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Setup (1/4)

Let F be a number field. There are many interesting things we can compute
about F :

Invariants: maximal order OF , class group Cl(F ), units U(F ), higher
algebraic K-groups, Dedekind ζF . . .

Subfields: Galois group, lattice of subfields.

Extensions: build L/F , e.g given explicitly by primitive elements or
implicitly via Kummer or class field theory. Invariants thereof (e.g in class
field towers).

Basic operations: elementary operations on elements and ideals of OF ,
mostly multiplications (at least in class field theory).
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Setup (2/4)

For most of these problems, there exist efficient algorithms, deterministic or
randomized, possibly assuming some deep conjecture (GRH, density of
friable elements in appropriate sets. . . ), possibly giving a wrong result with
small probability in an appropriate model, possibly not an algorithm at all but
usually giving sensible results. . .

But there are a number of pitfalls, especially when the degree n = [F : Q] gets
large, introducing spurious bottlenecks in otherwise sensible computations.

Some pathologies:

Randomization trouble: good expected cost but bad worst-case
behaviour, sometimes inherent to a given instance.

Coefficient explosion in intermediate, and final, results (polynomial
number of operations, but operands of exponential size).

Numerical instability
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Setup (3/4)

Silly example: in Z/NZ or (Z/NZ)∗, in order to compute

xk (mod N)

for some k > 2, it is advisable to use smallest non-negative (or centered)
residues in Z, and to reduce intermediate results modulo N whenever
possible, not at the very end. Preconditioning on N also helps: Montgomery
multiplication, FFT representation for a suitable approximation of 1/N (dyadic
or floating point).

(Minor) Pitfall: on the other hand, when computing
∑

i

aibi (mod N),

reduce at the very end, not after each multiplication!
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Setup (4/4)

We shall explain a number of (( folklore )) techniques generalizing the obvious
part of the Z/NZ example, especially when n := [F : Q] is large. The focus is
on class field theoretic examples, in particular the computation of class fields,
but the methods are widely applicable.

Some precomputations (integral basis for OF , its LLL-reduction and
multiplication table. . . ) are expensive, and certainly not universally desirable.
They are skipped or tuned down when tackling (( easier )) tasks like
e.g. factorization over F [X].
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Elements in F = Q[X ]/(T ) (1/2)

How to represent the elements of F ? It is generally worth it to separate
contents / primitive parts and only deal with integral objects. Then we have

polynomial representation F = Q[X]/(T ), where T is integral and monic.

basis representation F ≃ Q[F :Q]. Often, pick a Z-basis for OF as a
Q-basis for F .

regular representation
F → HomQ(F, F )

x 7→ mx := multiplication by x

embeddings: archimedean (F ⊗ R) or p-adic (F ⊗ Qp), truncated to some
fixed accuracy.

unevaluated formal product x =
∏

eni

i ∈ Z[F ∗] of elements in any of the
above forms (ni ∈ Z, we actually take ei ∈ OF \ {0}).
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Elements in F = Q[X ]/(T ) (2/2)

Let n := [F : Q]. As far as multiplication goes, all representations are useful:

polynomial yields a 2n2 method, and asymptotically better when n or the
element’s heights increase. But it has denominators even for algebraic
integers. Over OF , denominators are bounded by the exponent of the
additive group OF /(Z[X]/(T )), which may be large.

multiplication xy in basis representation first computes regular
representation mx or my (n3 method). Knowing mx makes multiplication
by x an n2 method. Useful if about n/2 multiplications by the same x are
needed.

embeddings cancel intermediate coefficient explosion, but suffer from
stability problems. Requires final coefficients of bounded height for
unique reconstruction. Archimedean embeddings introduce further
rounding problems, but may be used in low accuracy as height estimator.

formal representation defers actual computations to later stages. Hardly
ever evaluated directly in F ∗. Rather in (OF /f)∗, F ⊗ R (stable), F ⊗ Qp,
F ∗/(F ∗)ℓ. . .
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[Multiplication] Ideals (1/2)

A fractional ideal is also best separated into content and primitive part. The
latter is integral and can be given as

a Z-module: n generators.

an OF -module: 2 generators. Requires solving an approximation problem.

Assuming one of a and b is given by two OF -generators, the multiplication ab

takes O(n3) elementary operations modulo (a ∩ Z)(b ∩ Z). Otherwise O(n4).

In fact, thanks to the LLL algorithm, it is relatively easy to extract a large
(( principal part )) from an ideal, rather than simply a content:
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[Reduction] Ideals (2/2)

Definition: The T2 : F → R+ quadratic form is defined by

T2(x) :=
∑

σ:F→C

|x|2σ

A Z-submodule Λ of F becomes a lattice when equipped with T2.

