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COMPUTING THE RESIDUE

OF THE DEDEKIND ZETA FUNCTION

KARIM BELABAS AND EDUARDO FRIEDMAN

Abstract. Assuming the Generalized Riemann Hypothesis, Bach has shown
that one can calculate the residue of the Dedekind zeta function of a number
field K by a clever use of the splitting of primes p < X, with an error asymp-

totically bounded by 8.33 logΔK/(
√
X logX), where ΔK is the absolute value

of the discriminant of K. Guided by Weil’s explicit formula and still assuming
GRH, we make a different use of the splitting of primes and thereby improve
Bach’s constant to 2.33. This results in substantial speeding of one part of

Buchmann’s class group algorithm.

1. Introduction

Given a number field K, Buchmann’s algorithm [4] computes the ideal class
group C�K and units U(K). It uses an index calculus strategy which requires a
factor base B of prime ideals generating C�K , and a halting criterion based on a

computed approximation ĥR of the product of the class number h by the regula-
tor R. Indeed, it produces elements in the kernel Λ of the natural surjective map
ZB � C�K by factoring principal ideals (α), then proceeds to find dependencies
between those, yielding pairs α, α′ generating the same principal ideals, i.e., units

α/α′. This gives a tentative class number ĥ and a tentative regulator R̂, both

integral multiples of h and R, respectively. If we find ĥR̂ < 2hR, then h = ĥ and
R = R̂, thereby halting the algorithm.

Buchmann’s algorithm requires two important inputs:

• a factorbase B = B(K) so that ZB � C�K ,
• an approximate value of log(hR), with a rigorous error term.1

Assuming a suitable Generalized Riemann Hypothesis (GRH), Bach [1, 2] showed
how to choose a reasonably small B and found an approximation for log(hR) using
averages of truncated Euler products. Schoof [10] had previously found a simpler
approximation, but with a worse error bound.

This paper is a companion to [3], where we improved numerically on Bach’s first
result (factorbase choice) using the Poitou-Weil explicit formula [9]. Our main aim
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here is to improve on Bach’s second result. Let

BK(X) :=

K−Q∑
p,m

Np
m<X

log Np

Npm/2

( √
X logX

Npm/2 log Npm
− 1

)
,

fK(X) :=
3
(
BK(X)−BK(X/9)

)
2
√
X log(3X)

,

where in the definition of BK the sum is over all prime ideal powers pm with absolute

norm Npm < X and the notation
∑K−k means that the sum for k is subtracted

from the corresponding sum for K.

Theorem 1. Let K be a number field of degree n > 1, let κK be the residue of the
Dedekind zeta ζK(s) at s = 1, and let ΔK be the absolute value of the discriminant
of K. Assume GRH, i.e., that ζK(s) �= 0 and ζQ(s) �= 0 whenever Re(s) > 1

2 .
Then, for any real X ≥ 69, the difference |log κK − fK(X)| is bounded above by

2.324 logΔK√
X log(3X)

((
1 +

3.88

log(X/9)

)(
1 +

2√
logΔK

)2

+
4.26(n− 1)√
X logΔK

)
.

Bach’s original result [2, Lemma 4.7 and §7], also assuming GRH, is of the form

|log κK − gK(X)| ≤ 8.324 logΔK√
X log(X/2)

(
1 + E(ΔK , X)

)
,

where gK(X) is a function involving prime ideals of norm ≤ X
(
different from

fK(X)
)
, and E(Δ, X) → 0.2 Both Bach’s and our results show that choosing

X = O(logΔK/ log logΔK)2 computes log(hR) with an error bounded by 1
2 log 2.

Our better error bounds translate to a shorter list of prime ideals, by an asymptotic
factor of (8.324/2.324)2 ≈ 12.8, and correspondingly faster computations for log κK .
In Section 5, we give tables comparing Schoof’s, Bach’s and our method for various
ranges of ΔK and [K : Q].

2. The explicit formula

Weil’s explicit formula [12], as simplified by Poitou [9], is the identity∑
ρ

F̂ (γρ) = − 2
∑
p,m

log Np

Npm/2
F (m logNp) + 4

∫ ∞

0

F (x) cosh(x/2) dx

+ F (0)
(
logΔK − nKC − nK log(8π)− rK

π

2

)
(1)

+ nK

∫ ∞

0

F (0)− F (x)

2 sinh(x/2)
dx+ rK

∫ ∞

0

F (0)− F (x)

2 cosh(x/2)
dx.

