given by
(Tr(bibj))16i,j6n; so we can use de Weger’s integral reduction ([9, §2.6.3]). If K is not
totally real, we have to reduce floating point approximations of the embeddings. In fact
we reduce (ψ ◦ σ̂(bi))16i6n (see §3), which is a little faster and a lot stabler than using
the Gram matrix in this case, since Gram-Schmidt orthogonalization can be replaced
by Householder reflections or Givens rotations.

The LLL algorithm is better behaved and easier to control with exact inputs, so
we now explain how to use an integral algorithm3 to speed up all further reductions
with respect to T2. Let tRR be the Cholesky decomposition of the Gram matrix of
(T2, (wi)). In other words,

R = diag(‖w∗
1‖ , . . . , ‖w∗

n‖)× (µi,j)16i,j6n

is upper triangular, where (w∗
i ) is the orthogonalized basis associated to (wi) and the

µi,j are the Gram-Schmidt coefficients, both of which are by-products of the reduction
yielding (wi). Let

r := min
16i6n

‖w∗
i ‖ ,

which is the smallest diagonal entry of R. For e ∈ Z such that 2er > 1/2, let R(e) :=

⌈2eR⌋. The condition on e ensures that R(e) has maximal rank. If x =
∑n

i=1 xiwi ∈ K
is represented by the column vector X = (xi)16i6n ∈ Qn, we have ‖x‖ = ‖RX‖2. Then

T
(e)
2 (X) := ‖R(e)X‖22 is a convenient integral approximation to 22eT2(X), which we

substitute for T2 whenever LLL reduction is called for. This is also applicable to the
twisted variants of T2 introduced in [9, Chapter 6] to randomize the search for smooth
ideals in subexponential class group algorithms.

In general, this method produces a basis which is not reduced with respect to T2,
but it should be a “nice” basis. In most applications (class group algorithms, pseudo-
reduction), we are only interested in the fact that the first basis vector is not too
large:

Proposition 4.2. Let Λ be a sublattice of OK and let (ai) (resp. (bi)) a reduced basis

for Λ with respect to T
(e)
2 (resp. T2), with LLL constant α. The LLL bound states that

‖b1‖ 6 BLLL := α(n−1)/2d(Λ, T2)
1/n.

3This does not prevent the implementation from using floating point numbers for efficiency. But
the stability and complexity of LLL are better understood for exact inputs (see [26, 25, 31]).



8 KARIM BELABAS

Let ‖M‖2 := (
∑n

i,j=1 |mi,j |2)1/2 for M = (mi,j) ∈Mn(R). Let S := (R(e))−1, then

(3) ‖a1‖ /BLLL 6

(
detR(e)

2ne detR

)1/n(
1 +

√
n(n+ 1)

2
√

2
‖S‖2

)
.

Proof. Let X ∈ Zn be the vector of coordinates of a1 on (wi) and Y := R(e)X. Since

d(Λ, T
(e)
2 ) = [OK : Λ] detR(e) and d(Λ, T2) = [OK : Λ] detR,

the LLL bound applied to the T
(e)
2 -reduced basis yields

√
T

(e)
2 (X) = ‖Y ‖2 6 α(n−1)/2d(Λ, T

(e)
2 )1/n = 2eBLLL

(
detR(e)

2ne detR

)1/n

.

We write R(e) = 2eR + ε, where ε ∈Mn(R) is upper triangular such that ‖ε‖∞ 6 1/2,

hence ‖ε‖2 6 1
2

√
n(n+1)

2 , and obtain 2eRX = Y − εSY . Taking L2 norms, we obtain

2e ‖a1‖ 6 (1 + ‖εS‖2) ‖Y ‖2 ,
and we bound ‖εS‖2 6 ‖ε‖2 ‖S‖2 by Cauchy-Schwarz. �

Corollary 4.3. If 2er > 1, then

‖a1‖ /BLLL 6 1 +
Oα(1)n

2e
.

Proof. For all 1 6 i 6 n, we have ‖w∗
i ‖ > α(1−i)/2 ‖wi‖ by the properties of reduced

bases. Since ‖wi‖ >
√
n (with equality iff wi is a root of unity), we obtain

r = min
16i6n

‖w∗
i ‖ >

√
nα(1−n)/2,

and 1/r = Oα(1)n. Since R and R(e) are upper triangular one gets

detR(e) =
n∏

i=1

⌈2e ‖w∗
i ‖⌋ 6

n∏

i=1

(2e ‖w∗
i ‖+ 1/2) 6 2ne detR

(
1 +

1

2e+1r

)n

.

Rewrite R = D + N and R(e) = D(e) + N (e), where D, D(e) are diagonal and N ,
N (e) triangular nilpotent matrices. A non-zero entry n/d of ND−1, where d > 0 is
one of the diagonal coefficients of D, is an off-diagonal Gram-Schmidt coefficient of the
size-reduced basis (wi)16i6n, hence |n/d| 6 1/2. Since |n| 6 d/2 and 1 6 2er 6 2ed,

the corresponding entry of Z := N (e)(D(e))−1 satisfies

|⌈2en⌋|
⌈2ed⌋ 6

2e |n|+ 1/2

2ed− 1/2
6

2e−1d+ 2e−1d

2e−1d
= 2.

It follows that the coefficients of (Idn +Z)−1 =
∑n−1

i=0 (−1)i−1Zi are O(1)n. By analo-

gous computations, coefficients of (D(e))−1 are O(1/(r2e)). Since R = D(e)(Idn +Z),
its inverse S is the product of the above two matrices, and we bound its norm by
Cauchy-Schwarz: ‖S‖2 = 1

2e ×Oα(1)n. �
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Qualitatively, this expresses the obvious fact that enough significant bits eventually
give us a reduced basis. The point is that we get a bound for the quality of the reduction,
at least with respect to the smallest vector, which is independent of the lattice being
considered. In practice, we evaluate (3) exactly during the precomputations, increasing

e as long as it is deemed unsatisfactory. When using T
(e)
2 as suggested above, we can

always reduce the new basis with respect to T2 later if maximal reduction is desired,
expecting faster reduction and better stability due to the preprocessing step.

4.3. Hermite Normal Form (HNF) and setting w1 = 1. We refer to [9, §2.4] for
definitions and algorithms related to the HNF representation. For us, matrices in HNF
are upper triangular, and “HNF of A modulo z ∈ Z” means the HNF reduction of
(A | z Idn), not modulo a multiple of det(A) as in [9, Algorithm 2.4.8]. The algorithm
is almost identical: simply remove the instruction R← R/d in Step 4.

In the basis (wi), it is useful to impose that w1 = 1, in particular to compute
intersection of submodules of OK with Z, or as a prerequisite to the extended Euclidean
Algorithm 5.4. One possibility is to start from the canonical basis (bi) for OK which
is given in HNF with respect to the power basis (1, θ, . . . , θn−1); we have b1 = 1. Then
reduce (bi) using a modified LLL routine which prevents size-reduction on the vector
corresponding initially to b1. Finally, put it back to the first position at the end of the
LLL algorithm. This does not affect the quality of the basis, since

‖1‖ =
√
n = min

x∈OK\{0}
‖x‖ .

Unfortunately, this basis is not necessarily reduced. Another approach is as follows:

Proposition 4.4. Let (wi) a basis of a lattice (Λ, q) such that w1 is a shortest non-zero
vector of Λ. Then performing LLL reduction on (wi) leaves w1 invariant provided the
parameter c satisfies 1/4 < c 6 1/2.

Proof. Let ‖ ‖ be the norm associated to q. It is enough to prove that w1 is never
swapped with its size-reduced successor, say s. Let w∗

1 = w1 and s∗ be the corresponding

orthogonalized vectors. A swap occurs if ‖s∗‖ < ‖w1‖
√
c− µ2, where the Gram-

Schmidt coefficient µ = µ2,1 satisfies |µ| 6 1/2 (by definition of size-reduction) and
s∗ = s− µw1. From the latter, we obtain

‖s∗‖ = ‖s‖ − ‖µw1‖ > ‖w1‖ (1− |µ|)

since s is a non-zero vector of Λ. We get a contradiction if (1 − |µ|)2 > c − µ2, which
translates to (2 |µ| − 1)2 + (1− 2c) > 0. �

5. Working in K

5.1. Multiplication in OK . In this section and the next, we let M(B) be an upper
bound for the time needed to multiply twoB-bits integers and we assume M(B+o(B)) =
M(B)(1 + o(1)). See [24, 32] for details about integer and polynomial arithmetic. In
the rough estimates below we only take into account multiplication time. We deal
with elements of OK , leaving to the reader the generalization to arbitrary elements
represented as (equivalence classes of) pairs (x, d) = x/d, x ∈ OK , d ∈ Z>0.
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5.1.1. Polynomial representation. The field K was defined as Q(θ), for some θ ∈ OK .
In this representation, integral elements may have denominators, the largest possible
denominator D being the exponent of the additive group OK/Z[θ]. To avoid rational
arithmetic, we handle content and principal part separately.

Assume for the moment that D = 1. Then, x, y ∈ OK are represented by inte-
gral polynomials. If x, y, P ∈ Z[X] have B-bits coefficients, then we compute xy in
time 2n2M(B); and even n2M(B)(1 + o(1)) if log2 ‖P‖∞ = o(B), so that Euclidean
division by P is negligible. Divide and conquer polynomial arithmetic reduce this to
O(nlog2 3M(B)). Assuming FFT-based integer multiplication, segmentation4 further
improves the theoretical estimates to O(M(2Bn+ n logn)).

In general, one replaces B by B + log2D in the above estimates. In particular,
they still hold provided log2D = o(B). Recall that D depends only on P , not on the
multiplication operands.

5.1.2. Multiplication table. For 1 6 i, j, k 6 n, let m
(i,j)
k ∈ Z such that

(4) wiwj =

n∑

k=1

m
(i,j)
k wk,

giving the multiplication in K with respect to the basis (wi). We call M := (m
(i,j)
k )i,j,k

the multiplication table overOK . This table is computed using the polynomial represen-
tation for elements in K = Q[X]/(P ), or by multiplying Archimedean embeddings and

recognizing the result (§3.1 and §3.2), which is much faster. Of course m
(i,j)
k = m

(j,i)
k ,

and m
(i,1)
k = δi,k since w1 = 1, so only n(n − 1)/2 products need be computed in any

case. The matrix M has small integer entries, often single precision if (wi) is reduced.
In general, we have the following pessimistic bound:

Proposition 5.1. If (wi)16i6n is reduced with respect to T2 with LLL constant α, then

T2(wi) 6 Ci = Ci(K,α) :=
(
n−(i−1)αn(n−1)/2 |discK|

)1/(n−i+1)
.

Furthermore, for all 1 6 i, j 6 n and 1 6 k 6 n, we have

∣∣∣m(i,j)
k

∣∣∣ 6
αn(n−1)/4

√
n

Ci + Cj

2
6
α3n(n−1)/4

nn−(1/2)
|discK| .

