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Abstract. Davenport and Heilbronn defined a bijection between classes of
binary cubic forms and classes of cubic fields, which has been used to tabulate
the latter. We give a simpler proof of their theorem, then analyze and improve
the table-building algorithm. It computes the multiplicities of the O(X) gen-
eral cubic discriminants (real or imaginary) up to X in time O(X) and space
O(X3/4), or more generally in time O(X + X7/4/M) and space O(M + X1/2)
for a freely chosen positive M . A variant computes the 3-ranks of all quadratic
fields of discriminant up to X with the same time complexity, but using only
M + O(1) units of storage. As an application, we obtain the first 1618 real
quadratic fields with r3(∆) > 4, and prove that Q(

√
−5393946914743) is the

smallest imaginary quadratic field with 3-rank equal to 5.
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1. Introduction

Let d 6= 1 be a squarefree integer and Cl(d) be the class group of the qua-

dratic field Q(
√

d). The Cohen-Lenstra heuristics [7] give a clear conjectural
picture of what Cl(d) should look like on average. In particular, let rp(d) =
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dimFp Cl(d)/ Cl(d)p, which counts the number of cyclic factors in the p-Sylow
subgroup of Cl(d). The case p = 2 is easy since genus theory gives a formula for

r2(d), depending only on the primes dividing the discriminant ∆ of Q(
√

d), see
e.g. [19]; in particular, r2(d) = ω(d) + O(1) is unbounded as d → ∞, where ω(d)
counts the number of distinct prime divisors of d. For odd primes p, the heuristics
predict that the set {∆ : rp(∆) = k} should have positive natural density, for all
k > 0. (The density is trivially 0 for p = 2 and any given k, since the condition
r2(∆) = k bounds ω(∆).) When p > 2, this has not been proved for a single pair
(p, k); nor is it known that the set is non-empty for a single k > 6.

On the other hand, for any fixed p, explicit constructions of Yamamoto [31],
Mestre [24] , Craig [8] and Diaz y Diaz [15, 14] provide sparse but infinite families
of ∆ satisfying rp(∆) > r(p), where r(3) = 4, r(5) = 3 and r(p) = 2 otherwise.
These families all have density 0: they are given by values of polynomials of large
degree at well chosen integer points. Most constructions produce independent
elements in what Cohen [6] calls the p-Selmer group of K = Q(

√
d), which is

defined as

{γ ∈ K∗ : (γ) = Ip, I ∈ I(K)}/K∗p ∼ Cl(K)/ Cl(K)p ⊕ U(K)/U(K)p,

where I(K) and U(K) are the ideal and unit group of K. So, usually, the con-
structions for imaginary quadratic fields guarantee a p-rank which is larger by 1
than the corresponding construction for real fields, where the fundamental unit
interferes. This is consistent with the Cohen-Lenstra heuristics which predict
lower p-ranks in the latter case. A number of miscellaneous individual ∆ are also
known, such that rp(∆) is a little larger; published records include r3 = 5 and
6 (Llorente – Quer [22] and Quer [26]), r5 = 4 (Schoof [28]), r7 = 3 (Solder-
itsch [30]), r11 = 3 (Leprévost [21]).

For p = 3, Davenport and Heilbronn [12] have computed the average order of
the quantity 3r3(∆), as ∆ runs through the discriminants of quadratic fields, thus
bounding from below the density of {∆ : r3(∆) = 0}, and from above that of
{∆ : r3(∆) > 1}. Their proof doesn’t provide any explicit ∆ belonging to either
set. It uses class field theory to link 3r3(∆) to cubic fields of discriminant ∆, and
an explicit bijection between these and classes of binary cubic forms satisfying
simple adelic conditions.

The present paper is a sequel to [1] which counted cubic fields using Davenport
and Heilbronn theory, an approach pioneered by Ennola and Turunen [17]. In
§2, we review this algorithm and the theory of cubic rings, with a significantly
simpler proof than Davenport and Heilbronn’s original one. In §3, we improve
the algorithm and analyze its new complexity. In §4, we specialize to the 3-rank
of quadratic fields and present a heuristic improvement to detect quadratic fields
with large 3-rank, reducing memory use by a linear factor depending on the target
rank. Finally we give some timings and find the smallest quadratic field of 3-rank
equal to 5.
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2. The original algorithm

2.1. Davenport-Heilbronn theory. Let (a, b, c, d) ∈ Z4 denote the integral
binary cubic form F (x, y) = ax3 + bx2y + cxy2 + dy3. Such a form is said to be
primitive if gcd(a, b, c, d) = 1. Let Φ be the set of classes of primitive irreducible
integral binary cubic forms modulo the natural action of GL(2, Z): γ.F (x, y) =
F

(
(x, y)γ

)
. If F belongs to Φ and (a, b, c, d) to F , we write

disc(F ) = disc(a, b, c, d) = b2c2 + 18abcd − 27a2d2 − 4b3d − 4ac3 .