Here K is a number field of degree nK = [K : Q], having exactly rK real em-
beddings, and ΔK is the absolute value of its discriminant. The auxiliary func-
tion F : R → C is assumed to be even, and such that for some ε > 0, the
function F (x)e(

1
2+ε)x is of bounded variation and integrable over [0,+∞). Also

2Here 8.324 ≈
√
2 · 2

3
·
(
23/2 + 6

)
[2, p. 22]. In comparing our result with Bach’s, one should

bear in mind that Bach’s x is our X/2, since X bounds the biggest rational prime whose splitting
must be computed.
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F (0) − F (x)

)
/x is assumed of bounded variation on [0,+∞) and F must be as-

signed the average value at any jump discontinuity. By C we mean Euler’s constant
0.5772 · · · .

The Fourier transform F̂ of F on the left-hand side of (1) is

(2) F̂ (γ) :=

∫ +∞

−∞
F (t)eitγ dt.

The sum of the F̂ (γρ) runs over all nontrivial zeroes ρ = 1
2 + iγρ of the Dedekind

zeta function ζK(s), with multiple zeroes repeated accordingly. The Riemann Hy-
pothesis (GRH) for ζK states that γρ ∈ R. Given our assumptions on F , the sum
over ρ converges when understood as

lim
R→+∞

∑
|Im(ρ)|<R

F̂ (γρ).

In the sum on the right of (1), p runs over all prime ideals of (the ring of algebraic
integers of) K, m runs over all positive integers, and the absolute norm of p is
denoted by Np.

If K and k are number fields, on subtracting Weil’s formula for k from (1), we
obtain the form we shall use most often:

(3)
K−k∑
ρ

F̂ (γρ) = −2
K−k∑
p,m

log Np

Npm/2
F (m logNp) + F (0)LK/k

+ (nK − nk)

∫ ∞

0

F (0)− F (t)

2 sinh(t/2)
dt+ (rK − rk)

∫ ∞

0

F (0)− F (t)

2 cosh(t/2)
dt,

where

LK/k := log

(
ΔK

Δk

)
− (nK − nk)

(
C + log(8π)

)
− (rK − rk)

π

2
.

3. The auxiliary function

In this section we explain how our choice of auxiliary function F = Fs,X is
motivated by the form of the explicit formula and the need to avoid bounding
conditionally convergent expressions.

If K and k are number fields, the obvious path to computing

κK/k := lim
s→1

ζK
ζk

(s)

is via the Euler product ζK(s) =
∏

p
(1−Np−s)−1, i.e.,

(4) log
ζK
ζk

(s) = −
K−k∑
p

log(1−Np
−s) =

K−k∑
p

∞∑
m=1

Np−ms

m
(Re(s) > 1).

A näıve attempt to approximate log ζK
ζk

(s) by a partial sum would therefore be

log
ζK
ζk

(s)−
K−k∑
p,m

Np
m<X

Np−ms

m
=

K−k∑
p,m

log Np
H(logNpm)

Npm/2
,(5)
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where (for X not a prime power)

H(t) = Hs,X(t) :=

{
gs(t) if |t| ≥ logX,

0 otherwise,

and where

(6) gs(t) :=
exp (−h|t|)

|t| , h := s− 1

2
.

The explicit formula (3) gives an expression for the right-hand side of (5). Its most

interesting term is
∑K−k

ρ Ĥ(γρ). While there is no simple closed expression for Ĥ,
it is easy to write its leading term. After two integrations by parts using

g′s(t) = −
(
h+

1

t

)
gs(t), g′′s (t) =

(
h2 +

2ht+ 2

t2

)
gs(t),(7)

and setting T := logX > 0, we obtain

Ĥ(γ) =− gs(T )

(
2γ sin(γT )

h2 + γ2
−

2
(
h+ 1

T

)
cos(γT )

h2 + γ2

)
− 4

h2 + γ2

∫ +∞

T

cos(γt)gs(t)
(ht+ 1)

t2
dt.(8)

Even assuming GRH, the first term is highly unwelcome since we cannot control

(9)

K−k∑
ρ

2γρ sin(γρT )

h2 + γ2
ρ

by its absolute value.3 The simple identity

γ sin(γT )

h2 + γ2
=

sin(γT )

γ
− h2

(h2 + γ2)

sin(γT )

γ
,(10)

shows that our troubles in (9) come from
∑

ρ
2 sin(γρT )

γρ
. Fortunately, this is just

the term that appears in the explicit formula when we use as auxiliary function the
step function

H̃(t) :=

{
1 if |t| ≤ T ,

0 otherwise.