Proof. The estimate Ci comes, on the one hand, from

‖w∗
i ‖n−i

i∏

k=1

‖w∗
k‖ > (α−(i−1)/2 ‖wi‖)n−i

i∏

k=1

α−(k−1)/2 ‖wk‖ ,

and on the other hand, from

‖w∗
i ‖n−i

i∏

k=1

‖w∗
k‖ 6

n−i∏

k=1

αk/2
n∏

k=1

‖w∗
k‖ .

4Also known as “Kronecker’s trick”, namely evaluation of x, y at a large power Rk of the integer
radix, integer multiplication, then reinterpretation of the result as z(Rk), for some unique z ∈ Z[X].
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Since ‖wk‖ >
√
n for 1 6 k 6 n, this yields

n(i−1)/2 ‖wi‖n−i+1
6

i∏

k=1

α(k−1)/2
n−i∏

k=1

α(k+i−1)/2 ×
n∏

k=1

‖w∗
k‖ = αn(n−1)/4d(OK , T2).

Now, fix 1 6 i, j 6 n and let mk := m
(i,j)
k . For all 1 6 l 6 n, we write

n∑

k=1

mkσl(wk) = σl(wiwj),

and solve the associated linear system WX = Y in unknowns X = (m1, . . . ,mn). Using
Hadamard’s lemma, the cofactor of the entry of index (l, k) of W is bounded by

n∏

k=1,k 6=l

‖wk‖ 6
1√
n
αn(n−1)/4 |detW | ,

by the properties of reduced bases and the lower bound ‖wl‖ >
√
n. Hence,

max
16k6n

|mk| 6
1√
n
αn(n−1)/4

n∑

l=1

|σl(wiwj)| .

Using LLL estimates and (1), we obtain

n∑

l=1

|σl(wiwj)| 6
1

2
(T2(wi) + T2(wj))

6 max
16k6n

T2(wk) 6

∏n
k=1 T2(wk)

(min16k6n T2(wk))
n−1 6

1

nn−1
αn(n−1)/2 |discK| .

A direct computation bounds Ci by the same quantity for 1 6 i 6 n: it reduces to
n 6 C1 which follows from the first part. �

For x, y ∈ OK , we use M to compute xy =
∑n

k=1 zkwk, where

zk :=
n∑

j=1

yj

n∑

i=1

xim
(i,j)
k ,

in n3 + n2 multiplications as written. This can be slightly improved by taking into
account that w1 = 1; also, as usual, a rough factor 2 is gained for squarings.

Assuming the xi, yj , and m
(i,j)
k xi are B-bits integers, the multiplication table is an

n3M(B)(1+o(1)) algorithm. This goes down to n2M(B)(1+o(1)) if log2 ‖M‖∞ = o(B),
since in this case the innermost sums have a negligible computational cost.

5.1.3. Regular representation. Recall that Mx is the matrix giving the multiplication by
x ∈ K with respect to (wi). Since w1 = 1, we recover x as the first column of Mx; also,
x ∈ OK if and only if Mx has integral entries. Mx is computed using the multiplication
table M as above, then xy is computed as Mxy in n2 integer multiplications, for an
arbitrary y ∈ OK . It is equivalent to precompute Mx then to obtain xy as Mxy, and to
compute directly xy using M . (Strictly speaking, the former is slightly more expensive
due to different flow control instructions and memory management.) So Mx comes for
free when the need to compute xy arises and neither Mx nor My is cached.
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Let x, y have B-bit coordinates. Provided log2 ‖M‖∞ + log2 n = o(B), Mx has
B + o(B)-bit entries, and the multiplication cost is n2M(B)(1 + o(1)).

5.1.4. What and where do we multiply? In computational class field theory, a huge
number of arithmetic operations over K are performed, so it is natural to allow ex-
pensive precomputations. We want a multiplication method adapted to the following
setup:

• The maximal order OK = ⊕n
i=1Zwi is known.

• The basis (wi) is reduced for T2.
• We expect to mostly multiply small algebraic integers x ∈ OK , hence having

small coordinates in the (wi) basis.

This implies that algebraic integers in polynomial representation have in general larger
bit complexity, due to the larger bit size of their components, and the presence of
denominators. This would not be the case had we worked in other natural orders, like
Z[X]/(P ), or with unadapted bases, like the HNF representation over the power basis.
In practice, OK is easy to compute whenever disc(K) is smooth, which we will enforce
in our experimental study. Note that fields of arithmetic significance, e.g., built from
realistic ramification properties, usually satisfy this.

For a fair comparison, we assume that P ran through a polynomial reduction al-
gorithm, such as [11]. This improves the polynomial representation Q[X]/(P ) at a
negligible initialization cost, given (wi) as above (computing the minimal polynomi-
als of a few small linear combinations of the wi). Namely, a polynomial P of small
height, means faster Euclidean division by P (alternatively, faster multiplication by a
precomputed inverse).

5.1.5. Experimental study. We estimated the relative speed of the various multipli-
cation methods in the Pari library, determined experimentally over random integral
elements

x =
n∑

i=1

xiwi, y =
n∑

i=1

yiwi,

satisfying |xi| , |yi| < 2B, in random number fields5 K of degree n and smooth discrimi-
nant, for increasing values of n and B. Choosing elements with small coordinates, then
converting to polynomial representation, e.g., instead of the other way round, intro-
duces a bias in our test, but we contend that elements we want to multiply arise in
this very way. Also, this section aims at giving a concrete idea of typical behaviour in
a realistic situation; it is not a serious statistical study.

For each degree n, we generate 4 random fields K = Q[X]/(P ); all numerical values
given below are averaged over these 4 fields. Let D the denominator of OK on the

5When n 6 20, the fields K = Q[X]/(P ) are defined by random monic P ∈ Z[X], ‖P‖
∞

6 10,
constructed by picking small coefficients until P turns out to be irreducible. In addition we impose
that disc(P ) is relatively smooth: it can be written as D1D2 with p | D1 ⇒ p < 5.105 and |D2| < 1060,
yielding an easy factorization of disc(P ). For n > 20, we built the fields as compositum of random
fields of smaller degree, which tends to produce large indices [OK : Z[X]/(P )] (small ramification, large
degree). In all cases, we apply a reduction algorithm [11] to defining polynomials in order to minimize
T2(θ). This was allowed to increase ‖P‖

∞
.
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power basis, and M the multiplication table as above; we obtain:

[K : Q] log2 |discK| log2D log2 ‖P‖∞ log2 ‖M‖∞
2 5.3 0 3.3 3.3
5 27. 2.2 5.5 4.4
10 73.8 0.50 4.7 5.4
20 192. 0.50 3.1 6.1
30 319. 533.6 40. 7.7
50 578.2 1459. 55. 7.9

So M has indeed very small entries, and we see that D gets quite large when we do
not choose arbitrary random P (building the fields as compositum of fields of small
discriminant, we restrict their ramification). Notice that M is relatively unaffected.
Consider the following operations:

A: compute xy as Mxy, assuming Mx is precomputed.
tab: compute xy using directly M .
pol: compute xy from polynomial representations, omitting conversion time.
pc: convert x from polynomial to coordinate representation.
cp: convert x from coordinate to polynomial representation.

For each computation X ∈ {tab, pol, pc,cp}, we give the relative time tX/tA:

B = 10 B = 100 B = 1000 B = 10000

n tab pol tab pol tab pol tab pol
2 1.0 2.7 1.0 2.4 1.1 1.2 1.1 1.0
5 2.7 2.2 2.3 1.9 1.3 1.2 1.2 1.0
10 4.8 1.9 3.7 1.6 1.4 0.86 1.2 0.79

20 8.9 1.6 6.1 1.3 1.7 0.68 1.4 0.61

30 10. 8.0 6.9 5.0 2.0 1.5 1.4 0.70

50 22. 24. 14. 14. 3.9 2.5 1.8 0.68

B = 10 B = 100 B = 1000 B = 10000

n pc cp pc cp pc cp pc cp
2 3.2 2.4 2.1 1.5 0.27 0.17 0.041 0.0069

5 1.6 1.0 1.0 0.67 0.14 0.074 0.019 0.0064

10 1.1 0.74 0.71 0.49 0.099 0.058 0.014 0.011

20 1.0 0.58 0.56 0.35 0.078 0.054 0.024 0.028

30 2.0 1.6 1.2 1.6 0.25 0.73 0.050 0.16

50 7.2 6.5 4.0 5.0 0.52 1.6 0.066 0.35

The general trends are plain, and consistent with the complexity estimates:

• For fields defined by random polynomials (n 6 20), the denominator D is
close to 1. Polynomial multiplication (pol) is roughly twice slower than the
Mx method for small to moderate inputs, and needs large values of B to
overcome it, when M(B) becomes so large that divide and conquer methods
are used (the larger n, the earlier this occurs). The multiplication table (tab)
is roughly n/2 times slower when B is small, and about as fast when B ≫ 1.
• In the compositums of large degree, D is large. This has a marked detrimental

effect on polynomial multiplication, requiring huge values of B ≫ log2D to
make up for the increased coefficient size.
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In short, converting to polynomial representation is the best option for a one-shot
multiplication in moderately large degrees, say n > 5, when the bit size is large com-
pared to log2D. When D is large, the multiplication table becomes faster.

In any case, (A) is the preferred method of multiplication, when precomputations
are possible (prime ideals and valuations, see §5.4.1), or more than about [K : Q]/2
multiplications by the same Mx are needed, to amortize its computation (ideal multi-
plication, see §5.3.2).

We shall not report on further experiments with larger polynomials P . Suffice to say
that, as expected, the polynomial representation becomes relatively more costly, since
M is mostly insensitive to the size of P .

5.2. Norms. Let x =
∑n

i=1 xiwi ∈ OK , (xi) ∈ Zn. If x has relatively small norm, the
fastest practical way to compute Nx seems to multiply together the embeddings of x,
pairing complex conjugates, then round the result. This requires that the embeddings
of the (wi) be precomputed to an accuracy of C significant bits (cf.§3.1), with

C = O(logNx) = O(n log ‖x‖).
Note that the exact required accuracy is cheaply determined by computing, then bound-
ing, Nx as a low accuracy floating point number. Note also that a non trivial factor
D > 1 of Nx may be known by construction, for instance if x belongs to an ideal of
known norm, as in §6.1.1 where D = pf(p/p). In this case (Nx)/D can be computed
instead, at lower accuracy C − log2D, hence lower cost: we divide the approximation
of Nx by D before rounding. If the embeddings of x are not already known, computing
them has O(n2M(C)) bit complexity. Multiplying the n embeddings has bit complexity
O(nM(C)).

If S(X) is a representative of x in K = Q[X]/(P ), then Nx = ResX(P, S). Comput-
ing a resultant over Z via a modular Euclidean algorithm using the same upper bound
for Nx has a better theoretical complexity, especially if quadratic multiplication is used
above, namely

O(n2C logC + C2),

using O(C) primes and classical algorithms (as opposed to asymptotically fast ones).
Nevertheless, it is usually slower if the xi are small, in particular if a change of represen-
tation is necessary for x. In our implementations, the subresultant algorithm (and its
variants, like Ducos’s algorithm [15]) is even slower. If the embeddings are not known
to sufficient accuracy, one can either refine the approximation or compute a modular
resultant, depending on the context.