The following theorem is due to Delone and Faddeev [13, §15]:

Theorem 2.1. The index form induces a one-to-one correspondence preserving
the discriminant, between binary classes of irreducible integral cubic forms modulo
GL(2, Z) and isomorphism classes of orders of cubic number fields. The inverse
map is given by φFO : F 7→ Z[1, aθ, aθ2 + bθ], where F = (a, b, c, d) and (θ : 1) is
a root of F .

Let FD denote the set of fundamental discriminants by the standard local
conditions: FD = ∩FDp, where p runs over all prime numbers and

FD2 =
{
∆ ∈ Z : ∆ ≡ 1 (mod 4) or ∆ ≡ 8, 12 (mod 16)

}
,

FDp6=2 =
{
∆ ∈ Z : p2 ∤ ∆

}
.

Davenport and Heilbronn [12], unaware of Delone-Faddeev’s result, specialized it
to maximal orders, themselves associated to their quotient field: let U = ∩Up and
V = ∩Vp, where

Vp =
{
F ∈ Φ : disc F ∈ FDp

}
,

Up =
{
F ∈ Φ : F is not equivalent to a form (a, b, pc, p2d)

}
⊃ Vp

(This is different from, but equivalent to, the original formulation.)

Theorem 2.2 (Davenport-Heilbronn). The cubic extensions of Q (embedded in
a fixed algebraic closure Q), up to isomorphism, are in one-to-one correspondence
with the elements of U . This bijection preserves the discriminant.

Proof. It follows from the proof of Theorem 2.1 that the image of a cubic order is
an irreducible form F . Let O := φFO(F ). If F is not primitive, F/λ is integral for
some λ > 1, and O would be a strict suborder of φFO(F/λ), hence not maximal.

Maximality is a local property: F ∈ Up if and only if O is maximal at p.
Indeed, we can assume that p divides disc(F ) = disc(O), as there is no problem
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otherwise. Since p ∤ F , one can pick a representative f such that f modulo p
has no root at infinity, and has its multiple root at 0. The characterization of Up

follows immediately from Dedekind’s criterion, see e.g. [5, §6.1.2]. �

The original proof was much more involved. Bhargava [3] independently worked
out a direct proof of this result, valid for general cubic rings. In his thesis [4], he
generalized these constructions to quartic rings, and proved many related density
results.

Corollary 2.3. If ∆ ∈ FD, and k = Q(
√

∆), the cyclic cubic unramified ex-
tensions of k correspond bijectively to the classes of V of discriminant ∆. In
particular

# {F ∈ V, disc(F ) = ∆} =
3r3(∆) − 1

2
.

Proof. See [12] and Hasse [18]. �

2.2. Old algorithm and new analysis. In [1], we gave an algorithm to enumer-
ate isomorphism classes of cubic fields up to a given discriminant bound using the
results of §2.1. An essential ingredient was the nice reduction theory for classes
of binary cubic forms1, yielding two computationally convenient fundamental do-
mains for the GL(2, Z) action on binary cubic forms, one for each signature.

We make a slight change in the definition of Davenport and Heilbronn sets,
which is convenient for algorithmic purposes: Up, Vp are subsets of Φ, i.e. are

classes of forms, assumed to be primitive and irreducible. We denote by Φ̂ the
set of reduced integral binary cubic forms (in the sense of [1]), not necessarily

primitive nor irreducible, and define subsets Ûp, V̂p, of Φ̂ by the same congruence

conditions as in §2.1, adding the condition that forms in Ûp are not 0 modulo p.

The global objects Û = ∩pÛp and V̂ = ∩pV̂p are the same as before, Û (resp. V̂ )
is a set of canonical representatives for classes in U (resp. V ):

Lemma 2.4. F ∈ Û if and only if the class of F belongs to U . The same

statement holds for V and V̂ .

Proof. It suffices to prove that elements of Û are primitive and irreducible (since

V̂ ⊂ Û). The first statement is obvious, the second one is [1, Lemma 1.2(5)]. �

The algorithm iterates over reduced forms using four embedded loops on a, b,
c, d in this order, enforcing intricate but essentially trivial inequalities. For each

such point the local conditions (a, b, c, d) ∈ Û is checked. We first evaluate the
number of needed iterations:

Lemma 2.5. Let (a, b, c, d) be a reduced form such that |disc(a, b, c, d)| 6 X.
Then

0 < a ≪ X1/4, b ≪ X1/4, ac3 ≪ X, bc ≪ X1/2,
1Cremona [9] later pointed out that an even nicer reduction, due to G. Julia, was available

for the imaginary case, and worked out improved bounds.
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where all constants are effective. The number of triples (a, b, c) satisfying the
above inequalities is O(X3/4).