To cancel the bad term sin(γT )/γ in (10) we must therefore choose the auxiliary

function to be H(t) + gs(T )H̃(t). Normalizing so that F (0) = 1 leads to our
auxiliary function

(11) F (t) = Fs,X(t) :=

{
1 if |t| ≤ logX,

fs,X(t) otherwise,

where

(12) fs,X(t) :=
gs(t)

gs(T )
=

T

|t|e
−h(|t|−T )

(
h := s− 1

2 , T := logX
)
.

We shall see in the next section that this choice of F leads to a sum
∑K−k

ρ F̂ (γρ)
which can be controlled well under GRH.

Using (8), we obtain:

3The rest of the terms are easily bounded under GRH, as we shall see in the next section.
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Lemma 2. For Re(s) > 1
2 and X > 1, let T := logX, let Fs,X be as in (11) and

let F̂s,X be its Fourier transform (2). Then, for γ ∈ R and notation as in (12), we
have

F̂s,X(γ) =
2h2 sin(γT )

(h2 + γ2)γ
+

2
(
h+ 1

T

)
cos(γT )

h2 + γ2

− 4

(h2 + γ2)

∫ +∞

T

cos(γt)fs,X(t)
(ht+ 1)

t2
dt.

4. Proof of Theorem 1

We now apply Lemma 2 to the explicit formula.

Lemma 3. Let K and k be number fields such that the Riemann Hypothesis holds
for ζK and ζk. Then, for Re(s) > 1

2 , T := logX > 0, and notation as in (3), (6)
and (12), we have

1

gs(T )
log

ζK
ζk

(s)−
K−k∑
p,m

Np
m<X

log Np

Npm/2

(
fs,X(m logNp)− 1

)

= −h2
K−k∑
ρ

sin(γρT )

(h2 + γ2
ρ)γρ

−
(
h+

1

T

)K−k∑
ρ

cos(γρT )

h2 + γ2
ρ

(13)

+

K−k∑
ρ

2

h2 + γ2
ρ

∫ +∞

T

(ht+ 1)

t2
cos(γρt)fs,X(t) dt+

1

2
LK/k

+
nK − nk

2

∫ ∞

T

1− fs,X(t)

2 sinh(t/2)
dt+

rK − rk
2

∫ ∞

T

1− fs,X(t)

2 cosh(t/2)
dt.

The branch of log ζK
ζk

(s) in (13) is real for real s > 1.

Proof. Assume first that Re(s) > 1. Then the assumptions in the explicit formula
(3) apply to Fs,X in (11), so we find

2
K−k∑
p,m

Np
m<X

log Np

Npm/2

(
1− fs,X(m logNp)

)
+ 2

K−k∑
p,m

log Np

Npm/2
fs,X(m log Np)

+

K−k∑
ρ

F̂s,X(γρ) = LK/k + (nK − nk)

∫ ∞

T

1− fs,X(t)

2 sinh(t/2)
dt

+ (rK − rk)

∫ ∞

T

1− fs,X(t)

2 cosh(t/2)
dt.

Note that
(
cf. (4)

)
,

K−k∑
p,m

log Np

Npm/2
fs,X(m logNp) =

1

gs(T )

K−k∑
p,m

log Np

Npm/2
gs(m logNp)

=
1

gs(T )
log

ζK
ζk

(s).

The lemma for Re(s) > 1 now follows from Lemma 2.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

362 KARIM BELABAS AND EDUARDO FRIEDMAN

To obtain (13) for Re(s) > 1
2 by analytic continuation, note that GRH implies

γ2
ρ + h2 �= 0 for Re(s) > 1

2 , and that log ζK
ζk

(s) is analytic in that half-plane. Hence

we only need to estimate for Re(s) = σ > 1
2 ,∫ +∞

T

∣∣∣ (ht+ 1)

t2
cos(γρt)fs,X(t)

∣∣∣ dt ≤ |h|T + 1

T 3gσ(T )

∫ +∞

T

e−(σ− 1
2 )t dt

=
|h|T + 1

T 2(σ − 1
2 )

. �

Lemma 3 nearly takes us to our goal since gs(T ) = 1/(Xs− 1
2 logX) for T = logX.