Remark 5.2. The referee suggested an interesting possibility, if one allows Monte-Carlo
methods (possibly giving a wrong result, with small probability)6. In this situation,
one can compute modulo small primes and use Chinese remainders without bounding
a priori the necessary accuracy, i.e. without trying to evaluate C, but stopping as soon
as the result stabilizes. It is also possible to compute Mx then Nx = detMx modulo
small primes and use Chinese remainders. This is an O(n3C logC + C2) algorithm,

6For instance, when factoring elements of small norms in order to find relations in Cl(K) for the
class group algorithm: if an incorrect norm is computed, then a relation may be missed, or an expensive
factorization into prime ideals may be attempted in vain. None of these are practical concerns if errors
occur with small probability.
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which should be slower than a modular resultant if n gets large, but avoids switching
to polynomial representation.

5.3. Ideals.

5.3.1. Representation. An integral ideal a is given by a matrix whose columns, viewed
as elements of OK , generate a as a Z-module. We do not impose any special form for
this matrix yet although, for efficiency reasons, it is preferable that it be a basis, and
that a ∈ N such that (a) = a ∩ Z be readily available, either from the matrix, or from
separate storage.

This matrix is often produced by building a Z-basis from larger generating sets,
for instance when adding or multiplying ideals. An efficient way to do this is the HNF
algorithm modulo a. It has the added benefit that the HNF representation is canonical,
for a fixed (wi), with entries bounded by a. A reduced basis is more expensive to
produce, but has in general smaller entries, which is important for some applications,
e.g pseudo-reduction, see §5.3.6. Using the techniques of this paper, it is a waste to
systematically reduce ideal bases.

5.3.2. Multiplication. Let a, b ∈ I(K) be integral ideals, given by HNF matrices A and
B. We describe a by a 2-element OK-generating set: a = (a, π), with (a) = a ∩ Z and
a suitable π (see §6.3). Then the product ab is computed as the HNF of the 2n × n
matrix (aA | MπB). If (b) = b ∩ Z, the HNF can be computed modulo ab ∈ ab. Note
that a ∩ Z is easily read off from A since w1 = 1, namely |a| is the upper left entry of
the HNF matrix A. The generalization to fractional ideals represented by pairs (α, a),
α ∈ Q, a integral, is straightforward.

One can determine ab directly from the Z-generators of a and b, but we need to
build, then HNF-reduce, an n× n2 matrix, and this is about n/2 times slower.

5.3.3. Inversion. As in [9, §4.8.4], our ideal inversion rests on the duality

a−1 = (d−1a)∗ :=
{
x ∈ K,Tr(xd−1a) ⊂ Z

}
,

where d is the different of K and a is a non-zero fractional ideal. In terms of the fixed
basis (wi), let T = (Tr(wiwj))16i,j6n, X = (xi)16i6n representing x =

∑n
i=1 xiwi ∈ K,

and M the matrix expressing a basis of a submodule M of K of rank n. Then the
equation Tr(xM) ⊂ Z translates to X ∈ ImZ

tM−1T−1. In particular d−1 is generated
by the elements associated to the columns of T−1. The following is an improved version
of [9, Algorithm 4.8.21] to compute the inverse of a general a, paying more attention
to denominators, and trivializing the involved matrix inversion:

Algorithm 5.3 (inversion)
Input: A non-zero integral ideal a, (a) = a ∩ Z, B = dT−1 ∈ Mn(Z) where d is the
denominator of T−1, and the integral ideal b := dd−1 associated to B, given in two-element
form.
Output: The integral ideal aa−1.

(1) Compute c = ab, using the two-element form of b. The result is given by a matrix
C in HNF.

(2) Compute D := C−1(aB) ∈ Mn(Z). Proceed as if back-substituting a linear
system, using the fact that C is triangular and that all divisions are exact.

(3) Return the ideal represented by the transpose of D.
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The extraneous factor d, introduced to ensure integrality, cancels when solving the
linear system in Step (2). In the original algorithm, |discK| = Nd played the role of
the exact denominator d, and C−1B was computed using the inverse of TC, which is not
triangular. IfNa≪ d, it is more efficient to reduce to two-element form a = aOK+αOK

(§6.3) and use [10, Lemma 2.3.20] to compute aa−1 = OK ∩ aα−1OK . The latter is
done by computing the intersection of Zn with the Z-module generated by the columns
of Maα−1 , via the HNF reduction of an n × n matrix (instead of the 2n × 2n matrix
associated to the intersection of two general ideals [10, Algorithm 1.5.1]).

5.3.4. Reduction modulo an ideal. Let x ∈ OK and a be an integral ideal, represented
by the matrix of a Z-basis A. We denote x (mod a) the “small” representative x −
A
⌈
A−1x

⌋
of x modulo a. In practice, we choose A to be either

• HNF reduced: the reduction can be streamlined using the fact that A is upper
triangular [10, Algorithm 1.4.12].
• reduced for the ordinary L2 norm, yielding smaller representatives.

We usually perform many reductions modulo a given ideal. So, in both cases, data can
be precomputed: in particular the initial reduction of A to HNF or reduced form, and
its inverse. So the fact that LLL is slower than HNF modulo a∩Z should not deter us.
But the reduction itself is expensive: it performs n2 (resp. n2/2) multiplications using
the reduced (resp. HNF) representation.

The special case a = (z), z ∈ Z>0 is of particular importance; we can take A = z Id,
and x (mod z) is obtained by reducing modulo z the coordinates of x (symmetric
residue system), involving only n arithmetic operations. To prevent coefficient explosion
in the course of a computation, one should reduce modulo a∩Z and only use reduction
modulo a on the final result, if at all.

5.3.5. Extended Euclidean algorithm. The following is an improved variant of [10, Al-
gorithm 1.3.2], which is crucial in our approximation algorithms, and more generally
to algorithms over Dedekind domains (Chapter 1, loc. cit.). In this section we use the
following notations: for a matrix X, we write Xj its j-th column and xi,j its (i, j)-th
entry; we denote by Ej the j-th column of the n× n identity matrix.

Algorithm 5.4 (Extended Gcd)
Input: a and b two coprime integral ideals, given by matrices A and B in HNF. We
specifically assume that w1 = 1.
Output: α ∈ a such that (1− α) ∈ b.

(1) Let za and zb be positive generators of a ∩ Z and b ∩ Z respectively.
(2) [Handle trivial case]. If zb = 0, return 1 if a = OK . Otherwise, output an error

message stating that a + b 6= OK and abort the algorithm.
(3) For j = 1, 2, . . . , n, we construct incrementally two matrices C and U , defined by

their columns Cj , Uj ; columns Cj+1 and Uj+1 are accumulators, discarded at the
end of the loop body:

(a) [Initialize]. Let (Cj , Cj+1) := (Aj , Bj) and (Uj , Uj+1) := (Ej , 0). The last
n− j entries of Cj and Cj+1 are 0.

(b) [Zero out Cj+1]. For k = j, . . . , 2, 1, perform Subalgorithm 5.5. During
this step, the entries of C and U may be reduced modulo zb at will.

(c) [Restore correct c1,1 if j 6= 1]. If j > 1, set k := 1, Cj+1 := B1, Uj+1 := 0,
and perform Subalgorithm 5.5.
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(d) If c1,1 = 1, exit the loop and go to Step (5).
(4) Output an error message stating that a + b 6= OK and abort the algorithm.
(5) Return α := AU1 (mod lcm(za, zb)). Note that lcm(za, zb) ∈ a ∪ b.

Sub-Algorithm 5.5 (Euclidean step)

(1) Using Euclid’s extended algorithm compute (u, v, d) such that

uck,j+1 + vck,k = d = gcd(ck,j+1, ck,k),

and |u|, |v| minimal. Let a := ck,j+1/d, and b := ck,k/d.
(2) Let (Ck, Cj+1) := (uCj+1+vCk, aCj+1−bCk). This replaces ck,k by d and ck,j+1

by 0.
(3) Let (Uk, Uj+1) := (uUj+1 + vUk, aUj+1 − bUk).

Proof. This is essentially the naive HNF algorithm using Gaussian elimination via Eu-
clidean steps, applied to (A | B). There are four differences: first, we consider columns
in a specific order, so that columns known to have fewer non-zero entries, due to A and
B being upper triangular, are treated first. Second, we skip the final reduction phase
that would ensure that ck,k > ck,j for j > k. Third, the matrix U is the upper part of
the base change matrix that would normally be produced, only keeping track of opera-
tions on A: at any time, all columns Cj can be written as αj +βj , with (αj , βj) ∈ a×b,
such that αj = AUj . Here we use the fact that b is an OK-module, so that zbwi ∈ b

for any 1 6 i 6 n. Fourth, we allow reducing C or U modulo zb, which only changes
the βj .

We only need to prove that if (a, b) = 1, then the condition in Step (3d) is eventually
satisfied, justifying the error message if it is not. By abuse of notation, call Ai (resp. Bi)
the generator of a (resp. b) corresponding to the i-th column of A (resp. B). After
Step (3b), c1,1 and zb generate the ideal Ij := (A1, . . . , Aj , B1, . . . , Bj) ∩ Z. Hence, so
does c1,1 after Step (3c). Since (a, b) = 1, we see that In = Z and we are done. �

Cohen’s algorithm HNF-reduces the concatenation of A and B, obtaining a matrix
U ∈ GL(2n,Z), such that (A | B)U = (Idn | 0). It then splits the first column of U
as (uA | uB) to obtain α = AuA. Our variant computes only part of the HNF (until
1 is found in a + b, in Step (3d)), considers smaller matrices, and prevents coefficient
explosion. For a concrete example, take K the 7-th cyclotomic field, and a, b the two
prime ideals above 2. Then Algorithm 5.4 experimentally performs 22 times faster than
the original algorithm, even though coefficient explosion does not occur.

Remark 5.6. This algorithm generalizes Cohen’s remark that if (za, zb) = 1, then the
extended Euclidean algorithm over Z immediately yields the result. Our algorithm
succeeds during the j-th loop if and only if 1 belongs to the Z-module spanned by the
first j generators of a and b. In some of our applications, we never have (za, zb) = 1;
for instance in Algorithm 6.3, this gcd is the prime p.

Remarks 5.7.

(1) In Step (3c), the Euclidean step can be simplified since Cj+1, Uj+1 do not need
to be updated.

(2) We could reduce the result modulo ab, but computing the product would
already dominate the running time, for a minor size gain.
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(3) As most modular algorithms, Algorithm 5.4 is faster if we do not perform
reductions modulo zb systematically, but only reduce entries which grow larger
than a given threshold.