Proof. The first assertions are due to Davenport ([10, Lemma 1], [11, Lemma 1]).
The last follows by summation. �

Theorem 2.6. Let 0 6 X. The number of reduced forms F , of given signature,
such that |disc(F )| 6 X is

(1) C±ζ(2)X + λ±X5/6 + O(X2/3+ε),

where C+ = 1/12 and C− = 3C+ for real and imaginary forms respectively,
λ± 6= 0 and any ε > 0. Out of these,

(2)
C±

ζ(3)
X + O(X exp(−c

√
log X))

satisfy F ∈ Û , and

(3)
C±

ζ(2)
X + O(X exp(−c

√
log X))

satisfy F ∈ V̂ , for some c > 0.

Proof. The first estimate is due to Shintani [29], who counts the number of proper
classes, hence twice the cardinality that is of interest to us. The other two are
proved in [2], providing a remainder term for Davenport and Heilbronn’s original
results [12]. �

Remark 2.7. Following Shintani’s argument, Roberts [27] gives convincing heuris-
tics leading to a conjectural error term of the form Λ±X5/6(1 + o(1)) in (2), with
Λ± = λ±/(2ζ(2)ζ(5/3)), that matches remarkably available numerical data. A
conjectural expansion for (3) can be derived in the same way from Roberts refined
heuristics [27, Section 5] by letting Support(α) contain all places.

Corollary 2.8. Let 1 6 Y 6 X. The number of reduced forms F of given
signature such that X − Y < |disc(F )| 6 X is O(Y + X2/3+ε). The number of
iterations in the algorithm exhibiting them is O(Y + X3/4). Needed bounds are
obtained by operating on integers which are O(X3/2).

Proof. The assertion about reduced forms follows from (1). Given (a, b, c), disc(F )
is quadratic in d and the set of suitable d’s is easy to determine from the inequal-
ities on disc(F ): either it is empty (at most O(X3/4) triples (a, b, c) because of
Lemma 2.5), or it yields a list of reduced forms, whose total number, as (a, b, c)
runs over all possible triples, is the number of reduced forms. The quadratic
equation in d is

−27a2d2 + (18abc − 4b3)d + b2c2 − 4ac3 − Z =: Ad2 + Bd + C

for Z = X or X − Y . From Lemma 2.5, we obtain A = O(X1/2), B = O(X3/4),
C = O(X), hence the final assertion. �
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Remark 2.9. The expected order of magnitude is O(Y ), and Theorem 2.6 says it
holds when X2/3+ε ≪ Y . It cannot hold uniformly in X since discriminants of
arbitrarily large multiplicity appear as X → ∞. For instance, if f is a product
of n distinct primes ≡ 1 (mod ℓ), class field theory shows that the number of
cyclic fields of prime degree ℓ with discriminant f ℓ−1 is ℓn−1. We can apply this
to ℓ = 3, Y = 1 and Xn = (p1 . . . pn)2, where pi is the i-th prime congruent to 1
modulo 3.

The local conditions were checked as follows [1, Algorithm 1.3 and Lemma 1.6]:

Lemma 2.10. Let F = (a, b, c, d) be a reduced cubic form. Let

HF := (b2 − 3ac, bc − 9ad, c2 − 3bd)

its Hessian, fH the content of HF , and ∆H := disc(H)/f 2
H . Then F ∈ Û if and

only if

• F ∈ Û2 ∩ Û3.
• fH is squarefree up to powers of 3.
• ∆H and fH are coprime up to powers of 3.
• ∆H is squarefree up to powers of 2.

Assuming F ∈ Û , then it is in V̂ if and only if fH = 1.

This involves the costly factorization of ∆H in each iteration: the worst case is

F ∈ V̂ , which occurs with probability 1/ζ(2)2 ≈ 37% according to Theorem 2.6,
and implies that fH = 1 and ∆H is of the order of X. The content fH = O(X1/2)
is uniformly much smaller.

We proved in [1] that one can find a canonical equation for cubic fields whose
discriminant was bounded by X in time and space linear in the output size.
We checked that an integer is squarefree by dividing small primes away (less
than some bound P ) and using precomputed hashing lists of integers with large
square factors. Unfortunately, performance deteriorates quickly if memory is not
plentiful: assuming available space is 0 < M 6 X, the algorithm requires that P
is of the order of X/M , hence runs in time O(X2/M): O(P ) trial divisions and
one hashtable lookup for each of the O(X) iterations. The behavior is quadratic
rather than linear as X gets larger and M remains fixed.