Indeed, multiplying (13) by gs(T ) and letting σ = Re(s) > 1
2 , we see that to obtain∣∣∣ log ζK

ζk
(s)− gs(T )

K−k∑
p,m

Np
m<X

log Np

Npm/2

(
fs,X(m log Np)− 1

)∣∣∣ < c logΔK

Xσ− 1
2 logX

it would suffice to bound the right-hand side of (13) by c logΔK . It is well known
(see Lemma 5) that ∑

ρ
ζK(ρ)=0

1

h2 + γ2
ρ

= O
(
logΔK

)
.

Unfortunately, the terms sin(γρT )/γρ in (13) impede our desired bound since we
can only bound them by T = logX, even under GRH. This leads to the loss of a
factor of logX.

To prevent this loss, our next step is to use Lemma 3 for T and T −a, with a > 0
to be selected presently.

Lemma 4. Let K/k be an extension of number fields such that the Riemann Hy-
pothesis holds for ζK and ζk. Then, for 0 < a < T , we have

(14)

∣∣∣∣( 1

g(T )
− 1

g(T − a)

)
log κK/k −A(T ) + A(T − a)

∣∣∣∣
≤ (nK − nk)ae

−(T−a)/2β(T − a) + ca,T

K+k∑
ρ

1
1
4 + γ2

ρ

,

where the sum
∑K+k

ρ runs over the zeroes of ζK and over those of ζk (repeating

any common zeroes),

(15) g(t) :=
e−t/2

t
, κK/k := lim

s→1
log

ζK
ζk

(s),

A(t) :=
K−k∑
p,m

Np
m<et

log Np

Npm/2

(
g(m logNp)

g(t)
− 1

)
,

(16) ca,T := 1 +
a

4
+

6

T − a
, β(t) :=

1

2

(1

2
+

1

t

)
et log

(et + 1

et − 1

)
.

Proof. The left-hand side of (14) is simply the absolute value of the difference at
s = 1 of the expressions on the left-hand side of (13) for T and T − a. Thus, we
need to estimate the difference of terms on the right-hand side of (13) for T and
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T − a at s = 1. Since all sums in (13) are absolutely convergent, these estimations
are straightforward, but we proceed with the details.

The mean value theorem gives |sin(γT )− sin(γ(T − a)| ≤ |γa| for γ ∈ R. As
GRH means that γρ ∈ R, we have (using s = 1, so h = 1

2 ),∣∣∣∣∣−h2
K−k∑
ρ

sin(γρT )

(h2 + γ2
ρ)γρ

− (−h2)
K−k∑
ρ

sin
(
γρ(T − a)

)
(h2 + γ2

ρ)γρ

∣∣∣∣∣ ≤ a

4

K+k∑
ρ

1
1
4 + γ2

ρ

.

The difference of terms involving (h + 1
T ) cos(γρT ) on the right-hand side of (13)

can be estimated trivially by 1
2 + 1

T + 1
2 + 1

T−a < 1 + 2
T−a . As for the third term,

using g = g1 and f1,X(t) = TeT/2

tet/2
, we have

∣∣∣∣ 2 ∫ +∞

T

( t2 + 1)

t2
cos(γρt)f1,X(t) dt

∣∣∣∣ ≤ 2

T

∫ +∞

T

(1

2
+

1

t

)TeT/2

tet/2
dt =

2

T
,

where we used (7) to evaluate the integral. Applying this with T replaced by T −a,
we find that the difference of the first three sums on the right-hand side of (13)
contribute at most ca times the sums over the zeroes in (14).

We now consider the difference of the remaining terms on the right-hand side of
(13), i.e., those not involving the zeroes ρ. Note that 1

2LK/k simply cancels. We
can assume k �= K, for otherwise the difference vanishes. To control the integrals,
abbreviate

q(T ) :=

∫ ∞

T

1− f1,X(t)

2 sinh(t/2)
dt, q̃(T ) :=

∫ ∞

T

1− f1,X(t)

2 cosh(t/2)
dt.

Then we have

−q′(T ) =

∫ ∞

T

(1 + T
2 )e

T/2

t(et − 1)
dt ≤

(1

2
+

1

T

)
eT/2

∫ ∞

T

dt

et − 1

= −
(1

2
+

1

T

)
eT/2 log

(
1− e−T

)
.(17)

Similarly, we have

∣∣q̃ ′(T )
∣∣ ≤ (1

2
+

1

T

)
eT/2 log

(
1 + e−T

)
.