5.3.6. LLL pseudo-reduction. This notion was introduced by Buchmann [7], and Cohen
et al. [12]. Let A an integral ideal, and α ∈ A be the first element of a reduced basis
of the lattice (A, T2). By Proposition 4.1 and (2), ‖α‖ and Nα are small; the latter
is nevertheless a multiple of NA. We rewrite A = α(A/α) where (A/α) is a fractional
ideal, pseudo-reduced in the terminology of [9]. Extracting the content of A/α, we
obtain finally A = aαa, where a ∈ Q, α ∈ OK and a ⊂ OK are both integral and
primitive. Assume A is given by a matrix of Z-generators A ∈ Mn(Z). The reduction
is done in two steps:

• Reduce A in place with respect to the L2 norm.
• Reduce the result A′ with respect to an approximate T2 form as defined is §4.2,

that is reduce R(e)A′ with respect to the L2 norm, for a suitably chosen e.

We define a pseudo reduction map by red(A) = rede(A) := (a, α, a). This is a purely
algorithmic definition, depending on the precise way in which α is found: none of the
three components is intrinsically defined. This construction generalizes in the obvious
way to fractional ideals.

If we want Na to be as small as possible7, then e is chosen relatively large, and the
LLL parameter c ∈]1/4, 1[ is chosen close to 1, for optimal reduction. In our applica-
tions, however, we are primarily interested in preventing coefficient explosion, so we
may skip the second step altogether for the sake of speed. From (2), the corresponding
α already has a relatively small norm. In fact it is easy to prove that |Nα| /NA is
bounded by a constant depending only on (wi)16i6n and the LLL parameter c.

5.4. Prime ideals.

5.4.1. Uniformizers. Let p/p be a prime ideal. It is desirable to describe p as

p = pOK + πOK ,

and we shall see below that it is useful to impose vp(π) = 1. This condition is auto-
matically satisfied if p/p is ramified; both π− p and π+ p satisfy it if π does not. Such
a π is called a p-uniformizer for p. More generally:

Definition 5.8. Let f ∈ I(K), and p a prime ideal.

• An integer π ∈ OK is an f-uniformizer for p, if vp(π) = 1 and vq(π) = 0, for
all q | f, q 6= p. (The ideal f may or may not be divisible by p.)
• Let OK,p := {x ∈ K, vq(x) > 0, ∀q 6= p} be the ring of p-integers. A p-integer
τ ∈ OK,p is an anti-uniformizer for p, if vp(τ) = −1.

We shall see in §6.1 how to find a uniformizer. Anti-uniformizers are used to invert p

(see §5.4.2) and to compute valuations at p (see §5.4.3).

Proposition 5.9. Let p/p a prime ideal, π a p-uniformizer for p, and τ0 ∈ OK such
that πτ0 ≡ 0 (mod p), and p ∤ τ0. Then τ = τ0/p is an anti-uniformizer.

7In particular when we want a to be smooth with respect to a factor base {p, Np < y}. In this
case and if K/Q is not Galois, consider rather the original (A/α), which is often more friable than its
primitive part a. Namely, let p/p be a prime ideal; p−1 is smooth if Np < y, but pp−1 is not whenever
there exists q | p with Nq > y.
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Proof. (simplifies [9, §4.8.3]) The conditions on τ0 are equivalent to vp(τ0) = e(p/p)−1,
and vq(τ0) > e(q/p) for other prime divisors q of p. The result follows. �

Given π, we compute such a τ0 as a lift of any non-zero solution of MπX = 0 over Fn
p .

Remark 5.10. If we are allowed precomputations associated to p, the algorithmic data
we store is (p, e(p/p), f(p/p),Mπ,Mτ0), where e(p/p) and f(p/p) are the inertia and
residue degree respectively, π is a p-uniformizer, and τ0 = pτ ∈ OK where τ is an
anti-uniformizer for p. Note that π and τ0 are essentially defined modulo p, hence their
coordinates can be taken in ]− p/2, p/2], except that the condition vp(π) = 1 requires
that we extend the range of the first coordinate of π to ] − p, p] if e(p/p) = 1. The
entries of Mπ and Mτ0 are correspondingly small.

5.4.2. Multiplication by pn. It is easy to compute pn, n ∈ Z, from the above data; see
[10, Proposition 2.3.15], which treats the case n > 0. The general case is an exercise:
let p = (p, π) and n0 = ⌈|n| /e(p/p)⌉.

• If n > 0, then pn = (pn0 , πn)

• If n < 0, then pn0pn = (pn0 , τ
|n|
0 /p|n|−n0), where the division is exact and both

sides are integral.

As a consequence, it is simpler to multiply by pn than by a general ideal, since the
two-element representation is readily available. It is even simpler to multiply by p±1

since Mπ and Mτ0 are precomputed.

5.4.3. Valuation of x ∈ K∗. For a fixed choice of anti-uniformizer τ = τ0/p, we define

the p-coprime part8 of x ∈ K∗ as cpp(x) := xτvp(x). First we assume that x ∈ OK :

Algorithm 5.11 (valuation and coprime part)
Input: A prime ideal p/p, x ∈ OK \ {0}.
Output: v := vp(x) and y := cpp(x) ∈ OK .

(1) [Important special case]. If x ∈ Z, return v := e(p/p)w and y := (xp−w)cpp(p)
w,

where w := vp(x). Note that cpp(p) = pτ e(p/p) can be precomputed.
(2) Let v := 0, y := x.
(3) [Multiply]. Let y′ := yτ0 ∈ OK , computed as Mτ0y.
(4) [Test]. If y′ 6≡ 0 (mod p), abort the algorithm and return v and y.
(5) Set y := y′/p.
(6) Set v := v + 1 and go to Step (3).

The general case x = y/d ∈ K∗, (y, d) ∈ OK × Z is straightforward: x has valuation
vp(y)− vp(d), and coprime part cpp(y)/cpp(d).

Remarks 5.12.

(1) The multiplication, divisibility test and actual division by p in Step (3), (4)
and (5) are done simultaneously: each coordinate of y′ is tested in turn, right
after it is computed.

(2) One can bound vp(x) 6 vp(Nx)/f(p/p), hoping for instance to notice that
vp(x) = 0. This is in general pointless since the norm computation is more
expensive than multiplication by Mτ0 and division by p, unless p ≫ Nx, see

8We shall use that definition in §7.4. It is actually tailored for x ∈ OK : in this case, τ is raised to a
non-negative power, and cpp(x) ∈ OK ; using π−vp(x) for a uniformizer π would also yield a p-unit, but
may introduce denominators.
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§5.2. On the other hand if Nx is known, or we want vp(x) for many different
primes, this test is useful.

This algorithm is suitable for small valuations, which is the case in our applications,
since we prevent coefficient explosion. If one expects v to be large, Bernstein’s elegant
binary search [5, Algorithm E] is more indicated, applied as reduce(τ0, p, x):

Algorithm 5.13 (reduce)
Input: (t ∈ OK , q ∈ N>0, w ∈ OK \ {0}), such that t/q 6∈ OK .
Output: (v, w(t/q)v), where v > 0 is maximal such that w(t/q)v ∈ OK .

(1) If wt is not divisible by q, print (0, w) and stop.
(2) Let (v, y) := reduce(t2, q2, wt/q).
(3) If yt is divisible by q, print (2v + 2, yt/q), otherwise print (2v + 1, y).

5.4.4. Valuation of ideals. The valuation of an ideal is computed as the minimum of
the valuations of its generators. Algorithm 5.11 is run in parallel on all generators, and
the computation stops as soon as one divisibility test fails. We can operate modulo a
suitable power of the underlying prime:

Algorithm 5.14 (valuation of a ⊂ OK)
Input: A prime ideal p/p, a non-zero primitive integral ideal a, given as a Z-module by the
matrix A ∈ Mn(Z). For X ∈ Mn(Z) we denote Xj the j-th column of X for 1 6 j 6 n,
identified with an element of OK .
Output: vp(a).

(1) Compute vmax := vp(a ∩ Z). If vmax = 0, abort the algorithm and return 0.
(2) If Na is known or cheap to compute, e.g., A is in HNF, let

vmax := min(vmax, vp(Na)/f(p/p)).

(3) Set v := 0, B := A. While v < vmax, do the following:
(a) Let u := ⌈(vmax − v)/e(p/p)⌉.
(b) For j = 1, 2, . . . , n:

(i) Let y′ := Mτ0(Bj mod pu).
(ii) If y′ 6≡ 0 (mod p), go to Step (4).
(iii) Set Bj := y′/p (multiplication by Mτ0 , test and division are done

simultaneously).
(c) Set v := v + 1.

(4) Return v.

Proof. Obviously, vp(a) 6 vmax. So we can stop once we determine that vp(Aj) > vmax

for all 1 6 j 6 n. We now prove that in Step (3(b)i), we can in fact reduce modulo
bv := pvmax−v, not only modulo bv ∩ Z which is (pu) by §5.4.2:

• If vp(Bj) > vp(bv) = vmax − v, then vp(Bj mod bv) > vmax − v.
• If vp(Bj) < vp(bv), then vp(Bj mod bv) = vp(Bj).

By induction, vp(Aj) < vmax implies vp(Bj) = vp(Aj)− v = vp(τ
vAj). �

A general non-zero ideal a is uniquely written cb, b integral and primitive, c ∈ Q; its
valuation is given by vp(a) = vp(c) + vp(b).

Remarks 5.15.

(1) If there is a single prime p above p, computing vp(a) = vp(Na)/f(p/p) is faster.
If it is in fact inert, vp(a) = vp(a ∩ Z) is even faster.
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(2) If A = (ai,j)16i,j6n is in HNF, j = 1 is omitted from the main loop since
vp(A1) = vp(a ∩ Z) is already known. Also, Na needs not be computed since

vp(Na) =

n∑

i=1

vp(ai,i).

As above, vp(a1,1) is already known.
(3) One can replace the columns of A by their primitive parts before starting the

main loop. The algorithm is more involved since individual valuations need to
be maintained, in case p divides some of the contents. We leave the details to
the reader.

(4) As shown in the proof, we could reduce modulo pvmax−v in Step (3(b)i), but
this would be exceedingly expensive. The last remark of §5.3.5 about the
advisability of systematic reduction also applies here.

(5) [9, Algorithm 4.8.17] is more complicated and less efficient, since it computes
an HNF at each step, and uses no reduction.

(6) If a two-element form a = aOK+bOK is available, we compute min(vp(a), vp(b))
instead, which is especially attractive if a ∈ Z. It is tempting to compute such
a two-element form with a ∈ Z in any case, using Algorithm 6.13, if a does not
have many small prime ideal divisors (using Algorithm 6.15 for y > 2 requires
computing valuations). This may be worthwhile when v = vp(a) is not too
small: the expected cost is

1/
∏

vp(a)>v

(1− 1/Np)

n×n HNF reductions modulo a, followed by the valuation of a single element,
compared to the valuation of n−1 elements as above. For an explicit example,
take K the 11-th cyclotomic field, and p a prime above 3, then Algorithm 5.14
applied to pv is faster than the reduction to two element form for v 6 6.