3. A better algorithm

3.1. A modified test for squarefree-ness. In this section we develop a more
efficient approach to check whether a point satisfies the Davenport-Heilbronn
conditions. To avoid irrelevant discussion of multiprecision operations in our
estimates, we count elementary arithmetic operations on integers. Bit complexity
estimates are then easily derived since all needed quantities are O(X3/2) integers
by Corollary 2.8. These fit in 2 or 3 computer words far beyond the practical
range of the algorithms.
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Let F ∈ Z[x, y] be an integral binary cubic form. For D ∈ Z, we define an ad
hoc function

fU(D) =

{
0 if p3 | D for some prime p > 5∏

p>5, p2|D p otherwise

such that computing fU(disc F ) is almost equivalent to the test F ∈ Û :

Lemma 3.1. F ∈ Ûp for all p > 5 if and only if fU (discF ) 6= 0 and divides
the Hessian of F .

Proof. This follows from [1, Lemma 2.1]. �

We now explain how to efficiently compute fU(a):

Lemma 3.2. We allow precomputations needing time O(X1/2 log log X) and space

O(X1/2). Then all F ∈ Û such that X − Y < |disc(F )| 6 X can be output in
time O(Y + X3/4) and space O(Y + X1/2).

Proof. A list of all primes p 6 X1/2 is built once and for all, via Erathostenes’s
sieve, for the listed precomputation cost. Sieving by squares and cubes of the
precomputed primes p ∈ [5, X1/2], we compute the value of fU(a) for all a in the
range I =]X − Y,X], and store the result in a table TI of length Y . This is done
in time ∑

p6X1/2

(1 + Y/p2) +
∑

p6X1/3

(1 + Y/p3) = O(X1/2 + Y )

and space O(Y ).
In each iteration producing a point F , whose discriminant is known to have

absolute value D ∈]X − Y,X], we check whether F belongs to Û2 and Û3. If

so, we compute D and look up f := fU(D) in TI . Then F ∈ Û iff f is non-
zero and divides HF by Lemma 3.1. There are O(Y + X2/3+ε) points to check,
all in time O(1) once the lookup table is built, and O(X3/4) “empty loops” by
Corollary 2.8. �

Corollary 3.3. The list of cubic fields of discriminant bounded in absolute value
by X can be output in time O(X) and space O(X3/4), or more generally in time
O(X + X7/4M−1) and space O(M + X1/2) for any M > 0.

Proof. For k 6 X/M , we apply the previous lemma on subintervals of the form
Ik =](k − 1)M,kM ]. We discard TIk

once Ik has been treated, hence we only
need O(X1/2 + M) space. The running time is dominated by

X1/2 log log X +
∑

k6X/M

(
M + (kM)3/4

)
= O(X(1 + X3/4/M))

�
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Since the discriminants are produced in narrow intervals, a Distribution Count-
ing sort (see [20, §5.2, Algorithm D]) orders them in time

O(M + #
{

F ∈ Û , disc(F ) ∈ Ik

}
)

for each Ik; summing over k, ordering the list takes linear time O(X), rather than
O(X log X), invalidating one of the remarks in [1, §5.c]. If we are only interested
in 3-ranks, the construction is easier:

Corollary 3.4. Computing all unramified cyclic cubic extensions of all quadratic
fields of discriminant bounded by X can be done in time O(X +X7/4M−1), using
M + O(1) units of storage, where M > 0 can be freely chosen.

Proof. We compute all reduced forms belonging to V̂ in the requested discrimi-
nant range. The result follows from Corollary 2.3, the proof of Lemma 3.2 and

Corollary 3.3, with a minor variation. Namely, for F in V̂ , we always have
fU(disc F ) = 1. So, we define instead a boolean-valued function fV which is true
iff its argument is not divisible by p2 for any p > 3.

We build a lookup table TIk
of true/false values for squarefree numbers in Ik

by sieving with squares of ordinary integers this time (in time O(M + (kM)1/2)).

Then F ∈ V̂ iff it is in V̂2 and fV (discF ) is true. �

In this last Corollary, we compute a generating polynomial for the cubic exten-
sions, a priori not monic, not a class-field theoretic description. Both Corollaries
are easily adapted to compute multiplicities of cubic discriminants or 3-ranks of
the quadratic fields: we use an auxiliary table of length M to store the multiplic-
ities as the forms belonging to an elementary interval Ik are computed. These
algorithms parallelize for a running time O(M +X3/4) on X/M processors (linear
speedup if M ≈ X3/4).

3.2. Further improvements. When Y is small, there is a discrepancy between
the number of forms O(X2/3+ε) and our bound for the number of iterations
O(X3/4) in Corollary 2.8. It is straightforward to improve on the estimates given
in [1] to only generate triples (a, b, c) so that the set of d ∈ R, such that (a, b, c, d)
is both reduced and has a discriminant in the requested range, has positive mea-
sure. This still does not guarantee that a suitable d ∈ Z exists. We conjecture
that this implementation results in only O(X2/3) empty loops, but gave up check-
ing all the special cases.