Moreover, the sign of the derivative in (17) shows that q and q̃ are decreasing
functions.

Let sK denote the number of complex places of K, so that nK = rK + 2sK .
Using k ⊂ K we have |rK − rk| ≤ nK −nk; indeed, both sides vanish if k = K, and

−nK + nk ≤ −nk ≤ −rk ≤ rK − rk = nK − nk − 2(sK − sk) ≤ nK − nk,
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otherwise (the leftmost inequality uses nK ≥ 2nk). Hence∣∣∣∣nK − nk

2

(
q(T )− q(T − a)

)
+

rK − rk
2

(
q̃(T )− q̃(T − a)

)∣∣∣∣
≤ nK − nk

2

(
q(T − a)− q(T )

)
+

nK − nk

2

(
q̃(T − a)− q̃(T )

)
= − (nK − nk)a

2

(
q′(U) + q̃ ′(U)

)
(for some T − a ≤ U ≤ T )

≤ (nK − nk)a

2

(1

2
+

1

U

)
eU/2

(
log(1 + e−U

)
− log

(
1− e−U )

)
= (nK − nk)ae

−U/2β(U).

Since β(U) is a decreasing function of U > 0, the result follows from T −a ≤ U . �

Next we give the traditional estimate for the term
∑

ρ

(
1
4 + γ2

ρ

)−1
in Lemma 4.

Lemma 5 (Landau, Stark [11]). Suppose σ > 1 and assume the Riemann hypoth-
esis for ζK . Then∑

ρ
ζK(ρ)=0

1
1
4 + γ2

ρ

≤ (2σ − 1)

(
logΔK +

2

σ − 1
− dK,σ

)
,

where, Ψ(σ) := Γ′(σ)/Γ(σ), and

(18) dK,σ := −2
ζ ′K
ζK

(σ) + nK

(
log(2π)−Ψ(σ)

)
+ rK

Ψ
(
σ+1
2

)
−Ψ

(
σ
2

)
2

− 2

σ
.

Proof. For h := σ − 1
2 > 1

2 and γ ∈ R, we have

1
1
4 + γ2

=
4h2

h2 + (2hγ)2
<

4h2

h2 + γ2
.

Now, since σ ∈ R and the zeroes ρ = 1
2 + iγρ come in conjugate pairs,∑

ρ

h

h2 + γ2
ρ

=
∑
ρ

Re
( 1

σ − ρ

)
= Re

( ∑
ρ

1

σ − ρ

)
=

∑
ρ

1

σ − ρ
,

where the latter sums are understood as limR→∞
∑

|γρ|<R(σ− ρ)−1. This sum was

evaluated by Stark [11, eq. (9)] (cf. [6, Satz 180]). Namely,4

(19)
∑
ρ

1

σ − ρ
=

logΔK

2
+

1

σ − 1
+

1

σ
− 1

2
dK,σ,

where we have used the duplication formula

Ψ(σ) = log 2 +
Ψ(σ2 ) + Ψ(σ+1

2 )

2
. �

Proof of Theorem 1. In Lemma 4, take k = Q, a := log(9) and T := logX. The
hypothesis 0 < a < T in Lemma 4 is satisfied since X > 9. A short calculation
shows

1

g(T )
− 1

g(T − a)
=

2
√
X log(3X)

3
,(20)

4 One can prove (19) with the explicit formula, using F (x) := exp(−(σ− 1
2
)|x|). However, the

classical proof in [11] with the Weierstraß product and functional equation is faster.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

COMPUTING THE RESIDUE OF THE DEDEKIND ZETA FUNCTION 365

with g as in (15). Since κK/Q = κK and

A(T )−A(T − a) = BK(X)−BK(X/9),

Lemma 4 yields for any σ > 1,

(21)
2
√
X log(3X)

3
|log κK − fK(X)|

≤ ca,T

K+Q∑
ρ

1
1
4 + γ2

ρ

+ (nK − nQ)ae
−(T−a)/2β(T − a).

The sum over the nontrivial zeroes of ζQ is classical [5, §12, eqs. (10) and (11)],∑
ρ

ζQ(ρ)=0

1
1
4 + γ2

ρ

=
C

2
+ 1− log(4π)

2
= .023095 · · · .