(7) A more efficient, and deterministic, approach is to compute b := (a, pvmax) =
pv, then v = vp(Nb)/f(p/p). Let π be a p-uniformizer for p, vmax = vp(a ∩ Z)
be as above and u := ⌈vmax/e(p/p)⌉. Compute y := πvmax (mod pu), then b

is given by the HNF modulo pu of (a |My). If many valuations are needed y,
and in fact the HNF of My modulo pu, can be precomputed for small values
of vmax. Experimentally, if we assume the HNF of My is precomputed, this
method is faster than Algorithm 5.14 whenever v > 0 and there is more than
one prime above p; if the HNF has to be computed, the method is comparable
to the reduction to two element form.

6. Approximation and two-element representation for ideals

6.1. Prime ideals and uniformizers. Let p be a prime number, factoring into prime
ideals as

pOK =

g∏

i=1

pei

i .

If p does not divide the index [OK : Z[θ]], Kummer’s criterion applies and we easily
compute the prime divisors of p in the form p = pOK + πOK , where π = T (θ) and T
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is (a lift to Z[X] of) an irreducible factor of P over Fp[X]. If π is not a p-uniformizer,
then e(p/p) = 1 and π ± p is a p-uniformizer.

If p divides the index, the situation is more interesting. If a p-maximal order was
computed using the Round 4 algorithm, then the above information about prime divi-
sors of p is obtained as a by-product (see Ford et al. [20, §6]). Otherwise, an alternative
is Buchmann-Lenstra’s variant of Berlekamp’s algorithm, which in principle yields the
same information [9, §6.2.2]. But its most popular version [9, §6.2.4] skips squarefree
factorization in order to avoid ideal arithmetic, and does not look for random primitive
elements. This variant does not readily produce uniformizers.

More precisely, let Ip =
∏g

i=1 pi be the radical of pOK . This radical is computed as

the Z-module generated by p and a lift of Ip/(p) = Ker(x→ xpk

) ⊂ OK/(p) for any k

such that pk > [K : Q]. Alternatively, for p > [K : Q], Ip/(p) is the p-trace-radical, i.e
the kernel of the Fp-linear map

OK/(p) → Hom(OK/(p),Fp)

x 7→ (y 7→ Tr(xy) mod p).

Berlekamp’s algorithm splits the separable algebra OK/Ip given an oracle computing
roots of totally split polynomials in Fp[X]. From the computation of the simple factors
OK/pi, it produces the pi/Ip as Fp-subspaces of OK/Ip.

6.1.1. Näıve randomized algorithm. Let p be one of the pi given as above by an Fp-
basis of p/Ip ⊂ OK/Ip. In particular, the residue degree f(p/p) is known: it is the
codimension of p/Ip. On the other hand, e(p/p) is still unknown at this point9. From
that data, [9, Algorithm 4.7.10] proposes to find a p-uniformizer for p by picking random

elements x in p until Nx is not divisible by pf(p/p)+1; then π = x is a p-uniformizer.
This is sensible assuming either p is not too small or that it has few prime divisors:

Lemma 6.1. An element chosen uniformly at random in p is a p-uniformizer with
probability

∏g
i=1(1− 1/Npi).

Proof. This follows from the inclusion-exclusion principle applied to the sets Ai :=
(ppi)/Ip, which satisfy

#(∪i∈SAi) = #(p
∏

i∈S

pi/Ip) = #(p/Ip)/
∏

i∈S

Npi

for any S ⊂ [1, g]. In fact, π ∈ p is a p-uniformizer if and only if π 6∈ ∪iAi. �

In the worst case, p is totally split and the probability becomes (1− 1/p)n, which is
still relatively large assuming p is not too small; for instance if p > n, this is greater
than exp(−1− 1/n) > exp(−3/2) (see also Lemma 6.16).

Remark 6.2. One should check whether p divides Nx/pf(p/p), since the latter should be
easier to compute than Nx, see §5.2.

9We may later compute it as vp(p) using Algorithm 5.11, which requires an anti-uniformizer τ ,
obtained from a p-uniformizer via Proposition 5.9.
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6.1.2. A practical deterministic algorithm. Cohen [10, Proposition 1.3.10] gives a de-
terministic polynomial time procedure relying on the general approximation theorem,
to compute a p-uniformizer. But this algorithm is not very practical: it requires many
ideal multiplications, each of which requires computing, then HNF-reducing, n × n2

matrices, as well as computing a base change matrix (realizing an HNF reduction) of
dimension ng, which may be as large as n2. Here is a practical variant:

Algorithm 6.3 (p-uniformizer, deterministic)
Input: {pi/Ip, 1 6 i 6 g}, given by Fp-bases.
Output: a p-uniformizer for p.

(1) [Compute Vp =
∏

pi 6=p pi as Z-module].

(a) Compute V :=
∏

pi 6=p pi/Ip as the intersection of the Fp vector spaces

pi/Ip (not as a product of ideals: we cannot quickly compute two-element
representations).

(b) Let V ⊂ OK/(p) be the Fp-subspace generated by Ip/(p) and lifts of an

Fp-basis of V .
(c) Let Vp ⊂ OK be the Z-submodule generated by pOK and lifts of generators

of V (HNF reduction modulo p).
(2) [Compute p2 as Z-module].

(a) Compute a lift p of (p/Ip) to OK/(p) as above. Let (γ1, . . . , γk) ∈ Ok
K be

a lift of a basis of p; here k = g − f(p/p).
(b) Compute p2, which is the Z-module generated by p2OK and the k(k+1)/2

products γiγj , i 6 j 6 k (the HNF reduction is done modulo p2).
(3) Compute u ∈ p2 and v ∈ Vp such that u+ v = 1 using Algorithm 5.4.
(4) Find τ ∈ p \ p2.
(5) Let π := vτ + u (mod p). If π ∈ p2, set π := π + p. Return π.

Note that p/p is ramified if and only if p2∩Z = (pZ) in Step (2b). If p/p is unramified,
then we can take π = p in Step (4); otherwise, at least one of the γi does not belong
to p2, and this is easy to test since the HNF for p2 is known. The reduction modulo p
in the last step ensures that a small element is returned, and the test π ∈ p2 is only
needed when e(p/p) = 1.

The most expensive part of Algorithm 6.3 is the computation of p2 in Step (2b). It
requires O(n2) multiplication in OK/(p

2), for a bit complexity of O(n4 log2 p), followed
by an HNF reduction n × n(n + 1)/2 modulo p2, for the same bit complexity. The

computation of V has the same cost in the worst case (n is replaced by dimOK/Ip =∑g
i=1 f(pi/p) 6 n), but is in practice much faster, and is amortized over several p.

Namely, the set of all Vpi
is computed as follows: for i = 1, . . . , g − 1, let ai = p1 . . . pi

and bi = pi . . . pg, then Vpi
is generated by pOK and ai−1bi+1, for a total of 3g − 4

multiplications (intersections) in OK/Ip, instead of the straightforward g(g − 1). Note
that the obvious computation of Vp as Ipp

−1 is more expensive since ideal multiplication
cannot make use of the two-element representation.

6.1.3. A better deterministic algorithm. We favor a second variant, which is still deter-
ministic, but both simpler and faster than Algorithm 6.3. We use the notations from
the previous section.
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Algorithm 6.4 (p-uniformizer, final version)
Input: {pi/Ip, 1 6 i 6 g}, and

{
V pi

, 1 6 i 6 g
}
, all of them subspaces of OK/(p), given

by Fp-bases.
Output: a p-uniformizer for p.

(1) [Compute (u, v) ∈ p× Vp such that u+ v = 1 (mod p)].
(a) Let (A | B) be the concatenation of the matrices giving the Fp-bases of p

and V p.
(b) Compute an inverse image

(
a
b

)
of 1 by (A | B), using Fp-linear algebra in

OK/(p).
(c) Let u, v be lifts to OK of Aa, Bb respectively (take symmetric lifts mod-

ulo p).
(2) [Try τ = p]. At this point, we have vpi

(u) = 0, for all pi 6= p, and vp(u) > 1.

(a) Let x := u. If pf(p/p)+1 ∤ Nx, return x.
(b) Let x := u + p or u − p, whichever has first coordinate in ] − p, p]. If

pf(p/p)+1 ∤ Nx, return x.
(3) [p/p ramified, vp(u) > 2. Try τ = γi]. For τ = γ1, . . . , γk−1

(a) Let x := vτ + u (mod p).

(b) If pf(p/p)+1 ∤ Nx, terminate the algorithm and return x.
(4) Return x := vγk + u (mod p).

Here, we produce u without computing p2. Also we use the fact that u, v are es-
sentially defined modulo p to compute them using Fp-linear algebra instead of HNF
reductions; we could also use an adapted version of Algorithm 5.4.

Using a random τ ∈ p in Step (3a) yields a uniformizer iff τ 6∈ p2, hence with
probability 1−Np−1 > 1/2. Our variant is deterministic, requiring at most two norm
computations when p/p is unramified, and at most k + 1 6 [K : Q] otherwise. As
previously mentioned, knowing that p/p is ramified in Step (3) enables us to reduce
x modulo p, without losing the p-uniformizer property. If we know in advance that
p/p is unramified, for instance if p ∤ discK, the norm computation in Step (2b) can be
skipped, since x is necessarily a uniformizer at this point.

6.1.4. Comparison. This computation needs to be done at most once for each of the
prime divisors of the index [OK : Z[θ]], so the exact threshold between the competing
deterministic algorithms is unimportant. On the other hand, it is crucial not to rely
solely on the naive randomized algorithm, as shown by the following example. Consider
the field generated by a root of
x30−x29+x28−x27+x26+743x25−1363x24−3597x23−22009x22+458737x21+2608403x20+

6374653x19 − 1890565x18 − 112632611x17 − 467834081x16 − 1365580319x15 − 1188283908x14 +

3831279180x13 + 28661663584x12 + 89106335984x11 + 226912479680x10 + 443487548480x9 +

719797891328x8 + 946994403328x7 + 1015828094976x6 + 878645952512x5 + 555353440256x4 +

124983967744x3 + 67515711488x2 − 5234491392x+ 400505700352

which is the abelian field K of smallest conductor (namely 341) such that 2 splits
completely in K and such that [K : Q] > 20. We allow for precomputations: maximal
order, roots of P and embeddings of (wi) to a relative accuracy of 160 digits, T2-
reduction of the maximal order, preconditioning multiplication in K. This takes 8.5s
altogether, 65% of which are spent in the LLL reduction, which is in fact not needed
for this specific application.
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Algorithm 6.4 computes all 30 prime divisors of 2 in less than 0.6s: 0.3s are spent in
Buchmann-Lenstra’s splitting, and 0.2s to find all 30 uniformizers, half of which spent
computing the Vp. We used the embeddings to compute the required norms (negligible
time); using a modular resultant, the norm computations now dominate the running
time, which roughly doubles to 1s. Using Algorithm 6.3, already about 8s are needed to
compute the various p2

i . Using the naive randomized algorithm, the expected number
of trials to compute a single uniformizer is 230, and takes a few days in practice. In
smaller degrees, the speedup is less extreme: take the fixed field of K by the Frobenius
over 7, defined by the more decent-looking polynomial

x10−x9
+2x8

+326x7−1559x6−7801x5
+22580x4−47436x3

+234144x2
+2013120x+3406336.