The ratio of the first two main terms in (2) and (3) is ζ(2)ζ(3) ≈ 1.98 so there is
little waste: half the reduced forms produce a field. This can be further improved
using that if f ∈ Up, then p2 | a implies p ∤ b, which is easily enforced in the outer
loops. The number of reduced F satisfying this latter condition, and such that
|disc(F )| 6 X is asymptotic to C±ζ(2)X/ζ(3). The waste ratio is now down to
ζ(2) ≈ 1.64. (All such estimates are proven as in Lemma 4.2 below.)

As an extreme example, take X = 58343207081 ∈ FD and Y = 1. This
is a good stress test for an implementation, since it should point out roundoff
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errors and overflows. Generating all 40 reduced forms of discriminant X with
the general purpose algorithm described above, we run through t = 14257624
triples (a, b, c) and obtain log(t)/ log X ≈ 0.664, supporting the O(X2/3) empty
loops conjecture. Taking advantage of the improvement above, we would get
t′ = 11947227 triples. (Note that t′/t ≈ 0.838 while 1/ζ(3) ≈ 0.832.)

If we restrict to fundamental cubic discriminants, it follows from the fact that
the Hessian should be primitive that gcd(a, b, c) = gcd(b, c, 3) = 1. All this is
easily enforced and selects only about

35

38

∏

p

(
1 − 2p − 1

p4

)
≈ 68.6%

of all triples (a, b, c), from local density considerations. Applying this to the above
example reduces the number of triples to t′′ = 9844448 (t′′/t ≈ 0.690).

To select a single discriminant as here, it is more efficient to follow Cremona [9,
Algorithm 2] and exploit the syzygy between the seminvariants a and P := b2−3ac
saying that 4P 3 − 27a2X is a square. For a given (a, b), one can then use a
quadratic sieve to dismiss most values of c. Cremona’s procedure still runs in time
O(X3/4), though. Also, this improvement is not practical when Y gets larger. So,
to scan a small range of huge discriminants, the direct approach of computing all
class groups via subexponential “index calculus” using factor bases, as described
for instance in Cohen [5], remains the only choice. Computing multiplicities of
general cubic discriminants ∆f 2, ∆ ∈ FD, in this way is equally easy for a given
discriminant using a criterion of Hasse [18, Satz 1.] to distinguish between the
cubic extension of the quadratic base field which have Galois group C(6) and S3

over Q, and ray class field machinery as described in Cohen [6] to compute the

ring class field mod f of Q(
√

∆).

4. The 3-rank of quadratic fields

4.1. Quadratic forms. Another natural way to tabulate 3-ranks would be to
use Gauss reduction of quadratic forms. But even in the easier imaginary case, it
is not a practical alternative:

Lemma 4.1. Let 0 6 Y 6 X. Computing all reduced quadratic forms F such
that X − Y < − disc(F ) 6 X requires O(Y X1/2 + X) steps and O(1) storage.

Computing the 3-ranks of the corresponding quadratic fields (when F ∈ V̂ )
using M units of storage requires time O(X3/2 log X + X2/M).

Proof. A reduced definite form (a, b, c) in the requested range satisfies |b| 6 a 6√
X/3, and 0 6 (X + b2)/4a − c 6 Y/4a, which adds up to

∑

a≪X1/2

∑

|b|6a

(
1 + (Y/4a)

)
≪ X + X1/2Y

iterations. We check whether the discriminant is fundamental using the same sieve
as in Corollary 3.4; summing up over the ](k− 1)M,kM ], we obtain the required
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time complexity. Storing all forms in that range would result in space complexity
of O(M3/2), but it is enough to store the number of forms F of exponent 3
(checked by reducing F 3 to the principal form, using O(log X) reduction steps)
for each discriminant in the range, since the number of such forms is 3r3 , assuming
the discriminant is fundamental. This results in O(M + X1/2) storage. �

This is worse than Corollary 3.4 by a rough factor of
√

X. Computing the
3-ranks of real quadratic fields with this method would be even more problematic
since reduced forms would have to be grouped into cycles; also the principal cycle
may contain many reduced forms, and the check F 3 = 1 cannot be expected to
run in time O(log X). Of course, this direct approach could afford much more
information (the full class groups) than what the algorithm of §3.1 can provide.