Let A a non-zero fractional ideal. The first vector of an LLL-reduced basis for
A is an α ∈ A of relatively small norm. Rewrite

A = (α)(A/α) = (a)(α)a,

where a is integral and primitive, α ∈ OF and a ∈ Q∗. All three components
depend on the specific LLL-reduction variant used, but

Lemma: Na is bounded by a constant depending only on F .

So, any product of ideals can be represented in the form (α)a, where α is an
accumulated formal product in Z[F ∗], and a is a small integral ideal.
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Example: discrete log in Cl(F )

Input: An ideal I, possibly given as a product of ideals. We are given
Cl(F ) = ⊕(Z/diZ)gi.

Output: (ej) and τ ∈ Z[F ∗], such that I = τ
∏

g
ej

j .

(1) Compute I as (α)a, α ∈ Z[F ∗], a ⊂ OF .

(2) Solve discrete log problem for small ideal a in Cl(F ) as a = (τ)
∏

gei

i , for
some yet unknown principal ideal (τ).
(Multiply a by random products of prime ideals in the factor base used to
compute the class group, then reduce as in previous slide, until the ideal
component of the reduction is smooth.)

(3) Compute a
∏

g−ei

i , as (β)b, β ∈ Z[F ∗].

(4) Realize small principal ideal b as (γ), using same method as in Step (2),
but this time computing logarithmic distance components. Yields the
Archimedean embeddings of γ, from which γ is recovered algebraically.

(5) Output (ei) and τ := αβγ ∈ Z[F ∗].
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Uniformizers (1/4)

Let f a non-zero integral ideal, and ℘/p a maximal ideal.

An integer π ∈ OF is an f-uniformizer for ℘, if v℘(π) = 1 and vq(π) = 0, for
all q | f, q 6= ℘. [In particular ℘ = pOF + πOF .]

A ℘-integer τ ∈ OF,℘ is an anti-uniformizer for ℘, if v℘(τ) = −1.

For a given anti-uniformizer τ , define the ℘-coprime part as

cp℘(x) := xτ v℘(x) (evaluated, maps OF \ {0} to OF \ ℘)

Lemma: Let ℘/p a prime ideal, π a (p)-uniformizer for ℘, and τ0 ∈ OF such

that πτ0 ≡ 0 (mod p), and p ∤ τ0. Then τ = τ0/p is an anti-uniformizer.

In other words, any non trivial τ0 in Ker(mπ ⊗ Fp) will do. Any anti-uniformizer
yields an obvious algorithm to compute v℘(x) for x ∈ OF \ {0}: multiply x by τ
while result is integral.In fact, we obtain cp℘(x) as a byproduct.

This method is quite efficient if the valuation is small, which is guaranteed if
we prevent coefficient explosion.
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Uniformizers (2/4)

How to find a (p)-uniformizer π: the definition implies ℘ = pOF + πOF .
Recall that F is defined over Q by a monic integral T (X). If p does not divide
the index [OF : Z[X]/(T )], Kummer criterion applies and the answer is trivial.

If not, the Buchman-Lenstra variant of Berlekamp’s algorithm splits the étale
algebra OF /Ip, where Ip is the p-radical of OF . The ideal Ip is the lift to OF of
the radical of OF /(p):

Ip =
⋂

q|p

q =
∏

q|p

q = {x ∈ OF , x nilpotent in OF /(p)} .

Let x → x denote the projection from OF to OF /Ip. The splitting yields all the
q ⊂ OF /Ip as Fp-vector spaces.

XIVe Rencontres Arithmétiques de Caen (20/06/2003) – p. 12/19



Uniformizers (3/4)

Lemma: An x ∈ ℘ chosen uniformly at random is a p-uniformizer with

probability
∏

q|p(1 − 1/Nq). [more rigorously, take x ∈ ℘ mod p2 ]

What if p is small and has many prime divisors? Worst case: p = 2 totally split.
Then expected running time is 2n trials, with n = [F : Q]. Each trial consists in
the computation of Nx and the check (( pN℘ | Nx ? )).

Theorem: There exists a deterministic algorithm producing a (p)-uniformizer

for ℘ in at most n trials, and exactly 1 if p is known to be unramified.

Let g := # {q : q | p}. The extra cost is dominated by the computation of Ip/℘,
using g − 1 intersections of Fp-vector spaces in dimension at most n, that is
O(n4) operations in Fp. The total cost for all (p)-uniformizers is only a constant
factor worse due to amortization: 3g − 4 intersections in all.

Proof. Use an approximation argument and ab = a ∩ b for two coprime

integral ideals a and b. Translates ideal multiplication to intersection of

Fp-vector spaces: ab = a ∩ b.
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Uniformizers (4/4)

Input: ℘ and Ip/℘, subspaces of OF /Ip given by Fp-bases.

Output: a p-uniformizer for ℘.

(1) Compute (u, v) ∈ ℘ × Ip/℘ such that u + v = 1 (mod p). [Simple Fp-linear
algebra: O(n3)].

(2) At this point, we have vq(u) = 0 for all q | p, q 6= ℘, and v℘(u) > 1.