Then Algorithm 6.4 (experimentally, on average) still splits 2 about 30 times faster
than the randomized algorithm (210 expected trials); at least 300 times faster if the
latter uses a resultant algorithm to compute norms (we tried Collins’s and Ducos’s
subresultants and a modular resultant, as implemented in the Pari library). So we
would better not ignore this issue: the same phenomenon would slow down all ideal
multiplications whenever small primes have many divisors in K. We shall give a general
solution in §6.3, once we have seen how to solve approximation problems.

6.2. Approximation.

6.2.1. Uniformizers. We first write explicitly algorithms to obtain suitable uniformizers
for prime ideals:

Algorithm 6.5 (f-uniformizer)
Input: an integral ideal f and a prime ideal p/p.
Output: an f-uniformizer for p.

(1) Compute a := fp−vp(f) and p2.
(2) Compute (u, v) ∈ p2 × a such that u+ v = 1, using Algorithm 5.4.
(3) Let π be a p-uniformizer for p. Return vπ + u (mod ap2).

The following variant is faster than Algorithm 6.5, but produces larger uniformizers:

Algorithm 6.6 (f-uniformizer, using f ∩ Z)
Input: an integral ideal f, and a prime ideal p/p; (f) = f ∩ Z.
Output: an f -uniformizer, hence an f-uniformizer, for p

(1) Let a := fp−vp(f), m := p if e(p/p) > 1 and m := p2 otherwise.
(2) Using the extended Euclidean algorithm over Z, find (u′, v′) ∈ Z of minimal

absolute value, such that u′m+ v′a = 1. Let u := u′m and v := v′a.
(3) Let π be a p-uniformizer for p. Return vπ + u (mod am).

Remark 6.7. In many applications, the factorization of f, hence of f ∩ Z, is known. In
this case, one may replace the definition of a (resp. a) in Step (1) by the coprime square
free kernel

a :=
∏

q | f, q 6= p
q prime

q, resp. a :=
∏

q | f , q 6= p
q prime

q.

The algorithm then operates on smaller objects and produces smaller uniformizers. The
extra ideal multiplications needed to compute a make this costly for Algorithm 6.5, but
it is profitably used in Algorithm 6.6.
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6.2.2. Approximation. We finally give improved algorithms for the Chinese remainder
and approximation theorems (see [10, §1.3.2]):

Algorithm 6.8 (Approximation theorem (weak form))
Input: a set S of prime ideals, and {ep} ∈ ZS .
Output: a ∈ K such that vp(a) = ep for p ∈ S, vp(a) > 0 for p 6∈ S.

(1) Let SQ := {p rational prime : ∃p ∈ S, such that p | p}, and f :=
∏

p∈SQ
p.

(2) For all p ∈ S, compute an f -uniformizer πp for p, using Algorithm 6.6.
(3) Set z :=

∏
p∈S π

ep

p ∈ K. Let d be the denominator of z (d = 1 unless ep < 0 for

some p). Write d = d1d2, di ∈ N, where (d2, f) = 1, and d2 is maximal.
(4) Return zd2 (mod

∏
p∈S pep+1).

Proof. The valuation of z at any prime q dividing f is eq if q ∈ S and 0 otherwise. The
same holds for the valuations of zd2, since (d2, f) = 1. If vq(zd2) < 0, then q | d1; all
prime divisors of d1 divide f by the maximality of d2, hence q | f . Finally q ∈ S, as
was to be shown. �

Remarks 6.9.

(1) The final reduction is included to somewhat prevent coefficient explosion in
applications where the product z must be fully evaluated. But the computation
of the modulus is expensive compared to the other steps. If acceptable, it
is preferable to return the element d2

∏
p∈S π

ep

p in Z[OK ], as an unevaluated

product (see §7.1).
(2) We can replace Step (1) by the following: start with f :=

∏
p∈S p; then, for all

p ∈ S such that ep < 0, multiply f by
∏

q | p, q ∤ f
q prime

q.

Then we compute f-uniformizers using Algorithm 6.5, and leave the other steps
unchanged. The algorithm operates with smaller uniformizers since f | f , at
the expense of more complicated ideal operations. The original version is faster
and has comparable output size, provided we do not remove the last reduction
step.

Algorithm 6.10 (Chinese remainder theorem)
Input: a set S of pairwise coprime integral ideals and {xa} ∈ OS

K .
Output: a ∈ OK such that a ≡ xa (mod a) for all a ∈ S.

(1) Compute f :=
∏

a∈S a.
(2) For all a ∈ S, find (ua, va) ∈ a× f/a such that ua + va = 1, using Algorithm 5.4.
(3) Return

∑
a∈S vaxa (mod f).

Remarks 6.11.

(1) Recall that it is simpler to multiply by pn, n ∈ Z than by a general ideal
(§5.4.2). In most applications, the elements of S are powers of prime ideals.

(2) [10, Proposition 1.3.8] computes the HNF of the concatenation of the matrices
associated to all ideals f/a. This produces all va with a single HNF reduction
instead of #S reductions in our variant. But the latter are modular, operate
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on smaller matrices (n× n instead of n#S × n#S), and allow for early abort.
Hence using Algorithm 5.4 as above is more efficient, in time and space.

Algorithm 6.12 (Approximation theorem (strong form))
Input: a set S of prime ideals, {ep} ∈ ZS , and {xp} ∈ KS

Output: y ∈ K such that vp(y − xp) > ep for p ∈ S, vp(y) > 0 for p 6∈ S.

(1) For p ∈ S, p | p, make sure the denominator d of xp is a power of p: write

d = d0p
k, (d0, p) = 1 and replace xp by (d−1

0 mod pep+vp(d))(d0xp).

(2) Let d be the common denominator of all xp (the lcm of the pk above). For all
p ∈ S replace xp by dxp, ep by ep + vp(d).

(3) If any ep is 6 0, remove p from S.
(4) Add to S the p | d, p 6∈ S. For all such p, set ep := vp(d), xp := 0.
(5) Using Algorithm 6.10, find y solving the Chinese Remainder problem given by
{pep} and {xp}.

(6) Return y/d.

6.3. Two-element representation. Obtaining two-element OK-generating sets for
an ideal a is crucial to efficiently multiply by a as explained in §5.3.2. We have already
seen in the case of prime ideals that the naive randomized method, although in general
fast, is not suitable over arbitrary number fields. It is straightforward to deduce an
efficient deterministic procedure from Algorithm 6.8, provided a is easily factored.

6.3.1. Practical randomized variant. The naive randomized algorithm (cf. [10, Algo-
rithm 1.3.15]) is as follows:

Algorithm 6.13 (Two-element form for general ideals, naive version)
Input: an integral ideal A, given by an HNF matrix A, (a) = A ∩ Z.
Output: π such that A = aOK + πOK , or fail.

(1) Pick π uniformly at random in A/aOK .
(2) If the HNF of Mπ modulo a is equal to A (it is enough to check the diagonal

elements), return π. Otherwise return fail.

Lemma 6.14. This algorithms succeeds with probability
∏

p: vp(a)>vp(A)

(1− 1/Np) >
∏

p|a

(1− 1/Np).

Proof. Analogous to Lemma 6.1. �

We modified [10, Algorithm 1.3.15] in two respects. We removed its first step (LLL-
reduce the HNF basis) since we only want random elements in the ideal: their size does
not play any role. Second, we pick random elements in A/aOK instead of enforcing
arbitrary limits on their coordinates, which ruins the probabilistic analysis without
motivation. Reduction modulo a takes care of size increases introduced by these mod-
ifications. Combining this with our previous work, we obtain a robust general-purpose
method:

Algorithm 6.15 (Two-element form for general ideals)
Input: a primitive integral ideal A, a real parameter y > 2.
Output: π such that A = aOK + πOK , (a) = A ∩ Z.

(1) [partial split]. Let a ∈ N such that (a) = A ∩ Z.
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(a) Let SQ := {p < y : p | a}, and S := {prime ideals dividing of p ∈ SQ}.
(b) Let

a0 :=
∏

p∈SQ

pvp(a), and a1 := a/a0.

By definition, (a0, a1) = 1.
(c) Write A = A0A1, where

A0 :=
∏

p∈S

pvp(A) = (A, a0) and A1 := A
∏

p∈S

p−vp(A) = (A, a1),

and only A1 needs to be explicitly computed, as the given gcd: a mere HNF
reduction modulo a1. By construction, (A0,A1) = 1 and (ai) = Ai ∩ Z.

(2) [find partial uniformizers].
(a) Find π0 ∈ OK such that (a0, π0) = A0. Algorithm 6.13 succeeds with

probability ∏

p∈S
vp(a0)>vp(A0)

(1− 1/Np)

If this is too small, use Algorithm 6.8 to find π0 ∈ Z[OK ] such that vp(π0) =
vp(A) = vp(A0) for all p ∈ S, then evaluate π0 modulo a0.

(b) Using Algorithm 6.13, find π1 such that (a1, π1) = A1.
(3) Using the extended Euclidean algorithm over Z, find v0, v1 ∈ Z solving the Bezout

equation a0v0 + a1v1 = 1. Set ui := aivi ∈ Ai ∩ Z.
(4) Let π′0 := π0u1 + u0, π

′
1 := π1u0 + u1 and return π′0π

′
1 modulo a.

Proof. Since π′i ≡ πi (mod aiOK) and π′i ≡ 1 (mod a1−iOK), we have Ai = aiOK +
π′iOK and (π′i,A1−i) = 1 for i ∈ {0, 1}. We already know that (a0,A1) = (a1,A0) = 1.
It follows that a0a1OK + π′0π

′
1OK = A0A1 = A. �

Lemma 6.16. Let C := n log a
y log y . In Step (2b), a random element π1 ∈ A1/a1OK satis-

fies A1 = a1OK + π1OK with probability greater than exp(−C − C/y) > exp(−3C/2).

Proof. Let C1 := n log a1

y log y 6 C. We use the lower bound from Lemma 6.14 and
∏

p|a1

(1− 1/Np) > (1− 1/y)n logy a1 > exp(−C1 − C1/y) > exp(−C − C/y).

The middle inequality follows from the rough bound (1− x) > exp(−x− x2), valid for
all 0 6 x 6 1/2 for instance. �

Remarks 6.17.

(1) Choosing y = 2 amounts to using the naive algorithm. Picking a larger y means
we use the safe deterministic algorithm to handle the dangerous part A0 of A,
which is easy to factor, and the fast randomized one to avoid factoring A1

completely, or wasting too much time computing valuations. The initial steps
are cheap, provided small primes and their prime divisors are precomputed.