4.2. A heuristic variant: looking for high 3-ranks. Even though the algo-
rithm from §3.1 improves significantly on the original one, it still suffers from
huge memory requirements, due to the necessity to maintain sieves in order to
check for squarefree-ness on the one hand, and on the other hand to store mul-
tiplicities of discriminants. We will improve on the second aspect in the next
subsection, with the specific aim of locating quadratic fields with high 3-rank
but this requires switching to a heuristic variant of the algorithm, which we now
describe.

4.2.1. Relaxing the Davenport-Heilbronn conditions. Corollary (2.3) implies that
to find ∆ such that r3(∆) is large, we need to find many cubic fields sharing the
same fundamental discriminants. Moreover, their number is of the very special
form (3r − 1)/2, r ∈ N. If we forget about the Davenport-Heilbronn conditions,
we still expect to find about O(Y ) reduced forms in our fundamental domains,
counting multiplicities; Theorem 2.6 gives a rigorous, if pessimistic, bound of the
order of Y + X2/3+ε. We also expect very few of the resulting multiplicities to be
of the form (3r − 1)/2 provided we aim for a large enough r, e.g 4 or 5. We can
then check directly the resulting short list of discriminants to weed out the non-
fundamental ones, using our favourite factorization algorithms. Any remaining

discriminant ∆, being fundamental, is associated to elements of V̂ .
In fact, it is better not to relax completely these conditions, since otherwise

we will produce too many extraneous forms, which will hide out the interesting
clusters from the next section. By Lemma 2.10, one eliminates all forms whose
Hessian is not primitive. Instead of checking whether the discriminant is funda-
mental, we check it belongs to V2 and trial divide by the square of a few small
primes, up to 132 say, ensuring that ∆ ∈ ∩p613Vp.

Let N±(X,P ) denote the number of classes of binary cubic forms F whose
Hessian is primitive, F ∈ Vp for p 6 P , and such that 0 < ± disc(F ) 6 X.
Theorem 2.6 (3) states that

N±(X,∞) ∼ C±

ζ(2)
X
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asymptotically; the simplified check described above corresponds to truncating
the Euler product:

Lemma 4.2. Let P > 3 and N±(X,P ) be as above. We have

N±(X,P ) ∼ C±
∏

p6P

(1 − p−2) X

where C± is as in Theorem2.6.

Proof. We use [2, Theorem 2.3]. Let

s(p) =
1

p8
#{F (mod p2), F ∈ Vp}

and

s2(p) =
1

p2
#{F (mod p), HF 6≡ 0 (mod p)}

Davenport and Heilbronn [12] computed s(p) = (1 − p−2)2, and proved that the
number of forms such that |disc(F )| 6 X and p2 | disc(F ) (this is in particular
the case when HF ≡ 0 (mod p)) is O(X/p2).

We have HF ≡ 0 (mod p) if and only if b2 ≡ 3ac, c2 ≡ 3bd, and bd ≡ 9ad
modulo p; a straightforward count yields s2(p) = (1 − p−2) for p 6= 3. The
hypotheses from [1, Theorem 2.3] are now satisfied, and we obtain

N±(X,P )

X
→ C±ζ(2)

∏

p6P

s(p)

s2(p)

∏

p>2

s2(p)

�

Hence taking P = 13, we see that the percentage of correct fields among the
forms we find tends to

∏

p>13

(1 − p−2) =
715715

442368 ζ(2)
≈ 98.4%.

So the vast majority of surviving forms do correspond to a field. Taking P > 13
would only yield a marginal improvement, whereas we can use the fact that
q =

∏
p613 p2 < 232 is smaller than the computer word size to efficiently weed out

all small square factors in a single reduction modulo q, followed by a few small
divisions.

It is hard to analyze precisely the behavior of this algorithm: we can count
the number of cubic fields of given discriminant in terms of 3-ranks of ring class
groups as in Mayer [23]. Unfortunately, it is difficult to use the resulting formulas
to decide how likely non-fundamental discriminant are to have a multiplicity of
the form (3r − 1)/2. In practice it works remarkably well, a typical run with
Y = 108 aiming for rank larger than 3 produces at most one or two discriminants,
which always happen to be fundamental. Note that, although the efficiency of
the algorithm is based on a heuristic argument, namely that few ∆ will survive
before the expensive final factorizations, the correctness of its output is not.
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4.2.2. Clusters. Using the fact that a fundamental discriminant is ≡ 0, 1 (mod 4),
one could divide the memory requirements by 2 by compacting the lookup ta-
bles. However, when looking for high 3-ranks it is preferable to use a “cluster”
approach: count the multiplicity of a range of k consecutive integers, instead of
individual discriminants; then investigate interesting small ranges (the ones with
high multiplicity) via direct class group computations, or by letting the same
algorithm run on this much smaller interval.