We also have

ca,T = 1 +
log 9

4
+

6

log(X/9)
,

(nK − nQ)ae
−(T−a)/2 =

(n− 1)3 log 9√
X

.

We have already noted in the proof of Lemma 4 that β(T − a) = β
(
log(X/9)

)
is a

decreasing function of X, for X > 9. Moreover, β
(
log(X/9)

)
< 1 for X > 68.1.

We turn to Lemma 5 to bound the sum over the zeroes of ζK . The main term
in that lemma (say for 1 < σ < 3) is

(2σ − 1)
(
logΔK +

2

σ − 1

)
.

This is minimized when σ := 1+ (logΔK)
− 1

2 . We fix this value of σ for the rest of
this proof. Then

(2σ − 1)
(
logΔK +

2

σ − 1

)
=

(√
logΔK + 2

)2

.

Since ΔK ≥ 3 for K �= Q, we have 1 < σ ≤ 1 +
(
log 3

)− 1
2 < 3.

We now estimate dK,σ in Lemma 5. Since
ζ′
K

ζK
(σ) < 0, nK ≥ 2 and Ψ(x) is

increasing for x > 0, we have

dK,σ > 2
(
log(2π)−Ψ(σ)

)
− 2

σ
(since log(2π)−Ψ(3) > 0)

= 2 log(2π)− 2Ψ(σ + 1) > 2 log(2π)− 2Ψ(4) = 1.163 · · · .
Since 2σ − 1 > 1, it follows that∑

ρ
ζQ(ρ)=0

1
1
4 + γ2

ρ

− (2σ − 1)dK,σ < 0.

Hence (21) and Lemma 5 give, for X ≥ 68.1,

2
√
X log(3X)

3
|log κK − fK(X)|

≤
(
1 +

log 9

4
+

6

log(X/9)

)(√
logΔK + 2

)2

+
(n− 1)3 log 9√

X
.
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Pulling out a factor of (1 + log 9
4 ) logΔK gives Theorem 1, since

3

2

(
1 +

log 9

4

)
< 2.324,

6

1 + log 9
4

< 3.88,
3 log 9

1 + log 9
4

< 4.26. �

An examination of the proof shows that the choice of a = log 9 = 2.197 · · · is only
nearly optimal. The optimal a≈ 3.01 improves the constant 2.324 in Theorem 1
to about 2.253. We have chosen a = log 9 because it simplifies several expressions,
beginning with (20).

Remark 6. Although the proof requires X > ea = 9, the restriction X ≥ 69 was
only needed to ensure β

(
log(X/9)

)
< 1. The conclusion of Theorem 1 holds for

X > 9 provided the final term 4.26(n−1)√
X logΔK

is replaced by 4.26(n−1)β(log(X/9))√
X logΔK

.

We can improve slightly on Theorem 1 by not dropping some favorable terms.

Theorem 7. Let K be a number field of degree nK with rK real places. With
the same assumptions and notation as in Theorem 1, except we now only assume
X > 9, we have for any σ > 1,

|log κK − fK(X)| ≤ 2.324(2σ − 1)√
X log(3X)

·
(
δ(K,σ,X)

(
1 +

3.88

log(X/9)

)
+

4.26(nK − 1)β
(
log(X/9)

)
(2σ − 1)

√
X

)
,

where

δ(K,σ,X) := logΔK +
C
2 + 1− log(4π)

2

2σ − 1
+

2

σ − 1
+

2

σ
− 2

∑
p

Np<X

log Np

Npσ − 1

− nK

(
log(2π)−Ψ(σ)

)
− rK

Ψ
(
σ+1
2

)
−Ψ

(
σ
2

)
2

.

Here Ψ(σ) := Γ′(σ)/Γ(σ) and β(t) is defined in (16).

Proof. We proceed as in the proof of the previous theorem, fixing again a = log 9,

but we do not fix σ. If in dK,σ

(
see (18)

)
we truncate − ζ′

K

ζK
(σ) =

∑
p

log Np

Npσ−1 , instead

of (21) we obtain

|log κK − fK(X)| ≤ 3(2σ − 1)

2
√
X log(3X)

·
(
δ(K,σ,X)

(
1 +

log 9

4
+

6

log(X/9)

)
+

(nK − 1)3 log 9 · β
(
log(X/9)

)
(2σ − 1)

√
X

)
.