(2) We can fix some C > 0 and choose y such that Cy log y = n log a, which bounds
from below the probability of success in Step (2b) by a positive constant by
Lemma 6.16. Since this y is polynomially bounded in terms of n and log a, all
the extra steps linked to A0 are done in polynomial time. Since each iteration
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of Algorithm 6.13 is in polynomial time, the resulting algorithm has expected
polynomial running time.

(3) This choice of y assumes that all small primes split completely, which is quite
pessimistic. A practical alternative is to run the naive algorithm for a few
trials. If it does not succeed, we split the computation using an incremental
criterion instead of a worst case bound: factor out a set S of prime divisors of
A ∩ Z until

∏
p∈S(1 − 1/Np) < 1/2, say, defining ideals A0 and A1 as above.

Then recursively apply the same strategy to A1, improving our chances by a
factor greater than 2 after each splitting. To avoid spending exponential time
in the trial division, we can compute a worst case y as above and abort trial
division once all rational primes less than y have been removed.

(4) Proposition 1.3.10 (loc. cit.), based on the approximation theorem, is imprac-
tical: it requires the full factorization of A, costly ideal multiplications (via
HNF reduction of n×n2 matrices), as well as computing a base change matrix
of dimension n#S where S is the set of primes dividing A.

(5) The usual form of the two-element problem is: given A and an arbitrary a ∈ A,
find π such that A = aOK+πOK . The above form is the one needed in practice
and we leave this generalization to the reader.

6.3.2. Deterministic polynomial time algorithm. From the preceding discussion, Algo-
rithm 6.15 can be modified to run in deterministic polynomial time if the factorization
of A is known. As it stands, because of our use of Algorithm 6.13, it is randomized,
with expected polynomial running time. As suggested in [10, p. 23], it can be modified
to run in deterministic polynomial time using factor refinement (see Bach, Driscoll and
Shallit [2], Buchmann, Eisenbrand [8], and Bernstein [5]) as follows: given a ∈ A, factor
(a) and A into pairwise coprime ideals. One can refine these factorizations in deter-
ministic polynomial time, so as to find a possibly larger finite coprime base {qi, i ∈ I}
such that

A =
∏

i∈I

qei

i , (a) =
∏

i∈I

q
fi

i ,

as well as elements xi ∈ qei

i such that (xi/q
ei

i , qi) = 1. Namely, if qk is a term in the

factorization of A, given by a Z-basis, one of the n generators of qk does not belong
to qk+1, say x. Either (x/qk, q) = 1 and x is a suitable element, or this splits q

and we may refine the factorization. Let π be a solution of the Chinese remainder
problem associated to {qei+1

i , i ∈ I} and {xi, i ∈ I}, found using Algorithm 6.10; then
A = aOK + πOK .

We can improve this algorithm by picking xi = a whenever ei = fi, but it remains
impractical if A cannot be factored: it requires many ideal multiplications, using only
Z-generators (or solving recursively two-element-form subproblems). We would expect
each of these to be slower than the whole run of Algorithm 6.13 on A1 in Algorithm 6.15.

7. Another representation for ideals and applications

7.1. The group ring representation. One of our goals is to compute ray class
groups, as in [10, Algorithm 4.3.1]. As it stands, if Cl(K) = ⊕r

i=1(Z/diZ)gi, this

algorithm requires computing αi ∈ K∗ such that (αi) = gdi

i for all 1 6 i 6 r, and this
is quite wasteful if the class group has large exponent.
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It is natural to represent I(K) as Q∗ × I(K)/Q∗, as we have done, where (c, I)
represents the ideal cI and I is primitive. Since it is less expensive to multiply prin-
cipal ideals than general ideals, we could go one step further and represent I(K) as
(K∗/U(K))× Cl(K) for some fixed choice of representatives for K∗ modulo units and
for classes of Cl(K); unfortunately, obtaining this representation is much harder than
ordinary multiplication. Besides, principal ideals also become large, when raised to a
large power.

To improve on these aspects, we use the following representation for ideals:

I(K) = (Z[OK ]× I(K)) /∼ =

{(∏

i

αei

i , a
)
, αi ∈ OK , ei ∈ Z, a ∈ I(K)

}
/ ∼,

where the first component is a formal product, and∼ is the obvious equivalence relation:
(
∏

i α
ei

i , a) represents the ideal which is the product of the two components. None of the
individual components are well defined, only their product is. For efficiency reasons,
we shall always choose a integral and primitive. Multiplication is trivial:

Algorithm 7.1

Input: two ideals (
∏

i α
ei

i , a) and (
∏

j β
fj

j , b)
Output: their product

(1) Compute (c, γ, c) := red(ab), such that ab = cγc, and where c = x/y, x, y ∈ Z.

(2) Output (xy−1γ
∏

i α
ei

i

∏
j β

fj

j , c), where the first component is a mere concatena-
tion of the factors.

The precise pseudo-reduction variant used above is irrelevant. Inversion, hence divi-
sion, is equally easy. The main advantage of this representation is that it is easy to
compute large products of ideals, without discarding the principal part, or suffering
from coefficient explosion: we always map Z[OK ] to a sensible domain before evaluat-
ing the formal component. The catch is that testing for equality in a deterministic way
becomes non trivial, but we shall never need it.

7.2. Discrete logarithms in Cl(K). We want to compute discrete logarithms in the
class group Cl(K), as in [9, §6.5.5]. It is easier, and sufficient for most applications as
we will shortly see, to obtain the principal part as an element in the group ring Z[OK ]
as follows:

Algorithm 7.2 (Discrete log in Cl(K))
Input: An ideal I ∈ I(K), possibly given as a product of ideals. We are given Cl(K) =
⊕r

i=1(Z/diZ)gi.

Output: (fj) and β ∈ Z[OK ], such that I = β
∏

j g
fj

j .

(1) Compute I as (α, a), α ∈ Z[OK ], a ∈ I(K), using repeatedly Algorithm 7.1, if I
was given in factored form.

(2) Solve the discrete logarithm problem for the small ideal a in Cl(K) as a =
(τ)
∏

i g
ei

i , for some yet unknown principal ideal (τ). (This is done by multiplying
a by random products of prime ideals in the factor base used to compute the class
group, then pseudo-reducing as explained in §5.3.6, until the ideal component of
the reduction is smooth.)

(3) Using again Algorithm 7.1, compute a(
∏

i g
ei

i )−1, as (β, b).
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(4) Realize the small principal ideal b as (x), using the same method as in Step (2),
but this time computing logarithmic distance components, which yield approximate
Archimedean embeddings of x, from which x can be recovered algebraically (see
[9, Algorithm 6.5.10]).

(5) Output (ei) and τ := (αβx) ∈ Z[OK ].

Remarks 7.3.

(1) If the generators (gi) are smooth with respect to the factor base, then it is not
necessary to “smooth out” b in Step (4), since the result of Step (2) can be
re-used. The original generators produced by Buchmann’s algorithm satisfy
this property, but arbitrary reduced representatives may not.

(2) Since x is defined modulo units, one may reduce the logarithmic Archimedean
components of x modulo the logarithmic embeddings for the units as in Algo-
rithm 7.8, Step (3) (setting ℓ = 1) in order to get a possibly smaller represen-
tative in Step (4).

(3) [9, Algorithm 6.5.10] adds logarithmic Archimedean components instead of
accumulating algebraic elements in the group ring. The above variant is more
practical when the class number is large. In particular, we do not need to
recognize algebraic integers of huge height at the end of the computation, which
can then be done at a lower precision (determined using a fast preliminary
floating point computation, which is in general enough to determine x directly).

(4) When the generator is large, the Z[OK ] representation is more compact than
the expanded form. Let h be the class number; the number of terms in the

group ring representation for the principal part of
∏N

j=1 I
fj

j arising from the
above algorithm is

O(log h+

N∑

j=1

log(fj)) = O(log |disc(K)|+
N∑

j=1

log(fj)).

(5) Even if we are interested in computations in Clf(K) it makes sense to com-
pute as above instead of reducing mod∗f, which would also prevent coefficient
explosion. Indeed, we may need to vary the modulus, for instance when com-
puting the conductor of an abelian extension using [10, Algorithm 4.4.2], or to
study various class fields over K.

We now use the group ring representation of elements for the basic operations of com-
putational class field theory.

7.3. Signatures.

Definition 7.4. Let f = f0f∞ be a modulus and x ∈ K∗. The signature of x with
respect to f is

s(x, f) := {sign(v(x)), v | f∞} ∈ {−1, 1}f∞ .

For x =
∏

i α
ei

i ∈ Z[OK ], this is computed as

s(x, f) =
∏

i : ei odd

s(αi, f),

where s(α, f) is obtained as in §3.1 for α ∈ OK , using precomputed floating point ap-
proximations of the v(wi), v | f∞. Note that x often originates from a binary powering
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algorithm, in which case most ei are even. Also the height of each individual αi is a
priori much smaller than the height of their product, hence their signature is evalu-
ated in lower precision. More precisely, low precision approximations are used first,
increasing the precision of the computation until signs can be reliably decided, or until
the precision of the cached data is reached, in which case it is computed to a higher
accuracy.

Remark 7.5. It is possible to compute the signature of α ∈ OK algebraically, assuming

we are given elements (βw) ∈ Of∞
K such that sign(v(βw)) = (−1)δv,w , for all v, w | f∞,

for instance from [10, Algorithm 4.2.20] with m0 = OK . Namely, Sturm or Uspensky’s
algorithm (see [30]) compute the numberN of real roots of the characteristic polynomial
of α in [0,∞). The characteristic polynomial of αβv has N ± 1 real roots in [0,∞)
according to whether sign(v(α)) = ∓1.

7.4. Finding representatives coprime to f. In order to compute discrete logarithms
in Clf(K), we assume that f0 =

∏
p pnp , the finite part of the modulus, is given in

factored form, and that the discrete log problem is solved in all residue fields OK/p for
p | f, which is the case if Np− 1 is smooth for instance.

We need to map x ∈ Z[OK ] to (OK/f0)
∗. This is not completely obvious since nothing

guarantees that the individual components in our representation (α, a) are coprime to
f0, even though they originate from products of elements in If(K). It is quite easy to
recover that situation, using the uniformizers from §6.1, associated to the prime divisors
of f0. Let a =

∏
i α

ei

i ∈ Z[OK ] represent an element of K coprime to f. To compute
its image in (OK/f)

∗ it is enough to compute it in each (OK/p
np )∗. So consider p as

above and τ an anti-uniformizer for p. Recall that we define cpp(x) := xτvp(x), which
is integral if x ∈ OK , and computed using Algorithm 5.11. Since vp(a) = 0, one has

∏

i

cpp(αi)
ei = τvp(a)

∏

i

αei

i = a and (cpp(αi), p) = 1, ∀i.

Now the reduction can be computed in the obvious way, reducing each ei modulo the
exponent of (OK/p

np )∗ first. If this exponent is small, we use non-negative residues so
that no modular inversion is needed. Otherwise, we use a symmetric residue system
and split the product into positive and negative powers, so that at most one inversion
is needed. Of course, we reduce modulo pnp , or rather pnp ∩Z, along the way to prevent
coefficient explosion.