From (3), a typical cluster of k consecutive integers should have multiplic-
ity around C±k/ζ(2). Although the known or conjectured remainder terms

(O(e−c
√

log X) and O(X5/6) respectively) are far too weak to prove anything useful
in this context, a good heuristic seems to take

(4) k ≈ αB
ζ(2)

C± for some 0 < α < 1

where B = (3r3 − 1)/2 is the multiplicity one is interested in for individual
fields. If we only check clusters of multiplicity larger than B, we never miss an
interesting field (contributing B to the total multiplicity) and few uninteresting
clusters should survive (the average cluster has multiplicity αB). Experiments
for B = 40 (looking for 3-rank equal to 4) indicate that α ≈ 1/4 or 1/3 is a good
practical choice.

Few class group computations are necessary to check a cluster: for each funda-
mental discriminant in it, compute the class group and the 3-rank r, and decrease
the cluster multiplicity by (3r−1)/2; when the latter drops below B, we are done.
It is also possible to store individual discriminants separately as soon as the clus-
ter they fall into has multiplicity B − 1, to optimize the order in which those
class group computations are done (picking the discriminants with largest appar-
ent multiplicity first). But class group computations take a negligible amount of
time compared to the time spent locating the clusters. It does not seem worth-
wile to decrease the robustness of the cluster algorithm for these optimizations:
in fact even if a given implementation misses a few fields due to roundoff errors
or hardware faults, it has a good chance of locating the cluster nevertheless since
neighboring discriminants should more than make up for the forms it lost. This
is no longer true if we take the computed cluster multiplicity at face value and
use an early abort strategy.

4.2.3. Mirror theorem. Scholz’s mirror theorem asserts that δ(d) := 1 + r3(d) −
r3(−3d) ∈ {0, 1} if d > 0. Hence it is enough to consider real fields and to check
directly the mirror complex field once a high enough real 3-rank is detected. Using
only the heuristic (4) above, one does not gain anything for the cluster size, since
k is 3 times larger for a real field of the same rank (since C− = 3C+), but the
target rank is a priori one less.

On the other hand, under the Cohen-Lenstra model, Dutarte’s heuristic [16]
predicts that the probability to improve on a 3-rank by looking through the mirror
(changing d → −3d) is small:
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Conjecture 4.3 (Dutarte). Let P be the Cohen-Lenstra “probability”; then

P (δ(∆) = 0 | r3(∆) = r) = 3−r−1

P (δ(∆) = 1 | r3(−3∆) = r) = 3−r

as ∆ > 0 runs through the discriminant of real quadratic fields.

The apparent paradox that both these quantities should be small comes from the
fact that, under Cohen-Lenstra’s model, P (r3(∆ > 0) = r) is roughly 3r times
smaller than P (r3(∆ < 0) = r). From this new heuristic it looks a good idea to
find imaginary quadratic fields of high 3-rank by targeting real quadratic fields
of the same rank. Unfortunately, we now run the risk of missing a few fields.

5. Results and timings

5.1. Looking for r3 = 4. We ran our implementations of the standard (rigorous
checks, no cluster) and modified (relax local conditions, use clusters) algorithms
on a Pentium III computer (1GHz CPU, 1GB RAM). We allocated 256MB to
the standard program, and 128MB to the one using clusters.

We produced the list of −1010 < ∆ < 0, such that r3(∆) > 4. There are 26
such imaginary fundamental discriminants, and they all satisfy r3(∆) = 4 (the
starred fields were discovered by Diaz y Diaz [14]):

−653329427∗, −1876623871, −2520963512∗, −2676277123, −3146813128∗,
−3972542271, −4724490703∗, −5252241199∗, −5288116947∗, −5866841451,
−6127792087, −6223830596, −6903777631, −6905985272∗, −7189850292,
−7309564084, −7311232679∗, −7592829611, −7993105123∗, −8308370723∗,
−8417780779, −8418280523∗, −8624990111, −9552870967, −9775810067∗,
−9906365947∗.

The computing time for the standard algorithm was 4 hours. This goes down to
44 minutes using clusters of size 26 (α ≈ 1/4): the program found 39 clusters of
multiplicity larger than (34 − 1)/2 in 42 minutes and spent 2 more minutes for
unconditionnal direct class group computations, yielding the 26 fields above.

The required class groups were computed by PARI/GP [25], using the routine

quadclassunit, with third parameter equal to [0.1,
√

|∆| /3 / log2 |∆|], prevent-
ing it from assuming the GRH. With these parameters, PARI outputs forms which
are guaranteed to generate the class group, from which we obtain a set of genera-
tors for the 3-Sylow. We then checked, using Gauss reduction, that the computed
order for these generators was correct, and that they were independent2.

According to Conjecture 4.3, given that the imaginary 3-rank is 4, we should
have r3(−∆) = 4 with probability 3−4 ≈ 1.2%. As expected, r3(−3∆) = 3 for all
these fields.