�

In Theorem 7, σ = 1 + 1/
√
logΔK is usually a good choice. Taking instead

σ = 1.5, the value used by Bach [2, Lemma 4.2], we obtain
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Corollary 8. With the same assumptions and notation as in Theorem 7, we have

|log κK − fK(X)| ≤ 4.65√
X log(3X)

(
2.23nKβ

(
log(X/9)

)
√
X

+
(
1 +

3.88

log(X/9)

)(
logΔK + 3.35− 1.801nK − .619rK − 2

∑
p

Np<X

log Np

Np1.5

))
.

5. Examples

This section compares, experimentally, three algorithms evaluating log κK , by
splitting rational primes up to a fixed boundX. These involve the functions AK(X),
gK(X) and fK(X) defined below. All programs were implemented in the PARI/GP
system [8].

We first define Schoof’s approximation

AK(X) := log
∏
p<X

1− p−1∏
p|p,Np<X 1−Np−1

,

originating in [10] and whose distance to log κK is bounded by Bach [2, Theorem 6.2
and Table 2] under GRH.5 It is in principle weaker than our fK(X) or Bach’s gK(X),
since it only satisfies

|log κK −AK(X)| � logΔK√
X

(see also the remark at the end of [2, §8]). For X even, Bach’s approximation to
log κK is

gK(X) :=

x−1∑
i=0

aiAK(x+ i),

where x = X/2, and

ai :=
(x+ i) log(x+ i)∑x−1

j=0 (x+ j) log(x+ j)
.

The distance |gK(X)− log κK | is bounded in [2, Theorem 6.3 and Table 1], assum-
ing GRH. Finally, our function

fK(X) :=
3
(
BK(X)− BK(X/9)

)
2
√
X log(3X)

appears in Theorem 1. We assume X ≥ 10 and include the term β
(
log(X/9)

)
from

Remark 6 in the error bound.
We evaluate these three functions by first splitting all primes p ≤ X, and then by

using O(X) elementary operations in {+,×, /, log,
√
·}. We can thus approximate

those functions at X to a fixed accuracy in time Õ(X), softly linear in X. The
application to Buchmann’s algorithm requires the computation of log κK with an
error bounded by 1

2 log 2.

5As Bach warns, this bound assumes a result of Oesterlé’s [2, equation (12)] whose proof has
never been published.
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Table 1. Least X so that |fK(X)− log κK | < 1
2 log 2

Δ n = 2 n = 6 n = 10 n = 20 n = 50
105 1,619 1,632 – – –
1010 3,169 3,181 3,194 – –
1020 6,838 6,850 6,861 – –
1050 21,619 21,629 21,639 21,665 –
10100 56,332 56,341 56,351 56,374 56,445
10200 156,151 156,160 156,169 156,191 156,256

Table 2. Least X so that |gK(X)− log κK | < 1
2 log 2

Δ n = 2 n = 6 n = 10 n = 20 n = 50
105 4,469 6,493 – – –
1010 9,799 11,324 13,857 – –
1020 22,476 25,621 28,935 – –
1050 91,044 96,596 99,999 110,802 –
10100 268,680 276,338 284,088 303,864 366,575
10200 866,110 878,749 891,468 923,610 1,000,000

Table 3. Least X so that |AK(X)− log κK | < 1
2 log 2

Δ n = 2 n = 6 n = 10 n = 20 n = 50
105 13,420 46,329 – – –
1010 31,829 65,465 119,149 – –
1020 76,617 130,922 212,428 – –
1050 347,503 476,196 566,686 1,000,001 –
10100 1,080,396 1,298,034 1,541,474 2,268,510 5,559,680
10200 4,054,695 4,502,259 4,979,474 6,305,841 11,493,924

For each function h ∈ {fK , gK , AK}, given a bound of the number field degree
nK ≤ n and discriminant ΔK ≤ Δ, Tables 1, 2 and 3 list the first integer X such
that

|h(X)− log κK | < 1

2
log 2,

according to the error bounds mentioned above (all of which assume GRH). A dash
(–) indicates that this value of nK and ΔK is forbidden by Odlyzko’s discriminant
bounds [7, Table 1].

Besides the asymptotic improvement for large discriminants, the weak depen-
dency on the number field degree in secondary error terms makes our bound almost
impervious to the degree, while Bach’s and Schoof’s are noticeably affected by n,
even for relatively large discriminants.
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