Remarks 7.6.

(1) Although we may need to vary f as mentioned in §7 [Remark 5], its prime
divisors lie in a fixed set given with the problem, for instance the divisors of
the modulus used to define the extension in the first place. Hence most of the
needed data can be precomputed.

(2) α ∈ Z is a frequent special case e.g., arising from denominators. Let v =
vp(α); the above algorithm replaces α by (αp−v)cpp(p)

v, where both factors
are integral and coprime to p. We regroup all powers of cpp(p), and include
them as a whole.

(3) This procedure solves trivially the problem of mapping x ∈ K∗, (x, p) = 1 to
(OK/p

n)∗, by writing x = (xd)d−1, if d is the denominator of x. Compared
to [10, Algorithm 4.2.22], this local variant is simpler and efficiently prevents
coefficient explosion.



TOPICS IN COMPUTATIONAL ALGEBRAIC NUMBER THEORY 33

The above method can be directly applied to (OK/f)
∗, if we make the anti-uniformizers

coprime to f using the techniques of §6.2.1. This is slower than the local algorithm,
but turns an arbitrary (α, a) ∈ Z[OK ]× I(K), representing an ideal coprime to f, into
(β, b) ≡ (α, a) mod∗f, where all components are integral and coprime to f. The details
are left to the reader.

7.5. Discrete logarithms in Clf(K). We adapt [10, Algorithms 4.3.1 & 4.3.2], noting
in passing that concerns about generators size have evaporated, so that the techniques
of [10, §4.3.2] are not needed anymore in our context.

Algorithm 7.7 (Discrete logs in Clf(K))
Input: An ideal (α, a), where (αa, f) = 1. We are given

Cl(K) = ⊕r
i=1(Z/diZ)gi, and Clf(K) = ⊕rf

j=1(Z/DjZ)Gj ,

as well as elements γi ∈ Z[OK ] such that (γigi, f) = 1, computed using Algorithm 6.8
(without final reduction).

Output: (fj) and β ∈ Z[OK ], β = 1 mod∗f, such that αa = β
∏rf

j=1G
fj

j .

(1) [Work in Cl(K)]. Using Algorithm 7.2, write a = τ
∏r

i=1 g
ei

i , where τ ∈ Z[OK ].

(2) [Work in (OK/f)
∗]. Map ατ

∏r
i=1 γ

−ei

i , which would be coprime to f in expanded
form, to each (OK/p

np )∗ for pnp || f, and compute its discrete log in (OK/f)
∗.

(3) Glue the above results to get the discrete log in Clf(K) as in [10, Algorithm 4.3.2].
As usual, we do not evaluate the principal part (β ≡ 1 mod∗f) of the discrete
logarithm, and give it in Z[OK ].

The data linked to the γi is precomputed; this includes their signatures, and the cpp(γi)
from the previous section for each p | f.

7.6. Computing class fields. Cohen [10, Chapter 5] explains how to use Kummer
theory in order to compute the class field associated to a given subgroup of Clf(K).
Using a theorem of Hecke on ramification in Kummer extensions of prime degree ℓ, he
restricts to a small list of S-units, among which the defining element lies. This method
only applies to extensions whose degree is square free over K: general extensions have
to be built in successive steps. Fieker’s algorithm [17] also uses Kummer theory, but in
a more elegant way, exploiting properties of the Artin map, and does not restrict the
relative degree of the extension.

Both methods let Gal(K(ζℓ)/K) operate on various objects (S-units, ideal classes)
to eventually generate defining elements for class fields. All computations can be done
using the Z[OK ] representation, in particular, the Galois actions are computed com-
ponentwise. Now the generating element we obtain in Z[OK ] needs to be completely
evaluated to produce the required defining polynomial. We make explicit this final
evaluation, using the fact that these elements are defined modulo ℓ-th powers to avoid
coefficient explosion:

Algorithm 7.8 (Reduction modulo (K∗)ℓ)
Input: γ =

∏
i γ

ei

i ∈ Z[OK ], ℓ > 2 an integer.

Output: β = γ mod (K∗)ℓ, β ∈ OK .

(1) [exponent reduction]. Reduce all ei modulo ℓ (to [0, ℓ − 1]), and remove the
components with 0 exponent. Let γ′ be the resulting group ring element.

(2) [reduce approximate ℓ-th root ideal].
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(a) Partially factor each γi into prime ideals (factor Nγi by trial division up to
some bound) and write (γ′) =

∏
I I

eI , where I is prime or has large norm.

(b) Compute (γ, J) :=
∏

I I
⌊eI/ℓ⌋ using repeatedly Algorithm 7.1.

(c) Let γ′′ := γ′γ−ℓ ∈ Z[OK ]: its expansion would be in OK and should be
relatively small.

(3) [reduce mod units]. Let r := r1 + r2 − 1, (ηi)16i6r a system of fundamental
units in O∗

K , and let Λ(x) := (log |x|σk
)16k6r+1 ∈ Rr+1 denote the Dirichlet

embeddings of x ∈ K. For the LLL constant α, LLL-reduce the matrix
(

0 . . . 0 C
ℓΛ(η1) . . . ℓΛ(ηr) Λ(γ′′)

)
,

where C is a large enough constant:

C > αr/2M, with M := ℓ max
16i6r

‖Λ(ηi)‖2.

(4) The last vector in the LLL base change matrix has the form u = (u1, . . . , ur,±1)t.
If its last coordinate is negative, negate u.

(5) Expand β := γ′′
∏

i η
ℓui

i ∈ OK , either by direct recognition from its embeddings if
the accuracy is sufficient, or using modular techniques and chinese remaindering
together with the bound on the embeddings obtained from the floating point
computation.

Proof. The only non-obvious part is the assertion in Step (4). Let (bi)16i6r+1 be the
reduced basis obtained in Step (3). The first r vectors of the original basis of our

rank r + 1 lattice are smaller than M , hence ‖bi‖2 6 αr/2M < C for 1 6 i 6 r by
Proposition 4.1. This implies that the first coordinate of bi is 0 for i 6 r, and the
assertion follows. �

Note that (Λ(η1), . . . ,Λ(ηr)) is a by-product of the class group algorithm ([9, §6.5]),
and is reduced once and for all. Step (2) is similar to Montgomery’s square root for the
Number Field Sieve [27, 16], generalized to ℓ-th powers and inexact root extraction10.
We then make explicit use of our knowledge of the maximal order and its units.

Remark 7.9. In the context of class field computations using Kummer theory, the γi are
completely factored in Step (2a), since all components of γ are S-units for an explicit
set S contained in the set of prime divisors of ℓf. In Step (2c), we then have

∣∣Nγ′′
∣∣ 6 NJ

∏

p|ℓf

(Np)ℓ−1
6 NJ ·N(ℓf)ℓ−1,

where NJ is bounded be a constant depending only on K. Nevertheless, ‖γ′′‖ may still
be large.

Remark 7.10. We could further borrow from Montgomery the idea of allowing negative
exponents in Step (1) so as to foster cancellations if the support of γ is small, as is
the case in both NFS and class field computations (see Nguyen [28] for various such
strategies). Since the support of γ is so much smaller in our case than in NFS, it does
not seem worth the effort.

10If, as in NFS, we want to compute an exact ℓ-th root, we accumulate separately the ℓ-th powers
discarded above. In NFS, one is interested in an ℓ-th root modulo a fixed integer and coefficient
explosion does not occur when expanding this result.
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7.7. Examples. We implemented the methods explained in this section in the Pari
library, as the routine rnfkummer, which uses Cohen’s method11.

7.7.1. A simple example. For the very simple example in [10, §5.6.2], using fully eval-
uated elements yields an absolute equation with “rather large coefficients (typically
15 digits), and very large discriminant (typically 2000 decimal digits)”[loc. cit.]. Our
implementation using formal products produces in 2s the already nice-looking relative
equation

X3 + (6z4 − 18z3 + 6z2 − 18z − 12)X + (4z5 − 30z4 − 32z2 − 24z − 4),

without applying any reduction algorithm besides the reduction modulo third powers
from Algorithm 7.8; the absolute norm of its discriminant has 22 decimal digits. The
corresponding absolute equation has L2 norm ≈ 3.106, a discriminant of 178 decimal
digits and is trivial to reduce using [11], since the field discriminant is completely
factored.

7.7.2. A difficult example. When the class group of K(ζℓ) is large, computations using
fully evaluated elements are impossible due to coefficient explosion. We shall see they
are extremely fast using the factored representation, once the class group and units of
K(ζℓ) are computed. The latter remains the bottleneck of all methods using Kummer
theory.

The following problem was contributed by Schein: compute the Hilbert class field of
K = Q(

√
181433), which is a degree ℓ = 5 extension. Alas, the computed class group12

of K(ζℓ) has type Z/3620Z × Z/20Z, so fully evaluated algebraic numbers are useless
here: many of the ones we need to manipulate incorporate 3620-th (or worse) powers.
Working with floating point embeddings in discrete log computations implementing [9,
Algorithm 6.5.10] requires about 105 decimal digits of accuracy. This is impractical.

Computing tentative class group and units for K(ζℓ), a randomized process, takes
between 40s and 2 min depending on the chosen random seed. Using the techniques
of this section, manipulating the same huge elements in a different form, we quickly
produce a relative polynomial P ∈ K[X], supposedly defining the Hilbert class field
of K (15 seconds). This P is still large: NK/Q(disc(P )) has 2628 decimal digits. We
compute the absolute extension (< 10ms), use a polynomial reduction algorithm (1min
45s) and search for subfields [23] (< 10ms) to eventually produce the polynomial

X5 −X4 − 77X3 − 71X2 + 360X − 169

which is easily seen to define the required unramified extension of K. For instance, it is
enough to notice that the quintic field it generates is totally real and has discriminant
disc(K)2.

The Stark units algorithm of Cohen-Roblot [13] produces a relative polynomial of
comparable size (the norm of its discriminant has 2485 decimal digits), but is more
cumbersome: it requires about 45 minutes computational time, using 600 MBytes

11This code is included in Pari/Gp version 2.2.4 and onward.
12This part of the computation uses heuristic bounds and does not yield a proven result, even

assuming the GRH. For this reason, our class field algorithms are of Monte-Carlo type (randomized,
with possibly wrong result). This is harmless in practice since the final defining polynomial is easy to
check.
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RAM in the Pari implementation (one can dispense with precomputations and reduce
memory usage to our default 10 MBytes, roughly tripling running times).

Remark 7.11. To compute a class field of relative degree
∏

p p
ep , the methods of Cohen

and Fieker both spend most of their time determining tentative class groups and units
for the K(ζpep ). In addition, Cohen’s method also needs to compute the invariants of
the K(ζpi) for 1 6 i < ep, but these are smaller degree fields, a priori easier to handle.
So it might still be competitive in the general case.
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of algebraic number fields, in Séminaire de Théorie des Nombres, Paris 1988–1989, Progr. Math.,
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