We then experimented with real quadratic fields with r4(∆) > 4, letting the
program run until it had found the first 26 such fields:

2The more general built-in PARI routines bnfinit/ bnfcertify could have been used here,
but would make checking the clusters more expensive than locating them.



14 KARIM BELABAS

58343207081, 117097095001, 165780397949, 185418133372, 193395920824,
198267101688, 241178598748, 274688570237, 297414764897, 314582172161,
352054233697, 360366596041, 369883565164, 380649804421, 459967693253,
461887196156, 468433123709, 479292608317, 501493520533, 509316379432,
555103596037, 594823573237, 604233145121, 610409578681, 647704535605,
653339592337.

The computing time was 10 days and 14 hours with the standard algorithm. We
then looked for interesting clusters up to ∆ = 653339592337, for comparison.
Using clusters of size 27 (α ≈ 1/6), the program finds 36 clusters in 16 hours.
Raising cluster size to 28 (α ≈ 1/3), we get 419 clusters in 15 hours. Again, no
pleasant surprise: these 26 fields all have 3-rank exactly equal to four and Scholz
defect 1.

5.2. Looking for r3 = 5. The quadratic field of discriminant

∆0 = −5393946914743

was discovered by Quer, and has r3(∆0) = 5. Our objective was to look for the
first real quadratic field of the same 3-rank (the smallest known, also found by
Quer, has discriminant about 1018, out of reach of our programs), and to prove
that ∆0 is the smallest discriminant in absolute value such that r3(∆0) = 5.

We ran a search for r3(∆) = 4 for all 0 < ∆ 6 3 |∆0| ≈ 1.6 1013, using clusters
of size 28 = 256 (α ≈ 1/3). The search ran for a total of 136 days divided between
eight PIII at 500MHz. Each PC was in charge of an interval of length M = 1012,
using 128MB of memory, which enabled it to check an interval of length 235 in
one pass. They found 16686 clusters of multiplicity larger than 40, all of which
happen to have multiplicity lower than both 2× (34 − 1)/2 and (35 − 1)/2. This
means that we expect at most one interesting field per cluster and it will have
3-rank less than 4 in any case.

The same program was ran again on each of these 16686 intervals of length
256 (for about 20 days), yielding 1618 real fields of 3-rank equal to 4, with the
following distribution:

k ∆ ∈ [(k − 1)M, kM ] Time cluster generation #clusters
1 59 2.1 709
2 79 2.8 885
3 80 3.3 898
4 95 3.8 996
5 104 4.5 939
6 105 5.2 1054
7 96 6.0 1094
8 120 6.7 1044
9 107 7.3 1113

10 89 8.0 992
11 119 8.6 1096
12 86 9.1 1155
13 121 9.7 1115
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14 108 10.2 1137
15 126 10.7 1123
16 104 11.2 1131
17 20 (up to 3 |∆0|) 1.5 410

Total 1618 fields 110 days 16686 clusters

The average size of a good cluster (yielding a field) was µ = 52.9, with standard
deviation σ = 3.7, the smallest of which had multiplicity 43. The average size of
a bad cluster was 42.0 (σ = 3.4), the largest of which had multiplicity 68, due to
a non-fundamental discriminant of multiplicity 39.

To double check these results, we ran PARI/GP to directly compute class
groups for all fields in the clusters, letting it assume the truth of the GRH so
as to use a subexponential algorithm (using quadclassunit; about 7 hours total
time). There was no discrepancy.

The predicted value for P (r4(∆ > 0) = 4) in the Cohen-Lenstra model is

243

268029132800

∏

k>1

(1 − 3−k) ≈ 5.078 10−10

Using our 17 data points, and dividing by the well-known density for quadratic
discriminants 3/π2, the experimental probability increases monotonously from
1.94 10−10 to 3.29 10−10. The order of magnitude looks right, but not much can
be said about the actual value.

Using PARI/GP again, this time using the technique described in the previous
subsection, we computed unconditionally the 3-ranks of the complex mirrors of
the 1618 real fields we found (4 hours time). According to Dutarte’s heuristic,
roughly 1618/35 ≈ 6.7 of them should have a complex mirror of 3-rank equal to 5.
In fact there are exactly 6 of them, yielding the pairs

3011319569053 −9033958707159
3612077876156 −10836233628468
5659632455069 −16978897365207

11339239749913 −34017719249739
16039985807017 −48119957421051
16181840744229 −5393946914743

and |∆0| is indeed the smallest. This computation also proves that there exists
no 0 < ∆ 6 3 |∆0| such that r3(∆) > 4.
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Département de Mathématiques (bât. 425)
F-91405 Orsay (France)
Karim.Belabas@math.u-psud.fr