(a) [succeeds iff v℘(u) = 1] Let x := u. If pN℘ ∤ Nx, return x.

(b) [succeeds iff e(℘/p) = 1] Let x := u + p. If pN℘ ∤ Nx, return x.

(3) Let γ1, . . . , γk ∈ OF be lifted Fp-generators of ℘. For i = 1, . . . , k− 1, repeat

(a) [succeeds iff γi 6∈ ℘2] Let x := vγi + u (mod p). If pN℘ ∤ Nx, return x.

(4) Return x := vγk + u (mod p).
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Extended Euclidean Algorithm

Let a, b be two coprime integral ideals. There exists α ∈ a, β ∈ b such that
α + β = 1. A variant of the modular HNF algorithm modulo b := b ∩ Z
(resp. a := a ∩ Z) yields α (resp. β).

More precisely, assume a, b are given by matrices of generators with respect
to a fixed basis (w1 = 1, . . . , wn) of OF . Full HNF reduction would compute

U =
(

Ua

Ub

)

such that (a | b)U = (Id | 0)

Let u the first column of Ua, we can set α := au. So, one

only needs to keep track of Ua, not Ub.

reduces modulo b at will, including the coordinates of Ua.

can successively pair columns known to have fewest non-zero coefficients
(if a and b happen to be in HNF), and stop as soon as 1 is found.

Frequent special case (a, b) = 1: only two columns are considered, in fact only
a and b themselves to which ordinary extended Euclidean algorithm is applied.
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Applications

Using the solution of (p)-uniformizer problem, the extended Euclidean
algorithm and related ideas, one can efficiently solve [with solutions in Z[F ∗]]

f-uniformizer problem for prime ideals.

2-generators problem for general ideals, i.e. write a = aOF + bOF for any
fixed a ∈ a \ {0}, in particular aZ = a ∩ Z. Hence efficiently multiply by a.
Picking b ∈ a/(a) at random succeeds with probability

∏

(1 − 1/N℘), ℘ ∈ {℘ : v℘(a) > v℘(a)} .

Chinese remainder problem and general approximation. In particular, the
coprime class problem: given integral non-zero ideals a, f, find α ∈ F ∗

such that (αa, f) = 1.

Typical improvements when replacing naïve randomized approximation
algorithms by the above for (( real lifea

)) fields of degree 20 to 30 : various
computations ranging from a few hours to a few days done in a few seconds.

asubmitted as bug reports to the PARI/GP team.
XIVe Rencontres Arithmétiques de Caen (20/06/2003) – p. 16/19



Example (continued): discrete log in Clf(F )

Input: An ideal (α)a, where (αa, f) = 1. We are given

Cl(F ) = ⊕(Z/diZ)gi, and Clf(F ) = ⊕(Z/DjZ)Gj ,

as well as elements γi ∈ Z[F ∗] such that (γigi, f) = 1.

Output: (fj) and β ∈ Z[F ∗], β = 1 mod∗f, such that αa = β
∏

G
fj

j .

(1) [Work in Cl(F )]. Write a = τ
∏

gei

i = (τ
∏

γ−ei

i )
∏

(γigi)
ei , τ ∈ Z[F ∗].

(2) [Work in (OF /f)∗]. For each ℘n℘ || f, map ατ
∏

γ−ei

i to (OF /℘n℘)∗, first
replacing all individual components by their ℘-coprime parts.
This works because the evaluated product is coprime to f, hence to ℘.
(Signatures are also easy to compute.)

(3) Glue above results to get discrete log in Clf(F ) as usual.

Remarks: 1) the cp℘(p) and cp℘(γi) play a special role. 2) f is liable to
change.
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One last example

Question: compute the Hilbert class field HF of F = Q(
√

181433), a degree 5
extension.

Method: adjoin 5-th roots of unity and use Kummer theory: find α ∈ F (ζ5)

such that α1/5 generates HF (ζ5) over F (ζ5), then use Lagrange resolvents to
obtain HF . Easy?

In practice, Cl(F (ζ5)) is isomorphic to Z/(3620) × Z/(20) so we raise elements
to huge powers. Initial PARI implantation overflowed physical memory after
2 days of computation, dealing with elements of logarithmic height 20000 at
105 decimal digits of accuracy.

Answer: X5 − X4 − 77X3 − 71X2 + 360X − 169 found in 2 minutes, mostly
spent applying a polynomial reduction algorithm to the initial answer. The
bottleneck computations above are done in 15 seconds. They deal with the
same elements, in a less wasteful form.

XIVe Rencontres Arithmétiques de Caen (20/06/2003) – p. 18/19



Reference

Topics in computational algebraic number theory

Karim.Belabas@math.u-psud.fr

Preprint available at

http://www.math.u-psud.fr/~belabas/pub/#modf

XIVe Rencontres Arithmétiques de Caen (20/06/2003) – p. 19/19


